summaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig6
-rw-r--r--mm/Kconfig.debug5
-rw-r--r--mm/backing-dev.c8
-rw-r--r--mm/bootmem.c24
-rw-r--r--mm/compaction.c14
-rw-r--r--mm/fadvise.c3
-rw-r--r--mm/failslab.c2
-rw-r--r--mm/filemap.c20
-rw-r--r--mm/hugetlb.c55
-rw-r--r--mm/memblock.c961
-rw-r--r--mm/memcontrol.c128
-rw-r--r--mm/mempolicy.c25
-rw-r--r--mm/mempool.c104
-rw-r--r--mm/migrate.c14
-rw-r--r--mm/mmap.c60
-rw-r--r--mm/mremap.c9
-rw-r--r--mm/nobootmem.c45
-rw-r--r--mm/oom_kill.c10
-rw-r--r--mm/page-writeback.c568
-rw-r--r--mm/page_alloc.c763
-rw-r--r--mm/percpu.c6
-rw-r--r--mm/rmap.c45
-rw-r--r--mm/shmem.c17
-rw-r--r--mm/slab.c2
-rw-r--r--mm/slub.c13
-rw-r--r--mm/swap.c14
-rw-r--r--mm/swap_state.c1
-rw-r--r--mm/swapfile.c6
-rw-r--r--mm/vmalloc.c39
-rw-r--r--mm/vmscan.c56
30 files changed, 1689 insertions, 1334 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 011b110365c8..e338407f1225 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -131,6 +131,12 @@ config SPARSEMEM_VMEMMAP
config HAVE_MEMBLOCK
boolean
+config HAVE_MEMBLOCK_NODE_MAP
+ boolean
+
+config ARCH_DISCARD_MEMBLOCK
+ boolean
+
config NO_BOOTMEM
boolean
diff --git a/mm/Kconfig.debug b/mm/Kconfig.debug
index 8b1a477162dc..4b2443254de2 100644
--- a/mm/Kconfig.debug
+++ b/mm/Kconfig.debug
@@ -4,6 +4,7 @@ config DEBUG_PAGEALLOC
depends on !HIBERNATION || ARCH_SUPPORTS_DEBUG_PAGEALLOC && !PPC && !SPARC
depends on !KMEMCHECK
select PAGE_POISONING if !ARCH_SUPPORTS_DEBUG_PAGEALLOC
+ select PAGE_GUARD if ARCH_SUPPORTS_DEBUG_PAGEALLOC
---help---
Unmap pages from the kernel linear mapping after free_pages().
This results in a large slowdown, but helps to find certain types
@@ -22,3 +23,7 @@ config WANT_PAGE_DEBUG_FLAGS
config PAGE_POISONING
bool
select WANT_PAGE_DEBUG_FLAGS
+
+config PAGE_GUARD
+ bool
+ select WANT_PAGE_DEBUG_FLAGS
diff --git a/mm/backing-dev.c b/mm/backing-dev.c
index 71034f41a2ba..7ba8feae11b8 100644
--- a/mm/backing-dev.c
+++ b/mm/backing-dev.c
@@ -600,14 +600,10 @@ static void bdi_wb_shutdown(struct backing_dev_info *bdi)
/*
* Finally, kill the kernel thread. We don't need to be RCU
- * safe anymore, since the bdi is gone from visibility. Force
- * unfreeze of the thread before calling kthread_stop(), otherwise
- * it would never exet if it is currently stuck in the refrigerator.
+ * safe anymore, since the bdi is gone from visibility.
*/
- if (bdi->wb.task) {
- thaw_process(bdi->wb.task);
+ if (bdi->wb.task)
kthread_stop(bdi->wb.task);
- }
}
/*
diff --git a/mm/bootmem.c b/mm/bootmem.c
index 1a77012ecdb3..668e94df8cf2 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -56,7 +56,7 @@ early_param("bootmem_debug", bootmem_debug_setup);
static unsigned long __init bootmap_bytes(unsigned long pages)
{
- unsigned long bytes = (pages + 7) / 8;
+ unsigned long bytes = DIV_ROUND_UP(pages, 8);
return ALIGN(bytes, sizeof(long));
}
@@ -171,7 +171,6 @@ void __init free_bootmem_late(unsigned long addr, unsigned long size)
static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
{
- int aligned;
struct page *page;
unsigned long start, end, pages, count = 0;
@@ -181,14 +180,8 @@ static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
start = bdata->node_min_pfn;
end = bdata->node_low_pfn;
- /*
- * If the start is aligned to the machines wordsize, we might
- * be able to free pages in bulks of that order.
- */
- aligned = !(start & (BITS_PER_LONG - 1));
-
- bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
- bdata - bootmem_node_data, start, end, aligned);
+ bdebug("nid=%td start=%lx end=%lx\n",
+ bdata - bootmem_node_data, start, end);
while (start < end) {
unsigned long *map, idx, vec;
@@ -196,12 +189,17 @@ static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
map = bdata->node_bootmem_map;
idx = start - bdata->node_min_pfn;
vec = ~map[idx / BITS_PER_LONG];
-
- if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
+ /*
+ * If we have a properly aligned and fully unreserved
+ * BITS_PER_LONG block of pages in front of us, free
+ * it in one go.
+ */
+ if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
int order = ilog2(BITS_PER_LONG);
__free_pages_bootmem(pfn_to_page(start), order);
count += BITS_PER_LONG;
+ start += BITS_PER_LONG;
} else {
unsigned long off = 0;
@@ -214,8 +212,8 @@ static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
vec >>= 1;
off++;
}
+ start = ALIGN(start + 1, BITS_PER_LONG);
}
- start += BITS_PER_LONG;
}
page = virt_to_page(bdata->node_bootmem_map);
diff --git a/mm/compaction.c b/mm/compaction.c
index 899d95638586..e6670c34eb49 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -365,8 +365,10 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone,
nr_isolated++;
/* Avoid isolating too much */
- if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
+ if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
+ ++low_pfn;
break;
+ }
}
acct_isolated(zone, cc);
@@ -721,23 +723,23 @@ int sysctl_extfrag_handler(struct ctl_table *table, int write,
}
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
-ssize_t sysfs_compact_node(struct sys_device *dev,
- struct sysdev_attribute *attr,
+ssize_t sysfs_compact_node(struct device *dev,
+ struct device_attribute *attr,
const char *buf, size_t count)
{
compact_node(dev->id);
return count;
}
-static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
+static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
int compaction_register_node(struct node *node)
{
- return sysdev_create_file(&node->sysdev, &attr_compact);
+ return device_create_file(&node->dev, &dev_attr_compact);
}
void compaction_unregister_node(struct node *node)
{
- return sysdev_remove_file(&node->sysdev, &attr_compact);
+ return device_remove_file(&node->dev, &dev_attr_compact);
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
diff --git a/mm/fadvise.c b/mm/fadvise.c
index 8d723c9e8b75..469491e0af79 100644
--- a/mm/fadvise.c
+++ b/mm/fadvise.c
@@ -117,7 +117,8 @@ SYSCALL_DEFINE(fadvise64_64)(int fd, loff_t offset, loff_t len, int advice)
break;
case POSIX_FADV_DONTNEED:
if (!bdi_write_congested(mapping->backing_dev_info))
- filemap_flush(mapping);
+ __filemap_fdatawrite_range(mapping, offset, endbyte,
+ WB_SYNC_NONE);
/* First and last FULL page! */
start_index = (offset+(PAGE_CACHE_SIZE-1)) >> PAGE_CACHE_SHIFT;
diff --git a/mm/failslab.c b/mm/failslab.c
index 0dd7b8fec71c..fefaabaab76d 100644
--- a/mm/failslab.c
+++ b/mm/failslab.c
@@ -35,7 +35,7 @@ __setup("failslab=", setup_failslab);
static int __init failslab_debugfs_init(void)
{
struct dentry *dir;
- mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
+ umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
dir = fault_create_debugfs_attr("failslab", NULL, &failslab.attr);
if (IS_ERR(dir))
diff --git a/mm/filemap.c b/mm/filemap.c
index c0018f2d50e0..c4ee2e918bea 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -1828,7 +1828,7 @@ repeat:
page = __page_cache_alloc(gfp | __GFP_COLD);
if (!page)
return ERR_PTR(-ENOMEM);
- err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
+ err = add_to_page_cache_lru(page, mapping, index, gfp);
if (unlikely(err)) {
page_cache_release(page);
if (err == -EEXIST)
@@ -1925,10 +1925,7 @@ static struct page *wait_on_page_read(struct page *page)
* @gfp: the page allocator flags to use if allocating
*
* This is the same as "read_mapping_page(mapping, index, NULL)", but with
- * any new page allocations done using the specified allocation flags. Note
- * that the Radix tree operations will still use GFP_KERNEL, so you can't
- * expect to do this atomically or anything like that - but you can pass in
- * other page requirements.
+ * any new page allocations done using the specified allocation flags.
*
* If the page does not get brought uptodate, return -EIO.
*/
@@ -1971,7 +1968,7 @@ EXPORT_SYMBOL(read_cache_page);
*/
int should_remove_suid(struct dentry *dentry)
{
- mode_t mode = dentry->d_inode->i_mode;
+ umode_t mode = dentry->d_inode->i_mode;
int kill = 0;
/* suid always must be killed */
@@ -2354,8 +2351,11 @@ struct page *grab_cache_page_write_begin(struct address_space *mapping,
pgoff_t index, unsigned flags)
{
int status;
+ gfp_t gfp_mask;
struct page *page;
gfp_t gfp_notmask = 0;
+
+ gfp_mask = mapping_gfp_mask(mapping) | __GFP_WRITE;
if (flags & AOP_FLAG_NOFS)
gfp_notmask = __GFP_FS;
repeat:
@@ -2363,7 +2363,7 @@ repeat:
if (page)
goto found;
- page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
+ page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
if (!page)
return NULL;
status = add_to_page_cache_lru(page, mapping, index,
@@ -2407,7 +2407,6 @@ static ssize_t generic_perform_write(struct file *file,
iov_iter_count(i));
again:
-
/*
* Bring in the user page that we will copy from _first_.
* Otherwise there's a nasty deadlock on copying from the
@@ -2463,7 +2462,10 @@ again:
written += copied;
balance_dirty_pages_ratelimited(mapping);
-
+ if (fatal_signal_pending(current)) {
+ status = -EINTR;
+ break;
+ }
} while (iov_iter_count(i));
return written ? written : status;
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 73f17c0293c0..ea8c3a4cd2ae 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -800,7 +800,7 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
if (page && arch_prepare_hugepage(page)) {
__free_pages(page, huge_page_order(h));
- return NULL;
+ page = NULL;
}
spin_lock(&hugetlb_lock);
@@ -901,7 +901,6 @@ retry:
h->resv_huge_pages += delta;
ret = 0;
- spin_unlock(&hugetlb_lock);
/* Free the needed pages to the hugetlb pool */
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
if ((--needed) < 0)
@@ -915,6 +914,7 @@ retry:
VM_BUG_ON(page_count(page));
enqueue_huge_page(h, page);
}
+ spin_unlock(&hugetlb_lock);
/* Free unnecessary surplus pages to the buddy allocator */
free:
@@ -1592,9 +1592,9 @@ static void __init hugetlb_sysfs_init(void)
/*
* node_hstate/s - associate per node hstate attributes, via their kobjects,
- * with node sysdevs in node_devices[] using a parallel array. The array
- * index of a node sysdev or _hstate == node id.
- * This is here to avoid any static dependency of the node sysdev driver, in
+ * with node devices in node_devices[] using a parallel array. The array
+ * index of a node device or _hstate == node id.
+ * This is here to avoid any static dependency of the node device driver, in
* the base kernel, on the hugetlb module.
*/
struct node_hstate {
@@ -1604,7 +1604,7 @@ struct node_hstate {
struct node_hstate node_hstates[MAX_NUMNODES];
/*
- * A subset of global hstate attributes for node sysdevs
+ * A subset of global hstate attributes for node devices
*/
static struct attribute *per_node_hstate_attrs[] = {
&nr_hugepages_attr.attr,
@@ -1618,7 +1618,7 @@ static struct attribute_group per_node_hstate_attr_group = {
};
/*
- * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
+ * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
* Returns node id via non-NULL nidp.
*/
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
@@ -1641,13 +1641,13 @@ static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
}
/*
- * Unregister hstate attributes from a single node sysdev.
+ * Unregister hstate attributes from a single node device.
* No-op if no hstate attributes attached.
*/
void hugetlb_unregister_node(struct node *node)
{
struct hstate *h;
- struct node_hstate *nhs = &node_hstates[node->sysdev.id];
+ struct node_hstate *nhs = &node_hstates[node->dev.id];
if (!nhs->hugepages_kobj)
return; /* no hstate attributes */
@@ -1663,7 +1663,7 @@ void hugetlb_unregister_node(struct node *node)
}
/*
- * hugetlb module exit: unregister hstate attributes from node sysdevs
+ * hugetlb module exit: unregister hstate attributes from node devices
* that have them.
*/
static void hugetlb_unregister_all_nodes(void)
@@ -1671,7 +1671,7 @@ static void hugetlb_unregister_all_nodes(void)
int nid;
/*
- * disable node sysdev registrations.
+ * disable node device registrations.
*/
register_hugetlbfs_with_node(NULL, NULL);
@@ -1683,20 +1683,20 @@ static void hugetlb_unregister_all_nodes(void)
}
/*
- * Register hstate attributes for a single node sysdev.
+ * Register hstate attributes for a single node device.
* No-op if attributes already registered.
*/
void hugetlb_register_node(struct node *node)
{
struct hstate *h;
- struct node_hstate *nhs = &node_hstates[node->sysdev.id];
+ struct node_hstate *nhs = &node_hstates[node->dev.id];
int err;
if (nhs->hugepages_kobj)
return; /* already allocated */
nhs->hugepages_kobj = kobject_create_and_add("hugepages",
- &node->sysdev.kobj);
+ &node->dev.kobj);
if (!nhs->hugepages_kobj)
return;
@@ -1707,7 +1707,7 @@ void hugetlb_register_node(struct node *node)
if (err) {
printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
" for node %d\n",
- h->name, node->sysdev.id);
+ h->name, node->dev.id);
hugetlb_unregister_node(node);
break;
}
@@ -1716,8 +1716,8 @@ void hugetlb_register_node(struct node *node)
/*
* hugetlb init time: register hstate attributes for all registered node
- * sysdevs of nodes that have memory. All on-line nodes should have
- * registered their associated sysdev by this time.
+ * devices of nodes that have memory. All on-line nodes should have
+ * registered their associated device by this time.
*/
static void hugetlb_register_all_nodes(void)
{
@@ -1725,12 +1725,12 @@ static void hugetlb_register_all_nodes(void)
for_each_node_state(nid, N_HIGH_MEMORY) {
struct node *node = &node_devices[nid];
- if (node->sysdev.id == nid)
+ if (node->dev.id == nid)
hugetlb_register_node(node);
}
/*
- * Let the node sysdev driver know we're here so it can
+ * Let the node device driver know we're here so it can
* [un]register hstate attributes on node hotplug.
*/
register_hugetlbfs_with_node(hugetlb_register_node,
@@ -2315,8 +2315,7 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
* from page cache lookup which is in HPAGE_SIZE units.
*/
address = address & huge_page_mask(h);
- pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
- + (vma->vm_pgoff >> PAGE_SHIFT);
+ pgoff = vma_hugecache_offset(h, vma, address);
mapping = (struct address_space *)page_private(page);
/*
@@ -2349,6 +2348,9 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
/*
* Hugetlb_cow() should be called with page lock of the original hugepage held.
+ * Called with hugetlb_instantiation_mutex held and pte_page locked so we
+ * cannot race with other handlers or page migration.
+ * Keep the pte_same checks anyway to make transition from the mutex easier.
*/
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, pte_t pte,
@@ -2408,7 +2410,14 @@ retry_avoidcopy:
BUG_ON(page_count(old_page) != 1);
BUG_ON(huge_pte_none(pte));
spin_lock(&mm->page_table_lock);
- goto retry_avoidcopy;
+ ptep = huge_pte_offset(mm, address & huge_page_mask(h));
+ if (likely(pte_same(huge_ptep_get(ptep), pte)))
+ goto retry_avoidcopy;
+ /*
+ * race occurs while re-acquiring page_table_lock, and
+ * our job is done.
+ */
+ return 0;
}
WARN_ON_ONCE(1);
}
@@ -2630,6 +2639,8 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
static DEFINE_MUTEX(hugetlb_instantiation_mutex);
struct hstate *h = hstate_vma(vma);
+ address &= huge_page_mask(h);
+
ptep = huge_pte_offset(mm, address);
if (ptep) {
entry = huge_ptep_get(ptep);
diff --git a/mm/memblock.c b/mm/memblock.c
index 84bec4969ed5..2f55f19b7c86 100644
--- a/mm/memblock.c
+++ b/mm/memblock.c
@@ -20,12 +20,23 @@
#include <linux/seq_file.h>
#include <linux/memblock.h>
-struct memblock memblock __initdata_memblock;
+static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
+static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
+
+struct memblock memblock __initdata_memblock = {
+ .memory.regions = memblock_memory_init_regions,
+ .memory.cnt = 1, /* empty dummy entry */
+ .memory.max = INIT_MEMBLOCK_REGIONS,
+
+ .reserved.regions = memblock_reserved_init_regions,
+ .reserved.cnt = 1, /* empty dummy entry */
+ .reserved.max = INIT_MEMBLOCK_REGIONS,
+
+ .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
+};
int memblock_debug __initdata_memblock;
-int memblock_can_resize __initdata_memblock;
-static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
-static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
+static int memblock_can_resize __initdata_memblock;
/* inline so we don't get a warning when pr_debug is compiled out */
static inline const char *memblock_type_name(struct memblock_type *type)
@@ -38,20 +49,15 @@ static inline const char *memblock_type_name(struct memblock_type *type)
return "unknown";
}
-/*
- * Address comparison utilities
- */
-
-static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
-{
- return addr & ~(size - 1);
-}
-
-static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
+/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
+static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
{
- return (addr + (size - 1)) & ~(size - 1);
+ return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
}
+/*
+ * Address comparison utilities
+ */
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
phys_addr_t base2, phys_addr_t size2)
{
@@ -73,83 +79,66 @@ static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
return (i < type->cnt) ? i : -1;
}
-/*
- * Find, allocate, deallocate or reserve unreserved regions. All allocations
- * are top-down.
+/**
+ * memblock_find_in_range_node - find free area in given range and node
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %MAX_NUMNODES for any node
+ *
+ * Find @size free area aligned to @align in the specified range and node.
+ *
+ * RETURNS:
+ * Found address on success, %0 on failure.
*/
-
-static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
- phys_addr_t size, phys_addr_t align)
+phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
+ phys_addr_t end, phys_addr_t size,
+ phys_addr_t align, int nid)
{
- phys_addr_t base, res_base;
- long j;
-
- /* In case, huge size is requested */
- if (end < size)
- return MEMBLOCK_ERROR;
-
- base = memblock_align_down((end - size), align);
+ phys_addr_t this_start, this_end, cand;
+ u64 i;
- /* Prevent allocations returning 0 as it's also used to
- * indicate an allocation failure
- */
- if (start == 0)
- start = PAGE_SIZE;
-
- while (start <= base) {
- j = memblock_overlaps_region(&memblock.reserved, base, size);
- if (j < 0)
- return base;
- res_base = memblock.reserved.regions[j].base;
- if (res_base < size)
- break;
- base = memblock_align_down(res_base - size, align);
- }
+ /* align @size to avoid excessive fragmentation on reserved array */
+ size = round_up(size, align);
- return MEMBLOCK_ERROR;
-}
-
-static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
- phys_addr_t align, phys_addr_t start, phys_addr_t end)
-{
- long i;
-
- BUG_ON(0 == size);
-
- /* Pump up max_addr */
+ /* pump up @end */
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
end = memblock.current_limit;
- /* We do a top-down search, this tends to limit memory
- * fragmentation by keeping early boot allocs near the
- * top of memory
- */
- for (i = memblock.memory.cnt - 1; i >= 0; i--) {
- phys_addr_t memblockbase = memblock.memory.regions[i].base;
- phys_addr_t memblocksize = memblock.memory.regions[i].size;
- phys_addr_t bottom, top, found;
+ /* adjust @start to avoid underflow and allocating the first page */
+ start = max3(start, size, (phys_addr_t)PAGE_SIZE);
+ end = max(start, end);
- if (memblocksize < size)
- continue;
- if ((memblockbase + memblocksize) <= start)
- break;
- bottom = max(memblockbase, start);
- top = min(memblockbase + memblocksize, end);
- if (bottom >= top)
- continue;
- found = memblock_find_region(bottom, top, size, align);
- if (found != MEMBLOCK_ERROR)
- return found;
+ for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
+
+ cand = round_down(this_end - size, align);
+ if (cand >= this_start)
+ return cand;
}
- return MEMBLOCK_ERROR;
+ return 0;
}
-/*
- * Find a free area with specified alignment in a specific range.
+/**
+ * memblock_find_in_range - find free area in given range
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ *
+ * Find @size free area aligned to @align in the specified range.
+ *
+ * RETURNS:
+ * Found address on success, %0 on failure.
*/
-u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
+phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
+ phys_addr_t end, phys_addr_t size,
+ phys_addr_t align)
{
- return memblock_find_base(size, align, start, end);
+ return memblock_find_in_range_node(start, end, size, align,
+ MAX_NUMNODES);
}
/*
@@ -178,25 +167,21 @@ int __init_memblock memblock_reserve_reserved_regions(void)
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
{
- unsigned long i;
-
- for (i = r; i < type->cnt - 1; i++) {
- type->regions[i].base = type->regions[i + 1].base;
- type->regions[i].size = type->regions[i + 1].size;
- }
+ type->total_size -= type->regions[r].size;
+ memmove(&type->regions[r], &type->regions[r + 1],
+ (type->cnt - (r + 1)) * sizeof(type->regions[r]));
type->cnt--;
/* Special case for empty arrays */
if (type->cnt == 0) {
+ WARN_ON(type->total_size != 0);
type->cnt = 1;
type->regions[0].base = 0;
type->regions[0].size = 0;
+ memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
}
}
-/* Defined below but needed now */
-static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
-
static int __init_memblock memblock_double_array(struct memblock_type *type)
{
struct memblock_region *new_array, *old_array;
@@ -226,10 +211,10 @@ static int __init_memblock memblock_double_array(struct memblock_type *type)
*/
if (use_slab) {
new_array = kmalloc(new_size, GFP_KERNEL);
- addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
+ addr = new_array ? __pa(new_array) : 0;
} else
- addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
- if (addr == MEMBLOCK_ERROR) {
+ addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
+ if (!addr) {
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
memblock_type_name(type), type->max, type->max * 2);
return -1;
@@ -254,7 +239,7 @@ static int __init_memblock memblock_double_array(struct memblock_type *type)
return 0;
/* Add the new reserved region now. Should not fail ! */
- BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
+ BUG_ON(memblock_reserve(addr, new_size));
/* If the array wasn't our static init one, then free it. We only do
* that before SLAB is available as later on, we don't know whether
@@ -268,343 +253,514 @@ static int __init_memblock memblock_double_array(struct memblock_type *type)
return 0;
}
-int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
- phys_addr_t addr2, phys_addr_t size2)
-{
- return 1;
-}
-
-static long __init_memblock memblock_add_region(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size)
+/**
+ * memblock_merge_regions - merge neighboring compatible regions
+ * @type: memblock type to scan
+ *
+ * Scan @type and merge neighboring compatible regions.
+ */
+static void __init_memblock memblock_merge_regions(struct memblock_type *type)
{
- phys_addr_t end = base + size;
- int i, slot = -1;
-
- /* First try and coalesce this MEMBLOCK with others */
- for (i = 0; i < type->cnt; i++) {
- struct memblock_region *rgn = &type->regions[i];
- phys_addr_t rend = rgn->base + rgn->size;
+ int i = 0;
- /* Exit if there's no possible hits */
- if (rgn->base > end || rgn->size == 0)
- break;
+ /* cnt never goes below 1 */
+ while (i < type->cnt - 1) {
+ struct memblock_region *this = &type->regions[i];
+ struct memblock_region *next = &type->regions[i + 1];
- /* Check if we are fully enclosed within an existing
- * block
- */
- if (rgn->base <= base && rend >= end)
- return 0;
+ if (this->base + this->size != next->base ||
+ memblock_get_region_node(this) !=
+ memblock_get_region_node(next)) {
+ BUG_ON(this->base + this->size > next->base);
+ i++;
+ continue;
+ }
- /* Check if we overlap or are adjacent with the bottom
- * of a block.
- */
- if (base < rgn->base && end >= rgn->base) {
- /* If we can't coalesce, create a new block */
- if (!memblock_memory_can_coalesce(base, size,
- rgn->base,
- rgn->size)) {
- /* Overlap & can't coalesce are mutually
- * exclusive, if you do that, be prepared
- * for trouble
- */
- WARN_ON(end != rgn->base);
- goto new_block;
- }
- /* We extend the bottom of the block down to our
- * base
- */
- rgn->base = base;
- rgn->size = rend - base;
+ this->size += next->size;
+ memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
+ type->cnt--;
+ }
+}
- /* Return if we have nothing else to allocate
- * (fully coalesced)
- */
- if (rend >= end)
- return 0;
+/**
+ * memblock_insert_region - insert new memblock region
+ * @type: memblock type to insert into
+ * @idx: index for the insertion point
+ * @base: base address of the new region
+ * @size: size of the new region
+ *
+ * Insert new memblock region [@base,@base+@size) into @type at @idx.
+ * @type must already have extra room to accomodate the new region.
+ */
+static void __init_memblock memblock_insert_region(struct memblock_type *type,
+ int idx, phys_addr_t base,
+ phys_addr_t size, int nid)
+{
+ struct memblock_region *rgn = &type->regions[idx];
- /* We continue processing from the end of the
- * coalesced block.
- */
- base = rend;
- size = end - base;
- }
+ BUG_ON(type->cnt >= type->max);
+ memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
+ rgn->base = base;
+ rgn->size = size;
+ memblock_set_region_node(rgn, nid);
+ type->cnt++;
+ type->total_size += size;
+}
- /* Now check if we overlap or are adjacent with the
- * top of a block
- */
- if (base <= rend && end >= rend) {
- /* If we can't coalesce, create a new block */
- if (!memblock_memory_can_coalesce(rgn->base,
- rgn->size,
- base, size)) {
- /* Overlap & can't coalesce are mutually
- * exclusive, if you do that, be prepared
- * for trouble
- */
- WARN_ON(rend != base);
- goto new_block;
- }
- /* We adjust our base down to enclose the
- * original block and destroy it. It will be
- * part of our new allocation. Since we've
- * freed an entry, we know we won't fail
- * to allocate one later, so we won't risk
- * losing the original block allocation.
- */
- size += (base - rgn->base);
- base = rgn->base;
- memblock_remove_region(type, i--);
- }
- }
+/**
+ * memblock_add_region - add new memblock region
+ * @type: memblock type to add new region into
+ * @base: base address of the new region
+ * @size: size of the new region
+ * @nid: nid of the new region
+ *
+ * Add new memblock region [@base,@base+@size) into @type. The new region
+ * is allowed to overlap with existing ones - overlaps don't affect already
+ * existing regions. @type is guaranteed to be minimal (all neighbouring
+ * compatible regions are merged) after the addition.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+static int __init_memblock memblock_add_region(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size, int nid)
+{
+ bool insert = false;
+ phys_addr_t obase = base;
+ phys_addr_t end = base + memblock_cap_size(base, &size);
+ int i, nr_new;
- /* If the array is empty, special case, replace the fake
- * filler region and return
- */
- if ((type->cnt == 1) && (type->regions[0].size == 0)) {
+ /* special case for empty array */
+ if (type->regions[0].size == 0) {
+ WARN_ON(type->cnt != 1 || type->total_size);
type->regions[0].base = base;
type->regions[0].size = size;
+ memblock_set_region_node(&type->regions[0], nid);
+ type->total_size = size;
return 0;
}
-
- new_block:
- /* If we are out of space, we fail. It's too late to resize the array
- * but then this shouldn't have happened in the first place.
+repeat:
+ /*
+ * The following is executed twice. Once with %false @insert and
+ * then with %true. The first counts the number of regions needed
+ * to accomodate the new area. The second actually inserts them.
*/
- if (WARN_ON(type->cnt >= type->max))
- return -1;
+ base = obase;
+ nr_new = 0;
- /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
- for (i = type->cnt - 1; i >= 0; i--) {
- if (base < type->regions[i].base) {
- type->regions[i+1].base = type->regions[i].base;
- type->regions[i+1].size = type->regions[i].size;
- } else {
- type->regions[i+1].base = base;
- type->regions[i+1].size = size;
- slot = i + 1;
+ for (i = 0; i < type->cnt; i++) {
+ struct memblock_region *rgn = &type->regions[i];
+ phys_addr_t rbase = rgn->base;
+ phys_addr_t rend = rbase + rgn->size;
+
+ if (rbase >= end)
break;
+ if (rend <= base)
+ continue;
+ /*
+ * @rgn overlaps. If it separates the lower part of new
+ * area, insert that portion.
+ */
+ if (rbase > base) {
+ nr_new++;
+ if (insert)
+ memblock_insert_region(type, i++, base,
+ rbase - base, nid);
}
+ /* area below @rend is dealt with, forget about it */
+ base = min(rend, end);
}
- if (base < type->regions[0].base) {
- type->regions[0].base = base;
- type->regions[0].size = size;
- slot = 0;
+
+ /* insert the remaining portion */
+ if (base < end) {
+ nr_new++;
+ if (insert)
+ memblock_insert_region(type, i, base, end - base, nid);
}
- type->cnt++;
- /* The array is full ? Try to resize it. If that fails, we undo
- * our allocation and return an error
+ /*
+ * If this was the first round, resize array and repeat for actual
+ * insertions; otherwise, merge and return.
*/
- if (type->cnt == type->max && memblock_double_array(type)) {
- BUG_ON(slot < 0);
- memblock_remove_region(type, slot);
- return -1;
+ if (!insert) {
+ while (type->cnt + nr_new > type->max)
+ if (memblock_double_array(type) < 0)
+ return -ENOMEM;
+ insert = true;
+ goto repeat;
+ } else {
+ memblock_merge_regions(type);
+ return 0;
}
-
- return 0;
}
-long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
+int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
+ int nid)
{
- return memblock_add_region(&memblock.memory, base, size);
+ return memblock_add_region(&memblock.memory, base, size, nid);
+}
+int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
}
-static long __init_memblock __memblock_remove(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size)
+/**
+ * memblock_isolate_range - isolate given range into disjoint memblocks
+ * @type: memblock type to isolate range for
+ * @base: base of range to isolate
+ * @size: size of range to isolate
+ * @start_rgn: out parameter for the start of isolated region
+ * @end_rgn: out parameter for the end of isolated region
+ *
+ * Walk @type and ensure that regions don't cross the boundaries defined by
+ * [@base,@base+@size). Crossing regions are split at the boundaries,
+ * which may create at most two more regions. The index of the first
+ * region inside the range is returned in *@start_rgn and end in *@end_rgn.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+static int __init_memblock memblock_isolate_range(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size,
+ int *start_rgn, int *end_rgn)
{
- phys_addr_t end = base + size;
+ phys_addr_t end = base + memblock_cap_size(base, &size);
int i;
- /* Walk through the array for collisions */
+ *start_rgn = *end_rgn = 0;
+
+ /* we'll create at most two more regions */
+ while (type->cnt + 2 > type->max)
+ if (memblock_double_array(type) < 0)
+ return -ENOMEM;
+
for (i = 0; i < type->cnt; i++) {
struct memblock_region *rgn = &type->regions[i];
- phys_addr_t rend = rgn->base + rgn->size;
+ phys_addr_t rbase = rgn->base;
+ phys_addr_t rend = rbase + rgn->size;
- /* Nothing more to do, exit */
- if (rgn->base > end || rgn->size == 0)
+ if (rbase >= end)
break;
-
- /* If we fully enclose the block, drop it */
- if (base <= rgn->base && end >= rend) {
- memblock_remove_region(type, i--);
+ if (rend <= base)
continue;
- }
- /* If we are fully enclosed within a block
- * then we need to split it and we are done
- */
- if (base > rgn->base && end < rend) {
- rgn->size = base - rgn->base;
- if (!memblock_add_region(type, end, rend - end))
- return 0;
- /* Failure to split is bad, we at least
- * restore the block before erroring
+ if (rbase < base) {
+ /*
+ * @rgn intersects from below. Split and continue
+ * to process the next region - the new top half.
+ */
+ rgn->base = base;
+ rgn->size -= base - rbase;
+ type->total_size -= base - rbase;
+ memblock_insert_region(type, i, rbase, base - rbase,
+ memblock_get_region_node(rgn));
+ } else if (rend > end) {
+ /*
+ * @rgn intersects from above. Split and redo the
+ * current region - the new bottom half.
*/
- rgn->size = rend - rgn->base;
- WARN_ON(1);
- return -1;
- }
-
- /* Check if we need to trim the bottom of a block */
- if (rgn->base < end && rend > end) {
- rgn->size -= end - rgn->base;
rgn->base = end;
- break;
+ rgn->size -= end - rbase;
+ type->total_size -= end - rbase;
+ memblock_insert_region(type, i--, rbase, end - rbase,
+ memblock_get_region_node(rgn));
+ } else {
+ /* @rgn is fully contained, record it */
+ if (!*end_rgn)
+ *start_rgn = i;
+ *end_rgn = i + 1;
}
+ }
- /* And check if we need to trim the top of a block */
- if (base < rend)
- rgn->size -= rend - base;
+ return 0;
+}
- }
+static int __init_memblock __memblock_remove(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size)
+{
+ int start_rgn, end_rgn;
+ int i, ret;
+
+ ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
+ if (ret)
+ return ret;
+
+ for (i = end_rgn - 1; i >= start_rgn; i--)
+ memblock_remove_region(type, i);
return 0;
}
-long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
+int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
{
return __memblock_remove(&memblock.memory, base, size);
}
-long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
+int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
{
+ memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
+ (unsigned long long)base,
+ (unsigned long long)base + size,
+ (void *)_RET_IP_);
+
return __memblock_remove(&memblock.reserved, base, size);
}
-long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
+int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
{
struct memblock_type *_rgn = &memblock.reserved;
+ memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
+ (unsigned long long)base,
+ (unsigned long long)base + size,
+ (void *)_RET_IP_);
BUG_ON(0 == size);
- return memblock_add_region(_rgn, base, size);
+ return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
}
-phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+/**
+ * __next_free_mem_range - next function for for_each_free_mem_range()
+ * @idx: pointer to u64 loop variable
+ * @nid: nid: node selector, %MAX_NUMNODES for all nodes
+ * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
+ * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
+ * @p_nid: ptr to int for nid of the range, can be %NULL
+ *
+ * Find the first free area from *@idx which matches @nid, fill the out
+ * parameters, and update *@idx for the next iteration. The lower 32bit of
+ * *@idx contains index into memory region and the upper 32bit indexes the
+ * areas before each reserved region. For example, if reserved regions
+ * look like the following,
+ *
+ * 0:[0-16), 1:[32-48), 2:[128-130)
+ *
+ * The upper 32bit indexes the following regions.
+ *
+ * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
+ *
+ * As both region arrays are sorted, the function advances the two indices
+ * in lockstep and returns each intersection.
+ */
+void __init_memblock __next_free_mem_range(u64 *idx, int nid,
+ phys_addr_t *out_start,
+ phys_addr_t *out_end, int *out_nid)
{
- phys_addr_t found;
+ struct memblock_type *mem = &memblock.memory;
+ struct memblock_type *rsv = &memblock.reserved;
+ int mi = *idx & 0xffffffff;
+ int ri = *idx >> 32;
- /* We align the size to limit fragmentation. Without this, a lot of
- * small allocs quickly eat up the whole reserve array on sparc
- */
- size = memblock_align_up(size, align);
+ for ( ; mi < mem->cnt; mi++) {
+ struct memblock_region *m = &mem->regions[mi];
+ phys_addr_t m_start = m->base;
+ phys_addr_t m_end = m->base + m->size;
- found = memblock_find_base(size, align, 0, max_addr);
- if (found != MEMBLOCK_ERROR &&
- !memblock_add_region(&memblock.reserved, found, size))
- return found;
+ /* only memory regions are associated with nodes, check it */
+ if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
+ continue;
- return 0;
+ /* scan areas before each reservation for intersection */
+ for ( ; ri < rsv->cnt + 1; ri++) {
+ struct memblock_region *r = &rsv->regions[ri];
+ phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
+ phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
+
+ /* if ri advanced past mi, break out to advance mi */
+ if (r_start >= m_end)
+ break;
+ /* if the two regions intersect, we're done */
+ if (m_start < r_end) {
+ if (out_start)
+ *out_start = max(m_start, r_start);
+ if (out_end)
+ *out_end = min(m_end, r_end);
+ if (out_nid)
+ *out_nid = memblock_get_region_node(m);
+ /*
+ * The region which ends first is advanced
+ * for the next iteration.
+ */
+ if (m_end <= r_end)
+ mi++;
+ else
+ ri++;
+ *idx = (u32)mi | (u64)ri << 32;
+ return;
+ }
+ }
+ }
+
+ /* signal end of iteration */
+ *idx = ULLONG_MAX;
}
-phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+/**
+ * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
+ * @idx: pointer to u64 loop variable
+ * @nid: nid: node selector, %MAX_NUMNODES for all nodes
+ * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
+ * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
+ * @p_nid: ptr to int for nid of the range, can be %NULL
+ *
+ * Reverse of __next_free_mem_range().
+ */
+void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
+ phys_addr_t *out_start,
+ phys_addr_t *out_end, int *out_nid)
{
- phys_addr_t alloc;
+ struct memblock_type *mem = &memblock.memory;
+ struct memblock_type *rsv = &memblock.reserved;
+ int mi = *idx & 0xffffffff;
+ int ri = *idx >> 32;
- alloc = __memblock_alloc_base(size, align, max_addr);
+ if (*idx == (u64)ULLONG_MAX) {
+ mi = mem->cnt - 1;
+ ri = rsv->cnt;
+ }
- if (alloc == 0)
- panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
- (unsigned long long) size, (unsigned long long) max_addr);
+ for ( ; mi >= 0; mi--) {
+ struct memblock_region *m = &mem->regions[mi];
+ phys_addr_t m_start = m->base;
+ phys_addr_t m_end = m->base + m->size;
- return alloc;
-}
+ /* only memory regions are associated with nodes, check it */
+ if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
+ continue;
-phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
-{
- return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
-}
+ /* scan areas before each reservation for intersection */
+ for ( ; ri >= 0; ri--) {
+ struct memblock_region *r = &rsv->regions[ri];
+ phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
+ phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
+
+ /* if ri advanced past mi, break out to advance mi */
+ if (r_end <= m_start)
+ break;
+ /* if the two regions intersect, we're done */
+ if (m_end > r_start) {
+ if (out_start)
+ *out_start = max(m_start, r_start);
+ if (out_end)
+ *out_end = min(m_end, r_end);
+ if (out_nid)
+ *out_nid = memblock_get_region_node(m);
+
+ if (m_start >= r_start)
+ mi--;
+ else
+ ri--;
+ *idx = (u32)mi | (u64)ri << 32;
+ return;
+ }
+ }
+ }
+ *idx = ULLONG_MAX;
+}
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
- * Additional node-local allocators. Search for node memory is bottom up
- * and walks memblock regions within that node bottom-up as well, but allocation
- * within an memblock region is top-down. XXX I plan to fix that at some stage
- *
- * WARNING: Only available after early_node_map[] has been populated,
- * on some architectures, that is after all the calls to add_active_range()
- * have been done to populate it.
+ * Common iterator interface used to define for_each_mem_range().
*/
-
-phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
+void __init_memblock __next_mem_pfn_range(int *idx, int nid,
+ unsigned long *out_start_pfn,
+ unsigned long *out_end_pfn, int *out_nid)
{
-#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
- /*
- * This code originates from sparc which really wants use to walk by addresses
- * and returns the nid. This is not very convenient for early_pfn_map[] users
- * as the map isn't sorted yet, and it really wants to be walked by nid.
- *
- * For now, I implement the inefficient method below which walks the early
- * map multiple times. Eventually we may want to use an ARCH config option
- * to implement a completely different method for both case.
- */
- unsigned long start_pfn, end_pfn;
- int i;
+ struct memblock_type *type = &memblock.memory;
+ struct memblock_region *r;
- for (i = 0; i < MAX_NUMNODES; i++) {
- get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
- if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
+ while (++*idx < type->cnt) {
+ r = &type->regions[*idx];
+
+ if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
continue;
- *nid = i;
- return min(end, PFN_PHYS(end_pfn));
+ if (nid == MAX_NUMNODES || nid == r->nid)
+ break;
+ }
+ if (*idx >= type->cnt) {
+ *idx = -1;
+ return;
}
-#endif
- *nid = 0;
- return end;
+ if (out_start_pfn)
+ *out_start_pfn = PFN_UP(r->base);
+ if (out_end_pfn)
+ *out_end_pfn = PFN_DOWN(r->base + r->size);
+ if (out_nid)
+ *out_nid = r->nid;
}
-static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
- phys_addr_t size,
- phys_addr_t align, int nid)
+/**
+ * memblock_set_node - set node ID on memblock regions
+ * @base: base of area to set node ID for
+ * @size: size of area to set node ID for
+ * @nid: node ID to set
+ *
+ * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
+ * Regions which cross the area boundaries are split as necessary.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
+ int nid)
{
- phys_addr_t start, end;
+ struct memblock_type *type = &memblock.memory;
+ int start_rgn, end_rgn;
+ int i, ret;
- start = mp->base;
- end = start + mp->size;
+ ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
+ if (ret)
+ return ret;
- start = memblock_align_up(start, align);
- while (start < end) {
- phys_addr_t this_end;
- int this_nid;
+ for (i = start_rgn; i < end_rgn; i++)
+ type->regions[i].nid = nid;
- this_end = memblock_nid_range(start, end, &this_nid);
- if (this_nid == nid) {
- phys_addr_t ret = memblock_find_region(start, this_end, size, align);
- if (ret != MEMBLOCK_ERROR &&
- !memblock_add_region(&memblock.reserved, ret, size))
- return ret;
- }
- start = this_end;
- }
+ memblock_merge_regions(type);
+ return 0;
+}
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+
+static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
+ phys_addr_t align, phys_addr_t max_addr,
+ int nid)
+{
+ phys_addr_t found;
- return MEMBLOCK_ERROR;
+ found = memblock_find_in_range_node(0, max_addr, size, align, nid);
+ if (found && !memblock_reserve(found, size))
+ return found;
+
+ return 0;
}
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
{
- struct memblock_type *mem = &memblock.memory;
- int i;
+ return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+}
- BUG_ON(0 == size);
+phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+{
+ return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
+}
- /* We align the size to limit fragmentation. Without this, a lot of
- * small allocs quickly eat up the whole reserve array on sparc
- */
- size = memblock_align_up(size, align);
+phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+{
+ phys_addr_t alloc;
- /* We do a bottom-up search for a region with the right
- * nid since that's easier considering how memblock_nid_range()
- * works
- */
- for (i = 0; i < mem->cnt; i++) {
- phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
- size, align, nid);
- if (ret != MEMBLOCK_ERROR)
- return ret;
- }
+ alloc = __memblock_alloc_base(size, align, max_addr);
- return 0;
+ if (alloc == 0)
+ panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
+ (unsigned long long) size, (unsigned long long) max_addr);
+
+ return alloc;
+}
+
+phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
+{
+ return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
@@ -613,7 +769,7 @@ phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, i
if (res)
return res;
- return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
+ return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}
@@ -621,10 +777,9 @@ phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, i
* Remaining API functions
*/
-/* You must call memblock_analyze() before this. */
phys_addr_t __init memblock_phys_mem_size(void)
{
- return memblock.memory_size;
+ return memblock.memory.total_size;
}
/* lowest address */
@@ -640,45 +795,28 @@ phys_addr_t __init_memblock memblock_end_of_DRAM(void)
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
}
-/* You must call memblock_analyze() after this. */
-void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
+void __init memblock_enforce_memory_limit(phys_addr_t limit)
{
unsigned long i;
- phys_addr_t limit;
- struct memblock_region *p;
+ phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
- if (!memory_limit)
+ if (!limit)
return;
- /* Truncate the memblock regions to satisfy the memory limit. */
- limit = memory_limit;
+ /* find out max address */
for (i = 0; i < memblock.memory.cnt; i++) {
- if (limit > memblock.memory.regions[i].size) {
- limit -= memblock.memory.regions[i].size;
- continue;
- }
-
- memblock.memory.regions[i].size = limit;
- memblock.memory.cnt = i + 1;
- break;
- }
-
- memory_limit = memblock_end_of_DRAM();
+ struct memblock_region *r = &memblock.memory.regions[i];
- /* And truncate any reserves above the limit also. */
- for (i = 0; i < memblock.reserved.cnt; i++) {
- p = &memblock.reserved.regions[i];
-
- if (p->base > memory_limit)
- p->size = 0;
- else if ((p->base + p->size) > memory_limit)
- p->size = memory_limit - p->base;
-
- if (p->size == 0) {
- memblock_remove_region(&memblock.reserved, i);
- i--;
+ if (limit <= r->size) {
+ max_addr = r->base + limit;
+ break;
}
+ limit -= r->size;
}
+
+ /* truncate both memory and reserved regions */
+ __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
+ __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
}
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
@@ -712,16 +850,18 @@ int __init_memblock memblock_is_memory(phys_addr_t addr)
int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
{
int idx = memblock_search(&memblock.memory, base);
+ phys_addr_t end = base + memblock_cap_size(base, &size);
if (idx == -1)
return 0;
return memblock.memory.regions[idx].base <= base &&
(memblock.memory.regions[idx].base +
- memblock.memory.regions[idx].size) >= (base + size);
+ memblock.memory.regions[idx].size) >= end;
}
int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
{
+ memblock_cap_size(base, &size);
return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
}
@@ -731,86 +871,45 @@ void __init_memblock memblock_set_current_limit(phys_addr_t limit)
memblock.current_limit = limit;
}
-static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
+static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
{
unsigned long long base, size;
int i;
- pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
+ pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
- for (i = 0; i < region->cnt; i++) {
- base = region->regions[i].base;
- size = region->regions[i].size;
-
- pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
- name, i, base, base + size - 1, size);
+ for (i = 0; i < type->cnt; i++) {
+ struct memblock_region *rgn = &type->regions[i];
+ char nid_buf[32] = "";
+
+ base = rgn->base;
+ size = rgn->size;
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+ if (memblock_get_region_node(rgn) != MAX_NUMNODES)
+ snprintf(nid_buf, sizeof(nid_buf), " on node %d",
+ memblock_get_region_node(rgn));
+#endif
+ pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
+ name, i, base, base + size - 1, size, nid_buf);
}
}
-void __init_memblock memblock_dump_all(void)
+void __init_memblock __memblock_dump_all(void)
{
- if (!memblock_debug)
- return;
-
pr_info("MEMBLOCK configuration:\n");
- pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
+ pr_info(" memory size = %#llx reserved size = %#llx\n",
+ (unsigned long long)memblock.memory.total_size,
+ (unsigned long long)memblock.reserved.total_size);
memblock_dump(&memblock.memory, "memory");
memblock_dump(&memblock.reserved, "reserved");
}
-void __init memblock_analyze(void)
+void __init memblock_allow_resize(void)
{
- int i;
-
- /* Check marker in the unused last array entry */
- WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
- != MEMBLOCK_INACTIVE);
- WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
- != MEMBLOCK_INACTIVE);
-
- memblock.memory_size = 0;
-
- for (i = 0; i < memblock.memory.cnt; i++)
- memblock.memory_size += memblock.memory.regions[i].size;
-
- /* We allow resizing from there */
memblock_can_resize = 1;
}
-void __init memblock_init(void)
-{
- static int init_done __initdata = 0;
-
- if (init_done)
- return;
- init_done = 1;
-
- /* Hookup the initial arrays */
- memblock.memory.regions = memblock_memory_init_regions;
- memblock.memory.max = INIT_MEMBLOCK_REGIONS;
- memblock.reserved.regions = memblock_reserved_init_regions;
- memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
-
- /* Write a marker in the unused last array entry */
- memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
- memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
-
- /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
- * This simplifies the memblock_add() code below...
- */
- memblock.memory.regions[0].base = 0;
- memblock.memory.regions[0].size = 0;
- memblock.memory.cnt = 1;
-
- /* Ditto. */
- memblock.reserved.regions[0].base = 0;
- memblock.reserved.regions[0].size = 0;
- memblock.reserved.cnt = 1;
-
- memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
-}
-
static int __init early_memblock(char *p)
{
if (p && strstr(p, "debug"))
@@ -819,7 +918,7 @@ static int __init early_memblock(char *p)
}
early_param("memblock", early_memblock);
-#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
+#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
static int memblock_debug_show(struct seq_file *m, void *private)
{
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 6aff93c98aca..d87aa3510c5e 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -50,6 +50,8 @@
#include <linux/cpu.h>
#include <linux/oom.h>
#include "internal.h"
+#include <net/sock.h>
+#include <net/tcp_memcontrol.h>
#include <asm/uaccess.h>
@@ -286,6 +288,10 @@ struct mem_cgroup {
*/
struct mem_cgroup_stat_cpu nocpu_base;
spinlock_t pcp_counter_lock;
+
+#ifdef CONFIG_INET
+ struct tcp_memcontrol tcp_mem;
+#endif
};
/* Stuffs for move charges at task migration. */
@@ -365,7 +371,67 @@ enum charge_type {
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
-static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
+
+/* Writing them here to avoid exposing memcg's inner layout */
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
+#ifdef CONFIG_INET
+#include <net/sock.h>
+#include <net/ip.h>
+
+static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
+void sock_update_memcg(struct sock *sk)
+{
+ if (static_branch(&memcg_socket_limit_enabled)) {
+ struct mem_cgroup *memcg;
+
+ BUG_ON(!sk->sk_prot->proto_cgroup);
+
+ /* Socket cloning can throw us here with sk_cgrp already
+ * filled. It won't however, necessarily happen from
+ * process context. So the test for root memcg given
+ * the current task's memcg won't help us in this case.
+ *
+ * Respecting the original socket's memcg is a better
+ * decision in this case.
+ */
+ if (sk->sk_cgrp) {
+ BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
+ mem_cgroup_get(sk->sk_cgrp->memcg);
+ return;
+ }
+
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(current);
+ if (!mem_cgroup_is_root(memcg)) {
+ mem_cgroup_get(memcg);
+ sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
+ }
+ rcu_read_unlock();
+ }
+}
+EXPORT_SYMBOL(sock_update_memcg);
+
+void sock_release_memcg(struct sock *sk)
+{
+ if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
+ struct mem_cgroup *memcg;
+ WARN_ON(!sk->sk_cgrp->memcg);
+ memcg = sk->sk_cgrp->memcg;
+ mem_cgroup_put(memcg);
+ }
+}
+
+struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
+{
+ if (!memcg || mem_cgroup_is_root(memcg))
+ return NULL;
+
+ return &memcg->tcp_mem.cg_proto;
+}
+EXPORT_SYMBOL(tcp_proto_cgroup);
+#endif /* CONFIG_INET */
+#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
+
static void drain_all_stock_async(struct mem_cgroup *memcg);
static struct mem_cgroup_per_zone *
@@ -745,7 +811,7 @@ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
preempt_enable();
}
-static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
+struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont,
mem_cgroup_subsys_id), struct mem_cgroup,
@@ -4612,6 +4678,36 @@ static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
}
#endif /* CONFIG_NUMA */
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
+static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
+{
+ /*
+ * Part of this would be better living in a separate allocation
+ * function, leaving us with just the cgroup tree population work.
+ * We, however, depend on state such as network's proto_list that
+ * is only initialized after cgroup creation. I found the less
+ * cumbersome way to deal with it to defer it all to populate time
+ */
+ return mem_cgroup_sockets_init(cont, ss);
+};
+
+static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
+ struct cgroup *cont)
+{
+ mem_cgroup_sockets_destroy(cont, ss);
+}
+#else
+static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
+{
+ return 0;
+}
+
+static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
+ struct cgroup *cont)
+{
+}
+#endif
+
static struct cftype mem_cgroup_files[] = {
{
.name = "usage_in_bytes",
@@ -4843,12 +4939,13 @@ static void mem_cgroup_put(struct mem_cgroup *memcg)
/*
* Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
*/
-static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
+struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
{
if (!memcg->res.parent)
return NULL;
return mem_cgroup_from_res_counter(memcg->res.parent, res);
}
+EXPORT_SYMBOL(parent_mem_cgroup);
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
@@ -4907,9 +5004,9 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
int cpu;
enable_swap_cgroup();
parent = NULL;
- root_mem_cgroup = memcg;
if (mem_cgroup_soft_limit_tree_init())
goto free_out;
+ root_mem_cgroup = memcg;
for_each_possible_cpu(cpu) {
struct memcg_stock_pcp *stock =
&per_cpu(memcg_stock, cpu);
@@ -4948,7 +5045,6 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
return &memcg->css;
free_out:
__mem_cgroup_free(memcg);
- root_mem_cgroup = NULL;
return ERR_PTR(error);
}
@@ -4965,6 +5061,8 @@ static void mem_cgroup_destroy(struct cgroup_subsys *ss,
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
+ kmem_cgroup_destroy(ss, cont);
+
mem_cgroup_put(memcg);
}
@@ -4978,6 +5076,10 @@ static int mem_cgroup_populate(struct cgroup_subsys *ss,
if (!ret)
ret = register_memsw_files(cont, ss);
+
+ if (!ret)
+ ret = register_kmem_files(cont, ss);
+
return ret;
}
@@ -5298,8 +5400,9 @@ static void mem_cgroup_clear_mc(void)
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
struct cgroup *cgroup,
- struct task_struct *p)
+ struct cgroup_taskset *tset)
{
+ struct task_struct *p = cgroup_taskset_first(tset);
int ret = 0;
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
@@ -5337,7 +5440,7 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
struct cgroup *cgroup,
- struct task_struct *p)
+ struct cgroup_taskset *tset)
{
mem_cgroup_clear_mc();
}
@@ -5454,9 +5557,9 @@ retry:
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
struct cgroup *cont,
- struct cgroup *old_cont,
- struct task_struct *p)
+ struct cgroup_taskset *tset)
{
+ struct task_struct *p = cgroup_taskset_first(tset);
struct mm_struct *mm = get_task_mm(p);
if (mm) {
@@ -5471,19 +5574,18 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss,
#else /* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
struct cgroup *cgroup,
- struct task_struct *p)
+ struct cgroup_taskset *tset)
{
return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
struct cgroup *cgroup,
- struct task_struct *p)
+ struct cgroup_taskset *tset)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
struct cgroup *cont,
- struct cgroup *old_cont,
- struct task_struct *p)
+ struct cgroup_taskset *tset)
{
}
#endif
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index adc395481813..e3d58f088466 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -636,6 +636,7 @@ static int mbind_range(struct mm_struct *mm, unsigned long start,
struct vm_area_struct *prev;
struct vm_area_struct *vma;
int err = 0;
+ pgoff_t pgoff;
unsigned long vmstart;
unsigned long vmend;
@@ -643,13 +644,21 @@ static int mbind_range(struct mm_struct *mm, unsigned long start,
if (!vma || vma->vm_start > start)
return -EFAULT;
+ if (start > vma->vm_start)
+ prev = vma;
+
for (; vma && vma->vm_start < end; prev = vma, vma = next) {
next = vma->vm_next;
vmstart = max(start, vma->vm_start);
vmend = min(end, vma->vm_end);
+ if (mpol_equal(vma_policy(vma), new_pol))
+ continue;
+
+ pgoff = vma->vm_pgoff +
+ ((vmstart - vma->vm_start) >> PAGE_SHIFT);
prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
- vma->anon_vma, vma->vm_file, vma->vm_pgoff,
+ vma->anon_vma, vma->vm_file, pgoff,
new_pol);
if (prev) {
vma = prev;
@@ -1974,28 +1983,28 @@ struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
}
/* Slow path of a mempolicy comparison */
-int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
+bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
{
if (!a || !b)
- return 0;
+ return false;
if (a->mode != b->mode)
- return 0;
+ return false;
if (a->flags != b->flags)
- return 0;
+ return false;
if (mpol_store_user_nodemask(a))
if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
- return 0;
+ return false;
switch (a->mode) {
case MPOL_BIND:
/* Fall through */
case MPOL_INTERLEAVE:
- return nodes_equal(a->v.nodes, b->v.nodes);
+ return !!nodes_equal(a->v.nodes, b->v.nodes);
case MPOL_PREFERRED:
return a->v.preferred_node == b->v.preferred_node;
default:
BUG();
- return 0;
+ return false;
}
}
diff --git a/mm/mempool.c b/mm/mempool.c
index e73641b79bb5..d9049811f352 100644
--- a/mm/mempool.c
+++ b/mm/mempool.c
@@ -27,7 +27,15 @@ static void *remove_element(mempool_t *pool)
return pool->elements[--pool->curr_nr];
}
-static void free_pool(mempool_t *pool)
+/**
+ * mempool_destroy - deallocate a memory pool
+ * @pool: pointer to the memory pool which was allocated via
+ * mempool_create().
+ *
+ * Free all reserved elements in @pool and @pool itself. This function
+ * only sleeps if the free_fn() function sleeps.
+ */
+void mempool_destroy(mempool_t *pool)
{
while (pool->curr_nr) {
void *element = remove_element(pool);
@@ -36,6 +44,7 @@ static void free_pool(mempool_t *pool)
kfree(pool->elements);
kfree(pool);
}
+EXPORT_SYMBOL(mempool_destroy);
/**
* mempool_create - create a memory pool
@@ -86,7 +95,7 @@ mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
element = pool->alloc(GFP_KERNEL, pool->pool_data);
if (unlikely(!element)) {
- free_pool(pool);
+ mempool_destroy(pool);
return NULL;
}
add_element(pool, element);
@@ -172,23 +181,6 @@ out:
EXPORT_SYMBOL(mempool_resize);
/**
- * mempool_destroy - deallocate a memory pool
- * @pool: pointer to the memory pool which was allocated via
- * mempool_create().
- *
- * this function only sleeps if the free_fn() function sleeps. The caller
- * has to guarantee that all elements have been returned to the pool (ie:
- * freed) prior to calling mempool_destroy().
- */
-void mempool_destroy(mempool_t *pool)
-{
- /* Check for outstanding elements */
- BUG_ON(pool->curr_nr != pool->min_nr);
- free_pool(pool);
-}
-EXPORT_SYMBOL(mempool_destroy);
-
-/**
* mempool_alloc - allocate an element from a specific memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
@@ -224,28 +216,40 @@ repeat_alloc:
if (likely(pool->curr_nr)) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
+ /* paired with rmb in mempool_free(), read comment there */
+ smp_wmb();
return element;
}
- spin_unlock_irqrestore(&pool->lock, flags);
- /* We must not sleep in the GFP_ATOMIC case */
- if (!(gfp_mask & __GFP_WAIT))
+ /*
+ * We use gfp mask w/o __GFP_WAIT or IO for the first round. If
+ * alloc failed with that and @pool was empty, retry immediately.
+ */
+ if (gfp_temp != gfp_mask) {
+ spin_unlock_irqrestore(&pool->lock, flags);
+ gfp_temp = gfp_mask;
+ goto repeat_alloc;
+ }
+
+ /* We must not sleep if !__GFP_WAIT */
+ if (!(gfp_mask & __GFP_WAIT)) {
+ spin_unlock_irqrestore(&pool->lock, flags);
return NULL;
+ }
- /* Now start performing page reclaim */
- gfp_temp = gfp_mask;
+ /* Let's wait for someone else to return an element to @pool */
init_wait(&wait);
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
- smp_mb();
- if (!pool->curr_nr) {
- /*
- * FIXME: this should be io_schedule(). The timeout is there
- * as a workaround for some DM problems in 2.6.18.
- */
- io_schedule_timeout(5*HZ);
- }
- finish_wait(&pool->wait, &wait);
+ spin_unlock_irqrestore(&pool->lock, flags);
+
+ /*
+ * FIXME: this should be io_schedule(). The timeout is there as a
+ * workaround for some DM problems in 2.6.18.
+ */
+ io_schedule_timeout(5*HZ);
+
+ finish_wait(&pool->wait, &wait);
goto repeat_alloc;
}
EXPORT_SYMBOL(mempool_alloc);
@@ -265,7 +269,39 @@ void mempool_free(void *element, mempool_t *pool)
if (unlikely(element == NULL))
return;
- smp_mb();
+ /*
+ * Paired with the wmb in mempool_alloc(). The preceding read is
+ * for @element and the following @pool->curr_nr. This ensures
+ * that the visible value of @pool->curr_nr is from after the
+ * allocation of @element. This is necessary for fringe cases
+ * where @element was passed to this task without going through
+ * barriers.
+ *
+ * For example, assume @p is %NULL at the beginning and one task
+ * performs "p = mempool_alloc(...);" while another task is doing
+ * "while (!p) cpu_relax(); mempool_free(p, ...);". This function
+ * may end up using curr_nr value which is from before allocation
+ * of @p without the following rmb.
+ */
+ smp_rmb();
+
+ /*
+ * For correctness, we need a test which is guaranteed to trigger
+ * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
+ * without locking achieves that and refilling as soon as possible
+ * is desirable.
+ *
+ * Because curr_nr visible here is always a value after the
+ * allocation of @element, any task which decremented curr_nr below
+ * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
+ * incremented to min_nr afterwards. If curr_nr gets incremented
+ * to min_nr after the allocation of @element, the elements
+ * allocated after that are subject to the same guarantee.
+ *
+ * Waiters happen iff curr_nr is 0 and the above guarantee also
+ * ensures that there will be frees which return elements to the
+ * pool waking up the waiters.
+ */
if (pool->curr_nr < pool->min_nr) {
spin_lock_irqsave(&pool->lock, flags);
if (pool->curr_nr < pool->min_nr) {
diff --git a/mm/migrate.c b/mm/migrate.c
index 177aca424a06..89ea0854332e 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -39,8 +39,6 @@
#include "internal.h"
-#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
-
/*
* migrate_prep() needs to be called before we start compiling a list of pages
* to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
@@ -181,8 +179,6 @@ static void remove_migration_ptes(struct page *old, struct page *new)
* Something used the pte of a page under migration. We need to
* get to the page and wait until migration is finished.
* When we return from this function the fault will be retried.
- *
- * This function is called from do_swap_page().
*/
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
unsigned long address)
@@ -269,12 +265,12 @@ static int migrate_page_move_mapping(struct address_space *mapping,
radix_tree_replace_slot(pslot, newpage);
- page_unfreeze_refs(page, expected_count);
/*
- * Drop cache reference from old page.
+ * Drop cache reference from old page by unfreezing
+ * to one less reference.
* We know this isn't the last reference.
*/
- __put_page(page);
+ page_unfreeze_refs(page, expected_count - 1);
/*
* If moved to a different zone then also account
@@ -334,9 +330,7 @@ int migrate_huge_page_move_mapping(struct address_space *mapping,
radix_tree_replace_slot(pslot, newpage);
- page_unfreeze_refs(page, expected_count);
-
- __put_page(page);
+ page_unfreeze_refs(page, expected_count - 1);
spin_unlock_irq(&mapping->tree_lock);
return 0;
diff --git a/mm/mmap.c b/mm/mmap.c
index eae90af60ea6..3f758c7f4c81 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -1603,39 +1603,19 @@ struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
EXPORT_SYMBOL(find_vma);
-/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
+/*
+ * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
+ * Note: pprev is set to NULL when return value is NULL.
+ */
struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev)
{
- struct vm_area_struct *vma = NULL, *prev = NULL;
- struct rb_node *rb_node;
- if (!mm)
- goto out;
-
- /* Guard against addr being lower than the first VMA */
- vma = mm->mmap;
-
- /* Go through the RB tree quickly. */
- rb_node = mm->mm_rb.rb_node;
-
- while (rb_node) {
- struct vm_area_struct *vma_tmp;
- vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
-
- if (addr < vma_tmp->vm_end) {
- rb_node = rb_node->rb_left;
- } else {
- prev = vma_tmp;
- if (!prev->vm_next || (addr < prev->vm_next->vm_end))
- break;
- rb_node = rb_node->rb_right;
- }
- }
+ struct vm_area_struct *vma;
-out:
- *pprev = prev;
- return prev ? prev->vm_next : vma;
+ vma = find_vma(mm, addr);
+ *pprev = vma ? vma->vm_prev : NULL;
+ return vma;
}
/*
@@ -2322,13 +2302,16 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
struct vm_area_struct *new_vma, *prev;
struct rb_node **rb_link, *rb_parent;
struct mempolicy *pol;
+ bool faulted_in_anon_vma = true;
/*
* If anonymous vma has not yet been faulted, update new pgoff
* to match new location, to increase its chance of merging.
*/
- if (!vma->vm_file && !vma->anon_vma)
+ if (unlikely(!vma->vm_file && !vma->anon_vma)) {
pgoff = addr >> PAGE_SHIFT;
+ faulted_in_anon_vma = false;
+ }
find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
@@ -2337,9 +2320,24 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
/*
* Source vma may have been merged into new_vma
*/
- if (vma_start >= new_vma->vm_start &&
- vma_start < new_vma->vm_end)
+ if (unlikely(vma_start >= new_vma->vm_start &&
+ vma_start < new_vma->vm_end)) {
+ /*
+ * The only way we can get a vma_merge with
+ * self during an mremap is if the vma hasn't
+ * been faulted in yet and we were allowed to
+ * reset the dst vma->vm_pgoff to the
+ * destination address of the mremap to allow
+ * the merge to happen. mremap must change the
+ * vm_pgoff linearity between src and dst vmas
+ * (in turn preventing a vma_merge) to be
+ * safe. It is only safe to keep the vm_pgoff
+ * linear if there are no pages mapped yet.
+ */
+ VM_BUG_ON(faulted_in_anon_vma);
*vmap = new_vma;
+ } else
+ anon_vma_moveto_tail(new_vma);
} else {
new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (new_vma) {
diff --git a/mm/mremap.c b/mm/mremap.c
index d6959cb4df58..87bb8393e7d2 100644
--- a/mm/mremap.c
+++ b/mm/mremap.c
@@ -221,6 +221,15 @@ static unsigned long move_vma(struct vm_area_struct *vma,
moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len);
if (moved_len < old_len) {
/*
+ * Before moving the page tables from the new vma to
+ * the old vma, we need to be sure the old vma is
+ * queued after new vma in the same_anon_vma list to
+ * prevent SMP races with rmap_walk (that could lead
+ * rmap_walk to miss some page table).
+ */
+ anon_vma_moveto_tail(vma);
+
+ /*
* On error, move entries back from new area to old,
* which will succeed since page tables still there,
* and then proceed to unmap new area instead of old.
diff --git a/mm/nobootmem.c b/mm/nobootmem.c
index 7fa41b4a07bf..24f0fc1a56d6 100644
--- a/mm/nobootmem.c
+++ b/mm/nobootmem.c
@@ -41,14 +41,13 @@ static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
if (limit > memblock.current_limit)
limit = memblock.current_limit;
- addr = find_memory_core_early(nid, size, align, goal, limit);
-
- if (addr == MEMBLOCK_ERROR)
+ addr = memblock_find_in_range_node(goal, limit, size, align, nid);
+ if (!addr)
return NULL;
ptr = phys_to_virt(addr);
memset(ptr, 0, size);
- memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
+ memblock_reserve(addr, size);
/*
* The min_count is set to 0 so that bootmem allocated blocks
* are never reported as leaks.
@@ -107,23 +106,27 @@ static void __init __free_pages_memory(unsigned long start, unsigned long end)
__free_pages_bootmem(pfn_to_page(i), 0);
}
-unsigned long __init free_all_memory_core_early(int nodeid)
+unsigned long __init free_low_memory_core_early(int nodeid)
{
- int i;
- u64 start, end;
unsigned long count = 0;
- struct range *range = NULL;
- int nr_range;
-
- nr_range = get_free_all_memory_range(&range, nodeid);
-
- for (i = 0; i < nr_range; i++) {
- start = range[i].start;
- end = range[i].end;
- count += end - start;
- __free_pages_memory(start, end);
+ phys_addr_t start, end;
+ u64 i;
+
+ /* free reserved array temporarily so that it's treated as free area */
+ memblock_free_reserved_regions();
+
+ for_each_free_mem_range(i, MAX_NUMNODES, &start, &end, NULL) {
+ unsigned long start_pfn = PFN_UP(start);
+ unsigned long end_pfn = min_t(unsigned long,
+ PFN_DOWN(end), max_low_pfn);
+ if (start_pfn < end_pfn) {
+ __free_pages_memory(start_pfn, end_pfn);
+ count += end_pfn - start_pfn;
+ }
}
+ /* put region array back? */
+ memblock_reserve_reserved_regions();
return count;
}
@@ -137,7 +140,7 @@ unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
{
register_page_bootmem_info_node(pgdat);
- /* free_all_memory_core_early(MAX_NUMNODES) will be called later */
+ /* free_low_memory_core_early(MAX_NUMNODES) will be called later */
return 0;
}
@@ -155,7 +158,7 @@ unsigned long __init free_all_bootmem(void)
* Use MAX_NUMNODES will make sure all ranges in early_node_map[]
* will be used instead of only Node0 related
*/
- return free_all_memory_core_early(MAX_NUMNODES);
+ return free_low_memory_core_early(MAX_NUMNODES);
}
/**
@@ -172,7 +175,7 @@ void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
unsigned long size)
{
kmemleak_free_part(__va(physaddr), size);
- memblock_x86_free_range(physaddr, physaddr + size);
+ memblock_free(physaddr, size);
}
/**
@@ -187,7 +190,7 @@ void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
void __init free_bootmem(unsigned long addr, unsigned long size)
{
kmemleak_free_part(__va(addr), size);
- memblock_x86_free_range(addr, addr + size);
+ memblock_free(addr, size);
}
static void * __init ___alloc_bootmem_nopanic(unsigned long size,
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 76f2c5ae908e..7c122faa05c5 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -33,6 +33,10 @@
#include <linux/security.h>
#include <linux/ptrace.h>
#include <linux/freezer.h>
+#include <linux/ftrace.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/oom.h>
int sysctl_panic_on_oom;
int sysctl_oom_kill_allocating_task;
@@ -55,6 +59,7 @@ void compare_swap_oom_score_adj(int old_val, int new_val)
spin_lock_irq(&sighand->siglock);
if (current->signal->oom_score_adj == old_val)
current->signal->oom_score_adj = new_val;
+ trace_oom_score_adj_update(current);
spin_unlock_irq(&sighand->siglock);
}
@@ -74,6 +79,7 @@ int test_set_oom_score_adj(int new_val)
spin_lock_irq(&sighand->siglock);
old_val = current->signal->oom_score_adj;
current->signal->oom_score_adj = new_val;
+ trace_oom_score_adj_update(current);
spin_unlock_irq(&sighand->siglock);
return old_val;
@@ -176,7 +182,7 @@ static bool oom_unkillable_task(struct task_struct *p,
unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
const nodemask_t *nodemask, unsigned long totalpages)
{
- int points;
+ long points;
if (oom_unkillable_task(p, mem, nodemask))
return 0;
@@ -328,7 +334,7 @@ static struct task_struct *select_bad_process(unsigned int *ppoints,
*/
if (test_tsk_thread_flag(p, TIF_MEMDIE)) {
if (unlikely(frozen(p)))
- thaw_process(p);
+ __thaw_task(p);
return ERR_PTR(-1UL);
}
if (!p->mm)
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 71252486bc6f..363ba7082ef5 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -32,7 +32,7 @@
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
-#include <linux/buffer_head.h>
+#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
#include <linux/pagevec.h>
#include <trace/events/writeback.h>
@@ -42,6 +42,12 @@
#define MAX_PAUSE max(HZ/5, 1)
/*
+ * Try to keep balance_dirty_pages() call intervals higher than this many pages
+ * by raising pause time to max_pause when falls below it.
+ */
+#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
+
+/*
* Estimate write bandwidth at 200ms intervals.
*/
#define BANDWIDTH_INTERVAL max(HZ/5, 1)
@@ -130,6 +136,191 @@ unsigned long global_dirty_limit;
static struct prop_descriptor vm_completions;
/*
+ * Work out the current dirty-memory clamping and background writeout
+ * thresholds.
+ *
+ * The main aim here is to lower them aggressively if there is a lot of mapped
+ * memory around. To avoid stressing page reclaim with lots of unreclaimable
+ * pages. It is better to clamp down on writers than to start swapping, and
+ * performing lots of scanning.
+ *
+ * We only allow 1/2 of the currently-unmapped memory to be dirtied.
+ *
+ * We don't permit the clamping level to fall below 5% - that is getting rather
+ * excessive.
+ *
+ * We make sure that the background writeout level is below the adjusted
+ * clamping level.
+ */
+
+/*
+ * In a memory zone, there is a certain amount of pages we consider
+ * available for the page cache, which is essentially the number of
+ * free and reclaimable pages, minus some zone reserves to protect
+ * lowmem and the ability to uphold the zone's watermarks without
+ * requiring writeback.
+ *
+ * This number of dirtyable pages is the base value of which the
+ * user-configurable dirty ratio is the effictive number of pages that
+ * are allowed to be actually dirtied. Per individual zone, or
+ * globally by using the sum of dirtyable pages over all zones.
+ *
+ * Because the user is allowed to specify the dirty limit globally as
+ * absolute number of bytes, calculating the per-zone dirty limit can
+ * require translating the configured limit into a percentage of
+ * global dirtyable memory first.
+ */
+
+static unsigned long highmem_dirtyable_memory(unsigned long total)
+{
+#ifdef CONFIG_HIGHMEM
+ int node;
+ unsigned long x = 0;
+
+ for_each_node_state(node, N_HIGH_MEMORY) {
+ struct zone *z =
+ &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
+
+ x += zone_page_state(z, NR_FREE_PAGES) +
+ zone_reclaimable_pages(z) - z->dirty_balance_reserve;
+ }
+ /*
+ * Make sure that the number of highmem pages is never larger
+ * than the number of the total dirtyable memory. This can only
+ * occur in very strange VM situations but we want to make sure
+ * that this does not occur.
+ */
+ return min(x, total);
+#else
+ return 0;
+#endif
+}
+
+/**
+ * global_dirtyable_memory - number of globally dirtyable pages
+ *
+ * Returns the global number of pages potentially available for dirty
+ * page cache. This is the base value for the global dirty limits.
+ */
+unsigned long global_dirtyable_memory(void)
+{
+ unsigned long x;
+
+ x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
+ dirty_balance_reserve;
+
+ if (!vm_highmem_is_dirtyable)
+ x -= highmem_dirtyable_memory(x);
+
+ return x + 1; /* Ensure that we never return 0 */
+}
+
+/*
+ * global_dirty_limits - background-writeback and dirty-throttling thresholds
+ *
+ * Calculate the dirty thresholds based on sysctl parameters
+ * - vm.dirty_background_ratio or vm.dirty_background_bytes
+ * - vm.dirty_ratio or vm.dirty_bytes
+ * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
+ * real-time tasks.
+ */
+void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
+{
+ unsigned long background;
+ unsigned long dirty;
+ unsigned long uninitialized_var(available_memory);
+ struct task_struct *tsk;
+
+ if (!vm_dirty_bytes || !dirty_background_bytes)
+ available_memory = global_dirtyable_memory();
+
+ if (vm_dirty_bytes)
+ dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
+ else
+ dirty = (vm_dirty_ratio * available_memory) / 100;
+
+ if (dirty_background_bytes)
+ background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
+ else
+ background = (dirty_background_ratio * available_memory) / 100;
+
+ if (background >= dirty)
+ background = dirty / 2;
+ tsk = current;
+ if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
+ background += background / 4;
+ dirty += dirty / 4;
+ }
+ *pbackground = background;
+ *pdirty = dirty;
+ trace_global_dirty_state(background, dirty);
+}
+
+/**
+ * zone_dirtyable_memory - number of dirtyable pages in a zone
+ * @zone: the zone
+ *
+ * Returns the zone's number of pages potentially available for dirty
+ * page cache. This is the base value for the per-zone dirty limits.
+ */
+static unsigned long zone_dirtyable_memory(struct zone *zone)
+{
+ /*
+ * The effective global number of dirtyable pages may exclude
+ * highmem as a big-picture measure to keep the ratio between
+ * dirty memory and lowmem reasonable.
+ *
+ * But this function is purely about the individual zone and a
+ * highmem zone can hold its share of dirty pages, so we don't
+ * care about vm_highmem_is_dirtyable here.
+ */
+ return zone_page_state(zone, NR_FREE_PAGES) +
+ zone_reclaimable_pages(zone) -
+ zone->dirty_balance_reserve;
+}
+
+/**
+ * zone_dirty_limit - maximum number of dirty pages allowed in a zone
+ * @zone: the zone
+ *
+ * Returns the maximum number of dirty pages allowed in a zone, based
+ * on the zone's dirtyable memory.
+ */
+static unsigned long zone_dirty_limit(struct zone *zone)
+{
+ unsigned long zone_memory = zone_dirtyable_memory(zone);
+ struct task_struct *tsk = current;
+ unsigned long dirty;
+
+ if (vm_dirty_bytes)
+ dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
+ zone_memory / global_dirtyable_memory();
+ else
+ dirty = vm_dirty_ratio * zone_memory / 100;
+
+ if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
+ dirty += dirty / 4;
+
+ return dirty;
+}
+
+/**
+ * zone_dirty_ok - tells whether a zone is within its dirty limits
+ * @zone: the zone to check
+ *
+ * Returns %true when the dirty pages in @zone are within the zone's
+ * dirty limit, %false if the limit is exceeded.
+ */
+bool zone_dirty_ok(struct zone *zone)
+{
+ unsigned long limit = zone_dirty_limit(zone);
+
+ return zone_page_state(zone, NR_FILE_DIRTY) +
+ zone_page_state(zone, NR_UNSTABLE_NFS) +
+ zone_page_state(zone, NR_WRITEBACK) <= limit;
+}
+
+/*
* couple the period to the dirty_ratio:
*
* period/2 ~ roundup_pow_of_two(dirty limit)
@@ -141,7 +332,7 @@ static int calc_period_shift(void)
if (vm_dirty_bytes)
dirty_total = vm_dirty_bytes / PAGE_SIZE;
else
- dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
+ dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
100;
return 2 + ilog2(dirty_total - 1);
}
@@ -196,7 +387,6 @@ int dirty_ratio_handler(struct ctl_table *table, int write,
return ret;
}
-
int dirty_bytes_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
@@ -291,67 +481,6 @@ int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
}
EXPORT_SYMBOL(bdi_set_max_ratio);
-/*
- * Work out the current dirty-memory clamping and background writeout
- * thresholds.
- *
- * The main aim here is to lower them aggressively if there is a lot of mapped
- * memory around. To avoid stressing page reclaim with lots of unreclaimable
- * pages. It is better to clamp down on writers than to start swapping, and
- * performing lots of scanning.
- *
- * We only allow 1/2 of the currently-unmapped memory to be dirtied.
- *
- * We don't permit the clamping level to fall below 5% - that is getting rather
- * excessive.
- *
- * We make sure that the background writeout level is below the adjusted
- * clamping level.
- */
-
-static unsigned long highmem_dirtyable_memory(unsigned long total)
-{
-#ifdef CONFIG_HIGHMEM
- int node;
- unsigned long x = 0;
-
- for_each_node_state(node, N_HIGH_MEMORY) {
- struct zone *z =
- &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
-
- x += zone_page_state(z, NR_FREE_PAGES) +
- zone_reclaimable_pages(z);
- }
- /*
- * Make sure that the number of highmem pages is never larger
- * than the number of the total dirtyable memory. This can only
- * occur in very strange VM situations but we want to make sure
- * that this does not occur.
- */
- return min(x, total);
-#else
- return 0;
-#endif
-}
-
-/**
- * determine_dirtyable_memory - amount of memory that may be used
- *
- * Returns the numebr of pages that can currently be freed and used
- * by the kernel for direct mappings.
- */
-unsigned long determine_dirtyable_memory(void)
-{
- unsigned long x;
-
- x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
-
- if (!vm_highmem_is_dirtyable)
- x -= highmem_dirtyable_memory(x);
-
- return x + 1; /* Ensure that we never return 0 */
-}
-
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
unsigned long bg_thresh)
{
@@ -363,47 +492,6 @@ static unsigned long hard_dirty_limit(unsigned long thresh)
return max(thresh, global_dirty_limit);
}
-/*
- * global_dirty_limits - background-writeback and dirty-throttling thresholds
- *
- * Calculate the dirty thresholds based on sysctl parameters
- * - vm.dirty_background_ratio or vm.dirty_background_bytes
- * - vm.dirty_ratio or vm.dirty_bytes
- * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
- * real-time tasks.
- */
-void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
-{
- unsigned long background;
- unsigned long dirty;
- unsigned long uninitialized_var(available_memory);
- struct task_struct *tsk;
-
- if (!vm_dirty_bytes || !dirty_background_bytes)
- available_memory = determine_dirtyable_memory();
-
- if (vm_dirty_bytes)
- dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
- else
- dirty = (vm_dirty_ratio * available_memory) / 100;
-
- if (dirty_background_bytes)
- background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
- else
- background = (dirty_background_ratio * available_memory) / 100;
-
- if (background >= dirty)
- background = dirty / 2;
- tsk = current;
- if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
- background += background / 4;
- dirty += dirty / 4;
- }
- *pbackground = background;
- *pdirty = dirty;
- trace_global_dirty_state(background, dirty);
-}
-
/**
* bdi_dirty_limit - @bdi's share of dirty throttling threshold
* @bdi: the backing_dev_info to query
@@ -411,8 +499,13 @@ void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
*
* Returns @bdi's dirty limit in pages. The term "dirty" in the context of
* dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
- * And the "limit" in the name is not seriously taken as hard limit in
- * balance_dirty_pages().
+ *
+ * Note that balance_dirty_pages() will only seriously take it as a hard limit
+ * when sleeping max_pause per page is not enough to keep the dirty pages under
+ * control. For example, when the device is completely stalled due to some error
+ * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
+ * In the other normal situations, it acts more gently by throttling the tasks
+ * more (rather than completely block them) when the bdi dirty pages go high.
*
* It allocates high/low dirty limits to fast/slow devices, in order to prevent
* - starving fast devices
@@ -594,6 +687,13 @@ static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
*/
if (unlikely(bdi_thresh > thresh))
bdi_thresh = thresh;
+ /*
+ * It's very possible that bdi_thresh is close to 0 not because the
+ * device is slow, but that it has remained inactive for long time.
+ * Honour such devices a reasonable good (hopefully IO efficient)
+ * threshold, so that the occasional writes won't be blocked and active
+ * writes can rampup the threshold quickly.
+ */
bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
/*
* scale global setpoint to bdi's:
@@ -804,6 +904,11 @@ static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
*/
balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
dirty_rate | 1);
+ /*
+ * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
+ */
+ if (unlikely(balanced_dirty_ratelimit > write_bw))
+ balanced_dirty_ratelimit = write_bw;
/*
* We could safely do this and return immediately:
@@ -950,41 +1055,98 @@ static unsigned long dirty_poll_interval(unsigned long dirty,
return 1;
}
-static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
- unsigned long bdi_dirty)
+static long bdi_max_pause(struct backing_dev_info *bdi,
+ unsigned long bdi_dirty)
{
- unsigned long bw = bdi->avg_write_bandwidth;
- unsigned long hi = ilog2(bw);
- unsigned long lo = ilog2(bdi->dirty_ratelimit);
- unsigned long t;
+ long bw = bdi->avg_write_bandwidth;
+ long t;
- /* target for 20ms max pause on 1-dd case */
- t = HZ / 50;
+ /*
+ * Limit pause time for small memory systems. If sleeping for too long
+ * time, a small pool of dirty/writeback pages may go empty and disk go
+ * idle.
+ *
+ * 8 serves as the safety ratio.
+ */
+ t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
+ t++;
+
+ return min_t(long, t, MAX_PAUSE);
+}
+
+static long bdi_min_pause(struct backing_dev_info *bdi,
+ long max_pause,
+ unsigned long task_ratelimit,
+ unsigned long dirty_ratelimit,
+ int *nr_dirtied_pause)
+{
+ long hi = ilog2(bdi->avg_write_bandwidth);
+ long lo = ilog2(bdi->dirty_ratelimit);
+ long t; /* target pause */
+ long pause; /* estimated next pause */
+ int pages; /* target nr_dirtied_pause */
+
+ /* target for 10ms pause on 1-dd case */
+ t = max(1, HZ / 100);
/*
* Scale up pause time for concurrent dirtiers in order to reduce CPU
* overheads.
*
- * (N * 20ms) on 2^N concurrent tasks.
+ * (N * 10ms) on 2^N concurrent tasks.
*/
if (hi > lo)
- t += (hi - lo) * (20 * HZ) / 1024;
+ t += (hi - lo) * (10 * HZ) / 1024;
/*
- * Limit pause time for small memory systems. If sleeping for too long
- * time, a small pool of dirty/writeback pages may go empty and disk go
- * idle.
+ * This is a bit convoluted. We try to base the next nr_dirtied_pause
+ * on the much more stable dirty_ratelimit. However the next pause time
+ * will be computed based on task_ratelimit and the two rate limits may
+ * depart considerably at some time. Especially if task_ratelimit goes
+ * below dirty_ratelimit/2 and the target pause is max_pause, the next
+ * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
+ * result task_ratelimit won't be executed faithfully, which could
+ * eventually bring down dirty_ratelimit.
*
- * 8 serves as the safety ratio.
+ * We apply two rules to fix it up:
+ * 1) try to estimate the next pause time and if necessary, use a lower
+ * nr_dirtied_pause so as not to exceed max_pause. When this happens,
+ * nr_dirtied_pause will be "dancing" with task_ratelimit.
+ * 2) limit the target pause time to max_pause/2, so that the normal
+ * small fluctuations of task_ratelimit won't trigger rule (1) and
+ * nr_dirtied_pause will remain as stable as dirty_ratelimit.
*/
- if (bdi_dirty)
- t = min(t, bdi_dirty * HZ / (8 * bw + 1));
+ t = min(t, 1 + max_pause / 2);
+ pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
/*
- * The pause time will be settled within range (max_pause/4, max_pause).
- * Apply a minimal value of 4 to get a non-zero max_pause/4.
+ * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
+ * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
+ * When the 16 consecutive reads are often interrupted by some dirty
+ * throttling pause during the async writes, cfq will go into idles
+ * (deadline is fine). So push nr_dirtied_pause as high as possible
+ * until reaches DIRTY_POLL_THRESH=32 pages.
*/
- return clamp_val(t, 4, MAX_PAUSE);
+ if (pages < DIRTY_POLL_THRESH) {
+ t = max_pause;
+ pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
+ if (pages > DIRTY_POLL_THRESH) {
+ pages = DIRTY_POLL_THRESH;
+ t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
+ }
+ }
+
+ pause = HZ * pages / (task_ratelimit + 1);
+ if (pause > max_pause) {
+ t = max_pause;
+ pages = task_ratelimit * t / roundup_pow_of_two(HZ);
+ }
+
+ *nr_dirtied_pause = pages;
+ /*
+ * The minimal pause time will normally be half the target pause time.
+ */
+ return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
}
/*
@@ -1005,16 +1167,21 @@ static void balance_dirty_pages(struct address_space *mapping,
unsigned long background_thresh;
unsigned long dirty_thresh;
unsigned long bdi_thresh;
- long pause = 0;
- long uninitialized_var(max_pause);
+ long period;
+ long pause;
+ long max_pause;
+ long min_pause;
+ int nr_dirtied_pause;
bool dirty_exceeded = false;
unsigned long task_ratelimit;
- unsigned long uninitialized_var(dirty_ratelimit);
+ unsigned long dirty_ratelimit;
unsigned long pos_ratio;
struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long start_time = jiffies;
for (;;) {
+ unsigned long now = jiffies;
+
/*
* Unstable writes are a feature of certain networked
* filesystems (i.e. NFS) in which data may have been
@@ -1034,8 +1201,13 @@ static void balance_dirty_pages(struct address_space *mapping,
*/
freerun = dirty_freerun_ceiling(dirty_thresh,
background_thresh);
- if (nr_dirty <= freerun)
+ if (nr_dirty <= freerun) {
+ current->dirty_paused_when = now;
+ current->nr_dirtied = 0;
+ current->nr_dirtied_pause =
+ dirty_poll_interval(nr_dirty, dirty_thresh);
break;
+ }
if (unlikely(!writeback_in_progress(bdi)))
bdi_start_background_writeback(bdi);
@@ -1075,7 +1247,7 @@ static void balance_dirty_pages(struct address_space *mapping,
bdi_stat(bdi, BDI_WRITEBACK);
}
- dirty_exceeded = (bdi_dirty > bdi_thresh) ||
+ dirty_exceeded = (bdi_dirty > bdi_thresh) &&
(nr_dirty > dirty_thresh);
if (dirty_exceeded && !bdi->dirty_exceeded)
bdi->dirty_exceeded = 1;
@@ -1084,20 +1256,34 @@ static void balance_dirty_pages(struct address_space *mapping,
nr_dirty, bdi_thresh, bdi_dirty,
start_time);
- max_pause = bdi_max_pause(bdi, bdi_dirty);
-
dirty_ratelimit = bdi->dirty_ratelimit;
pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
background_thresh, nr_dirty,
bdi_thresh, bdi_dirty);
task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
RATELIMIT_CALC_SHIFT;
+ max_pause = bdi_max_pause(bdi, bdi_dirty);
+ min_pause = bdi_min_pause(bdi, max_pause,
+ task_ratelimit, dirty_ratelimit,
+ &nr_dirtied_pause);
+
if (unlikely(task_ratelimit == 0)) {
+ period = max_pause;
pause = max_pause;
goto pause;
}
- pause = HZ * pages_dirtied / task_ratelimit;
- if (unlikely(pause <= 0)) {
+ period = HZ * pages_dirtied / task_ratelimit;
+ pause = period;
+ if (current->dirty_paused_when)
+ pause -= now - current->dirty_paused_when;
+ /*
+ * For less than 1s think time (ext3/4 may block the dirtier
+ * for up to 800ms from time to time on 1-HDD; so does xfs,
+ * however at much less frequency), try to compensate it in
+ * future periods by updating the virtual time; otherwise just
+ * do a reset, as it may be a light dirtier.
+ */
+ if (pause < min_pause) {
trace_balance_dirty_pages(bdi,
dirty_thresh,
background_thresh,
@@ -1107,12 +1293,24 @@ static void balance_dirty_pages(struct address_space *mapping,
dirty_ratelimit,
task_ratelimit,
pages_dirtied,
- pause,
+ period,
+ min(pause, 0L),
start_time);
- pause = 1; /* avoid resetting nr_dirtied_pause below */
+ if (pause < -HZ) {
+ current->dirty_paused_when = now;
+ current->nr_dirtied = 0;
+ } else if (period) {
+ current->dirty_paused_when += period;
+ current->nr_dirtied = 0;
+ } else if (current->nr_dirtied_pause <= pages_dirtied)
+ current->nr_dirtied_pause += pages_dirtied;
break;
}
- pause = min(pause, max_pause);
+ if (unlikely(pause > max_pause)) {
+ /* for occasional dropped task_ratelimit */
+ now += min(pause - max_pause, max_pause);
+ pause = max_pause;
+ }
pause:
trace_balance_dirty_pages(bdi,
@@ -1124,11 +1322,16 @@ pause:
dirty_ratelimit,
task_ratelimit,
pages_dirtied,
+ period,
pause,
start_time);
__set_current_state(TASK_KILLABLE);
io_schedule_timeout(pause);
+ current->dirty_paused_when = now + pause;
+ current->nr_dirtied = 0;
+ current->nr_dirtied_pause = nr_dirtied_pause;
+
/*
* This is typically equal to (nr_dirty < dirty_thresh) and can
* also keep "1000+ dd on a slow USB stick" under control.
@@ -1136,6 +1339,19 @@ pause:
if (task_ratelimit)
break;
+ /*
+ * In the case of an unresponding NFS server and the NFS dirty
+ * pages exceeds dirty_thresh, give the other good bdi's a pipe
+ * to go through, so that tasks on them still remain responsive.
+ *
+ * In theory 1 page is enough to keep the comsumer-producer
+ * pipe going: the flusher cleans 1 page => the task dirties 1
+ * more page. However bdi_dirty has accounting errors. So use
+ * the larger and more IO friendly bdi_stat_error.
+ */
+ if (bdi_dirty <= bdi_stat_error(bdi))
+ break;
+
if (fatal_signal_pending(current))
break;
}
@@ -1143,23 +1359,6 @@ pause:
if (!dirty_exceeded && bdi->dirty_exceeded)
bdi->dirty_exceeded = 0;
- current->nr_dirtied = 0;
- if (pause == 0) { /* in freerun area */
- current->nr_dirtied_pause =
- dirty_poll_interval(nr_dirty, dirty_thresh);
- } else if (pause <= max_pause / 4 &&
- pages_dirtied >= current->nr_dirtied_pause) {
- current->nr_dirtied_pause = clamp_val(
- dirty_ratelimit * (max_pause / 2) / HZ,
- pages_dirtied + pages_dirtied / 8,
- pages_dirtied * 4);
- } else if (pause >= max_pause) {
- current->nr_dirtied_pause = 1 | clamp_val(
- dirty_ratelimit * (max_pause / 2) / HZ,
- pages_dirtied / 4,
- pages_dirtied - pages_dirtied / 8);
- }
-
if (writeback_in_progress(bdi))
return;
@@ -1190,6 +1389,22 @@ void set_page_dirty_balance(struct page *page, int page_mkwrite)
static DEFINE_PER_CPU(int, bdp_ratelimits);
+/*
+ * Normal tasks are throttled by
+ * loop {
+ * dirty tsk->nr_dirtied_pause pages;
+ * take a snap in balance_dirty_pages();
+ * }
+ * However there is a worst case. If every task exit immediately when dirtied
+ * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
+ * called to throttle the page dirties. The solution is to save the not yet
+ * throttled page dirties in dirty_throttle_leaks on task exit and charge them
+ * randomly into the running tasks. This works well for the above worst case,
+ * as the new task will pick up and accumulate the old task's leaked dirty
+ * count and eventually get throttled.
+ */
+DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
+
/**
* balance_dirty_pages_ratelimited_nr - balance dirty memory state
* @mapping: address_space which was dirtied
@@ -1218,8 +1433,6 @@ void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
if (bdi->dirty_exceeded)
ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
- current->nr_dirtied += nr_pages_dirtied;
-
preempt_disable();
/*
* This prevents one CPU to accumulate too many dirtied pages without
@@ -1230,12 +1443,20 @@ void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
p = &__get_cpu_var(bdp_ratelimits);
if (unlikely(current->nr_dirtied >= ratelimit))
*p = 0;
- else {
- *p += nr_pages_dirtied;
- if (unlikely(*p >= ratelimit_pages)) {
- *p = 0;
- ratelimit = 0;
- }
+ else if (unlikely(*p >= ratelimit_pages)) {
+ *p = 0;
+ ratelimit = 0;
+ }
+ /*
+ * Pick up the dirtied pages by the exited tasks. This avoids lots of
+ * short-lived tasks (eg. gcc invocations in a kernel build) escaping
+ * the dirty throttling and livelock other long-run dirtiers.
+ */
+ p = &__get_cpu_var(dirty_throttle_leaks);
+ if (*p > 0 && current->nr_dirtied < ratelimit) {
+ nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
+ *p -= nr_pages_dirtied;
+ current->nr_dirtied += nr_pages_dirtied;
}
preempt_enable();
@@ -1717,6 +1938,8 @@ void account_page_dirtied(struct page *page, struct address_space *mapping)
__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
task_io_account_write(PAGE_CACHE_SIZE);
+ current->nr_dirtied++;
+ this_cpu_inc(bdp_ratelimits);
}
}
EXPORT_SYMBOL(account_page_dirtied);
@@ -1777,6 +2000,24 @@ int __set_page_dirty_nobuffers(struct page *page)
EXPORT_SYMBOL(__set_page_dirty_nobuffers);
/*
+ * Call this whenever redirtying a page, to de-account the dirty counters
+ * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
+ * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
+ * systematic errors in balanced_dirty_ratelimit and the dirty pages position
+ * control.
+ */
+void account_page_redirty(struct page *page)
+{
+ struct address_space *mapping = page->mapping;
+ if (mapping && mapping_cap_account_dirty(mapping)) {
+ current->nr_dirtied--;
+ dec_zone_page_state(page, NR_DIRTIED);
+ dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
+ }
+}
+EXPORT_SYMBOL(account_page_redirty);
+
+/*
* When a writepage implementation decides that it doesn't want to write this
* page for some reason, it should redirty the locked page via
* redirty_page_for_writepage() and it should then unlock the page and return 0
@@ -1784,6 +2025,7 @@ EXPORT_SYMBOL(__set_page_dirty_nobuffers);
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
wbc->pages_skipped++;
+ account_page_redirty(page);
return __set_page_dirty_nobuffers(page);
}
EXPORT_SYMBOL(redirty_page_for_writepage);
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 2b8ba3aebf6e..794e6715c226 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -57,6 +57,7 @@
#include <linux/ftrace_event.h>
#include <linux/memcontrol.h>
#include <linux/prefetch.h>
+#include <linux/page-debug-flags.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
@@ -96,6 +97,14 @@ EXPORT_SYMBOL(node_states);
unsigned long totalram_pages __read_mostly;
unsigned long totalreserve_pages __read_mostly;
+/*
+ * When calculating the number of globally allowed dirty pages, there
+ * is a certain number of per-zone reserves that should not be
+ * considered dirtyable memory. This is the sum of those reserves
+ * over all existing zones that contribute dirtyable memory.
+ */
+unsigned long dirty_balance_reserve __read_mostly;
+
int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
@@ -127,6 +136,13 @@ void pm_restrict_gfp_mask(void)
saved_gfp_mask = gfp_allowed_mask;
gfp_allowed_mask &= ~GFP_IOFS;
}
+
+bool pm_suspended_storage(void)
+{
+ if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
+ return false;
+ return true;
+}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
@@ -181,39 +197,17 @@ static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
static unsigned long __meminitdata dma_reserve;
-#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
- /*
- * MAX_ACTIVE_REGIONS determines the maximum number of distinct
- * ranges of memory (RAM) that may be registered with add_active_range().
- * Ranges passed to add_active_range() will be merged if possible
- * so the number of times add_active_range() can be called is
- * related to the number of nodes and the number of holes
- */
- #ifdef CONFIG_MAX_ACTIVE_REGIONS
- /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
- #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
- #else
- #if MAX_NUMNODES >= 32
- /* If there can be many nodes, allow up to 50 holes per node */
- #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
- #else
- /* By default, allow up to 256 distinct regions */
- #define MAX_ACTIVE_REGIONS 256
- #endif
- #endif
-
- static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
- static int __meminitdata nr_nodemap_entries;
- static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
- static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
- static unsigned long __initdata required_kernelcore;
- static unsigned long __initdata required_movablecore;
- static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
-
- /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
- int movable_zone;
- EXPORT_SYMBOL(movable_zone);
-#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
+static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
+static unsigned long __initdata required_kernelcore;
+static unsigned long __initdata required_movablecore;
+static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
+
+/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
+int movable_zone;
+EXPORT_SYMBOL(movable_zone);
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
@@ -333,8 +327,8 @@ out:
*
* The remaining PAGE_SIZE pages are called "tail pages".
*
- * All pages have PG_compound set. All pages have their ->private pointing at
- * the head page (even the head page has this).
+ * All pages have PG_compound set. All tail pages have their ->first_page
+ * pointing at the head page.
*
* The first tail page's ->lru.next holds the address of the compound page's
* put_page() function. Its ->lru.prev holds the order of allocation.
@@ -403,6 +397,37 @@ static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
clear_highpage(page + i);
}
+#ifdef CONFIG_DEBUG_PAGEALLOC
+unsigned int _debug_guardpage_minorder;
+
+static int __init debug_guardpage_minorder_setup(char *buf)
+{
+ unsigned long res;
+
+ if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
+ printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
+ return 0;
+ }
+ _debug_guardpage_minorder = res;
+ printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
+ return 0;
+}
+__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
+
+static inline void set_page_guard_flag(struct page *page)
+{
+ __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
+}
+
+static inline void clear_page_guard_flag(struct page *page)
+{
+ __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
+}
+#else
+static inline void set_page_guard_flag(struct page *page) { }
+static inline void clear_page_guard_flag(struct page *page) { }
+#endif
+
static inline void set_page_order(struct page *page, int order)
{
set_page_private(page, order);
@@ -460,6 +485,11 @@ static inline int page_is_buddy(struct page *page, struct page *buddy,
if (page_zone_id(page) != page_zone_id(buddy))
return 0;
+ if (page_is_guard(buddy) && page_order(buddy) == order) {
+ VM_BUG_ON(page_count(buddy) != 0);
+ return 1;
+ }
+
if (PageBuddy(buddy) && page_order(buddy) == order) {
VM_BUG_ON(page_count(buddy) != 0);
return 1;
@@ -516,11 +546,19 @@ static inline void __free_one_page(struct page *page,
buddy = page + (buddy_idx - page_idx);
if (!page_is_buddy(page, buddy, order))
break;
-
- /* Our buddy is free, merge with it and move up one order. */
- list_del(&buddy->lru);
- zone->free_area[order].nr_free--;
- rmv_page_order(buddy);
+ /*
+ * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
+ * merge with it and move up one order.
+ */
+ if (page_is_guard(buddy)) {
+ clear_page_guard_flag(buddy);
+ set_page_private(page, 0);
+ __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
+ } else {
+ list_del(&buddy->lru);
+ zone->free_area[order].nr_free--;
+ rmv_page_order(buddy);
+ }
combined_idx = buddy_idx & page_idx;
page = page + (combined_idx - page_idx);
page_idx = combined_idx;
@@ -654,7 +692,7 @@ static bool free_pages_prepare(struct page *page, unsigned int order)
int i;
int bad = 0;
- trace_mm_page_free_direct(page, order);
+ trace_mm_page_free(page, order);
kmemcheck_free_shadow(page, order);
if (PageAnon(page))
@@ -692,32 +730,23 @@ static void __free_pages_ok(struct page *page, unsigned int order)
local_irq_restore(flags);
}
-/*
- * permit the bootmem allocator to evade page validation on high-order frees
- */
void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
{
- if (order == 0) {
- __ClearPageReserved(page);
- set_page_count(page, 0);
- set_page_refcounted(page);
- __free_page(page);
- } else {
- int loop;
+ unsigned int nr_pages = 1 << order;
+ unsigned int loop;
- prefetchw(page);
- for (loop = 0; loop < BITS_PER_LONG; loop++) {
- struct page *p = &page[loop];
-
- if (loop + 1 < BITS_PER_LONG)
- prefetchw(p + 1);
- __ClearPageReserved(p);
- set_page_count(p, 0);
- }
+ prefetchw(page);
+ for (loop = 0; loop < nr_pages; loop++) {
+ struct page *p = &page[loop];
- set_page_refcounted(page);
- __free_pages(page, order);
+ if (loop + 1 < nr_pages)
+ prefetchw(p + 1);
+ __ClearPageReserved(p);
+ set_page_count(p, 0);
}
+
+ set_page_refcounted(page);
+ __free_pages(page, order);
}
@@ -746,6 +775,23 @@ static inline void expand(struct zone *zone, struct page *page,
high--;
size >>= 1;
VM_BUG_ON(bad_range(zone, &page[size]));
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+ if (high < debug_guardpage_minorder()) {
+ /*
+ * Mark as guard pages (or page), that will allow to
+ * merge back to allocator when buddy will be freed.
+ * Corresponding page table entries will not be touched,
+ * pages will stay not present in virtual address space
+ */
+ INIT_LIST_HEAD(&page[size].lru);
+ set_page_guard_flag(&page[size]);
+ set_page_private(&page[size], high);
+ /* Guard pages are not available for any usage */
+ __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
+ continue;
+ }
+#endif
list_add(&page[size].lru, &area->free_list[migratetype]);
area->nr_free++;
set_page_order(&page[size], high);
@@ -1211,6 +1257,19 @@ out:
}
/*
+ * Free a list of 0-order pages
+ */
+void free_hot_cold_page_list(struct list_head *list, int cold)
+{
+ struct page *page, *next;
+
+ list_for_each_entry_safe(page, next, list, lru) {
+ trace_mm_page_free_batched(page, cold);
+ free_hot_cold_page(page, cold);
+ }
+}
+
+/*
* split_page takes a non-compound higher-order page, and splits it into
* n (1<<order) sub-pages: page[0..n]
* Each sub-page must be freed individually.
@@ -1408,7 +1467,7 @@ static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
static int __init fail_page_alloc_debugfs(void)
{
- mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
+ umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
struct dentry *dir;
dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
@@ -1457,7 +1516,7 @@ static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
long min = mark;
int o;
- free_pages -= (1 << order) + 1;
+ free_pages -= (1 << order) - 1;
if (alloc_flags & ALLOC_HIGH)
min -= min / 2;
if (alloc_flags & ALLOC_HARDER)
@@ -1667,6 +1726,35 @@ zonelist_scan:
if ((alloc_flags & ALLOC_CPUSET) &&
!cpuset_zone_allowed_softwall(zone, gfp_mask))
continue;
+ /*
+ * When allocating a page cache page for writing, we
+ * want to get it from a zone that is within its dirty
+ * limit, such that no single zone holds more than its
+ * proportional share of globally allowed dirty pages.
+ * The dirty limits take into account the zone's
+ * lowmem reserves and high watermark so that kswapd
+ * should be able to balance it without having to
+ * write pages from its LRU list.
+ *
+ * This may look like it could increase pressure on
+ * lower zones by failing allocations in higher zones
+ * before they are full. But the pages that do spill
+ * over are limited as the lower zones are protected
+ * by this very same mechanism. It should not become
+ * a practical burden to them.
+ *
+ * XXX: For now, allow allocations to potentially
+ * exceed the per-zone dirty limit in the slowpath
+ * (ALLOC_WMARK_LOW unset) before going into reclaim,
+ * which is important when on a NUMA setup the allowed
+ * zones are together not big enough to reach the
+ * global limit. The proper fix for these situations
+ * will require awareness of zones in the
+ * dirty-throttling and the flusher threads.
+ */
+ if ((alloc_flags & ALLOC_WMARK_LOW) &&
+ (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
+ goto this_zone_full;
BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
@@ -1756,7 +1844,8 @@ void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
{
unsigned int filter = SHOW_MEM_FILTER_NODES;
- if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
+ if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
+ debug_guardpage_minorder() > 0)
return;
/*
@@ -1795,12 +1884,25 @@ void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
static inline int
should_alloc_retry(gfp_t gfp_mask, unsigned int order,
+ unsigned long did_some_progress,
unsigned long pages_reclaimed)
{
/* Do not loop if specifically requested */
if (gfp_mask & __GFP_NORETRY)
return 0;
+ /* Always retry if specifically requested */
+ if (gfp_mask & __GFP_NOFAIL)
+ return 1;
+
+ /*
+ * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
+ * making forward progress without invoking OOM. Suspend also disables
+ * storage devices so kswapd will not help. Bail if we are suspending.
+ */
+ if (!did_some_progress && pm_suspended_storage())
+ return 0;
+
/*
* In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
* means __GFP_NOFAIL, but that may not be true in other
@@ -1819,13 +1921,6 @@ should_alloc_retry(gfp_t gfp_mask, unsigned int order,
if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
return 1;
- /*
- * Don't let big-order allocations loop unless the caller
- * explicitly requests that.
- */
- if (gfp_mask & __GFP_NOFAIL)
- return 1;
-
return 0;
}
@@ -2218,7 +2313,8 @@ rebalance:
/* Check if we should retry the allocation */
pages_reclaimed += did_some_progress;
- if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
+ if (should_alloc_retry(gfp_mask, order, did_some_progress,
+ pages_reclaimed)) {
/* Wait for some write requests to complete then retry */
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
goto rebalance;
@@ -2328,16 +2424,6 @@ unsigned long get_zeroed_page(gfp_t gfp_mask)
}
EXPORT_SYMBOL(get_zeroed_page);
-void __pagevec_free(struct pagevec *pvec)
-{
- int i = pagevec_count(pvec);
-
- while (--i >= 0) {
- trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
- free_hot_cold_page(pvec->pages[i], pvec->cold);
- }
-}
-
void __free_pages(struct page *page, unsigned int order)
{
if (put_page_testzero(page)) {
@@ -3407,25 +3493,33 @@ static void setup_zone_migrate_reserve(struct zone *zone)
if (page_to_nid(page) != zone_to_nid(zone))
continue;
- /* Blocks with reserved pages will never free, skip them. */
- block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
- if (pageblock_is_reserved(pfn, block_end_pfn))
- continue;
-
block_migratetype = get_pageblock_migratetype(page);
- /* If this block is reserved, account for it */
- if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
- reserve--;
- continue;
- }
+ /* Only test what is necessary when the reserves are not met */
+ if (reserve > 0) {
+ /*
+ * Blocks with reserved pages will never free, skip
+ * them.
+ */
+ block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
+ if (pageblock_is_reserved(pfn, block_end_pfn))
+ continue;
- /* Suitable for reserving if this block is movable */
- if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
- set_pageblock_migratetype(page, MIGRATE_RESERVE);
- move_freepages_block(zone, page, MIGRATE_RESERVE);
- reserve--;
- continue;
+ /* If this block is reserved, account for it */
+ if (block_migratetype == MIGRATE_RESERVE) {
+ reserve--;
+ continue;
+ }
+
+ /* Suitable for reserving if this block is movable */
+ if (block_migratetype == MIGRATE_MOVABLE) {
+ set_pageblock_migratetype(page,
+ MIGRATE_RESERVE);
+ move_freepages_block(zone, page,
+ MIGRATE_RESERVE);
+ reserve--;
+ continue;
+ }
}
/*
@@ -3737,35 +3831,7 @@ __meminit int init_currently_empty_zone(struct zone *zone,
return 0;
}
-#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
-/*
- * Basic iterator support. Return the first range of PFNs for a node
- * Note: nid == MAX_NUMNODES returns first region regardless of node
- */
-static int __meminit first_active_region_index_in_nid(int nid)
-{
- int i;
-
- for (i = 0; i < nr_nodemap_entries; i++)
- if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
- return i;
-
- return -1;
-}
-
-/*
- * Basic iterator support. Return the next active range of PFNs for a node
- * Note: nid == MAX_NUMNODES returns next region regardless of node
- */
-static int __meminit next_active_region_index_in_nid(int index, int nid)
-{
- for (index = index + 1; index < nr_nodemap_entries; index++)
- if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
- return index;
-
- return -1;
-}
-
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
/*
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
@@ -3775,15 +3841,12 @@ static int __meminit next_active_region_index_in_nid(int index, int nid)
*/
int __meminit __early_pfn_to_nid(unsigned long pfn)
{
- int i;
-
- for (i = 0; i < nr_nodemap_entries; i++) {
- unsigned long start_pfn = early_node_map[i].start_pfn;
- unsigned long end_pfn = early_node_map[i].end_pfn;
+ unsigned long start_pfn, end_pfn;
+ int i, nid;
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
if (start_pfn <= pfn && pfn < end_pfn)
- return early_node_map[i].nid;
- }
+ return nid;
/* This is a memory hole */
return -1;
}
@@ -3812,11 +3875,6 @@ bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
}
#endif
-/* Basic iterator support to walk early_node_map[] */
-#define for_each_active_range_index_in_nid(i, nid) \
- for (i = first_active_region_index_in_nid(nid); i != -1; \
- i = next_active_region_index_in_nid(i, nid))
-
/**
* free_bootmem_with_active_regions - Call free_bootmem_node for each active range
* @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
@@ -3826,122 +3884,34 @@ bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
* add_active_ranges() contain no holes and may be freed, this
* this function may be used instead of calling free_bootmem() manually.
*/
-void __init free_bootmem_with_active_regions(int nid,
- unsigned long max_low_pfn)
-{
- int i;
-
- for_each_active_range_index_in_nid(i, nid) {
- unsigned long size_pages = 0;
- unsigned long end_pfn = early_node_map[i].end_pfn;
-
- if (early_node_map[i].start_pfn >= max_low_pfn)
- continue;
-
- if (end_pfn > max_low_pfn)
- end_pfn = max_low_pfn;
-
- size_pages = end_pfn - early_node_map[i].start_pfn;
- free_bootmem_node(NODE_DATA(early_node_map[i].nid),
- PFN_PHYS(early_node_map[i].start_pfn),
- size_pages << PAGE_SHIFT);
- }
-}
-
-#ifdef CONFIG_HAVE_MEMBLOCK
-/*
- * Basic iterator support. Return the last range of PFNs for a node
- * Note: nid == MAX_NUMNODES returns last region regardless of node
- */
-static int __meminit last_active_region_index_in_nid(int nid)
-{
- int i;
-
- for (i = nr_nodemap_entries - 1; i >= 0; i--)
- if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
- return i;
-
- return -1;
-}
-
-/*
- * Basic iterator support. Return the previous active range of PFNs for a node
- * Note: nid == MAX_NUMNODES returns next region regardless of node
- */
-static int __meminit previous_active_region_index_in_nid(int index, int nid)
-{
- for (index = index - 1; index >= 0; index--)
- if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
- return index;
-
- return -1;
-}
-
-#define for_each_active_range_index_in_nid_reverse(i, nid) \
- for (i = last_active_region_index_in_nid(nid); i != -1; \
- i = previous_active_region_index_in_nid(i, nid))
-
-u64 __init find_memory_core_early(int nid, u64 size, u64 align,
- u64 goal, u64 limit)
+void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
{
- int i;
-
- /* Need to go over early_node_map to find out good range for node */
- for_each_active_range_index_in_nid_reverse(i, nid) {
- u64 addr;
- u64 ei_start, ei_last;
- u64 final_start, final_end;
-
- ei_last = early_node_map[i].end_pfn;
- ei_last <<= PAGE_SHIFT;
- ei_start = early_node_map[i].start_pfn;
- ei_start <<= PAGE_SHIFT;
-
- final_start = max(ei_start, goal);
- final_end = min(ei_last, limit);
-
- if (final_start >= final_end)
- continue;
-
- addr = memblock_find_in_range(final_start, final_end, size, align);
+ unsigned long start_pfn, end_pfn;
+ int i, this_nid;
- if (addr == MEMBLOCK_ERROR)
- continue;
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
+ start_pfn = min(start_pfn, max_low_pfn);
+ end_pfn = min(end_pfn, max_low_pfn);
- return addr;
+ if (start_pfn < end_pfn)
+ free_bootmem_node(NODE_DATA(this_nid),
+ PFN_PHYS(start_pfn),
+ (end_pfn - start_pfn) << PAGE_SHIFT);
}
-
- return MEMBLOCK_ERROR;
}
-#endif
int __init add_from_early_node_map(struct range *range, int az,
int nr_range, int nid)
{
+ unsigned long start_pfn, end_pfn;
int i;
- u64 start, end;
/* need to go over early_node_map to find out good range for node */
- for_each_active_range_index_in_nid(i, nid) {
- start = early_node_map[i].start_pfn;
- end = early_node_map[i].end_pfn;
- nr_range = add_range(range, az, nr_range, start, end);
- }
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
+ nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
return nr_range;
}
-void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
-{
- int i;
- int ret;
-
- for_each_active_range_index_in_nid(i, nid) {
- ret = work_fn(early_node_map[i].start_pfn,
- early_node_map[i].end_pfn, data);
- if (ret)
- break;
- }
-}
/**
* sparse_memory_present_with_active_regions - Call memory_present for each active range
* @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
@@ -3952,12 +3922,11 @@ void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
*/
void __init sparse_memory_present_with_active_regions(int nid)
{
- int i;
+ unsigned long start_pfn, end_pfn;
+ int i, this_nid;
- for_each_active_range_index_in_nid(i, nid)
- memory_present(early_node_map[i].nid,
- early_node_map[i].start_pfn,
- early_node_map[i].end_pfn);
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
+ memory_present(this_nid, start_pfn, end_pfn);
}
/**
@@ -3974,13 +3943,15 @@ void __init sparse_memory_present_with_active_regions(int nid)
void __meminit get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
+ unsigned long this_start_pfn, this_end_pfn;
int i;
+
*start_pfn = -1UL;
*end_pfn = 0;
- for_each_active_range_index_in_nid(i, nid) {
- *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
- *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
+ for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
+ *start_pfn = min(*start_pfn, this_start_pfn);
+ *end_pfn = max(*end_pfn, this_end_pfn);
}
if (*start_pfn == -1UL)
@@ -4083,46 +4054,16 @@ unsigned long __meminit __absent_pages_in_range(int nid,
unsigned long range_start_pfn,
unsigned long range_end_pfn)
{
- int i = 0;
- unsigned long prev_end_pfn = 0, hole_pages = 0;
- unsigned long start_pfn;
-
- /* Find the end_pfn of the first active range of pfns in the node */
- i = first_active_region_index_in_nid(nid);
- if (i == -1)
- return 0;
-
- prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
-
- /* Account for ranges before physical memory on this node */
- if (early_node_map[i].start_pfn > range_start_pfn)
- hole_pages = prev_end_pfn - range_start_pfn;
-
- /* Find all holes for the zone within the node */
- for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
-
- /* No need to continue if prev_end_pfn is outside the zone */
- if (prev_end_pfn >= range_end_pfn)
- break;
-
- /* Make sure the end of the zone is not within the hole */
- start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
- prev_end_pfn = max(prev_end_pfn, range_start_pfn);
+ unsigned long nr_absent = range_end_pfn - range_start_pfn;
+ unsigned long start_pfn, end_pfn;
+ int i;
- /* Update the hole size cound and move on */
- if (start_pfn > range_start_pfn) {
- BUG_ON(prev_end_pfn > start_pfn);
- hole_pages += start_pfn - prev_end_pfn;
- }
- prev_end_pfn = early_node_map[i].end_pfn;
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
+ start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
+ end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
+ nr_absent -= end_pfn - start_pfn;
}
-
- /* Account for ranges past physical memory on this node */
- if (range_end_pfn > prev_end_pfn)
- hole_pages += range_end_pfn -
- max(range_start_pfn, prev_end_pfn);
-
- return hole_pages;
+ return nr_absent;
}
/**
@@ -4143,14 +4084,14 @@ static unsigned long __meminit zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *ignored)
{
+ unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
+ unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
unsigned long node_start_pfn, node_end_pfn;
unsigned long zone_start_pfn, zone_end_pfn;
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
- zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
- node_start_pfn);
- zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
- node_end_pfn);
+ zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
+ zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
adjust_zone_range_for_zone_movable(nid, zone_type,
node_start_pfn, node_end_pfn,
@@ -4158,7 +4099,7 @@ static unsigned long __meminit zone_absent_pages_in_node(int nid,
return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
}
-#else
+#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *zones_size)
@@ -4176,7 +4117,7 @@ static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
return zholes_size[zone_type];
}
-#endif
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
@@ -4399,10 +4340,10 @@ static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
*/
if (pgdat == NODE_DATA(0)) {
mem_map = NODE_DATA(0)->node_mem_map;
-#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
-#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
}
#endif
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
@@ -4427,7 +4368,7 @@ void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
free_area_init_core(pgdat, zones_size, zholes_size);
}
-#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
#if MAX_NUMNODES > 1
/*
@@ -4449,170 +4390,6 @@ static inline void setup_nr_node_ids(void)
#endif
/**
- * add_active_range - Register a range of PFNs backed by physical memory
- * @nid: The node ID the range resides on
- * @start_pfn: The start PFN of the available physical memory
- * @end_pfn: The end PFN of the available physical memory
- *
- * These ranges are stored in an early_node_map[] and later used by
- * free_area_init_nodes() to calculate zone sizes and holes. If the
- * range spans a memory hole, it is up to the architecture to ensure
- * the memory is not freed by the bootmem allocator. If possible
- * the range being registered will be merged with existing ranges.
- */
-void __init add_active_range(unsigned int nid, unsigned long start_pfn,
- unsigned long end_pfn)
-{
- int i;
-
- mminit_dprintk(MMINIT_TRACE, "memory_register",
- "Entering add_active_range(%d, %#lx, %#lx) "
- "%d entries of %d used\n",
- nid, start_pfn, end_pfn,
- nr_nodemap_entries, MAX_ACTIVE_REGIONS);
-
- mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
-
- /* Merge with existing active regions if possible */
- for (i = 0; i < nr_nodemap_entries; i++) {
- if (early_node_map[i].nid != nid)
- continue;
-
- /* Skip if an existing region covers this new one */
- if (start_pfn >= early_node_map[i].start_pfn &&
- end_pfn <= early_node_map[i].end_pfn)
- return;
-
- /* Merge forward if suitable */
- if (start_pfn <= early_node_map[i].end_pfn &&
- end_pfn > early_node_map[i].end_pfn) {
- early_node_map[i].end_pfn = end_pfn;
- return;
- }
-
- /* Merge backward if suitable */
- if (start_pfn < early_node_map[i].start_pfn &&
- end_pfn >= early_node_map[i].start_pfn) {
- early_node_map[i].start_pfn = start_pfn;
- return;
- }
- }
-
- /* Check that early_node_map is large enough */
- if (i >= MAX_ACTIVE_REGIONS) {
- printk(KERN_CRIT "More than %d memory regions, truncating\n",
- MAX_ACTIVE_REGIONS);
- return;
- }
-
- early_node_map[i].nid = nid;
- early_node_map[i].start_pfn = start_pfn;
- early_node_map[i].end_pfn = end_pfn;
- nr_nodemap_entries = i + 1;
-}
-
-/**
- * remove_active_range - Shrink an existing registered range of PFNs
- * @nid: The node id the range is on that should be shrunk
- * @start_pfn: The new PFN of the range
- * @end_pfn: The new PFN of the range
- *
- * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
- * The map is kept near the end physical page range that has already been
- * registered. This function allows an arch to shrink an existing registered
- * range.
- */
-void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
- unsigned long end_pfn)
-{
- int i, j;
- int removed = 0;
-
- printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
- nid, start_pfn, end_pfn);
-
- /* Find the old active region end and shrink */
- for_each_active_range_index_in_nid(i, nid) {
- if (early_node_map[i].start_pfn >= start_pfn &&
- early_node_map[i].end_pfn <= end_pfn) {
- /* clear it */
- early_node_map[i].start_pfn = 0;
- early_node_map[i].end_pfn = 0;
- removed = 1;
- continue;
- }
- if (early_node_map[i].start_pfn < start_pfn &&
- early_node_map[i].end_pfn > start_pfn) {
- unsigned long temp_end_pfn = early_node_map[i].end_pfn;
- early_node_map[i].end_pfn = start_pfn;
- if (temp_end_pfn > end_pfn)
- add_active_range(nid, end_pfn, temp_end_pfn);
- continue;
- }
- if (early_node_map[i].start_pfn >= start_pfn &&
- early_node_map[i].end_pfn > end_pfn &&
- early_node_map[i].start_pfn < end_pfn) {
- early_node_map[i].start_pfn = end_pfn;
- continue;
- }
- }
-
- if (!removed)
- return;
-
- /* remove the blank ones */
- for (i = nr_nodemap_entries - 1; i > 0; i--) {
- if (early_node_map[i].nid != nid)
- continue;
- if (early_node_map[i].end_pfn)
- continue;
- /* we found it, get rid of it */
- for (j = i; j < nr_nodemap_entries - 1; j++)
- memcpy(&early_node_map[j], &early_node_map[j+1],
- sizeof(early_node_map[j]));
- j = nr_nodemap_entries - 1;
- memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
- nr_nodemap_entries--;
- }
-}
-
-/**
- * remove_all_active_ranges - Remove all currently registered regions
- *
- * During discovery, it may be found that a table like SRAT is invalid
- * and an alternative discovery method must be used. This function removes
- * all currently registered regions.
- */
-void __init remove_all_active_ranges(void)
-{
- memset(early_node_map, 0, sizeof(early_node_map));
- nr_nodemap_entries = 0;
-}
-
-/* Compare two active node_active_regions */
-static int __init cmp_node_active_region(const void *a, const void *b)
-{
- struct node_active_region *arange = (struct node_active_region *)a;
- struct node_active_region *brange = (struct node_active_region *)b;
-
- /* Done this way to avoid overflows */
- if (arange->start_pfn > brange->start_pfn)
- return 1;
- if (arange->start_pfn < brange->start_pfn)
- return -1;
-
- return 0;
-}
-
-/* sort the node_map by start_pfn */
-void __init sort_node_map(void)
-{
- sort(early_node_map, (size_t)nr_nodemap_entries,
- sizeof(struct node_active_region),
- cmp_node_active_region, NULL);
-}
-
-/**
* node_map_pfn_alignment - determine the maximum internode alignment
*
* This function should be called after node map is populated and sorted.
@@ -4634,15 +4411,11 @@ void __init sort_node_map(void)
unsigned long __init node_map_pfn_alignment(void)
{
unsigned long accl_mask = 0, last_end = 0;
+ unsigned long start, end, mask;
int last_nid = -1;
- int i;
-
- for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
- int nid = early_node_map[i].nid;
- unsigned long start = early_node_map[i].start_pfn;
- unsigned long end = early_node_map[i].end_pfn;
- unsigned long mask;
+ int i, nid;
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
if (!start || last_nid < 0 || last_nid == nid) {
last_nid = nid;
last_end = end;
@@ -4669,12 +4442,12 @@ unsigned long __init node_map_pfn_alignment(void)
/* Find the lowest pfn for a node */
static unsigned long __init find_min_pfn_for_node(int nid)
{
- int i;
unsigned long min_pfn = ULONG_MAX;
+ unsigned long start_pfn;
+ int i;
- /* Assuming a sorted map, the first range found has the starting pfn */
- for_each_active_range_index_in_nid(i, nid)
- min_pfn = min(min_pfn, early_node_map[i].start_pfn);
+ for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
+ min_pfn = min(min_pfn, start_pfn);
if (min_pfn == ULONG_MAX) {
printk(KERN_WARNING
@@ -4703,15 +4476,16 @@ unsigned long __init find_min_pfn_with_active_regions(void)
*/
static unsigned long __init early_calculate_totalpages(void)
{
- int i;
unsigned long totalpages = 0;
+ unsigned long start_pfn, end_pfn;
+ int i, nid;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ unsigned long pages = end_pfn - start_pfn;
- for (i = 0; i < nr_nodemap_entries; i++) {
- unsigned long pages = early_node_map[i].end_pfn -
- early_node_map[i].start_pfn;
totalpages += pages;
if (pages)
- node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
+ node_set_state(nid, N_HIGH_MEMORY);
}
return totalpages;
}
@@ -4766,6 +4540,8 @@ restart:
/* Spread kernelcore memory as evenly as possible throughout nodes */
kernelcore_node = required_kernelcore / usable_nodes;
for_each_node_state(nid, N_HIGH_MEMORY) {
+ unsigned long start_pfn, end_pfn;
+
/*
* Recalculate kernelcore_node if the division per node
* now exceeds what is necessary to satisfy the requested
@@ -4782,13 +4558,10 @@ restart:
kernelcore_remaining = kernelcore_node;
/* Go through each range of PFNs within this node */
- for_each_active_range_index_in_nid(i, nid) {
- unsigned long start_pfn, end_pfn;
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
unsigned long size_pages;
- start_pfn = max(early_node_map[i].start_pfn,
- zone_movable_pfn[nid]);
- end_pfn = early_node_map[i].end_pfn;
+ start_pfn = max(start_pfn, zone_movable_pfn[nid]);
if (start_pfn >= end_pfn)
continue;
@@ -4890,11 +4663,8 @@ static void check_for_regular_memory(pg_data_t *pgdat)
*/
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
- unsigned long nid;
- int i;
-
- /* Sort early_node_map as initialisation assumes it is sorted */
- sort_node_map();
+ unsigned long start_pfn, end_pfn;
+ int i, nid;
/* Record where the zone boundaries are */
memset(arch_zone_lowest_possible_pfn, 0,
@@ -4941,11 +4711,9 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn)
}
/* Print out the early_node_map[] */
- printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
- for (i = 0; i < nr_nodemap_entries; i++)
- printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
- early_node_map[i].start_pfn,
- early_node_map[i].end_pfn);
+ printk("Early memory PFN ranges\n");
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
+ printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
/* Initialise every node */
mminit_verify_pageflags_layout();
@@ -4998,7 +4766,7 @@ static int __init cmdline_parse_movablecore(char *p)
early_param("kernelcore", cmdline_parse_kernelcore);
early_param("movablecore", cmdline_parse_movablecore);
-#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
/**
* set_dma_reserve - set the specified number of pages reserved in the first zone
@@ -5082,8 +4850,19 @@ static void calculate_totalreserve_pages(void)
if (max > zone->present_pages)
max = zone->present_pages;
reserve_pages += max;
+ /*
+ * Lowmem reserves are not available to
+ * GFP_HIGHUSER page cache allocations and
+ * kswapd tries to balance zones to their high
+ * watermark. As a result, neither should be
+ * regarded as dirtyable memory, to prevent a
+ * situation where reclaim has to clean pages
+ * in order to balance the zones.
+ */
+ zone->dirty_balance_reserve = max;
}
}
+ dirty_balance_reserve = reserve_pages;
totalreserve_pages = reserve_pages;
}
diff --git a/mm/percpu.c b/mm/percpu.c
index 3bb810a72006..716eb4acf2fc 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -1023,9 +1023,11 @@ phys_addr_t per_cpu_ptr_to_phys(void *addr)
if (!is_vmalloc_addr(addr))
return __pa(addr);
else
- return page_to_phys(vmalloc_to_page(addr));
+ return page_to_phys(vmalloc_to_page(addr)) +
+ offset_in_page(addr);
} else
- return page_to_phys(pcpu_addr_to_page(addr));
+ return page_to_phys(pcpu_addr_to_page(addr)) +
+ offset_in_page(addr);
}
/**
diff --git a/mm/rmap.c b/mm/rmap.c
index a4fd3680038b..a2e5ce1fa081 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -272,6 +272,51 @@ int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
}
/*
+ * Some rmap walk that needs to find all ptes/hugepmds without false
+ * negatives (like migrate and split_huge_page) running concurrent
+ * with operations that copy or move pagetables (like mremap() and
+ * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
+ * list to be in a certain order: the dst_vma must be placed after the
+ * src_vma in the list. This is always guaranteed by fork() but
+ * mremap() needs to call this function to enforce it in case the
+ * dst_vma isn't newly allocated and chained with the anon_vma_clone()
+ * function but just an extension of a pre-existing vma through
+ * vma_merge.
+ *
+ * NOTE: the same_anon_vma list can still be changed by other
+ * processes while mremap runs because mremap doesn't hold the
+ * anon_vma mutex to prevent modifications to the list while it
+ * runs. All we need to enforce is that the relative order of this
+ * process vmas isn't changing (we don't care about other vmas
+ * order). Each vma corresponds to an anon_vma_chain structure so
+ * there's no risk that other processes calling anon_vma_moveto_tail()
+ * and changing the same_anon_vma list under mremap() will screw with
+ * the relative order of this process vmas in the list, because we
+ * they can't alter the order of any vma that belongs to this
+ * process. And there can't be another anon_vma_moveto_tail() running
+ * concurrently with mremap() coming from this process because we hold
+ * the mmap_sem for the whole mremap(). fork() ordering dependency
+ * also shouldn't be affected because fork() only cares that the
+ * parent vmas are placed in the list before the child vmas and
+ * anon_vma_moveto_tail() won't reorder vmas from either the fork()
+ * parent or child.
+ */
+void anon_vma_moveto_tail(struct vm_area_struct *dst)
+{
+ struct anon_vma_chain *pavc;
+ struct anon_vma *root = NULL;
+
+ list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
+ struct anon_vma *anon_vma = pavc->anon_vma;
+ VM_BUG_ON(pavc->vma != dst);
+ root = lock_anon_vma_root(root, anon_vma);
+ list_del(&pavc->same_anon_vma);
+ list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
+ }
+ unlock_anon_vma_root(root);
+}
+
+/*
* Attach vma to its own anon_vma, as well as to the anon_vmas that
* the corresponding VMA in the parent process is attached to.
* Returns 0 on success, non-zero on failure.
diff --git a/mm/shmem.c b/mm/shmem.c
index d6722506d2da..feead1943d92 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -1092,7 +1092,7 @@ static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
}
static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
- int mode, dev_t dev, unsigned long flags)
+ umode_t mode, dev_t dev, unsigned long flags)
{
struct inode *inode;
struct shmem_inode_info *info;
@@ -1456,7 +1456,7 @@ static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
* File creation. Allocate an inode, and we're done..
*/
static int
-shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
+shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
{
struct inode *inode;
int error = -ENOSPC;
@@ -1489,7 +1489,7 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
return error;
}
-static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
+static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
int error;
@@ -1499,7 +1499,7 @@ static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
return 0;
}
-static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
+static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
struct nameidata *nd)
{
return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
@@ -2118,9 +2118,9 @@ out:
return error;
}
-static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
+static int shmem_show_options(struct seq_file *seq, struct dentry *root)
{
- struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
+ struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
if (sbinfo->max_blocks != shmem_default_max_blocks())
seq_printf(seq, ",size=%luk",
@@ -2128,7 +2128,7 @@ static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
if (sbinfo->max_inodes != shmem_default_max_inodes())
seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
- seq_printf(seq, ",mode=%03o", sbinfo->mode);
+ seq_printf(seq, ",mode=%03ho", sbinfo->mode);
if (sbinfo->uid != 0)
seq_printf(seq, ",uid=%u", sbinfo->uid);
if (sbinfo->gid != 0)
@@ -2234,13 +2234,12 @@ static struct inode *shmem_alloc_inode(struct super_block *sb)
static void shmem_destroy_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
- INIT_LIST_HEAD(&inode->i_dentry);
kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
}
static void shmem_destroy_inode(struct inode *inode)
{
- if ((inode->i_mode & S_IFMT) == S_IFREG)
+ if (S_ISREG(inode->i_mode))
mpol_free_shared_policy(&SHMEM_I(inode)->policy);
call_rcu(&inode->i_rcu, shmem_destroy_callback);
}
diff --git a/mm/slab.c b/mm/slab.c
index 4ef42baf66f0..f0bd7857ab3b 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -121,6 +121,8 @@
#include <asm/tlbflush.h>
#include <asm/page.h>
+#include <trace/events/kmem.h>
+
/*
* DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
* 0 for faster, smaller code (especially in the critical paths).
diff --git a/mm/slub.c b/mm/slub.c
index 19436f538760..5d37b5e44140 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -368,7 +368,7 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
VM_BUG_ON(!irqs_disabled());
#ifdef CONFIG_CMPXCHG_DOUBLE
if (s->flags & __CMPXCHG_DOUBLE) {
- if (cmpxchg_double(&page->freelist,
+ if (cmpxchg_double(&page->freelist, &page->counters,
freelist_old, counters_old,
freelist_new, counters_new))
return 1;
@@ -402,7 +402,7 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
{
#ifdef CONFIG_CMPXCHG_DOUBLE
if (s->flags & __CMPXCHG_DOUBLE) {
- if (cmpxchg_double(&page->freelist,
+ if (cmpxchg_double(&page->freelist, &page->counters,
freelist_old, counters_old,
freelist_new, counters_new))
return 1;
@@ -1981,7 +1981,7 @@ int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
page->pobjects = pobjects;
page->next = oldpage;
- } while (irqsafe_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
+ } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
stat(s, CPU_PARTIAL_FREE);
return pobjects;
}
@@ -2319,7 +2319,7 @@ redo:
* Since this is without lock semantics the protection is only against
* code executing on this cpu *not* from access by other cpus.
*/
- if (unlikely(!irqsafe_cpu_cmpxchg_double(
+ if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
object, tid,
get_freepointer_safe(s, object), next_tid(tid)))) {
@@ -2549,7 +2549,7 @@ redo:
if (likely(page == c->page)) {
set_freepointer(s, object, c->freelist);
- if (unlikely(!irqsafe_cpu_cmpxchg_double(
+ if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
c->freelist, tid,
object, next_tid(tid)))) {
@@ -3671,6 +3671,9 @@ void __init kmem_cache_init(void)
struct kmem_cache *temp_kmem_cache_node;
unsigned long kmalloc_size;
+ if (debug_guardpage_minorder())
+ slub_max_order = 0;
+
kmem_size = offsetof(struct kmem_cache, node) +
nr_node_ids * sizeof(struct kmem_cache_node *);
diff --git a/mm/swap.c b/mm/swap.c
index a91caf754d9b..67a09a633a09 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -585,11 +585,10 @@ int lru_add_drain_all(void)
void release_pages(struct page **pages, int nr, int cold)
{
int i;
- struct pagevec pages_to_free;
+ LIST_HEAD(pages_to_free);
struct zone *zone = NULL;
unsigned long uninitialized_var(flags);
- pagevec_init(&pages_to_free, cold);
for (i = 0; i < nr; i++) {
struct page *page = pages[i];
@@ -620,19 +619,12 @@ void release_pages(struct page **pages, int nr, int cold)
del_page_from_lru(zone, page);
}
- if (!pagevec_add(&pages_to_free, page)) {
- if (zone) {
- spin_unlock_irqrestore(&zone->lru_lock, flags);
- zone = NULL;
- }
- __pagevec_free(&pages_to_free);
- pagevec_reinit(&pages_to_free);
- }
+ list_add(&page->lru, &pages_to_free);
}
if (zone)
spin_unlock_irqrestore(&zone->lru_lock, flags);
- pagevec_free(&pages_to_free);
+ free_hot_cold_page_list(&pages_to_free, cold);
}
EXPORT_SYMBOL(release_pages);
diff --git a/mm/swap_state.c b/mm/swap_state.c
index 78cc4d1f6cce..ea6b32d61873 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -13,7 +13,6 @@
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
-#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/migrate.h>
diff --git a/mm/swapfile.c b/mm/swapfile.c
index b1cd12060723..9520592d4231 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -667,10 +667,10 @@ int try_to_free_swap(struct page *page)
* original page might be freed under memory pressure, then
* later read back in from swap, now with the wrong data.
*
- * Hibernation clears bits from gfp_allowed_mask to prevent
- * memory reclaim from writing to disk, so check that here.
+ * Hibration suspends storage while it is writing the image
+ * to disk so check that here.
*/
- if (!(gfp_allowed_mask & __GFP_IO))
+ if (pm_suspended_storage())
return 0;
delete_from_swap_cache(page);
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 1d8b32f07139..877ca046f43d 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -256,7 +256,7 @@ struct vmap_area {
struct rb_node rb_node; /* address sorted rbtree */
struct list_head list; /* address sorted list */
struct list_head purge_list; /* "lazy purge" list */
- void *private;
+ struct vm_struct *vm;
struct rcu_head rcu_head;
};
@@ -1118,6 +1118,32 @@ void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t pro
EXPORT_SYMBOL(vm_map_ram);
/**
+ * vm_area_add_early - add vmap area early during boot
+ * @vm: vm_struct to add
+ *
+ * This function is used to add fixed kernel vm area to vmlist before
+ * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
+ * should contain proper values and the other fields should be zero.
+ *
+ * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
+ */
+void __init vm_area_add_early(struct vm_struct *vm)
+{
+ struct vm_struct *tmp, **p;
+
+ BUG_ON(vmap_initialized);
+ for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
+ if (tmp->addr >= vm->addr) {
+ BUG_ON(tmp->addr < vm->addr + vm->size);
+ break;
+ } else
+ BUG_ON(tmp->addr + tmp->size > vm->addr);
+ }
+ vm->next = *p;
+ *p = vm;
+}
+
+/**
* vm_area_register_early - register vmap area early during boot
* @vm: vm_struct to register
* @align: requested alignment
@@ -1139,8 +1165,7 @@ void __init vm_area_register_early(struct vm_struct *vm, size_t align)
vm->addr = (void *)addr;
- vm->next = vmlist;
- vmlist = vm;
+ vm_area_add_early(vm);
}
void __init vmalloc_init(void)
@@ -1260,7 +1285,7 @@ static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
vm->addr = (void *)va->va_start;
vm->size = va->va_end - va->va_start;
vm->caller = caller;
- va->private = vm;
+ va->vm = vm;
va->flags |= VM_VM_AREA;
}
@@ -1290,7 +1315,7 @@ static struct vm_struct *__get_vm_area_node(unsigned long size,
unsigned long align, unsigned long flags, unsigned long start,
unsigned long end, int node, gfp_t gfp_mask, void *caller)
{
- static struct vmap_area *va;
+ struct vmap_area *va;
struct vm_struct *area;
BUG_ON(in_interrupt());
@@ -1383,7 +1408,7 @@ static struct vm_struct *find_vm_area(const void *addr)
va = find_vmap_area((unsigned long)addr);
if (va && va->flags & VM_VM_AREA)
- return va->private;
+ return va->vm;
return NULL;
}
@@ -1402,7 +1427,7 @@ struct vm_struct *remove_vm_area(const void *addr)
va = find_vmap_area((unsigned long)addr);
if (va && va->flags & VM_VM_AREA) {
- struct vm_struct *vm = va->private;
+ struct vm_struct *vm = va->vm;
if (!(vm->flags & VM_UNLIST)) {
struct vm_struct *tmp, **p;
diff --git a/mm/vmscan.c b/mm/vmscan.c
index f54a05b7a61d..26f4a8a4e0c7 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -715,7 +715,13 @@ static enum page_references page_check_references(struct page *page,
*/
SetPageReferenced(page);
- if (referenced_page)
+ if (referenced_page || referenced_ptes > 1)
+ return PAGEREF_ACTIVATE;
+
+ /*
+ * Activate file-backed executable pages after first usage.
+ */
+ if (vm_flags & VM_EXEC)
return PAGEREF_ACTIVATE;
return PAGEREF_KEEP;
@@ -728,24 +734,6 @@ static enum page_references page_check_references(struct page *page,
return PAGEREF_RECLAIM;
}
-static noinline_for_stack void free_page_list(struct list_head *free_pages)
-{
- struct pagevec freed_pvec;
- struct page *page, *tmp;
-
- pagevec_init(&freed_pvec, 1);
-
- list_for_each_entry_safe(page, tmp, free_pages, lru) {
- list_del(&page->lru);
- if (!pagevec_add(&freed_pvec, page)) {
- __pagevec_free(&freed_pvec);
- pagevec_reinit(&freed_pvec);
- }
- }
-
- pagevec_free(&freed_pvec);
-}
-
/*
* shrink_page_list() returns the number of reclaimed pages
*/
@@ -1009,7 +997,7 @@ keep_lumpy:
if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
zone_set_flag(zone, ZONE_CONGESTED);
- free_page_list(&free_pages);
+ free_hot_cold_page_list(&free_pages, 1);
list_splice(&ret_pages, page_list);
count_vm_events(PGACTIVATE, pgactivate);
@@ -1178,14 +1166,14 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
* anon page which don't already have a swap slot is
* pointless.
*/
- if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
+ if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
!PageSwapCache(cursor_page))
break;
if (__isolate_lru_page(cursor_page, mode, file) == 0) {
list_move(&cursor_page->lru, dst);
mem_cgroup_del_lru(cursor_page);
- nr_taken += hpage_nr_pages(page);
+ nr_taken += hpage_nr_pages(cursor_page);
nr_lumpy_taken++;
if (PageDirty(cursor_page))
nr_lumpy_dirty++;
@@ -2012,8 +2000,9 @@ static inline bool should_continue_reclaim(struct zone *zone,
* inactive lists are large enough, continue reclaiming
*/
pages_for_compaction = (2UL << sc->order);
- inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
- zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
+ inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
+ if (nr_swap_pages > 0)
+ inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
if (sc->nr_reclaimed < pages_for_compaction &&
inactive_lru_pages > pages_for_compaction)
return true;
@@ -3448,9 +3437,10 @@ void scan_mapping_unevictable_pages(struct address_space *mapping)
static void warn_scan_unevictable_pages(void)
{
printk_once(KERN_WARNING
- "The scan_unevictable_pages sysctl/node-interface has been "
+ "%s: The scan_unevictable_pages sysctl/node-interface has been "
"disabled for lack of a legitimate use case. If you have "
- "one, please send an email to linux-mm@kvack.org.\n");
+ "one, please send an email to linux-mm@kvack.org.\n",
+ current->comm);
}
/*
@@ -3475,16 +3465,16 @@ int scan_unevictable_handler(struct ctl_table *table, int write,
* a specified node's per zone unevictable lists for evictable pages.
*/
-static ssize_t read_scan_unevictable_node(struct sys_device *dev,
- struct sysdev_attribute *attr,
+static ssize_t read_scan_unevictable_node(struct device *dev,
+ struct device_attribute *attr,
char *buf)
{
warn_scan_unevictable_pages();
return sprintf(buf, "0\n"); /* always zero; should fit... */
}
-static ssize_t write_scan_unevictable_node(struct sys_device *dev,
- struct sysdev_attribute *attr,
+static ssize_t write_scan_unevictable_node(struct device *dev,
+ struct device_attribute *attr,
const char *buf, size_t count)
{
warn_scan_unevictable_pages();
@@ -3492,17 +3482,17 @@ static ssize_t write_scan_unevictable_node(struct sys_device *dev,
}
-static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
+static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
read_scan_unevictable_node,
write_scan_unevictable_node);
int scan_unevictable_register_node(struct node *node)
{
- return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
+ return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
}
void scan_unevictable_unregister_node(struct node *node)
{
- sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
+ device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
}
#endif