summaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig65
-rw-r--r--mm/Kconfig.debug1
-rw-r--r--mm/Makefile4
-rw-r--r--mm/bootmem.c12
-rw-r--r--mm/bounce.c10
-rw-r--r--mm/fadvise.c2
-rw-r--r--mm/filemap.c175
-rw-r--r--mm/highmem.c1
-rw-r--r--mm/hugetlb.c132
-rw-r--r--mm/init-mm.c20
-rw-r--r--mm/internal.h33
-rw-r--r--mm/kmemcheck.c122
-rw-r--r--mm/kmemleak-test.c111
-rw-r--r--mm/kmemleak.c1498
-rw-r--r--mm/maccess.c2
-rw-r--r--mm/madvise.c26
-rw-r--r--mm/memcontrol.c63
-rw-r--r--mm/memory.c240
-rw-r--r--mm/memory_hotplug.c6
-rw-r--r--mm/mempolicy.c145
-rw-r--r--mm/migrate.c6
-rw-r--r--mm/mlock.c73
-rw-r--r--mm/mmap.c20
-rw-r--r--mm/mmzone.c15
-rw-r--r--mm/mprotect.c2
-rw-r--r--mm/nommu.c20
-rw-r--r--mm/oom_kill.c128
-rw-r--r--mm/page-writeback.c25
-rw-r--r--mm/page_alloc.c872
-rw-r--r--mm/page_cgroup.c17
-rw-r--r--mm/page_io.c2
-rw-r--r--mm/pdflush.c31
-rw-r--r--mm/percpu.c141
-rw-r--r--mm/readahead.c145
-rw-r--r--mm/rmap.c42
-rw-r--r--mm/shmem.c14
-rw-r--r--mm/slab.c280
-rw-r--r--mm/slob.c18
-rw-r--r--mm/slub.c173
-rw-r--r--mm/swap.c46
-rw-r--r--mm/swap_state.c19
-rw-r--r--mm/swapfile.c276
-rw-r--r--mm/truncate.c40
-rw-r--r--mm/util.c31
-rw-r--r--mm/vmalloc.c34
-rw-r--r--mm/vmscan.c378
-rw-r--r--mm/vmstat.c38
47 files changed, 4059 insertions, 1495 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 57971d2ab848..c948d4ca8bde 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -128,11 +128,11 @@ config SPARSEMEM_VMEMMAP
config MEMORY_HOTPLUG
bool "Allow for memory hot-add"
depends on SPARSEMEM || X86_64_ACPI_NUMA
- depends on HOTPLUG && !HIBERNATION && ARCH_ENABLE_MEMORY_HOTPLUG
+ depends on HOTPLUG && !(HIBERNATION && !S390) && ARCH_ENABLE_MEMORY_HOTPLUG
depends on (IA64 || X86 || PPC64 || SUPERH || S390)
comment "Memory hotplug is currently incompatible with Software Suspend"
- depends on SPARSEMEM && HOTPLUG && HIBERNATION
+ depends on SPARSEMEM && HOTPLUG && HIBERNATION && !S390
config MEMORY_HOTPLUG_SPARSE
def_bool y
@@ -203,25 +203,60 @@ config VIRT_TO_BUS
def_bool y
depends on !ARCH_NO_VIRT_TO_BUS
-config UNEVICTABLE_LRU
- bool "Add LRU list to track non-evictable pages"
- default y
- help
- Keeps unevictable pages off of the active and inactive pageout
- lists, so kswapd will not waste CPU time or have its balancing
- algorithms thrown off by scanning these pages. Selecting this
- will use one page flag and increase the code size a little,
- say Y unless you know what you are doing.
-
- See Documentation/vm/unevictable-lru.txt for more information.
-
config HAVE_MLOCK
bool
default y if MMU=y
config HAVE_MLOCKED_PAGE_BIT
bool
- default y if HAVE_MLOCK=y && UNEVICTABLE_LRU=y
+ default y if HAVE_MLOCK=y
config MMU_NOTIFIER
bool
+
+config DEFAULT_MMAP_MIN_ADDR
+ int "Low address space to protect from user allocation"
+ default 4096
+ help
+ This is the portion of low virtual memory which should be protected
+ from userspace allocation. Keeping a user from writing to low pages
+ can help reduce the impact of kernel NULL pointer bugs.
+
+ For most ia64, ppc64 and x86 users with lots of address space
+ a value of 65536 is reasonable and should cause no problems.
+ On arm and other archs it should not be higher than 32768.
+ Programs which use vm86 functionality would either need additional
+ permissions from either the LSM or the capabilities module or have
+ this protection disabled.
+
+ This value can be changed after boot using the
+ /proc/sys/vm/mmap_min_addr tunable.
+
+
+config NOMMU_INITIAL_TRIM_EXCESS
+ int "Turn on mmap() excess space trimming before booting"
+ depends on !MMU
+ default 1
+ help
+ The NOMMU mmap() frequently needs to allocate large contiguous chunks
+ of memory on which to store mappings, but it can only ask the system
+ allocator for chunks in 2^N*PAGE_SIZE amounts - which is frequently
+ more than it requires. To deal with this, mmap() is able to trim off
+ the excess and return it to the allocator.
+
+ If trimming is enabled, the excess is trimmed off and returned to the
+ system allocator, which can cause extra fragmentation, particularly
+ if there are a lot of transient processes.
+
+ If trimming is disabled, the excess is kept, but not used, which for
+ long-term mappings means that the space is wasted.
+
+ Trimming can be dynamically controlled through a sysctl option
+ (/proc/sys/vm/nr_trim_pages) which specifies the minimum number of
+ excess pages there must be before trimming should occur, or zero if
+ no trimming is to occur.
+
+ This option specifies the initial value of this option. The default
+ of 1 says that all excess pages should be trimmed.
+
+ See Documentation/nommu-mmap.txt for more information.
diff --git a/mm/Kconfig.debug b/mm/Kconfig.debug
index bb01e298f260..aa99fd1f7109 100644
--- a/mm/Kconfig.debug
+++ b/mm/Kconfig.debug
@@ -2,6 +2,7 @@ config DEBUG_PAGEALLOC
bool "Debug page memory allocations"
depends on DEBUG_KERNEL && ARCH_SUPPORTS_DEBUG_PAGEALLOC
depends on !HIBERNATION || !PPC && !SPARC
+ depends on !KMEMCHECK
---help---
Unmap pages from the kernel linear mapping after free_pages().
This results in a large slowdown, but helps to find certain types
diff --git a/mm/Makefile b/mm/Makefile
index ec73c68b6015..5e0bd6426693 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -12,6 +12,7 @@ obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \
readahead.o swap.o truncate.o vmscan.o shmem.o \
prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \
page_isolation.o mm_init.o $(mmu-y)
+obj-y += init-mm.o
obj-$(CONFIG_PROC_PAGE_MONITOR) += pagewalk.o
obj-$(CONFIG_BOUNCE) += bounce.o
@@ -27,6 +28,7 @@ obj-$(CONFIG_MMU_NOTIFIER) += mmu_notifier.o
obj-$(CONFIG_PAGE_POISONING) += debug-pagealloc.o
obj-$(CONFIG_SLAB) += slab.o
obj-$(CONFIG_SLUB) += slub.o
+obj-$(CONFIG_KMEMCHECK) += kmemcheck.o
obj-$(CONFIG_FAILSLAB) += failslab.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
obj-$(CONFIG_FS_XIP) += filemap_xip.o
@@ -38,3 +40,5 @@ obj-$(CONFIG_SMP) += allocpercpu.o
endif
obj-$(CONFIG_QUICKLIST) += quicklist.o
obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o
+obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o
+obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o
diff --git a/mm/bootmem.c b/mm/bootmem.c
index daf92713f7de..282df0a09e6f 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -532,6 +532,9 @@ static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
unsigned long size, unsigned long align,
unsigned long goal, unsigned long limit)
{
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc(size, GFP_NOWAIT);
+
#ifdef CONFIG_HAVE_ARCH_BOOTMEM
bootmem_data_t *p_bdata;
@@ -662,6 +665,9 @@ static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
+
return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
}
@@ -693,6 +699,9 @@ void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
{
void *ptr;
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
+
ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
if (ptr)
return ptr;
@@ -745,6 +754,9 @@ void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
+ if (WARN_ON_ONCE(slab_is_available()))
+ return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
+
return ___alloc_bootmem_node(pgdat->bdata, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
}
diff --git a/mm/bounce.c b/mm/bounce.c
index e590272fe7a8..a2b76a588e34 100644
--- a/mm/bounce.c
+++ b/mm/bounce.c
@@ -13,17 +13,15 @@
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/highmem.h>
-#include <linux/blktrace_api.h>
-#include <trace/block.h>
#include <asm/tlbflush.h>
+#include <trace/events/block.h>
+
#define POOL_SIZE 64
#define ISA_POOL_SIZE 16
static mempool_t *page_pool, *isa_page_pool;
-DEFINE_TRACE(block_bio_bounce);
-
#ifdef CONFIG_HIGHMEM
static __init int init_emergency_pool(void)
{
@@ -192,7 +190,7 @@ static void __blk_queue_bounce(struct request_queue *q, struct bio **bio_orig,
/*
* is destination page below bounce pfn?
*/
- if (page_to_pfn(page) <= q->bounce_pfn)
+ if (page_to_pfn(page) <= queue_bounce_pfn(q))
continue;
/*
@@ -284,7 +282,7 @@ void blk_queue_bounce(struct request_queue *q, struct bio **bio_orig)
* don't waste time iterating over bio segments
*/
if (!(q->bounce_gfp & GFP_DMA)) {
- if (q->bounce_pfn >= blk_max_pfn)
+ if (queue_bounce_pfn(q) >= blk_max_pfn)
return;
pool = page_pool;
} else {
diff --git a/mm/fadvise.c b/mm/fadvise.c
index 54a0f8040afa..e43359214f6f 100644
--- a/mm/fadvise.c
+++ b/mm/fadvise.c
@@ -101,7 +101,7 @@ SYSCALL_DEFINE(fadvise64_64)(int fd, loff_t offset, loff_t len, int advice)
ret = force_page_cache_readahead(mapping, file,
start_index,
- max_sane_readahead(nrpages));
+ nrpages);
if (ret > 0)
ret = 0;
break;
diff --git a/mm/filemap.c b/mm/filemap.c
index 379ff0bcbf6e..22396713feb9 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -121,7 +121,6 @@ void __remove_from_page_cache(struct page *page)
mapping->nrpages--;
__dec_zone_page_state(page, NR_FILE_PAGES);
BUG_ON(page_mapped(page));
- mem_cgroup_uncharge_cache_page(page);
/*
* Some filesystems seem to re-dirty the page even after
@@ -145,6 +144,7 @@ void remove_from_page_cache(struct page *page)
spin_lock_irq(&mapping->tree_lock);
__remove_from_page_cache(page);
spin_unlock_irq(&mapping->tree_lock);
+ mem_cgroup_uncharge_cache_page(page);
}
static int sync_page(void *word)
@@ -476,13 +476,13 @@ int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
if (likely(!error)) {
mapping->nrpages++;
__inc_zone_page_state(page, NR_FILE_PAGES);
+ spin_unlock_irq(&mapping->tree_lock);
} else {
page->mapping = NULL;
+ spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
page_cache_release(page);
}
-
- spin_unlock_irq(&mapping->tree_lock);
radix_tree_preload_end();
} else
mem_cgroup_uncharge_cache_page(page);
@@ -521,7 +521,7 @@ struct page *__page_cache_alloc(gfp_t gfp)
{
if (cpuset_do_page_mem_spread()) {
int n = cpuset_mem_spread_node();
- return alloc_pages_node(n, gfp, 0);
+ return alloc_pages_exact_node(n, gfp, 0);
}
return alloc_pages(gfp, 0);
}
@@ -1004,9 +1004,6 @@ EXPORT_SYMBOL(grab_cache_page_nowait);
static void shrink_readahead_size_eio(struct file *filp,
struct file_ra_state *ra)
{
- if (!ra->ra_pages)
- return;
-
ra->ra_pages /= 4;
}
@@ -1390,8 +1387,7 @@ do_readahead(struct address_space *mapping, struct file *filp,
if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
return -EINVAL;
- force_page_cache_readahead(mapping, filp, index,
- max_sane_readahead(nr));
+ force_page_cache_readahead(mapping, filp, index, nr);
return 0;
}
@@ -1457,6 +1453,73 @@ static int page_cache_read(struct file *file, pgoff_t offset)
#define MMAP_LOTSAMISS (100)
+/*
+ * Synchronous readahead happens when we don't even find
+ * a page in the page cache at all.
+ */
+static void do_sync_mmap_readahead(struct vm_area_struct *vma,
+ struct file_ra_state *ra,
+ struct file *file,
+ pgoff_t offset)
+{
+ unsigned long ra_pages;
+ struct address_space *mapping = file->f_mapping;
+
+ /* If we don't want any read-ahead, don't bother */
+ if (VM_RandomReadHint(vma))
+ return;
+
+ if (VM_SequentialReadHint(vma) ||
+ offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
+ page_cache_sync_readahead(mapping, ra, file, offset,
+ ra->ra_pages);
+ return;
+ }
+
+ if (ra->mmap_miss < INT_MAX)
+ ra->mmap_miss++;
+
+ /*
+ * Do we miss much more than hit in this file? If so,
+ * stop bothering with read-ahead. It will only hurt.
+ */
+ if (ra->mmap_miss > MMAP_LOTSAMISS)
+ return;
+
+ /*
+ * mmap read-around
+ */
+ ra_pages = max_sane_readahead(ra->ra_pages);
+ if (ra_pages) {
+ ra->start = max_t(long, 0, offset - ra_pages/2);
+ ra->size = ra_pages;
+ ra->async_size = 0;
+ ra_submit(ra, mapping, file);
+ }
+}
+
+/*
+ * Asynchronous readahead happens when we find the page and PG_readahead,
+ * so we want to possibly extend the readahead further..
+ */
+static void do_async_mmap_readahead(struct vm_area_struct *vma,
+ struct file_ra_state *ra,
+ struct file *file,
+ struct page *page,
+ pgoff_t offset)
+{
+ struct address_space *mapping = file->f_mapping;
+
+ /* If we don't want any read-ahead, don't bother */
+ if (VM_RandomReadHint(vma))
+ return;
+ if (ra->mmap_miss > 0)
+ ra->mmap_miss--;
+ if (PageReadahead(page))
+ page_cache_async_readahead(mapping, ra, file,
+ page, offset, ra->ra_pages);
+}
+
/**
* filemap_fault - read in file data for page fault handling
* @vma: vma in which the fault was taken
@@ -1476,78 +1539,44 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
struct address_space *mapping = file->f_mapping;
struct file_ra_state *ra = &file->f_ra;
struct inode *inode = mapping->host;
+ pgoff_t offset = vmf->pgoff;
struct page *page;
pgoff_t size;
- int did_readaround = 0;
int ret = 0;
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- if (vmf->pgoff >= size)
+ if (offset >= size)
return VM_FAULT_SIGBUS;
- /* If we don't want any read-ahead, don't bother */
- if (VM_RandomReadHint(vma))
- goto no_cached_page;
-
/*
* Do we have something in the page cache already?
*/
-retry_find:
- page = find_lock_page(mapping, vmf->pgoff);
- /*
- * For sequential accesses, we use the generic readahead logic.
- */
- if (VM_SequentialReadHint(vma)) {
- if (!page) {
- page_cache_sync_readahead(mapping, ra, file,
- vmf->pgoff, 1);
- page = find_lock_page(mapping, vmf->pgoff);
- if (!page)
- goto no_cached_page;
- }
- if (PageReadahead(page)) {
- page_cache_async_readahead(mapping, ra, file, page,
- vmf->pgoff, 1);
- }
- }
-
- if (!page) {
- unsigned long ra_pages;
-
- ra->mmap_miss++;
-
+ page = find_get_page(mapping, offset);
+ if (likely(page)) {
/*
- * Do we miss much more than hit in this file? If so,
- * stop bothering with read-ahead. It will only hurt.
+ * We found the page, so try async readahead before
+ * waiting for the lock.
*/
- if (ra->mmap_miss > MMAP_LOTSAMISS)
- goto no_cached_page;
+ do_async_mmap_readahead(vma, ra, file, page, offset);
+ lock_page(page);
- /*
- * To keep the pgmajfault counter straight, we need to
- * check did_readaround, as this is an inner loop.
- */
- if (!did_readaround) {
- ret = VM_FAULT_MAJOR;
- count_vm_event(PGMAJFAULT);
- }
- did_readaround = 1;
- ra_pages = max_sane_readahead(file->f_ra.ra_pages);
- if (ra_pages) {
- pgoff_t start = 0;
-
- if (vmf->pgoff > ra_pages / 2)
- start = vmf->pgoff - ra_pages / 2;
- do_page_cache_readahead(mapping, file, start, ra_pages);
+ /* Did it get truncated? */
+ if (unlikely(page->mapping != mapping)) {
+ unlock_page(page);
+ put_page(page);
+ goto no_cached_page;
}
- page = find_lock_page(mapping, vmf->pgoff);
+ } else {
+ /* No page in the page cache at all */
+ do_sync_mmap_readahead(vma, ra, file, offset);
+ count_vm_event(PGMAJFAULT);
+ ret = VM_FAULT_MAJOR;
+retry_find:
+ page = find_lock_page(mapping, offset);
if (!page)
goto no_cached_page;
}
- if (!did_readaround)
- ra->mmap_miss--;
-
/*
* We have a locked page in the page cache, now we need to check
* that it's up-to-date. If not, it is going to be due to an error.
@@ -1555,18 +1584,18 @@ retry_find:
if (unlikely(!PageUptodate(page)))
goto page_not_uptodate;
- /* Must recheck i_size under page lock */
+ /*
+ * Found the page and have a reference on it.
+ * We must recheck i_size under page lock.
+ */
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- if (unlikely(vmf->pgoff >= size)) {
+ if (unlikely(offset >= size)) {
unlock_page(page);
page_cache_release(page);
return VM_FAULT_SIGBUS;
}
- /*
- * Found the page and have a reference on it.
- */
- ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
+ ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
vmf->page = page;
return ret | VM_FAULT_LOCKED;
@@ -1575,7 +1604,7 @@ no_cached_page:
* We're only likely to ever get here if MADV_RANDOM is in
* effect.
*/
- error = page_cache_read(file, vmf->pgoff);
+ error = page_cache_read(file, offset);
/*
* The page we want has now been added to the page cache.
@@ -1595,12 +1624,6 @@ no_cached_page:
return VM_FAULT_SIGBUS;
page_not_uptodate:
- /* IO error path */
- if (!did_readaround) {
- ret = VM_FAULT_MAJOR;
- count_vm_event(PGMAJFAULT);
- }
-
/*
* Umm, take care of errors if the page isn't up-to-date.
* Try to re-read it _once_. We do this synchronously,
diff --git a/mm/highmem.c b/mm/highmem.c
index 68eb1d9b63fa..25878cc49daa 100644
--- a/mm/highmem.c
+++ b/mm/highmem.c
@@ -26,7 +26,6 @@
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/highmem.h>
-#include <linux/blktrace_api.h>
#include <asm/tlbflush.h>
/*
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 28c655ba9353..a56e6f3ce979 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -316,7 +316,7 @@ static void resv_map_release(struct kref *ref)
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
- if (!(vma->vm_flags & VM_SHARED))
+ if (!(vma->vm_flags & VM_MAYSHARE))
return (struct resv_map *)(get_vma_private_data(vma) &
~HPAGE_RESV_MASK);
return NULL;
@@ -325,7 +325,7 @@ static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
- VM_BUG_ON(vma->vm_flags & VM_SHARED);
+ VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
set_vma_private_data(vma, (get_vma_private_data(vma) &
HPAGE_RESV_MASK) | (unsigned long)map);
@@ -334,7 +334,7 @@ static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
- VM_BUG_ON(vma->vm_flags & VM_SHARED);
+ VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
set_vma_private_data(vma, get_vma_private_data(vma) | flags);
}
@@ -353,7 +353,7 @@ static void decrement_hugepage_resv_vma(struct hstate *h,
if (vma->vm_flags & VM_NORESERVE)
return;
- if (vma->vm_flags & VM_SHARED) {
+ if (vma->vm_flags & VM_MAYSHARE) {
/* Shared mappings always use reserves */
h->resv_huge_pages--;
} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
@@ -369,14 +369,14 @@ static void decrement_hugepage_resv_vma(struct hstate *h,
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
- if (!(vma->vm_flags & VM_SHARED))
+ if (!(vma->vm_flags & VM_MAYSHARE))
vma->vm_private_data = (void *)0;
}
/* Returns true if the VMA has associated reserve pages */
static int vma_has_reserves(struct vm_area_struct *vma)
{
- if (vma->vm_flags & VM_SHARED)
+ if (vma->vm_flags & VM_MAYSHARE)
return 1;
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
return 1;
@@ -578,41 +578,6 @@ static void free_huge_page(struct page *page)
hugetlb_put_quota(mapping, 1);
}
-/*
- * Increment or decrement surplus_huge_pages. Keep node-specific counters
- * balanced by operating on them in a round-robin fashion.
- * Returns 1 if an adjustment was made.
- */
-static int adjust_pool_surplus(struct hstate *h, int delta)
-{
- static int prev_nid;
- int nid = prev_nid;
- int ret = 0;
-
- VM_BUG_ON(delta != -1 && delta != 1);
- do {
- nid = next_node(nid, node_online_map);
- if (nid == MAX_NUMNODES)
- nid = first_node(node_online_map);
-
- /* To shrink on this node, there must be a surplus page */
- if (delta < 0 && !h->surplus_huge_pages_node[nid])
- continue;
- /* Surplus cannot exceed the total number of pages */
- if (delta > 0 && h->surplus_huge_pages_node[nid] >=
- h->nr_huge_pages_node[nid])
- continue;
-
- h->surplus_huge_pages += delta;
- h->surplus_huge_pages_node[nid] += delta;
- ret = 1;
- break;
- } while (nid != prev_nid);
-
- prev_nid = nid;
- return ret;
-}
-
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
set_compound_page_dtor(page, free_huge_page);
@@ -623,6 +588,34 @@ static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
put_page(page); /* free it into the hugepage allocator */
}
+static void prep_compound_gigantic_page(struct page *page, unsigned long order)
+{
+ int i;
+ int nr_pages = 1 << order;
+ struct page *p = page + 1;
+
+ /* we rely on prep_new_huge_page to set the destructor */
+ set_compound_order(page, order);
+ __SetPageHead(page);
+ for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
+ __SetPageTail(p);
+ p->first_page = page;
+ }
+}
+
+int PageHuge(struct page *page)
+{
+ compound_page_dtor *dtor;
+
+ if (!PageCompound(page))
+ return 0;
+
+ page = compound_head(page);
+ dtor = get_compound_page_dtor(page);
+
+ return dtor == free_huge_page;
+}
+
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
@@ -630,7 +623,7 @@ static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
if (h->order >= MAX_ORDER)
return NULL;
- page = alloc_pages_node(nid,
+ page = alloc_pages_exact_node(nid,
htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN,
huge_page_order(h));
@@ -649,7 +642,7 @@ static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
* Use a helper variable to find the next node and then
* copy it back to hugetlb_next_nid afterwards:
* otherwise there's a window in which a racer might
- * pass invalid nid MAX_NUMNODES to alloc_pages_node.
+ * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
* But we don't need to use a spin_lock here: it really
* doesn't matter if occasionally a racer chooses the
* same nid as we do. Move nid forward in the mask even
@@ -875,7 +868,7 @@ static void return_unused_surplus_pages(struct hstate *h,
* can no longer free unreserved surplus pages. This occurs when
* the nodes with surplus pages have no free pages.
*/
- unsigned long remaining_iterations = num_online_nodes();
+ unsigned long remaining_iterations = nr_online_nodes;
/* Uncommit the reservation */
h->resv_huge_pages -= unused_resv_pages;
@@ -904,7 +897,7 @@ static void return_unused_surplus_pages(struct hstate *h,
h->surplus_huge_pages--;
h->surplus_huge_pages_node[nid]--;
nr_pages--;
- remaining_iterations = num_online_nodes();
+ remaining_iterations = nr_online_nodes;
}
}
}
@@ -924,7 +917,7 @@ static long vma_needs_reservation(struct hstate *h,
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
- if (vma->vm_flags & VM_SHARED) {
+ if (vma->vm_flags & VM_MAYSHARE) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
return region_chg(&inode->i_mapping->private_list,
idx, idx + 1);
@@ -949,7 +942,7 @@ static void vma_commit_reservation(struct hstate *h,
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
- if (vma->vm_flags & VM_SHARED) {
+ if (vma->vm_flags & VM_MAYSHARE) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
region_add(&inode->i_mapping->private_list, idx, idx + 1);
@@ -1140,6 +1133,41 @@ static inline void try_to_free_low(struct hstate *h, unsigned long count)
}
#endif
+/*
+ * Increment or decrement surplus_huge_pages. Keep node-specific counters
+ * balanced by operating on them in a round-robin fashion.
+ * Returns 1 if an adjustment was made.
+ */
+static int adjust_pool_surplus(struct hstate *h, int delta)
+{
+ static int prev_nid;
+ int nid = prev_nid;
+ int ret = 0;
+
+ VM_BUG_ON(delta != -1 && delta != 1);
+ do {
+ nid = next_node(nid, node_online_map);
+ if (nid == MAX_NUMNODES)
+ nid = first_node(node_online_map);
+
+ /* To shrink on this node, there must be a surplus page */
+ if (delta < 0 && !h->surplus_huge_pages_node[nid])
+ continue;
+ /* Surplus cannot exceed the total number of pages */
+ if (delta > 0 && h->surplus_huge_pages_node[nid] >=
+ h->nr_huge_pages_node[nid])
+ continue;
+
+ h->surplus_huge_pages += delta;
+ h->surplus_huge_pages_node[nid] += delta;
+ ret = 1;
+ break;
+ } while (nid != prev_nid);
+
+ prev_nid = nid;
+ return ret;
+}
+
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
{
@@ -1893,7 +1921,7 @@ retry_avoidcopy:
* at the time of fork() could consume its reserves on COW instead
* of the full address range.
*/
- if (!(vma->vm_flags & VM_SHARED) &&
+ if (!(vma->vm_flags & VM_MAYSHARE) &&
is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
old_page != pagecache_page)
outside_reserve = 1;
@@ -2000,7 +2028,7 @@ retry:
clear_huge_page(page, address, huge_page_size(h));
__SetPageUptodate(page);
- if (vma->vm_flags & VM_SHARED) {
+ if (vma->vm_flags & VM_MAYSHARE) {
int err;
struct inode *inode = mapping->host;
@@ -2104,7 +2132,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
goto out_mutex;
}
- if (!(vma->vm_flags & VM_SHARED))
+ if (!(vma->vm_flags & VM_MAYSHARE))
pagecache_page = hugetlbfs_pagecache_page(h,
vma, address);
}
@@ -2289,7 +2317,7 @@ int hugetlb_reserve_pages(struct inode *inode,
* to reserve the full area even if read-only as mprotect() may be
* called to make the mapping read-write. Assume !vma is a shm mapping
*/
- if (!vma || vma->vm_flags & VM_SHARED)
+ if (!vma || vma->vm_flags & VM_MAYSHARE)
chg = region_chg(&inode->i_mapping->private_list, from, to);
else {
struct resv_map *resv_map = resv_map_alloc();
@@ -2330,7 +2358,7 @@ int hugetlb_reserve_pages(struct inode *inode,
* consumed reservations are stored in the map. Hence, nothing
* else has to be done for private mappings here
*/
- if (!vma || vma->vm_flags & VM_SHARED)
+ if (!vma || vma->vm_flags & VM_MAYSHARE)
region_add(&inode->i_mapping->private_list, from, to);
return 0;
}
diff --git a/mm/init-mm.c b/mm/init-mm.c
new file mode 100644
index 000000000000..57aba0da9668
--- /dev/null
+++ b/mm/init-mm.c
@@ -0,0 +1,20 @@
+#include <linux/mm_types.h>
+#include <linux/rbtree.h>
+#include <linux/rwsem.h>
+#include <linux/spinlock.h>
+#include <linux/list.h>
+#include <linux/cpumask.h>
+
+#include <asm/atomic.h>
+#include <asm/pgtable.h>
+
+struct mm_struct init_mm = {
+ .mm_rb = RB_ROOT,
+ .pgd = swapper_pg_dir,
+ .mm_users = ATOMIC_INIT(2),
+ .mm_count = ATOMIC_INIT(1),
+ .mmap_sem = __RWSEM_INITIALIZER(init_mm.mmap_sem),
+ .page_table_lock = __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),
+ .mmlist = LIST_HEAD_INIT(init_mm.mmlist),
+ .cpu_vm_mask = CPU_MASK_ALL,
+};
diff --git a/mm/internal.h b/mm/internal.h
index 987bb03fbdd8..f290c4db528b 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -16,9 +16,6 @@
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
unsigned long floor, unsigned long ceiling);
-extern void prep_compound_page(struct page *page, unsigned long order);
-extern void prep_compound_gigantic_page(struct page *page, unsigned long order);
-
static inline void set_page_count(struct page *page, int v)
{
atomic_set(&page->_count, v);
@@ -51,6 +48,8 @@ extern void putback_lru_page(struct page *page);
*/
extern unsigned long highest_memmap_pfn;
extern void __free_pages_bootmem(struct page *page, unsigned int order);
+extern void prep_compound_page(struct page *page, unsigned long order);
+
/*
* function for dealing with page's order in buddy system.
@@ -74,7 +73,6 @@ static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
}
#endif
-#ifdef CONFIG_UNEVICTABLE_LRU
/*
* unevictable_migrate_page() called only from migrate_page_copy() to
* migrate unevictable flag to new page.
@@ -86,11 +84,6 @@ static inline void unevictable_migrate_page(struct page *new, struct page *old)
if (TestClearPageUnevictable(old))
SetPageUnevictable(new);
}
-#else
-static inline void unevictable_migrate_page(struct page *new, struct page *old)
-{
-}
-#endif
#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
/*
@@ -150,23 +143,6 @@ static inline void mlock_migrate_page(struct page *newpage, struct page *page)
}
}
-/*
- * free_page_mlock() -- clean up attempts to free and mlocked() page.
- * Page should not be on lru, so no need to fix that up.
- * free_pages_check() will verify...
- */
-static inline void free_page_mlock(struct page *page)
-{
- if (unlikely(TestClearPageMlocked(page))) {
- unsigned long flags;
-
- local_irq_save(flags);
- __dec_zone_page_state(page, NR_MLOCK);
- __count_vm_event(UNEVICTABLE_MLOCKFREED);
- local_irq_restore(flags);
- }
-}
-
#else /* CONFIG_HAVE_MLOCKED_PAGE_BIT */
static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p)
{
@@ -175,7 +151,6 @@ static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p)
static inline void clear_page_mlock(struct page *page) { }
static inline void mlock_vma_page(struct page *page) { }
static inline void mlock_migrate_page(struct page *new, struct page *old) { }
-static inline void free_page_mlock(struct page *page) { }
#endif /* CONFIG_HAVE_MLOCKED_PAGE_BIT */
@@ -284,4 +259,8 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int len, int flags,
struct page **pages, struct vm_area_struct **vmas);
+#define ZONE_RECLAIM_NOSCAN -2
+#define ZONE_RECLAIM_FULL -1
+#define ZONE_RECLAIM_SOME 0
+#define ZONE_RECLAIM_SUCCESS 1
#endif
diff --git a/mm/kmemcheck.c b/mm/kmemcheck.c
new file mode 100644
index 000000000000..fd814fd61319
--- /dev/null
+++ b/mm/kmemcheck.c
@@ -0,0 +1,122 @@
+#include <linux/gfp.h>
+#include <linux/mm_types.h>
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/kmemcheck.h>
+
+void kmemcheck_alloc_shadow(struct page *page, int order, gfp_t flags, int node)
+{
+ struct page *shadow;
+ int pages;
+ int i;
+
+ pages = 1 << order;
+
+ /*
+ * With kmemcheck enabled, we need to allocate a memory area for the
+ * shadow bits as well.
+ */
+ shadow = alloc_pages_node(node, flags | __GFP_NOTRACK, order);
+ if (!shadow) {
+ if (printk_ratelimit())
+ printk(KERN_ERR "kmemcheck: failed to allocate "
+ "shadow bitmap\n");
+ return;
+ }
+
+ for(i = 0; i < pages; ++i)
+ page[i].shadow = page_address(&shadow[i]);
+
+ /*
+ * Mark it as non-present for the MMU so that our accesses to
+ * this memory will trigger a page fault and let us analyze
+ * the memory accesses.
+ */
+ kmemcheck_hide_pages(page, pages);
+}
+
+void kmemcheck_free_shadow(struct page *page, int order)
+{
+ struct page *shadow;
+ int pages;
+ int i;
+
+ if (!kmemcheck_page_is_tracked(page))
+ return;
+
+ pages = 1 << order;
+
+ kmemcheck_show_pages(page, pages);
+
+ shadow = virt_to_page(page[0].shadow);
+
+ for(i = 0; i < pages; ++i)
+ page[i].shadow = NULL;
+
+ __free_pages(shadow, order);
+}
+
+void kmemcheck_slab_alloc(struct kmem_cache *s, gfp_t gfpflags, void *object,
+ size_t size)
+{
+ /*
+ * Has already been memset(), which initializes the shadow for us
+ * as well.
+ */
+ if (gfpflags & __GFP_ZERO)
+ return;
+
+ /* No need to initialize the shadow of a non-tracked slab. */
+ if (s->flags & SLAB_NOTRACK)
+ return;
+
+ if (!kmemcheck_enabled || gfpflags & __GFP_NOTRACK) {
+ /*
+ * Allow notracked objects to be allocated from
+ * tracked caches. Note however that these objects
+ * will still get page faults on access, they just
+ * won't ever be flagged as uninitialized. If page
+ * faults are not acceptable, the slab cache itself
+ * should be marked NOTRACK.
+ */
+ kmemcheck_mark_initialized(object, size);
+ } else if (!s->ctor) {
+ /*
+ * New objects should be marked uninitialized before
+ * they're returned to the called.
+ */
+ kmemcheck_mark_uninitialized(object, size);
+ }
+}
+
+void kmemcheck_slab_free(struct kmem_cache *s, void *object, size_t size)
+{
+ /* TODO: RCU freeing is unsupported for now; hide false positives. */
+ if (!s->ctor && !(s->flags & SLAB_DESTROY_BY_RCU))
+ kmemcheck_mark_freed(object, size);
+}
+
+void kmemcheck_pagealloc_alloc(struct page *page, unsigned int order,
+ gfp_t gfpflags)
+{
+ int pages;
+
+ if (gfpflags & (__GFP_HIGHMEM | __GFP_NOTRACK))
+ return;
+
+ pages = 1 << order;
+
+ /*
+ * NOTE: We choose to track GFP_ZERO pages too; in fact, they
+ * can become uninitialized by copying uninitialized memory
+ * into them.
+ */
+
+ /* XXX: Can use zone->node for node? */
+ kmemcheck_alloc_shadow(page, order, gfpflags, -1);
+
+ if (gfpflags & __GFP_ZERO)
+ kmemcheck_mark_initialized_pages(page, pages);
+ else
+ kmemcheck_mark_uninitialized_pages(page, pages);
+}
diff --git a/mm/kmemleak-test.c b/mm/kmemleak-test.c
new file mode 100644
index 000000000000..d5292fc6f523
--- /dev/null
+++ b/mm/kmemleak-test.c
@@ -0,0 +1,111 @@
+/*
+ * mm/kmemleak-test.c
+ *
+ * Copyright (C) 2008 ARM Limited
+ * Written by Catalin Marinas <catalin.marinas@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/list.h>
+#include <linux/percpu.h>
+#include <linux/fdtable.h>
+
+#include <linux/kmemleak.h>
+
+struct test_node {
+ long header[25];
+ struct list_head list;
+ long footer[25];
+};
+
+static LIST_HEAD(test_list);
+static DEFINE_PER_CPU(void *, test_pointer);
+
+/*
+ * Some very simple testing. This function needs to be extended for
+ * proper testing.
+ */
+static int __init kmemleak_test_init(void)
+{
+ struct test_node *elem;
+ int i;
+
+ printk(KERN_INFO "Kmemleak testing\n");
+
+ /* make some orphan objects */
+ pr_info("kmemleak: kmalloc(32) = %p\n", kmalloc(32, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(32) = %p\n", kmalloc(32, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(1024) = %p\n", kmalloc(1024, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(1024) = %p\n", kmalloc(1024, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(2048) = %p\n", kmalloc(2048, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(2048) = %p\n", kmalloc(2048, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(4096) = %p\n", kmalloc(4096, GFP_KERNEL));
+ pr_info("kmemleak: kmalloc(4096) = %p\n", kmalloc(4096, GFP_KERNEL));
+#ifndef CONFIG_MODULES
+ pr_info("kmemleak: kmem_cache_alloc(files_cachep) = %p\n",
+ kmem_cache_alloc(files_cachep, GFP_KERNEL));
+ pr_info("kmemleak: kmem_cache_alloc(files_cachep) = %p\n",
+ kmem_cache_alloc(files_cachep, GFP_KERNEL));
+#endif
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+ pr_info("kmemleak: vmalloc(64) = %p\n", vmalloc(64));
+
+ /*
+ * Add elements to a list. They should only appear as orphan
+ * after the module is removed.
+ */
+ for (i = 0; i < 10; i++) {
+ elem = kmalloc(sizeof(*elem), GFP_KERNEL);
+ pr_info("kmemleak: kmalloc(sizeof(*elem)) = %p\n", elem);
+ if (!elem)
+ return -ENOMEM;
+ memset(elem, 0, sizeof(*elem));
+ INIT_LIST_HEAD(&elem->list);
+
+ list_add_tail(&elem->list, &test_list);
+ }
+
+ for_each_possible_cpu(i) {
+ per_cpu(test_pointer, i) = kmalloc(129, GFP_KERNEL);
+ pr_info("kmemleak: kmalloc(129) = %p\n",
+ per_cpu(test_pointer, i));
+ }
+
+ return 0;
+}
+module_init(kmemleak_test_init);
+
+static void __exit kmemleak_test_exit(void)
+{
+ struct test_node *elem, *tmp;
+
+ /*
+ * Remove the list elements without actually freeing the
+ * memory.
+ */
+ list_for_each_entry_safe(elem, tmp, &test_list, list)
+ list_del(&elem->list);
+}
+module_exit(kmemleak_test_exit);
+
+MODULE_LICENSE("GPL");
diff --git a/mm/kmemleak.c b/mm/kmemleak.c
new file mode 100644
index 000000000000..58ec86c9e58a
--- /dev/null
+++ b/mm/kmemleak.c
@@ -0,0 +1,1498 @@
+/*
+ * mm/kmemleak.c
+ *
+ * Copyright (C) 2008 ARM Limited
+ * Written by Catalin Marinas <catalin.marinas@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ *
+ * For more information on the algorithm and kmemleak usage, please see
+ * Documentation/kmemleak.txt.
+ *
+ * Notes on locking
+ * ----------------
+ *
+ * The following locks and mutexes are used by kmemleak:
+ *
+ * - kmemleak_lock (rwlock): protects the object_list modifications and
+ * accesses to the object_tree_root. The object_list is the main list
+ * holding the metadata (struct kmemleak_object) for the allocated memory
+ * blocks. The object_tree_root is a priority search tree used to look-up
+ * metadata based on a pointer to the corresponding memory block. The
+ * kmemleak_object structures are added to the object_list and
+ * object_tree_root in the create_object() function called from the
+ * kmemleak_alloc() callback and removed in delete_object() called from the
+ * kmemleak_free() callback
+ * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
+ * the metadata (e.g. count) are protected by this lock. Note that some
+ * members of this structure may be protected by other means (atomic or
+ * kmemleak_lock). This lock is also held when scanning the corresponding
+ * memory block to avoid the kernel freeing it via the kmemleak_free()
+ * callback. This is less heavyweight than holding a global lock like
+ * kmemleak_lock during scanning
+ * - scan_mutex (mutex): ensures that only one thread may scan the memory for
+ * unreferenced objects at a time. The gray_list contains the objects which
+ * are already referenced or marked as false positives and need to be
+ * scanned. This list is only modified during a scanning episode when the
+ * scan_mutex is held. At the end of a scan, the gray_list is always empty.
+ * Note that the kmemleak_object.use_count is incremented when an object is
+ * added to the gray_list and therefore cannot be freed
+ * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs
+ * file together with modifications to the memory scanning parameters
+ * including the scan_thread pointer
+ *
+ * The kmemleak_object structures have a use_count incremented or decremented
+ * using the get_object()/put_object() functions. When the use_count becomes
+ * 0, this count can no longer be incremented and put_object() schedules the
+ * kmemleak_object freeing via an RCU callback. All calls to the get_object()
+ * function must be protected by rcu_read_lock() to avoid accessing a freed
+ * structure.
+ */
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/sched.h>
+#include <linux/jiffies.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/kthread.h>
+#include <linux/prio_tree.h>
+#include <linux/gfp.h>
+#include <linux/fs.h>
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+#include <linux/cpumask.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/rcupdate.h>
+#include <linux/stacktrace.h>
+#include <linux/cache.h>
+#include <linux/percpu.h>
+#include <linux/hardirq.h>
+#include <linux/mmzone.h>
+#include <linux/slab.h>
+#include <linux/thread_info.h>
+#include <linux/err.h>
+#include <linux/uaccess.h>
+#include <linux/string.h>
+#include <linux/nodemask.h>
+#include <linux/mm.h>
+
+#include <asm/sections.h>
+#include <asm/processor.h>
+#include <asm/atomic.h>
+
+#include <linux/kmemleak.h>
+
+/*
+ * Kmemleak configuration and common defines.
+ */
+#define MAX_TRACE 16 /* stack trace length */
+#define REPORTS_NR 50 /* maximum number of reported leaks */
+#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
+#define MSECS_SCAN_YIELD 10 /* CPU yielding period */
+#define SECS_FIRST_SCAN 60 /* delay before the first scan */
+#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
+
+#define BYTES_PER_POINTER sizeof(void *)
+
+/* scanning area inside a memory block */
+struct kmemleak_scan_area {
+ struct hlist_node node;
+ unsigned long offset;
+ size_t length;
+};
+
+/*
+ * Structure holding the metadata for each allocated memory block.
+ * Modifications to such objects should be made while holding the
+ * object->lock. Insertions or deletions from object_list, gray_list or
+ * tree_node are already protected by the corresponding locks or mutex (see
+ * the notes on locking above). These objects are reference-counted
+ * (use_count) and freed using the RCU mechanism.
+ */
+struct kmemleak_object {
+ spinlock_t lock;
+ unsigned long flags; /* object status flags */
+ struct list_head object_list;
+ struct list_head gray_list;
+ struct prio_tree_node tree_node;
+ struct rcu_head rcu; /* object_list lockless traversal */
+ /* object usage count; object freed when use_count == 0 */
+ atomic_t use_count;
+ unsigned long pointer;
+ size_t size;
+ /* minimum number of a pointers found before it is considered leak */
+ int min_count;
+ /* the total number of pointers found pointing to this object */
+ int count;
+ /* memory ranges to be scanned inside an object (empty for all) */
+ struct hlist_head area_list;
+ unsigned long trace[MAX_TRACE];
+ unsigned int trace_len;
+ unsigned long jiffies; /* creation timestamp */
+ pid_t pid; /* pid of the current task */
+ char comm[TASK_COMM_LEN]; /* executable name */
+};
+
+/* flag representing the memory block allocation status */
+#define OBJECT_ALLOCATED (1 << 0)
+/* flag set after the first reporting of an unreference object */
+#define OBJECT_REPORTED (1 << 1)
+/* flag set to not scan the object */
+#define OBJECT_NO_SCAN (1 << 2)
+
+/* the list of all allocated objects */
+static LIST_HEAD(object_list);
+/* the list of gray-colored objects (see color_gray comment below) */
+static LIST_HEAD(gray_list);
+/* prio search tree for object boundaries */
+static struct prio_tree_root object_tree_root;
+/* rw_lock protecting the access to object_list and prio_tree_root */
+static DEFINE_RWLOCK(kmemleak_lock);
+
+/* allocation caches for kmemleak internal data */
+static struct kmem_cache *object_cache;
+static struct kmem_cache *scan_area_cache;
+
+/* set if tracing memory operations is enabled */
+static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
+/* set in the late_initcall if there were no errors */
+static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
+/* enables or disables early logging of the memory operations */
+static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
+/* set if a fata kmemleak error has occurred */
+static atomic_t kmemleak_error = ATOMIC_INIT(0);
+
+/* minimum and maximum address that may be valid pointers */
+static unsigned long min_addr = ULONG_MAX;
+static unsigned long max_addr;
+
+/* used for yielding the CPU to other tasks during scanning */
+static unsigned long next_scan_yield;
+static struct task_struct *scan_thread;
+static unsigned long jiffies_scan_yield;
+static unsigned long jiffies_min_age;
+/* delay between automatic memory scannings */
+static signed long jiffies_scan_wait;
+/* enables or disables the task stacks scanning */
+static int kmemleak_stack_scan;
+/* mutex protecting the memory scanning */
+static DEFINE_MUTEX(scan_mutex);
+/* mutex protecting the access to the /sys/kernel/debug/kmemleak file */
+static DEFINE_MUTEX(kmemleak_mutex);
+
+/* number of leaks reported (for limitation purposes) */
+static int reported_leaks;
+
+/*
+ * Early object allocation/freeing logging. Kkmemleak is initialized after the
+ * kernel allocator. However, both the kernel allocator and kmemleak may
+ * allocate memory blocks which need to be tracked. Kkmemleak defines an
+ * arbitrary buffer to hold the allocation/freeing information before it is
+ * fully initialized.
+ */
+
+/* kmemleak operation type for early logging */
+enum {
+ KMEMLEAK_ALLOC,
+ KMEMLEAK_FREE,
+ KMEMLEAK_NOT_LEAK,
+ KMEMLEAK_IGNORE,
+ KMEMLEAK_SCAN_AREA,
+ KMEMLEAK_NO_SCAN
+};
+
+/*
+ * Structure holding the information passed to kmemleak callbacks during the
+ * early logging.
+ */
+struct early_log {
+ int op_type; /* kmemleak operation type */
+ const void *ptr; /* allocated/freed memory block */
+ size_t size; /* memory block size */
+ int min_count; /* minimum reference count */
+ unsigned long offset; /* scan area offset */
+ size_t length; /* scan area length */
+};
+
+/* early logging buffer and current position */
+static struct early_log early_log[200];
+static int crt_early_log;
+
+static void kmemleak_disable(void);
+
+/*
+ * Print a warning and dump the stack trace.
+ */
+#define kmemleak_warn(x...) do { \
+ pr_warning(x); \
+ dump_stack(); \
+} while (0)
+
+/*
+ * Macro invoked when a serious kmemleak condition occured and cannot be
+ * recovered from. Kkmemleak will be disabled and further allocation/freeing
+ * tracing no longer available.
+ */
+#define kmemleak_panic(x...) do { \
+ kmemleak_warn(x); \
+ kmemleak_disable(); \
+} while (0)
+
+/*
+ * Object colors, encoded with count and min_count:
+ * - white - orphan object, not enough references to it (count < min_count)
+ * - gray - not orphan, not marked as false positive (min_count == 0) or
+ * sufficient references to it (count >= min_count)
+ * - black - ignore, it doesn't contain references (e.g. text section)
+ * (min_count == -1). No function defined for this color.
+ * Newly created objects don't have any color assigned (object->count == -1)
+ * before the next memory scan when they become white.
+ */
+static int color_white(const struct kmemleak_object *object)
+{
+ return object->count != -1 && object->count < object->min_count;
+}
+
+static int color_gray(const struct kmemleak_object *object)
+{
+ return object->min_count != -1 && object->count >= object->min_count;
+}
+
+/*
+ * Objects are considered referenced if their color is gray and they have not
+ * been deleted.
+ */
+static int referenced_object(struct kmemleak_object *object)
+{
+ return (object->flags & OBJECT_ALLOCATED) && color_gray(object);
+}
+
+/*
+ * Objects are considered unreferenced only if their color is white, they have
+ * not be deleted and have a minimum age to avoid false positives caused by
+ * pointers temporarily stored in CPU registers.
+ */
+static int unreferenced_object(struct kmemleak_object *object)
+{
+ return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
+ time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
+}
+
+/*
+ * Printing of the (un)referenced objects information, either to the seq file
+ * or to the kernel log. The print_referenced/print_unreferenced functions
+ * must be called with the object->lock held.
+ */
+#define print_helper(seq, x...) do { \
+ struct seq_file *s = (seq); \
+ if (s) \
+ seq_printf(s, x); \
+ else \
+ pr_info(x); \
+} while (0)
+
+static void print_referenced(struct kmemleak_object *object)
+{
+ pr_info("kmemleak: referenced object 0x%08lx (size %zu)\n",
+ object->pointer, object->size);
+}
+
+static void print_unreferenced(struct seq_file *seq,
+ struct kmemleak_object *object)
+{
+ int i;
+
+ print_helper(seq, "kmemleak: unreferenced object 0x%08lx (size %zu):\n",
+ object->pointer, object->size);
+ print_helper(seq, " comm \"%s\", pid %d, jiffies %lu\n",
+ object->comm, object->pid, object->jiffies);
+ print_helper(seq, " backtrace:\n");
+
+ for (i = 0; i < object->trace_len; i++) {
+ void *ptr = (void *)object->trace[i];
+ print_helper(seq, " [<%p>] %pS\n", ptr, ptr);
+ }
+}
+
+/*
+ * Print the kmemleak_object information. This function is used mainly for
+ * debugging special cases when kmemleak operations. It must be called with
+ * the object->lock held.
+ */
+static void dump_object_info(struct kmemleak_object *object)
+{
+ struct stack_trace trace;
+
+ trace.nr_entries = object->trace_len;
+ trace.entries = object->trace;
+
+ pr_notice("kmemleak: Object 0x%08lx (size %zu):\n",
+ object->tree_node.start, object->size);
+ pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
+ object->comm, object->pid, object->jiffies);
+ pr_notice(" min_count = %d\n", object->min_count);
+ pr_notice(" count = %d\n", object->count);
+ pr_notice(" backtrace:\n");
+ print_stack_trace(&trace, 4);
+}
+
+/*
+ * Look-up a memory block metadata (kmemleak_object) in the priority search
+ * tree based on a pointer value. If alias is 0, only values pointing to the
+ * beginning of the memory block are allowed. The kmemleak_lock must be held
+ * when calling this function.
+ */
+static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
+{
+ struct prio_tree_node *node;
+ struct prio_tree_iter iter;
+ struct kmemleak_object *object;
+
+ prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
+ node = prio_tree_next(&iter);
+ if (node) {
+ object = prio_tree_entry(node, struct kmemleak_object,
+ tree_node);
+ if (!alias && object->pointer != ptr) {
+ kmemleak_warn("kmemleak: Found object by alias");
+ object = NULL;
+ }
+ } else
+ object = NULL;
+
+ return object;
+}
+
+/*
+ * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
+ * that once an object's use_count reached 0, the RCU freeing was already
+ * registered and the object should no longer be used. This function must be
+ * called under the protection of rcu_read_lock().
+ */
+static int get_object(struct kmemleak_object *object)
+{
+ return atomic_inc_not_zero(&object->use_count);
+}
+
+/*
+ * RCU callback to free a kmemleak_object.
+ */
+static void free_object_rcu(struct rcu_head *rcu)
+{
+ struct hlist_node *elem, *tmp;
+ struct kmemleak_scan_area *area;
+ struct kmemleak_object *object =
+ container_of(rcu, struct kmemleak_object, rcu);
+
+ /*
+ * Once use_count is 0 (guaranteed by put_object), there is no other
+ * code accessing this object, hence no need for locking.
+ */
+ hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
+ hlist_del(elem);
+ kmem_cache_free(scan_area_cache, area);
+ }
+ kmem_cache_free(object_cache, object);
+}
+
+/*
+ * Decrement the object use_count. Once the count is 0, free the object using
+ * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
+ * delete_object() path, the delayed RCU freeing ensures that there is no
+ * recursive call to the kernel allocator. Lock-less RCU object_list traversal
+ * is also possible.
+ */
+static void put_object(struct kmemleak_object *object)
+{
+ if (!atomic_dec_and_test(&object->use_count))
+ return;
+
+ /* should only get here after delete_object was called */
+ WARN_ON(object->flags & OBJECT_ALLOCATED);
+
+ call_rcu(&object->rcu, free_object_rcu);
+}
+
+/*
+ * Look up an object in the prio search tree and increase its use_count.
+ */
+static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
+{
+ unsigned long flags;
+ struct kmemleak_object *object = NULL;
+
+ rcu_read_lock();
+ read_lock_irqsave(&kmemleak_lock, flags);
+ if (ptr >= min_addr && ptr < max_addr)
+ object = lookup_object(ptr, alias);
+ read_unlock_irqrestore(&kmemleak_lock, flags);
+
+ /* check whether the object is still available */
+ if (object && !get_object(object))
+ object = NULL;
+ rcu_read_unlock();
+
+ return object;
+}
+
+/*
+ * Create the metadata (struct kmemleak_object) corresponding to an allocated
+ * memory block and add it to the object_list and object_tree_root.
+ */
+static void create_object(unsigned long ptr, size_t size, int min_count,
+ gfp_t gfp)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+ struct prio_tree_node *node;
+ struct stack_trace trace;
+
+ object = kmem_cache_alloc(object_cache, gfp & ~GFP_SLAB_BUG_MASK);
+ if (!object) {
+ kmemleak_panic("kmemleak: Cannot allocate a kmemleak_object "
+ "structure\n");
+ return;
+ }
+
+ INIT_LIST_HEAD(&object->object_list);
+ INIT_LIST_HEAD(&object->gray_list);
+ INIT_HLIST_HEAD(&object->area_list);
+ spin_lock_init(&object->lock);
+ atomic_set(&object->use_count, 1);
+ object->flags = OBJECT_ALLOCATED;
+ object->pointer = ptr;
+ object->size = size;
+ object->min_count = min_count;
+ object->count = -1; /* no color initially */
+ object->jiffies = jiffies;
+
+ /* task information */
+ if (in_irq()) {
+ object->pid = 0;
+ strncpy(object->comm, "hardirq", sizeof(object->comm));
+ } else if (in_softirq()) {
+ object->pid = 0;
+ strncpy(object->comm, "softirq", sizeof(object->comm));
+ } else {
+ object->pid = current->pid;
+ /*
+ * There is a small chance of a race with set_task_comm(),
+ * however using get_task_comm() here may cause locking
+ * dependency issues with current->alloc_lock. In the worst
+ * case, the command line is not correct.
+ */
+ strncpy(object->comm, current->comm, sizeof(object->comm));
+ }
+
+ /* kernel backtrace */
+ trace.max_entries = MAX_TRACE;
+ trace.nr_entries = 0;
+ trace.entries = object->trace;
+ trace.skip = 1;
+ save_stack_trace(&trace);
+ object->trace_len = trace.nr_entries;
+
+ INIT_PRIO_TREE_NODE(&object->tree_node);
+ object->tree_node.start = ptr;
+ object->tree_node.last = ptr + size - 1;
+
+ write_lock_irqsave(&kmemleak_lock, flags);
+ min_addr = min(min_addr, ptr);
+ max_addr = max(max_addr, ptr + size);
+ node = prio_tree_insert(&object_tree_root, &object->tree_node);
+ /*
+ * The code calling the kernel does not yet have the pointer to the
+ * memory block to be able to free it. However, we still hold the
+ * kmemleak_lock here in case parts of the kernel started freeing
+ * random memory blocks.
+ */
+ if (node != &object->tree_node) {
+ unsigned long flags;
+
+ kmemleak_panic("kmemleak: Cannot insert 0x%lx into the object "
+ "search tree (already existing)\n", ptr);
+ object = lookup_object(ptr, 1);
+ spin_lock_irqsave(&object->lock, flags);
+ dump_object_info(object);
+ spin_unlock_irqrestore(&object->lock, flags);
+
+ goto out;
+ }
+ list_add_tail_rcu(&object->object_list, &object_list);
+out:
+ write_unlock_irqrestore(&kmemleak_lock, flags);
+}
+
+/*
+ * Remove the metadata (struct kmemleak_object) for a memory block from the
+ * object_list and object_tree_root and decrement its use_count.
+ */
+static void delete_object(unsigned long ptr)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+
+ write_lock_irqsave(&kmemleak_lock, flags);
+ object = lookup_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Freeing unknown object at 0x%08lx\n",
+ ptr);
+ write_unlock_irqrestore(&kmemleak_lock, flags);
+ return;
+ }
+ prio_tree_remove(&object_tree_root, &object->tree_node);
+ list_del_rcu(&object->object_list);
+ write_unlock_irqrestore(&kmemleak_lock, flags);
+
+ WARN_ON(!(object->flags & OBJECT_ALLOCATED));
+ WARN_ON(atomic_read(&object->use_count) < 1);
+
+ /*
+ * Locking here also ensures that the corresponding memory block
+ * cannot be freed when it is being scanned.
+ */
+ spin_lock_irqsave(&object->lock, flags);
+ if (object->flags & OBJECT_REPORTED)
+ print_referenced(object);
+ object->flags &= ~OBJECT_ALLOCATED;
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+}
+
+/*
+ * Make a object permanently as gray-colored so that it can no longer be
+ * reported as a leak. This is used in general to mark a false positive.
+ */
+static void make_gray_object(unsigned long ptr)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+
+ object = find_and_get_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Graying unknown object at 0x%08lx\n",
+ ptr);
+ return;
+ }
+
+ spin_lock_irqsave(&object->lock, flags);
+ object->min_count = 0;
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+}
+
+/*
+ * Mark the object as black-colored so that it is ignored from scans and
+ * reporting.
+ */
+static void make_black_object(unsigned long ptr)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+
+ object = find_and_get_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Blacking unknown object at 0x%08lx\n",
+ ptr);
+ return;
+ }
+
+ spin_lock_irqsave(&object->lock, flags);
+ object->min_count = -1;
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+}
+
+/*
+ * Add a scanning area to the object. If at least one such area is added,
+ * kmemleak will only scan these ranges rather than the whole memory block.
+ */
+static void add_scan_area(unsigned long ptr, unsigned long offset,
+ size_t length, gfp_t gfp)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+ struct kmemleak_scan_area *area;
+
+ object = find_and_get_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Adding scan area to unknown "
+ "object at 0x%08lx\n", ptr);
+ return;
+ }
+
+ area = kmem_cache_alloc(scan_area_cache, gfp & ~GFP_SLAB_BUG_MASK);
+ if (!area) {
+ kmemleak_warn("kmemleak: Cannot allocate a scan area\n");
+ goto out;
+ }
+
+ spin_lock_irqsave(&object->lock, flags);
+ if (offset + length > object->size) {
+ kmemleak_warn("kmemleak: Scan area larger than object "
+ "0x%08lx\n", ptr);
+ dump_object_info(object);
+ kmem_cache_free(scan_area_cache, area);
+ goto out_unlock;
+ }
+
+ INIT_HLIST_NODE(&area->node);
+ area->offset = offset;
+ area->length = length;
+
+ hlist_add_head(&area->node, &object->area_list);
+out_unlock:
+ spin_unlock_irqrestore(&object->lock, flags);
+out:
+ put_object(object);
+}
+
+/*
+ * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
+ * pointer. Such object will not be scanned by kmemleak but references to it
+ * are searched.
+ */
+static void object_no_scan(unsigned long ptr)
+{
+ unsigned long flags;
+ struct kmemleak_object *object;
+
+ object = find_and_get_object(ptr, 0);
+ if (!object) {
+ kmemleak_warn("kmemleak: Not scanning unknown object at "
+ "0x%08lx\n", ptr);
+ return;
+ }
+
+ spin_lock_irqsave(&object->lock, flags);
+ object->flags |= OBJECT_NO_SCAN;
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+}
+
+/*
+ * Log an early kmemleak_* call to the early_log buffer. These calls will be
+ * processed later once kmemleak is fully initialized.
+ */
+static void log_early(int op_type, const void *ptr, size_t size,
+ int min_count, unsigned long offset, size_t length)
+{
+ unsigned long flags;
+ struct early_log *log;
+
+ if (crt_early_log >= ARRAY_SIZE(early_log)) {
+ kmemleak_panic("kmemleak: Early log buffer exceeded\n");
+ return;
+ }
+
+ /*
+ * There is no need for locking since the kernel is still in UP mode
+ * at this stage. Disabling the IRQs is enough.
+ */
+ local_irq_save(flags);
+ log = &early_log[crt_early_log];
+ log->op_type = op_type;
+ log->ptr = ptr;
+ log->size = size;
+ log->min_count = min_count;
+ log->offset = offset;
+ log->length = length;
+ crt_early_log++;
+ local_irq_restore(flags);
+}
+
+/*
+ * Memory allocation function callback. This function is called from the
+ * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
+ * vmalloc etc.).
+ */
+void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
+{
+ pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ create_object((unsigned long)ptr, size, min_count, gfp);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
+}
+EXPORT_SYMBOL_GPL(kmemleak_alloc);
+
+/*
+ * Memory freeing function callback. This function is called from the kernel
+ * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
+ */
+void kmemleak_free(const void *ptr)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ delete_object((unsigned long)ptr);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
+}
+EXPORT_SYMBOL_GPL(kmemleak_free);
+
+/*
+ * Mark an already allocated memory block as a false positive. This will cause
+ * the block to no longer be reported as leak and always be scanned.
+ */
+void kmemleak_not_leak(const void *ptr)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ make_gray_object((unsigned long)ptr);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
+}
+EXPORT_SYMBOL(kmemleak_not_leak);
+
+/*
+ * Ignore a memory block. This is usually done when it is known that the
+ * corresponding block is not a leak and does not contain any references to
+ * other allocated memory blocks.
+ */
+void kmemleak_ignore(const void *ptr)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ make_black_object((unsigned long)ptr);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
+}
+EXPORT_SYMBOL(kmemleak_ignore);
+
+/*
+ * Limit the range to be scanned in an allocated memory block.
+ */
+void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
+ gfp_t gfp)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ add_scan_area((unsigned long)ptr, offset, length, gfp);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
+}
+EXPORT_SYMBOL(kmemleak_scan_area);
+
+/*
+ * Inform kmemleak not to scan the given memory block.
+ */
+void kmemleak_no_scan(const void *ptr)
+{
+ pr_debug("%s(0x%p)\n", __func__, ptr);
+
+ if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
+ object_no_scan((unsigned long)ptr);
+ else if (atomic_read(&kmemleak_early_log))
+ log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
+}
+EXPORT_SYMBOL(kmemleak_no_scan);
+
+/*
+ * Yield the CPU so that other tasks get a chance to run. The yielding is
+ * rate-limited to avoid excessive number of calls to the schedule() function
+ * during memory scanning.
+ */
+static void scan_yield(void)
+{
+ might_sleep();
+
+ if (time_is_before_eq_jiffies(next_scan_yield)) {
+ schedule();
+ next_scan_yield = jiffies + jiffies_scan_yield;
+ }
+}
+
+/*
+ * Memory scanning is a long process and it needs to be interruptable. This
+ * function checks whether such interrupt condition occured.
+ */
+static int scan_should_stop(void)
+{
+ if (!atomic_read(&kmemleak_enabled))
+ return 1;
+
+ /*
+ * This function may be called from either process or kthread context,
+ * hence the need to check for both stop conditions.
+ */
+ if (current->mm)
+ return signal_pending(current);
+ else
+ return kthread_should_stop();
+
+ return 0;
+}
+
+/*
+ * Scan a memory block (exclusive range) for valid pointers and add those
+ * found to the gray list.
+ */
+static void scan_block(void *_start, void *_end,
+ struct kmemleak_object *scanned)
+{
+ unsigned long *ptr;
+ unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
+ unsigned long *end = _end - (BYTES_PER_POINTER - 1);
+
+ for (ptr = start; ptr < end; ptr++) {
+ unsigned long flags;
+ unsigned long pointer = *ptr;
+ struct kmemleak_object *object;
+
+ if (scan_should_stop())
+ break;
+
+ /*
+ * When scanning a memory block with a corresponding
+ * kmemleak_object, the CPU yielding is handled in the calling
+ * code since it holds the object->lock to avoid the block
+ * freeing.
+ */
+ if (!scanned)
+ scan_yield();
+
+ object = find_and_get_object(pointer, 1);
+ if (!object)
+ continue;
+ if (object == scanned) {
+ /* self referenced, ignore */
+ put_object(object);
+ continue;
+ }
+
+ /*
+ * Avoid the lockdep recursive warning on object->lock being
+ * previously acquired in scan_object(). These locks are
+ * enclosed by scan_mutex.
+ */
+ spin_lock_irqsave_nested(&object->lock, flags,
+ SINGLE_DEPTH_NESTING);
+ if (!color_white(object)) {
+ /* non-orphan, ignored or new */
+ spin_unlock_irqrestore(&object->lock, flags);
+ put_object(object);
+ continue;
+ }
+
+ /*
+ * Increase the object's reference count (number of pointers
+ * to the memory block). If this count reaches the required
+ * minimum, the object's color will become gray and it will be
+ * added to the gray_list.
+ */
+ object->count++;
+ if (color_gray(object))
+ list_add_tail(&object->gray_list, &gray_list);
+ else
+ put_object(object);
+ spin_unlock_irqrestore(&object->lock, flags);
+ }
+}
+
+/*
+ * Scan a memory block corresponding to a kmemleak_object. A condition is
+ * that object->use_count >= 1.
+ */
+static void scan_object(struct kmemleak_object *object)
+{
+ struct kmemleak_scan_area *area;
+ struct hlist_node *elem;
+ unsigned long flags;
+
+ /*
+ * Once the object->lock is aquired, the corresponding memory block
+ * cannot be freed (the same lock is aquired in delete_object).
+ */
+ spin_lock_irqsave(&object->lock, flags);
+ if (object->flags & OBJECT_NO_SCAN)
+ goto out;
+ if (!(object->flags & OBJECT_ALLOCATED))
+ /* already freed object */
+ goto out;
+ if (hlist_empty(&object->area_list))
+ scan_block((void *)object->pointer,
+ (void *)(object->pointer + object->size), object);
+ else
+ hlist_for_each_entry(area, elem, &object->area_list, node)
+ scan_block((void *)(object->pointer + area->offset),
+ (void *)(object->pointer + area->offset
+ + area->length), object);
+out:
+ spin_unlock_irqrestore(&object->lock, flags);
+}
+
+/*
+ * Scan data sections and all the referenced memory blocks allocated via the
+ * kernel's standard allocators. This function must be called with the
+ * scan_mutex held.
+ */
+static void kmemleak_scan(void)
+{
+ unsigned long flags;
+ struct kmemleak_object *object, *tmp;
+ struct task_struct *task;
+ int i;
+
+ /* prepare the kmemleak_object's */
+ rcu_read_lock();
+ list_for_each_entry_rcu(object, &object_list, object_list) {
+ spin_lock_irqsave(&object->lock, flags);
+#ifdef DEBUG
+ /*
+ * With a few exceptions there should be a maximum of
+ * 1 reference to any object at this point.
+ */
+ if (atomic_read(&object->use_count) > 1) {
+ pr_debug("kmemleak: object->use_count = %d\n",
+ atomic_read(&object->use_count));
+ dump_object_info(object);
+ }
+#endif
+ /* reset the reference count (whiten the object) */
+ object->count = 0;
+ if (color_gray(object) && get_object(object))
+ list_add_tail(&object->gray_list, &gray_list);
+
+ spin_unlock_irqrestore(&object->lock, flags);
+ }
+ rcu_read_unlock();
+
+ /* data/bss scanning */
+ scan_block(_sdata, _edata, NULL);
+ scan_block(__bss_start, __bss_stop, NULL);
+
+#ifdef CONFIG_SMP
+ /* per-cpu sections scanning */
+ for_each_possible_cpu(i)
+ scan_block(__per_cpu_start + per_cpu_offset(i),
+ __per_cpu_end + per_cpu_offset(i), NULL);
+#endif
+
+ /*
+ * Struct page scanning for each node. The code below is not yet safe
+ * with MEMORY_HOTPLUG.
+ */
+ for_each_online_node(i) {
+ pg_data_t *pgdat = NODE_DATA(i);
+ unsigned long start_pfn = pgdat->node_start_pfn;
+ unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
+ unsigned long pfn;
+
+ for (pfn = start_pfn; pfn < end_pfn; pfn++) {
+ struct page *page;
+
+ if (!pfn_valid(pfn))
+ continue;
+ page = pfn_to_page(pfn);
+ /* only scan if page is in use */
+ if (page_count(page) == 0)
+ continue;
+ scan_block(page, page + 1, NULL);
+ }
+ }
+
+ /*
+ * Scanning the task stacks may introduce false negatives and it is
+ * not enabled by default.
+ */
+ if (kmemleak_stack_scan) {
+ read_lock(&tasklist_lock);
+ for_each_process(task)
+ scan_block(task_stack_page(task),
+ task_stack_page(task) + THREAD_SIZE, NULL);
+ read_unlock(&tasklist_lock);
+ }
+
+ /*
+ * Scan the objects already referenced from the sections scanned
+ * above. More objects will be referenced and, if there are no memory
+ * leaks, all the objects will be scanned. The list traversal is safe
+ * for both tail additions and removals from inside the loop. The
+ * kmemleak objects cannot be freed from outside the loop because their
+ * use_count was increased.
+ */
+ object = list_entry(gray_list.next, typeof(*object), gray_list);
+ while (&object->gray_list != &gray_list) {
+ scan_yield();
+
+ /* may add new objects to the list */
+ if (!scan_should_stop())
+ scan_object(object);
+
+ tmp = list_entry(object->gray_list.next, typeof(*object),
+ gray_list);
+
+ /* remove the object from the list and release it */
+ list_del(&object->gray_list);
+ put_object(object);
+
+ object = tmp;
+ }
+ WARN_ON(!list_empty(&gray_list));
+}
+
+/*
+ * Thread function performing automatic memory scanning. Unreferenced objects
+ * at the end of a memory scan are reported but only the first time.
+ */
+static int kmemleak_scan_thread(void *arg)
+{
+ static int first_run = 1;
+
+ pr_info("kmemleak: Automatic memory scanning thread started\n");
+
+ /*
+ * Wait before the first scan to allow the system to fully initialize.
+ */
+ if (first_run) {
+ first_run = 0;
+ ssleep(SECS_FIRST_SCAN);
+ }
+
+ while (!kthread_should_stop()) {
+ struct kmemleak_object *object;
+ signed long timeout = jiffies_scan_wait;
+
+ mutex_lock(&scan_mutex);
+
+ kmemleak_scan();
+ reported_leaks = 0;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(object, &object_list, object_list) {
+ unsigned long flags;
+
+ if (reported_leaks >= REPORTS_NR)
+ break;
+ spin_lock_irqsave(&object->lock, flags);
+ if (!(object->flags & OBJECT_REPORTED) &&
+ unreferenced_object(object)) {
+ print_unreferenced(NULL, object);
+ object->flags |= OBJECT_REPORTED;
+ reported_leaks++;
+ } else if ((object->flags & OBJECT_REPORTED) &&
+ referenced_object(object)) {
+ print_referenced(object);
+ object->flags &= ~OBJECT_REPORTED;
+ }
+ spin_unlock_irqrestore(&object->lock, flags);
+ }
+ rcu_read_unlock();
+
+ mutex_unlock(&scan_mutex);
+ /* wait before the next scan */
+ while (timeout && !kthread_should_stop())
+ timeout = schedule_timeout_interruptible(timeout);
+ }
+
+ pr_info("kmemleak: Automatic memory scanning thread ended\n");
+
+ return 0;
+}
+
+/*
+ * Start the automatic memory scanning thread. This function must be called
+ * with the kmemleak_mutex held.
+ */
+void start_scan_thread(void)
+{
+ if (scan_thread)
+ return;
+ scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
+ if (IS_ERR(scan_thread)) {
+ pr_warning("kmemleak: Failed to create the scan thread\n");
+ scan_thread = NULL;
+ }
+}
+
+/*
+ * Stop the automatic memory scanning thread. This function must be called
+ * with the kmemleak_mutex held.
+ */
+void stop_scan_thread(void)
+{
+ if (scan_thread) {
+ kthread_stop(scan_thread);
+ scan_thread = NULL;
+ }
+}
+
+/*
+ * Iterate over the object_list and return the first valid object at or after
+ * the required position with its use_count incremented. The function triggers
+ * a memory scanning when the pos argument points to the first position.
+ */
+static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct kmemleak_object *object;
+ loff_t n = *pos;
+
+ if (!n) {
+ kmemleak_scan();
+ reported_leaks = 0;
+ }
+ if (reported_leaks >= REPORTS_NR)
+ return NULL;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(object, &object_list, object_list) {
+ if (n-- > 0)
+ continue;
+ if (get_object(object))
+ goto out;
+ }
+ object = NULL;
+out:
+ rcu_read_unlock();
+ return object;
+}
+
+/*
+ * Return the next object in the object_list. The function decrements the
+ * use_count of the previous object and increases that of the next one.
+ */
+static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct kmemleak_object *prev_obj = v;
+ struct kmemleak_object *next_obj = NULL;
+ struct list_head *n = &prev_obj->object_list;
+
+ ++(*pos);
+ if (reported_leaks >= REPORTS_NR)
+ goto out;
+
+ rcu_read_lock();
+ list_for_each_continue_rcu(n, &object_list) {
+ next_obj = list_entry(n, struct kmemleak_object, object_list);
+ if (get_object(next_obj))
+ break;
+ }
+ rcu_read_unlock();
+out:
+ put_object(prev_obj);
+ return next_obj;
+}
+
+/*
+ * Decrement the use_count of the last object required, if any.
+ */
+static void kmemleak_seq_stop(struct seq_file *seq, void *v)
+{
+ if (v)
+ put_object(v);
+}
+
+/*
+ * Print the information for an unreferenced object to the seq file.
+ */
+static int kmemleak_seq_show(struct seq_file *seq, void *v)
+{
+ struct kmemleak_object *object = v;
+ unsigned long flags;
+
+ spin_lock_irqsave(&object->lock, flags);
+ if (!unreferenced_object(object))
+ goto out;
+ print_unreferenced(seq, object);
+ reported_leaks++;
+out:
+ spin_unlock_irqrestore(&object->lock, flags);
+ return 0;
+}
+
+static const struct seq_operations kmemleak_seq_ops = {
+ .start = kmemleak_seq_start,
+ .next = kmemleak_seq_next,
+ .stop = kmemleak_seq_stop,
+ .show = kmemleak_seq_show,
+};
+
+static int kmemleak_open(struct inode *inode, struct file *file)
+{
+ int ret = 0;
+
+ if (!atomic_read(&kmemleak_enabled))
+ return -EBUSY;
+
+ ret = mutex_lock_interruptible(&kmemleak_mutex);
+ if (ret < 0)
+ goto out;
+ if (file->f_mode & FMODE_READ) {
+ ret = mutex_lock_interruptible(&scan_mutex);
+ if (ret < 0)
+ goto kmemleak_unlock;
+ ret = seq_open(file, &kmemleak_seq_ops);
+ if (ret < 0)
+ goto scan_unlock;
+ }
+ return ret;
+
+scan_unlock:
+ mutex_unlock(&scan_mutex);
+kmemleak_unlock:
+ mutex_unlock(&kmemleak_mutex);
+out:
+ return ret;
+}
+
+static int kmemleak_release(struct inode *inode, struct file *file)
+{
+ int ret = 0;
+
+ if (file->f_mode & FMODE_READ) {
+ seq_release(inode, file);
+ mutex_unlock(&scan_mutex);
+ }
+ mutex_unlock(&kmemleak_mutex);
+
+ return ret;
+}
+
+/*
+ * File write operation to configure kmemleak at run-time. The following
+ * commands can be written to the /sys/kernel/debug/kmemleak file:
+ * off - disable kmemleak (irreversible)
+ * stack=on - enable the task stacks scanning
+ * stack=off - disable the tasks stacks scanning
+ * scan=on - start the automatic memory scanning thread
+ * scan=off - stop the automatic memory scanning thread
+ * scan=... - set the automatic memory scanning period in seconds (0 to
+ * disable it)
+ */
+static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
+ size_t size, loff_t *ppos)
+{
+ char buf[64];
+ int buf_size;
+
+ if (!atomic_read(&kmemleak_enabled))
+ return -EBUSY;
+
+ buf_size = min(size, (sizeof(buf) - 1));
+ if (strncpy_from_user(buf, user_buf, buf_size) < 0)
+ return -EFAULT;
+ buf[buf_size] = 0;
+
+ if (strncmp(buf, "off", 3) == 0)
+ kmemleak_disable();
+ else if (strncmp(buf, "stack=on", 8) == 0)
+ kmemleak_stack_scan = 1;
+ else if (strncmp(buf, "stack=off", 9) == 0)
+ kmemleak_stack_scan = 0;
+ else if (strncmp(buf, "scan=on", 7) == 0)
+ start_scan_thread();
+ else if (strncmp(buf, "scan=off", 8) == 0)
+ stop_scan_thread();
+ else if (strncmp(buf, "scan=", 5) == 0) {
+ unsigned long secs;
+ int err;
+
+ err = strict_strtoul(buf + 5, 0, &secs);
+ if (err < 0)
+ return err;
+ stop_scan_thread();
+ if (secs) {
+ jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
+ start_scan_thread();
+ }
+ } else
+ return -EINVAL;
+
+ /* ignore the rest of the buffer, only one command at a time */
+ *ppos += size;
+ return size;
+}
+
+static const struct file_operations kmemleak_fops = {
+ .owner = THIS_MODULE,
+ .open = kmemleak_open,
+ .read = seq_read,
+ .write = kmemleak_write,
+ .llseek = seq_lseek,
+ .release = kmemleak_release,
+};
+
+/*
+ * Perform the freeing of the kmemleak internal objects after waiting for any
+ * current memory scan to complete.
+ */
+static int kmemleak_cleanup_thread(void *arg)
+{
+ struct kmemleak_object *object;
+
+ mutex_lock(&kmemleak_mutex);
+ stop_scan_thread();
+ mutex_unlock(&kmemleak_mutex);
+
+ mutex_lock(&scan_mutex);
+ rcu_read_lock();
+ list_for_each_entry_rcu(object, &object_list, object_list)
+ delete_object(object->pointer);
+ rcu_read_unlock();
+ mutex_unlock(&scan_mutex);
+
+ return 0;
+}
+
+/*
+ * Start the clean-up thread.
+ */
+static void kmemleak_cleanup(void)
+{
+ struct task_struct *cleanup_thread;
+
+ cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
+ "kmemleak-clean");
+ if (IS_ERR(cleanup_thread))
+ pr_warning("kmemleak: Failed to create the clean-up thread\n");
+}
+
+/*
+ * Disable kmemleak. No memory allocation/freeing will be traced once this
+ * function is called. Disabling kmemleak is an irreversible operation.
+ */
+static void kmemleak_disable(void)
+{
+ /* atomically check whether it was already invoked */
+ if (atomic_cmpxchg(&kmemleak_error, 0, 1))
+ return;
+
+ /* stop any memory operation tracing */
+ atomic_set(&kmemleak_early_log, 0);
+ atomic_set(&kmemleak_enabled, 0);
+
+ /* check whether it is too early for a kernel thread */
+ if (atomic_read(&kmemleak_initialized))
+ kmemleak_cleanup();
+
+ pr_info("Kernel memory leak detector disabled\n");
+}
+
+/*
+ * Allow boot-time kmemleak disabling (enabled by default).
+ */
+static int kmemleak_boot_config(char *str)
+{
+ if (!str)
+ return -EINVAL;
+ if (strcmp(str, "off") == 0)
+ kmemleak_disable();
+ else if (strcmp(str, "on") != 0)
+ return -EINVAL;
+ return 0;
+}
+early_param("kmemleak", kmemleak_boot_config);
+
+/*
+ * Kkmemleak initialization.
+ */
+void __init kmemleak_init(void)
+{
+ int i;
+ unsigned long flags;
+
+ jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
+ jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
+ jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
+
+ object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
+ scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
+ INIT_PRIO_TREE_ROOT(&object_tree_root);
+
+ /* the kernel is still in UP mode, so disabling the IRQs is enough */
+ local_irq_save(flags);
+ if (!atomic_read(&kmemleak_error)) {
+ atomic_set(&kmemleak_enabled, 1);
+ atomic_set(&kmemleak_early_log, 0);
+ }
+ local_irq_restore(flags);
+
+ /*
+ * This is the point where tracking allocations is safe. Automatic
+ * scanning is started during the late initcall. Add the early logged
+ * callbacks to the kmemleak infrastructure.
+ */
+ for (i = 0; i < crt_early_log; i++) {
+ struct early_log *log = &early_log[i];
+
+ switch (log->op_type) {
+ case KMEMLEAK_ALLOC:
+ kmemleak_alloc(log->ptr, log->size, log->min_count,
+ GFP_KERNEL);
+ break;
+ case KMEMLEAK_FREE:
+ kmemleak_free(log->ptr);
+ break;
+ case KMEMLEAK_NOT_LEAK:
+ kmemleak_not_leak(log->ptr);
+ break;
+ case KMEMLEAK_IGNORE:
+ kmemleak_ignore(log->ptr);
+ break;
+ case KMEMLEAK_SCAN_AREA:
+ kmemleak_scan_area(log->ptr, log->offset, log->length,
+ GFP_KERNEL);
+ break;
+ case KMEMLEAK_NO_SCAN:
+ kmemleak_no_scan(log->ptr);
+ break;
+ default:
+ WARN_ON(1);
+ }
+ }
+}
+
+/*
+ * Late initialization function.
+ */
+static int __init kmemleak_late_init(void)
+{
+ struct dentry *dentry;
+
+ atomic_set(&kmemleak_initialized, 1);
+
+ if (atomic_read(&kmemleak_error)) {
+ /*
+ * Some error occured and kmemleak was disabled. There is a
+ * small chance that kmemleak_disable() was called immediately
+ * after setting kmemleak_initialized and we may end up with
+ * two clean-up threads but serialized by scan_mutex.
+ */
+ kmemleak_cleanup();
+ return -ENOMEM;
+ }
+
+ dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
+ &kmemleak_fops);
+ if (!dentry)
+ pr_warning("kmemleak: Failed to create the debugfs kmemleak "
+ "file\n");
+ mutex_lock(&kmemleak_mutex);
+ start_scan_thread();
+ mutex_unlock(&kmemleak_mutex);
+
+ pr_info("Kernel memory leak detector initialized\n");
+
+ return 0;
+}
+late_initcall(kmemleak_late_init);
diff --git a/mm/maccess.c b/mm/maccess.c
index ac40796cfb15..9073695ff25f 100644
--- a/mm/maccess.c
+++ b/mm/maccess.c
@@ -39,7 +39,7 @@ EXPORT_SYMBOL_GPL(probe_kernel_read);
* Safely write to address @dst from the buffer at @src. If a kernel fault
* happens, handle that and return -EFAULT.
*/
-long probe_kernel_write(void *dst, void *src, size_t size)
+long notrace __weak probe_kernel_write(void *dst, void *src, size_t size)
{
long ret;
mm_segment_t old_fs = get_fs();
diff --git a/mm/madvise.c b/mm/madvise.c
index b9ce574827c8..76eb4193acdd 100644
--- a/mm/madvise.c
+++ b/mm/madvise.c
@@ -123,8 +123,7 @@ static long madvise_willneed(struct vm_area_struct * vma,
end = vma->vm_end;
end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
- force_page_cache_readahead(file->f_mapping,
- file, start, max_sane_readahead(end - start));
+ force_page_cache_readahead(file->f_mapping, file, start, end - start);
return 0;
}
@@ -239,12 +238,30 @@ madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
break;
default:
- error = -EINVAL;
+ BUG();
break;
}
return error;
}
+static int
+madvise_behavior_valid(int behavior)
+{
+ switch (behavior) {
+ case MADV_DOFORK:
+ case MADV_DONTFORK:
+ case MADV_NORMAL:
+ case MADV_SEQUENTIAL:
+ case MADV_RANDOM:
+ case MADV_REMOVE:
+ case MADV_WILLNEED:
+ case MADV_DONTNEED:
+ return 1;
+
+ default:
+ return 0;
+ }
+}
/*
* The madvise(2) system call.
*
@@ -290,6 +307,9 @@ SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
int write;
size_t len;
+ if (!madvise_behavior_valid(behavior))
+ return error;
+
write = madvise_need_mmap_write(behavior);
if (write)
down_write(&current->mm->mmap_sem);
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index e44fb0fbb80e..70db6e0a5eec 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -314,14 +314,6 @@ static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
return mem;
}
-static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
-{
- if (!mem)
- return true;
- return css_is_removed(&mem->css);
-}
-
-
/*
* Call callback function against all cgroup under hierarchy tree.
*/
@@ -578,6 +570,17 @@ int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
return 0;
}
+int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
+{
+ unsigned long active;
+ unsigned long inactive;
+
+ inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
+ active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
+
+ return (active > inactive);
+}
+
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
struct zone *zone,
enum lru_list lru)
@@ -932,7 +935,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
if (unlikely(!mem))
return 0;
- VM_BUG_ON(!mem || mem_cgroup_is_obsolete(mem));
+ VM_BUG_ON(css_is_removed(&mem->css));
while (1) {
int ret;
@@ -1024,9 +1027,7 @@ static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
return NULL;
pc = lookup_page_cgroup(page);
- /*
- * Used bit of swapcache is solid under page lock.
- */
+ lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
mem = pc->mem_cgroup;
if (mem && !css_tryget(&mem->css))
@@ -1040,6 +1041,7 @@ static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
mem = NULL;
rcu_read_unlock();
}
+ unlock_page_cgroup(pc);
return mem;
}
@@ -1489,8 +1491,9 @@ void mem_cgroup_uncharge_cache_page(struct page *page)
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}
+#ifdef CONFIG_SWAP
/*
- * called from __delete_from_swap_cache() and drop "page" account.
+ * called after __delete_from_swap_cache() and drop "page" account.
* memcg information is recorded to swap_cgroup of "ent"
*/
void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
@@ -1507,6 +1510,7 @@ void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
if (memcg)
css_put(&memcg->css);
}
+#endif
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
@@ -1618,37 +1622,28 @@ void mem_cgroup_end_migration(struct mem_cgroup *mem,
}
/*
- * A call to try to shrink memory usage under specified resource controller.
- * This is typically used for page reclaiming for shmem for reducing side
- * effect of page allocation from shmem, which is used by some mem_cgroup.
+ * A call to try to shrink memory usage on charge failure at shmem's swapin.
+ * Calling hierarchical_reclaim is not enough because we should update
+ * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
+ * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
+ * not from the memcg which this page would be charged to.
+ * try_charge_swapin does all of these works properly.
*/
-int mem_cgroup_shrink_usage(struct page *page,
+int mem_cgroup_shmem_charge_fallback(struct page *page,
struct mm_struct *mm,
gfp_t gfp_mask)
{
struct mem_cgroup *mem = NULL;
- int progress = 0;
- int retry = MEM_CGROUP_RECLAIM_RETRIES;
+ int ret;
if (mem_cgroup_disabled())
return 0;
- if (page)
- mem = try_get_mem_cgroup_from_swapcache(page);
- if (!mem && mm)
- mem = try_get_mem_cgroup_from_mm(mm);
- if (unlikely(!mem))
- return 0;
- do {
- progress = mem_cgroup_hierarchical_reclaim(mem,
- gfp_mask, true, false);
- progress += mem_cgroup_check_under_limit(mem);
- } while (!progress && --retry);
+ ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
+ if (!ret)
+ mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
- css_put(&mem->css);
- if (!retry)
- return -ENOMEM;
- return 0;
+ return ret;
}
static DEFINE_MUTEX(set_limit_mutex);
diff --git a/mm/memory.c b/mm/memory.c
index cf6873e91c6a..d5d1653d60a6 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1360,6 +1360,56 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
return i;
}
+/**
+ * get_user_pages() - pin user pages in memory
+ * @tsk: task_struct of target task
+ * @mm: mm_struct of target mm
+ * @start: starting user address
+ * @len: number of pages from start to pin
+ * @write: whether pages will be written to by the caller
+ * @force: whether to force write access even if user mapping is
+ * readonly. This will result in the page being COWed even
+ * in MAP_SHARED mappings. You do not want this.
+ * @pages: array that receives pointers to the pages pinned.
+ * Should be at least nr_pages long. Or NULL, if caller
+ * only intends to ensure the pages are faulted in.
+ * @vmas: array of pointers to vmas corresponding to each page.
+ * Or NULL if the caller does not require them.
+ *
+ * Returns number of pages pinned. This may be fewer than the number
+ * requested. If len is 0 or negative, returns 0. If no pages
+ * were pinned, returns -errno. Each page returned must be released
+ * with a put_page() call when it is finished with. vmas will only
+ * remain valid while mmap_sem is held.
+ *
+ * Must be called with mmap_sem held for read or write.
+ *
+ * get_user_pages walks a process's page tables and takes a reference to
+ * each struct page that each user address corresponds to at a given
+ * instant. That is, it takes the page that would be accessed if a user
+ * thread accesses the given user virtual address at that instant.
+ *
+ * This does not guarantee that the page exists in the user mappings when
+ * get_user_pages returns, and there may even be a completely different
+ * page there in some cases (eg. if mmapped pagecache has been invalidated
+ * and subsequently re faulted). However it does guarantee that the page
+ * won't be freed completely. And mostly callers simply care that the page
+ * contains data that was valid *at some point in time*. Typically, an IO
+ * or similar operation cannot guarantee anything stronger anyway because
+ * locks can't be held over the syscall boundary.
+ *
+ * If write=0, the page must not be written to. If the page is written to,
+ * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
+ * after the page is finished with, and before put_page is called.
+ *
+ * get_user_pages is typically used for fewer-copy IO operations, to get a
+ * handle on the memory by some means other than accesses via the user virtual
+ * addresses. The pages may be submitted for DMA to devices or accessed via
+ * their kernel linear mapping (via the kmap APIs). Care should be taken to
+ * use the correct cache flushing APIs.
+ *
+ * See also get_user_pages_fast, for performance critical applications.
+ */
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int len, int write, int force,
struct page **pages, struct vm_area_struct **vmas)
@@ -1971,6 +2021,15 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
ret = tmp;
goto unwritable_page;
}
+ if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
+ lock_page(old_page);
+ if (!old_page->mapping) {
+ ret = 0; /* retry the fault */
+ unlock_page(old_page);
+ goto unwritable_page;
+ }
+ } else
+ VM_BUG_ON(!PageLocked(old_page));
/*
* Since we dropped the lock we need to revalidate
@@ -1980,9 +2039,11 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
*/
page_table = pte_offset_map_lock(mm, pmd, address,
&ptl);
- page_cache_release(old_page);
- if (!pte_same(*page_table, orig_pte))
+ if (!pte_same(*page_table, orig_pte)) {
+ unlock_page(old_page);
+ page_cache_release(old_page);
goto unlock;
+ }
page_mkwrite = 1;
}
@@ -2094,9 +2155,6 @@ gotten:
unlock:
pte_unmap_unlock(page_table, ptl);
if (dirty_page) {
- if (vma->vm_file)
- file_update_time(vma->vm_file);
-
/*
* Yes, Virginia, this is actually required to prevent a race
* with clear_page_dirty_for_io() from clearing the page dirty
@@ -2105,16 +2163,41 @@ unlock:
*
* do_no_page is protected similarly.
*/
- wait_on_page_locked(dirty_page);
- set_page_dirty_balance(dirty_page, page_mkwrite);
+ if (!page_mkwrite) {
+ wait_on_page_locked(dirty_page);
+ set_page_dirty_balance(dirty_page, page_mkwrite);
+ }
put_page(dirty_page);
+ if (page_mkwrite) {
+ struct address_space *mapping = dirty_page->mapping;
+
+ set_page_dirty(dirty_page);
+ unlock_page(dirty_page);
+ page_cache_release(dirty_page);
+ if (mapping) {
+ /*
+ * Some device drivers do not set page.mapping
+ * but still dirty their pages
+ */
+ balance_dirty_pages_ratelimited(mapping);
+ }
+ }
+
+ /* file_update_time outside page_lock */
+ if (vma->vm_file)
+ file_update_time(vma->vm_file);
}
return ret;
oom_free_new:
page_cache_release(new_page);
oom:
- if (old_page)
+ if (old_page) {
+ if (page_mkwrite) {
+ unlock_page(old_page);
+ page_cache_release(old_page);
+ }
page_cache_release(old_page);
+ }
return VM_FAULT_OOM;
unwritable_page:
@@ -2458,8 +2541,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
ret = VM_FAULT_OOM;
- unlock_page(page);
- goto out;
+ goto out_page;
}
/*
@@ -2521,6 +2603,7 @@ out:
out_nomap:
mem_cgroup_cancel_charge_swapin(ptr);
pte_unmap_unlock(page_table, ptl);
+out_page:
unlock_page(page);
page_cache_release(page);
return ret;
@@ -2664,27 +2747,22 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
int tmp;
unlock_page(page);
- vmf.flags |= FAULT_FLAG_MKWRITE;
+ vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
if (unlikely(tmp &
(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
ret = tmp;
- anon = 1; /* no anon but release vmf.page */
- goto out_unlocked;
- }
- lock_page(page);
- /*
- * XXX: this is not quite right (racy vs
- * invalidate) to unlock and relock the page
- * like this, however a better fix requires
- * reworking page_mkwrite locking API, which
- * is better done later.
- */
- if (!page->mapping) {
- ret = 0;
- anon = 1; /* no anon but release vmf.page */
- goto out;
+ goto unwritable_page;
}
+ if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
+ lock_page(page);
+ if (!page->mapping) {
+ ret = 0; /* retry the fault */
+ unlock_page(page);
+ goto unwritable_page;
+ }
+ } else
+ VM_BUG_ON(!PageLocked(page));
page_mkwrite = 1;
}
}
@@ -2736,19 +2814,35 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
pte_unmap_unlock(page_table, ptl);
out:
- unlock_page(vmf.page);
-out_unlocked:
- if (anon)
- page_cache_release(vmf.page);
- else if (dirty_page) {
- if (vma->vm_file)
- file_update_time(vma->vm_file);
+ if (dirty_page) {
+ struct address_space *mapping = page->mapping;
- set_page_dirty_balance(dirty_page, page_mkwrite);
+ if (set_page_dirty(dirty_page))
+ page_mkwrite = 1;
+ unlock_page(dirty_page);
put_page(dirty_page);
+ if (page_mkwrite && mapping) {
+ /*
+ * Some device drivers do not set page.mapping but still
+ * dirty their pages
+ */
+ balance_dirty_pages_ratelimited(mapping);
+ }
+
+ /* file_update_time outside page_lock */
+ if (vma->vm_file)
+ file_update_time(vma->vm_file);
+ } else {
+ unlock_page(vmf.page);
+ if (anon)
+ page_cache_release(vmf.page);
}
return ret;
+
+unwritable_page:
+ page_cache_release(page);
+ return ret;
}
static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
@@ -3009,22 +3103,13 @@ int in_gate_area_no_task(unsigned long addr)
#endif /* __HAVE_ARCH_GATE_AREA */
-#ifdef CONFIG_HAVE_IOREMAP_PROT
-int follow_phys(struct vm_area_struct *vma,
- unsigned long address, unsigned int flags,
- unsigned long *prot, resource_size_t *phys)
+static int follow_pte(struct mm_struct *mm, unsigned long address,
+ pte_t **ptepp, spinlock_t **ptlp)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
- pte_t *ptep, pte;
- spinlock_t *ptl;
- resource_size_t phys_addr = 0;
- struct mm_struct *mm = vma->vm_mm;
- int ret = -EINVAL;
-
- if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
- goto out;
+ pte_t *ptep;
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
@@ -3042,22 +3127,71 @@ int follow_phys(struct vm_area_struct *vma,
if (pmd_huge(*pmd))
goto out;
- ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
+ ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
if (!ptep)
goto out;
+ if (!pte_present(*ptep))
+ goto unlock;
+ *ptepp = ptep;
+ return 0;
+unlock:
+ pte_unmap_unlock(ptep, *ptlp);
+out:
+ return -EINVAL;
+}
+
+/**
+ * follow_pfn - look up PFN at a user virtual address
+ * @vma: memory mapping
+ * @address: user virtual address
+ * @pfn: location to store found PFN
+ *
+ * Only IO mappings and raw PFN mappings are allowed.
+ *
+ * Returns zero and the pfn at @pfn on success, -ve otherwise.
+ */
+int follow_pfn(struct vm_area_struct *vma, unsigned long address,
+ unsigned long *pfn)
+{
+ int ret = -EINVAL;
+ spinlock_t *ptl;
+ pte_t *ptep;
+
+ if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
+ return ret;
+
+ ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
+ if (ret)
+ return ret;
+ *pfn = pte_pfn(*ptep);
+ pte_unmap_unlock(ptep, ptl);
+ return 0;
+}
+EXPORT_SYMBOL(follow_pfn);
+
+#ifdef CONFIG_HAVE_IOREMAP_PROT
+int follow_phys(struct vm_area_struct *vma,
+ unsigned long address, unsigned int flags,
+ unsigned long *prot, resource_size_t *phys)
+{
+ int ret = -EINVAL;
+ pte_t *ptep, pte;
+ spinlock_t *ptl;
+
+ if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
+ goto out;
+ if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
+ goto out;
pte = *ptep;
- if (!pte_present(pte))
- goto unlock;
+
if ((flags & FOLL_WRITE) && !pte_write(pte))
goto unlock;
- phys_addr = pte_pfn(pte);
- phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
*prot = pgprot_val(pte_pgprot(pte));
- *phys = phys_addr;
- ret = 0;
+ *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
+ ret = 0;
unlock:
pte_unmap_unlock(ptep, ptl);
out:
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index c083cf5fd6df..e4412a676c88 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -422,7 +422,8 @@ int online_pages(unsigned long pfn, unsigned long nr_pages)
zone->present_pages += onlined_pages;
zone->zone_pgdat->node_present_pages += onlined_pages;
- setup_per_zone_pages_min();
+ setup_per_zone_wmarks();
+ calculate_zone_inactive_ratio(zone);
if (onlined_pages) {
kswapd_run(zone_to_nid(zone));
node_set_state(zone_to_nid(zone), N_HIGH_MEMORY);
@@ -832,6 +833,9 @@ repeat:
totalram_pages -= offlined_pages;
num_physpages -= offlined_pages;
+ setup_per_zone_wmarks();
+ calculate_zone_inactive_ratio(zone);
+
vm_total_pages = nr_free_pagecache_pages();
writeback_set_ratelimit();
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 3eb4a6fdc043..e08e2c4da63a 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -182,13 +182,54 @@ static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
return 0;
}
-/* Create a new policy */
+/*
+ * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
+ * any, for the new policy. mpol_new() has already validated the nodes
+ * parameter with respect to the policy mode and flags. But, we need to
+ * handle an empty nodemask with MPOL_PREFERRED here.
+ *
+ * Must be called holding task's alloc_lock to protect task's mems_allowed
+ * and mempolicy. May also be called holding the mmap_semaphore for write.
+ */
+static int mpol_set_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
+{
+ nodemask_t cpuset_context_nmask;
+ int ret;
+
+ /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
+ if (pol == NULL)
+ return 0;
+
+ VM_BUG_ON(!nodes);
+ if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
+ nodes = NULL; /* explicit local allocation */
+ else {
+ if (pol->flags & MPOL_F_RELATIVE_NODES)
+ mpol_relative_nodemask(&cpuset_context_nmask, nodes,
+ &cpuset_current_mems_allowed);
+ else
+ nodes_and(cpuset_context_nmask, *nodes,
+ cpuset_current_mems_allowed);
+ if (mpol_store_user_nodemask(pol))
+ pol->w.user_nodemask = *nodes;
+ else
+ pol->w.cpuset_mems_allowed =
+ cpuset_current_mems_allowed;
+ }
+
+ ret = mpol_ops[pol->mode].create(pol,
+ nodes ? &cpuset_context_nmask : NULL);
+ return ret;
+}
+
+/*
+ * This function just creates a new policy, does some check and simple
+ * initialization. You must invoke mpol_set_nodemask() to set nodes.
+ */
static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
nodemask_t *nodes)
{
struct mempolicy *policy;
- nodemask_t cpuset_context_nmask;
- int ret;
pr_debug("setting mode %d flags %d nodes[0] %lx\n",
mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
@@ -210,7 +251,6 @@ static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
if (((flags & MPOL_F_STATIC_NODES) ||
(flags & MPOL_F_RELATIVE_NODES)))
return ERR_PTR(-EINVAL);
- nodes = NULL; /* flag local alloc */
}
} else if (nodes_empty(*nodes))
return ERR_PTR(-EINVAL);
@@ -221,30 +261,6 @@ static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
policy->mode = mode;
policy->flags = flags;
- if (nodes) {
- /*
- * cpuset related setup doesn't apply to local allocation
- */
- cpuset_update_task_memory_state();
- if (flags & MPOL_F_RELATIVE_NODES)
- mpol_relative_nodemask(&cpuset_context_nmask, nodes,
- &cpuset_current_mems_allowed);
- else
- nodes_and(cpuset_context_nmask, *nodes,
- cpuset_current_mems_allowed);
- if (mpol_store_user_nodemask(policy))
- policy->w.user_nodemask = *nodes;
- else
- policy->w.cpuset_mems_allowed =
- cpuset_mems_allowed(current);
- }
-
- ret = mpol_ops[mode].create(policy,
- nodes ? &cpuset_context_nmask : NULL);
- if (ret < 0) {
- kmem_cache_free(policy_cache, policy);
- return ERR_PTR(ret);
- }
return policy;
}
@@ -324,6 +340,8 @@ static void mpol_rebind_policy(struct mempolicy *pol,
/*
* Wrapper for mpol_rebind_policy() that just requires task
* pointer, and updates task mempolicy.
+ *
+ * Called with task's alloc_lock held.
*/
void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
@@ -600,8 +618,9 @@ static void mpol_set_task_struct_flag(void)
static long do_set_mempolicy(unsigned short mode, unsigned short flags,
nodemask_t *nodes)
{
- struct mempolicy *new;
+ struct mempolicy *new, *old;
struct mm_struct *mm = current->mm;
+ int ret;
new = mpol_new(mode, flags, nodes);
if (IS_ERR(new))
@@ -615,20 +634,33 @@ static long do_set_mempolicy(unsigned short mode, unsigned short flags,
*/
if (mm)
down_write(&mm->mmap_sem);
- mpol_put(current->mempolicy);
+ task_lock(current);
+ ret = mpol_set_nodemask(new, nodes);
+ if (ret) {
+ task_unlock(current);
+ if (mm)
+ up_write(&mm->mmap_sem);
+ mpol_put(new);
+ return ret;
+ }
+ old = current->mempolicy;
current->mempolicy = new;
mpol_set_task_struct_flag();
if (new && new->mode == MPOL_INTERLEAVE &&
nodes_weight(new->v.nodes))
current->il_next = first_node(new->v.nodes);
+ task_unlock(current);
if (mm)
up_write(&mm->mmap_sem);
+ mpol_put(old);
return 0;
}
/*
* Return nodemask for policy for get_mempolicy() query
+ *
+ * Called with task's alloc_lock held
*/
static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
{
@@ -674,7 +706,6 @@ static long do_get_mempolicy(int *policy, nodemask_t *nmask,
struct vm_area_struct *vma = NULL;
struct mempolicy *pol = current->mempolicy;
- cpuset_update_task_memory_state();
if (flags &
~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
return -EINVAL;
@@ -683,7 +714,9 @@ static long do_get_mempolicy(int *policy, nodemask_t *nmask,
if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
return -EINVAL;
*policy = 0; /* just so it's initialized */
+ task_lock(current);
*nmask = cpuset_current_mems_allowed;
+ task_unlock(current);
return 0;
}
@@ -738,8 +771,11 @@ static long do_get_mempolicy(int *policy, nodemask_t *nmask,
}
err = 0;
- if (nmask)
+ if (nmask) {
+ task_lock(current);
get_policy_nodemask(pol, nmask);
+ task_unlock(current);
+ }
out:
mpol_cond_put(pol);
@@ -767,7 +803,7 @@ static void migrate_page_add(struct page *page, struct list_head *pagelist,
static struct page *new_node_page(struct page *page, unsigned long node, int **x)
{
- return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
+ return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
}
/*
@@ -979,6 +1015,14 @@ static long do_mbind(unsigned long start, unsigned long len,
return err;
}
down_write(&mm->mmap_sem);
+ task_lock(current);
+ err = mpol_set_nodemask(new, nmask);
+ task_unlock(current);
+ if (err) {
+ up_write(&mm->mmap_sem);
+ mpol_put(new);
+ return err;
+ }
vma = check_range(mm, start, end, nmask,
flags | MPOL_MF_INVERT, &pagelist);
@@ -1545,8 +1589,6 @@ alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
struct mempolicy *pol = get_vma_policy(current, vma, addr);
struct zonelist *zl;
- cpuset_update_task_memory_state();
-
if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
unsigned nid;
@@ -1593,8 +1635,6 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order)
{
struct mempolicy *pol = current->mempolicy;
- if ((gfp & __GFP_WAIT) && !in_interrupt())
- cpuset_update_task_memory_state();
if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
pol = &default_policy;
@@ -1854,6 +1894,8 @@ restart:
*/
void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
{
+ int ret;
+
sp->root = RB_ROOT; /* empty tree == default mempolicy */
spin_lock_init(&sp->lock);
@@ -1863,9 +1905,19 @@ void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
/* contextualize the tmpfs mount point mempolicy */
new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
- mpol_put(mpol); /* drop our ref on sb mpol */
- if (IS_ERR(new))
+ if (IS_ERR(new)) {
+ mpol_put(mpol); /* drop our ref on sb mpol */
return; /* no valid nodemask intersection */
+ }
+
+ task_lock(current);
+ ret = mpol_set_nodemask(new, &mpol->w.user_nodemask);
+ task_unlock(current);
+ mpol_put(mpol); /* drop our ref on sb mpol */
+ if (ret) {
+ mpol_put(new);
+ return;
+ }
/* Create pseudo-vma that contains just the policy */
memset(&pvma, 0, sizeof(struct vm_area_struct));
@@ -2086,8 +2138,19 @@ int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
new = mpol_new(mode, mode_flags, &nodes);
if (IS_ERR(new))
err = 1;
- else if (no_context)
- new->w.user_nodemask = nodes; /* save for contextualization */
+ else {
+ int ret;
+
+ task_lock(current);
+ ret = mpol_set_nodemask(new, &nodes);
+ task_unlock(current);
+ if (ret)
+ err = 1;
+ else if (no_context) {
+ /* save for contextualization */
+ new->w.user_nodemask = nodes;
+ }
+ }
out:
/* Restore string for error message */
diff --git a/mm/migrate.c b/mm/migrate.c
index 068655d8f883..939888f9ddab 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -802,7 +802,7 @@ static struct page *new_page_node(struct page *p, unsigned long private,
*result = &pm->status;
- return alloc_pages_node(pm->node,
+ return alloc_pages_exact_node(pm->node,
GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
}
@@ -820,7 +820,6 @@ static int do_move_page_to_node_array(struct mm_struct *mm,
struct page_to_node *pp;
LIST_HEAD(pagelist);
- migrate_prep();
down_read(&mm->mmap_sem);
/*
@@ -907,6 +906,9 @@ static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
if (!pm)
goto out;
+
+ migrate_prep();
+
/*
* Store a chunk of page_to_node array in a page,
* but keep the last one as a marker
diff --git a/mm/mlock.c b/mm/mlock.c
index cbe9e0581b75..45eb650b9654 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -31,7 +31,6 @@ int can_do_mlock(void)
}
EXPORT_SYMBOL(can_do_mlock);
-#ifdef CONFIG_UNEVICTABLE_LRU
/*
* Mlocked pages are marked with PageMlocked() flag for efficient testing
* in vmscan and, possibly, the fault path; and to support semi-accurate
@@ -261,27 +260,6 @@ static int __mlock_posix_error_return(long retval)
return retval;
}
-#else /* CONFIG_UNEVICTABLE_LRU */
-
-/*
- * Just make pages present if VM_LOCKED. No-op if unlocking.
- */
-static long __mlock_vma_pages_range(struct vm_area_struct *vma,
- unsigned long start, unsigned long end,
- int mlock)
-{
- if (mlock && (vma->vm_flags & VM_LOCKED))
- return make_pages_present(start, end);
- return 0;
-}
-
-static inline int __mlock_posix_error_return(long retval)
-{
- return 0;
-}
-
-#endif /* CONFIG_UNEVICTABLE_LRU */
-
/**
* mlock_vma_pages_range() - mlock pages in specified vma range.
* @vma - the vma containing the specfied address range
@@ -629,52 +607,43 @@ void user_shm_unlock(size_t size, struct user_struct *user)
free_uid(user);
}
-void *alloc_locked_buffer(size_t size)
+int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
+ size_t size)
{
- unsigned long rlim, vm, pgsz;
- void *buffer = NULL;
+ unsigned long lim, vm, pgsz;
+ int error = -ENOMEM;
pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
- down_write(&current->mm->mmap_sem);
+ down_write(&mm->mmap_sem);
- rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
- vm = current->mm->total_vm + pgsz;
- if (rlim < vm)
+ lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
+ vm = mm->total_vm + pgsz;
+ if (lim < vm)
goto out;
- rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
- vm = current->mm->locked_vm + pgsz;
- if (rlim < vm)
+ lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
+ vm = mm->locked_vm + pgsz;
+ if (lim < vm)
goto out;
- buffer = kzalloc(size, GFP_KERNEL);
- if (!buffer)
- goto out;
-
- current->mm->total_vm += pgsz;
- current->mm->locked_vm += pgsz;
+ mm->total_vm += pgsz;
+ mm->locked_vm += pgsz;
+ error = 0;
out:
- up_write(&current->mm->mmap_sem);
- return buffer;
+ up_write(&mm->mmap_sem);
+ return error;
}
-void release_locked_buffer(void *buffer, size_t size)
+void refund_locked_memory(struct mm_struct *mm, size_t size)
{
unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
- down_write(&current->mm->mmap_sem);
-
- current->mm->total_vm -= pgsz;
- current->mm->locked_vm -= pgsz;
-
- up_write(&current->mm->mmap_sem);
-}
+ down_write(&mm->mmap_sem);
-void free_locked_buffer(void *buffer, size_t size)
-{
- release_locked_buffer(buffer, size);
+ mm->total_vm -= pgsz;
+ mm->locked_vm -= pgsz;
- kfree(buffer);
+ up_write(&mm->mmap_sem);
}
diff --git a/mm/mmap.c b/mm/mmap.c
index 3303d1ba8e87..34579b23ebd5 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -28,6 +28,7 @@
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/mmu_notifier.h>
+#include <linux/perf_counter.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
@@ -85,7 +86,10 @@ EXPORT_SYMBOL(vm_get_page_prot);
int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
int sysctl_overcommit_ratio = 50; /* default is 50% */
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
-atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
+struct percpu_counter vm_committed_as;
+
+/* amount of vm to protect from userspace access */
+unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR;
/*
* Check that a process has enough memory to allocate a new virtual
@@ -179,11 +183,7 @@ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
if (mm)
allowed -= mm->total_vm / 32;
- /*
- * cast `allowed' as a signed long because vm_committed_space
- * sometimes has a negative value
- */
- if (atomic_long_read(&vm_committed_space) < (long)allowed)
+ if (percpu_counter_read_positive(&vm_committed_as) < allowed)
return 0;
error:
vm_unacct_memory(pages);
@@ -1223,6 +1223,8 @@ munmap_back:
if (correct_wcount)
atomic_inc(&inode->i_writecount);
out:
+ perf_counter_mmap(vma);
+
mm->total_vm += len >> PAGE_SHIFT;
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
@@ -2309,6 +2311,8 @@ int install_special_mapping(struct mm_struct *mm,
mm->total_vm += len >> PAGE_SHIFT;
+ perf_counter_mmap(vma);
+
return 0;
}
@@ -2481,4 +2485,8 @@ void mm_drop_all_locks(struct mm_struct *mm)
*/
void __init mmap_init(void)
{
+ int ret;
+
+ ret = percpu_counter_init(&vm_committed_as, 0);
+ VM_BUG_ON(ret);
}
diff --git a/mm/mmzone.c b/mm/mmzone.c
index 16ce8b955dcf..f5b7d1760213 100644
--- a/mm/mmzone.c
+++ b/mm/mmzone.c
@@ -6,6 +6,7 @@
#include <linux/stddef.h>
+#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
@@ -72,3 +73,17 @@ struct zoneref *next_zones_zonelist(struct zoneref *z,
*zone = zonelist_zone(z);
return z;
}
+
+#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
+int memmap_valid_within(unsigned long pfn,
+ struct page *page, struct zone *zone)
+{
+ if (page_to_pfn(page) != pfn)
+ return 0;
+
+ if (page_zone(page) != zone)
+ return 0;
+
+ return 1;
+}
+#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 258197b76fb4..d80311baeb2d 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -23,6 +23,7 @@
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
+#include <linux/perf_counter.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
@@ -299,6 +300,7 @@ SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
if (error)
goto out;
+ perf_counter_mmap(vma);
nstart = tmp;
if (nstart < prev->vm_end)
diff --git a/mm/nommu.c b/mm/nommu.c
index 72eda4aee2cb..2fd2ad5da98e 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -62,13 +62,16 @@ void *high_memory;
struct page *mem_map;
unsigned long max_mapnr;
unsigned long num_physpages;
-atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
+struct percpu_counter vm_committed_as;
int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
int sysctl_overcommit_ratio = 50; /* default is 50% */
int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
-int sysctl_nr_trim_pages = 1; /* page trimming behaviour */
+int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
int heap_stack_gap = 0;
+/* amount of vm to protect from userspace access */
+unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR;
+
atomic_long_t mmap_pages_allocated;
EXPORT_SYMBOL(mem_map);
@@ -463,6 +466,10 @@ SYSCALL_DEFINE1(brk, unsigned long, brk)
*/
void __init mmap_init(void)
{
+ int ret;
+
+ ret = percpu_counter_init(&vm_committed_as, 0);
+ VM_BUG_ON(ret);
vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
}
@@ -511,8 +518,6 @@ static void add_nommu_region(struct vm_region *region)
validate_nommu_regions();
- BUG_ON(region->vm_start & ~PAGE_MASK);
-
parent = NULL;
p = &nommu_region_tree.rb_node;
while (*p) {
@@ -1847,12 +1852,9 @@ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
if (mm)
allowed -= mm->total_vm / 32;
- /*
- * cast `allowed' as a signed long because vm_committed_space
- * sometimes has a negative value
- */
- if (atomic_long_read(&vm_committed_space) < (long)allowed)
+ if (percpu_counter_read_positive(&vm_committed_as) < allowed)
return 0;
+
error:
vm_unacct_memory(pages);
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 2f3166e308d9..175a67a78a99 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -58,6 +58,7 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
unsigned long points, cpu_time, run_time;
struct mm_struct *mm;
struct task_struct *child;
+ int oom_adj;
task_lock(p);
mm = p->mm;
@@ -65,6 +66,11 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
task_unlock(p);
return 0;
}
+ oom_adj = mm->oom_adj;
+ if (oom_adj == OOM_DISABLE) {
+ task_unlock(p);
+ return 0;
+ }
/*
* The memory size of the process is the basis for the badness.
@@ -148,15 +154,15 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
points /= 8;
/*
- * Adjust the score by oomkilladj.
+ * Adjust the score by oom_adj.
*/
- if (p->oomkilladj) {
- if (p->oomkilladj > 0) {
+ if (oom_adj) {
+ if (oom_adj > 0) {
if (!points)
points = 1;
- points <<= p->oomkilladj;
+ points <<= oom_adj;
} else
- points >>= -(p->oomkilladj);
+ points >>= -(oom_adj);
}
#ifdef DEBUG
@@ -251,11 +257,8 @@ static struct task_struct *select_bad_process(unsigned long *ppoints,
*ppoints = ULONG_MAX;
}
- if (p->oomkilladj == OOM_DISABLE)
- continue;
-
points = badness(p, uptime.tv_sec);
- if (points > *ppoints || !chosen) {
+ if (points > *ppoints) {
chosen = p;
*ppoints = points;
}
@@ -284,22 +287,27 @@ static void dump_tasks(const struct mem_cgroup *mem)
printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
"name\n");
do_each_thread(g, p) {
- /*
- * total_vm and rss sizes do not exist for tasks with a
- * detached mm so there's no need to report them.
- */
- if (!p->mm)
- continue;
+ struct mm_struct *mm;
+
if (mem && !task_in_mem_cgroup(p, mem))
continue;
if (!thread_group_leader(p))
continue;
task_lock(p);
+ mm = p->mm;
+ if (!mm) {
+ /*
+ * total_vm and rss sizes do not exist for tasks with no
+ * mm so there's no need to report them; they can't be
+ * oom killed anyway.
+ */
+ task_unlock(p);
+ continue;
+ }
printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
- p->pid, __task_cred(p)->uid, p->tgid,
- p->mm->total_vm, get_mm_rss(p->mm), (int)task_cpu(p),
- p->oomkilladj, p->comm);
+ p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
+ get_mm_rss(mm), (int)task_cpu(p), mm->oom_adj, p->comm);
task_unlock(p);
} while_each_thread(g, p);
}
@@ -317,11 +325,8 @@ static void __oom_kill_task(struct task_struct *p, int verbose)
return;
}
- if (!p->mm) {
- WARN_ON(1);
- printk(KERN_WARNING "tried to kill an mm-less task!\n");
+ if (!p->mm)
return;
- }
if (verbose)
printk(KERN_ERR "Killed process %d (%s)\n",
@@ -343,28 +348,13 @@ static int oom_kill_task(struct task_struct *p)
struct mm_struct *mm;
struct task_struct *g, *q;
+ task_lock(p);
mm = p->mm;
-
- /* WARNING: mm may not be dereferenced since we did not obtain its
- * value from get_task_mm(p). This is OK since all we need to do is
- * compare mm to q->mm below.
- *
- * Furthermore, even if mm contains a non-NULL value, p->mm may
- * change to NULL at any time since we do not hold task_lock(p).
- * However, this is of no concern to us.
- */
-
- if (mm == NULL)
+ if (!mm || mm->oom_adj == OOM_DISABLE) {
+ task_unlock(p);
return 1;
-
- /*
- * Don't kill the process if any threads are set to OOM_DISABLE
- */
- do_each_thread(g, q) {
- if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
- return 1;
- } while_each_thread(g, q);
-
+ }
+ task_unlock(p);
__oom_kill_task(p, 1);
/*
@@ -387,10 +377,11 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
struct task_struct *c;
if (printk_ratelimit()) {
- printk(KERN_WARNING "%s invoked oom-killer: "
- "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
- current->comm, gfp_mask, order, current->oomkilladj);
task_lock(current);
+ printk(KERN_WARNING "%s invoked oom-killer: "
+ "gfp_mask=0x%x, order=%d, oom_adj=%d\n",
+ current->comm, gfp_mask, order,
+ current->mm ? current->mm->oom_adj : OOM_DISABLE);
cpuset_print_task_mems_allowed(current);
task_unlock(current);
dump_stack();
@@ -403,8 +394,9 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
/*
* If the task is already exiting, don't alarm the sysadmin or kill
* its children or threads, just set TIF_MEMDIE so it can die quickly
+ * if its mm is still attached.
*/
- if (p->flags & PF_EXITING) {
+ if (p->mm && (p->flags & PF_EXITING)) {
__oom_kill_task(p, 0);
return 0;
}
@@ -514,34 +506,32 @@ void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
*/
static void __out_of_memory(gfp_t gfp_mask, int order)
{
- if (sysctl_oom_kill_allocating_task) {
- oom_kill_process(current, gfp_mask, order, 0, NULL,
- "Out of memory (oom_kill_allocating_task)");
-
- } else {
- unsigned long points;
- struct task_struct *p;
-
-retry:
- /*
- * Rambo mode: Shoot down a process and hope it solves whatever
- * issues we may have.
- */
- p = select_bad_process(&points, NULL);
+ struct task_struct *p;
+ unsigned long points;
- if (PTR_ERR(p) == -1UL)
+ if (sysctl_oom_kill_allocating_task)
+ if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
+ "Out of memory (oom_kill_allocating_task)"))
return;
+retry:
+ /*
+ * Rambo mode: Shoot down a process and hope it solves whatever
+ * issues we may have.
+ */
+ p = select_bad_process(&points, NULL);
- /* Found nothing?!?! Either we hang forever, or we panic. */
- if (!p) {
- read_unlock(&tasklist_lock);
- panic("Out of memory and no killable processes...\n");
- }
+ if (PTR_ERR(p) == -1UL)
+ return;
- if (oom_kill_process(p, gfp_mask, order, points, NULL,
- "Out of memory"))
- goto retry;
+ /* Found nothing?!?! Either we hang forever, or we panic. */
+ if (!p) {
+ read_unlock(&tasklist_lock);
+ panic("Out of memory and no killable processes...\n");
}
+
+ if (oom_kill_process(p, gfp_mask, order, points, NULL,
+ "Out of memory"))
+ goto retry;
}
/*
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 30351f0063ac..7b0dcea4935b 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -94,12 +94,12 @@ unsigned long vm_dirty_bytes;
/*
* The interval between `kupdate'-style writebacks
*/
-unsigned int dirty_writeback_interval = 5 * 100; /* sentiseconds */
+unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
/*
* The longest time for which data is allowed to remain dirty
*/
-unsigned int dirty_expire_interval = 30 * 100; /* sentiseconds */
+unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
/*
* Flag that makes the machine dump writes/reads and block dirtyings.
@@ -265,18 +265,19 @@ static void bdi_writeout_fraction(struct backing_dev_info *bdi,
* This avoids exceeding the total dirty_limit when the floating averages
* fluctuate too quickly.
*/
-static void
-clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
+static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
+ unsigned long dirty, unsigned long *pbdi_dirty)
{
- long avail_dirty;
+ unsigned long avail_dirty;
- avail_dirty = dirty -
- (global_page_state(NR_FILE_DIRTY) +
+ avail_dirty = global_page_state(NR_FILE_DIRTY) +
global_page_state(NR_WRITEBACK) +
global_page_state(NR_UNSTABLE_NFS) +
- global_page_state(NR_WRITEBACK_TEMP));
+ global_page_state(NR_WRITEBACK_TEMP);
- if (avail_dirty < 0)
+ if (avail_dirty < dirty)
+ avail_dirty = dirty - avail_dirty;
+ else
avail_dirty = 0;
avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
@@ -299,10 +300,10 @@ static inline void task_dirties_fraction(struct task_struct *tsk,
*
* dirty -= (dirty/8) * p_{t}
*/
-static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
+static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
{
long numerator, denominator;
- long dirty = *pdirty;
+ unsigned long dirty = *pdirty;
u64 inv = dirty >> 3;
task_dirties_fraction(tsk, &numerator, &denominator);
@@ -770,7 +771,7 @@ static void wb_kupdate(unsigned long arg)
sync_supers();
- oldest_jif = jiffies - msecs_to_jiffies(dirty_expire_interval);
+ oldest_jif = jiffies - msecs_to_jiffies(dirty_expire_interval * 10);
start_jif = jiffies;
next_jif = start_jif + msecs_to_jiffies(dirty_writeback_interval * 10);
nr_to_write = global_page_state(NR_FILE_DIRTY) +
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index e2f26991fff1..a5f3c278c573 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -23,6 +23,7 @@
#include <linux/bootmem.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
+#include <linux/kmemcheck.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
@@ -46,6 +47,7 @@
#include <linux/page-isolation.h>
#include <linux/page_cgroup.h>
#include <linux/debugobjects.h>
+#include <linux/kmemleak.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
@@ -149,10 +151,6 @@ static unsigned long __meminitdata dma_reserve;
static int __meminitdata nr_nodemap_entries;
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
-#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
- static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
- static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
-#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
@@ -164,17 +162,25 @@ static unsigned long __meminitdata dma_reserve;
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
+int nr_online_nodes __read_mostly = 1;
EXPORT_SYMBOL(nr_node_ids);
+EXPORT_SYMBOL(nr_online_nodes);
#endif
int page_group_by_mobility_disabled __read_mostly;
static void set_pageblock_migratetype(struct page *page, int migratetype)
{
+
+ if (unlikely(page_group_by_mobility_disabled))
+ migratetype = MIGRATE_UNMOVABLE;
+
set_pageblock_flags_group(page, (unsigned long)migratetype,
PB_migrate, PB_migrate_end);
}
+bool oom_killer_disabled __read_mostly;
+
#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
@@ -297,23 +303,6 @@ void prep_compound_page(struct page *page, unsigned long order)
}
}
-#ifdef CONFIG_HUGETLBFS
-void prep_compound_gigantic_page(struct page *page, unsigned long order)
-{
- int i;
- int nr_pages = 1 << order;
- struct page *p = page + 1;
-
- set_compound_page_dtor(page, free_compound_page);
- set_compound_order(page, order);
- __SetPageHead(page);
- for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
- __SetPageTail(p);
- p->first_page = page;
- }
-}
-#endif
-
static int destroy_compound_page(struct page *page, unsigned long order)
{
int i;
@@ -420,7 +409,7 @@ static inline int page_is_buddy(struct page *page, struct page *buddy,
return 0;
if (PageBuddy(buddy) && page_order(buddy) == order) {
- BUG_ON(page_count(buddy) != 0);
+ VM_BUG_ON(page_count(buddy) != 0);
return 1;
}
return 0;
@@ -451,22 +440,22 @@ static inline int page_is_buddy(struct page *page, struct page *buddy,
*/
static inline void __free_one_page(struct page *page,
- struct zone *zone, unsigned int order)
+ struct zone *zone, unsigned int order,
+ int migratetype)
{
unsigned long page_idx;
- int order_size = 1 << order;
- int migratetype = get_pageblock_migratetype(page);
if (unlikely(PageCompound(page)))
if (unlikely(destroy_compound_page(page, order)))
return;
+ VM_BUG_ON(migratetype == -1);
+
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
- VM_BUG_ON(page_idx & (order_size - 1));
+ VM_BUG_ON(page_idx & ((1 << order) - 1));
VM_BUG_ON(bad_range(zone, page));
- __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
while (order < MAX_ORDER-1) {
unsigned long combined_idx;
struct page *buddy;
@@ -490,12 +479,27 @@ static inline void __free_one_page(struct page *page,
zone->free_area[order].nr_free++;
}
+#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
+/*
+ * free_page_mlock() -- clean up attempts to free and mlocked() page.
+ * Page should not be on lru, so no need to fix that up.
+ * free_pages_check() will verify...
+ */
+static inline void free_page_mlock(struct page *page)
+{
+ __ClearPageMlocked(page);
+ __dec_zone_page_state(page, NR_MLOCK);
+ __count_vm_event(UNEVICTABLE_MLOCKFREED);
+}
+#else
+static void free_page_mlock(struct page *page) { }
+#endif
+
static inline int free_pages_check(struct page *page)
{
- free_page_mlock(page);
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
- (page_count(page) != 0) |
+ (atomic_read(&page->_count) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
bad_page(page);
return 1;
@@ -522,6 +526,8 @@ static void free_pages_bulk(struct zone *zone, int count,
spin_lock(&zone->lock);
zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
zone->pages_scanned = 0;
+
+ __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
while (count--) {
struct page *page;
@@ -529,17 +535,20 @@ static void free_pages_bulk(struct zone *zone, int count,
page = list_entry(list->prev, struct page, lru);
/* have to delete it as __free_one_page list manipulates */
list_del(&page->lru);
- __free_one_page(page, zone, order);
+ __free_one_page(page, zone, order, page_private(page));
}
spin_unlock(&zone->lock);
}
-static void free_one_page(struct zone *zone, struct page *page, int order)
+static void free_one_page(struct zone *zone, struct page *page, int order,
+ int migratetype)
{
spin_lock(&zone->lock);
zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
zone->pages_scanned = 0;
- __free_one_page(page, zone, order);
+
+ __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
+ __free_one_page(page, zone, order, migratetype);
spin_unlock(&zone->lock);
}
@@ -548,6 +557,9 @@ static void __free_pages_ok(struct page *page, unsigned int order)
unsigned long flags;
int i;
int bad = 0;
+ int clearMlocked = PageMlocked(page);
+
+ kmemcheck_free_shadow(page, order);
for (i = 0 ; i < (1 << order) ; ++i)
bad += free_pages_check(page + i);
@@ -563,8 +575,11 @@ static void __free_pages_ok(struct page *page, unsigned int order)
kernel_map_pages(page, 1 << order, 0);
local_irq_save(flags);
+ if (unlikely(clearMlocked))
+ free_page_mlock(page);
__count_vm_events(PGFREE, 1 << order);
- free_one_page(page_zone(page), page, order);
+ free_one_page(page_zone(page), page, order,
+ get_pageblock_migratetype(page));
local_irq_restore(flags);
}
@@ -635,7 +650,7 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
- (page_count(page) != 0) |
+ (atomic_read(&page->_count) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
bad_page(page);
return 1;
@@ -660,7 +675,8 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
* Go through the free lists for the given migratetype and remove
* the smallest available page from the freelists
*/
-static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
+static inline
+struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
@@ -678,7 +694,6 @@ static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
list_del(&page->lru);
rmv_page_order(page);
area->nr_free--;
- __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
expand(zone, page, order, current_order, area, migratetype);
return page;
}
@@ -769,8 +784,8 @@ static int move_freepages_block(struct zone *zone, struct page *page,
}
/* Remove an element from the buddy allocator from the fallback list */
-static struct page *__rmqueue_fallback(struct zone *zone, int order,
- int start_migratetype)
+static inline struct page *
+__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
{
struct free_area * area;
int current_order;
@@ -818,8 +833,6 @@ static struct page *__rmqueue_fallback(struct zone *zone, int order,
/* Remove the page from the freelists */
list_del(&page->lru);
rmv_page_order(page);
- __mod_zone_page_state(zone, NR_FREE_PAGES,
- -(1UL << order));
if (current_order == pageblock_order)
set_pageblock_migratetype(page,
@@ -830,8 +843,7 @@ static struct page *__rmqueue_fallback(struct zone *zone, int order,
}
}
- /* Use MIGRATE_RESERVE rather than fail an allocation */
- return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
+ return NULL;
}
/*
@@ -843,11 +855,23 @@ static struct page *__rmqueue(struct zone *zone, unsigned int order,
{
struct page *page;
+retry_reserve:
page = __rmqueue_smallest(zone, order, migratetype);
- if (unlikely(!page))
+ if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
page = __rmqueue_fallback(zone, order, migratetype);
+ /*
+ * Use MIGRATE_RESERVE rather than fail an allocation. goto
+ * is used because __rmqueue_smallest is an inline function
+ * and we want just one call site
+ */
+ if (!page) {
+ migratetype = MIGRATE_RESERVE;
+ goto retry_reserve;
+ }
+ }
+
return page;
}
@@ -881,6 +905,7 @@ static int rmqueue_bulk(struct zone *zone, unsigned int order,
set_page_private(page, migratetype);
list = &page->lru;
}
+ __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
spin_unlock(&zone->lock);
return i;
}
@@ -996,6 +1021,9 @@ static void free_hot_cold_page(struct page *page, int cold)
struct zone *zone = page_zone(page);
struct per_cpu_pages *pcp;
unsigned long flags;
+ int clearMlocked = PageMlocked(page);
+
+ kmemcheck_free_shadow(page, 0);
if (PageAnon(page))
page->mapping = NULL;
@@ -1010,13 +1038,16 @@ static void free_hot_cold_page(struct page *page, int cold)
kernel_map_pages(page, 1, 0);
pcp = &zone_pcp(zone, get_cpu())->pcp;
+ set_page_private(page, get_pageblock_migratetype(page));
local_irq_save(flags);
+ if (unlikely(clearMlocked))
+ free_page_mlock(page);
__count_vm_event(PGFREE);
+
if (cold)
list_add_tail(&page->lru, &pcp->list);
else
list_add(&page->lru, &pcp->list);
- set_page_private(page, get_pageblock_migratetype(page));
pcp->count++;
if (pcp->count >= pcp->high) {
free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
@@ -1050,6 +1081,16 @@ void split_page(struct page *page, unsigned int order)
VM_BUG_ON(PageCompound(page));
VM_BUG_ON(!page_count(page));
+
+#ifdef CONFIG_KMEMCHECK
+ /*
+ * Split shadow pages too, because free(page[0]) would
+ * otherwise free the whole shadow.
+ */
+ if (kmemcheck_page_is_tracked(page))
+ split_page(virt_to_page(page[0].shadow), order);
+#endif
+
for (i = 1; i < (1 << order); i++)
set_page_refcounted(page + i);
}
@@ -1059,14 +1100,15 @@ void split_page(struct page *page, unsigned int order)
* we cheat by calling it from here, in the order > 0 path. Saves a branch
* or two.
*/
-static struct page *buffered_rmqueue(struct zone *preferred_zone,
- struct zone *zone, int order, gfp_t gfp_flags)
+static inline
+struct page *buffered_rmqueue(struct zone *preferred_zone,
+ struct zone *zone, int order, gfp_t gfp_flags,
+ int migratetype)
{
unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);
int cpu;
- int migratetype = allocflags_to_migratetype(gfp_flags);
again:
cpu = get_cpu();
@@ -1103,8 +1145,22 @@ again:
list_del(&page->lru);
pcp->count--;
} else {
+ if (unlikely(gfp_flags & __GFP_NOFAIL)) {
+ /*
+ * __GFP_NOFAIL is not to be used in new code.
+ *
+ * All __GFP_NOFAIL callers should be fixed so that they
+ * properly detect and handle allocation failures.
+ *
+ * We most definitely don't want callers attempting to
+ * allocate greater than single-page units with
+ * __GFP_NOFAIL.
+ */
+ WARN_ON_ONCE(order > 0);
+ }
spin_lock_irqsave(&zone->lock, flags);
page = __rmqueue(zone, order, migratetype);
+ __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
spin_unlock(&zone->lock);
if (!page)
goto failed;
@@ -1126,10 +1182,15 @@ failed:
return NULL;
}
-#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
-#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
-#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
-#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
+/* The ALLOC_WMARK bits are used as an index to zone->watermark */
+#define ALLOC_WMARK_MIN WMARK_MIN
+#define ALLOC_WMARK_LOW WMARK_LOW
+#define ALLOC_WMARK_HIGH WMARK_HIGH
+#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
+
+/* Mask to get the watermark bits */
+#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
+
#define ALLOC_HARDER 0x10 /* try to alloc harder */
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
@@ -1387,23 +1448,18 @@ static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
*/
static struct page *
get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
- struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
+ struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
+ struct zone *preferred_zone, int migratetype)
{
struct zoneref *z;
struct page *page = NULL;
int classzone_idx;
- struct zone *zone, *preferred_zone;
+ struct zone *zone;
nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
int zlc_active = 0; /* set if using zonelist_cache */
int did_zlc_setup = 0; /* just call zlc_setup() one time */
- (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
- &preferred_zone);
- if (!preferred_zone)
- return NULL;
-
classzone_idx = zone_idx(preferred_zone);
-
zonelist_scan:
/*
* Scan zonelist, looking for a zone with enough free.
@@ -1418,31 +1474,49 @@ zonelist_scan:
!cpuset_zone_allowed_softwall(zone, gfp_mask))
goto try_next_zone;
+ BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
unsigned long mark;
- if (alloc_flags & ALLOC_WMARK_MIN)
- mark = zone->pages_min;
- else if (alloc_flags & ALLOC_WMARK_LOW)
- mark = zone->pages_low;
- else
- mark = zone->pages_high;
- if (!zone_watermark_ok(zone, order, mark,
- classzone_idx, alloc_flags)) {
- if (!zone_reclaim_mode ||
- !zone_reclaim(zone, gfp_mask, order))
+ int ret;
+
+ mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
+ if (zone_watermark_ok(zone, order, mark,
+ classzone_idx, alloc_flags))
+ goto try_this_zone;
+
+ if (zone_reclaim_mode == 0)
+ goto this_zone_full;
+
+ ret = zone_reclaim(zone, gfp_mask, order);
+ switch (ret) {
+ case ZONE_RECLAIM_NOSCAN:
+ /* did not scan */
+ goto try_next_zone;
+ case ZONE_RECLAIM_FULL:
+ /* scanned but unreclaimable */
+ goto this_zone_full;
+ default:
+ /* did we reclaim enough */
+ if (!zone_watermark_ok(zone, order, mark,
+ classzone_idx, alloc_flags))
goto this_zone_full;
}
}
- page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
+try_this_zone:
+ page = buffered_rmqueue(preferred_zone, zone, order,
+ gfp_mask, migratetype);
if (page)
break;
this_zone_full:
if (NUMA_BUILD)
zlc_mark_zone_full(zonelist, z);
try_next_zone:
- if (NUMA_BUILD && !did_zlc_setup) {
- /* we do zlc_setup after the first zone is tried */
+ if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
+ /*
+ * we do zlc_setup after the first zone is tried but only
+ * if there are multiple nodes make it worthwhile
+ */
allowednodes = zlc_setup(zonelist, alloc_flags);
zlc_active = 1;
did_zlc_setup = 1;
@@ -1457,47 +1531,217 @@ try_next_zone:
return page;
}
+static inline int
+should_alloc_retry(gfp_t gfp_mask, unsigned int order,
+ unsigned long pages_reclaimed)
+{
+ /* Do not loop if specifically requested */
+ if (gfp_mask & __GFP_NORETRY)
+ return 0;
+
+ /*
+ * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
+ * means __GFP_NOFAIL, but that may not be true in other
+ * implementations.
+ */
+ if (order <= PAGE_ALLOC_COSTLY_ORDER)
+ return 1;
+
+ /*
+ * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
+ * specified, then we retry until we no longer reclaim any pages
+ * (above), or we've reclaimed an order of pages at least as
+ * large as the allocation's order. In both cases, if the
+ * allocation still fails, we stop retrying.
+ */
+ if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
+ return 1;
+
+ /*
+ * Don't let big-order allocations loop unless the caller
+ * explicitly requests that.
+ */
+ if (gfp_mask & __GFP_NOFAIL)
+ return 1;
+
+ return 0;
+}
+
+static inline struct page *
+__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
+ struct zonelist *zonelist, enum zone_type high_zoneidx,
+ nodemask_t *nodemask, struct zone *preferred_zone,
+ int migratetype)
+{
+ struct page *page;
+
+ /* Acquire the OOM killer lock for the zones in zonelist */
+ if (!try_set_zone_oom(zonelist, gfp_mask)) {
+ schedule_timeout_uninterruptible(1);
+ return NULL;
+ }
+
+ /*
+ * Go through the zonelist yet one more time, keep very high watermark
+ * here, this is only to catch a parallel oom killing, we must fail if
+ * we're still under heavy pressure.
+ */
+ page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
+ order, zonelist, high_zoneidx,
+ ALLOC_WMARK_HIGH|ALLOC_CPUSET,
+ preferred_zone, migratetype);
+ if (page)
+ goto out;
+
+ /* The OOM killer will not help higher order allocs */
+ if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
+ goto out;
+
+ /* Exhausted what can be done so it's blamo time */
+ out_of_memory(zonelist, gfp_mask, order);
+
+out:
+ clear_zonelist_oom(zonelist, gfp_mask);
+ return page;
+}
+
+/* The really slow allocator path where we enter direct reclaim */
+static inline struct page *
+__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
+ struct zonelist *zonelist, enum zone_type high_zoneidx,
+ nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
+ int migratetype, unsigned long *did_some_progress)
+{
+ struct page *page = NULL;
+ struct reclaim_state reclaim_state;
+ struct task_struct *p = current;
+
+ cond_resched();
+
+ /* We now go into synchronous reclaim */
+ cpuset_memory_pressure_bump();
+
+ /*
+ * The task's cpuset might have expanded its set of allowable nodes
+ */
+ p->flags |= PF_MEMALLOC;
+ lockdep_set_current_reclaim_state(gfp_mask);
+ reclaim_state.reclaimed_slab = 0;
+ p->reclaim_state = &reclaim_state;
+
+ *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
+
+ p->reclaim_state = NULL;
+ lockdep_clear_current_reclaim_state();
+ p->flags &= ~PF_MEMALLOC;
+
+ cond_resched();
+
+ if (order != 0)
+ drain_all_pages();
+
+ if (likely(*did_some_progress))
+ page = get_page_from_freelist(gfp_mask, nodemask, order,
+ zonelist, high_zoneidx,
+ alloc_flags, preferred_zone,
+ migratetype);
+ return page;
+}
+
/*
- * This is the 'heart' of the zoned buddy allocator.
+ * This is called in the allocator slow-path if the allocation request is of
+ * sufficient urgency to ignore watermarks and take other desperate measures
*/
-struct page *
-__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, nodemask_t *nodemask)
+static inline struct page *
+__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
+ struct zonelist *zonelist, enum zone_type high_zoneidx,
+ nodemask_t *nodemask, struct zone *preferred_zone,
+ int migratetype)
+{
+ struct page *page;
+
+ do {
+ page = get_page_from_freelist(gfp_mask, nodemask, order,
+ zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
+ preferred_zone, migratetype);
+
+ if (!page && gfp_mask & __GFP_NOFAIL)
+ congestion_wait(WRITE, HZ/50);
+ } while (!page && (gfp_mask & __GFP_NOFAIL));
+
+ return page;
+}
+
+static inline
+void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
+ enum zone_type high_zoneidx)
{
- const gfp_t wait = gfp_mask & __GFP_WAIT;
- enum zone_type high_zoneidx = gfp_zone(gfp_mask);
struct zoneref *z;
struct zone *zone;
- struct page *page;
- struct reclaim_state reclaim_state;
- struct task_struct *p = current;
- int do_retry;
- int alloc_flags;
- unsigned long did_some_progress;
- unsigned long pages_reclaimed = 0;
- lockdep_trace_alloc(gfp_mask);
+ for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
+ wakeup_kswapd(zone, order);
+}
- might_sleep_if(wait);
+static inline int
+gfp_to_alloc_flags(gfp_t gfp_mask)
+{
+ struct task_struct *p = current;
+ int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
+ const gfp_t wait = gfp_mask & __GFP_WAIT;
- if (should_fail_alloc_page(gfp_mask, order))
- return NULL;
+ /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
+ BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
-restart:
- z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
+ /*
+ * The caller may dip into page reserves a bit more if the caller
+ * cannot run direct reclaim, or if the caller has realtime scheduling
+ * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
+ * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
+ */
+ alloc_flags |= (gfp_mask & __GFP_HIGH);
- if (unlikely(!z->zone)) {
+ if (!wait) {
+ alloc_flags |= ALLOC_HARDER;
/*
- * Happens if we have an empty zonelist as a result of
- * GFP_THISNODE being used on a memoryless node
+ * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
+ * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
- return NULL;
+ alloc_flags &= ~ALLOC_CPUSET;
+ } else if (unlikely(rt_task(p)))
+ alloc_flags |= ALLOC_HARDER;
+
+ if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
+ if (!in_interrupt() &&
+ ((p->flags & PF_MEMALLOC) ||
+ unlikely(test_thread_flag(TIF_MEMDIE))))
+ alloc_flags |= ALLOC_NO_WATERMARKS;
}
- page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
- zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
- if (page)
- goto got_pg;
+ return alloc_flags;
+}
+
+static inline struct page *
+__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
+ struct zonelist *zonelist, enum zone_type high_zoneidx,
+ nodemask_t *nodemask, struct zone *preferred_zone,
+ int migratetype)
+{
+ const gfp_t wait = gfp_mask & __GFP_WAIT;
+ struct page *page = NULL;
+ int alloc_flags;
+ unsigned long pages_reclaimed = 0;
+ unsigned long did_some_progress;
+ struct task_struct *p = current;
+
+ /*
+ * In the slowpath, we sanity check order to avoid ever trying to
+ * reclaim >= MAX_ORDER areas which will never succeed. Callers may
+ * be using allocators in order of preference for an area that is
+ * too large.
+ */
+ if (WARN_ON_ONCE(order >= MAX_ORDER))
+ return NULL;
/*
* GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
@@ -1510,154 +1754,83 @@ restart:
if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
goto nopage;
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
- wakeup_kswapd(zone, order);
+ wake_all_kswapd(order, zonelist, high_zoneidx);
/*
* OK, we're below the kswapd watermark and have kicked background
* reclaim. Now things get more complex, so set up alloc_flags according
* to how we want to proceed.
- *
- * The caller may dip into page reserves a bit more if the caller
- * cannot run direct reclaim, or if the caller has realtime scheduling
- * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
- * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
*/
- alloc_flags = ALLOC_WMARK_MIN;
- if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
- alloc_flags |= ALLOC_HARDER;
- if (gfp_mask & __GFP_HIGH)
- alloc_flags |= ALLOC_HIGH;
- if (wait)
- alloc_flags |= ALLOC_CPUSET;
+ alloc_flags = gfp_to_alloc_flags(gfp_mask);
- /*
- * Go through the zonelist again. Let __GFP_HIGH and allocations
- * coming from realtime tasks go deeper into reserves.
- *
- * This is the last chance, in general, before the goto nopage.
- * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
- * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
- */
+restart:
+ /* This is the last chance, in general, before the goto nopage. */
page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
- high_zoneidx, alloc_flags);
+ high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
+ preferred_zone, migratetype);
if (page)
goto got_pg;
- /* This allocation should allow future memory freeing. */
-
rebalance:
- if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
- && !in_interrupt()) {
- if (!(gfp_mask & __GFP_NOMEMALLOC)) {
-nofail_alloc:
- /* go through the zonelist yet again, ignoring mins */
- page = get_page_from_freelist(gfp_mask, nodemask, order,
- zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
- if (page)
- goto got_pg;
- if (gfp_mask & __GFP_NOFAIL) {
- congestion_wait(WRITE, HZ/50);
- goto nofail_alloc;
- }
- }
- goto nopage;
+ /* Allocate without watermarks if the context allows */
+ if (alloc_flags & ALLOC_NO_WATERMARKS) {
+ page = __alloc_pages_high_priority(gfp_mask, order,
+ zonelist, high_zoneidx, nodemask,
+ preferred_zone, migratetype);
+ if (page)
+ goto got_pg;
}
/* Atomic allocations - we can't balance anything */
if (!wait)
goto nopage;
- cond_resched();
+ /* Avoid recursion of direct reclaim */
+ if (p->flags & PF_MEMALLOC)
+ goto nopage;
+
+ /* Try direct reclaim and then allocating */
+ page = __alloc_pages_direct_reclaim(gfp_mask, order,
+ zonelist, high_zoneidx,
+ nodemask,
+ alloc_flags, preferred_zone,
+ migratetype, &did_some_progress);
+ if (page)
+ goto got_pg;
- /* We now go into synchronous reclaim */
- cpuset_memory_pressure_bump();
/*
- * The task's cpuset might have expanded its set of allowable nodes
+ * If we failed to make any progress reclaiming, then we are
+ * running out of options and have to consider going OOM
*/
- cpuset_update_task_memory_state();
- p->flags |= PF_MEMALLOC;
-
- lockdep_set_current_reclaim_state(gfp_mask);
- reclaim_state.reclaimed_slab = 0;
- p->reclaim_state = &reclaim_state;
-
- did_some_progress = try_to_free_pages(zonelist, order,
- gfp_mask, nodemask);
-
- p->reclaim_state = NULL;
- lockdep_clear_current_reclaim_state();
- p->flags &= ~PF_MEMALLOC;
-
- cond_resched();
+ if (!did_some_progress) {
+ if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
+ if (oom_killer_disabled)
+ goto nopage;
+ page = __alloc_pages_may_oom(gfp_mask, order,
+ zonelist, high_zoneidx,
+ nodemask, preferred_zone,
+ migratetype);
+ if (page)
+ goto got_pg;
- if (order != 0)
- drain_all_pages();
+ /*
+ * The OOM killer does not trigger for high-order
+ * ~__GFP_NOFAIL allocations so if no progress is being
+ * made, there are no other options and retrying is
+ * unlikely to help.
+ */
+ if (order > PAGE_ALLOC_COSTLY_ORDER &&
+ !(gfp_mask & __GFP_NOFAIL))
+ goto nopage;
- if (likely(did_some_progress)) {
- page = get_page_from_freelist(gfp_mask, nodemask, order,
- zonelist, high_zoneidx, alloc_flags);
- if (page)
- goto got_pg;
- } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
- if (!try_set_zone_oom(zonelist, gfp_mask)) {
- schedule_timeout_uninterruptible(1);
goto restart;
}
-
- /*
- * Go through the zonelist yet one more time, keep
- * very high watermark here, this is only to catch
- * a parallel oom killing, we must fail if we're still
- * under heavy pressure.
- */
- page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
- order, zonelist, high_zoneidx,
- ALLOC_WMARK_HIGH|ALLOC_CPUSET);
- if (page) {
- clear_zonelist_oom(zonelist, gfp_mask);
- goto got_pg;
- }
-
- /* The OOM killer will not help higher order allocs so fail */
- if (order > PAGE_ALLOC_COSTLY_ORDER) {
- clear_zonelist_oom(zonelist, gfp_mask);
- goto nopage;
- }
-
- out_of_memory(zonelist, gfp_mask, order);
- clear_zonelist_oom(zonelist, gfp_mask);
- goto restart;
}
- /*
- * Don't let big-order allocations loop unless the caller explicitly
- * requests that. Wait for some write requests to complete then retry.
- *
- * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
- * means __GFP_NOFAIL, but that may not be true in other
- * implementations.
- *
- * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
- * specified, then we retry until we no longer reclaim any pages
- * (above), or we've reclaimed an order of pages at least as
- * large as the allocation's order. In both cases, if the
- * allocation still fails, we stop retrying.
- */
+ /* Check if we should retry the allocation */
pages_reclaimed += did_some_progress;
- do_retry = 0;
- if (!(gfp_mask & __GFP_NORETRY)) {
- if (order <= PAGE_ALLOC_COSTLY_ORDER) {
- do_retry = 1;
- } else {
- if (gfp_mask & __GFP_REPEAT &&
- pages_reclaimed < (1 << order))
- do_retry = 1;
- }
- if (gfp_mask & __GFP_NOFAIL)
- do_retry = 1;
- }
- if (do_retry) {
+ if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
+ /* Wait for some write requests to complete then retry */
congestion_wait(WRITE, HZ/50);
goto rebalance;
}
@@ -1670,10 +1843,58 @@ nopage:
dump_stack();
show_mem();
}
+ return page;
got_pg:
+ if (kmemcheck_enabled)
+ kmemcheck_pagealloc_alloc(page, order, gfp_mask);
return page;
+
}
-EXPORT_SYMBOL(__alloc_pages_internal);
+
+/*
+ * This is the 'heart' of the zoned buddy allocator.
+ */
+struct page *
+__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
+ struct zonelist *zonelist, nodemask_t *nodemask)
+{
+ enum zone_type high_zoneidx = gfp_zone(gfp_mask);
+ struct zone *preferred_zone;
+ struct page *page;
+ int migratetype = allocflags_to_migratetype(gfp_mask);
+
+ lockdep_trace_alloc(gfp_mask);
+
+ might_sleep_if(gfp_mask & __GFP_WAIT);
+
+ if (should_fail_alloc_page(gfp_mask, order))
+ return NULL;
+
+ /*
+ * Check the zones suitable for the gfp_mask contain at least one
+ * valid zone. It's possible to have an empty zonelist as a result
+ * of GFP_THISNODE and a memoryless node
+ */
+ if (unlikely(!zonelist->_zonerefs->zone))
+ return NULL;
+
+ /* The preferred zone is used for statistics later */
+ first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
+ if (!preferred_zone)
+ return NULL;
+
+ /* First allocation attempt */
+ page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
+ zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
+ preferred_zone, migratetype);
+ if (unlikely(!page))
+ page = __alloc_pages_slowpath(gfp_mask, order,
+ zonelist, high_zoneidx, nodemask,
+ preferred_zone, migratetype);
+
+ return page;
+}
+EXPORT_SYMBOL(__alloc_pages_nodemask);
/*
* Common helper functions.
@@ -1802,7 +2023,7 @@ static unsigned int nr_free_zone_pages(int offset)
for_each_zone_zonelist(zone, z, zonelist, offset) {
unsigned long size = zone->present_pages;
- unsigned long high = zone->pages_high;
+ unsigned long high = high_wmark_pages(zone);
if (size > high)
sum += size - high;
}
@@ -1894,19 +2115,14 @@ void show_free_areas(void)
printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
" inactive_file:%lu"
-//TODO: check/adjust line lengths
-#ifdef CONFIG_UNEVICTABLE_LRU
" unevictable:%lu"
-#endif
" dirty:%lu writeback:%lu unstable:%lu\n"
" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
global_page_state(NR_ACTIVE_ANON),
global_page_state(NR_ACTIVE_FILE),
global_page_state(NR_INACTIVE_ANON),
global_page_state(NR_INACTIVE_FILE),
-#ifdef CONFIG_UNEVICTABLE_LRU
global_page_state(NR_UNEVICTABLE),
-#endif
global_page_state(NR_FILE_DIRTY),
global_page_state(NR_WRITEBACK),
global_page_state(NR_UNSTABLE_NFS),
@@ -1930,25 +2146,21 @@ void show_free_areas(void)
" inactive_anon:%lukB"
" active_file:%lukB"
" inactive_file:%lukB"
-#ifdef CONFIG_UNEVICTABLE_LRU
" unevictable:%lukB"
-#endif
" present:%lukB"
" pages_scanned:%lu"
" all_unreclaimable? %s"
"\n",
zone->name,
K(zone_page_state(zone, NR_FREE_PAGES)),
- K(zone->pages_min),
- K(zone->pages_low),
- K(zone->pages_high),
+ K(min_wmark_pages(zone)),
+ K(low_wmark_pages(zone)),
+ K(high_wmark_pages(zone)),
K(zone_page_state(zone, NR_ACTIVE_ANON)),
K(zone_page_state(zone, NR_INACTIVE_ANON)),
K(zone_page_state(zone, NR_ACTIVE_FILE)),
K(zone_page_state(zone, NR_INACTIVE_FILE)),
-#ifdef CONFIG_UNEVICTABLE_LRU
K(zone_page_state(zone, NR_UNEVICTABLE)),
-#endif
K(zone->present_pages),
zone->pages_scanned,
(zone_is_all_unreclaimable(zone) ? "yes" : "no")
@@ -2106,7 +2318,7 @@ int numa_zonelist_order_handler(ctl_table *table, int write,
}
-#define MAX_NODE_LOAD (num_online_nodes())
+#define MAX_NODE_LOAD (nr_online_nodes)
static int node_load[MAX_NUMNODES];
/**
@@ -2315,7 +2527,7 @@ static void build_zonelists(pg_data_t *pgdat)
/* NUMA-aware ordering of nodes */
local_node = pgdat->node_id;
- load = num_online_nodes();
+ load = nr_online_nodes;
prev_node = local_node;
nodes_clear(used_mask);
@@ -2466,7 +2678,7 @@ void build_all_zonelists(void)
printk("Built %i zonelists in %s order, mobility grouping %s. "
"Total pages: %ld\n",
- num_online_nodes(),
+ nr_online_nodes,
zonelist_order_name[current_zonelist_order],
page_group_by_mobility_disabled ? "off" : "on",
vm_total_pages);
@@ -2545,8 +2757,8 @@ static inline unsigned long wait_table_bits(unsigned long size)
/*
* Mark a number of pageblocks as MIGRATE_RESERVE. The number
- * of blocks reserved is based on zone->pages_min. The memory within the
- * reserve will tend to store contiguous free pages. Setting min_free_kbytes
+ * of blocks reserved is based on min_wmark_pages(zone). The memory within
+ * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
* higher will lead to a bigger reserve which will get freed as contiguous
* blocks as reclaim kicks in
*/
@@ -2559,7 +2771,7 @@ static void setup_zone_migrate_reserve(struct zone *zone)
/* Get the start pfn, end pfn and the number of blocks to reserve */
start_pfn = zone->zone_start_pfn;
end_pfn = start_pfn + zone->spanned_pages;
- reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
+ reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
pageblock_order;
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
@@ -2681,6 +2893,7 @@ static void __meminit zone_init_free_lists(struct zone *zone)
static int zone_batchsize(struct zone *zone)
{
+#ifdef CONFIG_MMU
int batch;
/*
@@ -2706,9 +2919,26 @@ static int zone_batchsize(struct zone *zone)
* of pages of one half of the possible page colors
* and the other with pages of the other colors.
*/
- batch = (1 << (fls(batch + batch/2)-1)) - 1;
+ batch = rounddown_pow_of_two(batch + batch/2) - 1;
return batch;
+
+#else
+ /* The deferral and batching of frees should be suppressed under NOMMU
+ * conditions.
+ *
+ * The problem is that NOMMU needs to be able to allocate large chunks
+ * of contiguous memory as there's no hardware page translation to
+ * assemble apparent contiguous memory from discontiguous pages.
+ *
+ * Queueing large contiguous runs of pages for batching, however,
+ * causes the pages to actually be freed in smaller chunks. As there
+ * can be a significant delay between the individual batches being
+ * recycled, this leads to the once large chunks of space being
+ * fragmented and becoming unavailable for high-order allocations.
+ */
+ return 0;
+#endif
}
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
@@ -3085,64 +3315,6 @@ void __init sparse_memory_present_with_active_regions(int nid)
}
/**
- * push_node_boundaries - Push node boundaries to at least the requested boundary
- * @nid: The nid of the node to push the boundary for
- * @start_pfn: The start pfn of the node
- * @end_pfn: The end pfn of the node
- *
- * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
- * time. Specifically, on x86_64, SRAT will report ranges that can potentially
- * be hotplugged even though no physical memory exists. This function allows
- * an arch to push out the node boundaries so mem_map is allocated that can
- * be used later.
- */
-#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
-void __init push_node_boundaries(unsigned int nid,
- unsigned long start_pfn, unsigned long end_pfn)
-{
- mminit_dprintk(MMINIT_TRACE, "zoneboundary",
- "Entering push_node_boundaries(%u, %lu, %lu)\n",
- nid, start_pfn, end_pfn);
-
- /* Initialise the boundary for this node if necessary */
- if (node_boundary_end_pfn[nid] == 0)
- node_boundary_start_pfn[nid] = -1UL;
-
- /* Update the boundaries */
- if (node_boundary_start_pfn[nid] > start_pfn)
- node_boundary_start_pfn[nid] = start_pfn;
- if (node_boundary_end_pfn[nid] < end_pfn)
- node_boundary_end_pfn[nid] = end_pfn;
-}
-
-/* If necessary, push the node boundary out for reserve hotadd */
-static void __meminit account_node_boundary(unsigned int nid,
- unsigned long *start_pfn, unsigned long *end_pfn)
-{
- mminit_dprintk(MMINIT_TRACE, "zoneboundary",
- "Entering account_node_boundary(%u, %lu, %lu)\n",
- nid, *start_pfn, *end_pfn);
-
- /* Return if boundary information has not been provided */
- if (node_boundary_end_pfn[nid] == 0)
- return;
-
- /* Check the boundaries and update if necessary */
- if (node_boundary_start_pfn[nid] < *start_pfn)
- *start_pfn = node_boundary_start_pfn[nid];
- if (node_boundary_end_pfn[nid] > *end_pfn)
- *end_pfn = node_boundary_end_pfn[nid];
-}
-#else
-void __init push_node_boundaries(unsigned int nid,
- unsigned long start_pfn, unsigned long end_pfn) {}
-
-static void __meminit account_node_boundary(unsigned int nid,
- unsigned long *start_pfn, unsigned long *end_pfn) {}
-#endif
-
-
-/**
* get_pfn_range_for_nid - Return the start and end page frames for a node
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
@@ -3167,9 +3339,6 @@ void __meminit get_pfn_range_for_nid(unsigned int nid,
if (*start_pfn == -1UL)
*start_pfn = 0;
-
- /* Push the node boundaries out if requested */
- account_node_boundary(nid, start_pfn, end_pfn);
}
/*
@@ -3534,7 +3703,7 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat,
zone_pcp_init(zone);
for_each_lru(l) {
INIT_LIST_HEAD(&zone->lru[l].list);
- zone->lru[l].nr_scan = 0;
+ zone->lru[l].nr_saved_scan = 0;
}
zone->reclaim_stat.recent_rotated[0] = 0;
zone->reclaim_stat.recent_rotated[1] = 0;
@@ -3775,10 +3944,6 @@ void __init remove_all_active_ranges(void)
{
memset(early_node_map, 0, sizeof(early_node_map));
nr_nodemap_entries = 0;
-#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
- memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
- memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
-#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
}
/* Compare two active node_active_regions */
@@ -4075,6 +4240,11 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn)
early_node_map[i].start_pfn,
early_node_map[i].end_pfn);
+ /*
+ * find_zone_movable_pfns_for_nodes/early_calculate_totalpages init
+ * that node_mask, clear it at first
+ */
+ nodes_clear(node_states[N_HIGH_MEMORY]);
/* Initialise every node */
mminit_verify_pageflags_layout();
setup_nr_node_ids();
@@ -4209,8 +4379,8 @@ static void calculate_totalreserve_pages(void)
max = zone->lowmem_reserve[j];
}
- /* we treat pages_high as reserved pages. */
- max += zone->pages_high;
+ /* we treat the high watermark as reserved pages. */
+ max += high_wmark_pages(zone);
if (max > zone->present_pages)
max = zone->present_pages;
@@ -4260,12 +4430,13 @@ static void setup_per_zone_lowmem_reserve(void)
}
/**
- * setup_per_zone_pages_min - called when min_free_kbytes changes.
+ * setup_per_zone_wmarks - called when min_free_kbytes changes
+ * or when memory is hot-{added|removed}
*
- * Ensures that the pages_{min,low,high} values for each zone are set correctly
- * with respect to min_free_kbytes.
+ * Ensures that the watermark[min,low,high] values for each zone are set
+ * correctly with respect to min_free_kbytes.
*/
-void setup_per_zone_pages_min(void)
+void setup_per_zone_wmarks(void)
{
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
unsigned long lowmem_pages = 0;
@@ -4290,7 +4461,7 @@ void setup_per_zone_pages_min(void)
* need highmem pages, so cap pages_min to a small
* value here.
*
- * The (pages_high-pages_low) and (pages_low-pages_min)
+ * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
* deltas controls asynch page reclaim, and so should
* not be capped for highmem.
*/
@@ -4301,17 +4472,17 @@ void setup_per_zone_pages_min(void)
min_pages = SWAP_CLUSTER_MAX;
if (min_pages > 128)
min_pages = 128;
- zone->pages_min = min_pages;
+ zone->watermark[WMARK_MIN] = min_pages;
} else {
/*
* If it's a lowmem zone, reserve a number of pages
* proportionate to the zone's size.
*/
- zone->pages_min = tmp;
+ zone->watermark[WMARK_MIN] = tmp;
}
- zone->pages_low = zone->pages_min + (tmp >> 2);
- zone->pages_high = zone->pages_min + (tmp >> 1);
+ zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
+ zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
setup_zone_migrate_reserve(zone);
spin_unlock_irqrestore(&zone->lock, flags);
}
@@ -4321,8 +4492,6 @@ void setup_per_zone_pages_min(void)
}
/**
- * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
- *
* The inactive anon list should be small enough that the VM never has to
* do too much work, but large enough that each inactive page has a chance
* to be referenced again before it is swapped out.
@@ -4343,21 +4512,26 @@ void setup_per_zone_pages_min(void)
* 1TB 101 10GB
* 10TB 320 32GB
*/
-static void setup_per_zone_inactive_ratio(void)
+void calculate_zone_inactive_ratio(struct zone *zone)
{
- struct zone *zone;
-
- for_each_zone(zone) {
- unsigned int gb, ratio;
+ unsigned int gb, ratio;
- /* Zone size in gigabytes */
- gb = zone->present_pages >> (30 - PAGE_SHIFT);
+ /* Zone size in gigabytes */
+ gb = zone->present_pages >> (30 - PAGE_SHIFT);
+ if (gb)
ratio = int_sqrt(10 * gb);
- if (!ratio)
- ratio = 1;
+ else
+ ratio = 1;
- zone->inactive_ratio = ratio;
- }
+ zone->inactive_ratio = ratio;
+}
+
+static void __init setup_per_zone_inactive_ratio(void)
+{
+ struct zone *zone;
+
+ for_each_zone(zone)
+ calculate_zone_inactive_ratio(zone);
}
/*
@@ -4384,7 +4558,7 @@ static void setup_per_zone_inactive_ratio(void)
* 8192MB: 11584k
* 16384MB: 16384k
*/
-static int __init init_per_zone_pages_min(void)
+static int __init init_per_zone_wmark_min(void)
{
unsigned long lowmem_kbytes;
@@ -4395,12 +4569,12 @@ static int __init init_per_zone_pages_min(void)
min_free_kbytes = 128;
if (min_free_kbytes > 65536)
min_free_kbytes = 65536;
- setup_per_zone_pages_min();
+ setup_per_zone_wmarks();
setup_per_zone_lowmem_reserve();
setup_per_zone_inactive_ratio();
return 0;
}
-module_init(init_per_zone_pages_min)
+module_init(init_per_zone_wmark_min)
/*
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
@@ -4412,7 +4586,7 @@ int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
{
proc_dointvec(table, write, file, buffer, length, ppos);
if (write)
- setup_per_zone_pages_min();
+ setup_per_zone_wmarks();
return 0;
}
@@ -4456,7 +4630,7 @@ int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
* whenever sysctl_lowmem_reserve_ratio changes.
*
* The reserve ratio obviously has absolutely no relation with the
- * pages_min watermarks. The lowmem reserve ratio can only make sense
+ * minimum watermarks. The lowmem reserve ratio can only make sense
* if in function of the boot time zone sizes.
*/
int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
@@ -4563,23 +4737,13 @@ void *__init alloc_large_system_hash(const char *tablename,
else if (hashdist)
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
else {
- unsigned long order = get_order(size);
- table = (void*) __get_free_pages(GFP_ATOMIC, order);
/*
* If bucketsize is not a power-of-two, we may free
- * some pages at the end of hash table.
+ * some pages at the end of hash table which
+ * alloc_pages_exact() automatically does
*/
- if (table) {
- unsigned long alloc_end = (unsigned long)table +
- (PAGE_SIZE << order);
- unsigned long used = (unsigned long)table +
- PAGE_ALIGN(size);
- split_page(virt_to_page(table), order);
- while (used < alloc_end) {
- free_page(used);
- used += PAGE_SIZE;
- }
- }
+ if (get_order(size) < MAX_ORDER)
+ table = alloc_pages_exact(size, GFP_ATOMIC);
}
} while (!table && size > PAGE_SIZE && --log2qty);
@@ -4597,6 +4761,16 @@ void *__init alloc_large_system_hash(const char *tablename,
if (_hash_mask)
*_hash_mask = (1 << log2qty) - 1;
+ /*
+ * If hashdist is set, the table allocation is done with __vmalloc()
+ * which invokes the kmemleak_alloc() callback. This function may also
+ * be called before the slab and kmemleak are initialised when
+ * kmemleak simply buffers the request to be executed later
+ * (GFP_ATOMIC flag ignored in this case).
+ */
+ if (!hashdist)
+ kmemleak_alloc(table, size, 1, GFP_ATOMIC);
+
return table;
}
diff --git a/mm/page_cgroup.c b/mm/page_cgroup.c
index 791905c991df..11a8a10a3909 100644
--- a/mm/page_cgroup.c
+++ b/mm/page_cgroup.c
@@ -69,7 +69,7 @@ static int __init alloc_node_page_cgroup(int nid)
return 0;
}
-void __init page_cgroup_init(void)
+void __init page_cgroup_init_flatmem(void)
{
int nid, fail;
@@ -113,16 +113,11 @@ static int __init_refok init_section_page_cgroup(unsigned long pfn)
if (!section->page_cgroup) {
nid = page_to_nid(pfn_to_page(pfn));
table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
- if (slab_is_available()) {
- base = kmalloc_node(table_size,
- GFP_KERNEL | __GFP_NOWARN, nid);
- if (!base)
- base = vmalloc_node(table_size, nid);
- } else {
- base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
- table_size,
- PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
- }
+ VM_BUG_ON(!slab_is_available());
+ base = kmalloc_node(table_size,
+ GFP_KERNEL | __GFP_NOWARN, nid);
+ if (!base)
+ base = vmalloc_node(table_size, nid);
} else {
/*
* We don't have to allocate page_cgroup again, but
diff --git a/mm/page_io.c b/mm/page_io.c
index 3023c475e041..c6f3e5071de3 100644
--- a/mm/page_io.c
+++ b/mm/page_io.c
@@ -120,7 +120,7 @@ out:
return ret;
}
-int swap_readpage(struct file *file, struct page *page)
+int swap_readpage(struct page *page)
{
struct bio *bio;
int ret = 0;
diff --git a/mm/pdflush.c b/mm/pdflush.c
index f2caf96993f8..235ac440c44e 100644
--- a/mm/pdflush.c
+++ b/mm/pdflush.c
@@ -58,14 +58,6 @@ static DEFINE_SPINLOCK(pdflush_lock);
int nr_pdflush_threads = 0;
/*
- * The max/min number of pdflush threads. R/W by sysctl at
- * /proc/sys/vm/nr_pdflush_threads_max/min
- */
-int nr_pdflush_threads_max __read_mostly = MAX_PDFLUSH_THREADS;
-int nr_pdflush_threads_min __read_mostly = MIN_PDFLUSH_THREADS;
-
-
-/*
* The time at which the pdflush thread pool last went empty
*/
static unsigned long last_empty_jifs;
@@ -76,7 +68,7 @@ static unsigned long last_empty_jifs;
* Thread pool management algorithm:
*
* - The minimum and maximum number of pdflush instances are bound
- * by nr_pdflush_threads_min and nr_pdflush_threads_max.
+ * by MIN_PDFLUSH_THREADS and MAX_PDFLUSH_THREADS.
*
* - If there have been no idle pdflush instances for 1 second, create
* a new one.
@@ -142,13 +134,14 @@ static int __pdflush(struct pdflush_work *my_work)
* To throttle creation, we reset last_empty_jifs.
*/
if (time_after(jiffies, last_empty_jifs + 1 * HZ)) {
- if (list_empty(&pdflush_list) &&
- nr_pdflush_threads < nr_pdflush_threads_max) {
- last_empty_jifs = jiffies;
- nr_pdflush_threads++;
- spin_unlock_irq(&pdflush_lock);
- start_one_pdflush_thread();
- spin_lock_irq(&pdflush_lock);
+ if (list_empty(&pdflush_list)) {
+ if (nr_pdflush_threads < MAX_PDFLUSH_THREADS) {
+ last_empty_jifs = jiffies;
+ nr_pdflush_threads++;
+ spin_unlock_irq(&pdflush_lock);
+ start_one_pdflush_thread();
+ spin_lock_irq(&pdflush_lock);
+ }
}
}
@@ -160,7 +153,7 @@ static int __pdflush(struct pdflush_work *my_work)
*/
if (list_empty(&pdflush_list))
continue;
- if (nr_pdflush_threads <= nr_pdflush_threads_min)
+ if (nr_pdflush_threads <= MIN_PDFLUSH_THREADS)
continue;
pdf = list_entry(pdflush_list.prev, struct pdflush_work, list);
if (time_after(jiffies, pdf->when_i_went_to_sleep + 1 * HZ)) {
@@ -266,9 +259,9 @@ static int __init pdflush_init(void)
* Pre-set nr_pdflush_threads... If we fail to create,
* the count will be decremented.
*/
- nr_pdflush_threads = nr_pdflush_threads_min;
+ nr_pdflush_threads = MIN_PDFLUSH_THREADS;
- for (i = 0; i < nr_pdflush_threads_min; i++)
+ for (i = 0; i < MIN_PDFLUSH_THREADS; i++)
start_one_pdflush_thread();
return 0;
}
diff --git a/mm/percpu.c b/mm/percpu.c
index 1aa5d8fbca12..c0b2c1a76e81 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -23,7 +23,7 @@
* Allocation is done in offset-size areas of single unit space. Ie,
* an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
* c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
- * percpu base registers UNIT_SIZE apart.
+ * percpu base registers pcpu_unit_size apart.
*
* There are usually many small percpu allocations many of them as
* small as 4 bytes. The allocator organizes chunks into lists
@@ -38,8 +38,8 @@
* region and negative allocated. Allocation inside a chunk is done
* by scanning this map sequentially and serving the first matching
* entry. This is mostly copied from the percpu_modalloc() allocator.
- * Chunks are also linked into a rb tree to ease address to chunk
- * mapping during free.
+ * Chunks can be determined from the address using the index field
+ * in the page struct. The index field contains a pointer to the chunk.
*
* To use this allocator, arch code should do the followings.
*
@@ -61,7 +61,6 @@
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
-#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
@@ -88,7 +87,6 @@
struct pcpu_chunk {
struct list_head list; /* linked to pcpu_slot lists */
- struct rb_node rb_node; /* key is chunk->vm->addr */
int free_size; /* free bytes in the chunk */
int contig_hint; /* max contiguous size hint */
struct vm_struct *vm; /* mapped vmalloc region */
@@ -110,9 +108,21 @@ static size_t pcpu_chunk_struct_size __read_mostly;
void *pcpu_base_addr __read_mostly;
EXPORT_SYMBOL_GPL(pcpu_base_addr);
-/* optional reserved chunk, only accessible for reserved allocations */
+/*
+ * The first chunk which always exists. Note that unlike other
+ * chunks, this one can be allocated and mapped in several different
+ * ways and thus often doesn't live in the vmalloc area.
+ */
+static struct pcpu_chunk *pcpu_first_chunk;
+
+/*
+ * Optional reserved chunk. This chunk reserves part of the first
+ * chunk and serves it for reserved allocations. The amount of
+ * reserved offset is in pcpu_reserved_chunk_limit. When reserved
+ * area doesn't exist, the following variables contain NULL and 0
+ * respectively.
+ */
static struct pcpu_chunk *pcpu_reserved_chunk;
-/* offset limit of the reserved chunk */
static int pcpu_reserved_chunk_limit;
/*
@@ -121,7 +131,7 @@ static int pcpu_reserved_chunk_limit;
* There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
* protects allocation/reclaim paths, chunks and chunk->page arrays.
* The latter is a spinlock and protects the index data structures -
- * chunk slots, rbtree, chunks and area maps in chunks.
+ * chunk slots, chunks and area maps in chunks.
*
* During allocation, pcpu_alloc_mutex is kept locked all the time and
* pcpu_lock is grabbed and released as necessary. All actual memory
@@ -140,7 +150,6 @@ static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
-static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
@@ -191,6 +200,18 @@ static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
}
+/* set the pointer to a chunk in a page struct */
+static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
+{
+ page->index = (unsigned long)pcpu;
+}
+
+/* obtain pointer to a chunk from a page struct */
+static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
+{
+ return (struct pcpu_chunk *)page->index;
+}
+
/**
* pcpu_mem_alloc - allocate memory
* @size: bytes to allocate
@@ -257,93 +278,26 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
}
}
-static struct rb_node **pcpu_chunk_rb_search(void *addr,
- struct rb_node **parentp)
-{
- struct rb_node **p = &pcpu_addr_root.rb_node;
- struct rb_node *parent = NULL;
- struct pcpu_chunk *chunk;
-
- while (*p) {
- parent = *p;
- chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
-
- if (addr < chunk->vm->addr)
- p = &(*p)->rb_left;
- else if (addr > chunk->vm->addr)
- p = &(*p)->rb_right;
- else
- break;
- }
-
- if (parentp)
- *parentp = parent;
- return p;
-}
-
/**
- * pcpu_chunk_addr_search - search for chunk containing specified address
- * @addr: address to search for
- *
- * Look for chunk which might contain @addr. More specifically, it
- * searchs for the chunk with the highest start address which isn't
- * beyond @addr.
- *
- * CONTEXT:
- * pcpu_lock.
+ * pcpu_chunk_addr_search - determine chunk containing specified address
+ * @addr: address for which the chunk needs to be determined.
*
* RETURNS:
* The address of the found chunk.
*/
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
- struct rb_node *n, *parent;
- struct pcpu_chunk *chunk;
+ void *first_start = pcpu_first_chunk->vm->addr;
- /* is it in the reserved chunk? */
- if (pcpu_reserved_chunk) {
- void *start = pcpu_reserved_chunk->vm->addr;
-
- if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
+ /* is it in the first chunk? */
+ if (addr >= first_start && addr < first_start + pcpu_chunk_size) {
+ /* is it in the reserved area? */
+ if (addr < first_start + pcpu_reserved_chunk_limit)
return pcpu_reserved_chunk;
+ return pcpu_first_chunk;
}
- /* nah... search the regular ones */
- n = *pcpu_chunk_rb_search(addr, &parent);
- if (!n) {
- /* no exactly matching chunk, the parent is the closest */
- n = parent;
- BUG_ON(!n);
- }
- chunk = rb_entry(n, struct pcpu_chunk, rb_node);
-
- if (addr < chunk->vm->addr) {
- /* the parent was the next one, look for the previous one */
- n = rb_prev(n);
- BUG_ON(!n);
- chunk = rb_entry(n, struct pcpu_chunk, rb_node);
- }
-
- return chunk;
-}
-
-/**
- * pcpu_chunk_addr_insert - insert chunk into address rb tree
- * @new: chunk to insert
- *
- * Insert @new into address rb tree.
- *
- * CONTEXT:
- * pcpu_lock.
- */
-static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
-{
- struct rb_node **p, *parent;
-
- p = pcpu_chunk_rb_search(new->vm->addr, &parent);
- BUG_ON(*p);
- rb_link_node(&new->rb_node, parent, p);
- rb_insert_color(&new->rb_node, &pcpu_addr_root);
+ return pcpu_get_page_chunk(vmalloc_to_page(addr));
}
/**
@@ -755,6 +709,7 @@ static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
alloc_mask, 0);
if (!*pagep)
goto err;
+ pcpu_set_page_chunk(*pagep, chunk);
}
}
@@ -879,7 +834,6 @@ restart:
spin_lock_irq(&pcpu_lock);
pcpu_chunk_relocate(chunk, -1);
- pcpu_chunk_addr_insert(chunk);
goto restart;
area_found:
@@ -968,7 +922,6 @@ static void pcpu_reclaim(struct work_struct *work)
if (chunk == list_first_entry(head, struct pcpu_chunk, list))
continue;
- rb_erase(&chunk->rb_node, &pcpu_addr_root);
list_move(&chunk->list, &todo);
}
@@ -1147,7 +1100,8 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
if (reserved_size) {
schunk->free_size = reserved_size;
- pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
+ pcpu_reserved_chunk = schunk;
+ pcpu_reserved_chunk_limit = static_size + reserved_size;
} else {
schunk->free_size = dyn_size;
dyn_size = 0; /* dynamic area covered */
@@ -1158,8 +1112,6 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
if (schunk->free_size)
schunk->map[schunk->map_used++] = schunk->free_size;
- pcpu_reserved_chunk_limit = static_size + schunk->free_size;
-
/* init dynamic chunk if necessary */
if (dyn_size) {
dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
@@ -1226,13 +1178,8 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
}
/* link the first chunk in */
- if (!dchunk) {
- pcpu_chunk_relocate(schunk, -1);
- pcpu_chunk_addr_insert(schunk);
- } else {
- pcpu_chunk_relocate(dchunk, -1);
- pcpu_chunk_addr_insert(dchunk);
- }
+ pcpu_first_chunk = dchunk ?: schunk;
+ pcpu_chunk_relocate(pcpu_first_chunk, -1);
/* we're done */
pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
diff --git a/mm/readahead.c b/mm/readahead.c
index 133b6d525513..aa1aa2345235 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -133,15 +133,12 @@ out:
}
/*
- * do_page_cache_readahead actually reads a chunk of disk. It allocates all
+ * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
* the pages first, then submits them all for I/O. This avoids the very bad
* behaviour which would occur if page allocations are causing VM writeback.
* We really don't want to intermingle reads and writes like that.
*
* Returns the number of pages requested, or the maximum amount of I/O allowed.
- *
- * do_page_cache_readahead() returns -1 if it encountered request queue
- * congestion.
*/
static int
__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
@@ -210,6 +207,7 @@ int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
return -EINVAL;
+ nr_to_read = max_sane_readahead(nr_to_read);
while (nr_to_read) {
int err;
@@ -231,22 +229,6 @@ int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
}
/*
- * This version skips the IO if the queue is read-congested, and will tell the
- * block layer to abandon the readahead if request allocation would block.
- *
- * force_page_cache_readahead() will ignore queue congestion and will block on
- * request queues.
- */
-int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
- pgoff_t offset, unsigned long nr_to_read)
-{
- if (bdi_read_congested(mapping->backing_dev_info))
- return -1;
-
- return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
-}
-
-/*
* Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
* sensible upper limit.
*/
@@ -259,7 +241,7 @@ unsigned long max_sane_readahead(unsigned long nr)
/*
* Submit IO for the read-ahead request in file_ra_state.
*/
-static unsigned long ra_submit(struct file_ra_state *ra,
+unsigned long ra_submit(struct file_ra_state *ra,
struct address_space *mapping, struct file *filp)
{
int actual;
@@ -348,6 +330,59 @@ static unsigned long get_next_ra_size(struct file_ra_state *ra,
*/
/*
+ * Count contiguously cached pages from @offset-1 to @offset-@max,
+ * this count is a conservative estimation of
+ * - length of the sequential read sequence, or
+ * - thrashing threshold in memory tight systems
+ */
+static pgoff_t count_history_pages(struct address_space *mapping,
+ struct file_ra_state *ra,
+ pgoff_t offset, unsigned long max)
+{
+ pgoff_t head;
+
+ rcu_read_lock();
+ head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
+ rcu_read_unlock();
+
+ return offset - 1 - head;
+}
+
+/*
+ * page cache context based read-ahead
+ */
+static int try_context_readahead(struct address_space *mapping,
+ struct file_ra_state *ra,
+ pgoff_t offset,
+ unsigned long req_size,
+ unsigned long max)
+{
+ pgoff_t size;
+
+ size = count_history_pages(mapping, ra, offset, max);
+
+ /*
+ * no history pages:
+ * it could be a random read
+ */
+ if (!size)
+ return 0;
+
+ /*
+ * starts from beginning of file:
+ * it is a strong indication of long-run stream (or whole-file-read)
+ */
+ if (size >= offset)
+ size *= 2;
+
+ ra->start = offset;
+ ra->size = get_init_ra_size(size + req_size, max);
+ ra->async_size = ra->size;
+
+ return 1;
+}
+
+/*
* A minimal readahead algorithm for trivial sequential/random reads.
*/
static unsigned long
@@ -356,34 +391,26 @@ ondemand_readahead(struct address_space *mapping,
bool hit_readahead_marker, pgoff_t offset,
unsigned long req_size)
{
- int max = ra->ra_pages; /* max readahead pages */
- pgoff_t prev_offset;
- int sequential;
+ unsigned long max = max_sane_readahead(ra->ra_pages);
+
+ /*
+ * start of file
+ */
+ if (!offset)
+ goto initial_readahead;
/*
* It's the expected callback offset, assume sequential access.
* Ramp up sizes, and push forward the readahead window.
*/
- if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
- offset == (ra->start + ra->size))) {
+ if ((offset == (ra->start + ra->size - ra->async_size) ||
+ offset == (ra->start + ra->size))) {
ra->start += ra->size;
ra->size = get_next_ra_size(ra, max);
ra->async_size = ra->size;
goto readit;
}
- prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
- sequential = offset - prev_offset <= 1UL || req_size > max;
-
- /*
- * Standalone, small read.
- * Read as is, and do not pollute the readahead state.
- */
- if (!hit_readahead_marker && !sequential) {
- return __do_page_cache_readahead(mapping, filp,
- offset, req_size, 0);
- }
-
/*
* Hit a marked page without valid readahead state.
* E.g. interleaved reads.
@@ -394,7 +421,7 @@ ondemand_readahead(struct address_space *mapping,
pgoff_t start;
rcu_read_lock();
- start = radix_tree_next_hole(&mapping->page_tree, offset,max+1);
+ start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
rcu_read_unlock();
if (!start || start - offset > max)
@@ -402,23 +429,53 @@ ondemand_readahead(struct address_space *mapping,
ra->start = start;
ra->size = start - offset; /* old async_size */
+ ra->size += req_size;
ra->size = get_next_ra_size(ra, max);
ra->async_size = ra->size;
goto readit;
}
/*
- * It may be one of
- * - first read on start of file
- * - sequential cache miss
- * - oversize random read
- * Start readahead for it.
+ * oversize read
+ */
+ if (req_size > max)
+ goto initial_readahead;
+
+ /*
+ * sequential cache miss
+ */
+ if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
+ goto initial_readahead;
+
+ /*
+ * Query the page cache and look for the traces(cached history pages)
+ * that a sequential stream would leave behind.
+ */
+ if (try_context_readahead(mapping, ra, offset, req_size, max))
+ goto readit;
+
+ /*
+ * standalone, small random read
+ * Read as is, and do not pollute the readahead state.
*/
+ return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
+
+initial_readahead:
ra->start = offset;
ra->size = get_init_ra_size(req_size, max);
ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
readit:
+ /*
+ * Will this read hit the readahead marker made by itself?
+ * If so, trigger the readahead marker hit now, and merge
+ * the resulted next readahead window into the current one.
+ */
+ if (offset == ra->start && ra->size == ra->async_size) {
+ ra->async_size = get_next_ra_size(ra, max);
+ ra->size += ra->async_size;
+ }
+
return ra_submit(ra, mapping, filp);
}
diff --git a/mm/rmap.c b/mm/rmap.c
index 16521664010d..c9ccc1a72dc3 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -14,7 +14,7 @@
* Original design by Rik van Riel <riel@conectiva.com.br> 2001
* File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
* Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
- * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
+ * Contributions by Hugh Dickins 2003, 2004
*/
/*
@@ -333,7 +333,9 @@ static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
* repeatedly from either page_referenced_anon or page_referenced_file.
*/
static int page_referenced_one(struct page *page,
- struct vm_area_struct *vma, unsigned int *mapcount)
+ struct vm_area_struct *vma,
+ unsigned int *mapcount,
+ unsigned long *vm_flags)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long address;
@@ -381,11 +383,14 @@ out_unmap:
(*mapcount)--;
pte_unmap_unlock(pte, ptl);
out:
+ if (referenced)
+ *vm_flags |= vma->vm_flags;
return referenced;
}
static int page_referenced_anon(struct page *page,
- struct mem_cgroup *mem_cont)
+ struct mem_cgroup *mem_cont,
+ unsigned long *vm_flags)
{
unsigned int mapcount;
struct anon_vma *anon_vma;
@@ -405,7 +410,8 @@ static int page_referenced_anon(struct page *page,
*/
if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
continue;
- referenced += page_referenced_one(page, vma, &mapcount);
+ referenced += page_referenced_one(page, vma,
+ &mapcount, vm_flags);
if (!mapcount)
break;
}
@@ -418,6 +424,7 @@ static int page_referenced_anon(struct page *page,
* page_referenced_file - referenced check for object-based rmap
* @page: the page we're checking references on.
* @mem_cont: target memory controller
+ * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
*
* For an object-based mapped page, find all the places it is mapped and
* check/clear the referenced flag. This is done by following the page->mapping
@@ -427,7 +434,8 @@ static int page_referenced_anon(struct page *page,
* This function is only called from page_referenced for object-based pages.
*/
static int page_referenced_file(struct page *page,
- struct mem_cgroup *mem_cont)
+ struct mem_cgroup *mem_cont,
+ unsigned long *vm_flags)
{
unsigned int mapcount;
struct address_space *mapping = page->mapping;
@@ -467,7 +475,8 @@ static int page_referenced_file(struct page *page,
*/
if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
continue;
- referenced += page_referenced_one(page, vma, &mapcount);
+ referenced += page_referenced_one(page, vma,
+ &mapcount, vm_flags);
if (!mapcount)
break;
}
@@ -481,29 +490,35 @@ static int page_referenced_file(struct page *page,
* @page: the page to test
* @is_locked: caller holds lock on the page
* @mem_cont: target memory controller
+ * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
*
* Quick test_and_clear_referenced for all mappings to a page,
* returns the number of ptes which referenced the page.
*/
-int page_referenced(struct page *page, int is_locked,
- struct mem_cgroup *mem_cont)
+int page_referenced(struct page *page,
+ int is_locked,
+ struct mem_cgroup *mem_cont,
+ unsigned long *vm_flags)
{
int referenced = 0;
if (TestClearPageReferenced(page))
referenced++;
+ *vm_flags = 0;
if (page_mapped(page) && page->mapping) {
if (PageAnon(page))
- referenced += page_referenced_anon(page, mem_cont);
+ referenced += page_referenced_anon(page, mem_cont,
+ vm_flags);
else if (is_locked)
- referenced += page_referenced_file(page, mem_cont);
+ referenced += page_referenced_file(page, mem_cont,
+ vm_flags);
else if (!trylock_page(page))
referenced++;
else {
if (page->mapping)
- referenced +=
- page_referenced_file(page, mem_cont);
+ referenced += page_referenced_file(page,
+ mem_cont, vm_flags);
unlock_page(page);
}
}
@@ -1202,7 +1217,6 @@ int try_to_unmap(struct page *page, int migration)
return ret;
}
-#ifdef CONFIG_UNEVICTABLE_LRU
/**
* try_to_munlock - try to munlock a page
* @page: the page to be munlocked
@@ -1226,4 +1240,4 @@ int try_to_munlock(struct page *page)
else
return try_to_unmap_file(page, 1, 0);
}
-#endif
+
diff --git a/mm/shmem.c b/mm/shmem.c
index f9cb20ebb990..e89d7ec18eda 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -1097,7 +1097,7 @@ static int shmem_writepage(struct page *page, struct writeback_control *wbc)
shmem_swp_unmap(entry);
unlock:
spin_unlock(&info->lock);
- swap_free(swap);
+ swapcache_free(swap, NULL);
redirty:
set_page_dirty(page);
if (wbc->for_reclaim)
@@ -1340,8 +1340,12 @@ repeat:
shmem_swp_unmap(entry);
spin_unlock(&info->lock);
if (error == -ENOMEM) {
- /* allow reclaim from this memory cgroup */
- error = mem_cgroup_shrink_usage(swappage,
+ /*
+ * reclaim from proper memory cgroup and
+ * call memcg's OOM if needed.
+ */
+ error = mem_cgroup_shmem_charge_fallback(
+ swappage,
current->mm,
gfp);
if (error) {
@@ -2608,7 +2612,7 @@ int shmem_unuse(swp_entry_t entry, struct page *page)
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
-struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
+struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
{
int error;
struct file *file;
@@ -2655,6 +2659,7 @@ struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
if (error)
goto close_file;
#endif
+ ima_counts_get(file);
return file;
close_file:
@@ -2680,7 +2685,6 @@ int shmem_zero_setup(struct vm_area_struct *vma)
if (IS_ERR(file))
return PTR_ERR(file);
- ima_shm_check(file);
if (vma->vm_file)
fput(vma->vm_file);
vma->vm_file = file;
diff --git a/mm/slab.c b/mm/slab.c
index 9a90b00d2f91..d08692303f6e 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -102,17 +102,19 @@
#include <linux/cpu.h>
#include <linux/sysctl.h>
#include <linux/module.h>
-#include <trace/kmemtrace.h>
+#include <linux/kmemtrace.h>
#include <linux/rcupdate.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/nodemask.h>
+#include <linux/kmemleak.h>
#include <linux/mempolicy.h>
#include <linux/mutex.h>
#include <linux/fault-inject.h>
#include <linux/rtmutex.h>
#include <linux/reciprocal_div.h>
#include <linux/debugobjects.h>
+#include <linux/kmemcheck.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
@@ -178,13 +180,13 @@
SLAB_STORE_USER | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
- SLAB_DEBUG_OBJECTS)
+ SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
#else
# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
SLAB_CACHE_DMA | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
- SLAB_DEBUG_OBJECTS)
+ SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
#endif
/*
@@ -303,6 +305,12 @@ struct kmem_list3 {
};
/*
+ * The slab allocator is initialized with interrupts disabled. Therefore, make
+ * sure early boot allocations don't accidentally enable interrupts.
+ */
+static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
+
+/*
* Need this for bootstrapping a per node allocator.
*/
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
@@ -315,7 +323,7 @@ static int drain_freelist(struct kmem_cache *cache,
struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
int node);
-static int enable_cpucache(struct kmem_cache *cachep);
+static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
static void cache_reap(struct work_struct *unused);
/*
@@ -373,87 +381,6 @@ static void kmem_list3_init(struct kmem_list3 *parent)
MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
} while (0)
-/*
- * struct kmem_cache
- *
- * manages a cache.
- */
-
-struct kmem_cache {
-/* 1) per-cpu data, touched during every alloc/free */
- struct array_cache *array[NR_CPUS];
-/* 2) Cache tunables. Protected by cache_chain_mutex */
- unsigned int batchcount;
- unsigned int limit;
- unsigned int shared;
-
- unsigned int buffer_size;
- u32 reciprocal_buffer_size;
-/* 3) touched by every alloc & free from the backend */
-
- unsigned int flags; /* constant flags */
- unsigned int num; /* # of objs per slab */
-
-/* 4) cache_grow/shrink */
- /* order of pgs per slab (2^n) */
- unsigned int gfporder;
-
- /* force GFP flags, e.g. GFP_DMA */
- gfp_t gfpflags;
-
- size_t colour; /* cache colouring range */
- unsigned int colour_off; /* colour offset */
- struct kmem_cache *slabp_cache;
- unsigned int slab_size;
- unsigned int dflags; /* dynamic flags */
-
- /* constructor func */
- void (*ctor)(void *obj);
-
-/* 5) cache creation/removal */
- const char *name;
- struct list_head next;
-
-/* 6) statistics */
-#if STATS
- unsigned long num_active;
- unsigned long num_allocations;
- unsigned long high_mark;
- unsigned long grown;
- unsigned long reaped;
- unsigned long errors;
- unsigned long max_freeable;
- unsigned long node_allocs;
- unsigned long node_frees;
- unsigned long node_overflow;
- atomic_t allochit;
- atomic_t allocmiss;
- atomic_t freehit;
- atomic_t freemiss;
-#endif
-#if DEBUG
- /*
- * If debugging is enabled, then the allocator can add additional
- * fields and/or padding to every object. buffer_size contains the total
- * object size including these internal fields, the following two
- * variables contain the offset to the user object and its size.
- */
- int obj_offset;
- int obj_size;
-#endif
- /*
- * We put nodelists[] at the end of kmem_cache, because we want to size
- * this array to nr_node_ids slots instead of MAX_NUMNODES
- * (see kmem_cache_init())
- * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
- * is statically defined, so we reserve the max number of nodes.
- */
- struct kmem_list3 *nodelists[MAX_NUMNODES];
- /*
- * Do not add fields after nodelists[]
- */
-};
-
#define CFLGS_OFF_SLAB (0x80000000UL)
#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
@@ -752,6 +679,7 @@ static enum {
NONE,
PARTIAL_AC,
PARTIAL_L3,
+ EARLY,
FULL
} g_cpucache_up;
@@ -760,7 +688,7 @@ static enum {
*/
int slab_is_available(void)
{
- return g_cpucache_up == FULL;
+ return g_cpucache_up >= EARLY;
}
static DEFINE_PER_CPU(struct delayed_work, reap_work);
@@ -890,7 +818,6 @@ static void __slab_error(const char *function, struct kmem_cache *cachep,
*/
static int use_alien_caches __read_mostly = 1;
-static int numa_platform __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
use_alien_caches = 0;
@@ -958,12 +885,20 @@ static void __cpuinit start_cpu_timer(int cpu)
}
static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount)
+ int batchcount, gfp_t gfp)
{
int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
struct array_cache *nc = NULL;
- nc = kmalloc_node(memsize, GFP_KERNEL, node);
+ nc = kmalloc_node(memsize, gfp, node);
+ /*
+ * The array_cache structures contain pointers to free object.
+ * However, when such objects are allocated or transfered to another
+ * cache the pointers are not cleared and they could be counted as
+ * valid references during a kmemleak scan. Therefore, kmemleak must
+ * not scan such objects.
+ */
+ kmemleak_no_scan(nc);
if (nc) {
nc->avail = 0;
nc->limit = entries;
@@ -1003,7 +938,7 @@ static int transfer_objects(struct array_cache *to,
#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)
-static inline struct array_cache **alloc_alien_cache(int node, int limit)
+static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
{
return (struct array_cache **)BAD_ALIEN_MAGIC;
}
@@ -1034,7 +969,7 @@ static inline void *____cache_alloc_node(struct kmem_cache *cachep,
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
-static struct array_cache **alloc_alien_cache(int node, int limit)
+static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
{
struct array_cache **ac_ptr;
int memsize = sizeof(void *) * nr_node_ids;
@@ -1042,14 +977,14 @@ static struct array_cache **alloc_alien_cache(int node, int limit)
if (limit > 1)
limit = 12;
- ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
+ ac_ptr = kmalloc_node(memsize, gfp, node);
if (ac_ptr) {
for_each_node(i) {
if (i == node || !node_online(i)) {
ac_ptr[i] = NULL;
continue;
}
- ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
+ ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
if (!ac_ptr[i]) {
for (i--; i >= 0; i--)
kfree(ac_ptr[i]);
@@ -1282,20 +1217,20 @@ static int __cpuinit cpuup_prepare(long cpu)
struct array_cache **alien = NULL;
nc = alloc_arraycache(node, cachep->limit,
- cachep->batchcount);
+ cachep->batchcount, GFP_KERNEL);
if (!nc)
goto bad;
if (cachep->shared) {
shared = alloc_arraycache(node,
cachep->shared * cachep->batchcount,
- 0xbaadf00d);
+ 0xbaadf00d, GFP_KERNEL);
if (!shared) {
kfree(nc);
goto bad;
}
}
if (use_alien_caches) {
- alien = alloc_alien_cache(node, cachep->limit);
+ alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
if (!alien) {
kfree(shared);
kfree(nc);
@@ -1399,10 +1334,9 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
{
struct kmem_list3 *ptr;
- ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
+ ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
BUG_ON(!ptr);
- local_irq_disable();
memcpy(ptr, list, sizeof(struct kmem_list3));
/*
* Do not assume that spinlocks can be initialized via memcpy:
@@ -1411,7 +1345,6 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
MAKE_ALL_LISTS(cachep, ptr, nodeid);
cachep->nodelists[nodeid] = ptr;
- local_irq_enable();
}
/*
@@ -1443,10 +1376,8 @@ void __init kmem_cache_init(void)
int order;
int node;
- if (num_possible_nodes() == 1) {
+ if (num_possible_nodes() == 1)
use_alien_caches = 0;
- numa_platform = 0;
- }
for (i = 0; i < NUM_INIT_LISTS; i++) {
kmem_list3_init(&initkmem_list3[i]);
@@ -1575,9 +1506,8 @@ void __init kmem_cache_init(void)
{
struct array_cache *ptr;
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+ ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
- local_irq_disable();
BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
memcpy(ptr, cpu_cache_get(&cache_cache),
sizeof(struct arraycache_init));
@@ -1587,11 +1517,9 @@ void __init kmem_cache_init(void)
spin_lock_init(&ptr->lock);
cache_cache.array[smp_processor_id()] = ptr;
- local_irq_enable();
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+ ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
- local_irq_disable();
BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
!= &initarray_generic.cache);
memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
@@ -1603,7 +1531,6 @@ void __init kmem_cache_init(void)
malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
ptr;
- local_irq_enable();
}
/* 5) Replace the bootstrap kmem_list3's */
{
@@ -1622,19 +1549,27 @@ void __init kmem_cache_init(void)
}
}
- /* 6) resize the head arrays to their final sizes */
- {
- struct kmem_cache *cachep;
- mutex_lock(&cache_chain_mutex);
- list_for_each_entry(cachep, &cache_chain, next)
- if (enable_cpucache(cachep))
- BUG();
- mutex_unlock(&cache_chain_mutex);
- }
+ g_cpucache_up = EARLY;
/* Annotate slab for lockdep -- annotate the malloc caches */
init_lock_keys();
+}
+
+void __init kmem_cache_init_late(void)
+{
+ struct kmem_cache *cachep;
+ /*
+ * Interrupts are enabled now so all GFP allocations are safe.
+ */
+ slab_gfp_mask = __GFP_BITS_MASK;
+
+ /* 6) resize the head arrays to their final sizes */
+ mutex_lock(&cache_chain_mutex);
+ list_for_each_entry(cachep, &cache_chain, next)
+ if (enable_cpucache(cachep, GFP_NOWAIT))
+ BUG();
+ mutex_unlock(&cache_chain_mutex);
/* Done! */
g_cpucache_up = FULL;
@@ -1689,7 +1624,7 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
flags |= __GFP_RECLAIMABLE;
- page = alloc_pages_node(nodeid, flags, cachep->gfporder);
+ page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
if (!page)
return NULL;
@@ -1702,6 +1637,16 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
NR_SLAB_UNRECLAIMABLE, nr_pages);
for (i = 0; i < nr_pages; i++)
__SetPageSlab(page + i);
+
+ if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
+ kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
+
+ if (cachep->ctor)
+ kmemcheck_mark_uninitialized_pages(page, nr_pages);
+ else
+ kmemcheck_mark_unallocated_pages(page, nr_pages);
+ }
+
return page_address(page);
}
@@ -1714,6 +1659,8 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
struct page *page = virt_to_page(addr);
const unsigned long nr_freed = i;
+ kmemcheck_free_shadow(page, cachep->gfporder);
+
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
sub_zone_page_state(page_zone(page),
NR_SLAB_RECLAIMABLE, nr_freed);
@@ -2064,10 +2011,10 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
return left_over;
}
-static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
+static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
{
if (g_cpucache_up == FULL)
- return enable_cpucache(cachep);
+ return enable_cpucache(cachep, gfp);
if (g_cpucache_up == NONE) {
/*
@@ -2089,7 +2036,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
g_cpucache_up = PARTIAL_AC;
} else {
cachep->array[smp_processor_id()] =
- kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+ kmalloc(sizeof(struct arraycache_init), gfp);
if (g_cpucache_up == PARTIAL_AC) {
set_up_list3s(cachep, SIZE_L3);
@@ -2099,7 +2046,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
for_each_online_node(node) {
cachep->nodelists[node] =
kmalloc_node(sizeof(struct kmem_list3),
- GFP_KERNEL, node);
+ gfp, node);
BUG_ON(!cachep->nodelists[node]);
kmem_list3_init(cachep->nodelists[node]);
}
@@ -2153,6 +2100,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
{
size_t left_over, slab_size, ralign;
struct kmem_cache *cachep = NULL, *pc;
+ gfp_t gfp;
/*
* Sanity checks... these are all serious usage bugs.
@@ -2168,8 +2116,10 @@ kmem_cache_create (const char *name, size_t size, size_t align,
* We use cache_chain_mutex to ensure a consistent view of
* cpu_online_mask as well. Please see cpuup_callback
*/
- get_online_cpus();
- mutex_lock(&cache_chain_mutex);
+ if (slab_is_available()) {
+ get_online_cpus();
+ mutex_lock(&cache_chain_mutex);
+ }
list_for_each_entry(pc, &cache_chain, next) {
char tmp;
@@ -2278,8 +2228,13 @@ kmem_cache_create (const char *name, size_t size, size_t align,
*/
align = ralign;
+ if (slab_is_available())
+ gfp = GFP_KERNEL;
+ else
+ gfp = GFP_NOWAIT;
+
/* Get cache's description obj. */
- cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
+ cachep = kmem_cache_zalloc(&cache_cache, gfp);
if (!cachep)
goto oops;
@@ -2353,6 +2308,15 @@ kmem_cache_create (const char *name, size_t size, size_t align,
/* really off slab. No need for manual alignment */
slab_size =
cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
+
+#ifdef CONFIG_PAGE_POISONING
+ /* If we're going to use the generic kernel_map_pages()
+ * poisoning, then it's going to smash the contents of
+ * the redzone and userword anyhow, so switch them off.
+ */
+ if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
+ flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
+#endif
}
cachep->colour_off = cache_line_size();
@@ -2382,7 +2346,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
cachep->ctor = ctor;
cachep->name = name;
- if (setup_cpu_cache(cachep)) {
+ if (setup_cpu_cache(cachep, gfp)) {
__kmem_cache_destroy(cachep);
cachep = NULL;
goto oops;
@@ -2394,8 +2358,10 @@ oops:
if (!cachep && (flags & SLAB_PANIC))
panic("kmem_cache_create(): failed to create slab `%s'\n",
name);
- mutex_unlock(&cache_chain_mutex);
- put_online_cpus();
+ if (slab_is_available()) {
+ mutex_unlock(&cache_chain_mutex);
+ put_online_cpus();
+ }
return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);
@@ -2621,6 +2587,14 @@ static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
/* Slab management obj is off-slab. */
slabp = kmem_cache_alloc_node(cachep->slabp_cache,
local_flags, nodeid);
+ /*
+ * If the first object in the slab is leaked (it's allocated
+ * but no one has a reference to it), we want to make sure
+ * kmemleak does not treat the ->s_mem pointer as a reference
+ * to the object. Otherwise we will not report the leak.
+ */
+ kmemleak_scan_area(slabp, offsetof(struct slab, list),
+ sizeof(struct list_head), local_flags);
if (!slabp)
return NULL;
} else {
@@ -3141,6 +3115,12 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
STATS_INC_ALLOCMISS(cachep);
objp = cache_alloc_refill(cachep, flags);
}
+ /*
+ * To avoid a false negative, if an object that is in one of the
+ * per-CPU caches is leaked, we need to make sure kmemleak doesn't
+ * treat the array pointers as a reference to the object.
+ */
+ kmemleak_erase(&ac->entry[ac->avail]);
return objp;
}
@@ -3219,7 +3199,7 @@ retry:
if (local_flags & __GFP_WAIT)
local_irq_enable();
kmem_flagcheck(cache, flags);
- obj = kmem_getpages(cache, local_flags, -1);
+ obj = kmem_getpages(cache, local_flags, numa_node_id());
if (local_flags & __GFP_WAIT)
local_irq_disable();
if (obj) {
@@ -3327,6 +3307,8 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
unsigned long save_flags;
void *ptr;
+ flags &= slab_gfp_mask;
+
lockdep_trace_alloc(flags);
if (slab_should_failslab(cachep, flags))
@@ -3360,6 +3342,11 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
out:
local_irq_restore(save_flags);
ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
+ kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
+ flags);
+
+ if (likely(ptr))
+ kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
if (unlikely((flags & __GFP_ZERO) && ptr))
memset(ptr, 0, obj_size(cachep));
@@ -3405,6 +3392,8 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
unsigned long save_flags;
void *objp;
+ flags &= slab_gfp_mask;
+
lockdep_trace_alloc(flags);
if (slab_should_failslab(cachep, flags))
@@ -3415,8 +3404,13 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
objp = __do_cache_alloc(cachep, flags);
local_irq_restore(save_flags);
objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
+ kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
+ flags);
prefetchw(objp);
+ if (likely(objp))
+ kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
+
if (unlikely((flags & __GFP_ZERO) && objp))
memset(objp, 0, obj_size(cachep));
@@ -3530,8 +3524,11 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
struct array_cache *ac = cpu_cache_get(cachep);
check_irq_off();
+ kmemleak_free_recursive(objp, cachep->flags);
objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
+ kmemcheck_slab_free(cachep, objp, obj_size(cachep));
+
/*
* Skip calling cache_free_alien() when the platform is not numa.
* This will avoid cache misses that happen while accessing slabp (which
@@ -3539,7 +3536,7 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
* variable to skip the call, which is mostly likely to be present in
* the cache.
*/
- if (numa_platform && cache_free_alien(cachep, objp))
+ if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
return;
if (likely(ac->avail < ac->limit)) {
@@ -3802,7 +3799,7 @@ EXPORT_SYMBOL_GPL(kmem_cache_name);
/*
* This initializes kmem_list3 or resizes various caches for all nodes.
*/
-static int alloc_kmemlist(struct kmem_cache *cachep)
+static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
{
int node;
struct kmem_list3 *l3;
@@ -3812,7 +3809,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
for_each_online_node(node) {
if (use_alien_caches) {
- new_alien = alloc_alien_cache(node, cachep->limit);
+ new_alien = alloc_alien_cache(node, cachep->limit, gfp);
if (!new_alien)
goto fail;
}
@@ -3821,7 +3818,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
if (cachep->shared) {
new_shared = alloc_arraycache(node,
cachep->shared*cachep->batchcount,
- 0xbaadf00d);
+ 0xbaadf00d, gfp);
if (!new_shared) {
free_alien_cache(new_alien);
goto fail;
@@ -3850,7 +3847,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
free_alien_cache(new_alien);
continue;
}
- l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
+ l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
if (!l3) {
free_alien_cache(new_alien);
kfree(new_shared);
@@ -3906,18 +3903,18 @@ static void do_ccupdate_local(void *info)
/* Always called with the cache_chain_mutex held */
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
- int batchcount, int shared)
+ int batchcount, int shared, gfp_t gfp)
{
struct ccupdate_struct *new;
int i;
- new = kzalloc(sizeof(*new), GFP_KERNEL);
+ new = kzalloc(sizeof(*new), gfp);
if (!new)
return -ENOMEM;
for_each_online_cpu(i) {
new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
- batchcount);
+ batchcount, gfp);
if (!new->new[i]) {
for (i--; i >= 0; i--)
kfree(new->new[i]);
@@ -3944,11 +3941,11 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
kfree(ccold);
}
kfree(new);
- return alloc_kmemlist(cachep);
+ return alloc_kmemlist(cachep, gfp);
}
/* Called with cache_chain_mutex held always */
-static int enable_cpucache(struct kmem_cache *cachep)
+static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
{
int err;
int limit, shared;
@@ -3994,7 +3991,7 @@ static int enable_cpucache(struct kmem_cache *cachep)
if (limit > 32)
limit = 32;
#endif
- err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
+ err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
if (err)
printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
cachep->name, -err);
@@ -4300,7 +4297,8 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
res = 0;
} else {
res = do_tune_cpucache(cachep, limit,
- batchcount, shared);
+ batchcount, shared,
+ GFP_KERNEL);
}
break;
}
diff --git a/mm/slob.c b/mm/slob.c
index aad9dad2e820..c78742defdc6 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -46,7 +46,7 @@
* NUMA support in SLOB is fairly simplistic, pushing most of the real
* logic down to the page allocator, and simply doing the node accounting
* on the upper levels. In the event that a node id is explicitly
- * provided, alloc_pages_node() with the specified node id is used
+ * provided, alloc_pages_exact_node() with the specified node id is used
* instead. The common case (or when the node id isn't explicitly provided)
* will default to the current node, as per numa_node_id().
*
@@ -60,12 +60,14 @@
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
+#include <linux/swap.h> /* struct reclaim_state */
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
-#include <trace/kmemtrace.h>
+#include <linux/kmemtrace.h>
+#include <linux/kmemleak.h>
#include <asm/atomic.h>
/*
@@ -242,7 +244,7 @@ static void *slob_new_pages(gfp_t gfp, int order, int node)
#ifdef CONFIG_NUMA
if (node != -1)
- page = alloc_pages_node(node, gfp, order);
+ page = alloc_pages_exact_node(node, gfp, order);
else
#endif
page = alloc_pages(gfp, order);
@@ -255,6 +257,8 @@ static void *slob_new_pages(gfp_t gfp, int order, int node)
static void slob_free_pages(void *b, int order)
{
+ if (current->reclaim_state)
+ current->reclaim_state->reclaimed_slab += 1 << order;
free_pages((unsigned long)b, order);
}
@@ -407,7 +411,7 @@ static void slob_free(void *block, int size)
spin_unlock_irqrestore(&slob_lock, flags);
clear_slob_page(sp);
free_slob_page(sp);
- free_page((unsigned long)b);
+ slob_free_pages(b, 0);
return;
}
@@ -506,6 +510,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node)
size, PAGE_SIZE << order, gfp, node);
}
+ kmemleak_alloc(ret, size, 1, gfp);
return ret;
}
EXPORT_SYMBOL(__kmalloc_node);
@@ -518,6 +523,7 @@ void kfree(const void *block)
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
+ kmemleak_free(block);
sp = slob_page(block);
if (is_slob_page(sp)) {
@@ -581,12 +587,14 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
} else if (flags & SLAB_PANIC)
panic("Cannot create slab cache %s\n", name);
+ kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
return c;
}
EXPORT_SYMBOL(kmem_cache_create);
void kmem_cache_destroy(struct kmem_cache *c)
{
+ kmemleak_free(c);
slob_free(c, sizeof(struct kmem_cache));
}
EXPORT_SYMBOL(kmem_cache_destroy);
@@ -610,6 +618,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
if (c->ctor)
c->ctor(b);
+ kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
@@ -632,6 +641,7 @@ static void kmem_rcu_free(struct rcu_head *head)
void kmem_cache_free(struct kmem_cache *c, void *b)
{
+ kmemleak_free_recursive(b, c->flags);
if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
struct slob_rcu *slob_rcu;
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
diff --git a/mm/slub.c b/mm/slub.c
index 7ab54ecbd3f3..b2b0c78ae35d 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -9,6 +9,7 @@
*/
#include <linux/mm.h>
+#include <linux/swap.h> /* struct reclaim_state */
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
@@ -16,9 +17,11 @@
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
-#include <trace/kmemtrace.h>
+#include <linux/kmemtrace.h>
+#include <linux/kmemcheck.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
+#include <linux/kmemleak.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/debugobjects.h>
@@ -142,10 +145,10 @@
* Set of flags that will prevent slab merging
*/
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
- SLAB_TRACE | SLAB_DESTROY_BY_RCU)
+ SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
- SLAB_CACHE_DMA)
+ SLAB_CACHE_DMA | SLAB_NOTRACK)
#ifndef ARCH_KMALLOC_MINALIGN
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
@@ -176,6 +179,12 @@ static enum {
SYSFS /* Sysfs up */
} slab_state = DOWN;
+/*
+ * The slab allocator is initialized with interrupts disabled. Therefore, make
+ * sure early boot allocations don't accidentally enable interrupts.
+ */
+static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
+
/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
static LIST_HEAD(slab_caches);
@@ -831,6 +840,11 @@ static inline unsigned long slabs_node(struct kmem_cache *s, int node)
return atomic_long_read(&n->nr_slabs);
}
+static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
+{
+ return atomic_long_read(&n->nr_slabs);
+}
+
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
{
struct kmem_cache_node *n = get_node(s, node);
@@ -1049,6 +1063,8 @@ static inline unsigned long kmem_cache_flags(unsigned long objsize,
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{ return 0; }
+static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
+ { return 0; }
static inline void inc_slabs_node(struct kmem_cache *s, int node,
int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
@@ -1063,6 +1079,8 @@ static inline struct page *alloc_slab_page(gfp_t flags, int node,
{
int order = oo_order(oo);
+ flags |= __GFP_NOTRACK;
+
if (node == -1)
return alloc_pages(flags, order);
else
@@ -1090,6 +1108,24 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
}
+
+ if (kmemcheck_enabled
+ && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
+ {
+ int pages = 1 << oo_order(oo);
+
+ kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
+
+ /*
+ * Objects from caches that have a constructor don't get
+ * cleared when they're allocated, so we need to do it here.
+ */
+ if (s->ctor)
+ kmemcheck_mark_uninitialized_pages(page, pages);
+ else
+ kmemcheck_mark_unallocated_pages(page, pages);
+ }
+
page->objects = oo_objects(oo);
mod_zone_page_state(page_zone(page),
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
@@ -1163,6 +1199,8 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
__ClearPageSlubDebug(page);
}
+ kmemcheck_free_shadow(page, compound_order(page));
+
mod_zone_page_state(page_zone(page),
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
@@ -1170,6 +1208,8 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
__ClearPageSlab(page);
reset_page_mapcount(page);
+ if (current->reclaim_state)
+ current->reclaim_state->reclaimed_slab += pages;
__free_pages(page, order);
}
@@ -1481,6 +1521,65 @@ static inline int node_match(struct kmem_cache_cpu *c, int node)
return 1;
}
+static int count_free(struct page *page)
+{
+ return page->objects - page->inuse;
+}
+
+static unsigned long count_partial(struct kmem_cache_node *n,
+ int (*get_count)(struct page *))
+{
+ unsigned long flags;
+ unsigned long x = 0;
+ struct page *page;
+
+ spin_lock_irqsave(&n->list_lock, flags);
+ list_for_each_entry(page, &n->partial, lru)
+ x += get_count(page);
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ return x;
+}
+
+static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
+{
+#ifdef CONFIG_SLUB_DEBUG
+ return atomic_long_read(&n->total_objects);
+#else
+ return 0;
+#endif
+}
+
+static noinline void
+slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
+{
+ int node;
+
+ printk(KERN_WARNING
+ "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
+ nid, gfpflags);
+ printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
+ "default order: %d, min order: %d\n", s->name, s->objsize,
+ s->size, oo_order(s->oo), oo_order(s->min));
+
+ for_each_online_node(node) {
+ struct kmem_cache_node *n = get_node(s, node);
+ unsigned long nr_slabs;
+ unsigned long nr_objs;
+ unsigned long nr_free;
+
+ if (!n)
+ continue;
+
+ nr_free = count_partial(n, count_free);
+ nr_slabs = node_nr_slabs(n);
+ nr_objs = node_nr_objs(n);
+
+ printk(KERN_WARNING
+ " node %d: slabs: %ld, objs: %ld, free: %ld\n",
+ node, nr_slabs, nr_objs, nr_free);
+ }
+}
+
/*
* Slow path. The lockless freelist is empty or we need to perform
* debugging duties.
@@ -1562,6 +1661,8 @@ new_slab:
c->page = new;
goto load_freelist;
}
+ if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
+ slab_out_of_memory(s, gfpflags, node);
return NULL;
debug:
if (!alloc_debug_processing(s, c->page, object, addr))
@@ -1591,6 +1692,8 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
unsigned long flags;
unsigned int objsize;
+ gfpflags &= slab_gfp_mask;
+
lockdep_trace_alloc(gfpflags);
might_sleep_if(gfpflags & __GFP_WAIT);
@@ -1614,6 +1717,9 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
if (unlikely((gfpflags & __GFP_ZERO) && object))
memset(object, 0, objsize);
+ kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
+ kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
+
return object;
}
@@ -1743,8 +1849,10 @@ static __always_inline void slab_free(struct kmem_cache *s,
struct kmem_cache_cpu *c;
unsigned long flags;
+ kmemleak_free_recursive(x, s->flags);
local_irq_save(flags);
c = get_cpu_slab(s, smp_processor_id());
+ kmemcheck_slab_free(s, object, c->objsize);
debug_check_no_locks_freed(object, c->objsize);
if (!(s->flags & SLAB_DEBUG_OBJECTS))
debug_check_no_obj_freed(object, c->objsize);
@@ -1909,7 +2017,7 @@ static inline int calculate_order(int size)
* Doh this slab cannot be placed using slub_max_order.
*/
order = slab_order(size, 1, MAX_ORDER, 1);
- if (order <= MAX_ORDER)
+ if (order < MAX_ORDER)
return order;
return -ENOSYS;
}
@@ -2522,6 +2630,7 @@ __setup("slub_min_order=", setup_slub_min_order);
static int __init setup_slub_max_order(char *str)
{
get_option(&str, &slub_max_order);
+ slub_max_order = min(slub_max_order, MAX_ORDER - 1);
return 1;
}
@@ -2553,13 +2662,16 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
if (gfp_flags & SLUB_DMA)
flags = SLAB_CACHE_DMA;
- down_write(&slub_lock);
+ /*
+ * This function is called with IRQs disabled during early-boot on
+ * single CPU so there's no need to take slub_lock here.
+ */
if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
flags, NULL))
goto panic;
list_add(&s->list, &slab_caches);
- up_write(&slub_lock);
+
if (sysfs_slab_add(s))
goto panic;
return s;
@@ -2615,7 +2727,8 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
if (!s || !text || !kmem_cache_open(s, flags, text,
realsize, ARCH_KMALLOC_MINALIGN,
- SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
+ SLAB_CACHE_DMA|SLAB_NOTRACK|__SYSFS_ADD_DEFERRED,
+ NULL)) {
kfree(s);
kfree(text);
goto unlock_out;
@@ -2709,9 +2822,10 @@ EXPORT_SYMBOL(__kmalloc);
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
- struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
- get_order(size));
+ struct page *page;
+ flags |= __GFP_COMP | __GFP_NOTRACK;
+ page = alloc_pages_node(node, flags, get_order(size));
if (page)
return page_address(page);
else
@@ -3017,7 +3131,7 @@ void __init kmem_cache_init(void)
* kmem_cache_open for slab_state == DOWN.
*/
create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
- sizeof(struct kmem_cache_node), GFP_KERNEL);
+ sizeof(struct kmem_cache_node), GFP_NOWAIT);
kmalloc_caches[0].refcount = -1;
caches++;
@@ -3030,16 +3144,16 @@ void __init kmem_cache_init(void)
/* Caches that are not of the two-to-the-power-of size */
if (KMALLOC_MIN_SIZE <= 64) {
create_kmalloc_cache(&kmalloc_caches[1],
- "kmalloc-96", 96, GFP_KERNEL);
+ "kmalloc-96", 96, GFP_NOWAIT);
caches++;
create_kmalloc_cache(&kmalloc_caches[2],
- "kmalloc-192", 192, GFP_KERNEL);
+ "kmalloc-192", 192, GFP_NOWAIT);
caches++;
}
for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
create_kmalloc_cache(&kmalloc_caches[i],
- "kmalloc", 1 << i, GFP_KERNEL);
+ "kmalloc", 1 << i, GFP_NOWAIT);
caches++;
}
@@ -3076,7 +3190,7 @@ void __init kmem_cache_init(void)
/* Provide the correct kmalloc names now that the caches are up */
for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
kmalloc_caches[i]. name =
- kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
+ kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
@@ -3094,6 +3208,14 @@ void __init kmem_cache_init(void)
nr_cpu_ids, nr_node_ids);
}
+void __init kmem_cache_init_late(void)
+{
+ /*
+ * Interrupts are enabled now so all GFP allocations are safe.
+ */
+ slab_gfp_mask = __GFP_BITS_MASK;
+}
+
/*
* Find a mergeable slab cache
*/
@@ -3314,20 +3436,6 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
}
#ifdef CONFIG_SLUB_DEBUG
-static unsigned long count_partial(struct kmem_cache_node *n,
- int (*get_count)(struct page *))
-{
- unsigned long flags;
- unsigned long x = 0;
- struct page *page;
-
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- x += get_count(page);
- spin_unlock_irqrestore(&n->list_lock, flags);
- return x;
-}
-
static int count_inuse(struct page *page)
{
return page->inuse;
@@ -3338,11 +3446,6 @@ static int count_total(struct page *page)
return page->objects;
}
-static int count_free(struct page *page)
-{
- return page->objects - page->inuse;
-}
-
static int validate_slab(struct kmem_cache *s, struct page *page,
unsigned long *map)
{
@@ -3711,7 +3814,7 @@ static int list_locations(struct kmem_cache *s, char *buf,
to_cpumask(l->cpus));
}
- if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
+ if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " nodes=");
len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
@@ -4386,6 +4489,8 @@ static char *create_unique_id(struct kmem_cache *s)
*p++ = 'a';
if (s->flags & SLAB_DEBUG_FREE)
*p++ = 'F';
+ if (!(s->flags & SLAB_NOTRACK))
+ *p++ = 't';
if (p != name + 1)
*p++ = '-';
p += sprintf(p, "%07d", s->size);
diff --git a/mm/swap.c b/mm/swap.c
index bede23ce64ea..cb29ae5d33ab 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -491,49 +491,6 @@ unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
EXPORT_SYMBOL(pagevec_lookup_tag);
-#ifdef CONFIG_SMP
-/*
- * We tolerate a little inaccuracy to avoid ping-ponging the counter between
- * CPUs
- */
-#define ACCT_THRESHOLD max(16, NR_CPUS * 2)
-
-static DEFINE_PER_CPU(long, committed_space);
-
-void vm_acct_memory(long pages)
-{
- long *local;
-
- preempt_disable();
- local = &__get_cpu_var(committed_space);
- *local += pages;
- if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
- atomic_long_add(*local, &vm_committed_space);
- *local = 0;
- }
- preempt_enable();
-}
-
-#ifdef CONFIG_HOTPLUG_CPU
-
-/* Drop the CPU's cached committed space back into the central pool. */
-static int cpu_swap_callback(struct notifier_block *nfb,
- unsigned long action,
- void *hcpu)
-{
- long *committed;
-
- committed = &per_cpu(committed_space, (long)hcpu);
- if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
- atomic_long_add(*committed, &vm_committed_space);
- *committed = 0;
- drain_cpu_pagevecs((long)hcpu);
- }
- return NOTIFY_OK;
-}
-#endif /* CONFIG_HOTPLUG_CPU */
-#endif /* CONFIG_SMP */
-
/*
* Perform any setup for the swap system
*/
@@ -554,7 +511,4 @@ void __init swap_setup(void)
* Right now other parts of the system means that we
* _really_ don't want to cluster much more
*/
-#ifdef CONFIG_HOTPLUG_CPU
- hotcpu_notifier(cpu_swap_callback, 0);
-#endif
}
diff --git a/mm/swap_state.c b/mm/swap_state.c
index 3ecea98ecb45..42cd38eba79f 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -109,8 +109,6 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
*/
void __delete_from_swap_cache(struct page *page)
{
- swp_entry_t ent = {.val = page_private(page)};
-
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(!PageSwapCache(page));
VM_BUG_ON(PageWriteback(page));
@@ -121,13 +119,11 @@ void __delete_from_swap_cache(struct page *page)
total_swapcache_pages--;
__dec_zone_page_state(page, NR_FILE_PAGES);
INC_CACHE_INFO(del_total);
- mem_cgroup_uncharge_swapcache(page, ent);
}
/**
* add_to_swap - allocate swap space for a page
* @page: page we want to move to swap
- * @gfp_mask: memory allocation flags
*
* Allocate swap space for the page and add the page to the
* swap cache. Caller needs to hold the page lock.
@@ -165,11 +161,11 @@ int add_to_swap(struct page *page)
return 1;
case -EEXIST:
/* Raced with "speculative" read_swap_cache_async */
- swap_free(entry);
+ swapcache_free(entry, NULL);
continue;
default:
/* -ENOMEM radix-tree allocation failure */
- swap_free(entry);
+ swapcache_free(entry, NULL);
return 0;
}
}
@@ -191,7 +187,7 @@ void delete_from_swap_cache(struct page *page)
__delete_from_swap_cache(page);
spin_unlock_irq(&swapper_space.tree_lock);
- swap_free(entry);
+ swapcache_free(entry, page);
page_cache_release(page);
}
@@ -295,7 +291,10 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
/*
* Swap entry may have been freed since our caller observed it.
*/
- if (!swap_duplicate(entry))
+ err = swapcache_prepare(entry);
+ if (err == -EEXIST) /* seems racy */
+ continue;
+ if (err) /* swp entry is obsolete ? */
break;
/*
@@ -314,12 +313,12 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
* Initiate read into locked page and return.
*/
lru_cache_add_anon(new_page);
- swap_readpage(NULL, new_page);
+ swap_readpage(new_page);
return new_page;
}
ClearPageSwapBacked(new_page);
__clear_page_locked(new_page);
- swap_free(entry);
+ swapcache_free(entry, NULL);
} while (err != -ENOMEM);
if (new_page)
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 312fafe0ab6e..28faa01cf578 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -53,6 +53,59 @@ static struct swap_info_struct swap_info[MAX_SWAPFILES];
static DEFINE_MUTEX(swapon_mutex);
+/* For reference count accounting in swap_map */
+/* enum for swap_map[] handling. internal use only */
+enum {
+ SWAP_MAP = 0, /* ops for reference from swap users */
+ SWAP_CACHE, /* ops for reference from swap cache */
+};
+
+static inline int swap_count(unsigned short ent)
+{
+ return ent & SWAP_COUNT_MASK;
+}
+
+static inline bool swap_has_cache(unsigned short ent)
+{
+ return !!(ent & SWAP_HAS_CACHE);
+}
+
+static inline unsigned short encode_swapmap(int count, bool has_cache)
+{
+ unsigned short ret = count;
+
+ if (has_cache)
+ return SWAP_HAS_CACHE | ret;
+ return ret;
+}
+
+/* returnes 1 if swap entry is freed */
+static int
+__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
+{
+ int type = si - swap_info;
+ swp_entry_t entry = swp_entry(type, offset);
+ struct page *page;
+ int ret = 0;
+
+ page = find_get_page(&swapper_space, entry.val);
+ if (!page)
+ return 0;
+ /*
+ * This function is called from scan_swap_map() and it's called
+ * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
+ * We have to use trylock for avoiding deadlock. This is a special
+ * case and you should use try_to_free_swap() with explicit lock_page()
+ * in usual operations.
+ */
+ if (trylock_page(page)) {
+ ret = try_to_free_swap(page);
+ unlock_page(page);
+ }
+ page_cache_release(page);
+ return ret;
+}
+
/*
* We need this because the bdev->unplug_fn can sleep and we cannot
* hold swap_lock while calling the unplug_fn. And swap_lock
@@ -167,7 +220,8 @@ static int wait_for_discard(void *word)
#define SWAPFILE_CLUSTER 256
#define LATENCY_LIMIT 256
-static inline unsigned long scan_swap_map(struct swap_info_struct *si)
+static inline unsigned long scan_swap_map(struct swap_info_struct *si,
+ int cache)
{
unsigned long offset;
unsigned long scan_base;
@@ -273,6 +327,19 @@ checks:
goto no_page;
if (offset > si->highest_bit)
scan_base = offset = si->lowest_bit;
+
+ /* reuse swap entry of cache-only swap if not busy. */
+ if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
+ int swap_was_freed;
+ spin_unlock(&swap_lock);
+ swap_was_freed = __try_to_reclaim_swap(si, offset);
+ spin_lock(&swap_lock);
+ /* entry was freed successfully, try to use this again */
+ if (swap_was_freed)
+ goto checks;
+ goto scan; /* check next one */
+ }
+
if (si->swap_map[offset])
goto scan;
@@ -285,7 +352,10 @@ checks:
si->lowest_bit = si->max;
si->highest_bit = 0;
}
- si->swap_map[offset] = 1;
+ if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
+ si->swap_map[offset] = encode_swapmap(0, true);
+ else /* at suspend */
+ si->swap_map[offset] = encode_swapmap(1, false);
si->cluster_next = offset + 1;
si->flags -= SWP_SCANNING;
@@ -351,6 +421,10 @@ scan:
spin_lock(&swap_lock);
goto checks;
}
+ if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
+ spin_lock(&swap_lock);
+ goto checks;
+ }
if (unlikely(--latency_ration < 0)) {
cond_resched();
latency_ration = LATENCY_LIMIT;
@@ -362,6 +436,10 @@ scan:
spin_lock(&swap_lock);
goto checks;
}
+ if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
+ spin_lock(&swap_lock);
+ goto checks;
+ }
if (unlikely(--latency_ration < 0)) {
cond_resched();
latency_ration = LATENCY_LIMIT;
@@ -401,7 +479,8 @@ swp_entry_t get_swap_page(void)
continue;
swap_list.next = next;
- offset = scan_swap_map(si);
+ /* This is called for allocating swap entry for cache */
+ offset = scan_swap_map(si, SWAP_CACHE);
if (offset) {
spin_unlock(&swap_lock);
return swp_entry(type, offset);
@@ -415,6 +494,7 @@ noswap:
return (swp_entry_t) {0};
}
+/* The only caller of this function is now susupend routine */
swp_entry_t get_swap_page_of_type(int type)
{
struct swap_info_struct *si;
@@ -424,7 +504,8 @@ swp_entry_t get_swap_page_of_type(int type)
si = swap_info + type;
if (si->flags & SWP_WRITEOK) {
nr_swap_pages--;
- offset = scan_swap_map(si);
+ /* This is called for allocating swap entry, not cache */
+ offset = scan_swap_map(si, SWAP_MAP);
if (offset) {
spin_unlock(&swap_lock);
return swp_entry(type, offset);
@@ -471,25 +552,38 @@ out:
return NULL;
}
-static int swap_entry_free(struct swap_info_struct *p, swp_entry_t ent)
+static int swap_entry_free(struct swap_info_struct *p,
+ swp_entry_t ent, int cache)
{
unsigned long offset = swp_offset(ent);
- int count = p->swap_map[offset];
-
- if (count < SWAP_MAP_MAX) {
- count--;
- p->swap_map[offset] = count;
- if (!count) {
- if (offset < p->lowest_bit)
- p->lowest_bit = offset;
- if (offset > p->highest_bit)
- p->highest_bit = offset;
- if (p->prio > swap_info[swap_list.next].prio)
- swap_list.next = p - swap_info;
- nr_swap_pages++;
- p->inuse_pages--;
- mem_cgroup_uncharge_swap(ent);
+ int count = swap_count(p->swap_map[offset]);
+ bool has_cache;
+
+ has_cache = swap_has_cache(p->swap_map[offset]);
+
+ if (cache == SWAP_MAP) { /* dropping usage count of swap */
+ if (count < SWAP_MAP_MAX) {
+ count--;
+ p->swap_map[offset] = encode_swapmap(count, has_cache);
}
+ } else { /* dropping swap cache flag */
+ VM_BUG_ON(!has_cache);
+ p->swap_map[offset] = encode_swapmap(count, false);
+
+ }
+ /* return code. */
+ count = p->swap_map[offset];
+ /* free if no reference */
+ if (!count) {
+ if (offset < p->lowest_bit)
+ p->lowest_bit = offset;
+ if (offset > p->highest_bit)
+ p->highest_bit = offset;
+ if (p->prio > swap_info[swap_list.next].prio)
+ swap_list.next = p - swap_info;
+ nr_swap_pages++;
+ p->inuse_pages--;
+ mem_cgroup_uncharge_swap(ent);
}
return count;
}
@@ -504,9 +598,26 @@ void swap_free(swp_entry_t entry)
p = swap_info_get(entry);
if (p) {
- swap_entry_free(p, entry);
+ swap_entry_free(p, entry, SWAP_MAP);
+ spin_unlock(&swap_lock);
+ }
+}
+
+/*
+ * Called after dropping swapcache to decrease refcnt to swap entries.
+ */
+void swapcache_free(swp_entry_t entry, struct page *page)
+{
+ struct swap_info_struct *p;
+
+ if (page)
+ mem_cgroup_uncharge_swapcache(page, entry);
+ p = swap_info_get(entry);
+ if (p) {
+ swap_entry_free(p, entry, SWAP_CACHE);
spin_unlock(&swap_lock);
}
+ return;
}
/*
@@ -521,8 +632,7 @@ static inline int page_swapcount(struct page *page)
entry.val = page_private(page);
p = swap_info_get(entry);
if (p) {
- /* Subtract the 1 for the swap cache itself */
- count = p->swap_map[swp_offset(entry)] - 1;
+ count = swap_count(p->swap_map[swp_offset(entry)]);
spin_unlock(&swap_lock);
}
return count;
@@ -584,7 +694,7 @@ int free_swap_and_cache(swp_entry_t entry)
p = swap_info_get(entry);
if (p) {
- if (swap_entry_free(p, entry) == 1) {
+ if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
page = find_get_page(&swapper_space, entry.val);
if (page && !trylock_page(page)) {
page_cache_release(page);
@@ -891,7 +1001,7 @@ static unsigned int find_next_to_unuse(struct swap_info_struct *si,
i = 1;
}
count = si->swap_map[i];
- if (count && count != SWAP_MAP_BAD)
+ if (count && swap_count(count) != SWAP_MAP_BAD)
break;
}
return i;
@@ -995,13 +1105,13 @@ static int try_to_unuse(unsigned int type)
*/
shmem = 0;
swcount = *swap_map;
- if (swcount > 1) {
+ if (swap_count(swcount)) {
if (start_mm == &init_mm)
shmem = shmem_unuse(entry, page);
else
retval = unuse_mm(start_mm, entry, page);
}
- if (*swap_map > 1) {
+ if (swap_count(*swap_map)) {
int set_start_mm = (*swap_map >= swcount);
struct list_head *p = &start_mm->mmlist;
struct mm_struct *new_start_mm = start_mm;
@@ -1011,7 +1121,7 @@ static int try_to_unuse(unsigned int type)
atomic_inc(&new_start_mm->mm_users);
atomic_inc(&prev_mm->mm_users);
spin_lock(&mmlist_lock);
- while (*swap_map > 1 && !retval && !shmem &&
+ while (swap_count(*swap_map) && !retval && !shmem &&
(p = p->next) != &start_mm->mmlist) {
mm = list_entry(p, struct mm_struct, mmlist);
if (!atomic_inc_not_zero(&mm->mm_users))
@@ -1023,14 +1133,16 @@ static int try_to_unuse(unsigned int type)
cond_resched();
swcount = *swap_map;
- if (swcount <= 1)
+ if (!swap_count(swcount)) /* any usage ? */
;
else if (mm == &init_mm) {
set_start_mm = 1;
shmem = shmem_unuse(entry, page);
} else
retval = unuse_mm(mm, entry, page);
- if (set_start_mm && *swap_map < swcount) {
+
+ if (set_start_mm &&
+ swap_count(*swap_map) < swcount) {
mmput(new_start_mm);
atomic_inc(&mm->mm_users);
new_start_mm = mm;
@@ -1057,21 +1169,25 @@ static int try_to_unuse(unsigned int type)
}
/*
- * How could swap count reach 0x7fff when the maximum
- * pid is 0x7fff, and there's no way to repeat a swap
- * page within an mm (except in shmem, where it's the
- * shared object which takes the reference count)?
- * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
- *
+ * How could swap count reach 0x7ffe ?
+ * There's no way to repeat a swap page within an mm
+ * (except in shmem, where it's the shared object which takes
+ * the reference count)?
+ * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
+ * short is too small....)
* If that's wrong, then we should worry more about
* exit_mmap() and do_munmap() cases described above:
* we might be resetting SWAP_MAP_MAX too early here.
* We know "Undead"s can happen, they're okay, so don't
* report them; but do report if we reset SWAP_MAP_MAX.
*/
- if (*swap_map == SWAP_MAP_MAX) {
+ /* We might release the lock_page() in unuse_mm(). */
+ if (!PageSwapCache(page) || page_private(page) != entry.val)
+ goto retry;
+
+ if (swap_count(*swap_map) == SWAP_MAP_MAX) {
spin_lock(&swap_lock);
- *swap_map = 1;
+ *swap_map = encode_swapmap(0, true);
spin_unlock(&swap_lock);
reset_overflow = 1;
}
@@ -1089,7 +1205,8 @@ static int try_to_unuse(unsigned int type)
* pages would be incorrect if swap supported "shared
* private" pages, but they are handled by tmpfs files.
*/
- if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
+ if (swap_count(*swap_map) &&
+ PageDirty(page) && PageSwapCache(page)) {
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
};
@@ -1116,6 +1233,7 @@ static int try_to_unuse(unsigned int type)
* mark page dirty so shrink_page_list will preserve it.
*/
SetPageDirty(page);
+retry:
unlock_page(page);
page_cache_release(page);
@@ -1942,15 +2060,23 @@ void si_swapinfo(struct sysinfo *val)
*
* Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
* "permanent", but will be reclaimed by the next swapoff.
+ * Returns error code in following case.
+ * - success -> 0
+ * - swp_entry is invalid -> EINVAL
+ * - swp_entry is migration entry -> EINVAL
+ * - swap-cache reference is requested but there is already one. -> EEXIST
+ * - swap-cache reference is requested but the entry is not used. -> ENOENT
*/
-int swap_duplicate(swp_entry_t entry)
+static int __swap_duplicate(swp_entry_t entry, bool cache)
{
struct swap_info_struct * p;
unsigned long offset, type;
- int result = 0;
+ int result = -EINVAL;
+ int count;
+ bool has_cache;
if (is_migration_entry(entry))
- return 1;
+ return -EINVAL;
type = swp_type(entry);
if (type >= nr_swapfiles)
@@ -1959,17 +2085,40 @@ int swap_duplicate(swp_entry_t entry)
offset = swp_offset(entry);
spin_lock(&swap_lock);
- if (offset < p->max && p->swap_map[offset]) {
- if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
- p->swap_map[offset]++;
- result = 1;
- } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
+
+ if (unlikely(offset >= p->max))
+ goto unlock_out;
+
+ count = swap_count(p->swap_map[offset]);
+ has_cache = swap_has_cache(p->swap_map[offset]);
+
+ if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
+
+ /* set SWAP_HAS_CACHE if there is no cache and entry is used */
+ if (!has_cache && count) {
+ p->swap_map[offset] = encode_swapmap(count, true);
+ result = 0;
+ } else if (has_cache) /* someone added cache */
+ result = -EEXIST;
+ else if (!count) /* no users */
+ result = -ENOENT;
+
+ } else if (count || has_cache) {
+ if (count < SWAP_MAP_MAX - 1) {
+ p->swap_map[offset] = encode_swapmap(count + 1,
+ has_cache);
+ result = 0;
+ } else if (count <= SWAP_MAP_MAX) {
if (swap_overflow++ < 5)
- printk(KERN_WARNING "swap_dup: swap entry overflow\n");
- p->swap_map[offset] = SWAP_MAP_MAX;
- result = 1;
+ printk(KERN_WARNING
+ "swap_dup: swap entry overflow\n");
+ p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
+ has_cache);
+ result = 0;
}
- }
+ } else
+ result = -ENOENT; /* unused swap entry */
+unlock_out:
spin_unlock(&swap_lock);
out:
return result;
@@ -1978,6 +2127,27 @@ bad_file:
printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
goto out;
}
+/*
+ * increase reference count of swap entry by 1.
+ */
+void swap_duplicate(swp_entry_t entry)
+{
+ __swap_duplicate(entry, SWAP_MAP);
+}
+
+/*
+ * @entry: swap entry for which we allocate swap cache.
+ *
+ * Called when allocating swap cache for exising swap entry,
+ * This can return error codes. Returns 0 at success.
+ * -EBUSY means there is a swap cache.
+ * Note: return code is different from swap_duplicate().
+ */
+int swapcache_prepare(swp_entry_t entry)
+{
+ return __swap_duplicate(entry, SWAP_CACHE);
+}
+
struct swap_info_struct *
get_swap_info_struct(unsigned type)
@@ -2016,7 +2186,7 @@ int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
/* Don't read in free or bad pages */
if (!si->swap_map[toff])
break;
- if (si->swap_map[toff] == SWAP_MAP_BAD)
+ if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
break;
}
/* Count contiguous allocated slots below our target */
@@ -2024,7 +2194,7 @@ int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
/* Don't read in free or bad pages */
if (!si->swap_map[toff])
break;
- if (si->swap_map[toff] == SWAP_MAP_BAD)
+ if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
break;
}
spin_unlock(&swap_lock);
diff --git a/mm/truncate.c b/mm/truncate.c
index 55206fab7b99..ccc3ecf7cb98 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -267,8 +267,21 @@ void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
}
EXPORT_SYMBOL(truncate_inode_pages);
-unsigned long __invalidate_mapping_pages(struct address_space *mapping,
- pgoff_t start, pgoff_t end, bool be_atomic)
+/**
+ * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
+ * @mapping: the address_space which holds the pages to invalidate
+ * @start: the offset 'from' which to invalidate
+ * @end: the offset 'to' which to invalidate (inclusive)
+ *
+ * This function only removes the unlocked pages, if you want to
+ * remove all the pages of one inode, you must call truncate_inode_pages.
+ *
+ * invalidate_mapping_pages() will not block on IO activity. It will not
+ * invalidate pages which are dirty, locked, under writeback or mapped into
+ * pagetables.
+ */
+unsigned long invalidate_mapping_pages(struct address_space *mapping,
+ pgoff_t start, pgoff_t end)
{
struct pagevec pvec;
pgoff_t next = start;
@@ -309,30 +322,10 @@ unlock:
break;
}
pagevec_release(&pvec);
- if (likely(!be_atomic))
- cond_resched();
+ cond_resched();
}
return ret;
}
-
-/**
- * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
- * @mapping: the address_space which holds the pages to invalidate
- * @start: the offset 'from' which to invalidate
- * @end: the offset 'to' which to invalidate (inclusive)
- *
- * This function only removes the unlocked pages, if you want to
- * remove all the pages of one inode, you must call truncate_inode_pages.
- *
- * invalidate_mapping_pages() will not block on IO activity. It will not
- * invalidate pages which are dirty, locked, under writeback or mapped into
- * pagetables.
- */
-unsigned long invalidate_mapping_pages(struct address_space *mapping,
- pgoff_t start, pgoff_t end)
-{
- return __invalidate_mapping_pages(mapping, start, end, false);
-}
EXPORT_SYMBOL(invalidate_mapping_pages);
/*
@@ -359,6 +352,7 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page)
BUG_ON(page_has_private(page));
__remove_from_page_cache(page);
spin_unlock_irq(&mapping->tree_lock);
+ mem_cgroup_uncharge_cache_page(page);
page_cache_release(page); /* pagecache ref */
return 1;
failed:
diff --git a/mm/util.c b/mm/util.c
index 55bef160b9f1..7c35ad95f927 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -4,9 +4,11 @@
#include <linux/module.h>
#include <linux/err.h>
#include <linux/sched.h>
-#include <linux/tracepoint.h>
#include <asm/uaccess.h>
+#define CREATE_TRACE_POINTS
+#include <trace/events/kmem.h>
+
/**
* kstrdup - allocate space for and copy an existing string
* @s: the string to duplicate
@@ -166,6 +168,10 @@ EXPORT_SYMBOL(krealloc);
*
* The memory of the object @p points to is zeroed before freed.
* If @p is %NULL, kzfree() does nothing.
+ *
+ * Note: this function zeroes the whole allocated buffer which can be a good
+ * deal bigger than the requested buffer size passed to kmalloc(). So be
+ * careful when using this function in performance sensitive code.
*/
void kzfree(const void *p)
{
@@ -231,13 +237,21 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
- * Attempt to pin user pages in memory without taking mm->mmap_sem.
- * If not successful, it will fall back to taking the lock and
- * calling get_user_pages().
- *
* Returns number of pages pinned. This may be fewer than the number
* requested. If nr_pages is 0 or negative, returns 0. If no pages
* were pinned, returns -errno.
+ *
+ * get_user_pages_fast provides equivalent functionality to get_user_pages,
+ * operating on current and current->mm, with force=0 and vma=NULL. However
+ * unlike get_user_pages, it must be called without mmap_sem held.
+ *
+ * get_user_pages_fast may take mmap_sem and page table locks, so no
+ * assumptions can be made about lack of locking. get_user_pages_fast is to be
+ * implemented in a way that is advantageous (vs get_user_pages()) when the
+ * user memory area is already faulted in and present in ptes. However if the
+ * pages have to be faulted in, it may turn out to be slightly slower so
+ * callers need to carefully consider what to use. On many architectures,
+ * get_user_pages_fast simply falls back to get_user_pages.
*/
int __attribute__((weak)) get_user_pages_fast(unsigned long start,
int nr_pages, int write, struct page **pages)
@@ -255,13 +269,6 @@ int __attribute__((weak)) get_user_pages_fast(unsigned long start,
EXPORT_SYMBOL_GPL(get_user_pages_fast);
/* Tracepoints definitions. */
-DEFINE_TRACE(kmalloc);
-DEFINE_TRACE(kmem_cache_alloc);
-DEFINE_TRACE(kmalloc_node);
-DEFINE_TRACE(kmem_cache_alloc_node);
-DEFINE_TRACE(kfree);
-DEFINE_TRACE(kmem_cache_free);
-
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index fab19876b4d1..f8189a4b3e13 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -23,8 +23,8 @@
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
-#include <linux/bootmem.h>
#include <linux/pfn.h>
+#include <linux/kmemleak.h>
#include <asm/atomic.h>
#include <asm/uaccess.h>
@@ -402,6 +402,7 @@ overflow:
printk(KERN_WARNING
"vmap allocation for size %lu failed: "
"use vmalloc=<size> to increase size.\n", size);
+ kfree(va);
return ERR_PTR(-EBUSY);
}
@@ -1031,7 +1032,7 @@ void __init vmalloc_init(void)
/* Import existing vmlist entries. */
for (tmp = vmlist; tmp; tmp = tmp->next) {
- va = alloc_bootmem(sizeof(struct vmap_area));
+ va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
va->flags = tmp->flags | VM_VM_AREA;
va->va_start = (unsigned long)tmp->addr;
va->va_end = va->va_start + tmp->size;
@@ -1326,6 +1327,9 @@ static void __vunmap(const void *addr, int deallocate_pages)
void vfree(const void *addr)
{
BUG_ON(in_interrupt());
+
+ kmemleak_free(addr);
+
__vunmap(addr, 1);
}
EXPORT_SYMBOL(vfree);
@@ -1438,8 +1442,17 @@ fail:
void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
{
- return __vmalloc_area_node(area, gfp_mask, prot, -1,
- __builtin_return_address(0));
+ void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
+ __builtin_return_address(0));
+
+ /*
+ * A ref_count = 3 is needed because the vm_struct and vmap_area
+ * structures allocated in the __get_vm_area_node() function contain
+ * references to the virtual address of the vmalloc'ed block.
+ */
+ kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
+
+ return addr;
}
/**
@@ -1458,6 +1471,8 @@ static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
int node, void *caller)
{
struct vm_struct *area;
+ void *addr;
+ unsigned long real_size = size;
size = PAGE_ALIGN(size);
if (!size || (size >> PAGE_SHIFT) > num_physpages)
@@ -1469,7 +1484,16 @@ static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
if (!area)
return NULL;
- return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
+ addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
+
+ /*
+ * A ref_count = 3 is needed because the vm_struct and vmap_area
+ * structures allocated in the __get_vm_area_node() function contain
+ * references to the virtual address of the vmalloc'ed block.
+ */
+ kmemleak_alloc(addr, real_size, 3, gfp_mask);
+
+ return addr;
}
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
diff --git a/mm/vmscan.c b/mm/vmscan.c
index eac9577941f9..4139aa52b941 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -470,10 +470,11 @@ static int __remove_mapping(struct address_space *mapping, struct page *page)
swp_entry_t swap = { .val = page_private(page) };
__delete_from_swap_cache(page);
spin_unlock_irq(&mapping->tree_lock);
- swap_free(swap);
+ swapcache_free(swap, page);
} else {
__remove_from_page_cache(page);
spin_unlock_irq(&mapping->tree_lock);
+ mem_cgroup_uncharge_cache_page(page);
}
return 1;
@@ -512,7 +513,6 @@ int remove_mapping(struct address_space *mapping, struct page *page)
*
* lru_lock must not be held, interrupts must be enabled.
*/
-#ifdef CONFIG_UNEVICTABLE_LRU
void putback_lru_page(struct page *page)
{
int lru;
@@ -566,20 +566,6 @@ redo:
put_page(page); /* drop ref from isolate */
}
-#else /* CONFIG_UNEVICTABLE_LRU */
-
-void putback_lru_page(struct page *page)
-{
- int lru;
- VM_BUG_ON(PageLRU(page));
-
- lru = !!TestClearPageActive(page) + page_is_file_cache(page);
- lru_cache_add_lru(page, lru);
- put_page(page);
-}
-#endif /* CONFIG_UNEVICTABLE_LRU */
-
-
/*
* shrink_page_list() returns the number of reclaimed pages
*/
@@ -591,6 +577,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
struct pagevec freed_pvec;
int pgactivate = 0;
unsigned long nr_reclaimed = 0;
+ unsigned long vm_flags;
cond_resched();
@@ -641,7 +628,8 @@ static unsigned long shrink_page_list(struct list_head *page_list,
goto keep_locked;
}
- referenced = page_referenced(page, 1, sc->mem_cgroup);
+ referenced = page_referenced(page, 1,
+ sc->mem_cgroup, &vm_flags);
/* In active use or really unfreeable? Activate it. */
if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
referenced && page_mapping_inuse(page))
@@ -941,18 +929,10 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
/* Check that we have not crossed a zone boundary. */
if (unlikely(page_zone_id(cursor_page) != zone_id))
continue;
- switch (__isolate_lru_page(cursor_page, mode, file)) {
- case 0:
+ if (__isolate_lru_page(cursor_page, mode, file) == 0) {
list_move(&cursor_page->lru, dst);
nr_taken++;
scan++;
- break;
-
- case -EBUSY:
- /* else it is being freed elsewhere */
- list_move(&cursor_page->lru, src);
- default:
- break; /* ! on LRU or wrong list */
}
}
}
@@ -1059,6 +1039,19 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
unsigned long nr_scanned = 0;
unsigned long nr_reclaimed = 0;
struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
+ int lumpy_reclaim = 0;
+
+ /*
+ * If we need a large contiguous chunk of memory, or have
+ * trouble getting a small set of contiguous pages, we
+ * will reclaim both active and inactive pages.
+ *
+ * We use the same threshold as pageout congestion_wait below.
+ */
+ if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
+ lumpy_reclaim = 1;
+ else if (sc->order && priority < DEF_PRIORITY - 2)
+ lumpy_reclaim = 1;
pagevec_init(&pvec, 1);
@@ -1071,19 +1064,7 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
unsigned long nr_freed;
unsigned long nr_active;
unsigned int count[NR_LRU_LISTS] = { 0, };
- int mode = ISOLATE_INACTIVE;
-
- /*
- * If we need a large contiguous chunk of memory, or have
- * trouble getting a small set of contiguous pages, we
- * will reclaim both active and inactive pages.
- *
- * We use the same threshold as pageout congestion_wait below.
- */
- if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
- mode = ISOLATE_BOTH;
- else if (sc->order && priority < DEF_PRIORITY - 2)
- mode = ISOLATE_BOTH;
+ int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
nr_taken = sc->isolate_pages(sc->swap_cluster_max,
&page_list, &nr_scan, sc->order, mode,
@@ -1120,7 +1101,7 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
* but that should be acceptable to the caller
*/
if (nr_freed < nr_taken && !current_is_kswapd() &&
- sc->order > PAGE_ALLOC_COSTLY_ORDER) {
+ lumpy_reclaim) {
congestion_wait(WRITE, HZ/10);
/*
@@ -1215,18 +1196,54 @@ static inline void note_zone_scanning_priority(struct zone *zone, int priority)
* But we had to alter page->flags anyway.
*/
+static void move_active_pages_to_lru(struct zone *zone,
+ struct list_head *list,
+ enum lru_list lru)
+{
+ unsigned long pgmoved = 0;
+ struct pagevec pvec;
+ struct page *page;
+
+ pagevec_init(&pvec, 1);
+
+ while (!list_empty(list)) {
+ page = lru_to_page(list);
+ prefetchw_prev_lru_page(page, list, flags);
+
+ VM_BUG_ON(PageLRU(page));
+ SetPageLRU(page);
+
+ VM_BUG_ON(!PageActive(page));
+ if (!is_active_lru(lru))
+ ClearPageActive(page); /* we are de-activating */
+
+ list_move(&page->lru, &zone->lru[lru].list);
+ mem_cgroup_add_lru_list(page, lru);
+ pgmoved++;
+
+ if (!pagevec_add(&pvec, page) || list_empty(list)) {
+ spin_unlock_irq(&zone->lru_lock);
+ if (buffer_heads_over_limit)
+ pagevec_strip(&pvec);
+ __pagevec_release(&pvec);
+ spin_lock_irq(&zone->lru_lock);
+ }
+ }
+ __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
+ if (!is_active_lru(lru))
+ __count_vm_events(PGDEACTIVATE, pgmoved);
+}
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
struct scan_control *sc, int priority, int file)
{
unsigned long pgmoved;
- int pgdeactivate = 0;
unsigned long pgscanned;
+ unsigned long vm_flags;
LIST_HEAD(l_hold); /* The pages which were snipped off */
+ LIST_HEAD(l_active);
LIST_HEAD(l_inactive);
struct page *page;
- struct pagevec pvec;
- enum lru_list lru;
struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
lru_add_drain();
@@ -1243,13 +1260,14 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
}
reclaim_stat->recent_scanned[!!file] += pgmoved;
+ __count_zone_vm_events(PGREFILL, zone, pgscanned);
if (file)
__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
else
__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
spin_unlock_irq(&zone->lru_lock);
- pgmoved = 0;
+ pgmoved = 0; /* count referenced (mapping) mapped pages */
while (!list_empty(&l_hold)) {
cond_resched();
page = lru_to_page(&l_hold);
@@ -1262,58 +1280,44 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
/* page_referenced clears PageReferenced */
if (page_mapping_inuse(page) &&
- page_referenced(page, 0, sc->mem_cgroup))
+ page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
pgmoved++;
+ /*
+ * Identify referenced, file-backed active pages and
+ * give them one more trip around the active list. So
+ * that executable code get better chances to stay in
+ * memory under moderate memory pressure. Anon pages
+ * are not likely to be evicted by use-once streaming
+ * IO, plus JVM can create lots of anon VM_EXEC pages,
+ * so we ignore them here.
+ */
+ if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
+ list_add(&page->lru, &l_active);
+ continue;
+ }
+ }
list_add(&page->lru, &l_inactive);
}
/*
- * Move the pages to the [file or anon] inactive list.
+ * Move pages back to the lru list.
*/
- pagevec_init(&pvec, 1);
- lru = LRU_BASE + file * LRU_FILE;
-
spin_lock_irq(&zone->lru_lock);
/*
- * Count referenced pages from currently used mappings as
- * rotated, even though they are moved to the inactive list.
- * This helps balance scan pressure between file and anonymous
- * pages in get_scan_ratio.
+ * Count referenced pages from currently used mappings as rotated,
+ * even though only some of them are actually re-activated. This
+ * helps balance scan pressure between file and anonymous pages in
+ * get_scan_ratio.
*/
reclaim_stat->recent_rotated[!!file] += pgmoved;
- pgmoved = 0;
- while (!list_empty(&l_inactive)) {
- page = lru_to_page(&l_inactive);
- prefetchw_prev_lru_page(page, &l_inactive, flags);
- VM_BUG_ON(PageLRU(page));
- SetPageLRU(page);
- VM_BUG_ON(!PageActive(page));
- ClearPageActive(page);
+ move_active_pages_to_lru(zone, &l_active,
+ LRU_ACTIVE + file * LRU_FILE);
+ move_active_pages_to_lru(zone, &l_inactive,
+ LRU_BASE + file * LRU_FILE);
- list_move(&page->lru, &zone->lru[lru].list);
- mem_cgroup_add_lru_list(page, lru);
- pgmoved++;
- if (!pagevec_add(&pvec, page)) {
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
- spin_unlock_irq(&zone->lru_lock);
- pgdeactivate += pgmoved;
- pgmoved = 0;
- if (buffer_heads_over_limit)
- pagevec_strip(&pvec);
- __pagevec_release(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- }
- __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
- pgdeactivate += pgmoved;
- __count_zone_vm_events(PGREFILL, zone, pgscanned);
- __count_vm_events(PGDEACTIVATE, pgdeactivate);
spin_unlock_irq(&zone->lru_lock);
- if (buffer_heads_over_limit)
- pagevec_strip(&pvec);
- pagevec_release(&pvec);
}
static int inactive_anon_is_low_global(struct zone *zone)
@@ -1348,12 +1352,48 @@ static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
return low;
}
+static int inactive_file_is_low_global(struct zone *zone)
+{
+ unsigned long active, inactive;
+
+ active = zone_page_state(zone, NR_ACTIVE_FILE);
+ inactive = zone_page_state(zone, NR_INACTIVE_FILE);
+
+ return (active > inactive);
+}
+
+/**
+ * inactive_file_is_low - check if file pages need to be deactivated
+ * @zone: zone to check
+ * @sc: scan control of this context
+ *
+ * When the system is doing streaming IO, memory pressure here
+ * ensures that active file pages get deactivated, until more
+ * than half of the file pages are on the inactive list.
+ *
+ * Once we get to that situation, protect the system's working
+ * set from being evicted by disabling active file page aging.
+ *
+ * This uses a different ratio than the anonymous pages, because
+ * the page cache uses a use-once replacement algorithm.
+ */
+static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
+{
+ int low;
+
+ if (scanning_global_lru(sc))
+ low = inactive_file_is_low_global(zone);
+ else
+ low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
+ return low;
+}
+
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
struct zone *zone, struct scan_control *sc, int priority)
{
int file = is_file_lru(lru);
- if (lru == LRU_ACTIVE_FILE) {
+ if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
shrink_active_list(nr_to_scan, zone, sc, priority, file);
return 0;
}
@@ -1382,13 +1422,6 @@ static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
unsigned long ap, fp;
struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
- /* If we have no swap space, do not bother scanning anon pages. */
- if (!sc->may_swap || (nr_swap_pages <= 0)) {
- percent[0] = 0;
- percent[1] = 100;
- return;
- }
-
anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
@@ -1398,7 +1431,7 @@ static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
free = zone_page_state(zone, NR_FREE_PAGES);
/* If we have very few page cache pages,
force-scan anon pages. */
- if (unlikely(file + free <= zone->pages_high)) {
+ if (unlikely(file + free <= high_wmark_pages(zone))) {
percent[0] = 100;
percent[1] = 0;
return;
@@ -1453,6 +1486,26 @@ static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
percent[1] = 100 - percent[0];
}
+/*
+ * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
+ * until we collected @swap_cluster_max pages to scan.
+ */
+static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
+ unsigned long *nr_saved_scan,
+ unsigned long swap_cluster_max)
+{
+ unsigned long nr;
+
+ *nr_saved_scan += nr_to_scan;
+ nr = *nr_saved_scan;
+
+ if (nr >= swap_cluster_max)
+ *nr_saved_scan = 0;
+ else
+ nr = 0;
+
+ return nr;
+}
/*
* This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
@@ -1466,26 +1519,30 @@ static void shrink_zone(int priority, struct zone *zone,
enum lru_list l;
unsigned long nr_reclaimed = sc->nr_reclaimed;
unsigned long swap_cluster_max = sc->swap_cluster_max;
+ int noswap = 0;
- get_scan_ratio(zone, sc, percent);
+ /* If we have no swap space, do not bother scanning anon pages. */
+ if (!sc->may_swap || (nr_swap_pages <= 0)) {
+ noswap = 1;
+ percent[0] = 0;
+ percent[1] = 100;
+ } else
+ get_scan_ratio(zone, sc, percent);
for_each_evictable_lru(l) {
int file = is_file_lru(l);
- int scan;
+ unsigned long scan;
scan = zone_nr_pages(zone, sc, l);
- if (priority) {
+ if (priority || noswap) {
scan >>= priority;
scan = (scan * percent[file]) / 100;
}
- if (scanning_global_lru(sc)) {
- zone->lru[l].nr_scan += scan;
- nr[l] = zone->lru[l].nr_scan;
- if (nr[l] >= swap_cluster_max)
- zone->lru[l].nr_scan = 0;
- else
- nr[l] = 0;
- } else
+ if (scanning_global_lru(sc))
+ nr[l] = nr_scan_try_batch(scan,
+ &zone->lru[l].nr_saved_scan,
+ swap_cluster_max);
+ else
nr[l] = scan;
}
@@ -1519,7 +1576,7 @@ static void shrink_zone(int priority, struct zone *zone,
* Even if we did not try to evict anon pages at all, we want to
* rebalance the anon lru active/inactive ratio.
*/
- if (inactive_anon_is_low(zone, sc))
+ if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
throttle_vm_writeout(sc->gfp_mask);
@@ -1530,11 +1587,13 @@ static void shrink_zone(int priority, struct zone *zone,
* try to reclaim pages from zones which will satisfy the caller's allocation
* request.
*
- * We reclaim from a zone even if that zone is over pages_high. Because:
+ * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
+ * Because:
* a) The caller may be trying to free *extra* pages to satisfy a higher-order
* allocation or
- * b) The zones may be over pages_high but they must go *over* pages_high to
- * satisfy the `incremental min' zone defense algorithm.
+ * b) The target zone may be at high_wmark_pages(zone) but the lower zones
+ * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
+ * zone defense algorithm.
*
* If a zone is deemed to be full of pinned pages then just give it a light
* scan then give up on it.
@@ -1740,7 +1799,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
/*
* For kswapd, balance_pgdat() will work across all this node's zones until
- * they are all at pages_high.
+ * they are all at high_wmark_pages(zone).
*
* Returns the number of pages which were actually freed.
*
@@ -1753,11 +1812,11 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
* the zone for when the problem goes away.
*
* kswapd scans the zones in the highmem->normal->dma direction. It skips
- * zones which have free_pages > pages_high, but once a zone is found to have
- * free_pages <= pages_high, we scan that zone and the lower zones regardless
- * of the number of free pages in the lower zones. This interoperates with
- * the page allocator fallback scheme to ensure that aging of pages is balanced
- * across the zones.
+ * zones which have free_pages > high_wmark_pages(zone), but once a zone is
+ * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
+ * lower zones regardless of the number of free pages in the lower zones. This
+ * interoperates with the page allocator fallback scheme to ensure that aging
+ * of pages is balanced across the zones.
*/
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
{
@@ -1778,7 +1837,8 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
};
/*
* temp_priority is used to remember the scanning priority at which
- * this zone was successfully refilled to free_pages == pages_high.
+ * this zone was successfully refilled to
+ * free_pages == high_wmark_pages(zone).
*/
int temp_priority[MAX_NR_ZONES];
@@ -1823,8 +1883,8 @@ loop_again:
shrink_active_list(SWAP_CLUSTER_MAX, zone,
&sc, priority, 0);
- if (!zone_watermark_ok(zone, order, zone->pages_high,
- 0, 0)) {
+ if (!zone_watermark_ok(zone, order,
+ high_wmark_pages(zone), 0, 0)) {
end_zone = i;
break;
}
@@ -1858,8 +1918,8 @@ loop_again:
priority != DEF_PRIORITY)
continue;
- if (!zone_watermark_ok(zone, order, zone->pages_high,
- end_zone, 0))
+ if (!zone_watermark_ok(zone, order,
+ high_wmark_pages(zone), end_zone, 0))
all_zones_ok = 0;
temp_priority[i] = priority;
sc.nr_scanned = 0;
@@ -1868,8 +1928,8 @@ loop_again:
* We put equal pressure on every zone, unless one
* zone has way too many pages free already.
*/
- if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
- end_zone, 0))
+ if (!zone_watermark_ok(zone, order,
+ 8*high_wmark_pages(zone), end_zone, 0))
shrink_zone(priority, zone, &sc);
reclaim_state->reclaimed_slab = 0;
nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
@@ -2035,7 +2095,7 @@ void wakeup_kswapd(struct zone *zone, int order)
return;
pgdat = zone->zone_pgdat;
- if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
+ if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
return;
if (pgdat->kswapd_max_order < order)
pgdat->kswapd_max_order = order;
@@ -2054,7 +2114,7 @@ unsigned long global_lru_pages(void)
+ global_page_state(NR_INACTIVE_FILE);
}
-#ifdef CONFIG_PM
+#ifdef CONFIG_HIBERNATION
/*
* Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
* from LRU lists system-wide, for given pass and priority.
@@ -2082,11 +2142,11 @@ static void shrink_all_zones(unsigned long nr_pages, int prio,
l == LRU_ACTIVE_FILE))
continue;
- zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
- if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
+ zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
+ if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
unsigned long nr_to_scan;
- zone->lru[l].nr_scan = 0;
+ zone->lru[l].nr_saved_scan = 0;
nr_to_scan = min(nr_pages, lru_pages);
nr_reclaimed += shrink_list(l, nr_to_scan, zone,
sc, prio);
@@ -2194,7 +2254,7 @@ out:
return sc.nr_reclaimed;
}
-#endif
+#endif /* CONFIG_HIBERNATION */
/* It's optimal to keep kswapds on the same CPUs as their memory, but
not required for correctness. So if the last cpu in a node goes
@@ -2288,6 +2348,48 @@ int sysctl_min_unmapped_ratio = 1;
*/
int sysctl_min_slab_ratio = 5;
+static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
+{
+ unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
+ unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
+ zone_page_state(zone, NR_ACTIVE_FILE);
+
+ /*
+ * It's possible for there to be more file mapped pages than
+ * accounted for by the pages on the file LRU lists because
+ * tmpfs pages accounted for as ANON can also be FILE_MAPPED
+ */
+ return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
+}
+
+/* Work out how many page cache pages we can reclaim in this reclaim_mode */
+static long zone_pagecache_reclaimable(struct zone *zone)
+{
+ long nr_pagecache_reclaimable;
+ long delta = 0;
+
+ /*
+ * If RECLAIM_SWAP is set, then all file pages are considered
+ * potentially reclaimable. Otherwise, we have to worry about
+ * pages like swapcache and zone_unmapped_file_pages() provides
+ * a better estimate
+ */
+ if (zone_reclaim_mode & RECLAIM_SWAP)
+ nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
+ else
+ nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
+
+ /* If we can't clean pages, remove dirty pages from consideration */
+ if (!(zone_reclaim_mode & RECLAIM_WRITE))
+ delta += zone_page_state(zone, NR_FILE_DIRTY);
+
+ /* Watch for any possible underflows due to delta */
+ if (unlikely(delta > nr_pagecache_reclaimable))
+ delta = nr_pagecache_reclaimable;
+
+ return nr_pagecache_reclaimable - delta;
+}
+
/*
* Try to free up some pages from this zone through reclaim.
*/
@@ -2322,9 +2424,7 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
reclaim_state.reclaimed_slab = 0;
p->reclaim_state = &reclaim_state;
- if (zone_page_state(zone, NR_FILE_PAGES) -
- zone_page_state(zone, NR_FILE_MAPPED) >
- zone->min_unmapped_pages) {
+ if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
/*
* Free memory by calling shrink zone with increasing
* priorities until we have enough memory freed.
@@ -2382,20 +2482,18 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
* if less than a specified percentage of the zone is used by
* unmapped file backed pages.
*/
- if (zone_page_state(zone, NR_FILE_PAGES) -
- zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
- && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
- <= zone->min_slab_pages)
- return 0;
+ if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
+ zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
+ return ZONE_RECLAIM_FULL;
if (zone_is_all_unreclaimable(zone))
- return 0;
+ return ZONE_RECLAIM_FULL;
/*
* Do not scan if the allocation should not be delayed.
*/
if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
- return 0;
+ return ZONE_RECLAIM_NOSCAN;
/*
* Only run zone reclaim on the local zone or on zones that do not
@@ -2405,18 +2503,21 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
*/
node_id = zone_to_nid(zone);
if (node_state(node_id, N_CPU) && node_id != numa_node_id())
- return 0;
+ return ZONE_RECLAIM_NOSCAN;
if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
- return 0;
+ return ZONE_RECLAIM_NOSCAN;
+
ret = __zone_reclaim(zone, gfp_mask, order);
zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
+ if (!ret)
+ count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
+
return ret;
}
#endif
-#ifdef CONFIG_UNEVICTABLE_LRU
/*
* page_evictable - test whether a page is evictable
* @page: the page to test
@@ -2663,4 +2764,3 @@ void scan_unevictable_unregister_node(struct node *node)
sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
-#endif
diff --git a/mm/vmstat.c b/mm/vmstat.c
index 66f6130976cb..138bed53706e 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -509,22 +509,11 @@ static void pagetypeinfo_showblockcount_print(struct seq_file *m,
continue;
page = pfn_to_page(pfn);
-#ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES
- /*
- * Ordinarily, memory holes in flatmem still have a valid
- * memmap for the PFN range. However, an architecture for
- * embedded systems (e.g. ARM) can free up the memmap backing
- * holes to save memory on the assumption the memmap is
- * never used. The page_zone linkages are then broken even
- * though pfn_valid() returns true. Skip the page if the
- * linkages are broken. Even if this test passed, the impact
- * is that the counters for the movable type are off but
- * fragmentation monitoring is likely meaningless on small
- * systems.
- */
- if (page_zone(page) != zone)
+
+ /* Watch for unexpected holes punched in the memmap */
+ if (!memmap_valid_within(pfn, page, zone))
continue;
-#endif
+
mtype = get_pageblock_migratetype(page);
if (mtype < MIGRATE_TYPES)
@@ -640,10 +629,8 @@ static const char * const vmstat_text[] = {
"nr_active_anon",
"nr_inactive_file",
"nr_active_file",
-#ifdef CONFIG_UNEVICTABLE_LRU
"nr_unevictable",
"nr_mlock",
-#endif
"nr_anon_pages",
"nr_mapped",
"nr_file_pages",
@@ -686,6 +673,9 @@ static const char * const vmstat_text[] = {
TEXTS_FOR_ZONES("pgscan_kswapd")
TEXTS_FOR_ZONES("pgscan_direct")
+#ifdef CONFIG_NUMA
+ "zone_reclaim_failed",
+#endif
"pginodesteal",
"slabs_scanned",
"kswapd_steal",
@@ -698,7 +688,6 @@ static const char * const vmstat_text[] = {
"htlb_buddy_alloc_success",
"htlb_buddy_alloc_fail",
#endif
-#ifdef CONFIG_UNEVICTABLE_LRU
"unevictable_pgs_culled",
"unevictable_pgs_scanned",
"unevictable_pgs_rescued",
@@ -708,7 +697,6 @@ static const char * const vmstat_text[] = {
"unevictable_pgs_stranded",
"unevictable_pgs_mlockfreed",
#endif
-#endif
};
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
@@ -721,18 +709,14 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
"\n min %lu"
"\n low %lu"
"\n high %lu"
- "\n scanned %lu (aa: %lu ia: %lu af: %lu if: %lu)"
+ "\n scanned %lu"
"\n spanned %lu"
"\n present %lu",
zone_page_state(zone, NR_FREE_PAGES),
- zone->pages_min,
- zone->pages_low,
- zone->pages_high,
+ min_wmark_pages(zone),
+ low_wmark_pages(zone),
+ high_wmark_pages(zone),
zone->pages_scanned,
- zone->lru[LRU_ACTIVE_ANON].nr_scan,
- zone->lru[LRU_INACTIVE_ANON].nr_scan,
- zone->lru[LRU_ACTIVE_FILE].nr_scan,
- zone->lru[LRU_INACTIVE_FILE].nr_scan,
zone->spanned_pages,
zone->present_pages);