summaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig2
-rw-r--r--mm/huge_memory.c72
-rw-r--r--mm/kmemleak-test.c6
-rw-r--r--mm/kmemleak.c13
-rw-r--r--mm/memblock.c2
-rw-r--r--mm/memcontrol.c98
-rw-r--r--mm/memory-failure.c94
-rw-r--r--mm/memory.c34
-rw-r--r--mm/mempolicy.c16
-rw-r--r--mm/migrate.c15
-rw-r--r--mm/mlock.c7
-rw-r--r--mm/mremap.c4
-rw-r--r--mm/page_alloc.c23
-rw-r--r--mm/pgtable-generic.c1
-rw-r--r--mm/slab.c47
-rw-r--r--mm/slob.c6
-rw-r--r--mm/slub.c132
-rw-r--r--mm/swapfile.c2
-rw-r--r--mm/truncate.c2
-rw-r--r--mm/vmscan.c39
20 files changed, 382 insertions, 233 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 3ad483bdf505..e9c0c61f2ddd 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -179,7 +179,7 @@ config SPLIT_PTLOCK_CPUS
config COMPACTION
bool "Allow for memory compaction"
select MIGRATION
- depends on EXPERIMENTAL && HUGETLB_PAGE && MMU
+ depends on MMU
help
Allows the compaction of memory for the allocation of huge pages.
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index e187454d82f6..dbe99a5f2073 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -650,10 +650,10 @@ static inline gfp_t alloc_hugepage_gfpmask(int defrag)
static inline struct page *alloc_hugepage_vma(int defrag,
struct vm_area_struct *vma,
- unsigned long haddr)
+ unsigned long haddr, int nd)
{
return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
- HPAGE_PMD_ORDER, vma, haddr);
+ HPAGE_PMD_ORDER, vma, haddr, nd);
}
#ifndef CONFIG_NUMA
@@ -678,7 +678,7 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (unlikely(khugepaged_enter(vma)))
return VM_FAULT_OOM;
page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
- vma, haddr);
+ vma, haddr, numa_node_id());
if (unlikely(!page))
goto out;
if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
@@ -799,8 +799,8 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
}
for (i = 0; i < HPAGE_PMD_NR; i++) {
- pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
- vma, address);
+ pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE,
+ vma, address, page_to_nid(page));
if (unlikely(!pages[i] ||
mem_cgroup_newpage_charge(pages[i], mm,
GFP_KERNEL))) {
@@ -902,7 +902,7 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow())
new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
- vma, haddr);
+ vma, haddr, numa_node_id());
else
new_page = NULL;
@@ -1162,7 +1162,12 @@ static void __split_huge_page_refcount(struct page *page)
/* after clearing PageTail the gup refcount can be released */
smp_mb();
- page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
+ /*
+ * retain hwpoison flag of the poisoned tail page:
+ * fix for the unsuitable process killed on Guest Machine(KVM)
+ * by the memory-failure.
+ */
+ page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
page_tail->flags |= (page->flags &
((1L << PG_referenced) |
(1L << PG_swapbacked) |
@@ -1740,7 +1745,8 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
static void collapse_huge_page(struct mm_struct *mm,
unsigned long address,
struct page **hpage,
- struct vm_area_struct *vma)
+ struct vm_area_struct *vma,
+ int node)
{
pgd_t *pgd;
pud_t *pud;
@@ -1768,7 +1774,8 @@ static void collapse_huge_page(struct mm_struct *mm,
* mmap_sem in read mode is good idea also to allow greater
* scalability.
*/
- new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
+ new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
+ node);
if (unlikely(!new_page)) {
up_read(&mm->mmap_sem);
*hpage = ERR_PTR(-ENOMEM);
@@ -1806,6 +1813,8 @@ static void collapse_huge_page(struct mm_struct *mm,
/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
goto out;
+ if (is_vma_temporary_stack(vma))
+ goto out;
VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
pgd = pgd_offset(mm, address);
@@ -1847,7 +1856,6 @@ static void collapse_huge_page(struct mm_struct *mm,
set_pmd_at(mm, address, pmd, _pmd);
spin_unlock(&mm->page_table_lock);
anon_vma_unlock(vma->anon_vma);
- mem_cgroup_uncharge_page(new_page);
goto out;
}
@@ -1893,6 +1901,7 @@ out_up_write:
return;
out:
+ mem_cgroup_uncharge_page(new_page);
#ifdef CONFIG_NUMA
put_page(new_page);
#endif
@@ -1912,6 +1921,7 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
struct page *page;
unsigned long _address;
spinlock_t *ptl;
+ int node = -1;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
@@ -1942,6 +1952,13 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
page = vm_normal_page(vma, _address, pteval);
if (unlikely(!page))
goto out_unmap;
+ /*
+ * Chose the node of the first page. This could
+ * be more sophisticated and look at more pages,
+ * but isn't for now.
+ */
+ if (node == -1)
+ node = page_to_nid(page);
VM_BUG_ON(PageCompound(page));
if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
goto out_unmap;
@@ -1958,7 +1975,7 @@ out_unmap:
pte_unmap_unlock(pte, ptl);
if (ret)
/* collapse_huge_page will return with the mmap_sem released */
- collapse_huge_page(mm, address, hpage, vma);
+ collapse_huge_page(mm, address, hpage, vma, node);
out:
return ret;
}
@@ -2027,32 +2044,27 @@ static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
if ((!(vma->vm_flags & VM_HUGEPAGE) &&
!khugepaged_always()) ||
(vma->vm_flags & VM_NOHUGEPAGE)) {
+ skip:
progress++;
continue;
}
-
/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
- if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
- khugepaged_scan.address = vma->vm_end;
- progress++;
- continue;
- }
+ if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
+ goto skip;
+ if (is_vma_temporary_stack(vma))
+ goto skip;
+
VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
hend = vma->vm_end & HPAGE_PMD_MASK;
- if (hstart >= hend) {
- progress++;
- continue;
- }
+ if (hstart >= hend)
+ goto skip;
+ if (khugepaged_scan.address > hend)
+ goto skip;
if (khugepaged_scan.address < hstart)
khugepaged_scan.address = hstart;
- if (khugepaged_scan.address > hend) {
- khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
- progress++;
- continue;
- }
- BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
+ VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
while (khugepaged_scan.address < hend) {
int ret;
@@ -2081,7 +2093,7 @@ breakouterloop:
breakouterloop_mmap_sem:
spin_lock(&khugepaged_mm_lock);
- BUG_ON(khugepaged_scan.mm_slot != mm_slot);
+ VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
/*
* Release the current mm_slot if this mm is about to die, or
* if we scanned all vmas of this mm.
@@ -2236,9 +2248,9 @@ static int khugepaged(void *none)
for (;;) {
mutex_unlock(&khugepaged_mutex);
- BUG_ON(khugepaged_thread != current);
+ VM_BUG_ON(khugepaged_thread != current);
khugepaged_loop();
- BUG_ON(khugepaged_thread != current);
+ VM_BUG_ON(khugepaged_thread != current);
mutex_lock(&khugepaged_mutex);
if (!khugepaged_enabled())
diff --git a/mm/kmemleak-test.c b/mm/kmemleak-test.c
index 177a5169bbde..ff0d9779cec8 100644
--- a/mm/kmemleak-test.c
+++ b/mm/kmemleak-test.c
@@ -75,13 +75,11 @@ static int __init kmemleak_test_init(void)
* after the module is removed.
*/
for (i = 0; i < 10; i++) {
- elem = kmalloc(sizeof(*elem), GFP_KERNEL);
- pr_info("kmemleak: kmalloc(sizeof(*elem)) = %p\n", elem);
+ elem = kzalloc(sizeof(*elem), GFP_KERNEL);
+ pr_info("kmemleak: kzalloc(sizeof(*elem)) = %p\n", elem);
if (!elem)
return -ENOMEM;
- memset(elem, 0, sizeof(*elem));
INIT_LIST_HEAD(&elem->list);
-
list_add_tail(&elem->list, &test_list);
}
diff --git a/mm/kmemleak.c b/mm/kmemleak.c
index bd9bc214091b..84225f3b7190 100644
--- a/mm/kmemleak.c
+++ b/mm/kmemleak.c
@@ -113,7 +113,9 @@
#define BYTES_PER_POINTER sizeof(void *)
/* GFP bitmask for kmemleak internal allocations */
-#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
+#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
+ __GFP_NORETRY | __GFP_NOMEMALLOC | \
+ __GFP_NOWARN)
/* scanning area inside a memory block */
struct kmemleak_scan_area {
@@ -511,9 +513,10 @@ static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
struct kmemleak_object *object;
struct prio_tree_node *node;
- object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
+ object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
if (!object) {
- kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
+ pr_warning("Cannot allocate a kmemleak_object structure\n");
+ kmemleak_disable();
return NULL;
}
@@ -734,9 +737,9 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
return;
}
- area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
+ area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
if (!area) {
- kmemleak_warn("Cannot allocate a scan area\n");
+ pr_warning("Cannot allocate a scan area\n");
goto out;
}
diff --git a/mm/memblock.c b/mm/memblock.c
index bdba245d8afd..4618fda975a0 100644
--- a/mm/memblock.c
+++ b/mm/memblock.c
@@ -137,8 +137,6 @@ static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
BUG_ON(0 == size);
- size = memblock_align_up(size, align);
-
/* Pump up max_addr */
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
end = memblock.current_limit;
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index db76ef726293..da53a252b259 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -612,8 +612,10 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
/* pagein of a big page is an event. So, ignore page size */
if (nr_pages > 0)
__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
- else
+ else {
__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
+ nr_pages = -nr_pages; /* for event */
+ }
__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
@@ -1111,6 +1113,23 @@ static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
return false;
}
+/**
+ * mem_cgroup_check_margin - check if the memory cgroup allows charging
+ * @mem: memory cgroup to check
+ * @bytes: the number of bytes the caller intends to charge
+ *
+ * Returns a boolean value on whether @mem can be charged @bytes or
+ * whether this would exceed the limit.
+ */
+static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
+{
+ if (!res_counter_check_margin(&mem->res, bytes))
+ return false;
+ if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
+ return false;
+ return true;
+}
+
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
struct cgroup *cgrp = memcg->css.cgroup;
@@ -1832,27 +1851,39 @@ static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
if (likely(!ret))
return CHARGE_OK;
+ res_counter_uncharge(&mem->res, csize);
mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
flags |= MEM_CGROUP_RECLAIM_NOSWAP;
} else
mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
-
- if (csize > PAGE_SIZE) /* change csize and retry */
+ /*
+ * csize can be either a huge page (HPAGE_SIZE), a batch of
+ * regular pages (CHARGE_SIZE), or a single regular page
+ * (PAGE_SIZE).
+ *
+ * Never reclaim on behalf of optional batching, retry with a
+ * single page instead.
+ */
+ if (csize == CHARGE_SIZE)
return CHARGE_RETRY;
if (!(gfp_mask & __GFP_WAIT))
return CHARGE_WOULDBLOCK;
ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
- gfp_mask, flags);
+ gfp_mask, flags);
+ if (mem_cgroup_check_margin(mem_over_limit, csize))
+ return CHARGE_RETRY;
/*
- * try_to_free_mem_cgroup_pages() might not give us a full
- * picture of reclaim. Some pages are reclaimed and might be
- * moved to swap cache or just unmapped from the cgroup.
- * Check the limit again to see if the reclaim reduced the
- * current usage of the cgroup before giving up
+ * Even though the limit is exceeded at this point, reclaim
+ * may have been able to free some pages. Retry the charge
+ * before killing the task.
+ *
+ * Only for regular pages, though: huge pages are rather
+ * unlikely to succeed so close to the limit, and we fall back
+ * to regular pages anyway in case of failure.
*/
- if (ret || mem_cgroup_check_under_limit(mem_over_limit))
+ if (csize == PAGE_SIZE && ret)
return CHARGE_RETRY;
/*
@@ -2144,6 +2175,8 @@ void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
unsigned long flags;
+ if (mem_cgroup_disabled())
+ return;
/*
* We have no races with charge/uncharge but will have races with
* page state accounting.
@@ -2233,7 +2266,12 @@ static int mem_cgroup_move_account(struct page_cgroup *pc,
{
int ret = -EINVAL;
unsigned long flags;
-
+ /*
+ * The page is isolated from LRU. So, collapse function
+ * will not handle this page. But page splitting can happen.
+ * Do this check under compound_page_lock(). The caller should
+ * hold it.
+ */
if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
return -EBUSY;
@@ -2265,7 +2303,7 @@ static int mem_cgroup_move_parent(struct page_cgroup *pc,
struct cgroup *cg = child->css.cgroup;
struct cgroup *pcg = cg->parent;
struct mem_cgroup *parent;
- int charge = PAGE_SIZE;
+ int page_size = PAGE_SIZE;
unsigned long flags;
int ret;
@@ -2278,23 +2316,26 @@ static int mem_cgroup_move_parent(struct page_cgroup *pc,
goto out;
if (isolate_lru_page(page))
goto put;
- /* The page is isolated from LRU and we have no race with splitting */
- charge = PAGE_SIZE << compound_order(page);
+
+ if (PageTransHuge(page))
+ page_size = HPAGE_SIZE;
parent = mem_cgroup_from_cont(pcg);
- ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, charge);
+ ret = __mem_cgroup_try_charge(NULL, gfp_mask,
+ &parent, false, page_size);
if (ret || !parent)
goto put_back;
- if (charge > PAGE_SIZE)
+ if (page_size > PAGE_SIZE)
flags = compound_lock_irqsave(page);
- ret = mem_cgroup_move_account(pc, child, parent, true, charge);
+ ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
if (ret)
- mem_cgroup_cancel_charge(parent, charge);
-put_back:
- if (charge > PAGE_SIZE)
+ mem_cgroup_cancel_charge(parent, page_size);
+
+ if (page_size > PAGE_SIZE)
compound_unlock_irqrestore(page, flags);
+put_back:
putback_lru_page(page);
put:
put_page(page);
@@ -2312,13 +2353,19 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask, enum charge_type ctype)
{
struct mem_cgroup *mem = NULL;
+ int page_size = PAGE_SIZE;
struct page_cgroup *pc;
+ bool oom = true;
int ret;
- int page_size = PAGE_SIZE;
if (PageTransHuge(page)) {
page_size <<= compound_order(page);
VM_BUG_ON(!PageTransHuge(page));
+ /*
+ * Never OOM-kill a process for a huge page. The
+ * fault handler will fall back to regular pages.
+ */
+ oom = false;
}
pc = lookup_page_cgroup(page);
@@ -2327,7 +2374,7 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
return 0;
prefetchw(pc);
- ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
+ ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
if (ret || !mem)
return ret;
@@ -5013,9 +5060,9 @@ struct cgroup_subsys mem_cgroup_subsys = {
static int __init enable_swap_account(char *s)
{
/* consider enabled if no parameter or 1 is given */
- if (!s || !strcmp(s, "1"))
+ if (!(*s) || !strcmp(s, "=1"))
really_do_swap_account = 1;
- else if (!strcmp(s, "0"))
+ else if (!strcmp(s, "=0"))
really_do_swap_account = 0;
return 1;
}
@@ -5023,7 +5070,8 @@ __setup("swapaccount", enable_swap_account);
static int __init disable_swap_account(char *s)
{
- enable_swap_account("0");
+ printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
+ enable_swap_account("=0");
return 1;
}
__setup("noswapaccount", disable_swap_account);
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index 548fbd70f026..0207c2f6f8bd 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -233,8 +233,8 @@ void shake_page(struct page *p, int access)
}
/*
- * Only all shrink_slab here (which would also
- * shrink other caches) if access is not potentially fatal.
+ * Only call shrink_slab here (which would also shrink other caches) if
+ * access is not potentially fatal.
*/
if (access) {
int nr;
@@ -386,8 +386,6 @@ static void collect_procs_anon(struct page *page, struct list_head *to_kill,
struct task_struct *tsk;
struct anon_vma *av;
- if (!PageHuge(page) && unlikely(split_huge_page(page)))
- return;
read_lock(&tasklist_lock);
av = page_lock_anon_vma(page);
if (av == NULL) /* Not actually mapped anymore */
@@ -856,6 +854,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
int ret;
int kill = 1;
struct page *hpage = compound_head(p);
+ struct page *ppage;
if (PageReserved(p) || PageSlab(p))
return SWAP_SUCCESS;
@@ -897,6 +896,44 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
}
/*
+ * ppage: poisoned page
+ * if p is regular page(4k page)
+ * ppage == real poisoned page;
+ * else p is hugetlb or THP, ppage == head page.
+ */
+ ppage = hpage;
+
+ if (PageTransHuge(hpage)) {
+ /*
+ * Verify that this isn't a hugetlbfs head page, the check for
+ * PageAnon is just for avoid tripping a split_huge_page
+ * internal debug check, as split_huge_page refuses to deal with
+ * anything that isn't an anon page. PageAnon can't go away fro
+ * under us because we hold a refcount on the hpage, without a
+ * refcount on the hpage. split_huge_page can't be safely called
+ * in the first place, having a refcount on the tail isn't
+ * enough * to be safe.
+ */
+ if (!PageHuge(hpage) && PageAnon(hpage)) {
+ if (unlikely(split_huge_page(hpage))) {
+ /*
+ * FIXME: if splitting THP is failed, it is
+ * better to stop the following operation rather
+ * than causing panic by unmapping. System might
+ * survive if the page is freed later.
+ */
+ printk(KERN_INFO
+ "MCE %#lx: failed to split THP\n", pfn);
+
+ BUG_ON(!PageHWPoison(p));
+ return SWAP_FAIL;
+ }
+ /* THP is split, so ppage should be the real poisoned page. */
+ ppage = p;
+ }
+ }
+
+ /*
* First collect all the processes that have the page
* mapped in dirty form. This has to be done before try_to_unmap,
* because ttu takes the rmap data structures down.
@@ -905,12 +942,18 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
* there's nothing that can be done.
*/
if (kill)
- collect_procs(hpage, &tokill);
+ collect_procs(ppage, &tokill);
+
+ if (hpage != ppage)
+ lock_page_nosync(ppage);
- ret = try_to_unmap(hpage, ttu);
+ ret = try_to_unmap(ppage, ttu);
if (ret != SWAP_SUCCESS)
printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
- pfn, page_mapcount(hpage));
+ pfn, page_mapcount(ppage));
+
+ if (hpage != ppage)
+ unlock_page(ppage);
/*
* Now that the dirty bit has been propagated to the
@@ -921,7 +964,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
* use a more force-full uncatchable kill to prevent
* any accesses to the poisoned memory.
*/
- kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
+ kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
ret != SWAP_SUCCESS, p, pfn);
return ret;
@@ -1022,19 +1065,22 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
* The check (unnecessarily) ignores LRU pages being isolated and
* walked by the page reclaim code, however that's not a big loss.
*/
- if (!PageLRU(p) && !PageHuge(p))
- shake_page(p, 0);
- if (!PageLRU(p) && !PageHuge(p)) {
- /*
- * shake_page could have turned it free.
- */
- if (is_free_buddy_page(p)) {
- action_result(pfn, "free buddy, 2nd try", DELAYED);
- return 0;
+ if (!PageHuge(p) && !PageTransCompound(p)) {
+ if (!PageLRU(p))
+ shake_page(p, 0);
+ if (!PageLRU(p)) {
+ /*
+ * shake_page could have turned it free.
+ */
+ if (is_free_buddy_page(p)) {
+ action_result(pfn, "free buddy, 2nd try",
+ DELAYED);
+ return 0;
+ }
+ action_result(pfn, "non LRU", IGNORED);
+ put_page(p);
+ return -EBUSY;
}
- action_result(pfn, "non LRU", IGNORED);
- put_page(p);
- return -EBUSY;
}
/*
@@ -1064,7 +1110,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
* For error on the tail page, we should set PG_hwpoison
* on the head page to show that the hugepage is hwpoisoned
*/
- if (PageTail(p) && TestSetPageHWPoison(hpage)) {
+ if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
action_result(pfn, "hugepage already hardware poisoned",
IGNORED);
unlock_page(hpage);
@@ -1295,7 +1341,10 @@ static int soft_offline_huge_page(struct page *page, int flags)
ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
true);
if (ret) {
- putback_lru_pages(&pagelist);
+ struct page *page1, *page2;
+ list_for_each_entry_safe(page1, page2, &pagelist, lru)
+ put_page(page1);
+
pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
pfn, ret, page->flags);
if (ret > 0)
@@ -1419,6 +1468,7 @@ int soft_offline_page(struct page *page, int flags)
ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
0, true);
if (ret) {
+ putback_lru_pages(&pagelist);
pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
pfn, ret, page->flags);
if (ret > 0)
diff --git a/mm/memory.c b/mm/memory.c
index 31250faff390..5823698c2b71 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -2219,7 +2219,6 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
&ptl);
if (!pte_same(*page_table, orig_pte)) {
unlock_page(old_page);
- page_cache_release(old_page);
goto unlock;
}
page_cache_release(old_page);
@@ -2289,7 +2288,6 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
&ptl);
if (!pte_same(*page_table, orig_pte)) {
unlock_page(old_page);
- page_cache_release(old_page);
goto unlock;
}
@@ -2367,16 +2365,6 @@ gotten:
}
__SetPageUptodate(new_page);
- /*
- * Don't let another task, with possibly unlocked vma,
- * keep the mlocked page.
- */
- if ((vma->vm_flags & VM_LOCKED) && old_page) {
- lock_page(old_page); /* for LRU manipulation */
- clear_page_mlock(old_page);
- unlock_page(old_page);
- }
-
if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
goto oom_free_new;
@@ -2444,10 +2432,20 @@ gotten:
if (new_page)
page_cache_release(new_page);
- if (old_page)
- page_cache_release(old_page);
unlock:
pte_unmap_unlock(page_table, ptl);
+ if (old_page) {
+ /*
+ * Don't let another task, with possibly unlocked vma,
+ * keep the mlocked page.
+ */
+ if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
+ lock_page(old_page); /* LRU manipulation */
+ munlock_vma_page(old_page);
+ unlock_page(old_page);
+ }
+ page_cache_release(old_page);
+ }
return ret;
oom_free_new:
page_cache_release(new_page);
@@ -2650,6 +2648,7 @@ void unmap_mapping_range(struct address_space *mapping,
details.last_index = ULONG_MAX;
details.i_mmap_lock = &mapping->i_mmap_lock;
+ mutex_lock(&mapping->unmap_mutex);
spin_lock(&mapping->i_mmap_lock);
/* Protect against endless unmapping loops */
@@ -2666,6 +2665,7 @@ void unmap_mapping_range(struct address_space *mapping,
if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
spin_unlock(&mapping->i_mmap_lock);
+ mutex_unlock(&mapping->unmap_mutex);
}
EXPORT_SYMBOL(unmap_mapping_range);
@@ -3053,12 +3053,6 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
goto out;
}
charged = 1;
- /*
- * Don't let another task, with possibly unlocked vma,
- * keep the mlocked page.
- */
- if (vma->vm_flags & VM_LOCKED)
- clear_page_mlock(vmf.page);
copy_user_highpage(page, vmf.page, address, vma);
__SetPageUptodate(page);
} else {
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 368fc9d23610..b53ec99f1428 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -1524,10 +1524,9 @@ static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
}
/* Return a zonelist indicated by gfp for node representing a mempolicy */
-static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
+static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
+ int nd)
{
- int nd = numa_node_id();
-
switch (policy->mode) {
case MPOL_PREFERRED:
if (!(policy->flags & MPOL_F_LOCAL))
@@ -1679,7 +1678,7 @@ struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
zl = node_zonelist(interleave_nid(*mpol, vma, addr,
huge_page_shift(hstate_vma(vma))), gfp_flags);
} else {
- zl = policy_zonelist(gfp_flags, *mpol);
+ zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
if ((*mpol)->mode == MPOL_BIND)
*nodemask = &(*mpol)->v.nodes;
}
@@ -1820,7 +1819,7 @@ static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
*/
struct page *
alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
- unsigned long addr)
+ unsigned long addr, int node)
{
struct mempolicy *pol = get_vma_policy(current, vma, addr);
struct zonelist *zl;
@@ -1830,13 +1829,13 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
unsigned nid;
- nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
+ nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
mpol_cond_put(pol);
page = alloc_page_interleave(gfp, order, nid);
put_mems_allowed();
return page;
}
- zl = policy_zonelist(gfp, pol);
+ zl = policy_zonelist(gfp, pol, node);
if (unlikely(mpol_needs_cond_ref(pol))) {
/*
* slow path: ref counted shared policy
@@ -1892,7 +1891,8 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order)
page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
else
page = __alloc_pages_nodemask(gfp, order,
- policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
+ policy_zonelist(gfp, pol, numa_node_id()),
+ policy_nodemask(gfp, pol));
put_mems_allowed();
return page;
}
diff --git a/mm/migrate.c b/mm/migrate.c
index 46fe8cc13d67..352de555626c 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -772,6 +772,7 @@ uncharge:
unlock:
unlock_page(page);
+move_newpage:
if (rc != -EAGAIN) {
/*
* A page that has been migrated has all references
@@ -785,8 +786,6 @@ unlock:
putback_lru_page(page);
}
-move_newpage:
-
/*
* Move the new page to the LRU. If migration was not successful
* then this will free the page.
@@ -888,7 +887,7 @@ out:
* are movable anymore because to has become empty
* or no retryable pages exist anymore.
* Caller should call putback_lru_pages to return pages to the LRU
- * or free list.
+ * or free list only if ret != 0.
*
* Return: Number of pages not migrated or error code.
*/
@@ -981,10 +980,6 @@ int migrate_huge_pages(struct list_head *from,
}
rc = 0;
out:
-
- list_for_each_entry_safe(page, page2, from, lru)
- put_page(page);
-
if (rc)
return rc;
@@ -1292,14 +1287,14 @@ SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
return -EPERM;
/* Find the mm_struct */
- read_lock(&tasklist_lock);
+ rcu_read_lock();
task = pid ? find_task_by_vpid(pid) : current;
if (!task) {
- read_unlock(&tasklist_lock);
+ rcu_read_unlock();
return -ESRCH;
}
mm = get_task_mm(task);
- read_unlock(&tasklist_lock);
+ rcu_read_unlock();
if (!mm)
return -EINVAL;
diff --git a/mm/mlock.c b/mm/mlock.c
index 13e81ee8be9d..c3924c7f00be 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -178,6 +178,13 @@ static long __mlock_vma_pages_range(struct vm_area_struct *vma,
if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
gup_flags |= FOLL_WRITE;
+ /*
+ * We want mlock to succeed for regions that have any permissions
+ * other than PROT_NONE.
+ */
+ if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
+ gup_flags |= FOLL_FORCE;
+
if (vma->vm_flags & VM_LOCKED)
gup_flags |= FOLL_MLOCK;
diff --git a/mm/mremap.c b/mm/mremap.c
index 9925b6391b80..1de98d492ddc 100644
--- a/mm/mremap.c
+++ b/mm/mremap.c
@@ -94,9 +94,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
*/
mapping = vma->vm_file->f_mapping;
spin_lock(&mapping->i_mmap_lock);
- if (new_vma->vm_truncate_count &&
- new_vma->vm_truncate_count != vma->vm_truncate_count)
- new_vma->vm_truncate_count = 0;
+ new_vma->vm_truncate_count = 0;
}
/*
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 90c1439549fd..cdef1d4b4e47 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -1088,8 +1088,10 @@ static void drain_pages(unsigned int cpu)
pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
- free_pcppages_bulk(zone, pcp->count, pcp);
- pcp->count = 0;
+ if (pcp->count) {
+ free_pcppages_bulk(zone, pcp->count, pcp);
+ pcp->count = 0;
+ }
local_irq_restore(flags);
}
}
@@ -2034,6 +2036,14 @@ restart:
*/
alloc_flags = gfp_to_alloc_flags(gfp_mask);
+ /*
+ * Find the true preferred zone if the allocation is unconstrained by
+ * cpusets.
+ */
+ if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
+ first_zones_zonelist(zonelist, high_zoneidx, NULL,
+ &preferred_zone);
+
/* This is the last chance, in general, before the goto nopage. */
page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
@@ -2192,7 +2202,9 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
get_mems_allowed();
/* The preferred zone is used for statistics later */
- first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
+ first_zones_zonelist(zonelist, high_zoneidx,
+ nodemask ? : &cpuset_current_mems_allowed,
+ &preferred_zone);
if (!preferred_zone) {
put_mems_allowed();
return NULL;
@@ -5364,10 +5376,9 @@ __count_immobile_pages(struct zone *zone, struct page *page, int count)
for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
unsigned long check = pfn + iter;
- if (!pfn_valid_within(check)) {
- iter++;
+ if (!pfn_valid_within(check))
continue;
- }
+
page = pfn_to_page(check);
if (!page_count(page)) {
if (PageBuddy(page))
diff --git a/mm/pgtable-generic.c b/mm/pgtable-generic.c
index 0369f5b3ba1b..eb663fb533e0 100644
--- a/mm/pgtable-generic.c
+++ b/mm/pgtable-generic.c
@@ -6,6 +6,7 @@
* Copyright (C) 2010 Linus Torvalds
*/
+#include <linux/pagemap.h>
#include <asm/tlb.h>
#include <asm-generic/pgtable.h>
diff --git a/mm/slab.c b/mm/slab.c
index 4c6e2e31ced0..a18ba57517af 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -191,22 +191,6 @@ typedef unsigned int kmem_bufctl_t;
#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
/*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
-struct slab {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- unsigned short nodeid;
-};
-
-/*
* struct slab_rcu
*
* slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
@@ -219,8 +203,6 @@ struct slab {
*
* rcu_read_lock before reading the address, then rcu_read_unlock after
* taking the spinlock within the structure expected at that address.
- *
- * We assume struct slab_rcu can overlay struct slab when destroying.
*/
struct slab_rcu {
struct rcu_head head;
@@ -229,6 +211,27 @@ struct slab_rcu {
};
/*
+ * struct slab
+ *
+ * Manages the objs in a slab. Placed either at the beginning of mem allocated
+ * for a slab, or allocated from an general cache.
+ * Slabs are chained into three list: fully used, partial, fully free slabs.
+ */
+struct slab {
+ union {
+ struct {
+ struct list_head list;
+ unsigned long colouroff;
+ void *s_mem; /* including colour offset */
+ unsigned int inuse; /* num of objs active in slab */
+ kmem_bufctl_t free;
+ unsigned short nodeid;
+ };
+ struct slab_rcu __slab_cover_slab_rcu;
+ };
+};
+
+/*
* struct array_cache
*
* Purpose:
@@ -2147,8 +2150,6 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
*
* @name must be valid until the cache is destroyed. This implies that
* the module calling this has to destroy the cache before getting unloaded.
- * Note that kmem_cache_name() is not guaranteed to return the same pointer,
- * therefore applications must manage it themselves.
*
* The flags are
*
@@ -3840,12 +3841,6 @@ unsigned int kmem_cache_size(struct kmem_cache *cachep)
}
EXPORT_SYMBOL(kmem_cache_size);
-const char *kmem_cache_name(struct kmem_cache *cachep)
-{
- return cachep->name;
-}
-EXPORT_SYMBOL_GPL(kmem_cache_name);
-
/*
* This initializes kmem_list3 or resizes various caches for all nodes.
*/
diff --git a/mm/slob.c b/mm/slob.c
index 3588eaaef726..46e0aee33a23 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -666,12 +666,6 @@ unsigned int kmem_cache_size(struct kmem_cache *c)
}
EXPORT_SYMBOL(kmem_cache_size);
-const char *kmem_cache_name(struct kmem_cache *c)
-{
- return c->name;
-}
-EXPORT_SYMBOL(kmem_cache_name);
-
int kmem_cache_shrink(struct kmem_cache *d)
{
return 0;
diff --git a/mm/slub.c b/mm/slub.c
index e15aa7f193c9..e841d8921c22 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -281,11 +281,40 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
return (p - addr) / s->size;
}
+static inline size_t slab_ksize(const struct kmem_cache *s)
+{
+#ifdef CONFIG_SLUB_DEBUG
+ /*
+ * Debugging requires use of the padding between object
+ * and whatever may come after it.
+ */
+ if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
+ return s->objsize;
+
+#endif
+ /*
+ * If we have the need to store the freelist pointer
+ * back there or track user information then we can
+ * only use the space before that information.
+ */
+ if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
+ return s->inuse;
+ /*
+ * Else we can use all the padding etc for the allocation
+ */
+ return s->size;
+}
+
+static inline int order_objects(int order, unsigned long size, int reserved)
+{
+ return ((PAGE_SIZE << order) - reserved) / size;
+}
+
static inline struct kmem_cache_order_objects oo_make(int order,
- unsigned long size)
+ unsigned long size, int reserved)
{
struct kmem_cache_order_objects x = {
- (order << OO_SHIFT) + (PAGE_SIZE << order) / size
+ (order << OO_SHIFT) + order_objects(order, size, reserved)
};
return x;
@@ -617,7 +646,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
return 1;
start = page_address(page);
- length = (PAGE_SIZE << compound_order(page));
+ length = (PAGE_SIZE << compound_order(page)) - s->reserved;
end = start + length;
remainder = length % s->size;
if (!remainder)
@@ -698,7 +727,7 @@ static int check_slab(struct kmem_cache *s, struct page *page)
return 0;
}
- maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
+ maxobj = order_objects(compound_order(page), s->size, s->reserved);
if (page->objects > maxobj) {
slab_err(s, page, "objects %u > max %u",
s->name, page->objects, maxobj);
@@ -748,7 +777,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
nr++;
}
- max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
+ max_objects = order_objects(compound_order(page), s->size, s->reserved);
if (max_objects > MAX_OBJS_PER_PAGE)
max_objects = MAX_OBJS_PER_PAGE;
@@ -800,7 +829,7 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
{
flags &= gfp_allowed_mask;
- kmemcheck_slab_alloc(s, flags, object, s->objsize);
+ kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
}
@@ -1249,21 +1278,38 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
__free_pages(page, order);
}
+#define need_reserve_slab_rcu \
+ (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
+
static void rcu_free_slab(struct rcu_head *h)
{
struct page *page;
- page = container_of((struct list_head *)h, struct page, lru);
+ if (need_reserve_slab_rcu)
+ page = virt_to_head_page(h);
+ else
+ page = container_of((struct list_head *)h, struct page, lru);
+
__free_slab(page->slab, page);
}
static void free_slab(struct kmem_cache *s, struct page *page)
{
if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
- /*
- * RCU free overloads the RCU head over the LRU
- */
- struct rcu_head *head = (void *)&page->lru;
+ struct rcu_head *head;
+
+ if (need_reserve_slab_rcu) {
+ int order = compound_order(page);
+ int offset = (PAGE_SIZE << order) - s->reserved;
+
+ VM_BUG_ON(s->reserved != sizeof(*head));
+ head = page_address(page) + offset;
+ } else {
+ /*
+ * RCU free overloads the RCU head over the LRU
+ */
+ head = (void *)&page->lru;
+ }
call_rcu(head, rcu_free_slab);
} else
@@ -1988,13 +2034,13 @@ static int slub_nomerge;
* the smallest order which will fit the object.
*/
static inline int slab_order(int size, int min_objects,
- int max_order, int fract_leftover)
+ int max_order, int fract_leftover, int reserved)
{
int order;
int rem;
int min_order = slub_min_order;
- if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
+ if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
return get_order(size * MAX_OBJS_PER_PAGE) - 1;
for (order = max(min_order,
@@ -2003,10 +2049,10 @@ static inline int slab_order(int size, int min_objects,
unsigned long slab_size = PAGE_SIZE << order;
- if (slab_size < min_objects * size)
+ if (slab_size < min_objects * size + reserved)
continue;
- rem = slab_size % size;
+ rem = (slab_size - reserved) % size;
if (rem <= slab_size / fract_leftover)
break;
@@ -2016,7 +2062,7 @@ static inline int slab_order(int size, int min_objects,
return order;
}
-static inline int calculate_order(int size)
+static inline int calculate_order(int size, int reserved)
{
int order;
int min_objects;
@@ -2034,14 +2080,14 @@ static inline int calculate_order(int size)
min_objects = slub_min_objects;
if (!min_objects)
min_objects = 4 * (fls(nr_cpu_ids) + 1);
- max_objects = (PAGE_SIZE << slub_max_order)/size;
+ max_objects = order_objects(slub_max_order, size, reserved);
min_objects = min(min_objects, max_objects);
while (min_objects > 1) {
fraction = 16;
while (fraction >= 4) {
order = slab_order(size, min_objects,
- slub_max_order, fraction);
+ slub_max_order, fraction, reserved);
if (order <= slub_max_order)
return order;
fraction /= 2;
@@ -2053,14 +2099,14 @@ static inline int calculate_order(int size)
* We were unable to place multiple objects in a slab. Now
* lets see if we can place a single object there.
*/
- order = slab_order(size, 1, slub_max_order, 1);
+ order = slab_order(size, 1, slub_max_order, 1, reserved);
if (order <= slub_max_order)
return order;
/*
* Doh this slab cannot be placed using slub_max_order.
*/
- order = slab_order(size, 1, MAX_ORDER, 1);
+ order = slab_order(size, 1, MAX_ORDER, 1, reserved);
if (order < MAX_ORDER)
return order;
return -ENOSYS;
@@ -2311,7 +2357,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
if (forced_order >= 0)
order = forced_order;
else
- order = calculate_order(size);
+ order = calculate_order(size, s->reserved);
if (order < 0)
return 0;
@@ -2329,8 +2375,8 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
/*
* Determine the number of objects per slab
*/
- s->oo = oo_make(order, size);
- s->min = oo_make(get_order(size), size);
+ s->oo = oo_make(order, size, s->reserved);
+ s->min = oo_make(get_order(size), size, s->reserved);
if (oo_objects(s->oo) > oo_objects(s->max))
s->max = s->oo;
@@ -2349,6 +2395,10 @@ static int kmem_cache_open(struct kmem_cache *s,
s->objsize = size;
s->align = align;
s->flags = kmem_cache_flags(size, flags, name, ctor);
+ s->reserved = 0;
+
+ if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
+ s->reserved = sizeof(struct rcu_head);
if (!calculate_sizes(s, -1))
goto error;
@@ -2399,12 +2449,6 @@ unsigned int kmem_cache_size(struct kmem_cache *s)
}
EXPORT_SYMBOL(kmem_cache_size);
-const char *kmem_cache_name(struct kmem_cache *s)
-{
- return s->name;
-}
-EXPORT_SYMBOL(kmem_cache_name);
-
static void list_slab_objects(struct kmem_cache *s, struct page *page,
const char *text)
{
@@ -2696,7 +2740,6 @@ EXPORT_SYMBOL(__kmalloc_node);
size_t ksize(const void *object)
{
struct page *page;
- struct kmem_cache *s;
if (unlikely(object == ZERO_SIZE_PTR))
return 0;
@@ -2707,28 +2750,8 @@ size_t ksize(const void *object)
WARN_ON(!PageCompound(page));
return PAGE_SIZE << compound_order(page);
}
- s = page->slab;
-
-#ifdef CONFIG_SLUB_DEBUG
- /*
- * Debugging requires use of the padding between object
- * and whatever may come after it.
- */
- if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
- return s->objsize;
-#endif
- /*
- * If we have the need to store the freelist pointer
- * back there or track user information then we can
- * only use the space before that information.
- */
- if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
- return s->inuse;
- /*
- * Else we can use all the padding etc for the allocation
- */
- return s->size;
+ return slab_ksize(page->slab);
}
EXPORT_SYMBOL(ksize);
@@ -4017,6 +4040,12 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
}
SLAB_ATTR_RO(destroy_by_rcu);
+static ssize_t reserved_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", s->reserved);
+}
+SLAB_ATTR_RO(reserved);
+
#ifdef CONFIG_SLUB_DEBUG
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
@@ -4303,6 +4332,7 @@ static struct attribute *slab_attrs[] = {
&reclaim_account_attr.attr,
&destroy_by_rcu_attr.attr,
&shrink_attr.attr,
+ &reserved_attr.attr,
#ifdef CONFIG_SLUB_DEBUG
&total_objects_attr.attr,
&slabs_attr.attr,
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 07a458d72fa8..0341c5700e34 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -1940,7 +1940,7 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
error = -EINVAL;
if (S_ISBLK(inode->i_mode)) {
- bdev = I_BDEV(inode);
+ bdev = bdgrab(I_BDEV(inode));
error = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL,
sys_swapon);
if (error < 0) {
diff --git a/mm/truncate.c b/mm/truncate.c
index 49feb46e77b8..d64296be00d3 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -225,6 +225,7 @@ void truncate_inode_pages_range(struct address_space *mapping,
next = start;
while (next <= end &&
pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
+ mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
pgoff_t page_index = page->index;
@@ -247,6 +248,7 @@ void truncate_inode_pages_range(struct address_space *mapping,
unlock_page(page);
}
pagevec_release(&pvec);
+ mem_cgroup_uncharge_end();
cond_resched();
}
diff --git a/mm/vmscan.c b/mm/vmscan.c
index f5d90dedebba..6771ea70bfe7 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -1841,16 +1841,28 @@ static inline bool should_continue_reclaim(struct zone *zone,
if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
return false;
- /*
- * If we failed to reclaim and have scanned the full list, stop.
- * NOTE: Checking just nr_reclaimed would exit reclaim/compaction far
- * faster but obviously would be less likely to succeed
- * allocation. If this is desirable, use GFP_REPEAT to decide
- * if both reclaimed and scanned should be checked or just
- * reclaimed
- */
- if (!nr_reclaimed && !nr_scanned)
- return false;
+ /* Consider stopping depending on scan and reclaim activity */
+ if (sc->gfp_mask & __GFP_REPEAT) {
+ /*
+ * For __GFP_REPEAT allocations, stop reclaiming if the
+ * full LRU list has been scanned and we are still failing
+ * to reclaim pages. This full LRU scan is potentially
+ * expensive but a __GFP_REPEAT caller really wants to succeed
+ */
+ if (!nr_reclaimed && !nr_scanned)
+ return false;
+ } else {
+ /*
+ * For non-__GFP_REPEAT allocations which can presumably
+ * fail without consequence, stop if we failed to reclaim
+ * any pages from the last SWAP_CLUSTER_MAX number of
+ * pages that were scanned. This will return to the
+ * caller faster at the risk reclaim/compaction and
+ * the resulting allocation attempt fails
+ */
+ if (!nr_reclaimed)
+ return false;
+ }
/*
* If we have not reclaimed enough pages for compaction and the
@@ -1882,12 +1894,12 @@ static void shrink_zone(int priority, struct zone *zone,
unsigned long nr[NR_LRU_LISTS];
unsigned long nr_to_scan;
enum lru_list l;
- unsigned long nr_reclaimed;
+ unsigned long nr_reclaimed, nr_scanned;
unsigned long nr_to_reclaim = sc->nr_to_reclaim;
- unsigned long nr_scanned = sc->nr_scanned;
restart:
nr_reclaimed = 0;
+ nr_scanned = sc->nr_scanned;
get_scan_count(zone, sc, nr, priority);
while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
@@ -2083,7 +2095,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
struct zone *preferred_zone;
first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
- NULL, &preferred_zone);
+ &cpuset_current_mems_allowed,
+ &preferred_zone);
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
}
}