Age | Commit message (Collapse) | Author | Files | Lines |
|
PGFREE and PGALLOC represent the number of freed and allocated pages. So
the page order must be considered.
Link: https://lkml.kernel.org/r/20221006101540.40686-1-laoar.shao@gmail.com
Fixes: 44042b449872 ("mm/page_alloc: allow high-order pages to be stored on the per-cpu lists")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's not obvious why we had a write check for each of the missing
messages, especially when it should be a locking op. Add a rich comment
for that, and also try to explain its good side and limitations, so that
if someone hit it again for either a bug or a different glibc impl
there'll be some clue to start with.
Link: https://lkml.kernel.org/r/20221004193400.110155-4-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
After hugetlb_pte_stable() introduced, we can also rewrite the migration
race condition against page allocation to use the new helper too.
Link: https://lkml.kernel.org/r/20221004193400.110155-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/hugetlb: Fix selftest failures with write check", v3.
Currently akpm mm-unstable fails with uffd hugetlb private mapping test
randomly on a write check.
The initial bisection of that points to the recent pmd unshare series, but
it turns out there's no direction relationship with the series but only
some timing change caused the race to start trigger.
The race should be fixed in patch 1. Patch 2 is a trivial cleanup on the
similar race with hugetlb migrations, patch 3 comment on the write check
so when anyone read it again it'll be clear why it's there.
This patch (of 3):
After the recent rework patchset of hugetlb locking on pmd sharing,
kselftest for userfaultfd sometimes fails on hugetlb private tests with
unexpected write fault checks.
It turns out there's nothing wrong within the locking series regarding
this matter, but it could have changed the timing of threads so it can
trigger an old bug.
The real bug is when we call hugetlb_no_page() we're not with the pgtable
lock. It means we're reading the pte values lockless. It's perfectly
fine in most cases because before we do normal page allocations we'll take
the lock and check pte_same() again. However before that, there are
actually two paths on userfaultfd missing/minor handling that may directly
move on with the fault process without checking the pte values.
It means for these two paths we may be generating an uffd message based on
an unstable pte, while an unstable pte can legally be anything as long as
the modifier holds the pgtable lock.
One example, which is also what happened in the failing kselftest and
caused the test failure, is that for private mappings wr-protection
changes can happen on one page. While hugetlb_change_protection()
generally requires pte being cleared before being changed, then there can
be a race condition like:
thread 1 thread 2
-------- --------
UFFDIO_WRITEPROTECT hugetlb_fault
hugetlb_change_protection
pgtable_lock()
huge_ptep_modify_prot_start
pte==NULL
hugetlb_no_page
generate uffd missing event
even if page existed!!
huge_ptep_modify_prot_commit
pgtable_unlock()
Fix this by rechecking the pte after pgtable lock for both userfaultfd
missing & minor fault paths.
This bug should have been around starting from uffd hugetlb introduced, so
attaching a Fixes to the commit. Also attach another Fixes to the minor
support commit for easier tracking.
Note that userfaultfd is actually fine with false positives (e.g. caused
by pte changed), but not wrong logical events (e.g. caused by reading a
pte during changing). The latter can confuse the userspace, so the
strictness is very much preferred. E.g., MISSING event should never
happen on the page after UFFDIO_COPY has correctly installed the page and
returned.
Link: https://lkml.kernel.org/r/20221004193400.110155-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20221004193400.110155-2-peterx@redhat.com
Fixes: 1a1aad8a9b7b ("userfaultfd: hugetlbfs: add userfaultfd hugetlb hook")
Fixes: 7677f7fd8be7 ("userfaultfd: add minor fault registration mode")
Signed-off-by: Peter Xu <peterx@redhat.com>
Co-developed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently zram will adjust its fops to a version which does not contain
rw_page when a backing device has been assigned. This is done to prevent
upper layers from assuming a synchronous operation when a page may have
been written back. This forces every operation through bio which has
overhead associated with bio_alloc/frees.
The code can be simplified to always expose an rw_page method and only in
the rare event that a page is written back we instead will return
-EOPNOTSUPP forcing the upper layer to fallback to bio.
Link: https://lkml.kernel.org/r/20221003144832.2906610-1-bgeffon@google.com
Signed-off-by: Brian Geffon <bgeffon@google.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Rom Lemarchand <romlem@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, the implementation of update_mmu_tlb() is empty if
__HAVE_ARCH_UPDATE_MMU_TLB is not defined. Then if two threads
concurrently fault at the same page, the second thread that did not win
the race will give up and do nothing. In the LoongArch architecture, this
second thread will trigger another fault, and only updates its local TLB.
Instead of triggering another fault, it's better to implement
update_mmu_tlb() to directly update the local TLB of the second thread.
Just do it.
Link: https://lkml.kernel.org/r/20220929112318.32393-3-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Suggested-by: Bibo Mao <maobibo@loongson.cn>
Acked-by: Huacai Chen <chenhuacai@loongson.cn>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
As message in commit 7df676974359 ("mm/memory.c: Update local TLB if PTE
entry exists") said, we should update local TLB only on the second thread.
So in the do_anonymous_page() here, we should use update_mmu_tlb()
instead of update_mmu_cache() on the second thread.
As David pointed out, this is a performance improvement, not a
correctness fix.
Link: https://lkml.kernel.org/r/20220929112318.32393-2-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Bibo Mao <maobibo@loongson.cn>
Cc: Chris Zankel <chris@zankel.net>
Cc: Huacai Chen <chenhuacai@loongson.cn>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
GCC's -Warray-bounds option detects out-of-bounds accesses to
statically-sized allocations in krealloc out-of-bounds tests.
Use OPTIMIZER_HIDE_VAR to suppress the warning.
Also change kmalloc_memmove_invalid_size to use OPTIMIZER_HIDE_VAR
instead of a volatile variable.
Link: https://lkml.kernel.org/r/e94399242d32e00bba6fd0d9ec4c897f188128e8.1664215688.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Link: https://lkml.kernel.org/r/a73cf109de0224cfd118d22be58ddebac3ae2897.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When the module is unloaded or a GPU is unbound from the module it is
possible for device private pages to still be mapped in currently running
processes. This can lead to a hangs and RCU stall warnings when unbinding
the device as memunmap_pages() will wait in an uninterruptible state until
all device pages have been freed which may never happen.
Fix this by migrating device mappings back to normal CPU memory prior to
freeing the GPU memory chunks and associated device private pages.
Link: https://lkml.kernel.org/r/66277601fb8fda9af408b33da9887192bf895bda.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
nouveau_dmem_fault_copy_one() is used during handling of CPU faults via
the migrate_to_ram() callback and is used to copy data from GPU to CPU
memory. It is currently specific to fault handling, however a future
patch implementing eviction of data during teardown needs similar
functionality.
Refactor out the core functionality so that it is not specific to fault
handling.
Link: https://lkml.kernel.org/r/20573d7b4e641a78fde9935f948e64e71c9e709e.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Device drivers can use the migrate_vma family of functions to migrate
existing private anonymous mappings to device private pages. These pages
are backed by memory on the device with drivers being responsible for
copying data to and from device memory.
Device private pages are freed via the pgmap->page_free() callback when
they are unmapped and their refcount drops to zero. Alternatively they
may be freed indirectly via migration back to CPU memory in response to a
pgmap->migrate_to_ram() callback called whenever the CPU accesses an
address mapped to a device private page.
In other words drivers cannot control the lifetime of data allocated on
the devices and must wait until these pages are freed from userspace.
This causes issues when memory needs to reclaimed on the device, either
because the device is going away due to a ->release() callback or because
another user needs to use the memory.
Drivers could use the existing migrate_vma functions to migrate data off
the device. However this would require them to track the mappings of each
page which is both complicated and not always possible. Instead drivers
need to be able to migrate device pages directly so they can free up
device memory.
To allow that this patch introduces the migrate_device family of functions
which are functionally similar to migrate_vma but which skips the initial
lookup based on mapping.
Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
migrate_device_coherent_page() reuses the existing migrate_vma family of
functions to migrate a specific page without providing a valid mapping or
vma. This looks a bit odd because it means we are calling migrate_vma_*()
without setting a valid vma, however it was considered acceptable at the
time because the details were internal to migrate_device.c and there was
only a single user.
One of the reasons the details could be kept internal was that this was
strictly for migrating device coherent memory. Such memory can be copied
directly by the CPU without intervention from a driver. However this
isn't true for device private memory, and a future change requires similar
functionality for device private memory. So refactor the code into
something more sensible for migrating device memory without a vma.
Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
ZONE_DEVICE pages have a struct dev_pagemap which is allocated by a
driver. When the struct page is first allocated by the kernel in
memremap_pages() a reference is taken on the associated pagemap to ensure
it is not freed prior to the pages being freed.
Prior to 27674ef6c73f ("mm: remove the extra ZONE_DEVICE struct page
refcount") pages were considered free and returned to the driver when the
reference count dropped to one. However the pagemap reference was not
dropped until the page reference count hit zero. This would occur as part
of the final put_page() in memunmap_pages() which would wait for all pages
to be freed prior to returning.
When the extra refcount was removed the pagemap reference was no longer
being dropped in put_page(). Instead memunmap_pages() was changed to
explicitly drop the pagemap references. This means that memunmap_pages()
can complete even though pages are still mapped by the kernel which can
lead to kernel crashes, particularly if a driver frees the pagemap.
To fix this drivers should take a pagemap reference when allocating the
page. This reference can then be returned when the page is freed.
Link: https://lkml.kernel.org/r/12d155ec727935ebfbb4d639a03ab374917ea51b.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Fixes: 27674ef6c73f ("mm: remove the extra ZONE_DEVICE struct page refcount")
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since 27674ef6c73f ("mm: remove the extra ZONE_DEVICE struct page
refcount") device private pages have no longer had an extra reference
count when the page is in use. However before handing them back to the
owning device driver we add an extra reference count such that free pages
have a reference count of one.
This makes it difficult to tell if a page is free or not because both free
and in use pages will have a non-zero refcount. Instead we should return
pages to the drivers page allocator with a zero reference count. Kernel
code can then safely use kernel functions such as get_page_unless_zero().
Link: https://lkml.kernel.org/r/cf70cf6f8c0bdb8aaebdbfb0d790aea4c683c3c6.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Fix several device private page reference counting issues",
v2
This series aims to fix a number of page reference counting issues in
drivers dealing with device private ZONE_DEVICE pages. These result in
use-after-free type bugs, either from accessing a struct page which no
longer exists because it has been removed or accessing fields within the
struct page which are no longer valid because the page has been freed.
During normal usage it is unlikely these will cause any problems. However
without these fixes it is possible to crash the kernel from userspace.
These crashes can be triggered either by unloading the kernel module or
unbinding the device from the driver prior to a userspace task exiting.
In modules such as Nouveau it is also possible to trigger some of these
issues by explicitly closing the device file-descriptor prior to the task
exiting and then accessing device private memory.
This involves some minor changes to both PowerPC and AMD GPU code.
Unfortunately I lack hardware to test either of those so any help there
would be appreciated. The changes mimic what is done in for both Nouveau
and hmm-tests though so I doubt they will cause problems.
This patch (of 8):
When the CPU tries to access a device private page the migrate_to_ram()
callback associated with the pgmap for the page is called. However no
reference is taken on the faulting page. Therefore a concurrent migration
of the device private page can free the page and possibly the underlying
pgmap. This results in a race which can crash the kernel due to the
migrate_to_ram() function pointer becoming invalid. It also means drivers
can't reliably read the zone_device_data field because the page may have
been freed with memunmap_pages().
Close the race by getting a reference on the page while holding the ptl to
ensure it has not been freed. Unfortunately the elevated reference count
will cause the migration required to handle the fault to fail. To avoid
this failure pass the faulting page into the migrate_vma functions so that
if an elevated reference count is found it can be checked to see if it's
expected or not.
[mpe@ellerman.id.au: fix build]
Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au
Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com
Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In many places we can use damon_sz_region() to instead of "r->ar.end -
r->ar.start".
Link: https://lkml.kernel.org/r/20220927001946.85375-2-xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Suggested-by: SeongJae Park <sj@kernel.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Rename sz_damon_region() to damon_sz_region(), and move it to
"include/linux/damon.h", because in many places, we can to use this func.
Link: https://lkml.kernel.org/r/20220927001946.85375-1-xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Suggested-by: SeongJae Park <sj@kernel.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
alloc_pages(), kmalloc() and vmalloc() are all memory allocation functions
which can return NULL when some internal memory failures happen. So it is
better to check the return of them to catch the failure in time for better
test them.
Link: https://lkml.kernel.org/r/tencent_D44A49FFB420EDCCBFB9221C8D14DFE12908@qq.com
Signed-off-by: Xiaoke Wang <xkernel.wang@foxmail.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This is an optimization to reduce stackdepot pressure.
struct mmu_gather contains 7 1-bit fields packed into a 32-bit unsigned
int value. The remaining 25 bits remain uninitialized and are never used,
but KMSAN updates the origin for them in zap_pXX_range() in mm/memory.c,
thus creating very long origin chains. This is technically correct, but
consumes too much memory.
Unpoisoning the whole structure will prevent creating such chains.
Link: https://lkml.kernel.org/r/20220905122452.2258262-20-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The recent change of page_cache_ra_unbounded() arguments was buggy in the
two callers, causing us to readahead the wrong pages. Move the definition
of ractl down to after the index is set correctly. This affected
performance on configurations that use fs-verity.
Link: https://lkml.kernel.org/r/20221012193419.1453558-1-willy@infradead.org
Fixes: 73bb49da50cd ("mm/readahead: make page_cache_ra_unbounded take a readahead_control")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Jintao Yin <nicememory@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit c462ac288f2c ("mm: Introduce arch_validate_flags()") added a late
check in mmap_region() to let architectures validate vm_flags. The check
needs to happen after calling ->mmap() as the flags can potentially be
modified during this callback.
If arch_validate_flags() check fails we unmap and free the vma. However,
the error path fails to undo the ->mmap() call that previously succeeded
and depending on the specific ->mmap() implementation this translates to
reference increments, memory allocations and other operations what will
not be cleaned up.
There are several places (mainly device drivers) where this is an issue.
However, one specific example is bpf_map_mmap() which keeps count of the
mappings in map->writecnt. The count is incremented on ->mmap() and then
decremented on vm_ops->close(). When arch_validate_flags() fails this
count is off since bpf_map_mmap_close() is never called.
One can reproduce this issue in arm64 devices with MTE support. Here the
vm_flags are checked to only allow VM_MTE if VM_MTE_ALLOWED has been set
previously. From userspace then is enough to pass the PROT_MTE flag to
mmap() syscall to trigger the arch_validate_flags() failure.
The following program reproduces this issue:
#include <stdio.h>
#include <unistd.h>
#include <linux/unistd.h>
#include <linux/bpf.h>
#include <sys/mman.h>
int main(void)
{
union bpf_attr attr = {
.map_type = BPF_MAP_TYPE_ARRAY,
.key_size = sizeof(int),
.value_size = sizeof(long long),
.max_entries = 256,
.map_flags = BPF_F_MMAPABLE,
};
int fd;
fd = syscall(__NR_bpf, BPF_MAP_CREATE, &attr, sizeof(attr));
mmap(NULL, 4096, PROT_WRITE | PROT_MTE, MAP_SHARED, fd, 0);
return 0;
}
By manually adding some log statements to the vm_ops callbacks we can
confirm that when passing PROT_MTE to mmap() the map->writecnt is off upon
->release():
With PROT_MTE flag:
root@debian:~# ./bpf-test
[ 111.263874] bpf_map_write_active_inc: map=9 writecnt=1
[ 111.288763] bpf_map_release: map=9 writecnt=1
Without PROT_MTE flag:
root@debian:~# ./bpf-test
[ 157.816912] bpf_map_write_active_inc: map=10 writecnt=1
[ 157.830442] bpf_map_write_active_dec: map=10 writecnt=0
[ 157.832396] bpf_map_release: map=10 writecnt=0
This patch fixes the above issue by calling vm_ops->close() when the
arch_validate_flags() check fails, after this we can proceed to unmap and
free the vma on the error path.
Link: https://lkml.kernel.org/r/20220930003844.1210987-1-cmllamas@google.com
Fixes: c462ac288f2c ("mm: Introduce arch_validate_flags()")
Signed-off-by: Carlos Llamas <cmllamas@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Liam Howlett <liam.howlett@oracle.com>
Cc: Christian Brauner (Microsoft) <brauner@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: <stable@vger.kernel.org> [5.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When PTE_MARKER_UFFD_WP not configured, it's still possible to reach pte
marker code and trigger an warning. Add a few CONFIG_PTE_MARKER_UFFD_WP
ifdefs to make sure the code won't be reached when not compiled in.
Link: https://lkml.kernel.org/r/YzeR+R6b4bwBlBHh@x1n
Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: <syzbot+2b9b4f0895be09a6dec3@syzkaller.appspotmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Edward Liaw <edliaw@google.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If the brk VMA is the last vma in a maple node and meets the rare criteria
that it can be expanded, then preallocation is necessary to avoid a
potential fs_reclaim circular lock issue on low resources.
At the same time use the actual vma start address (unaligned) when calling
vma_adjust_trans_huge().
Link: https://lkml.kernel.org/r/20221011160624.1253454-1-Liam.Howlett@oracle.com
Fixes: 2e7ce7d354f2 (mm/mmap: change do_brk_flags() to expand existing VMA and add do_brk_munmap())
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Link: https://lkml.kernel.org/r/Y0WuE3Riv4iy5Jx8@localhost.localdomain
Fixes: 7964cf8caa4d ("mm: remove vmacache")
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The anon vma was not unlinked and the file was not closed in the failure
path when the machine runs out of memory during the maple tree
modification. This caused a memory leak of the anon vma chain and vma
since neither would be freed.
Link: https://lkml.kernel.org/r/20221011203621.1446507-1-Liam.Howlett@oracle.com
Fixes: 524e00b36e8c ("mm: remove rb tree")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Tested-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When we successfully find a pageblock in fast_find_migrateblock(), the
block will be set skip-flag through set_pageblock_skip(). However, when
entering isolate_migratepages_block(), the whole pageblock will be skipped
due to the branch 'if (!valid_page && IS_ALIGNED(low_pfn,
pageblock_nr_pages))'. Eventually we will goto isolate_abort and isolate
nothing. That makes fast_find_migrateblock useless.
In this patch, when we find a suitable pageblock in
fast_find_migrateblock, we do noting but let isolate_migratepages_block to
set skip flag to the pageblock after scan it. Normally, we would isolate
some pages from the fast-find block.
I use mmtest/thpscale-madvhugepage test it. Here is the result:
baseline patch
Amean fault-both-1 1331.66 ( 0.00%) 1261.04 * 5.30%*
Amean fault-both-3 1383.95 ( 0.00%) 1191.69 * 13.89%*
Amean fault-both-5 1568.13 ( 0.00%) 1445.20 * 7.84%*
Amean fault-both-7 1819.62 ( 0.00%) 1555.13 * 14.54%*
Amean fault-both-12 1106.96 ( 0.00%) 1149.43 * -3.84%*
Amean fault-both-18 2196.93 ( 0.00%) 1875.77 * 14.62%*
Amean fault-both-24 2642.69 ( 0.00%) 2671.21 * -1.08%*
Amean fault-both-30 2901.89 ( 0.00%) 2857.32 * 1.54%*
Amean fault-both-32 3747.00 ( 0.00%) 3479.23 * 7.15%*
Link: https://lkml.kernel.org/r/20220713062009.597255-1-zhouchuyi@bytedance.com
Fixes: 70b44595eafe9 ("mm, compaction: use free lists to quickly locate a migration source")
Signed-off-by: zhouchuyi <zhouchuyi@bytedance.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Reported-by: kernel test robot <lkp@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The hugetlb vma lock was originally designed to synchronize pmd sharing.
As such, it was only necessary to allocate the lock for vmas that were
capable of pmd sharing. Later in the development cycle, it was discovered
that it could also be used to simplify fault/truncation races as described
in [1]. However, a subsequent change to allocate the lock for all vmas
that use the page cache was never made. A fault/truncation race could
leave pages in a file past i_size until the file is removed.
Remove the previous restriction and allocate lock for all VM_MAYSHARE
vmas. Warn in the unlikely event of allocation failure.
[1] https://lore.kernel.org/lkml/Yxiv0SkMkZ0JWGGp@monkey/#t
Link: https://lkml.kernel.org/r/20221005011707.514612-4-mike.kravetz@oracle.com
Fixes: "hugetlb: clean up code checking for fault/truncation races"
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
hugetlb file truncation/hole punch code may need to back out and take
locks in order in the routine hugetlb_unmap_file_folio(). This code could
race with vma freeing as pointed out in [1] and result in accessing a
stale vma pointer. To address this, take the vma_lock when clearing the
vma_lock->vma pointer.
[1] https://lore.kernel.org/linux-mm/01f10195-7088-4462-6def-909549c75ef4@huawei.com/
[mike.kravetz@oracle.com: address build issues]
Link: https://lkml.kernel.org/r/Yz5L1uxQYR1VqFtJ@monkey
Link: https://lkml.kernel.org/r/20221005011707.514612-3-mike.kravetz@oracle.com
Fixes: "hugetlb: use new vma_lock for pmd sharing synchronization"
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "hugetlb: fixes for new vma lock series".
In review of the series "hugetlb: Use new vma lock for huge pmd sharing
synchronization", Miaohe Lin pointed out two key issues:
1) There is a race in the routine hugetlb_unmap_file_folio when locks
are dropped and reacquired in the correct order [1].
2) With the switch to using vma lock for fault/truncate synchronization,
we need to make sure lock exists for all VM_MAYSHARE vmas, not just
vmas capable of pmd sharing.
These two issues are addressed here. In addition, having a vma lock
present in all VM_MAYSHARE vmas, uncovered some issues around vma
splitting. Those are also addressed.
[1] https://lore.kernel.org/linux-mm/01f10195-7088-4462-6def-909549c75ef4@huawei.com/
This patch (of 3):
The hugetlb vma lock hangs off the vm_private_data field and is specific
to the vma. When vm_area_dup() is called as part of vma splitting, the
vma lock pointer is copied to the new vma. This will result in issues
such as double freeing of the structure. Update the hugetlb open vm_ops
to allocate a new vma lock for the new vma.
The routine __unmap_hugepage_range_final unconditionally unset VM_MAYSHARE
to prevent subsequent pmd sharing. hugetlb_vma_lock_free attempted to
anticipate this by checking both VM_MAYSHARE and VM_SHARED. However, if
only VM_MAYSHARE was set we would miss the free. With the introduction of
the vma lock, a vma can not participate in pmd sharing if vm_private_data
is NULL. Instead of clearing VM_MAYSHARE in __unmap_hugepage_range_final,
free the vma lock to prevent sharing. Also, update the sharing code to
make sure vma lock is indeed a condition for pmd sharing.
hugetlb_vma_lock_free can then key off VM_MAYSHARE and not miss any vmas.
Link: https://lkml.kernel.org/r/20221005011707.514612-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20221005011707.514612-2-mike.kravetz@oracle.com
Fixes: "hugetlb: add vma based lock for pmd sharing"
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Link: https://lkml.kernel.org/r/YzSWfFI+MOeb1ils@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
wakeup_flusher_threads() was added under the assumption that if a system
runs out of clean cold pages, it might want to write back dirty pages more
aggressively so that they can become clean and be dropped.
However, doing so can breach the rate limit a system wants to impose on
writeback, resulting in early SSD wearout.
Link: https://lkml.kernel.org/r/YzSiWq9UEER5LKup@google.com
Fixes: bd74fdaea146 ("mm: multi-gen LRU: support page table walks")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: Axel Rasmussen <axelrasmussen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since 2d1c498072de ("mm: memcontrol: make swap tracking an integral part
of memory control"), CONFIG_MEMCG_SWAP hasn't been a user-visible config
option anymore, it just means CONFIG_MEMCG && CONFIG_SWAP.
Update the sites accordingly and drop the symbol.
[ While touching the docs, remove two references to CONFIG_MEMCG_KMEM,
which hasn't been a user-visible symbol for over half a decade. ]
Link: https://lkml.kernel.org/r/20220926135704.400818-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's slightly more descriptive and consistent with other places that
distinguish cgroup1's combined memory+swap accounting scheme from
cgroup2's dedicated swap accounting.
Link: https://lkml.kernel.org/r/20220926135704.400818-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The swapaccounting= commandline option already does very little today. To
close a trivial containment failure case, the swap ownership tracking part
of the swap controller has recently become mandatory (see commit
2d1c498072de ("mm: memcontrol: make swap tracking an integral part of
memory control") for details), which makes up the majority of the work
during swapout, swapin, and the swap slot map.
The only thing left under this flag is the page_counter operations and the
visibility of the swap control files in the first place, which are rather
meager savings. There also aren't many scenarios, if any, where
controlling the memory of a cgroup while allowing it unlimited access to a
global swap space is a workable resource isolation strategy.
On the other hand, there have been several bugs and confusion around the
many possible swap controller states (cgroup1 vs cgroup2 behavior, memory
accounting without swap accounting, memcg runtime disabled).
This puts the maintenance overhead of retaining the toggle above its
practical benefits. Deprecate it.
Link: https://lkml.kernel.org/r/20220926135704.400818-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "memcg swap fix & cleanups".
This patch (of 4):
Since commit 2d1c498072de ("mm: memcontrol: make swap tracking an integral
part of memory control"), the cgroup swap arrays are used to track memory
ownership at the time of swap readahead and swapoff, even if swap space
*accounting* has been turned off by the user via swapaccount=0 (which sets
cgroup_memory_noswap).
However, the patch was overzealous: by simply dropping the
cgroup_memory_noswap conditionals in the swapon, swapoff and uncharge
path, it caused the cgroup arrays being allocated even when the memory
controller as a whole is disabled. This is a waste of that memory.
Restore mem_cgroup_disabled() checks, implied previously by
cgroup_memory_noswap, in the swapon, swapoff, and swap_entry_free
callbacks.
Link: https://lkml.kernel.org/r/20220926135704.400818-1-hannes@cmpxchg.org
Link: https://lkml.kernel.org/r/20220926135704.400818-2-hannes@cmpxchg.org
Fixes: 2d1c498072de ("mm: memcontrol: make swap tracking an integral part of memory control")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The return value @ret is always 0, so remove it and return 0 directly.
Link: https://lkml.kernel.org/r/20220920012205.246217-1-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In hugetlb.c there are several places which compare the values of
'h->free_huge_pages' and 'h->resv_huge_pages', it looks a bit messy, so
add a new available_huge_pages() function to do these.
Link: https://lkml.kernel.org/r/20220922021929.98961-1-xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove the following unused inline functions from mm_inline.h:
1. All uses of add_page_to_lru_list_tail() have been removed since
commit 7a3dbfe8a52b ("mm/swap: convert lru_deactivate_file to a
folio_batch"), and it can be replaced by lruvec_add_folio_tail().
2. All uses of __clear_page_lru_flags() have been removed since commit
188e8caee968 ("mm/swap: convert __page_cache_release() to use a
folio"), and it can be replaced by __folio_clear_lru_flags().
They are useless, so remove them.
Link: https://lkml.kernel.org/r/20220922110935.1495099-1-cuigaosheng1@huawei.com
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add :collapse mod to userfaultfd selftest. Currently this mod is only
valid for "shmem" test type, but could be used for other test types.
When provided, memory allocated by ->allocate_area() will be
hugepage-aligned enforced to be hugepage-sized. userfaultf_minor_test,
after the UFFD-registered mapping has been populated by UUFD minor fault
handler, attempt to MADV_COLLAPSE the UFFD-registered mapping to collapse
the memory into a pmd-mapped THP.
This test is meant to be a functional test of what occurs during
UFFD-driven live migration of VMs backed by huge tmpfs where, after a
hugepage-sized region has been successfully migrated (in native page-sized
chunks, to avoid latency of fetched a hugepage over the network), we want
to reclaim previous VM performance by remapping it at the PMD level.
Link: https://lkml.kernel.org/r/20220907144521.3115321-11-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-11-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This test tests that MADV_COLLAPSE acting on file/shmem memory for which
(1) the file extent mapping by the memory is already a huge page in the
page cache, and (2) the pmd mapping this memory in the target process is
none.
In practice, (1)+(2) is the state left over after khugepaged has
successfully collapsed file/shmem memory for a target VMA, but the memory
has not yet been refaulted. So, this test in-effect tests MADV_COLLAPSE
racing with khugepaged to collapse the memory first.
Link: https://lkml.kernel.org/r/20220907144521.3115321-10-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-10-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add memory operations for shmem (memfd) memory, and reuse existing tests
with the new memory operations.
Shmem tests can be called with "shmem" mem_type, and shmem tests are ran
with "all" mem_type as well.
Link: https://lkml.kernel.org/r/20220907144521.3115321-9-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-9-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add memory operations for file-backed and tmpfs memory. Call existing
tests with these new memory operations to test collapse functionality of
khugepaged and MADV_COLLAPSE on file-backed and tmpfs memory. Not all
tests are reusable; for example, collapse_swapin_single_pte() which checks
swap usage.
Refactor test arguments. Usage is now:
Usage: ./khugepaged <test type> [dir]
<test type> : <context>:<mem_type>
<context> : [all|khugepaged|madvise]
<mem_type> : [all|anon|file]
"file,all" mem_type requires [dir] argument
"file,all" mem_type requires kernel built with
CONFIG_READ_ONLY_THP_FOR_FS=y
if [dir] is a (sub)directory of a tmpfs mount, tmpfs must be
mounted with huge=madvise option for khugepaged tests to work
Refactor calling tests to make it clear what collapse context / memory
operations they support, but only invoke tests requested by user. Also
log what test is being ran, and with what context / memory, to make test
logs more human readable.
A new test file is created and deleted for every test to ensure no pages
remain in the page cache between tests (tests also may attempt to collapse
different amount of memory).
For file-backed memory where the file is stored on a block device, disable
/sys/block/<device>/queue/read_ahead_kb so that pages don't find their way
into the page cache without the tests faulting them in.
Add file and shmem wrappers to vm_utils check for file and shmem hugepages
in smaps.
[zokeefe@google.com: fix "add thp collapse file and tmpfs testing" for
tmpfs]
Link: https://lkml.kernel.org/r/20220913212517.3163701-1-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220907144521.3115321-8-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-8-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Modularize operations to setup, cleanup, fault, and check for huge pages,
for a given memory type. This allows reusing existing tests with
additional memory types by defining new memory operations. Following
patches will add file and shmem memory types.
Link: https://lkml.kernel.org/r/20220907144521.3115321-7-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-7-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
These files:
tools/testing/selftests/vm/vm_util.c
tools/testing/selftests/vm/khugepaged.c
Both contain logic to:
1) Determine hugepage size on current system
2) Read /proc/self/smaps to determine number of THPs at an address
Refactor selftests/vm/khugepaged.c to use the vm_util common helpers and
add it as a build dependency.
Since selftests/vm/khugepaged.c is the largest user of check_huge(),
change the signature of check_huge() to match selftests/vm/khugepaged.c's
useage: take an expected number of hugepages, and return a bool indicating
if the correct number of hugepages were found. Add a wrapper,
check_huge_anon(), in anticipation of checking smaps for file and shmem
hugepages.
Update existing callsites to use the new pattern / function.
Likewise, check_for_pattern() was duplicated, and it's a general enough
helper to include in vm_util helpers as well.
Link: https://lkml.kernel.org/r/20220907144521.3115321-6-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-6-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add huge_memory:trace_mm_khugepaged_scan_file tracepoint to
hpage_collapse_scan_file() analogously to hpage_collapse_scan_pmd().
While this change is targeted at debugging MADV_COLLAPSE pathway, the
"mm_khugepaged" prefix is retained for symmetry with
huge_memory:trace_mm_khugepaged_scan_pmd, which retains it's legacy name
to prevent changing kernel ABI as much as possible.
Link: https://lkml.kernel.org/r/20220907144521.3115321-5-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-5-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed
memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y).
On success, the backing memory will be a hugepage. For the memory range
and process provided, the page tables will synchronously have a huge pmd
installed, mapping the THP. Other mappings of the file extent mapped by
the memory range may be added to a set of entries that khugepaged will
later process and attempt update their page tables to map the THP by a
pmd.
This functionality unlocks two important uses:
(1) Immediately back executable text by THPs. Current support provided
by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large
system which might impair services from serving at their full rated
load after (re)starting. Tricks like mremap(2)'ing text onto
anonymous memory to immediately realize iTLB performance prevents
page sharing and demand paging, both of which increase steady state
memory footprint. Now, we can have the best of both worlds: Peak
upfront performance and lower RAM footprints.
(2) userfaultfd-based live migration of virtual machines satisfy UFFD
faults by fetching native-sized pages over the network (to avoid
latency of transferring an entire hugepage). However, after guest
memory has been fully copied to the new host, MADV_COLLAPSE can
be used to immediately increase guest performance.
Since khugepaged is single threaded, this change now introduces
possibility of collapse contexts racing in file collapse path. There a
important few places to consider:
(1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU.
We could have the memory collapsed out from under us, but
the next xas_for_each() iteration will correctly pick up the
hugepage. The hugepage might not be up to date (insofar as
copying of small page contents might not have completed - the
page still may be locked), but regardless what small page index
we were iterating over, we'll find the hugepage and identify it
as a suitably aligned compound page of order HPAGE_PMD_ORDER.
In khugepaged path, we locklessly check the value of the pmd,
and only add it to deferred collapse array if we find pmd
mapping pte table. This is fine, since other values that could
have raced in right afterwards denote failure, or that the
memory was successfully collapsed, so we don't need further
processing.
In madvise path, we'll take mmap_lock() in write to serialize
against page table updates and will know what to do based on the
true value of the pmd: recheck all ptes if we point to a pte table,
directly install the pmd, if the pmd has been cleared, but
memory not yet faulted, or nothing at all if we find a huge pmd.
It's worth putting emphasis here on how we treat the none pmd
here. If khugepaged has processed this mm's page tables
already, it will have left the pmd cleared (ready for refault by
the process). Depending on the VMA flags and sysfs settings,
amount of RAM on the machine, and the current load, could be a
relatively common occurrence - and as such is one we'd like to
handle successfully in MADV_COLLAPSE. When we see the none pmd
in collapse_pte_mapped_thp(), we've locked mmap_lock in write
and checked (a) huepaged_vma_check() to see if the backing
memory is appropriate still, along with VMA sizing and
appropriate hugepage alignment within the file, and (b) we've
found a hugepage head of order HPAGE_PMD_ORDER at the offset
in the file mapped by our hugepage-aligned virtual address.
Even though the common-case is likely race with khugepaged,
given these checks (regardless how we got here - we could be
operating on a completely different file than originally checked
in hpage_collapse_scan_file() for all we know) it should be safe
to directly make the pmd a huge pmd pointing to this hugepage.
(2) collapse_file() is mostly serialized on the same file extent by
lock sequence:
| lock hupepage
| lock mapping->i_pages
| lock 1st page
| unlock mapping->i_pages
| <page checks>
| lock mapping->i_pages
| page_ref_freeze(3)
| xas_store(hugepage)
| unlock mapping->i_pages
| page_ref_unfreeze(1)
| unlock 1st page
V unlock hugepage
Once a context (who already has their fresh hugepage locked)
locks mapping->i_pages exclusively, it will hold said lock
until it locks the first page, and it will hold that lock until
the after the hugepage has been added to the page cache (and
will unlock the hugepage after page table update, though that
isn't important here).
A racing context that loses the race for mapping->i_pages will
then lose the race to locking the first page. Here - depending
on how far the other racing context has gotten - we might find
the new hugepage (in which case we'll exit cleanly when we
check PageTransCompound()), or we'll find the "old" 1st small
page (in which we'll exit cleanly when we discover unexpected
refcount of 2 after isolate_lru_page()). This is assuming we
are able to successfully lock the page we find - in shmem path,
we could just fail the trylock and exit cleanly anyways.
Failure path in collapse_file() is similar: once we hold lock
on 1st small page, we are serialized against other collapse
contexts. Before the 1st small page is unlocked, we add it
back to the pagecache and unfreeze the refcount appropriately.
Contexts who lost the race to the 1st small page will then find
the same 1st small page with the correct refcount and will be
able to proceed.
[zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()]
Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com
[shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove
check for multi-add in khugepaged_add_pte_mapped_thp()]
Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The main benefit of THPs are that they can be mapped at the pmd level,
increasing the likelihood of TLB hit and spending less cycles in page
table walks. pte-mapped hugepages - that is - hugepage-aligned compound
pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous
in physical memory, don't have this advantage. In fact, one could argue
they are detrimental to system performance overall since they occupy a
precious hugepage-aligned/sized region of physical memory that could
otherwise be used more effectively. Additionally, pte-mapped hugepages
can be the cheapest memory to collapse for khugepaged since no new
hugepage allocation or copying of memory contents is necessary - we only
need to update the mapping page tables.
In the anonymous collapse path, we are able to collapse pte-mapped
hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no
effort when compound pages (of any order) are encountered.
Identify pte-mapped hugepages in the file/shmem collapse path. The
final step of which makes a racy check of the value of the pmd to
ensure it maps a pte table. This should be fine, since races that
result in false-positive (i.e. attempt collapse even though we
shouldn't) will fail later in collapse_pte_mapped_thp() once we
actually lock mmap_lock and reinspect the pmd value. Races that result
in false-negatives (i.e. where we decide to not attempt collapse, but
should have) shouldn't be an issue, since in the worst case, we do
nothing - which is what we've done up to this point. We make a similar
check in retract_page_tables(). If we do think we've found a
pte-mapped hugepgae in khugepaged context, attempt to update page
tables mapping this hugepage.
Note that these collapses still count towards the
/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter,
and if the pte-mapped hugepage was also mapped into multiple process'
address spaces, could be incremented for each page table update. Since we
increment the counter when a pte-mapped hugepage is successfully added to
the list of to-collapse pte-mapped THPs, it's possible that we never
actually update the page table either. This is different from how
file/shmem pages_collapsed accounting works today where only a successful
page cache update is counted (it's also possible here that no page tables
are actually changed). Though it incurs some slop, this is preferred to
either not accounting for the event at all, or plumbing through data in
struct mm_slot on whether to account for the collapse or not.
Also note that work still needs to be done to support arbitrary compound
pages, and that this should all be converted to using folios.
[shy828301@gmail.com: Spelling mistake, update comment, and add Documentation]
Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: add file/shmem support to MADV_COLLAPSE", v4.
This series builds on top of the previous "mm: userspace hugepage
collapse" series which introduced the MADV_COLLAPSE madvise mode and added
support for private, anonymous mappings[2], by adding support for file and
shmem backed memory to CONFIG_READ_ONLY_THP_FOR_FS=y kernels.
File and shmem support have been added with effort to align with existing
MADV_COLLAPSE semantics and policy decisions[3]. Collapse of shmem-backed
memory ignores kernel-guiding directives and heuristics including all
sysfs settings (transparent_hugepage/shmem_enabled), and tmpfs huge= mount
options (shmem always supports large folios). Like anonymous mappings, on
successful return of MADV_COLLAPSE on file/shmem memory, the contents of
memory mapped by the addresses provided will be synchronously pmd-mapped
THPs.
This functionality unlocks two important uses:
(1) Immediately back executable text by THPs. Current support provided
by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large
system which might impair services from serving at their full rated
load after (re)starting. Tricks like mremap(2)'ing text onto
anonymous memory to immediately realize iTLB performance prevents
page sharing and demand paging, both of which increase steady state
memory footprint. Now, we can have the best of both worlds: Peak
upfront performance and lower RAM footprints.
(2) userfaultfd-based live migration of virtual machines satisfy UFFD
faults by fetching native-sized pages over the network (to avoid
latency of transferring an entire hugepage). However, after guest
memory has been fully copied to the new host, MADV_COLLAPSE can
be used to immediately increase guest performance.
khugepaged has received a small improvement by association and can now
detect and collapse pte-mapped THPs. However, there is still work to be
done along the file collapse path. Compound pages of arbitrary order
still needs to be supported and THP collapse needs to be converted to
using folios in general. Eventually, we'd like to move away from the
read-only and executable-mapped constraints currently imposed on eligible
files and support any inode claiming huge folio support. That said, I
think the series as-is covers enough to claim that MADV_COLLAPSE supports
file/shmem memory.
Patches 1-3 Implement the guts of the series.
Patch 4 Is a tracepoint for debugging.
Patches 5-9 Refactor existing khugepaged selftests to work with new
memory types + new collapse tests.
Patch 10 Adds a userfaultfd selftest mode to mimic a functional test
of UFFDIO_REGISTER_MODE_MINOR+MADV_COLLAPSE live migration.
(v4 note: "userfaultfd shmem" selftest is failing as of
Sep 22 mm-unstable)
[1] https://lore.kernel.org/linux-mm/YyiK8YvVcrtZo0z3@google.com/
[2] https://lore.kernel.org/linux-mm/20220706235936.2197195-1-zokeefe@google.com/
[3] https://lore.kernel.org/linux-mm/YtBmhaiPHUTkJml8@google.com/
[4] https://lore.kernel.org/linux-mm/20220922222731.1124481-1-zokeefe@google.com/
[5] https://lore.kernel.org/linux-mm/20220922184651.1016461-1-zokeefe@google.com/
This patch (of 10):
Extend 'mm/thp: add flag to enforce sysfs THP in hugepage_vma_check()' to
shmem, allowing callers to ignore
/sys/kernel/transparent_hugepage/shmem_enabled and tmpfs huge= mount.
This is intended to be used by MADV_COLLAPSE, and the rationale is
analogous to the anon/file case: MADV_COLLAPSE is not coupled to
directives that advise the kernel's decisions on when THPs should be
considered eligible. shmem/tmpfs always claims large folio support,
regardless of sysfs or mount options.
[shy828301@gmail.com: test shmem_huge_force explicitly]
Link: https://lore.kernel.org/linux-mm/CAHbLzko3A5-TpS0BgBeKkx5cuOkWgLvWXQH=TdgW-baO4rPtdg@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220922224046.1143204-1-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220907144521.3115321-2-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-2-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|