Age | Commit message (Collapse) | Author | Files | Lines |
|
The recent cpuidle changes started triggering RCU splats on
Juno development boards:
| =============================
| WARNING: suspicious RCU usage
| -----------------------------
| include/trace/events/ipi.h:19 suspicious rcu_dereference_check() usage!
Fix cpuidle on ARM64:
- ... by introducing a new 'is_rcu' flag to the cpuidle helpers & make
ARM64 use it, as ARM64 wants to keep RCU active longer and wants to
do the ct_cpuidle_enter()/exit() dance itself.
- Also update the PSCI driver accordingly.
- This also removes the last known RCU_NONIDLE() user as a bonus.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/Y8Z31UbzG3LJgAXE@hirez.programming.kicks-ass.net
--
|
|
The ARM architecture revision v8.4 introduces a data independent timing
control (DIT) which can be set at any exception level, and instructs the
CPU to avoid optimizations that may result in a correlation between the
execution time of certain instructions and the value of the data they
operate on.
The DIT bit is part of PSTATE, and is therefore context switched as
usual, given that it becomes part of the saved program state (SPSR) when
taking an exception. We have also defined a hwcap for DIT, and so user
space can discover already whether or nor DIT is available. This means
that, as far as user space is concerned, DIT is wired up and fully
functional.
In the kernel, however, we never bothered with DIT: we disable at it
boot (i.e., INIT_PSTATE_EL1 has DIT cleared) and ignore the fact that we
might run with DIT enabled if user space happened to set it.
Currently, we have no idea whether or not running privileged code with
DIT disabled on a CPU that implements support for it may result in a
side channel that exposes privileged data to unprivileged user space
processes, so let's be cautious and just enable DIT while running in the
kernel if supported by all CPUs.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Adam Langley <agl@google.com>
Link: https://lore.kernel.org/all/YwgCrqutxmX0W72r@gmail.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20221107172400.1851434-1-ardb@kernel.org
[will: Removed cpu_has_dit() as per Mark's suggestion on the list]
Signed-off-by: Will Deacon <will@kernel.org>
|
|
If FEAT_MTE2 is disabled via the arm64.nomte command line argument on a
CPU that claims to support FEAT_MTE2, the kernel will use Tagged Normal
in the MAIR. If we interpret arm64.nomte to mean that the CPU does not
in fact implement FEAT_MTE2, setting the system register like this may
lead to UNSPECIFIED behavior. Fix it by arranging for MAIR to be set
in the C function cpu_enable_mte which is called based on the sanitized
version of the system register.
There is no need for the rest of the MTE-related system register
initialization to happen from assembly, with the exception of TCR_EL1,
which must be set to include at least TBI1 because the secondary CPUs
access KASan-allocated data structures early. Therefore, make the TCR_EL1
initialization unconditional and move the rest of the initialization to
cpu_enable_mte so that we no longer have a dependency on the unsanitized
ID register value.
Co-developed-by: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Evgenii Stepanov <eugenis@google.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 3b714d24ef17 ("arm64: mte: CPU feature detection and initial sysreg configuration")
Cc: <stable@vger.kernel.org> # 5.10.x
Link: https://lore.kernel.org/r/20220915222053.3484231-1-eugenis@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In preparation for changing the way we initialize the permanent ID map,
update cpu_replace_ttbr1() so we can use it with the initial ID map as
well.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220624150651.1358849-11-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Various spelling mistakes in comments.
Detected with the help of Coccinelle.
Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Link: https://lore.kernel.org/r/20220318103729.157574-10-Julia.Lawall@inria.fr
[will: Squashed in 20220318103729.157574-28-Julia.Lawall@inria.fr]
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When KASAN_HW_TAGS is selected, KASAN is enabled at boot time, and the
hardware supports MTE, we'll initialize `kernel_gcr_excl` with a value
dependent on KASAN_TAG_MAX. While the resulting value is a constant
which depends on KASAN_TAG_MAX, we have to perform some runtime work to
generate the value, and have to read the value from memory during the
exception entry path. It would be better if we could generate this as a
constant at compile-time, and use it as such directly.
Early in boot within __cpu_setup(), we initialize GCR_EL1 to a safe
value, and later override this with the value required by KASAN. If
CONFIG_KASAN_HW_TAGS is not selected, or if KASAN is disabeld at boot
time, the kernel will not use IRG instructions, and so the initial value
of GCR_EL1 is does not matter to the kernel. Thus, we can instead have
__cpu_setup() initialize GCR_EL1 to a value consistent with
KASAN_TAG_MAX, and avoid the need to re-initialize it during hotplug and
resume form suspend.
This patch makes arem64 use a compile-time constant KERNEL_GCR_EL1
value, which is compatible with KASAN_HW_TAGS when this is selected.
This removes the need to re-initialize GCR_EL1 dynamically, and acts as
an optimization to the entry assembly, which no longer needs to load
this value from memory. The redundant initialization hooks are removed.
In order to do this, KASAN_TAG_MAX needs to be visible outside of the
core KASAN code. To do this, I've moved the KASAN_TAG_* values into
<linux/kasan-tags.h>.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20210714143843.56537-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Use cpuidle context helpers to switch to using DAIF.IF instead
of PMR to mask interrupts, ensuring that we suspend with
interrupts being able to reach the CPU interface.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Link: https://lore.kernel.org/r/20210615111227.2454465-5-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The kernel does not use any keys besides IA so we don't need to
install IB/DA/DB/GA on kernel exit if we arrange to install them
on task switch instead, which we can expect to happen an order of
magnitude less often.
Furthermore we can avoid installing the user IA in the case where the
user task has IA disabled and just leave the kernel IA installed. This
also lets us avoid needing to install IA on kernel entry.
On an Apple M1 under a hypervisor, the overhead of kernel entry/exit
has been measured to be reduced by 15.6ns in the case where IA is
enabled, and 31.9ns in the case where IA is disabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Link: https://linux-review.googlesource.com/id/Ieddf6b580d23c9e0bed45a822dabe72d2ffc9a8e
Link: https://lore.kernel.org/r/2d653d055f38f779937f2b92f8ddd5cf9e4af4f4.1616123271.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When MTE async mode is enabled TFSR_EL1 contains the accumulative
asynchronous tag check faults for EL1 and EL0.
During the suspend/resume operations the firmware might perform some
operations that could change the state of the register resulting in
a spurious tag check fault report.
Report asynchronous tag faults before suspend and clear the TFSR_EL1
register after resume to prevent this to happen.
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-9-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The Spectre-v4 workaround is re-configured when resuming from suspend,
as the firmware may have re-enabled the mitigation despite the user
previously asking for it to be disabled.
Enabling or disabling the workaround can result in an undefined
instruction exception on CPUs which implement PSTATE.SSBS but only allow
it to be configured by adjusting the SPSR on exception return. We handle
this by installing an 'undef hook' which effectively emulates the access.
Installing this hook requires us to take a couple of spinlocks both to
avoid corrupting the internal list of hooks but also to ensure that we
don't run into an unhandled exception. Unfortunately, when resuming from
suspend, we haven't yet called rcu_idle_exit() and so lockdep gets angry
about "suspicious RCU usage". In doing so, it tries to print a warning,
which leads it to get even more suspicious, this time about itself:
| rcu_scheduler_active = 2, debug_locks = 1
| RCU used illegally from extended quiescent state!
| 1 lock held by swapper/0:
| #0: (logbuf_lock){-.-.}-{2:2}, at: vprintk_emit+0x88/0x198
|
| Call trace:
| dump_backtrace+0x0/0x1d8
| show_stack+0x18/0x24
| dump_stack+0xe0/0x17c
| lockdep_rcu_suspicious+0x11c/0x134
| trace_lock_release+0xa0/0x160
| lock_release+0x3c/0x290
| _raw_spin_unlock+0x44/0x80
| vprintk_emit+0xbc/0x198
| vprintk_default+0x44/0x6c
| vprintk_func+0x1f4/0x1fc
| printk+0x54/0x7c
| lockdep_rcu_suspicious+0x30/0x134
| trace_lock_acquire+0xa0/0x188
| lock_acquire+0x50/0x2fc
| _raw_spin_lock+0x68/0x80
| spectre_v4_enable_mitigation+0xa8/0x30c
| __cpu_suspend_exit+0xd4/0x1a8
| cpu_suspend+0xa0/0x104
| psci_cpu_suspend_enter+0x3c/0x5c
| psci_enter_idle_state+0x44/0x74
| cpuidle_enter_state+0x148/0x2f8
| cpuidle_enter+0x38/0x50
| do_idle+0x1f0/0x2b4
Prevent these splats by running __cpu_suspend_exit() with RCU watching.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Suggested-by: "Paul E . McKenney" <paulmck@kernel.org>
Reported-by: Sami Tolvanen <samitolvanen@google.com>
Fixes: c28762070ca6 ("arm64: Rewrite Spectre-v4 mitigation code")
Cc: <stable@vger.kernel.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210218140346.5224-1-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Now that the uaccess primitives dont take addr_limit into account, we
have no need to manipulate this via set_fs() and get_fs(). Remove
support for these, along with some infrastructure this renders
redundant.
We no longer need to flip UAO to access kernel memory under KERNEL_DS,
and head.S unconditionally clears UAO for all kernel configurations via
an ERET in init_kernel_el. Thus, we don't need to dynamically flip UAO,
nor do we need to context-switch it. However, we still need to adjust
PAN during SDEI entry.
Masking of __user pointers no longer needs to use the dynamic value of
addr_limit, and can use a constant derived from the maximum possible
userspace task size. A new TASK_SIZE_MAX constant is introduced for
this, which is also used by core code. In configurations supporting
52-bit VAs, this may include a region of unusable VA space above a
48-bit TTBR0 limit, but never includes any portion of TTBR1.
Note that TASK_SIZE_MAX is an exclusive limit, while USER_DS and
KERNEL_DS were inclusive limits, and is converted to a mask by
subtracting one.
As the SDEI entry code repurposes the otherwise unnecessary
pt_regs::orig_addr_limit field to store the TTBR1 of the interrupted
context, for now we rename that to pt_regs::sdei_ttbr1. In future we can
consider factoring that out.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201202131558.39270-10-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add userspace support for the Memory Tagging Extension introduced by
Armv8.5.
(Catalin Marinas and others)
* for-next/mte: (30 commits)
arm64: mte: Fix typo in memory tagging ABI documentation
arm64: mte: Add Memory Tagging Extension documentation
arm64: mte: Kconfig entry
arm64: mte: Save tags when hibernating
arm64: mte: Enable swap of tagged pages
mm: Add arch hooks for saving/restoring tags
fs: Handle intra-page faults in copy_mount_options()
arm64: mte: ptrace: Add NT_ARM_TAGGED_ADDR_CTRL regset
arm64: mte: ptrace: Add PTRACE_{PEEK,POKE}MTETAGS support
arm64: mte: Allow {set,get}_tagged_addr_ctrl() on non-current tasks
arm64: mte: Restore the GCR_EL1 register after a suspend
arm64: mte: Allow user control of the generated random tags via prctl()
arm64: mte: Allow user control of the tag check mode via prctl()
mm: Allow arm64 mmap(PROT_MTE) on RAM-based files
arm64: mte: Validate the PROT_MTE request via arch_validate_flags()
mm: Introduce arch_validate_flags()
arm64: mte: Add PROT_MTE support to mmap() and mprotect()
mm: Introduce arch_calc_vm_flag_bits()
arm64: mte: Tags-aware aware memcmp_pages() implementation
arm64: Avoid unnecessary clear_user_page() indirection
...
|
|
Rewrite the Spectre-v4 mitigation handling code to follow the same
approach as that taken by Spectre-v2.
For now, report to KVM that the system is vulnerable (by forcing
'ssbd_state' to ARM64_SSBD_UNKNOWN), as this will be cleared up in
subsequent steps.
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The CPU resume/suspend routines only take care of the common system
registers. Restore GCR_EL1 in addition via the __cpu_suspend_exit()
function.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|
|
The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include
of the latter in the middle of asm includes. Fix this up with the aid of
the below script and manual adjustments here and there.
import sys
import re
if len(sys.argv) is not 3:
print "USAGE: %s <file> <header>" % (sys.argv[0])
sys.exit(1)
hdr_to_move="#include <linux/%s>" % sys.argv[2]
moved = False
in_hdrs = False
with open(sys.argv[1], "r") as f:
lines = f.readlines()
for _line in lines:
line = _line.rstrip('
')
if line == hdr_to_move:
continue
if line.startswith("#include <linux/"):
in_hdrs = True
elif not moved and in_hdrs:
moved = True
print hdr_to_move
print line
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Common Not Private (CNP) is a feature of ARMv8.2 extension which
allows translation table entries to be shared between different PEs in
the same inner shareable domain, so the hardware can use this fact to
optimise the caching of such entries in the TLB.
CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to
the hardware that the translation table entries pointed to by this
TTBR are the same as every PE in the same inner shareable domain for
which the equivalent TTBR also has CNP bit set. In case CNP bit is set
but TTBR does not point at the same translation table entries for a
given ASID and VMID, then the system is mis-configured, so the results
of translations are UNPREDICTABLE.
For kernel we postpone setting CNP till all cpus are up and rely on
cpufeature framework to 1) patch the code which is sensitive to CNP
and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be
reprogrammed as result of hibernation or cpuidle (via __enable_mmu).
For these two cases we restore CnP bit via __cpu_suspend_exit().
There are a few cases we need to care of changes in TTBR0_EL1:
- a switch to idmap
- software emulated PAN
we rule out latter via Kconfig options and for the former we make
sure that CNP is set for non-zero ASIDs only.
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
[catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
On a system where firmware can dynamically change the state of the
mitigation, the CPU will always come up with the mitigation enabled,
including when coming back from suspend.
If the user has requested "no mitigation" via a command line option,
let's enforce it by calling into the firmware again to disable it.
Similarily, for a resume from hibernate, the mitigation could have
been disabled by the boot kernel. Let's ensure that it is set
back on in that case.
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add __uaccess_{en,dis}able_hw_pan() helpers to set/clear the PSTATE.PAN
bit.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
|
|
There are a few places where we want to mask all exceptions. Today we
do this in a piecemeal fashion, typically we expect the caller to
have masked irqs and the arch code masks debug exceptions, ignoring
serror which is probably masked.
Make it clear that 'mask all exceptions' is the intention by adding
helpers to do exactly that.
This will let us unmask SError without having to add 'oh and SError'
to these paths.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
After commit 9e8e865bbe29 ("arm64: unify idmap removal"), we no need to
flush tlb in suspend.c, so the included file tlbflush.h can be removed.
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When returning from idle, we rely on the fact that thread_info lives at
the end of the kernel stack, and restore this by masking the saved stack
pointer. Subsequent patches will sever the relationship between the
stack and thread_info, and to cater for this we must save/restore sp_el0
explicitly, storing it in cpu_suspend_ctx.
As cpu_suspend_ctx must be doubleword aligned, this leaves us with an
extra slot in cpu_suspend_ctx. We can use this to save/restore tpidr_el1
in the same way, which simplifies the code, avoiding pointer chasing on
the restore path (as we no longer need to load thread_info::cpu followed
by the relevant slot in __per_cpu_offset based on this).
This patch stashes both registers in cpu_suspend_ctx.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The suspend/resume path in kernel/sleep.S, as used by cpu-idle, does not
save/restore PSTATE. As a result of this cpufeatures that were detected
and have bits in PSTATE get lost when we resume from idle.
UAO gets set appropriately on the next context switch. PAN will be
re-enabled next time we return from user-space, but on a preemptible
kernel we may run work accessing user space before this point.
Add code to re-enable theses two features in __cpu_suspend_exit().
We re-use uao_thread_switch() passing current.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The arm64 hw_breakpoint implementation uses a CPU hotplug notifier to
reset the {break,watch}point registers when CPUs come online.
This patch converts the code to the new hotplug mechanism, whilst moving
the invocation earlier to remove the need to disable IRQs explicitly in
the driver (which could cause havok if we trip a watchpoint in an IRQ
handler whilst restoring the debug register state).
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
By enabling the MMU early in cpu_resume(), the sleep_save_sp and stack can
be accessed by VA, which avoids the need to convert-addresses and clean to
PoC on the suspend path.
MMU setup is shared with the boot path, meaning the swapper_pg_dir is
restored directly: ttbr1_el1 is no longer saved/restored.
struct sleep_save_sp is removed, replacing it with a single array of
pointers.
cpu_do_{suspend,resume} could be further reduced to not restore: cpacr_el1,
mdscr_el1, tcr_el1, vbar_el1 and sctlr_el1, all of which are set by
__cpu_setup(). However these values all contain res0 bits that may be used
to enable future features.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Hibernate could make use of the cpu_suspend() code to save/restore cpu
state, however it needs to be able to return '0' from the 'finisher'.
Rework cpu_suspend() so that the finisher is called from C code,
independently from the save/restore of cpu state. Space to save the context
in is allocated in the caller's stack frame, and passed into
__cpu_suspend_enter().
Hibernate's use of this API will look like a copy of the cpu_suspend()
function.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We currently open-code the removal of the idmap and restoration of the
current task's MMU state in a few places.
Before introducing yet more copies of this sequence, unify these to call
a new helper, cpu_uninstall_idmap.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The function graph tracer adds instrumentation that is required to trace
both entry and exit of a function. In particular the function graph
tracer updates the "return address" of a function in order to insert
a trace callback on function exit.
Kernel power management functions like cpu_suspend() are called
upon power down entry with functions called "finishers" that are in turn
called to trigger the power down sequence but they may not return to the
kernel through the normal return path.
When the core resumes from low-power it returns to the cpu_suspend()
function through the cpu_resume path, which leaves the trace stack frame
set-up by the function tracer in an incosistent state upon return to the
kernel when tracing is enabled.
This patch fixes the issue by pausing/resuming the function graph
tracer on the thread executing cpu_suspend() (ie the function call that
subsequently triggers the "suspend finishers"), so that the function graph
tracer state is kept consistent across functions that enter power down
states and never return by effectively disabling graph tracer while they
are executing.
Fixes: 819e50e25d0c ("arm64: Add ftrace support")
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 3.16+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes and clean-ups from Catalin Marinas:
"Here's a second pull request for this merging window with some
fixes/clean-ups:
- __cmpxchg_double*() return type fix to avoid truncation of a long
to int and subsequent logical "not" in cmpxchg_double()
misinterpreting the operation success/failure
- BPF fixes for mod and div by zero
- Fix compilation with STRICT_MM_TYPECHECKS enabled
- VDSO build fix without libgcov
- Some static and __maybe_unused annotations
- Kconfig clean-up (FRAME_POINTER)
- defconfig update for CRYPTO_CRC32_ARM64"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: suspend: make hw_breakpoint_restore static
arm64: mmu: make split_pud and fixup_executable static
arm64: smp: make of_parse_and_init_cpus static
arm64: use linux/types.h in kvm.h
arm64: build vdso without libgcov
arm64: mark cpus_have_hwcap as __maybe_unused
arm64: remove redundant FRAME_POINTER kconfig option and force to select it
arm64: fix R/O permissions of FDT mapping
arm64: fix STRICT_MM_TYPECHECKS issue in PTE_CONT manipulation
arm64: bpf: fix mod-by-zero case
arm64: bpf: fix div-by-zero case
arm64: Enable CRYPTO_CRC32_ARM64 in defconfig
arm64: cmpxchg_dbl: fix return value type
|
|
hw_breakpoint_restore is only used within suspend.c, so it can be
declared static.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
merged from tip/irq/for-arm to allow the arm64-specific part to be
upstreamed via the arm64 tree
- CPU feature detection reworked to cope with heterogeneous systems
where CPUs may not have exactly the same features. The features
reported by the kernel via internal data structures or ELF_HWCAP are
delayed until all the CPUs are up (and before user space starts)
- Support for 16KB pages, with the additional bonus of a 36-bit VA
space, though the latter only depending on EXPERT
- Implement native {relaxed, acquire, release} atomics for arm64
- New ASID allocation algorithm which avoids IPI on roll-over, together
with TLB invalidation optimisations (using local vs global where
feasible)
- KASan support for arm64
- EFI_STUB clean-up and isolation for the kernel proper (required by
KASan)
- copy_{to,from,in}_user optimisations (sharing the memcpy template)
- perf: moving arm64 to the arm32/64 shared PMU framework
- L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
- Support for the contiguous PTE hint on kernel mapping (16 consecutive
entries may be able to use a single TLB entry)
- Generic CONFIG_HZ now used on arm64
- defconfig updates
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (91 commits)
arm64/efi: fix libstub build under CONFIG_MODVERSIONS
ARM64: Enable multi-core scheduler support by default
arm64/efi: move arm64 specific stub C code to libstub
arm64: page-align sections for DEBUG_RODATA
arm64: Fix build with CONFIG_ZONE_DMA=n
arm64: Fix compat register mappings
arm64: Increase the max granular size
arm64: remove bogus TASK_SIZE_64 check
arm64: make Timer Interrupt Frequency selectable
arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNED
arm64: cachetype: fix definitions of ICACHEF_* flags
arm64: cpufeature: declare enable_cpu_capabilities as static
genirq: Make the cpuhotplug migration code less noisy
arm64: Constify hwcap name string arrays
arm64/kvm: Make use of the system wide safe values
arm64/debug: Make use of the system wide safe value
arm64: Move FP/ASIMD hwcap handling to common code
arm64/HWCAP: Use system wide safe values
arm64/capabilities: Make use of system wide safe value
arm64: Delay cpu feature capability checks
...
|
|
Commit dd006da21646 ("arm64: mm: increase VA range of identity map")
introduced a mechanism to extend the virtual memory map range
to support arm64 systems with system RAM located at very high offset,
where the identity mapping used to enable/disable the MMU requires
additional translation levels to map the physical memory at an equal
virtual offset.
The kernel detects at boot time the tcr_el1.t0sz value required by the
identity mapping and sets-up the tcr_el1.t0sz register field accordingly,
any time the identity map is required in the kernel (ie when enabling the
MMU).
After enabling the MMU, in the cold boot path the kernel resets the
tcr_el1.t0sz to its default value (ie the actual configuration value for
the system virtual address space) so that after enabling the MMU the
memory space translated by ttbr0_el1 is restored as expected.
Commit dd006da21646 ("arm64: mm: increase VA range of identity map")
also added code to set-up the tcr_el1.t0sz value when the kernel resumes
from low-power states with the MMU off through cpu_resume() in order to
effectively use the identity mapping to enable the MMU but failed to add
the code required to restore the tcr_el1.t0sz to its default value, when
the core returns to the kernel with the MMU enabled, so that the kernel
might end up running with tcr_el1.t0sz value set-up for the identity
mapping which can be lower than the value required by the actual virtual
address space, resulting in an erroneous set-up.
This patchs adds code in the resume path that restores the tcr_el1.t0sz
default value upon core resume, mirroring this way the cold boot path
behaviour therefore fixing the issue.
Cc: <stable@vger.kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: dd006da21646 ("arm64: mm: increase VA range of identity map")
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
There are a number of places where a single CPU is running with a
private page-table and we need to perform maintenance on the TLB and
I-cache in order to ensure correctness, but do not require the operation
to be broadcast to other CPUs.
This patch adds local variants of tlb_flush_all and __flush_icache_all
to support these use-cases and updates the callers respectively.
__local_flush_icache_all also implies an isb, since it is intended to be
used synchronously.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This patch renames __cpu_suspend to cpu_suspend so that it's aligned
with ARM32. It also removes the redundant wrapper created.
This is in preparation to implement generic PSCI system suspend using
the cpu_{suspend,resume} which now has the same interface on both ARM
and ARM64.
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Two cleanups of the asm function cpu_resume():
- The global variable sleep_idmap_phys always points to idmap_pg_dir,
so we can just use that value directly in the CPU resume path.
- Unclutter the load of sleep_save_sp::save_ptr_stash_phys.
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
ARM64_CPU_SUSPEND config option was introduced to make code providing
context save/restore selectable only on platforms requiring power
management capabilities.
Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which
in turn is set by the SUSPEND config option.
The introduction of CPU_IDLE for arm64 requires that code configured
by ARM64_CPU_SUSPEND (context save/restore) should be compiled in
in order to enable the CPU idle driver to rely on CPU operations
carrying out context save/restore.
The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore
forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP)
failed dependencies, which is not a clean way of handling the kernel
configuration option.
For these reasons, this patch removes the ARM64_CPU_SUSPEND config option
and makes the context save/restore dependent on CPU_PM, which is selected
whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies
in the process.
This way, code previously configured through ARM64_CPU_SUSPEND is
compiled in whenever a power management subsystem requires it to be
present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour
expected on ARM64 kernels.
The cpu_suspend and cpu_init_idle CPU operations are added only if
CPU_IDLE is selected, since they are CPU_IDLE specific methods and
should be grouped and defined accordingly.
PSCI CPU operations are updated to reflect the introduced changes.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
On arm64 the TTBR0_EL1 register is set to either the reserved TTBR0
page tables on boot or to the active_mm mappings belonging to user space
processes, it must never be set to swapper_pg_dir page tables mappings.
When a CPU is booted its active_mm is set to init_mm even though its
TTBR0_EL1 points at the reserved TTBR0 page mappings. This implies
that when __cpu_suspend is triggered the active_mm can point at
init_mm even if the current TTBR0_EL1 register contains the reserved
TTBR0_EL1 mappings.
Therefore, the mm save and restore executed in __cpu_suspend might
turn out to be erroneous in that, if the current->active_mm corresponds
to init_mm, on resume from low power it ends up restoring in the
TTBR0_EL1 the init_mm mappings that are global and can cause speculation
of TLB entries which end up being propagated to user space.
This patch fixes the issue by checking the active_mm pointer before
restoring the TTBR0 mappings. If the current active_mm == &init_mm,
the code sets the TTBR0_EL1 to the reserved TTBR0 mapping instead of
switching back to the active_mm, which is the expected behaviour
corresponding to the TTBR0_EL1 settings when __cpu_suspend was entered.
Fixes: 95322526ef62 ("arm64: kernel: cpu_{suspend/resume} implementation")
Cc: <stable@vger.kernel.org> # 3.14+: 18ab7db
Cc: <stable@vger.kernel.org> # 3.14+: 714f599
Cc: <stable@vger.kernel.org> # 3.14+: c3684fb
Cc: <stable@vger.kernel.org> # 3.14+
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The function cpu_resume currently lives in the .data section.
There's no reason for it to be there since we can use relative
instructions without a problem. Move a few cpu_resume data
structures out of the assembly file so the .data annotation
can be dropped completely and cpu_resume ends up in the read
only text section.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
CPU suspend is the standard kernel interface to be used to enter
low-power states on ARM64 systems. Current cpu_suspend implementation
by default assumes that all low power states are losing the CPU context,
so the CPU registers must be saved and cleaned to DRAM upon state
entry. Furthermore, the current cpu_suspend() implementation assumes
that if the CPU suspend back-end method returns when called, this has
to be considered an error regardless of the return code (which can be
successful) since the CPU was not expected to return from a code path that
is different from cpu_resume code path - eg returning from the reset vector.
All in all this means that the current API does not cope well with low-power
states that preserve the CPU context when entered (ie retention states),
since first of all the context is saved for nothing on state entry for
those states and a successful state entry can return as a normal function
return, which is considered an error by the current CPU suspend
implementation.
This patch refactors the cpu_suspend() API so that it can be split in
two separate functionalities. The arm64 cpu_suspend API just provides
a wrapper around CPU suspend operation hook. A new function is
introduced (for architecture code use only) for states that require
context saving upon entry:
__cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
__cpu_suspend() saves the context on function entry and calls the
so called suspend finisher (ie fn) to complete the suspend operation.
The finisher is not expected to return, unless it fails in which case
the error is propagated back to the __cpu_suspend caller.
The API refactoring results in the following pseudo code call sequence for a
suspending CPU, when triggered from a kernel subsystem:
/*
* int cpu_suspend(unsigned long idx)
* @idx: idle state index
*/
{
-> cpu_suspend(idx)
|---> CPU operations suspend hook called, if present
|--> if (retention_state)
|--> direct suspend back-end call (eg PSCI suspend)
else
|--> __cpu_suspend(idx, &back_end_finisher);
}
By refactoring the cpu_suspend API this way, the CPU operations back-end
has a chance to detect whether idle states require state saving or not
and can call the required suspend operations accordingly either through
simple function call or indirectly through __cpu_suspend() which carries out
state saving and suspend finisher dispatching to complete idle state entry.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Suspend init function must be marked as __init, since it is not needed
after the kernel has booted. This patch moves the cpu_suspend_init()
function to the __init section.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The introduction of percpu offset optimisation through tpidr_el1 in:
Commit id :7158627686f02319c50c8d9d78f75d4c8
"arm64: percpu: implement optimised pcpu access using tpidr_el1"
requires cpu_{suspend/resume} to restore the tpidr_el1 register upon resume
so that percpu variables can be addressed correctly when a CPU comes out
of reset from warm-boot.
This patch fixes cpu_{suspend}/{resume} tpidr_el1 restoration on resume, by
calling the set_my_cpu_offset C API, as it is done on primary and secondary
CPUs on cold boot, so that, even if the register used to store the percpu
offset is changed, the save and restore of general purpose registers does not
have to be updated.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When a CPU resumes from low-power, it restores HW breakpoint and
watchpoint slots through a CPU PM notifier. Since we want to enable
debugging as early as possible in the resume path, the mdscr content
is restored along the general purpose registers in the cpu_suspend API
and debug exceptions are reenabled when cpu_suspend returns. Since the
CPU PM notifier is run after a CPU has been resumed, we cannot expect
HW breakpoint registers to contain sane values till the notifier is run,
since the HW breakpoints registers content is unknown at reset; this means
that the CPU might run with debug exceptions enabled, mdscr restored but HW
breakpoint registers containing junk values that can trigger spurious
debug exceptions.
This patch fixes current HW breakpoints restore by moving the HW breakpoints
registers restoration to the cpu_suspend API, before the debug exceptions are
enabled. This way, as soon as the cpu_suspend function returns the
kernel can resume debugging with sane values in HW breakpoint registers.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|