diff options
Diffstat (limited to 'tools/include/uapi/linux/bpf.h')
-rw-r--r-- | tools/include/uapi/linux/bpf.h | 1784 |
1 files changed, 1396 insertions, 388 deletions
diff --git a/tools/include/uapi/linux/bpf.h b/tools/include/uapi/linux/bpf.h index c8383a289f7b..da77a9388947 100644 --- a/tools/include/uapi/linux/bpf.h +++ b/tools/include/uapi/linux/bpf.h @@ -377,403 +377,1396 @@ union bpf_attr { }; } __attribute__((aligned(8))); -/* BPF helper function descriptions: - * - * void *bpf_map_lookup_elem(&map, &key) - * Return: Map value or NULL - * - * int bpf_map_update_elem(&map, &key, &value, flags) - * Return: 0 on success or negative error - * - * int bpf_map_delete_elem(&map, &key) - * Return: 0 on success or negative error - * - * int bpf_probe_read(void *dst, int size, void *src) - * Return: 0 on success or negative error +/* The description below is an attempt at providing documentation to eBPF + * developers about the multiple available eBPF helper functions. It can be + * parsed and used to produce a manual page. The workflow is the following, + * and requires the rst2man utility: + * + * $ ./scripts/bpf_helpers_doc.py \ + * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst + * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 + * $ man /tmp/bpf-helpers.7 + * + * Note that in order to produce this external documentation, some RST + * formatting is used in the descriptions to get "bold" and "italics" in + * manual pages. Also note that the few trailing white spaces are + * intentional, removing them would break paragraphs for rst2man. + * + * Start of BPF helper function descriptions: + * + * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) + * Description + * Perform a lookup in *map* for an entry associated to *key*. + * Return + * Map value associated to *key*, or **NULL** if no entry was + * found. + * + * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) + * Description + * Add or update the value of the entry associated to *key* in + * *map* with *value*. *flags* is one of: + * + * **BPF_NOEXIST** + * The entry for *key* must not exist in the map. + * **BPF_EXIST** + * The entry for *key* must already exist in the map. + * **BPF_ANY** + * No condition on the existence of the entry for *key*. + * + * Flag value **BPF_NOEXIST** cannot be used for maps of types + * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all + * elements always exist), the helper would return an error. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_map_delete_elem(struct bpf_map *map, const void *key) + * Description + * Delete entry with *key* from *map*. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_probe_read(void *dst, u32 size, const void *src) + * Description + * For tracing programs, safely attempt to read *size* bytes from + * address *src* and store the data in *dst*. + * Return + * 0 on success, or a negative error in case of failure. * * u64 bpf_ktime_get_ns(void) - * Return: current ktime - * - * int bpf_trace_printk(const char *fmt, int fmt_size, ...) - * Return: length of buffer written or negative error - * - * u32 bpf_prandom_u32(void) - * Return: random value - * - * u32 bpf_raw_smp_processor_id(void) - * Return: SMP processor ID - * - * int bpf_skb_store_bytes(skb, offset, from, len, flags) - * store bytes into packet - * @skb: pointer to skb - * @offset: offset within packet from skb->mac_header - * @from: pointer where to copy bytes from - * @len: number of bytes to store into packet - * @flags: bit 0 - if true, recompute skb->csum - * other bits - reserved - * Return: 0 on success or negative error - * - * int bpf_l3_csum_replace(skb, offset, from, to, flags) - * recompute IP checksum - * @skb: pointer to skb - * @offset: offset within packet where IP checksum is located - * @from: old value of header field - * @to: new value of header field - * @flags: bits 0-3 - size of header field - * other bits - reserved - * Return: 0 on success or negative error - * - * int bpf_l4_csum_replace(skb, offset, from, to, flags) - * recompute TCP/UDP checksum - * @skb: pointer to skb - * @offset: offset within packet where TCP/UDP checksum is located - * @from: old value of header field - * @to: new value of header field - * @flags: bits 0-3 - size of header field - * bit 4 - is pseudo header - * other bits - reserved - * Return: 0 on success or negative error - * - * int bpf_tail_call(ctx, prog_array_map, index) - * jump into another BPF program - * @ctx: context pointer passed to next program - * @prog_array_map: pointer to map which type is BPF_MAP_TYPE_PROG_ARRAY - * @index: 32-bit index inside array that selects specific program to run - * Return: 0 on success or negative error - * - * int bpf_clone_redirect(skb, ifindex, flags) - * redirect to another netdev - * @skb: pointer to skb - * @ifindex: ifindex of the net device - * @flags: bit 0 - if set, redirect to ingress instead of egress - * other bits - reserved - * Return: 0 on success or negative error + * Description + * Return the time elapsed since system boot, in nanoseconds. + * Return + * Current *ktime*. + * + * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) + * Description + * This helper is a "printk()-like" facility for debugging. It + * prints a message defined by format *fmt* (of size *fmt_size*) + * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if + * available. It can take up to three additional **u64** + * arguments (as an eBPF helpers, the total number of arguments is + * limited to five). + * + * Each time the helper is called, it appends a line to the trace. + * The format of the trace is customizable, and the exact output + * one will get depends on the options set in + * *\/sys/kernel/debug/tracing/trace_options* (see also the + * *README* file under the same directory). However, it usually + * defaults to something like: + * + * :: + * + * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> + * + * In the above: + * + * * ``telnet`` is the name of the current task. + * * ``470`` is the PID of the current task. + * * ``001`` is the CPU number on which the task is + * running. + * * In ``.N..``, each character refers to a set of + * options (whether irqs are enabled, scheduling + * options, whether hard/softirqs are running, level of + * preempt_disabled respectively). **N** means that + * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** + * are set. + * * ``419421.045894`` is a timestamp. + * * ``0x00000001`` is a fake value used by BPF for the + * instruction pointer register. + * * ``<formatted msg>`` is the message formatted with + * *fmt*. + * + * The conversion specifiers supported by *fmt* are similar, but + * more limited than for printk(). They are **%d**, **%i**, + * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, + * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size + * of field, padding with zeroes, etc.) is available, and the + * helper will return **-EINVAL** (but print nothing) if it + * encounters an unknown specifier. + * + * Also, note that **bpf_trace_printk**\ () is slow, and should + * only be used for debugging purposes. For this reason, a notice + * bloc (spanning several lines) is printed to kernel logs and + * states that the helper should not be used "for production use" + * the first time this helper is used (or more precisely, when + * **trace_printk**\ () buffers are allocated). For passing values + * to user space, perf events should be preferred. + * Return + * The number of bytes written to the buffer, or a negative error + * in case of failure. + * + * u32 bpf_get_prandom_u32(void) + * Description + * Get a pseudo-random number. + * + * From a security point of view, this helper uses its own + * pseudo-random internal state, and cannot be used to infer the + * seed of other random functions in the kernel. However, it is + * essential to note that the generator used by the helper is not + * cryptographically secure. + * Return + * A random 32-bit unsigned value. + * + * u32 bpf_get_smp_processor_id(void) + * Description + * Get the SMP (symmetric multiprocessing) processor id. Note that + * all programs run with preemption disabled, which means that the + * SMP processor id is stable during all the execution of the + * program. + * Return + * The SMP id of the processor running the program. + * + * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) + * Description + * Store *len* bytes from address *from* into the packet + * associated to *skb*, at *offset*. *flags* are a combination of + * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the + * checksum for the packet after storing the bytes) and + * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ + * **->swhash** and *skb*\ **->l4hash** to 0). + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) + * Description + * Recompute the layer 3 (e.g. IP) checksum for the packet + * associated to *skb*. Computation is incremental, so the helper + * must know the former value of the header field that was + * modified (*from*), the new value of this field (*to*), and the + * number of bytes (2 or 4) for this field, stored in *size*. + * Alternatively, it is possible to store the difference between + * the previous and the new values of the header field in *to*, by + * setting *from* and *size* to 0. For both methods, *offset* + * indicates the location of the IP checksum within the packet. + * + * This helper works in combination with **bpf_csum_diff**\ (), + * which does not update the checksum in-place, but offers more + * flexibility and can handle sizes larger than 2 or 4 for the + * checksum to update. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) + * Description + * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the + * packet associated to *skb*. Computation is incremental, so the + * helper must know the former value of the header field that was + * modified (*from*), the new value of this field (*to*), and the + * number of bytes (2 or 4) for this field, stored on the lowest + * four bits of *flags*. Alternatively, it is possible to store + * the difference between the previous and the new values of the + * header field in *to*, by setting *from* and the four lowest + * bits of *flags* to 0. For both methods, *offset* indicates the + * location of the IP checksum within the packet. In addition to + * the size of the field, *flags* can be added (bitwise OR) actual + * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left + * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and + * for updates resulting in a null checksum the value is set to + * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates + * the checksum is to be computed against a pseudo-header. + * + * This helper works in combination with **bpf_csum_diff**\ (), + * which does not update the checksum in-place, but offers more + * flexibility and can handle sizes larger than 2 or 4 for the + * checksum to update. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) + * Description + * This special helper is used to trigger a "tail call", or in + * other words, to jump into another eBPF program. The same stack + * frame is used (but values on stack and in registers for the + * caller are not accessible to the callee). This mechanism allows + * for program chaining, either for raising the maximum number of + * available eBPF instructions, or to execute given programs in + * conditional blocks. For security reasons, there is an upper + * limit to the number of successive tail calls that can be + * performed. + * + * Upon call of this helper, the program attempts to jump into a + * program referenced at index *index* in *prog_array_map*, a + * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes + * *ctx*, a pointer to the context. + * + * If the call succeeds, the kernel immediately runs the first + * instruction of the new program. This is not a function call, + * and it never returns to the previous program. If the call + * fails, then the helper has no effect, and the caller continues + * to run its subsequent instructions. A call can fail if the + * destination program for the jump does not exist (i.e. *index* + * is superior to the number of entries in *prog_array_map*), or + * if the maximum number of tail calls has been reached for this + * chain of programs. This limit is defined in the kernel by the + * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), + * which is currently set to 32. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) + * Description + * Clone and redirect the packet associated to *skb* to another + * net device of index *ifindex*. Both ingress and egress + * interfaces can be used for redirection. The **BPF_F_INGRESS** + * value in *flags* is used to make the distinction (ingress path + * is selected if the flag is present, egress path otherwise). + * This is the only flag supported for now. + * + * In comparison with **bpf_redirect**\ () helper, + * **bpf_clone_redirect**\ () has the associated cost of + * duplicating the packet buffer, but this can be executed out of + * the eBPF program. Conversely, **bpf_redirect**\ () is more + * efficient, but it is handled through an action code where the + * redirection happens only after the eBPF program has returned. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. * * u64 bpf_get_current_pid_tgid(void) - * Return: current->tgid << 32 | current->pid + * Return + * A 64-bit integer containing the current tgid and pid, and + * created as such: + * *current_task*\ **->tgid << 32 \|** + * *current_task*\ **->pid**. * * u64 bpf_get_current_uid_gid(void) - * Return: current_gid << 32 | current_uid - * - * int bpf_get_current_comm(char *buf, int size_of_buf) - * stores current->comm into buf - * Return: 0 on success or negative error - * - * u32 bpf_get_cgroup_classid(skb) - * retrieve a proc's classid - * @skb: pointer to skb - * Return: classid if != 0 - * - * int bpf_skb_vlan_push(skb, vlan_proto, vlan_tci) - * Return: 0 on success or negative error - * - * int bpf_skb_vlan_pop(skb) - * Return: 0 on success or negative error - * - * int bpf_skb_get_tunnel_key(skb, key, size, flags) - * int bpf_skb_set_tunnel_key(skb, key, size, flags) - * retrieve or populate tunnel metadata - * @skb: pointer to skb - * @key: pointer to 'struct bpf_tunnel_key' - * @size: size of 'struct bpf_tunnel_key' - * @flags: room for future extensions - * Return: 0 on success or negative error - * - * u64 bpf_perf_event_read(map, flags) - * read perf event counter value - * @map: pointer to perf_event_array map - * @flags: index of event in the map or bitmask flags - * Return: value of perf event counter read or error code - * - * int bpf_redirect(ifindex, flags) - * redirect to another netdev - * @ifindex: ifindex of the net device - * @flags: - * cls_bpf: - * bit 0 - if set, redirect to ingress instead of egress - * other bits - reserved - * xdp_bpf: - * all bits - reserved - * Return: cls_bpf: TC_ACT_REDIRECT on success or TC_ACT_SHOT on error - * xdp_bfp: XDP_REDIRECT on success or XDP_ABORT on error - * int bpf_redirect_map(map, key, flags) - * redirect to endpoint in map - * @map: pointer to dev map - * @key: index in map to lookup - * @flags: -- - * Return: XDP_REDIRECT on success or XDP_ABORT on error - * - * u32 bpf_get_route_realm(skb) - * retrieve a dst's tclassid - * @skb: pointer to skb - * Return: realm if != 0 - * - * int bpf_perf_event_output(ctx, map, flags, data, size) - * output perf raw sample - * @ctx: struct pt_regs* - * @map: pointer to perf_event_array map - * @flags: index of event in the map or bitmask flags - * @data: data on stack to be output as raw data - * @size: size of data - * Return: 0 on success or negative error - * - * int bpf_get_stackid(ctx, map, flags) - * walk user or kernel stack and return id - * @ctx: struct pt_regs* - * @map: pointer to stack_trace map - * @flags: bits 0-7 - numer of stack frames to skip - * bit 8 - collect user stack instead of kernel - * bit 9 - compare stacks by hash only - * bit 10 - if two different stacks hash into the same stackid - * discard old - * other bits - reserved - * Return: >= 0 stackid on success or negative error - * - * s64 bpf_csum_diff(from, from_size, to, to_size, seed) - * calculate csum diff - * @from: raw from buffer - * @from_size: length of from buffer - * @to: raw to buffer - * @to_size: length of to buffer - * @seed: optional seed - * Return: csum result or negative error code - * - * int bpf_skb_get_tunnel_opt(skb, opt, size) - * retrieve tunnel options metadata - * @skb: pointer to skb - * @opt: pointer to raw tunnel option data - * @size: size of @opt - * Return: option size - * - * int bpf_skb_set_tunnel_opt(skb, opt, size) - * populate tunnel options metadata - * @skb: pointer to skb - * @opt: pointer to raw tunnel option data - * @size: size of @opt - * Return: 0 on success or negative error - * - * int bpf_skb_change_proto(skb, proto, flags) - * Change protocol of the skb. Currently supported is v4 -> v6, - * v6 -> v4 transitions. The helper will also resize the skb. eBPF - * program is expected to fill the new headers via skb_store_bytes - * and lX_csum_replace. - * @skb: pointer to skb - * @proto: new skb->protocol type - * @flags: reserved - * Return: 0 on success or negative error - * - * int bpf_skb_change_type(skb, type) - * Change packet type of skb. - * @skb: pointer to skb - * @type: new skb->pkt_type type - * Return: 0 on success or negative error - * - * int bpf_skb_under_cgroup(skb, map, index) - * Check cgroup2 membership of skb - * @skb: pointer to skb - * @map: pointer to bpf_map in BPF_MAP_TYPE_CGROUP_ARRAY type - * @index: index of the cgroup in the bpf_map - * Return: - * == 0 skb failed the cgroup2 descendant test - * == 1 skb succeeded the cgroup2 descendant test - * < 0 error - * - * u32 bpf_get_hash_recalc(skb) - * Retrieve and possibly recalculate skb->hash. - * @skb: pointer to skb - * Return: hash + * Return + * A 64-bit integer containing the current GID and UID, and + * created as such: *current_gid* **<< 32 \|** *current_uid*. + * + * int bpf_get_current_comm(char *buf, u32 size_of_buf) + * Description + * Copy the **comm** attribute of the current task into *buf* of + * *size_of_buf*. The **comm** attribute contains the name of + * the executable (excluding the path) for the current task. The + * *size_of_buf* must be strictly positive. On success, the + * helper makes sure that the *buf* is NUL-terminated. On failure, + * it is filled with zeroes. + * Return + * 0 on success, or a negative error in case of failure. + * + * u32 bpf_get_cgroup_classid(struct sk_buff *skb) + * Description + * Retrieve the classid for the current task, i.e. for the net_cls + * cgroup to which *skb* belongs. + * + * This helper can be used on TC egress path, but not on ingress. + * + * The net_cls cgroup provides an interface to tag network packets + * based on a user-provided identifier for all traffic coming from + * the tasks belonging to the related cgroup. See also the related + * kernel documentation, available from the Linux sources in file + * *Documentation/cgroup-v1/net_cls.txt*. + * + * The Linux kernel has two versions for cgroups: there are + * cgroups v1 and cgroups v2. Both are available to users, who can + * use a mixture of them, but note that the net_cls cgroup is for + * cgroup v1 only. This makes it incompatible with BPF programs + * run on cgroups, which is a cgroup-v2-only feature (a socket can + * only hold data for one version of cgroups at a time). + * + * This helper is only available is the kernel was compiled with + * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to + * "**y**" or to "**m**". + * Return + * The classid, or 0 for the default unconfigured classid. + * + * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) + * Description + * Push a *vlan_tci* (VLAN tag control information) of protocol + * *vlan_proto* to the packet associated to *skb*, then update + * the checksum. Note that if *vlan_proto* is different from + * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to + * be **ETH_P_8021Q**. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_vlan_pop(struct sk_buff *skb) + * Description + * Pop a VLAN header from the packet associated to *skb*. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) + * Description + * Get tunnel metadata. This helper takes a pointer *key* to an + * empty **struct bpf_tunnel_key** of **size**, that will be + * filled with tunnel metadata for the packet associated to *skb*. + * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which + * indicates that the tunnel is based on IPv6 protocol instead of + * IPv4. + * + * The **struct bpf_tunnel_key** is an object that generalizes the + * principal parameters used by various tunneling protocols into a + * single struct. This way, it can be used to easily make a + * decision based on the contents of the encapsulation header, + * "summarized" in this struct. In particular, it holds the IP + * address of the remote end (IPv4 or IPv6, depending on the case) + * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, + * this struct exposes the *key*\ **->tunnel_id**, which is + * generally mapped to a VNI (Virtual Network Identifier), making + * it programmable together with the **bpf_skb_set_tunnel_key**\ + * () helper. + * + * Let's imagine that the following code is part of a program + * attached to the TC ingress interface, on one end of a GRE + * tunnel, and is supposed to filter out all messages coming from + * remote ends with IPv4 address other than 10.0.0.1: + * + * :: + * + * int ret; + * struct bpf_tunnel_key key = {}; + * + * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); + * if (ret < 0) + * return TC_ACT_SHOT; // drop packet + * + * if (key.remote_ipv4 != 0x0a000001) + * return TC_ACT_SHOT; // drop packet + * + * return TC_ACT_OK; // accept packet + * + * This interface can also be used with all encapsulation devices + * that can operate in "collect metadata" mode: instead of having + * one network device per specific configuration, the "collect + * metadata" mode only requires a single device where the + * configuration can be extracted from this helper. + * + * This can be used together with various tunnels such as VXLan, + * Geneve, GRE or IP in IP (IPIP). + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) + * Description + * Populate tunnel metadata for packet associated to *skb.* The + * tunnel metadata is set to the contents of *key*, of *size*. The + * *flags* can be set to a combination of the following values: + * + * **BPF_F_TUNINFO_IPV6** + * Indicate that the tunnel is based on IPv6 protocol + * instead of IPv4. + * **BPF_F_ZERO_CSUM_TX** + * For IPv4 packets, add a flag to tunnel metadata + * indicating that checksum computation should be skipped + * and checksum set to zeroes. + * **BPF_F_DONT_FRAGMENT** + * Add a flag to tunnel metadata indicating that the + * packet should not be fragmented. + * **BPF_F_SEQ_NUMBER** + * Add a flag to tunnel metadata indicating that a + * sequence number should be added to tunnel header before + * sending the packet. This flag was added for GRE + * encapsulation, but might be used with other protocols + * as well in the future. + * + * Here is a typical usage on the transmit path: + * + * :: + * + * struct bpf_tunnel_key key; + * populate key ... + * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); + * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); + * + * See also the description of the **bpf_skb_get_tunnel_key**\ () + * helper for additional information. + * Return + * 0 on success, or a negative error in case of failure. + * + * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) + * Description + * Read the value of a perf event counter. This helper relies on a + * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of + * the perf event counter is selected when *map* is updated with + * perf event file descriptors. The *map* is an array whose size + * is the number of available CPUs, and each cell contains a value + * relative to one CPU. The value to retrieve is indicated by + * *flags*, that contains the index of the CPU to look up, masked + * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to + * **BPF_F_CURRENT_CPU** to indicate that the value for the + * current CPU should be retrieved. + * + * Note that before Linux 4.13, only hardware perf event can be + * retrieved. + * + * Also, be aware that the newer helper + * **bpf_perf_event_read_value**\ () is recommended over + * **bpf_perf_event_read*\ () in general. The latter has some ABI + * quirks where error and counter value are used as a return code + * (which is wrong to do since ranges may overlap). This issue is + * fixed with bpf_perf_event_read_value(), which at the same time + * provides more features over the **bpf_perf_event_read**\ () + * interface. Please refer to the description of + * **bpf_perf_event_read_value**\ () for details. + * Return + * The value of the perf event counter read from the map, or a + * negative error code in case of failure. + * + * int bpf_redirect(u32 ifindex, u64 flags) + * Description + * Redirect the packet to another net device of index *ifindex*. + * This helper is somewhat similar to **bpf_clone_redirect**\ + * (), except that the packet is not cloned, which provides + * increased performance. + * + * Except for XDP, both ingress and egress interfaces can be used + * for redirection. The **BPF_F_INGRESS** value in *flags* is used + * to make the distinction (ingress path is selected if the flag + * is present, egress path otherwise). Currently, XDP only + * supports redirection to the egress interface, and accepts no + * flag at all. + * + * The same effect can be attained with the more generic + * **bpf_redirect_map**\ (), which requires specific maps to be + * used but offers better performance. + * Return + * For XDP, the helper returns **XDP_REDIRECT** on success or + * **XDP_ABORTED** on error. For other program types, the values + * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on + * error. + * + * u32 bpf_get_route_realm(struct sk_buff *skb) + * Description + * Retrieve the realm or the route, that is to say the + * **tclassid** field of the destination for the *skb*. The + * indentifier retrieved is a user-provided tag, similar to the + * one used with the net_cls cgroup (see description for + * **bpf_get_cgroup_classid**\ () helper), but here this tag is + * held by a route (a destination entry), not by a task. + * + * Retrieving this identifier works with the clsact TC egress hook + * (see also **tc-bpf(8)**), or alternatively on conventional + * classful egress qdiscs, but not on TC ingress path. In case of + * clsact TC egress hook, this has the advantage that, internally, + * the destination entry has not been dropped yet in the transmit + * path. Therefore, the destination entry does not need to be + * artificially held via **netif_keep_dst**\ () for a classful + * qdisc until the *skb* is freed. + * + * This helper is available only if the kernel was compiled with + * **CONFIG_IP_ROUTE_CLASSID** configuration option. + * Return + * The realm of the route for the packet associated to *skb*, or 0 + * if none was found. + * + * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) + * Description + * Write raw *data* blob into a special BPF perf event held by + * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf + * event must have the following attributes: **PERF_SAMPLE_RAW** + * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and + * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. + * + * The *flags* are used to indicate the index in *map* for which + * the value must be put, masked with **BPF_F_INDEX_MASK**. + * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** + * to indicate that the index of the current CPU core should be + * used. + * + * The value to write, of *size*, is passed through eBPF stack and + * pointed by *data*. + * + * The context of the program *ctx* needs also be passed to the + * helper. + * + * On user space, a program willing to read the values needs to + * call **perf_event_open**\ () on the perf event (either for + * one or for all CPUs) and to store the file descriptor into the + * *map*. This must be done before the eBPF program can send data + * into it. An example is available in file + * *samples/bpf/trace_output_user.c* in the Linux kernel source + * tree (the eBPF program counterpart is in + * *samples/bpf/trace_output_kern.c*). + * + * **bpf_perf_event_output**\ () achieves better performance + * than **bpf_trace_printk**\ () for sharing data with user + * space, and is much better suitable for streaming data from eBPF + * programs. + * + * Note that this helper is not restricted to tracing use cases + * and can be used with programs attached to TC or XDP as well, + * where it allows for passing data to user space listeners. Data + * can be: + * + * * Only custom structs, + * * Only the packet payload, or + * * A combination of both. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) + * Description + * This helper was provided as an easy way to load data from a + * packet. It can be used to load *len* bytes from *offset* from + * the packet associated to *skb*, into the buffer pointed by + * *to*. + * + * Since Linux 4.7, usage of this helper has mostly been replaced + * by "direct packet access", enabling packet data to be + * manipulated with *skb*\ **->data** and *skb*\ **->data_end** + * pointing respectively to the first byte of packet data and to + * the byte after the last byte of packet data. However, it + * remains useful if one wishes to read large quantities of data + * at once from a packet into the eBPF stack. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) + * Description + * Walk a user or a kernel stack and return its id. To achieve + * this, the helper needs *ctx*, which is a pointer to the context + * on which the tracing program is executed, and a pointer to a + * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. + * + * The last argument, *flags*, holds the number of stack frames to + * skip (from 0 to 255), masked with + * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set + * a combination of the following flags: + * + * **BPF_F_USER_STACK** + * Collect a user space stack instead of a kernel stack. + * **BPF_F_FAST_STACK_CMP** + * Compare stacks by hash only. + * **BPF_F_REUSE_STACKID** + * If two different stacks hash into the same *stackid*, + * discard the old one. + * + * The stack id retrieved is a 32 bit long integer handle which + * can be further combined with other data (including other stack + * ids) and used as a key into maps. This can be useful for + * generating a variety of graphs (such as flame graphs or off-cpu + * graphs). + * + * For walking a stack, this helper is an improvement over + * **bpf_probe_read**\ (), which can be used with unrolled loops + * but is not efficient and consumes a lot of eBPF instructions. + * Instead, **bpf_get_stackid**\ () can collect up to + * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that + * this limit can be controlled with the **sysctl** program, and + * that it should be manually increased in order to profile long + * user stacks (such as stacks for Java programs). To do so, use: + * + * :: + * + * # sysctl kernel.perf_event_max_stack=<new value> + * + * Return + * The positive or null stack id on success, or a negative error + * in case of failure. + * + * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) + * Description + * Compute a checksum difference, from the raw buffer pointed by + * *from*, of length *from_size* (that must be a multiple of 4), + * towards the raw buffer pointed by *to*, of size *to_size* + * (same remark). An optional *seed* can be added to the value + * (this can be cascaded, the seed may come from a previous call + * to the helper). + * + * This is flexible enough to be used in several ways: + * + * * With *from_size* == 0, *to_size* > 0 and *seed* set to + * checksum, it can be used when pushing new data. + * * With *from_size* > 0, *to_size* == 0 and *seed* set to + * checksum, it can be used when removing data from a packet. + * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it + * can be used to compute a diff. Note that *from_size* and + * *to_size* do not need to be equal. + * + * This helper can be used in combination with + * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to + * which one can feed in the difference computed with + * **bpf_csum_diff**\ (). + * Return + * The checksum result, or a negative error code in case of + * failure. + * + * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) + * Description + * Retrieve tunnel options metadata for the packet associated to + * *skb*, and store the raw tunnel option data to the buffer *opt* + * of *size*. + * + * This helper can be used with encapsulation devices that can + * operate in "collect metadata" mode (please refer to the related + * note in the description of **bpf_skb_get_tunnel_key**\ () for + * more details). A particular example where this can be used is + * in combination with the Geneve encapsulation protocol, where it + * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) + * and retrieving arbitrary TLVs (Type-Length-Value headers) from + * the eBPF program. This allows for full customization of these + * headers. + * Return + * The size of the option data retrieved. + * + * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) + * Description + * Set tunnel options metadata for the packet associated to *skb* + * to the option data contained in the raw buffer *opt* of *size*. + * + * See also the description of the **bpf_skb_get_tunnel_opt**\ () + * helper for additional information. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) + * Description + * Change the protocol of the *skb* to *proto*. Currently + * supported are transition from IPv4 to IPv6, and from IPv6 to + * IPv4. The helper takes care of the groundwork for the + * transition, including resizing the socket buffer. The eBPF + * program is expected to fill the new headers, if any, via + * **skb_store_bytes**\ () and to recompute the checksums with + * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ + * (). The main case for this helper is to perform NAT64 + * operations out of an eBPF program. + * + * Internally, the GSO type is marked as dodgy so that headers are + * checked and segments are recalculated by the GSO/GRO engine. + * The size for GSO target is adapted as well. + * + * All values for *flags* are reserved for future usage, and must + * be left at zero. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_change_type(struct sk_buff *skb, u32 type) + * Description + * Change the packet type for the packet associated to *skb*. This + * comes down to setting *skb*\ **->pkt_type** to *type*, except + * the eBPF program does not have a write access to *skb*\ + * **->pkt_type** beside this helper. Using a helper here allows + * for graceful handling of errors. + * + * The major use case is to change incoming *skb*s to + * **PACKET_HOST** in a programmatic way instead of having to + * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for + * example. + * + * Note that *type* only allows certain values. At this time, they + * are: + * + * **PACKET_HOST** + * Packet is for us. + * **PACKET_BROADCAST** + * Send packet to all. + * **PACKET_MULTICAST** + * Send packet to group. + * **PACKET_OTHERHOST** + * Send packet to someone else. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) + * Description + * Check whether *skb* is a descendant of the cgroup2 held by + * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. + * Return + * The return value depends on the result of the test, and can be: + * + * * 0, if the *skb* failed the cgroup2 descendant test. + * * 1, if the *skb* succeeded the cgroup2 descendant test. + * * A negative error code, if an error occurred. + * + * u32 bpf_get_hash_recalc(struct sk_buff *skb) + * Description + * Retrieve the hash of the packet, *skb*\ **->hash**. If it is + * not set, in particular if the hash was cleared due to mangling, + * recompute this hash. Later accesses to the hash can be done + * directly with *skb*\ **->hash**. + * + * Calling **bpf_set_hash_invalid**\ (), changing a packet + * prototype with **bpf_skb_change_proto**\ (), or calling + * **bpf_skb_store_bytes**\ () with the + * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear + * the hash and to trigger a new computation for the next call to + * **bpf_get_hash_recalc**\ (). + * Return + * The 32-bit hash. * * u64 bpf_get_current_task(void) - * Returns current task_struct - * Return: current - * - * int bpf_probe_write_user(void *dst, void *src, int len) - * safely attempt to write to a location - * @dst: destination address in userspace - * @src: source address on stack - * @len: number of bytes to copy - * Return: 0 on success or negative error - * - * int bpf_current_task_under_cgroup(map, index) - * Check cgroup2 membership of current task - * @map: pointer to bpf_map in BPF_MAP_TYPE_CGROUP_ARRAY type - * @index: index of the cgroup in the bpf_map - * Return: - * == 0 current failed the cgroup2 descendant test - * == 1 current succeeded the cgroup2 descendant test - * < 0 error - * - * int bpf_skb_change_tail(skb, len, flags) - * The helper will resize the skb to the given new size, to be used f.e. - * with control messages. - * @skb: pointer to skb - * @len: new skb length - * @flags: reserved - * Return: 0 on success or negative error - * - * int bpf_skb_pull_data(skb, len) - * The helper will pull in non-linear data in case the skb is non-linear - * and not all of len are part of the linear section. Only needed for - * read/write with direct packet access. - * @skb: pointer to skb - * @len: len to make read/writeable - * Return: 0 on success or negative error - * - * s64 bpf_csum_update(skb, csum) - * Adds csum into skb->csum in case of CHECKSUM_COMPLETE. - * @skb: pointer to skb - * @csum: csum to add - * Return: csum on success or negative error - * - * void bpf_set_hash_invalid(skb) - * Invalidate current skb->hash. - * @skb: pointer to skb - * - * int bpf_get_numa_node_id() - * Return: Id of current NUMA node. - * - * int bpf_skb_change_head() - * Grows headroom of skb and adjusts MAC header offset accordingly. - * Will extends/reallocae as required automatically. - * May change skb data pointer and will thus invalidate any check - * performed for direct packet access. - * @skb: pointer to skb - * @len: length of header to be pushed in front - * @flags: Flags (unused for now) - * Return: 0 on success or negative error - * - * int bpf_xdp_adjust_head(xdp_md, delta) - * Adjust the xdp_md.data by delta - * @xdp_md: pointer to xdp_md - * @delta: An positive/negative integer to be added to xdp_md.data - * Return: 0 on success or negative on error + * Return + * A pointer to the current task struct. + * + * int bpf_probe_write_user(void *dst, const void *src, u32 len) + * Description + * Attempt in a safe way to write *len* bytes from the buffer + * *src* to *dst* in memory. It only works for threads that are in + * user context, and *dst* must be a valid user space address. + * + * This helper should not be used to implement any kind of + * security mechanism because of TOC-TOU attacks, but rather to + * debug, divert, and manipulate execution of semi-cooperative + * processes. + * + * Keep in mind that this feature is meant for experiments, and it + * has a risk of crashing the system and running programs. + * Therefore, when an eBPF program using this helper is attached, + * a warning including PID and process name is printed to kernel + * logs. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) + * Description + * Check whether the probe is being run is the context of a given + * subset of the cgroup2 hierarchy. The cgroup2 to test is held by + * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. + * Return + * The return value depends on the result of the test, and can be: + * + * * 0, if the *skb* task belongs to the cgroup2. + * * 1, if the *skb* task does not belong to the cgroup2. + * * A negative error code, if an error occurred. + * + * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) + * Description + * Resize (trim or grow) the packet associated to *skb* to the + * new *len*. The *flags* are reserved for future usage, and must + * be left at zero. + * + * The basic idea is that the helper performs the needed work to + * change the size of the packet, then the eBPF program rewrites + * the rest via helpers like **bpf_skb_store_bytes**\ (), + * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () + * and others. This helper is a slow path utility intended for + * replies with control messages. And because it is targeted for + * slow path, the helper itself can afford to be slow: it + * implicitly linearizes, unclones and drops offloads from the + * *skb*. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) + * Description + * Pull in non-linear data in case the *skb* is non-linear and not + * all of *len* are part of the linear section. Make *len* bytes + * from *skb* readable and writable. If a zero value is passed for + * *len*, then the whole length of the *skb* is pulled. + * + * This helper is only needed for reading and writing with direct + * packet access. + * + * For direct packet access, testing that offsets to access + * are within packet boundaries (test on *skb*\ **->data_end**) is + * susceptible to fail if offsets are invalid, or if the requested + * data is in non-linear parts of the *skb*. On failure the + * program can just bail out, or in the case of a non-linear + * buffer, use a helper to make the data available. The + * **bpf_skb_load_bytes**\ () helper is a first solution to access + * the data. Another one consists in using **bpf_skb_pull_data** + * to pull in once the non-linear parts, then retesting and + * eventually access the data. + * + * At the same time, this also makes sure the *skb* is uncloned, + * which is a necessary condition for direct write. As this needs + * to be an invariant for the write part only, the verifier + * detects writes and adds a prologue that is calling + * **bpf_skb_pull_data()** to effectively unclone the *skb* from + * the very beginning in case it is indeed cloned. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) + * Description + * Add the checksum *csum* into *skb*\ **->csum** in case the + * driver has supplied a checksum for the entire packet into that + * field. Return an error otherwise. This helper is intended to be + * used in combination with **bpf_csum_diff**\ (), in particular + * when the checksum needs to be updated after data has been + * written into the packet through direct packet access. + * Return + * The checksum on success, or a negative error code in case of + * failure. + * + * void bpf_set_hash_invalid(struct sk_buff *skb) + * Description + * Invalidate the current *skb*\ **->hash**. It can be used after + * mangling on headers through direct packet access, in order to + * indicate that the hash is outdated and to trigger a + * recalculation the next time the kernel tries to access this + * hash or when the **bpf_get_hash_recalc**\ () helper is called. + * + * int bpf_get_numa_node_id(void) + * Description + * Return the id of the current NUMA node. The primary use case + * for this helper is the selection of sockets for the local NUMA + * node, when the program is attached to sockets using the + * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), + * but the helper is also available to other eBPF program types, + * similarly to **bpf_get_smp_processor_id**\ (). + * Return + * The id of current NUMA node. + * + * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) + * Description + * Grows headroom of packet associated to *skb* and adjusts the + * offset of the MAC header accordingly, adding *len* bytes of + * space. It automatically extends and reallocates memory as + * required. + * + * This helper can be used on a layer 3 *skb* to push a MAC header + * for redirection into a layer 2 device. + * + * All values for *flags* are reserved for future usage, and must + * be left at zero. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) + * Description + * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that + * it is possible to use a negative value for *delta*. This helper + * can be used to prepare the packet for pushing or popping + * headers. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. * * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) - * Copy a NUL terminated string from unsafe address. In case the string - * length is smaller than size, the target is not padded with further NUL - * bytes. In case the string length is larger than size, just count-1 - * bytes are copied and the last byte is set to NUL. - * @dst: destination address - * @size: maximum number of bytes to copy, including the trailing NUL - * @unsafe_ptr: unsafe address - * Return: - * > 0 length of the string including the trailing NUL on success - * < 0 error - * - * u64 bpf_get_socket_cookie(skb) - * Get the cookie for the socket stored inside sk_buff. - * @skb: pointer to skb - * Return: 8 Bytes non-decreasing number on success or 0 if the socket - * field is missing inside sk_buff - * - * u32 bpf_get_socket_uid(skb) - * Get the owner uid of the socket stored inside sk_buff. - * @skb: pointer to skb - * Return: uid of the socket owner on success or overflowuid if failed. - * - * u32 bpf_set_hash(skb, hash) - * Set full skb->hash. - * @skb: pointer to skb - * @hash: hash to set - * - * int bpf_setsockopt(bpf_socket, level, optname, optval, optlen) - * Calls setsockopt. Not all opts are available, only those with - * integer optvals plus TCP_CONGESTION. - * Supported levels: SOL_SOCKET and IPPROTO_TCP - * @bpf_socket: pointer to bpf_socket - * @level: SOL_SOCKET or IPPROTO_TCP - * @optname: option name - * @optval: pointer to option value - * @optlen: length of optval in bytes - * Return: 0 or negative error - * - * int bpf_getsockopt(bpf_socket, level, optname, optval, optlen) - * Calls getsockopt. Not all opts are available. - * Supported levels: IPPROTO_TCP - * @bpf_socket: pointer to bpf_socket - * @level: IPPROTO_TCP - * @optname: option name - * @optval: pointer to option value - * @optlen: length of optval in bytes - * Return: 0 or negative error - * - * int bpf_sock_ops_cb_flags_set(bpf_sock_ops, flags) - * Set callback flags for sock_ops - * @bpf_sock_ops: pointer to bpf_sock_ops_kern struct - * @flags: flags value - * Return: 0 for no error - * -EINVAL if there is no full tcp socket - * bits in flags that are not supported by current kernel - * - * int bpf_skb_adjust_room(skb, len_diff, mode, flags) - * Grow or shrink room in sk_buff. - * @skb: pointer to skb - * @len_diff: (signed) amount of room to grow/shrink - * @mode: operation mode (enum bpf_adj_room_mode) - * @flags: reserved for future use - * Return: 0 on success or negative error code - * - * int bpf_sk_redirect_map(map, key, flags) - * Redirect skb to a sock in map using key as a lookup key for the - * sock in map. - * @map: pointer to sockmap - * @key: key to lookup sock in map - * @flags: reserved for future use - * Return: SK_PASS - * - * int bpf_sock_map_update(skops, map, key, flags) - * @skops: pointer to bpf_sock_ops - * @map: pointer to sockmap to update - * @key: key to insert/update sock in map - * @flags: same flags as map update elem - * - * int bpf_xdp_adjust_meta(xdp_md, delta) - * Adjust the xdp_md.data_meta by delta - * @xdp_md: pointer to xdp_md - * @delta: An positive/negative integer to be added to xdp_md.data_meta - * Return: 0 on success or negative on error - * - * int bpf_perf_event_read_value(map, flags, buf, buf_size) - * read perf event counter value and perf event enabled/running time - * @map: pointer to perf_event_array map - * @flags: index of event in the map or bitmask flags - * @buf: buf to fill - * @buf_size: size of the buf - * Return: 0 on success or negative error code - * - * int bpf_perf_prog_read_value(ctx, buf, buf_size) - * read perf prog attached perf event counter and enabled/running time - * @ctx: pointer to ctx - * @buf: buf to fill - * @buf_size: size of the buf - * Return : 0 on success or negative error code - * - * int bpf_override_return(pt_regs, rc) - * @pt_regs: pointer to struct pt_regs - * @rc: the return value to set - * - * int bpf_msg_redirect_map(map, key, flags) - * Redirect msg to a sock in map using key as a lookup key for the - * sock in map. - * @map: pointer to sockmap - * @key: key to lookup sock in map - * @flags: reserved for future use - * Return: SK_PASS - * - * int bpf_bind(ctx, addr, addr_len) - * Bind socket to address. Only binding to IP is supported, no port can be - * set in addr. - * @ctx: pointer to context of type bpf_sock_addr - * @addr: pointer to struct sockaddr to bind socket to - * @addr_len: length of sockaddr structure - * Return: 0 on success or negative error code - * - * int bpf_xdp_adjust_tail(xdp_md, delta) - * Adjust the xdp_md.data_end by delta. Only shrinking of packet's - * size is supported. - * @xdp_md: pointer to xdp_md - * @delta: A negative integer to be added to xdp_md.data_end - * Return: 0 on success or negative on error + * Description + * Copy a NUL terminated string from an unsafe address + * *unsafe_ptr* to *dst*. The *size* should include the + * terminating NUL byte. In case the string length is smaller than + * *size*, the target is not padded with further NUL bytes. If the + * string length is larger than *size*, just *size*-1 bytes are + * copied and the last byte is set to NUL. + * + * On success, the length of the copied string is returned. This + * makes this helper useful in tracing programs for reading + * strings, and more importantly to get its length at runtime. See + * the following snippet: + * + * :: + * + * SEC("kprobe/sys_open") + * void bpf_sys_open(struct pt_regs *ctx) + * { + * char buf[PATHLEN]; // PATHLEN is defined to 256 + * int res = bpf_probe_read_str(buf, sizeof(buf), + * ctx->di); + * + * // Consume buf, for example push it to + * // userspace via bpf_perf_event_output(); we + * // can use res (the string length) as event + * // size, after checking its boundaries. + * } + * + * In comparison, using **bpf_probe_read()** helper here instead + * to read the string would require to estimate the length at + * compile time, and would often result in copying more memory + * than necessary. + * + * Another useful use case is when parsing individual process + * arguments or individual environment variables navigating + * *current*\ **->mm->arg_start** and *current*\ + * **->mm->env_start**: using this helper and the return value, + * one can quickly iterate at the right offset of the memory area. + * Return + * On success, the strictly positive length of the string, + * including the trailing NUL character. On error, a negative + * value. + * + * u64 bpf_get_socket_cookie(struct sk_buff *skb) + * Description + * If the **struct sk_buff** pointed by *skb* has a known socket, + * retrieve the cookie (generated by the kernel) of this socket. + * If no cookie has been set yet, generate a new cookie. Once + * generated, the socket cookie remains stable for the life of the + * socket. This helper can be useful for monitoring per socket + * networking traffic statistics as it provides a unique socket + * identifier per namespace. + * Return + * A 8-byte long non-decreasing number on success, or 0 if the + * socket field is missing inside *skb*. + * + * u32 bpf_get_socket_uid(struct sk_buff *skb) + * Return + * The owner UID of the socket associated to *skb*. If the socket + * is **NULL**, or if it is not a full socket (i.e. if it is a + * time-wait or a request socket instead), **overflowuid** value + * is returned (note that **overflowuid** might also be the actual + * UID value for the socket). + * + * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) + * Description + * Set the full hash for *skb* (set the field *skb*\ **->hash**) + * to value *hash*. + * Return + * 0 + * + * int bpf_setsockopt(struct bpf_sock_ops_kern *bpf_socket, int level, int optname, char *optval, int optlen) + * Description + * Emulate a call to **setsockopt()** on the socket associated to + * *bpf_socket*, which must be a full socket. The *level* at + * which the option resides and the name *optname* of the option + * must be specified, see **setsockopt(2)** for more information. + * The option value of length *optlen* is pointed by *optval*. + * + * This helper actually implements a subset of **setsockopt()**. + * It supports the following *level*\ s: + * + * * **SOL_SOCKET**, which supports the following *optname*\ s: + * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, + * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. + * * **IPPROTO_TCP**, which supports the following *optname*\ s: + * **TCP_CONGESTION**, **TCP_BPF_IW**, + * **TCP_BPF_SNDCWND_CLAMP**. + * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. + * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_adjust_room(struct sk_buff *skb, u32 len_diff, u32 mode, u64 flags) + * Description + * Grow or shrink the room for data in the packet associated to + * *skb* by *len_diff*, and according to the selected *mode*. + * + * There is a single supported mode at this time: + * + * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer + * (room space is added or removed below the layer 3 header). + * + * All values for *flags* are reserved for future usage, and must + * be left at zero. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) + * Description + * Redirect the packet to the endpoint referenced by *map* at + * index *key*. Depending on its type, this *map* can contain + * references to net devices (for forwarding packets through other + * ports), or to CPUs (for redirecting XDP frames to another CPU; + * but this is only implemented for native XDP (with driver + * support) as of this writing). + * + * All values for *flags* are reserved for future usage, and must + * be left at zero. + * + * When used to redirect packets to net devices, this helper + * provides a high performance increase over **bpf_redirect**\ (). + * This is due to various implementation details of the underlying + * mechanisms, one of which is the fact that **bpf_redirect_map**\ + * () tries to send packet as a "bulk" to the device. + * Return + * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. + * + * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) + * Description + * Redirect the packet to the socket referenced by *map* (of type + * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and + * egress interfaces can be used for redirection. The + * **BPF_F_INGRESS** value in *flags* is used to make the + * distinction (ingress path is selected if the flag is present, + * egress path otherwise). This is the only flag supported for now. + * Return + * **SK_PASS** on success, or **SK_DROP** on error. + * + * int bpf_sock_map_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) + * Description + * Add an entry to, or update a *map* referencing sockets. The + * *skops* is used as a new value for the entry associated to + * *key*. *flags* is one of: + * + * **BPF_NOEXIST** + * The entry for *key* must not exist in the map. + * **BPF_EXIST** + * The entry for *key* must already exist in the map. + * **BPF_ANY** + * No condition on the existence of the entry for *key*. + * + * If the *map* has eBPF programs (parser and verdict), those will + * be inherited by the socket being added. If the socket is + * already attached to eBPF programs, this results in an error. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) + * Description + * Adjust the address pointed by *xdp_md*\ **->data_meta** by + * *delta* (which can be positive or negative). Note that this + * operation modifies the address stored in *xdp_md*\ **->data**, + * so the latter must be loaded only after the helper has been + * called. + * + * The use of *xdp_md*\ **->data_meta** is optional and programs + * are not required to use it. The rationale is that when the + * packet is processed with XDP (e.g. as DoS filter), it is + * possible to push further meta data along with it before passing + * to the stack, and to give the guarantee that an ingress eBPF + * program attached as a TC classifier on the same device can pick + * this up for further post-processing. Since TC works with socket + * buffers, it remains possible to set from XDP the **mark** or + * **priority** pointers, or other pointers for the socket buffer. + * Having this scratch space generic and programmable allows for + * more flexibility as the user is free to store whatever meta + * data they need. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) + * Description + * Read the value of a perf event counter, and store it into *buf* + * of size *buf_size*. This helper relies on a *map* of type + * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event + * counter is selected when *map* is updated with perf event file + * descriptors. The *map* is an array whose size is the number of + * available CPUs, and each cell contains a value relative to one + * CPU. The value to retrieve is indicated by *flags*, that + * contains the index of the CPU to look up, masked with + * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to + * **BPF_F_CURRENT_CPU** to indicate that the value for the + * current CPU should be retrieved. + * + * This helper behaves in a way close to + * **bpf_perf_event_read**\ () helper, save that instead of + * just returning the value observed, it fills the *buf* + * structure. This allows for additional data to be retrieved: in + * particular, the enabled and running times (in *buf*\ + * **->enabled** and *buf*\ **->running**, respectively) are + * copied. In general, **bpf_perf_event_read_value**\ () is + * recommended over **bpf_perf_event_read**\ (), which has some + * ABI issues and provides fewer functionalities. + * + * These values are interesting, because hardware PMU (Performance + * Monitoring Unit) counters are limited resources. When there are + * more PMU based perf events opened than available counters, + * kernel will multiplex these events so each event gets certain + * percentage (but not all) of the PMU time. In case that + * multiplexing happens, the number of samples or counter value + * will not reflect the case compared to when no multiplexing + * occurs. This makes comparison between different runs difficult. + * Typically, the counter value should be normalized before + * comparing to other experiments. The usual normalization is done + * as follows. + * + * :: + * + * normalized_counter = counter * t_enabled / t_running + * + * Where t_enabled is the time enabled for event and t_running is + * the time running for event since last normalization. The + * enabled and running times are accumulated since the perf event + * open. To achieve scaling factor between two invocations of an + * eBPF program, users can can use CPU id as the key (which is + * typical for perf array usage model) to remember the previous + * value and do the calculation inside the eBPF program. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_perf_prog_read_value(struct bpf_perf_event_data_kern *ctx, struct bpf_perf_event_value *buf, u32 buf_size) + * Description + * For en eBPF program attached to a perf event, retrieve the + * value of the event counter associated to *ctx* and store it in + * the structure pointed by *buf* and of size *buf_size*. Enabled + * and running times are also stored in the structure (see + * description of helper **bpf_perf_event_read_value**\ () for + * more details). + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_getsockopt(struct bpf_sock_ops_kern *bpf_socket, int level, int optname, char *optval, int optlen) + * Description + * Emulate a call to **getsockopt()** on the socket associated to + * *bpf_socket*, which must be a full socket. The *level* at + * which the option resides and the name *optname* of the option + * must be specified, see **getsockopt(2)** for more information. + * The retrieved value is stored in the structure pointed by + * *opval* and of length *optlen*. + * + * This helper actually implements a subset of **getsockopt()**. + * It supports the following *level*\ s: + * + * * **IPPROTO_TCP**, which supports *optname* + * **TCP_CONGESTION**. + * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. + * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_override_return(struct pt_reg *regs, u64 rc) + * Description + * Used for error injection, this helper uses kprobes to override + * the return value of the probed function, and to set it to *rc*. + * The first argument is the context *regs* on which the kprobe + * works. + * + * This helper works by setting setting the PC (program counter) + * to an override function which is run in place of the original + * probed function. This means the probed function is not run at + * all. The replacement function just returns with the required + * value. + * + * This helper has security implications, and thus is subject to + * restrictions. It is only available if the kernel was compiled + * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration + * option, and in this case it only works on functions tagged with + * **ALLOW_ERROR_INJECTION** in the kernel code. + * + * Also, the helper is only available for the architectures having + * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, + * x86 architecture is the only one to support this feature. + * Return + * 0 + * + * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops_kern *bpf_sock, int argval) + * Description + * Attempt to set the value of the **bpf_sock_ops_cb_flags** field + * for the full TCP socket associated to *bpf_sock_ops* to + * *argval*. + * + * The primary use of this field is to determine if there should + * be calls to eBPF programs of type + * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP + * code. A program of the same type can change its value, per + * connection and as necessary, when the connection is + * established. This field is directly accessible for reading, but + * this helper must be used for updates in order to return an + * error if an eBPF program tries to set a callback that is not + * supported in the current kernel. + * + * The supported callback values that *argval* can combine are: + * + * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) + * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) + * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) + * + * Here are some examples of where one could call such eBPF + * program: + * + * * When RTO fires. + * * When a packet is retransmitted. + * * When the connection terminates. + * * When a packet is sent. + * * When a packet is received. + * Return + * Code **-EINVAL** if the socket is not a full TCP socket; + * otherwise, a positive number containing the bits that could not + * be set is returned (which comes down to 0 if all bits were set + * as required). + * + * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) + * Description + * This helper is used in programs implementing policies at the + * socket level. If the message *msg* is allowed to pass (i.e. if + * the verdict eBPF program returns **SK_PASS**), redirect it to + * the socket referenced by *map* (of type + * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and + * egress interfaces can be used for redirection. The + * **BPF_F_INGRESS** value in *flags* is used to make the + * distinction (ingress path is selected if the flag is present, + * egress path otherwise). This is the only flag supported for now. + * Return + * **SK_PASS** on success, or **SK_DROP** on error. + * + * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) + * Description + * For socket policies, apply the verdict of the eBPF program to + * the next *bytes* (number of bytes) of message *msg*. + * + * For example, this helper can be used in the following cases: + * + * * A single **sendmsg**\ () or **sendfile**\ () system call + * contains multiple logical messages that the eBPF program is + * supposed to read and for which it should apply a verdict. + * * An eBPF program only cares to read the first *bytes* of a + * *msg*. If the message has a large payload, then setting up + * and calling the eBPF program repeatedly for all bytes, even + * though the verdict is already known, would create unnecessary + * overhead. + * + * When called from within an eBPF program, the helper sets a + * counter internal to the BPF infrastructure, that is used to + * apply the last verdict to the next *bytes*. If *bytes* is + * smaller than the current data being processed from a + * **sendmsg**\ () or **sendfile**\ () system call, the first + * *bytes* will be sent and the eBPF program will be re-run with + * the pointer for start of data pointing to byte number *bytes* + * **+ 1**. If *bytes* is larger than the current data being + * processed, then the eBPF verdict will be applied to multiple + * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are + * consumed. + * + * Note that if a socket closes with the internal counter holding + * a non-zero value, this is not a problem because data is not + * being buffered for *bytes* and is sent as it is received. + * Return + * 0 + * + * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) + * Description + * For socket policies, prevent the execution of the verdict eBPF + * program for message *msg* until *bytes* (byte number) have been + * accumulated. + * + * This can be used when one needs a specific number of bytes + * before a verdict can be assigned, even if the data spans + * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme + * case would be a user calling **sendmsg**\ () repeatedly with + * 1-byte long message segments. Obviously, this is bad for + * performance, but it is still valid. If the eBPF program needs + * *bytes* bytes to validate a header, this helper can be used to + * prevent the eBPF program to be called again until *bytes* have + * been accumulated. + * Return + * 0 + * + * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) + * Description + * For socket policies, pull in non-linear data from user space + * for *msg* and set pointers *msg*\ **->data** and *msg*\ + * **->data_end** to *start* and *end* bytes offsets into *msg*, + * respectively. + * + * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a + * *msg* it can only parse data that the (**data**, **data_end**) + * pointers have already consumed. For **sendmsg**\ () hooks this + * is likely the first scatterlist element. But for calls relying + * on the **sendpage** handler (e.g. **sendfile**\ ()) this will + * be the range (**0**, **0**) because the data is shared with + * user space and by default the objective is to avoid allowing + * user space to modify data while (or after) eBPF verdict is + * being decided. This helper can be used to pull in data and to + * set the start and end pointer to given values. Data will be + * copied if necessary (i.e. if data was not linear and if start + * and end pointers do not point to the same chunk). + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * + * All values for *flags* are reserved for future usage, and must + * be left at zero. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_bind(struct bpf_sock_addr_kern *ctx, struct sockaddr *addr, int addr_len) + * Description + * Bind the socket associated to *ctx* to the address pointed by + * *addr*, of length *addr_len*. This allows for making outgoing + * connection from the desired IP address, which can be useful for + * example when all processes inside a cgroup should use one + * single IP address on a host that has multiple IP configured. + * + * This helper works for IPv4 and IPv6, TCP and UDP sockets. The + * domain (*addr*\ **->sa_family**) must be **AF_INET** (or + * **AF_INET6**). Looking for a free port to bind to can be + * expensive, therefore binding to port is not permitted by the + * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) + * must be set to zero. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) + * Description + * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is + * only possible to shrink the packet as of this writing, + * therefore *delta* must be a negative integer. + * + * A call to this helper is susceptible to change the underlaying + * packet buffer. Therefore, at load time, all checks on pointers + * previously done by the verifier are invalidated and must be + * performed again, if the helper is used in combination with + * direct packet access. + * Return + * 0 on success, or a negative error in case of failure. + * + * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) + * Description + * Retrieve the XFRM state (IP transform framework, see also + * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. + * + * The retrieved value is stored in the **struct bpf_xfrm_state** + * pointed by *xfrm_state* and of length *size*. + * + * All values for *flags* are reserved for future usage, and must + * be left at zero. + * + * This helper is available only if the kernel was compiled with + * **CONFIG_XFRM** configuration option. + * Return + * 0 on success, or a negative error in case of failure. */ #define __BPF_FUNC_MAPPER(FN) \ FN(unspec), \ @@ -841,7 +1834,8 @@ union bpf_attr { FN(msg_cork_bytes), \ FN(msg_pull_data), \ FN(bind), \ - FN(xdp_adjust_tail), + FN(xdp_adjust_tail), \ + FN(skb_get_xfrm_state), /* integer value in 'imm' field of BPF_CALL instruction selects which helper * function eBPF program intends to call @@ -947,6 +1941,19 @@ struct bpf_tunnel_key { __u32 tunnel_label; }; +/* user accessible mirror of in-kernel xfrm_state. + * new fields can only be added to the end of this structure + */ +struct bpf_xfrm_state { + __u32 reqid; + __u32 spi; /* Stored in network byte order */ + __u16 family; + union { + __u32 remote_ipv4; /* Stored in network byte order */ + __u32 remote_ipv6[4]; /* Stored in network byte order */ + }; +}; + /* Generic BPF return codes which all BPF program types may support. * The values are binary compatible with their TC_ACT_* counter-part to * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT @@ -1037,6 +2044,7 @@ struct bpf_prog_info { __aligned_u64 map_ids; char name[BPF_OBJ_NAME_LEN]; __u32 ifindex; + __u32 gpl_compatible:1; __u64 netns_dev; __u64 netns_ino; } __attribute__((aligned(8))); |