diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 2 | ||||
-rw-r--r-- | mm/filemap.c | 3 | ||||
-rw-r--r-- | mm/kasan/Makefile | 25 | ||||
-rw-r--r-- | mm/kasan/common.c | 822 | ||||
-rw-r--r-- | mm/kasan/generic.c | 72 | ||||
-rw-r--r-- | mm/kasan/generic_report.c | 165 | ||||
-rw-r--r-- | mm/kasan/hw_tags.c | 204 | ||||
-rw-r--r-- | mm/kasan/init.c | 17 | ||||
-rw-r--r-- | mm/kasan/kasan.h | 173 | ||||
-rw-r--r-- | mm/kasan/quarantine.c | 31 | ||||
-rw-r--r-- | mm/kasan/report.c | 317 | ||||
-rw-r--r-- | mm/kasan/report_generic.c | 327 | ||||
-rw-r--r-- | mm/kasan/report_hw_tags.c | 42 | ||||
-rw-r--r-- | mm/kasan/report_sw_tags.c (renamed from mm/kasan/tags_report.c) | 29 | ||||
-rw-r--r-- | mm/kasan/shadow.c | 504 | ||||
-rw-r--r-- | mm/kasan/sw_tags.c (renamed from mm/kasan/tags.c) | 39 | ||||
-rw-r--r-- | mm/memcontrol.c | 51 | ||||
-rw-r--r-- | mm/memory_hotplug.c | 105 | ||||
-rw-r--r-- | mm/mempool.c | 4 | ||||
-rw-r--r-- | mm/mmap.c | 2 | ||||
-rw-r--r-- | mm/page_alloc.c | 9 | ||||
-rw-r--r-- | mm/page_poison.c | 2 | ||||
-rw-r--r-- | mm/ptdump.c | 13 | ||||
-rw-r--r-- | mm/slab_common.c | 5 | ||||
-rw-r--r-- | mm/slub.c | 29 | ||||
-rw-r--r-- | mm/util.c | 12 |
26 files changed, 1759 insertions, 1245 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index 4275c25b5d8a..f730605b8dcf 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -713,7 +713,7 @@ config ZSMALLOC_STAT select DEBUG_FS help This option enables code in the zsmalloc to collect various - statistics about whats happening in zsmalloc and exports that + statistics about what's happening in zsmalloc and exports that information to userspace via debugfs. If unsure, say N. diff --git a/mm/filemap.c b/mm/filemap.c index 7a49bac48aea..5c9d564317a5 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -2453,6 +2453,9 @@ ssize_t generic_file_buffered_read(struct kiocb *iocb, if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) return 0; + if (unlikely(!iov_iter_count(iter))) + return 0; + iov_iter_truncate(iter, inode->i_sb->s_maxbytes); if (nr_pages > ARRAY_SIZE(pages_onstack)) diff --git a/mm/kasan/Makefile b/mm/kasan/Makefile index 370d970e5ab5..9fe39a66388a 100644 --- a/mm/kasan/Makefile +++ b/mm/kasan/Makefile @@ -6,12 +6,15 @@ KCOV_INSTRUMENT := n # Disable ftrace to avoid recursion. CFLAGS_REMOVE_common.o = $(CC_FLAGS_FTRACE) CFLAGS_REMOVE_generic.o = $(CC_FLAGS_FTRACE) -CFLAGS_REMOVE_generic_report.o = $(CC_FLAGS_FTRACE) CFLAGS_REMOVE_init.o = $(CC_FLAGS_FTRACE) CFLAGS_REMOVE_quarantine.o = $(CC_FLAGS_FTRACE) CFLAGS_REMOVE_report.o = $(CC_FLAGS_FTRACE) -CFLAGS_REMOVE_tags.o = $(CC_FLAGS_FTRACE) -CFLAGS_REMOVE_tags_report.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_report_generic.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_report_hw_tags.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_report_sw_tags.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_shadow.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_hw_tags.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_sw_tags.o = $(CC_FLAGS_FTRACE) # Function splitter causes unnecessary splits in __asan_load1/__asan_store1 # see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63533 @@ -22,13 +25,17 @@ CC_FLAGS_KASAN_RUNTIME += -DDISABLE_BRANCH_PROFILING CFLAGS_common.o := $(CC_FLAGS_KASAN_RUNTIME) CFLAGS_generic.o := $(CC_FLAGS_KASAN_RUNTIME) -CFLAGS_generic_report.o := $(CC_FLAGS_KASAN_RUNTIME) CFLAGS_init.o := $(CC_FLAGS_KASAN_RUNTIME) CFLAGS_quarantine.o := $(CC_FLAGS_KASAN_RUNTIME) CFLAGS_report.o := $(CC_FLAGS_KASAN_RUNTIME) -CFLAGS_tags.o := $(CC_FLAGS_KASAN_RUNTIME) -CFLAGS_tags_report.o := $(CC_FLAGS_KASAN_RUNTIME) +CFLAGS_report_generic.o := $(CC_FLAGS_KASAN_RUNTIME) +CFLAGS_report_hw_tags.o := $(CC_FLAGS_KASAN_RUNTIME) +CFLAGS_report_sw_tags.o := $(CC_FLAGS_KASAN_RUNTIME) +CFLAGS_shadow.o := $(CC_FLAGS_KASAN_RUNTIME) +CFLAGS_hw_tags.o := $(CC_FLAGS_KASAN_RUNTIME) +CFLAGS_sw_tags.o := $(CC_FLAGS_KASAN_RUNTIME) -obj-$(CONFIG_KASAN) := common.o init.o report.o -obj-$(CONFIG_KASAN_GENERIC) += generic.o generic_report.o quarantine.o -obj-$(CONFIG_KASAN_SW_TAGS) += tags.o tags_report.o +obj-$(CONFIG_KASAN) := common.o report.o +obj-$(CONFIG_KASAN_GENERIC) += init.o generic.o report_generic.o shadow.o quarantine.o +obj-$(CONFIG_KASAN_HW_TAGS) += hw_tags.o report_hw_tags.o +obj-$(CONFIG_KASAN_SW_TAGS) += init.o report_sw_tags.o shadow.o sw_tags.o diff --git a/mm/kasan/common.c b/mm/kasan/common.c index 950fd372a07e..b25167664ead 100644 --- a/mm/kasan/common.c +++ b/mm/kasan/common.c @@ -1,24 +1,18 @@ // SPDX-License-Identifier: GPL-2.0 /* - * This file contains common generic and tag-based KASAN code. + * This file contains common KASAN code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <andreyknvl@gmail.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * */ #include <linux/export.h> #include <linux/init.h> #include <linux/kasan.h> #include <linux/kernel.h> -#include <linux/kmemleak.h> #include <linux/linkage.h> #include <linux/memblock.h> #include <linux/memory.h> @@ -31,12 +25,8 @@ #include <linux/stacktrace.h> #include <linux/string.h> #include <linux/types.h> -#include <linux/vmalloc.h> #include <linux/bug.h> -#include <asm/cacheflush.h> -#include <asm/tlbflush.h> - #include "kasan.h" #include "../slab.h" @@ -56,6 +46,7 @@ void kasan_set_track(struct kasan_track *track, gfp_t flags) track->stack = kasan_save_stack(flags); } +#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) void kasan_enable_current(void) { current->kasan_depth++; @@ -65,106 +56,20 @@ void kasan_disable_current(void) { current->kasan_depth--; } +#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ -bool __kasan_check_read(const volatile void *p, unsigned int size) -{ - return check_memory_region((unsigned long)p, size, false, _RET_IP_); -} -EXPORT_SYMBOL(__kasan_check_read); - -bool __kasan_check_write(const volatile void *p, unsigned int size) -{ - return check_memory_region((unsigned long)p, size, true, _RET_IP_); -} -EXPORT_SYMBOL(__kasan_check_write); - -#undef memset -void *memset(void *addr, int c, size_t len) -{ - if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_)) - return NULL; - - return __memset(addr, c, len); -} - -#ifdef __HAVE_ARCH_MEMMOVE -#undef memmove -void *memmove(void *dest, const void *src, size_t len) -{ - if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || - !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) - return NULL; - - return __memmove(dest, src, len); -} -#endif - -#undef memcpy -void *memcpy(void *dest, const void *src, size_t len) +void __kasan_unpoison_range(const void *address, size_t size) { - if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || - !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) - return NULL; - - return __memcpy(dest, src, len); -} - -/* - * Poisons the shadow memory for 'size' bytes starting from 'addr'. - * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. - */ -void kasan_poison_shadow(const void *address, size_t size, u8 value) -{ - void *shadow_start, *shadow_end; - - /* - * Perform shadow offset calculation based on untagged address, as - * some of the callers (e.g. kasan_poison_object_data) pass tagged - * addresses to this function. - */ - address = reset_tag(address); - - shadow_start = kasan_mem_to_shadow(address); - shadow_end = kasan_mem_to_shadow(address + size); - - __memset(shadow_start, value, shadow_end - shadow_start); -} - -void kasan_unpoison_shadow(const void *address, size_t size) -{ - u8 tag = get_tag(address); - - /* - * Perform shadow offset calculation based on untagged address, as - * some of the callers (e.g. kasan_unpoison_object_data) pass tagged - * addresses to this function. - */ - address = reset_tag(address); - - kasan_poison_shadow(address, size, tag); - - if (size & KASAN_SHADOW_MASK) { - u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); - - if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) - *shadow = tag; - else - *shadow = size & KASAN_SHADOW_MASK; - } -} - -static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) -{ - void *base = task_stack_page(task); - size_t size = sp - base; - - kasan_unpoison_shadow(base, size); + unpoison_range(address, size); } +#if CONFIG_KASAN_STACK /* Unpoison the entire stack for a task. */ void kasan_unpoison_task_stack(struct task_struct *task) { - __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); + void *base = task_stack_page(task); + + unpoison_range(base, THREAD_SIZE); } /* Unpoison the stack for the current task beyond a watermark sp value. */ @@ -177,10 +82,22 @@ asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) */ void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); - kasan_unpoison_shadow(base, watermark - base); + unpoison_range(base, watermark - base); +} +#endif /* CONFIG_KASAN_STACK */ + +/* + * Only allow cache merging when stack collection is disabled and no metadata + * is present. + */ +slab_flags_t __kasan_never_merge(void) +{ + if (kasan_stack_collection_enabled()) + return SLAB_KASAN; + return 0; } -void kasan_alloc_pages(struct page *page, unsigned int order) +void __kasan_alloc_pages(struct page *page, unsigned int order) { u8 tag; unsigned long i; @@ -191,13 +108,13 @@ void kasan_alloc_pages(struct page *page, unsigned int order) tag = random_tag(); for (i = 0; i < (1 << order); i++) page_kasan_tag_set(page + i, tag); - kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); + unpoison_range(page_address(page), PAGE_SIZE << order); } -void kasan_free_pages(struct page *page, unsigned int order) +void __kasan_free_pages(struct page *page, unsigned int order) { if (likely(!PageHighMem(page))) - kasan_poison_shadow(page_address(page), + poison_range(page_address(page), PAGE_SIZE << order, KASAN_FREE_PAGE); } @@ -208,9 +125,6 @@ void kasan_free_pages(struct page *page, unsigned int order) */ static inline unsigned int optimal_redzone(unsigned int object_size) { - if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) - return 0; - return object_size <= 64 - 16 ? 16 : object_size <= 128 - 32 ? 32 : @@ -221,88 +135,129 @@ static inline unsigned int optimal_redzone(unsigned int object_size) object_size <= (1 << 16) - 1024 ? 1024 : 2048; } -void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, - slab_flags_t *flags) +void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, + slab_flags_t *flags) { - unsigned int orig_size = *size; - unsigned int redzone_size; - int redzone_adjust; + unsigned int ok_size; + unsigned int optimal_size; - /* Add alloc meta. */ - cache->kasan_info.alloc_meta_offset = *size; - *size += sizeof(struct kasan_alloc_meta); + /* + * SLAB_KASAN is used to mark caches as ones that are sanitized by + * KASAN. Currently this flag is used in two places: + * 1. In slab_ksize() when calculating the size of the accessible + * memory within the object. + * 2. In slab_common.c to prevent merging of sanitized caches. + */ + *flags |= SLAB_KASAN; - /* Add free meta. */ - if (IS_ENABLED(CONFIG_KASAN_GENERIC) && - (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || - cache->object_size < sizeof(struct kasan_free_meta))) { - cache->kasan_info.free_meta_offset = *size; - *size += sizeof(struct kasan_free_meta); - } + if (!kasan_stack_collection_enabled()) + return; - redzone_size = optimal_redzone(cache->object_size); - redzone_adjust = redzone_size - (*size - cache->object_size); - if (redzone_adjust > 0) - *size += redzone_adjust; + ok_size = *size; - *size = min_t(unsigned int, KMALLOC_MAX_SIZE, - max(*size, cache->object_size + redzone_size)); + /* Add alloc meta into redzone. */ + cache->kasan_info.alloc_meta_offset = *size; + *size += sizeof(struct kasan_alloc_meta); /* - * If the metadata doesn't fit, don't enable KASAN at all. + * If alloc meta doesn't fit, don't add it. + * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal + * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for + * larger sizes. */ - if (*size <= cache->kasan_info.alloc_meta_offset || - *size <= cache->kasan_info.free_meta_offset) { + if (*size > KMALLOC_MAX_SIZE) { cache->kasan_info.alloc_meta_offset = 0; - cache->kasan_info.free_meta_offset = 0; - *size = orig_size; + *size = ok_size; + /* Continue, since free meta might still fit. */ + } + + /* Only the generic mode uses free meta or flexible redzones. */ + if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) { + cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; return; } - *flags |= SLAB_KASAN; + /* + * Add free meta into redzone when it's not possible to store + * it in the object. This is the case when: + * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can + * be touched after it was freed, or + * 2. Object has a constructor, which means it's expected to + * retain its content until the next allocation, or + * 3. Object is too small. + * Otherwise cache->kasan_info.free_meta_offset = 0 is implied. + */ + if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || + cache->object_size < sizeof(struct kasan_free_meta)) { + ok_size = *size; + + cache->kasan_info.free_meta_offset = *size; + *size += sizeof(struct kasan_free_meta); + + /* If free meta doesn't fit, don't add it. */ + if (*size > KMALLOC_MAX_SIZE) { + cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; + *size = ok_size; + } + } + + /* Calculate size with optimal redzone. */ + optimal_size = cache->object_size + optimal_redzone(cache->object_size); + /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */ + if (optimal_size > KMALLOC_MAX_SIZE) + optimal_size = KMALLOC_MAX_SIZE; + /* Use optimal size if the size with added metas is not large enough. */ + if (*size < optimal_size) + *size = optimal_size; } -size_t kasan_metadata_size(struct kmem_cache *cache) +size_t __kasan_metadata_size(struct kmem_cache *cache) { + if (!kasan_stack_collection_enabled()) + return 0; return (cache->kasan_info.alloc_meta_offset ? sizeof(struct kasan_alloc_meta) : 0) + (cache->kasan_info.free_meta_offset ? sizeof(struct kasan_free_meta) : 0); } -struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, - const void *object) +struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, + const void *object) { - return (void *)object + cache->kasan_info.alloc_meta_offset; + if (!cache->kasan_info.alloc_meta_offset) + return NULL; + return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset; } -struct kasan_free_meta *get_free_info(struct kmem_cache *cache, - const void *object) +#ifdef CONFIG_KASAN_GENERIC +struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, + const void *object) { BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); - return (void *)object + cache->kasan_info.free_meta_offset; + if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) + return NULL; + return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset; } +#endif -void kasan_poison_slab(struct page *page) +void __kasan_poison_slab(struct page *page) { unsigned long i; for (i = 0; i < compound_nr(page); i++) page_kasan_tag_reset(page + i); - kasan_poison_shadow(page_address(page), page_size(page), - KASAN_KMALLOC_REDZONE); + poison_range(page_address(page), page_size(page), + KASAN_KMALLOC_REDZONE); } -void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) +void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) { - kasan_unpoison_shadow(object, cache->object_size); + unpoison_range(object, cache->object_size); } -void kasan_poison_object_data(struct kmem_cache *cache, void *object) +void __kasan_poison_object_data(struct kmem_cache *cache, void *object) { - kasan_poison_shadow(object, - round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), - KASAN_KMALLOC_REDZONE); + poison_range(object, cache->object_size, KASAN_KMALLOC_REDZONE); } /* @@ -322,6 +277,9 @@ void kasan_poison_object_data(struct kmem_cache *cache, void *object) static u8 assign_tag(struct kmem_cache *cache, const void *object, bool init, bool keep_tag) { + if (IS_ENABLED(CONFIG_KASAN_GENERIC)) + return 0xff; + /* * 1. When an object is kmalloc()'ed, two hooks are called: * kasan_slab_alloc() and kasan_kmalloc(). We assign the @@ -351,50 +309,32 @@ static u8 assign_tag(struct kmem_cache *cache, const void *object, #endif } -void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, +void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { - struct kasan_alloc_meta *alloc_info; + struct kasan_alloc_meta *alloc_meta; - if (!(cache->flags & SLAB_KASAN)) - return (void *)object; - - alloc_info = get_alloc_info(cache, object); - __memset(alloc_info, 0, sizeof(*alloc_info)); + if (kasan_stack_collection_enabled()) { + alloc_meta = kasan_get_alloc_meta(cache, object); + if (alloc_meta) + __memset(alloc_meta, 0, sizeof(*alloc_meta)); + } - if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) - object = set_tag(object, - assign_tag(cache, object, true, false)); + /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ + object = set_tag(object, assign_tag(cache, object, true, false)); return (void *)object; } -static inline bool shadow_invalid(u8 tag, s8 shadow_byte) -{ - if (IS_ENABLED(CONFIG_KASAN_GENERIC)) - return shadow_byte < 0 || - shadow_byte >= KASAN_SHADOW_SCALE_SIZE; - - /* else CONFIG_KASAN_SW_TAGS: */ - if ((u8)shadow_byte == KASAN_TAG_INVALID) - return true; - if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte)) - return true; - - return false; -} - -static bool __kasan_slab_free(struct kmem_cache *cache, void *object, +static bool ____kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip, bool quarantine) { - s8 shadow_byte; u8 tag; void *tagged_object; - unsigned long rounded_up_size; tag = get_tag(object); tagged_object = object; - object = reset_tag(object); + object = kasan_reset_tag(object); if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != object)) { @@ -406,37 +346,67 @@ static bool __kasan_slab_free(struct kmem_cache *cache, void *object, if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) return false; - shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); - if (shadow_invalid(tag, shadow_byte)) { + if (check_invalid_free(tagged_object)) { kasan_report_invalid_free(tagged_object, ip); return true; } - rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); - kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); + poison_range(object, cache->object_size, KASAN_KMALLOC_FREE); - if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || - unlikely(!(cache->flags & SLAB_KASAN))) + if (!kasan_stack_collection_enabled()) + return false; + + if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) return false; kasan_set_free_info(cache, object, tag); - quarantine_put(get_free_info(cache, object), cache); + return quarantine_put(cache, object); +} - return IS_ENABLED(CONFIG_KASAN_GENERIC); +bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) +{ + return ____kasan_slab_free(cache, object, ip, true); } -bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) +void __kasan_slab_free_mempool(void *ptr, unsigned long ip) { - return __kasan_slab_free(cache, object, ip, true); + struct page *page; + + page = virt_to_head_page(ptr); + + /* + * Even though this function is only called for kmem_cache_alloc and + * kmalloc backed mempool allocations, those allocations can still be + * !PageSlab() when the size provided to kmalloc is larger than + * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. + */ + if (unlikely(!PageSlab(page))) { + if (ptr != page_address(page)) { + kasan_report_invalid_free(ptr, ip); + return; + } + poison_range(ptr, page_size(page), KASAN_FREE_PAGE); + } else { + ____kasan_slab_free(page->slab_cache, ptr, ip, false); + } +} + +static void set_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags) +{ + struct kasan_alloc_meta *alloc_meta; + + alloc_meta = kasan_get_alloc_meta(cache, object); + if (alloc_meta) + kasan_set_track(&alloc_meta->alloc_track, flags); } -static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, +static void *____kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags, bool keep_tag) { unsigned long redzone_start; unsigned long redzone_end; - u8 tag = 0xff; + u8 tag; if (gfpflags_allow_blocking(flags)) quarantine_reduce(); @@ -445,38 +415,36 @@ static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, return NULL; redzone_start = round_up((unsigned long)(object + size), - KASAN_SHADOW_SCALE_SIZE); + KASAN_GRANULE_SIZE); redzone_end = round_up((unsigned long)object + cache->object_size, - KASAN_SHADOW_SCALE_SIZE); - - if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) - tag = assign_tag(cache, object, false, keep_tag); + KASAN_GRANULE_SIZE); + tag = assign_tag(cache, object, false, keep_tag); - /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ - kasan_unpoison_shadow(set_tag(object, tag), size); - kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, - KASAN_KMALLOC_REDZONE); + /* Tag is ignored in set_tag without CONFIG_KASAN_SW/HW_TAGS */ + unpoison_range(set_tag(object, tag), size); + poison_range((void *)redzone_start, redzone_end - redzone_start, + KASAN_KMALLOC_REDZONE); - if (cache->flags & SLAB_KASAN) - kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags); + if (kasan_stack_collection_enabled()) + set_alloc_info(cache, (void *)object, flags); return set_tag(object, tag); } -void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, - gfp_t flags) +void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, + void *object, gfp_t flags) { - return __kasan_kmalloc(cache, object, cache->object_size, flags, false); + return ____kasan_kmalloc(cache, object, cache->object_size, flags, false); } -void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, - size_t size, gfp_t flags) +void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, + size_t size, gfp_t flags) { - return __kasan_kmalloc(cache, object, size, flags, true); + return ____kasan_kmalloc(cache, object, size, flags, true); } -EXPORT_SYMBOL(kasan_kmalloc); +EXPORT_SYMBOL(__kasan_kmalloc); -void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, +void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) { struct page *page; @@ -491,17 +459,17 @@ void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, page = virt_to_page(ptr); redzone_start = round_up((unsigned long)(ptr + size), - KASAN_SHADOW_SCALE_SIZE); + KASAN_GRANULE_SIZE); redzone_end = (unsigned long)ptr + page_size(page); - kasan_unpoison_shadow(ptr, size); - kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, - KASAN_PAGE_REDZONE); + unpoison_range(ptr, size); + poison_range((void *)redzone_start, redzone_end - redzone_start, + KASAN_PAGE_REDZONE); return (void *)ptr; } -void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) +void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) { struct page *page; @@ -511,421 +479,15 @@ void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) page = virt_to_head_page(object); if (unlikely(!PageSlab(page))) - return kasan_kmalloc_large(object, size, flags); + return __kasan_kmalloc_large(object, size, flags); else - return __kasan_kmalloc(page->slab_cache, object, size, + return ____kasan_kmalloc(page->slab_cache, object, size, flags, true); } -void kasan_poison_kfree(void *ptr, unsigned long ip) -{ - struct page *page; - - page = virt_to_head_page(ptr); - - if (unlikely(!PageSlab(page))) { - if (ptr != page_address(page)) { - kasan_report_invalid_free(ptr, ip); - return; - } - kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE); - } else { - __kasan_slab_free(page->slab_cache, ptr, ip, false); - } -} - -void kasan_kfree_large(void *ptr, unsigned long ip) +void __kasan_kfree_large(void *ptr, unsigned long ip) { if (ptr != page_address(virt_to_head_page(ptr))) kasan_report_invalid_free(ptr, ip); - /* The object will be poisoned by page_alloc. */ -} - -#ifndef CONFIG_KASAN_VMALLOC -int kasan_module_alloc(void *addr, size_t size) -{ - void *ret; - size_t scaled_size; - size_t shadow_size; - unsigned long shadow_start; - - shadow_start = (unsigned long)kasan_mem_to_shadow(addr); - scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; - shadow_size = round_up(scaled_size, PAGE_SIZE); - - if (WARN_ON(!PAGE_ALIGNED(shadow_start))) - return -EINVAL; - - ret = __vmalloc_node_range(shadow_size, 1, shadow_start, - shadow_start + shadow_size, - GFP_KERNEL, - PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, - __builtin_return_address(0)); - - if (ret) { - __memset(ret, KASAN_SHADOW_INIT, shadow_size); - find_vm_area(addr)->flags |= VM_KASAN; - kmemleak_ignore(ret); - return 0; - } - - return -ENOMEM; -} - -void kasan_free_shadow(const struct vm_struct *vm) -{ - if (vm->flags & VM_KASAN) - vfree(kasan_mem_to_shadow(vm->addr)); -} -#endif - -#ifdef CONFIG_MEMORY_HOTPLUG -static bool shadow_mapped(unsigned long addr) -{ - pgd_t *pgd = pgd_offset_k(addr); - p4d_t *p4d; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - if (pgd_none(*pgd)) - return false; - p4d = p4d_offset(pgd, addr); - if (p4d_none(*p4d)) - return false; - pud = pud_offset(p4d, addr); - if (pud_none(*pud)) - return false; - - /* - * We can't use pud_large() or pud_huge(), the first one is - * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse - * pud_bad(), if pud is bad then it's bad because it's huge. - */ - if (pud_bad(*pud)) - return true; - pmd = pmd_offset(pud, addr); - if (pmd_none(*pmd)) - return false; - - if (pmd_bad(*pmd)) - return true; - pte = pte_offset_kernel(pmd, addr); - return !pte_none(*pte); -} - -static int __meminit kasan_mem_notifier(struct notifier_block *nb, - unsigned long action, void *data) -{ - struct memory_notify *mem_data = data; - unsigned long nr_shadow_pages, start_kaddr, shadow_start; - unsigned long shadow_end, shadow_size; - - nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; - start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); - shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); - shadow_size = nr_shadow_pages << PAGE_SHIFT; - shadow_end = shadow_start + shadow_size; - - if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || - WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) - return NOTIFY_BAD; - - switch (action) { - case MEM_GOING_ONLINE: { - void *ret; - - /* - * If shadow is mapped already than it must have been mapped - * during the boot. This could happen if we onlining previously - * offlined memory. - */ - if (shadow_mapped(shadow_start)) - return NOTIFY_OK; - - ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, - shadow_end, GFP_KERNEL, - PAGE_KERNEL, VM_NO_GUARD, - pfn_to_nid(mem_data->start_pfn), - __builtin_return_address(0)); - if (!ret) - return NOTIFY_BAD; - - kmemleak_ignore(ret); - return NOTIFY_OK; - } - case MEM_CANCEL_ONLINE: - case MEM_OFFLINE: { - struct vm_struct *vm; - - /* - * shadow_start was either mapped during boot by kasan_init() - * or during memory online by __vmalloc_node_range(). - * In the latter case we can use vfree() to free shadow. - * Non-NULL result of the find_vm_area() will tell us if - * that was the second case. - * - * Currently it's not possible to free shadow mapped - * during boot by kasan_init(). It's because the code - * to do that hasn't been written yet. So we'll just - * leak the memory. - */ - vm = find_vm_area((void *)shadow_start); - if (vm) - vfree((void *)shadow_start); - } - } - - return NOTIFY_OK; -} - -static int __init kasan_memhotplug_init(void) -{ - hotplug_memory_notifier(kasan_mem_notifier, 0); - - return 0; -} - -core_initcall(kasan_memhotplug_init); -#endif - -#ifdef CONFIG_KASAN_VMALLOC -static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, - void *unused) -{ - unsigned long page; - pte_t pte; - - if (likely(!pte_none(*ptep))) - return 0; - - page = __get_free_page(GFP_KERNEL); - if (!page) - return -ENOMEM; - - memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); - pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); - - spin_lock(&init_mm.page_table_lock); - if (likely(pte_none(*ptep))) { - set_pte_at(&init_mm, addr, ptep, pte); - page = 0; - } - spin_unlock(&init_mm.page_table_lock); - if (page) - free_page(page); - return 0; -} - -int kasan_populate_vmalloc(unsigned long addr, unsigned long size) -{ - unsigned long shadow_start, shadow_end; - int ret; - - if (!is_vmalloc_or_module_addr((void *)addr)) - return 0; - - shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); - shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); - shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); - shadow_end = ALIGN(shadow_end, PAGE_SIZE); - - ret = apply_to_page_range(&init_mm, shadow_start, - shadow_end - shadow_start, - kasan_populate_vmalloc_pte, NULL); - if (ret) - return ret; - - flush_cache_vmap(shadow_start, shadow_end); - - /* - * We need to be careful about inter-cpu effects here. Consider: - * - * CPU#0 CPU#1 - * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; - * p[99] = 1; - * - * With compiler instrumentation, that ends up looking like this: - * - * CPU#0 CPU#1 - * // vmalloc() allocates memory - * // let a = area->addr - * // we reach kasan_populate_vmalloc - * // and call kasan_unpoison_shadow: - * STORE shadow(a), unpoison_val - * ... - * STORE shadow(a+99), unpoison_val x = LOAD p - * // rest of vmalloc process <data dependency> - * STORE p, a LOAD shadow(x+99) - * - * If there is no barrier between the end of unpoisioning the shadow - * and the store of the result to p, the stores could be committed - * in a different order by CPU#0, and CPU#1 could erroneously observe - * poison in the shadow. - * - * We need some sort of barrier between the stores. - * - * In the vmalloc() case, this is provided by a smp_wmb() in - * clear_vm_uninitialized_flag(). In the per-cpu allocator and in - * get_vm_area() and friends, the caller gets shadow allocated but - * doesn't have any pages mapped into the virtual address space that - * has been reserved. Mapping those pages in will involve taking and - * releasing a page-table lock, which will provide the barrier. - */ - - return 0; -} - -/* - * Poison the shadow for a vmalloc region. Called as part of the - * freeing process at the time the region is freed. - */ -void kasan_poison_vmalloc(const void *start, unsigned long size) -{ - if (!is_vmalloc_or_module_addr(start)) - return; - - size = round_up(size, KASAN_SHADOW_SCALE_SIZE); - kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID); -} - -void kasan_unpoison_vmalloc(const void *start, unsigned long size) -{ - if (!is_vmalloc_or_module_addr(start)) - return; - - kasan_unpoison_shadow(start, size); + /* The object will be poisoned by kasan_free_pages(). */ } - -static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, - void *unused) -{ - unsigned long page; - - page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); - - spin_lock(&init_mm.page_table_lock); - - if (likely(!pte_none(*ptep))) { - pte_clear(&init_mm, addr, ptep); - free_page(page); - } - spin_unlock(&init_mm.page_table_lock); - - return 0; -} - -/* - * Release the backing for the vmalloc region [start, end), which - * lies within the free region [free_region_start, free_region_end). - * - * This can be run lazily, long after the region was freed. It runs - * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap - * infrastructure. - * - * How does this work? - * ------------------- - * - * We have a region that is page aligned, labelled as A. - * That might not map onto the shadow in a way that is page-aligned: - * - * start end - * v v - * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc - * -------- -------- -------- -------- -------- - * | | | | | - * | | | /-------/ | - * \-------\|/------/ |/---------------/ - * ||| || - * |??AAAAAA|AAAAAAAA|AA??????| < shadow - * (1) (2) (3) - * - * First we align the start upwards and the end downwards, so that the - * shadow of the region aligns with shadow page boundaries. In the - * example, this gives us the shadow page (2). This is the shadow entirely - * covered by this allocation. - * - * Then we have the tricky bits. We want to know if we can free the - * partially covered shadow pages - (1) and (3) in the example. For this, - * we are given the start and end of the free region that contains this - * allocation. Extending our previous example, we could have: - * - * free_region_start free_region_end - * | start end | - * v v v v - * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc - * -------- -------- -------- -------- -------- - * | | | | | - * | | | /-------/ | - * \-------\|/------/ |/---------------/ - * ||| || - * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow - * (1) (2) (3) - * - * Once again, we align the start of the free region up, and the end of - * the free region down so that the shadow is page aligned. So we can free - * page (1) - we know no allocation currently uses anything in that page, - * because all of it is in the vmalloc free region. But we cannot free - * page (3), because we can't be sure that the rest of it is unused. - * - * We only consider pages that contain part of the original region for - * freeing: we don't try to free other pages from the free region or we'd - * end up trying to free huge chunks of virtual address space. - * - * Concurrency - * ----------- - * - * How do we know that we're not freeing a page that is simultaneously - * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? - * - * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running - * at the same time. While we run under free_vmap_area_lock, the population - * code does not. - * - * free_vmap_area_lock instead operates to ensure that the larger range - * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and - * the per-cpu region-finding algorithm both run under free_vmap_area_lock, - * no space identified as free will become used while we are running. This - * means that so long as we are careful with alignment and only free shadow - * pages entirely covered by the free region, we will not run in to any - * trouble - any simultaneous allocations will be for disjoint regions. - */ -void kasan_release_vmalloc(unsigned long start, unsigned long end, - unsigned long free_region_start, - unsigned long free_region_end) -{ - void *shadow_start, *shadow_end; - unsigned long region_start, region_end; - unsigned long size; - - region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); - region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); - - free_region_start = ALIGN(free_region_start, - PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); - - if (start != region_start && - free_region_start < region_start) - region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; - - free_region_end = ALIGN_DOWN(free_region_end, - PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); - - if (end != region_end && - free_region_end > region_end) - region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; - - shadow_start = kasan_mem_to_shadow((void *)region_start); - shadow_end = kasan_mem_to_shadow((void *)region_end); - - if (shadow_end > shadow_start) { - size = shadow_end - shadow_start; - apply_to_existing_page_range(&init_mm, - (unsigned long)shadow_start, - size, kasan_depopulate_vmalloc_pte, - NULL); - flush_tlb_kernel_range((unsigned long)shadow_start, - (unsigned long)shadow_end); - } -} -#endif diff --git a/mm/kasan/generic.c b/mm/kasan/generic.c index 30c0a5038b5c..1dd5a0f99372 100644 --- a/mm/kasan/generic.c +++ b/mm/kasan/generic.c @@ -7,15 +7,8 @@ * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <andreyknvl@gmail.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * */ -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - #include <linux/export.h> #include <linux/interrupt.h> #include <linux/init.h> @@ -51,7 +44,7 @@ static __always_inline bool memory_is_poisoned_1(unsigned long addr) s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr); if (unlikely(shadow_value)) { - s8 last_accessible_byte = addr & KASAN_SHADOW_MASK; + s8 last_accessible_byte = addr & KASAN_GRANULE_MASK; return unlikely(last_accessible_byte >= shadow_value); } @@ -67,7 +60,7 @@ static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr, * Access crosses 8(shadow size)-byte boundary. Such access maps * into 2 shadow bytes, so we need to check them both. */ - if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1)) + if (unlikely(((addr + size - 1) & KASAN_GRANULE_MASK) < size - 1)) return *shadow_addr || memory_is_poisoned_1(addr + size - 1); return memory_is_poisoned_1(addr + size - 1); @@ -78,7 +71,7 @@ static __always_inline bool memory_is_poisoned_16(unsigned long addr) u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr); /* Unaligned 16-bytes access maps into 3 shadow bytes. */ - if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE))) + if (unlikely(!IS_ALIGNED(addr, KASAN_GRANULE_SIZE))) return *shadow_addr || memory_is_poisoned_1(addr + 15); return *shadow_addr; @@ -139,7 +132,7 @@ static __always_inline bool memory_is_poisoned_n(unsigned long addr, s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte); if (unlikely(ret != (unsigned long)last_shadow || - ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow))) + ((long)(last_byte & KASAN_GRANULE_MASK) >= *last_shadow))) return true; } return false; @@ -192,6 +185,13 @@ bool check_memory_region(unsigned long addr, size_t size, bool write, return check_memory_region_inline(addr, size, write, ret_ip); } +bool check_invalid_free(void *addr) +{ + s8 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr)); + + return shadow_byte < 0 || shadow_byte >= KASAN_GRANULE_SIZE; +} + void kasan_cache_shrink(struct kmem_cache *cache) { quarantine_remove_cache(cache); @@ -205,13 +205,13 @@ void kasan_cache_shutdown(struct kmem_cache *cache) static void register_global(struct kasan_global *global) { - size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE); + size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE); - kasan_unpoison_shadow(global->beg, global->size); + unpoison_range(global->beg, global->size); - kasan_poison_shadow(global->beg + aligned_size, - global->size_with_redzone - aligned_size, - KASAN_GLOBAL_REDZONE); + poison_range(global->beg + aligned_size, + global->size_with_redzone - aligned_size, + KASAN_GLOBAL_REDZONE); } void __asan_register_globals(struct kasan_global *globals, size_t size) @@ -279,10 +279,10 @@ EXPORT_SYMBOL(__asan_handle_no_return); /* Emitted by compiler to poison alloca()ed objects. */ void __asan_alloca_poison(unsigned long addr, size_t size) { - size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE); + size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE); size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) - rounded_up_size; - size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE); + size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE); const void *left_redzone = (const void *)(addr - KASAN_ALLOCA_REDZONE_SIZE); @@ -290,13 +290,12 @@ void __asan_alloca_poison(unsigned long addr, size_t size) WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE)); - kasan_unpoison_shadow((const void *)(addr + rounded_down_size), - size - rounded_down_size); - kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, - KASAN_ALLOCA_LEFT); - kasan_poison_shadow(right_redzone, - padding_size + KASAN_ALLOCA_REDZONE_SIZE, - KASAN_ALLOCA_RIGHT); + unpoison_range((const void *)(addr + rounded_down_size), + size - rounded_down_size); + poison_range(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, + KASAN_ALLOCA_LEFT); + poison_range(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE, + KASAN_ALLOCA_RIGHT); } EXPORT_SYMBOL(__asan_alloca_poison); @@ -306,7 +305,7 @@ void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom) if (unlikely(!stack_top || stack_top > stack_bottom)) return; - kasan_unpoison_shadow(stack_top, stack_bottom - stack_top); + unpoison_range(stack_top, stack_bottom - stack_top); } EXPORT_SYMBOL(__asan_allocas_unpoison); @@ -329,7 +328,7 @@ void kasan_record_aux_stack(void *addr) { struct page *page = kasan_addr_to_page(addr); struct kmem_cache *cache; - struct kasan_alloc_meta *alloc_info; + struct kasan_alloc_meta *alloc_meta; void *object; if (!(page && PageSlab(page))) @@ -337,10 +336,10 @@ void kasan_record_aux_stack(void *addr) cache = page->slab_cache; object = nearest_obj(cache, page, addr); - alloc_info = get_alloc_info(cache, object); + alloc_meta = kasan_get_alloc_meta(cache, object); - alloc_info->aux_stack[1] = alloc_info->aux_stack[0]; - alloc_info->aux_stack[0] = kasan_save_stack(GFP_NOWAIT); + alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0]; + alloc_meta->aux_stack[0] = kasan_save_stack(GFP_NOWAIT); } void kasan_set_free_info(struct kmem_cache *cache, @@ -348,12 +347,12 @@ void kasan_set_free_info(struct kmem_cache *cache, { struct kasan_free_meta *free_meta; - free_meta = get_free_info(cache, object); - kasan_set_track(&free_meta->free_track, GFP_NOWAIT); + free_meta = kasan_get_free_meta(cache, object); + if (!free_meta) + return; - /* - * the object was freed and has free track set - */ + kasan_set_track(&free_meta->free_track, GFP_NOWAIT); + /* The object was freed and has free track set. */ *(u8 *)kasan_mem_to_shadow(object) = KASAN_KMALLOC_FREETRACK; } @@ -362,5 +361,6 @@ struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, { if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_KMALLOC_FREETRACK) return NULL; - return &get_free_info(cache, object)->free_track; + /* Free meta must be present with KASAN_KMALLOC_FREETRACK. */ + return &kasan_get_free_meta(cache, object)->free_track; } diff --git a/mm/kasan/generic_report.c b/mm/kasan/generic_report.c deleted file mode 100644 index a38c7a9e192a..000000000000 --- a/mm/kasan/generic_report.c +++ /dev/null @@ -1,165 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * This file contains generic KASAN specific error reporting code. - * - * Copyright (c) 2014 Samsung Electronics Co., Ltd. - * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> - * - * Some code borrowed from https://github.com/xairy/kasan-prototype by - * Andrey Konovalov <andreyknvl@gmail.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include <linux/bitops.h> -#include <linux/ftrace.h> -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/printk.h> -#include <linux/sched.h> -#include <linux/slab.h> -#include <linux/stackdepot.h> -#include <linux/stacktrace.h> -#include <linux/string.h> -#include <linux/types.h> -#include <linux/kasan.h> -#include <linux/module.h> - -#include <asm/sections.h> - -#include "kasan.h" -#include "../slab.h" - -void *find_first_bad_addr(void *addr, size_t size) -{ - void *p = addr; - - while (p < addr + size && !(*(u8 *)kasan_mem_to_shadow(p))) - p += KASAN_SHADOW_SCALE_SIZE; - return p; -} - -static const char *get_shadow_bug_type(struct kasan_access_info *info) -{ - const char *bug_type = "unknown-crash"; - u8 *shadow_addr; - - shadow_addr = (u8 *)kasan_mem_to_shadow(info->first_bad_addr); - - /* - * If shadow byte value is in [0, KASAN_SHADOW_SCALE_SIZE) we can look - * at the next shadow byte to determine the type of the bad access. - */ - if (*shadow_addr > 0 && *shadow_addr <= KASAN_SHADOW_SCALE_SIZE - 1) - shadow_addr++; - - switch (*shadow_addr) { - case 0 ... KASAN_SHADOW_SCALE_SIZE - 1: - /* - * In theory it's still possible to see these shadow values - * due to a data race in the kernel code. - */ - bug_type = "out-of-bounds"; - break; - case KASAN_PAGE_REDZONE: - case KASAN_KMALLOC_REDZONE: - bug_type = "slab-out-of-bounds"; - break; - case KASAN_GLOBAL_REDZONE: - bug_type = "global-out-of-bounds"; - break; - case KASAN_STACK_LEFT: - case KASAN_STACK_MID: - case KASAN_STACK_RIGHT: - case KASAN_STACK_PARTIAL: - bug_type = "stack-out-of-bounds"; - break; - case KASAN_FREE_PAGE: - case KASAN_KMALLOC_FREE: - case KASAN_KMALLOC_FREETRACK: - bug_type = "use-after-free"; - break; - case KASAN_ALLOCA_LEFT: - case KASAN_ALLOCA_RIGHT: - bug_type = "alloca-out-of-bounds"; - break; - case KASAN_VMALLOC_INVALID: - bug_type = "vmalloc-out-of-bounds"; - break; - } - - return bug_type; -} - -static const char *get_wild_bug_type(struct kasan_access_info *info) -{ - const char *bug_type = "unknown-crash"; - - if ((unsigned long)info->access_addr < PAGE_SIZE) - bug_type = "null-ptr-deref"; - else if ((unsigned long)info->access_addr < TASK_SIZE) - bug_type = "user-memory-access"; - else - bug_type = "wild-memory-access"; - - return bug_type; -} - -const char *get_bug_type(struct kasan_access_info *info) -{ - /* - * If access_size is a negative number, then it has reason to be - * defined as out-of-bounds bug type. - * - * Casting negative numbers to size_t would indeed turn up as - * a large size_t and its value will be larger than ULONG_MAX/2, - * so that this can qualify as out-of-bounds. - */ - if (info->access_addr + info->access_size < info->access_addr) - return "out-of-bounds"; - - if (addr_has_shadow(info->access_addr)) - return get_shadow_bug_type(info); - return get_wild_bug_type(info); -} - -#define DEFINE_ASAN_REPORT_LOAD(size) \ -void __asan_report_load##size##_noabort(unsigned long addr) \ -{ \ - kasan_report(addr, size, false, _RET_IP_); \ -} \ -EXPORT_SYMBOL(__asan_report_load##size##_noabort) - -#define DEFINE_ASAN_REPORT_STORE(size) \ -void __asan_report_store##size##_noabort(unsigned long addr) \ -{ \ - kasan_report(addr, size, true, _RET_IP_); \ -} \ -EXPORT_SYMBOL(__asan_report_store##size##_noabort) - -DEFINE_ASAN_REPORT_LOAD(1); -DEFINE_ASAN_REPORT_LOAD(2); -DEFINE_ASAN_REPORT_LOAD(4); -DEFINE_ASAN_REPORT_LOAD(8); -DEFINE_ASAN_REPORT_LOAD(16); -DEFINE_ASAN_REPORT_STORE(1); -DEFINE_ASAN_REPORT_STORE(2); -DEFINE_ASAN_REPORT_STORE(4); -DEFINE_ASAN_REPORT_STORE(8); -DEFINE_ASAN_REPORT_STORE(16); - -void __asan_report_load_n_noabort(unsigned long addr, size_t size) -{ - kasan_report(addr, size, false, _RET_IP_); -} -EXPORT_SYMBOL(__asan_report_load_n_noabort); - -void __asan_report_store_n_noabort(unsigned long addr, size_t size) -{ - kasan_report(addr, size, true, _RET_IP_); -} -EXPORT_SYMBOL(__asan_report_store_n_noabort); diff --git a/mm/kasan/hw_tags.c b/mm/kasan/hw_tags.c new file mode 100644 index 000000000000..55bd6f09c70f --- /dev/null +++ b/mm/kasan/hw_tags.c @@ -0,0 +1,204 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This file contains core hardware tag-based KASAN code. + * + * Copyright (c) 2020 Google, Inc. + * Author: Andrey Konovalov <andreyknvl@google.com> + */ + +#define pr_fmt(fmt) "kasan: " fmt + +#include <linux/init.h> +#include <linux/kasan.h> +#include <linux/kernel.h> +#include <linux/memory.h> +#include <linux/mm.h> +#include <linux/static_key.h> +#include <linux/string.h> +#include <linux/types.h> + +#include "kasan.h" + +enum kasan_arg_mode { + KASAN_ARG_MODE_DEFAULT, + KASAN_ARG_MODE_OFF, + KASAN_ARG_MODE_PROD, + KASAN_ARG_MODE_FULL, +}; + +enum kasan_arg_stacktrace { + KASAN_ARG_STACKTRACE_DEFAULT, + KASAN_ARG_STACKTRACE_OFF, + KASAN_ARG_STACKTRACE_ON, +}; + +enum kasan_arg_fault { + KASAN_ARG_FAULT_DEFAULT, + KASAN_ARG_FAULT_REPORT, + KASAN_ARG_FAULT_PANIC, +}; + +static enum kasan_arg_mode kasan_arg_mode __ro_after_init; +static enum kasan_arg_stacktrace kasan_arg_stacktrace __ro_after_init; +static enum kasan_arg_fault kasan_arg_fault __ro_after_init; + +/* Whether KASAN is enabled at all. */ +DEFINE_STATIC_KEY_FALSE(kasan_flag_enabled); +EXPORT_SYMBOL(kasan_flag_enabled); + +/* Whether to collect alloc/free stack traces. */ +DEFINE_STATIC_KEY_FALSE(kasan_flag_stacktrace); + +/* Whether panic or disable tag checking on fault. */ +bool kasan_flag_panic __ro_after_init; + +/* kasan.mode=off/prod/full */ +static int __init early_kasan_mode(char *arg) +{ + if (!arg) + return -EINVAL; + + if (!strcmp(arg, "off")) + kasan_arg_mode = KASAN_ARG_MODE_OFF; + else if (!strcmp(arg, "prod")) + kasan_arg_mode = KASAN_ARG_MODE_PROD; + else if (!strcmp(arg, "full")) + kasan_arg_mode = KASAN_ARG_MODE_FULL; + else + return -EINVAL; + + return 0; +} +early_param("kasan.mode", early_kasan_mode); + +/* kasan.stack=off/on */ +static int __init early_kasan_flag_stacktrace(char *arg) +{ + if (!arg) + return -EINVAL; + + if (!strcmp(arg, "off")) + kasan_arg_stacktrace = KASAN_ARG_STACKTRACE_OFF; + else if (!strcmp(arg, "on")) + kasan_arg_stacktrace = KASAN_ARG_STACKTRACE_ON; + else + return -EINVAL; + + return 0; +} +early_param("kasan.stacktrace", early_kasan_flag_stacktrace); + +/* kasan.fault=report/panic */ +static int __init early_kasan_fault(char *arg) +{ + if (!arg) + return -EINVAL; + + if (!strcmp(arg, "report")) + kasan_arg_fault = KASAN_ARG_FAULT_REPORT; + else if (!strcmp(arg, "panic")) + kasan_arg_fault = KASAN_ARG_FAULT_PANIC; + else + return -EINVAL; + + return 0; +} +early_param("kasan.fault", early_kasan_fault); + +/* kasan_init_hw_tags_cpu() is called for each CPU. */ +void kasan_init_hw_tags_cpu(void) +{ + /* + * There's no need to check that the hardware is MTE-capable here, + * as this function is only called for MTE-capable hardware. + */ + + /* If KASAN is disabled, do nothing. */ + if (kasan_arg_mode == KASAN_ARG_MODE_OFF) + return; + + hw_init_tags(KASAN_TAG_MAX); + hw_enable_tagging(); +} + +/* kasan_init_hw_tags() is called once on boot CPU. */ +void __init kasan_init_hw_tags(void) +{ + /* If hardware doesn't support MTE, do nothing. */ + if (!system_supports_mte()) + return; + + /* Choose KASAN mode if kasan boot parameter is not provided. */ + if (kasan_arg_mode == KASAN_ARG_MODE_DEFAULT) { + if (IS_ENABLED(CONFIG_DEBUG_KERNEL)) + kasan_arg_mode = KASAN_ARG_MODE_FULL; + else + kasan_arg_mode = KASAN_ARG_MODE_PROD; + } + + /* Preset parameter values based on the mode. */ + switch (kasan_arg_mode) { + case KASAN_ARG_MODE_DEFAULT: + /* Shouldn't happen as per the check above. */ + WARN_ON(1); + return; + case KASAN_ARG_MODE_OFF: + /* If KASAN is disabled, do nothing. */ + return; + case KASAN_ARG_MODE_PROD: + static_branch_enable(&kasan_flag_enabled); + break; + case KASAN_ARG_MODE_FULL: + static_branch_enable(&kasan_flag_enabled); + static_branch_enable(&kasan_flag_stacktrace); + break; + } + + /* Now, optionally override the presets. */ + + switch (kasan_arg_stacktrace) { + case KASAN_ARG_STACKTRACE_DEFAULT: + break; + case KASAN_ARG_STACKTRACE_OFF: + static_branch_disable(&kasan_flag_stacktrace); + break; + case KASAN_ARG_STACKTRACE_ON: + static_branch_enable(&kasan_flag_stacktrace); + break; + } + + switch (kasan_arg_fault) { + case KASAN_ARG_FAULT_DEFAULT: + break; + case KASAN_ARG_FAULT_REPORT: + kasan_flag_panic = false; + break; + case KASAN_ARG_FAULT_PANIC: + kasan_flag_panic = true; + break; + } + + pr_info("KernelAddressSanitizer initialized\n"); +} + +void kasan_set_free_info(struct kmem_cache *cache, + void *object, u8 tag) +{ + struct kasan_alloc_meta *alloc_meta; + + alloc_meta = kasan_get_alloc_meta(cache, object); + if (alloc_meta) + kasan_set_track(&alloc_meta->free_track[0], GFP_NOWAIT); +} + +struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, + void *object, u8 tag) +{ + struct kasan_alloc_meta *alloc_meta; + + alloc_meta = kasan_get_alloc_meta(cache, object); + if (!alloc_meta) + return NULL; + + return &alloc_meta->free_track[0]; +} diff --git a/mm/kasan/init.c b/mm/kasan/init.c index fe6be0be1f76..bc0ad208b3a7 100644 --- a/mm/kasan/init.c +++ b/mm/kasan/init.c @@ -1,14 +1,9 @@ // SPDX-License-Identifier: GPL-2.0 /* - * This file contains some kasan initialization code. + * This file contains KASAN shadow initialization code. * * Copyright (c) 2015 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * */ #include <linux/memblock.h> @@ -446,9 +441,8 @@ void kasan_remove_zero_shadow(void *start, unsigned long size) addr = (unsigned long)kasan_mem_to_shadow(start); end = addr + (size >> KASAN_SHADOW_SCALE_SHIFT); - if (WARN_ON((unsigned long)start % - (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) || - WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE))) + if (WARN_ON((unsigned long)start % KASAN_MEMORY_PER_SHADOW_PAGE) || + WARN_ON(size % KASAN_MEMORY_PER_SHADOW_PAGE)) return; for (; addr < end; addr = next) { @@ -481,9 +475,8 @@ int kasan_add_zero_shadow(void *start, unsigned long size) shadow_start = kasan_mem_to_shadow(start); shadow_end = shadow_start + (size >> KASAN_SHADOW_SCALE_SHIFT); - if (WARN_ON((unsigned long)start % - (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) || - WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE))) + if (WARN_ON((unsigned long)start % KASAN_MEMORY_PER_SHADOW_PAGE) || + WARN_ON(size % KASAN_MEMORY_PER_SHADOW_PAGE)) return -EINVAL; ret = kasan_populate_early_shadow(shadow_start, shadow_end); diff --git a/mm/kasan/kasan.h b/mm/kasan/kasan.h index ac499456740f..cc4d9e1d49b1 100644 --- a/mm/kasan/kasan.h +++ b/mm/kasan/kasan.h @@ -5,8 +5,32 @@ #include <linux/kasan.h> #include <linux/stackdepot.h> -#define KASAN_SHADOW_SCALE_SIZE (1UL << KASAN_SHADOW_SCALE_SHIFT) -#define KASAN_SHADOW_MASK (KASAN_SHADOW_SCALE_SIZE - 1) +#ifdef CONFIG_KASAN_HW_TAGS +#include <linux/static_key.h> +DECLARE_STATIC_KEY_FALSE(kasan_flag_stacktrace); +static inline bool kasan_stack_collection_enabled(void) +{ + return static_branch_unlikely(&kasan_flag_stacktrace); +} +#else +static inline bool kasan_stack_collection_enabled(void) +{ + return true; +} +#endif + +extern bool kasan_flag_panic __ro_after_init; + +#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) +#define KASAN_GRANULE_SIZE (1UL << KASAN_SHADOW_SCALE_SHIFT) +#else +#include <asm/mte-kasan.h> +#define KASAN_GRANULE_SIZE MTE_GRANULE_SIZE +#endif + +#define KASAN_GRANULE_MASK (KASAN_GRANULE_SIZE - 1) + +#define KASAN_MEMORY_PER_SHADOW_PAGE (KASAN_GRANULE_SIZE << PAGE_SHIFT) #define KASAN_TAG_KERNEL 0xFF /* native kernel pointers tag */ #define KASAN_TAG_INVALID 0xFE /* inaccessible memory tag */ @@ -56,6 +80,13 @@ #define KASAN_ABI_VERSION 1 #endif +/* Metadata layout customization. */ +#define META_BYTES_PER_BLOCK 1 +#define META_BLOCKS_PER_ROW 16 +#define META_BYTES_PER_ROW (META_BLOCKS_PER_ROW * META_BYTES_PER_BLOCK) +#define META_MEM_BYTES_PER_ROW (META_BYTES_PER_ROW * KASAN_GRANULE_SIZE) +#define META_ROWS_AROUND_ADDR 2 + struct kasan_access_info { const void *access_addr; const void *first_bad_addr; @@ -124,20 +155,33 @@ struct kasan_alloc_meta { struct qlist_node { struct qlist_node *next; }; + +/* + * Generic mode either stores free meta in the object itself or in the redzone + * after the object. In the former case free meta offset is 0, in the latter + * case it has some sane value smaller than INT_MAX. Use INT_MAX as free meta + * offset when free meta isn't present. + */ +#define KASAN_NO_FREE_META INT_MAX + struct kasan_free_meta { +#ifdef CONFIG_KASAN_GENERIC /* This field is used while the object is in the quarantine. * Otherwise it might be used for the allocator freelist. */ struct qlist_node quarantine_link; -#ifdef CONFIG_KASAN_GENERIC struct kasan_track free_track; #endif }; -struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, - const void *object); -struct kasan_free_meta *get_free_info(struct kmem_cache *cache, - const void *object); +struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, + const void *object); +#ifdef CONFIG_KASAN_GENERIC +struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, + const void *object); +#endif + +#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) static inline const void *kasan_shadow_to_mem(const void *shadow_addr) { @@ -145,13 +189,11 @@ static inline const void *kasan_shadow_to_mem(const void *shadow_addr) << KASAN_SHADOW_SCALE_SHIFT); } -static inline bool addr_has_shadow(const void *addr) +static inline bool addr_has_metadata(const void *addr) { return (addr >= kasan_shadow_to_mem((void *)KASAN_SHADOW_START)); } -void kasan_poison_shadow(const void *address, size_t size, u8 value); - /** * check_memory_region - Check memory region, and report if invalid access. * @addr: the accessed address @@ -163,8 +205,30 @@ void kasan_poison_shadow(const void *address, size_t size, u8 value); bool check_memory_region(unsigned long addr, size_t size, bool write, unsigned long ret_ip); +#else /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ + +static inline bool addr_has_metadata(const void *addr) +{ + return true; +} + +#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ + +#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) +void print_tags(u8 addr_tag, const void *addr); +#else +static inline void print_tags(u8 addr_tag, const void *addr) { } +#endif + void *find_first_bad_addr(void *addr, size_t size); const char *get_bug_type(struct kasan_access_info *info); +void metadata_fetch_row(char *buffer, void *row); + +#if defined(CONFIG_KASAN_GENERIC) && CONFIG_KASAN_STACK +void print_address_stack_frame(const void *addr); +#else +static inline void print_address_stack_frame(const void *addr) { } +#endif bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); @@ -180,49 +244,92 @@ struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, #if defined(CONFIG_KASAN_GENERIC) && \ (defined(CONFIG_SLAB) || defined(CONFIG_SLUB)) -void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache); +bool quarantine_put(struct kmem_cache *cache, void *object); void quarantine_reduce(void); void quarantine_remove_cache(struct kmem_cache *cache); #else -static inline void quarantine_put(struct kasan_free_meta *info, - struct kmem_cache *cache) { } +static inline bool quarantine_put(struct kmem_cache *cache, void *object) { return false; } static inline void quarantine_reduce(void) { } static inline void quarantine_remove_cache(struct kmem_cache *cache) { } #endif -#ifdef CONFIG_KASAN_SW_TAGS +#ifndef arch_kasan_set_tag +static inline const void *arch_kasan_set_tag(const void *addr, u8 tag) +{ + return addr; +} +#endif +#ifndef arch_kasan_get_tag +#define arch_kasan_get_tag(addr) 0 +#endif -void print_tags(u8 addr_tag, const void *addr); +#define set_tag(addr, tag) ((void *)arch_kasan_set_tag((addr), (tag))) +#define get_tag(addr) arch_kasan_get_tag(addr) -u8 random_tag(void); +#ifdef CONFIG_KASAN_HW_TAGS + +#ifndef arch_enable_tagging +#define arch_enable_tagging() +#endif +#ifndef arch_init_tags +#define arch_init_tags(max_tag) +#endif +#ifndef arch_get_random_tag +#define arch_get_random_tag() (0xFF) +#endif +#ifndef arch_get_mem_tag +#define arch_get_mem_tag(addr) (0xFF) +#endif +#ifndef arch_set_mem_tag_range +#define arch_set_mem_tag_range(addr, size, tag) ((void *)(addr)) +#endif + +#define hw_enable_tagging() arch_enable_tagging() +#define hw_init_tags(max_tag) arch_init_tags(max_tag) +#define hw_get_random_tag() arch_get_random_tag() +#define hw_get_mem_tag(addr) arch_get_mem_tag(addr) +#define hw_set_mem_tag_range(addr, size, tag) arch_set_mem_tag_range((addr), (size), (tag)) +#endif /* CONFIG_KASAN_HW_TAGS */ + +#ifdef CONFIG_KASAN_SW_TAGS +u8 random_tag(void); +#elif defined(CONFIG_KASAN_HW_TAGS) +static inline u8 random_tag(void) { return hw_get_random_tag(); } #else +static inline u8 random_tag(void) { return 0; } +#endif -static inline void print_tags(u8 addr_tag, const void *addr) { } +#ifdef CONFIG_KASAN_HW_TAGS -static inline u8 random_tag(void) +static inline void poison_range(const void *address, size_t size, u8 value) { - return 0; + hw_set_mem_tag_range(kasan_reset_tag(address), + round_up(size, KASAN_GRANULE_SIZE), value); } -#endif +static inline void unpoison_range(const void *address, size_t size) +{ + hw_set_mem_tag_range(kasan_reset_tag(address), + round_up(size, KASAN_GRANULE_SIZE), get_tag(address)); +} -#ifndef arch_kasan_set_tag -static inline const void *arch_kasan_set_tag(const void *addr, u8 tag) +static inline bool check_invalid_free(void *addr) { - return addr; + u8 ptr_tag = get_tag(addr); + u8 mem_tag = hw_get_mem_tag(addr); + + return (mem_tag == KASAN_TAG_INVALID) || + (ptr_tag != KASAN_TAG_KERNEL && ptr_tag != mem_tag); } -#endif -#ifndef arch_kasan_reset_tag -#define arch_kasan_reset_tag(addr) ((void *)(addr)) -#endif -#ifndef arch_kasan_get_tag -#define arch_kasan_get_tag(addr) 0 -#endif -#define set_tag(addr, tag) ((void *)arch_kasan_set_tag((addr), (tag))) -#define reset_tag(addr) ((void *)arch_kasan_reset_tag(addr)) -#define get_tag(addr) arch_kasan_get_tag(addr) +#else /* CONFIG_KASAN_HW_TAGS */ + +void poison_range(const void *address, size_t size, u8 value); +void unpoison_range(const void *address, size_t size); +bool check_invalid_free(void *addr); + +#endif /* CONFIG_KASAN_HW_TAGS */ /* * Exported functions for interfaces called from assembly or from generated diff --git a/mm/kasan/quarantine.c b/mm/kasan/quarantine.c index 0e3f8494628f..55783125a767 100644 --- a/mm/kasan/quarantine.c +++ b/mm/kasan/quarantine.c @@ -6,16 +6,6 @@ * Copyright (C) 2016 Google, Inc. * * Based on code by Dmitry Chernenkov. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * version 2 as published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * General Public License for more details. - * */ #include <linux/gfp.h> @@ -147,7 +137,12 @@ static void qlink_free(struct qlist_node *qlink, struct kmem_cache *cache) if (IS_ENABLED(CONFIG_SLAB)) local_irq_save(flags); + /* + * As the object now gets freed from the quaratine, assume that its + * free track is no longer valid. + */ *(u8 *)kasan_mem_to_shadow(object) = KASAN_KMALLOC_FREE; + ___cache_free(cache, object, _THIS_IP_); if (IS_ENABLED(CONFIG_SLAB)) @@ -173,11 +168,19 @@ static void qlist_free_all(struct qlist_head *q, struct kmem_cache *cache) qlist_init(q); } -void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache) +bool quarantine_put(struct kmem_cache *cache, void *object) { unsigned long flags; struct qlist_head *q; struct qlist_head temp = QLIST_INIT; + struct kasan_free_meta *meta = kasan_get_free_meta(cache, object); + + /* + * If there's no metadata for this object, don't put it into + * quarantine. + */ + if (!meta) + return false; /* * Note: irq must be disabled until after we move the batch to the @@ -192,9 +195,9 @@ void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache) q = this_cpu_ptr(&cpu_quarantine); if (q->offline) { local_irq_restore(flags); - return; + return false; } - qlist_put(q, &info->quarantine_link, cache->size); + qlist_put(q, &meta->quarantine_link, cache->size); if (unlikely(q->bytes > QUARANTINE_PERCPU_SIZE)) { qlist_move_all(q, &temp); @@ -215,6 +218,8 @@ void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache) } local_irq_restore(flags); + + return true; } void quarantine_reduce(void) diff --git a/mm/kasan/report.c b/mm/kasan/report.c index 5a0102f37171..c0fb21797550 100644 --- a/mm/kasan/report.c +++ b/mm/kasan/report.c @@ -1,17 +1,12 @@ // SPDX-License-Identifier: GPL-2.0 /* - * This file contains common generic and tag-based KASAN error reporting code. + * This file contains common KASAN error reporting code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <andreyknvl@gmail.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * */ #include <linux/bitops.h> @@ -38,12 +33,6 @@ #include "kasan.h" #include "../slab.h" -/* Shadow layout customization. */ -#define SHADOW_BYTES_PER_BLOCK 1 -#define SHADOW_BLOCKS_PER_ROW 16 -#define SHADOW_BYTES_PER_ROW (SHADOW_BLOCKS_PER_ROW * SHADOW_BYTES_PER_BLOCK) -#define SHADOW_ROWS_AROUND_ADDR 2 - static unsigned long kasan_flags; #define KASAN_BIT_REPORTED 0 @@ -73,9 +62,14 @@ static void print_error_description(struct kasan_access_info *info) { pr_err("BUG: KASAN: %s in %pS\n", get_bug_type(info), (void *)info->ip); - pr_err("%s of size %zu at addr %px by task %s/%d\n", - info->is_write ? "Write" : "Read", info->access_size, - info->access_addr, current->comm, task_pid_nr(current)); + if (info->access_size) + pr_err("%s of size %zu at addr %px by task %s/%d\n", + info->is_write ? "Write" : "Read", info->access_size, + info->access_addr, current->comm, task_pid_nr(current)); + else + pr_err("%s at addr %px by task %s/%d\n", + info->is_write ? "Write" : "Read", + info->access_addr, current->comm, task_pid_nr(current)); } static DEFINE_SPINLOCK(report_lock); @@ -105,6 +99,10 @@ static void end_report(unsigned long *flags) panic_on_warn = 0; panic("panic_on_warn set ...\n"); } +#ifdef CONFIG_KASAN_HW_TAGS + if (kasan_flag_panic) + panic("kasan.fault=panic set ...\n"); +#endif kasan_enable_current(); } @@ -167,36 +165,45 @@ static void describe_object_addr(struct kmem_cache *cache, void *object, (void *)(object_addr + cache->object_size)); } -static void describe_object(struct kmem_cache *cache, void *object, - const void *addr, u8 tag) +static void describe_object_stacks(struct kmem_cache *cache, void *object, + const void *addr, u8 tag) { - struct kasan_alloc_meta *alloc_info = get_alloc_info(cache, object); + struct kasan_alloc_meta *alloc_meta; + struct kasan_track *free_track; - if (cache->flags & SLAB_KASAN) { - struct kasan_track *free_track; + alloc_meta = kasan_get_alloc_meta(cache, object); + if (alloc_meta) { + print_track(&alloc_meta->alloc_track, "Allocated"); + pr_err("\n"); + } - print_track(&alloc_info->alloc_track, "Allocated"); + free_track = kasan_get_free_track(cache, object, tag); + if (free_track) { + print_track(free_track, "Freed"); pr_err("\n"); - free_track = kasan_get_free_track(cache, object, tag); - if (free_track) { - print_track(free_track, "Freed"); - pr_err("\n"); - } + } #ifdef CONFIG_KASAN_GENERIC - if (alloc_info->aux_stack[0]) { - pr_err("Last potentially related work creation:\n"); - print_stack(alloc_info->aux_stack[0]); - pr_err("\n"); - } - if (alloc_info->aux_stack[1]) { - pr_err("Second to last potentially related work creation:\n"); - print_stack(alloc_info->aux_stack[1]); - pr_err("\n"); - } -#endif + if (!alloc_meta) + return; + if (alloc_meta->aux_stack[0]) { + pr_err("Last potentially related work creation:\n"); + print_stack(alloc_meta->aux_stack[0]); + pr_err("\n"); } + if (alloc_meta->aux_stack[1]) { + pr_err("Second to last potentially related work creation:\n"); + print_stack(alloc_meta->aux_stack[1]); + pr_err("\n"); + } +#endif +} +static void describe_object(struct kmem_cache *cache, void *object, + const void *addr, u8 tag) +{ + if (kasan_stack_collection_enabled()) + describe_object_stacks(cache, object, addr, tag); describe_object_addr(cache, object, addr); } @@ -216,168 +223,6 @@ static inline bool init_task_stack_addr(const void *addr) sizeof(init_thread_union.stack)); } -static bool __must_check tokenize_frame_descr(const char **frame_descr, - char *token, size_t max_tok_len, - unsigned long *value) -{ - const char *sep = strchr(*frame_descr, ' '); - - if (sep == NULL) - sep = *frame_descr + strlen(*frame_descr); - - if (token != NULL) { - const size_t tok_len = sep - *frame_descr; - - if (tok_len + 1 > max_tok_len) { - pr_err("KASAN internal error: frame description too long: %s\n", - *frame_descr); - return false; - } - - /* Copy token (+ 1 byte for '\0'). */ - strlcpy(token, *frame_descr, tok_len + 1); - } - - /* Advance frame_descr past separator. */ - *frame_descr = sep + 1; - - if (value != NULL && kstrtoul(token, 10, value)) { - pr_err("KASAN internal error: not a valid number: %s\n", token); - return false; - } - - return true; -} - -static void print_decoded_frame_descr(const char *frame_descr) -{ - /* - * We need to parse the following string: - * "n alloc_1 alloc_2 ... alloc_n" - * where alloc_i looks like - * "offset size len name" - * or "offset size len name:line". - */ - - char token[64]; - unsigned long num_objects; - - if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), - &num_objects)) - return; - - pr_err("\n"); - pr_err("this frame has %lu %s:\n", num_objects, - num_objects == 1 ? "object" : "objects"); - - while (num_objects--) { - unsigned long offset; - unsigned long size; - - /* access offset */ - if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), - &offset)) - return; - /* access size */ - if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), - &size)) - return; - /* name length (unused) */ - if (!tokenize_frame_descr(&frame_descr, NULL, 0, NULL)) - return; - /* object name */ - if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), - NULL)) - return; - - /* Strip line number; without filename it's not very helpful. */ - strreplace(token, ':', '\0'); - - /* Finally, print object information. */ - pr_err(" [%lu, %lu) '%s'", offset, offset + size, token); - } -} - -static bool __must_check get_address_stack_frame_info(const void *addr, - unsigned long *offset, - const char **frame_descr, - const void **frame_pc) -{ - unsigned long aligned_addr; - unsigned long mem_ptr; - const u8 *shadow_bottom; - const u8 *shadow_ptr; - const unsigned long *frame; - - BUILD_BUG_ON(IS_ENABLED(CONFIG_STACK_GROWSUP)); - - /* - * NOTE: We currently only support printing frame information for - * accesses to the task's own stack. - */ - if (!object_is_on_stack(addr)) - return false; - - aligned_addr = round_down((unsigned long)addr, sizeof(long)); - mem_ptr = round_down(aligned_addr, KASAN_SHADOW_SCALE_SIZE); - shadow_ptr = kasan_mem_to_shadow((void *)aligned_addr); - shadow_bottom = kasan_mem_to_shadow(end_of_stack(current)); - - while (shadow_ptr >= shadow_bottom && *shadow_ptr != KASAN_STACK_LEFT) { - shadow_ptr--; - mem_ptr -= KASAN_SHADOW_SCALE_SIZE; - } - - while (shadow_ptr >= shadow_bottom && *shadow_ptr == KASAN_STACK_LEFT) { - shadow_ptr--; - mem_ptr -= KASAN_SHADOW_SCALE_SIZE; - } - - if (shadow_ptr < shadow_bottom) - return false; - - frame = (const unsigned long *)(mem_ptr + KASAN_SHADOW_SCALE_SIZE); - if (frame[0] != KASAN_CURRENT_STACK_FRAME_MAGIC) { - pr_err("KASAN internal error: frame info validation failed; invalid marker: %lu\n", - frame[0]); - return false; - } - - *offset = (unsigned long)addr - (unsigned long)frame; - *frame_descr = (const char *)frame[1]; - *frame_pc = (void *)frame[2]; - - return true; -} - -static void print_address_stack_frame(const void *addr) -{ - unsigned long offset; - const char *frame_descr; - const void *frame_pc; - - if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) - return; - - if (!get_address_stack_frame_info(addr, &offset, &frame_descr, - &frame_pc)) - return; - - /* - * get_address_stack_frame_info only returns true if the given addr is - * on the current task's stack. - */ - pr_err("\n"); - pr_err("addr %px is located in stack of task %s/%d at offset %lu in frame:\n", - addr, current->comm, task_pid_nr(current), offset); - pr_err(" %pS\n", frame_pc); - - if (!frame_descr) - return; - - print_decoded_frame_descr(frame_descr); -} - static void print_address_description(void *addr, u8 tag) { struct page *page = kasan_addr_to_page(addr); @@ -405,62 +250,68 @@ static void print_address_description(void *addr, u8 tag) print_address_stack_frame(addr); } -static bool row_is_guilty(const void *row, const void *guilty) +static bool meta_row_is_guilty(const void *row, const void *addr) { - return (row <= guilty) && (guilty < row + SHADOW_BYTES_PER_ROW); + return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); } -static int shadow_pointer_offset(const void *row, const void *shadow) +static int meta_pointer_offset(const void *row, const void *addr) { - /* The length of ">ff00ff00ff00ff00: " is - * 3 + (BITS_PER_LONG/8)*2 chars. + /* + * Memory state around the buggy address: + * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe + * ... + * + * The length of ">ff00ff00ff00ff00: " is + * 3 + (BITS_PER_LONG / 8) * 2 chars. + * The length of each granule metadata is 2 bytes + * plus 1 byte for space. */ - return 3 + (BITS_PER_LONG/8)*2 + (shadow - row)*2 + - (shadow - row) / SHADOW_BYTES_PER_BLOCK + 1; + return 3 + (BITS_PER_LONG / 8) * 2 + + (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; } -static void print_shadow_for_address(const void *addr) +static void print_memory_metadata(const void *addr) { int i; - const void *shadow = kasan_mem_to_shadow(addr); - const void *shadow_row; + void *row; - shadow_row = (void *)round_down((unsigned long)shadow, - SHADOW_BYTES_PER_ROW) - - SHADOW_ROWS_AROUND_ADDR * SHADOW_BYTES_PER_ROW; + row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) + - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; pr_err("Memory state around the buggy address:\n"); - for (i = -SHADOW_ROWS_AROUND_ADDR; i <= SHADOW_ROWS_AROUND_ADDR; i++) { - const void *kaddr = kasan_shadow_to_mem(shadow_row); - char buffer[4 + (BITS_PER_LONG/8)*2]; - char shadow_buf[SHADOW_BYTES_PER_ROW]; + for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { + char buffer[4 + (BITS_PER_LONG / 8) * 2]; + char metadata[META_BYTES_PER_ROW]; snprintf(buffer, sizeof(buffer), - (i == 0) ? ">%px: " : " %px: ", kaddr); + (i == 0) ? ">%px: " : " %px: ", row); + /* * We should not pass a shadow pointer to generic * function, because generic functions may try to * access kasan mapping for the passed address. */ - memcpy(shadow_buf, shadow_row, SHADOW_BYTES_PER_ROW); + metadata_fetch_row(&metadata[0], row); + print_hex_dump(KERN_ERR, buffer, - DUMP_PREFIX_NONE, SHADOW_BYTES_PER_ROW, 1, - shadow_buf, SHADOW_BYTES_PER_ROW, 0); + DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, + metadata, META_BYTES_PER_ROW, 0); - if (row_is_guilty(shadow_row, shadow)) - pr_err("%*c\n", - shadow_pointer_offset(shadow_row, shadow), - '^'); + if (meta_row_is_guilty(row, addr)) + pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); - shadow_row += SHADOW_BYTES_PER_ROW; + row += META_MEM_BYTES_PER_ROW; } } static bool report_enabled(void) { +#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) if (current->kasan_depth) return false; +#endif if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) return true; return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); @@ -490,7 +341,7 @@ void kasan_report_invalid_free(void *object, unsigned long ip) unsigned long flags; u8 tag = get_tag(object); - object = reset_tag(object); + object = kasan_reset_tag(object); #if IS_ENABLED(CONFIG_KUNIT) if (current->kunit_test) @@ -503,7 +354,7 @@ void kasan_report_invalid_free(void *object, unsigned long ip) pr_err("\n"); print_address_description(object, tag); pr_err("\n"); - print_shadow_for_address(object); + print_memory_metadata(object); end_report(&flags); } @@ -523,10 +374,10 @@ static void __kasan_report(unsigned long addr, size_t size, bool is_write, disable_trace_on_warning(); tagged_addr = (void *)addr; - untagged_addr = reset_tag(tagged_addr); + untagged_addr = kasan_reset_tag(tagged_addr); info.access_addr = tagged_addr; - if (addr_has_shadow(untagged_addr)) + if (addr_has_metadata(untagged_addr)) info.first_bad_addr = find_first_bad_addr(tagged_addr, size); else info.first_bad_addr = untagged_addr; @@ -537,14 +388,14 @@ static void __kasan_report(unsigned long addr, size_t size, bool is_write, start_report(&flags); print_error_description(&info); - if (addr_has_shadow(untagged_addr)) + if (addr_has_metadata(untagged_addr)) print_tags(get_tag(tagged_addr), info.first_bad_addr); pr_err("\n"); - if (addr_has_shadow(untagged_addr)) { + if (addr_has_metadata(untagged_addr)) { print_address_description(untagged_addr, get_tag(tagged_addr)); pr_err("\n"); - print_shadow_for_address(info.first_bad_addr); + print_memory_metadata(info.first_bad_addr); } else { dump_stack(); } @@ -604,6 +455,6 @@ void kasan_non_canonical_hook(unsigned long addr) else bug_type = "maybe wild-memory-access"; pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, - orig_addr, orig_addr + KASAN_SHADOW_MASK); + orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); } #endif diff --git a/mm/kasan/report_generic.c b/mm/kasan/report_generic.c new file mode 100644 index 000000000000..8a9c889872da --- /dev/null +++ b/mm/kasan/report_generic.c @@ -0,0 +1,327 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This file contains generic KASAN specific error reporting code. + * + * Copyright (c) 2014 Samsung Electronics Co., Ltd. + * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> + * + * Some code borrowed from https://github.com/xairy/kasan-prototype by + * Andrey Konovalov <andreyknvl@gmail.com> + */ + +#include <linux/bitops.h> +#include <linux/ftrace.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/printk.h> +#include <linux/sched.h> +#include <linux/sched/task_stack.h> +#include <linux/slab.h> +#include <linux/stackdepot.h> +#include <linux/stacktrace.h> +#include <linux/string.h> +#include <linux/types.h> +#include <linux/kasan.h> +#include <linux/module.h> + +#include <asm/sections.h> + +#include "kasan.h" +#include "../slab.h" + +void *find_first_bad_addr(void *addr, size_t size) +{ + void *p = addr; + + while (p < addr + size && !(*(u8 *)kasan_mem_to_shadow(p))) + p += KASAN_GRANULE_SIZE; + return p; +} + +static const char *get_shadow_bug_type(struct kasan_access_info *info) +{ + const char *bug_type = "unknown-crash"; + u8 *shadow_addr; + + shadow_addr = (u8 *)kasan_mem_to_shadow(info->first_bad_addr); + + /* + * If shadow byte value is in [0, KASAN_GRANULE_SIZE) we can look + * at the next shadow byte to determine the type of the bad access. + */ + if (*shadow_addr > 0 && *shadow_addr <= KASAN_GRANULE_SIZE - 1) + shadow_addr++; + + switch (*shadow_addr) { + case 0 ... KASAN_GRANULE_SIZE - 1: + /* + * In theory it's still possible to see these shadow values + * due to a data race in the kernel code. + */ + bug_type = "out-of-bounds"; + break; + case KASAN_PAGE_REDZONE: + case KASAN_KMALLOC_REDZONE: + bug_type = "slab-out-of-bounds"; + break; + case KASAN_GLOBAL_REDZONE: + bug_type = "global-out-of-bounds"; + break; + case KASAN_STACK_LEFT: + case KASAN_STACK_MID: + case KASAN_STACK_RIGHT: + case KASAN_STACK_PARTIAL: + bug_type = "stack-out-of-bounds"; + break; + case KASAN_FREE_PAGE: + case KASAN_KMALLOC_FREE: + case KASAN_KMALLOC_FREETRACK: + bug_type = "use-after-free"; + break; + case KASAN_ALLOCA_LEFT: + case KASAN_ALLOCA_RIGHT: + bug_type = "alloca-out-of-bounds"; + break; + case KASAN_VMALLOC_INVALID: + bug_type = "vmalloc-out-of-bounds"; + break; + } + + return bug_type; +} + +static const char *get_wild_bug_type(struct kasan_access_info *info) +{ + const char *bug_type = "unknown-crash"; + + if ((unsigned long)info->access_addr < PAGE_SIZE) + bug_type = "null-ptr-deref"; + else if ((unsigned long)info->access_addr < TASK_SIZE) + bug_type = "user-memory-access"; + else + bug_type = "wild-memory-access"; + + return bug_type; +} + +const char *get_bug_type(struct kasan_access_info *info) +{ + /* + * If access_size is a negative number, then it has reason to be + * defined as out-of-bounds bug type. + * + * Casting negative numbers to size_t would indeed turn up as + * a large size_t and its value will be larger than ULONG_MAX/2, + * so that this can qualify as out-of-bounds. + */ + if (info->access_addr + info->access_size < info->access_addr) + return "out-of-bounds"; + + if (addr_has_metadata(info->access_addr)) + return get_shadow_bug_type(info); + return get_wild_bug_type(info); +} + +void metadata_fetch_row(char *buffer, void *row) +{ + memcpy(buffer, kasan_mem_to_shadow(row), META_BYTES_PER_ROW); +} + +#if CONFIG_KASAN_STACK +static bool __must_check tokenize_frame_descr(const char **frame_descr, + char *token, size_t max_tok_len, + unsigned long *value) +{ + const char *sep = strchr(*frame_descr, ' '); + + if (sep == NULL) + sep = *frame_descr + strlen(*frame_descr); + + if (token != NULL) { + const size_t tok_len = sep - *frame_descr; + + if (tok_len + 1 > max_tok_len) { + pr_err("KASAN internal error: frame description too long: %s\n", + *frame_descr); + return false; + } + + /* Copy token (+ 1 byte for '\0'). */ + strlcpy(token, *frame_descr, tok_len + 1); + } + + /* Advance frame_descr past separator. */ + *frame_descr = sep + 1; + + if (value != NULL && kstrtoul(token, 10, value)) { + pr_err("KASAN internal error: not a valid number: %s\n", token); + return false; + } + + return true; +} + +static void print_decoded_frame_descr(const char *frame_descr) +{ + /* + * We need to parse the following string: + * "n alloc_1 alloc_2 ... alloc_n" + * where alloc_i looks like + * "offset size len name" + * or "offset size len name:line". + */ + + char token[64]; + unsigned long num_objects; + + if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), + &num_objects)) + return; + + pr_err("\n"); + pr_err("this frame has %lu %s:\n", num_objects, + num_objects == 1 ? "object" : "objects"); + + while (num_objects--) { + unsigned long offset; + unsigned long size; + + /* access offset */ + if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), + &offset)) + return; + /* access size */ + if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), + &size)) + return; + /* name length (unused) */ + if (!tokenize_frame_descr(&frame_descr, NULL, 0, NULL)) + return; + /* object name */ + if (!tokenize_frame_descr(&frame_descr, token, sizeof(token), + NULL)) + return; + + /* Strip line number; without filename it's not very helpful. */ + strreplace(token, ':', '\0'); + + /* Finally, print object information. */ + pr_err(" [%lu, %lu) '%s'", offset, offset + size, token); + } +} + +static bool __must_check get_address_stack_frame_info(const void *addr, + unsigned long *offset, + const char **frame_descr, + const void **frame_pc) +{ + unsigned long aligned_addr; + unsigned long mem_ptr; + const u8 *shadow_bottom; + const u8 *shadow_ptr; + const unsigned long *frame; + + BUILD_BUG_ON(IS_ENABLED(CONFIG_STACK_GROWSUP)); + + /* + * NOTE: We currently only support printing frame information for + * accesses to the task's own stack. + */ + if (!object_is_on_stack(addr)) + return false; + + aligned_addr = round_down((unsigned long)addr, sizeof(long)); + mem_ptr = round_down(aligned_addr, KASAN_GRANULE_SIZE); + shadow_ptr = kasan_mem_to_shadow((void *)aligned_addr); + shadow_bottom = kasan_mem_to_shadow(end_of_stack(current)); + + while (shadow_ptr >= shadow_bottom && *shadow_ptr != KASAN_STACK_LEFT) { + shadow_ptr--; + mem_ptr -= KASAN_GRANULE_SIZE; + } + + while (shadow_ptr >= shadow_bottom && *shadow_ptr == KASAN_STACK_LEFT) { + shadow_ptr--; + mem_ptr -= KASAN_GRANULE_SIZE; + } + + if (shadow_ptr < shadow_bottom) + return false; + + frame = (const unsigned long *)(mem_ptr + KASAN_GRANULE_SIZE); + if (frame[0] != KASAN_CURRENT_STACK_FRAME_MAGIC) { + pr_err("KASAN internal error: frame info validation failed; invalid marker: %lu\n", + frame[0]); + return false; + } + + *offset = (unsigned long)addr - (unsigned long)frame; + *frame_descr = (const char *)frame[1]; + *frame_pc = (void *)frame[2]; + + return true; +} + +void print_address_stack_frame(const void *addr) +{ + unsigned long offset; + const char *frame_descr; + const void *frame_pc; + + if (!get_address_stack_frame_info(addr, &offset, &frame_descr, + &frame_pc)) + return; + + /* + * get_address_stack_frame_info only returns true if the given addr is + * on the current task's stack. + */ + pr_err("\n"); + pr_err("addr %px is located in stack of task %s/%d at offset %lu in frame:\n", + addr, current->comm, task_pid_nr(current), offset); + pr_err(" %pS\n", frame_pc); + + if (!frame_descr) + return; + + print_decoded_frame_descr(frame_descr); +} +#endif /* CONFIG_KASAN_STACK */ + +#define DEFINE_ASAN_REPORT_LOAD(size) \ +void __asan_report_load##size##_noabort(unsigned long addr) \ +{ \ + kasan_report(addr, size, false, _RET_IP_); \ +} \ +EXPORT_SYMBOL(__asan_report_load##size##_noabort) + +#define DEFINE_ASAN_REPORT_STORE(size) \ +void __asan_report_store##size##_noabort(unsigned long addr) \ +{ \ + kasan_report(addr, size, true, _RET_IP_); \ +} \ +EXPORT_SYMBOL(__asan_report_store##size##_noabort) + +DEFINE_ASAN_REPORT_LOAD(1); +DEFINE_ASAN_REPORT_LOAD(2); +DEFINE_ASAN_REPORT_LOAD(4); +DEFINE_ASAN_REPORT_LOAD(8); +DEFINE_ASAN_REPORT_LOAD(16); +DEFINE_ASAN_REPORT_STORE(1); +DEFINE_ASAN_REPORT_STORE(2); +DEFINE_ASAN_REPORT_STORE(4); +DEFINE_ASAN_REPORT_STORE(8); +DEFINE_ASAN_REPORT_STORE(16); + +void __asan_report_load_n_noabort(unsigned long addr, size_t size) +{ + kasan_report(addr, size, false, _RET_IP_); +} +EXPORT_SYMBOL(__asan_report_load_n_noabort); + +void __asan_report_store_n_noabort(unsigned long addr, size_t size) +{ + kasan_report(addr, size, true, _RET_IP_); +} +EXPORT_SYMBOL(__asan_report_store_n_noabort); diff --git a/mm/kasan/report_hw_tags.c b/mm/kasan/report_hw_tags.c new file mode 100644 index 000000000000..57114f0e14d1 --- /dev/null +++ b/mm/kasan/report_hw_tags.c @@ -0,0 +1,42 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This file contains hardware tag-based KASAN specific error reporting code. + * + * Copyright (c) 2020 Google, Inc. + * Author: Andrey Konovalov <andreyknvl@google.com> + */ + +#include <linux/kasan.h> +#include <linux/kernel.h> +#include <linux/memory.h> +#include <linux/mm.h> +#include <linux/string.h> +#include <linux/types.h> + +#include "kasan.h" + +const char *get_bug_type(struct kasan_access_info *info) +{ + return "invalid-access"; +} + +void *find_first_bad_addr(void *addr, size_t size) +{ + return kasan_reset_tag(addr); +} + +void metadata_fetch_row(char *buffer, void *row) +{ + int i; + + for (i = 0; i < META_BYTES_PER_ROW; i++) + buffer[i] = hw_get_mem_tag(row + i * KASAN_GRANULE_SIZE); +} + +void print_tags(u8 addr_tag, const void *addr) +{ + u8 memory_tag = hw_get_mem_tag((void *)addr); + + pr_err("Pointer tag: [%02x], memory tag: [%02x]\n", + addr_tag, memory_tag); +} diff --git a/mm/kasan/tags_report.c b/mm/kasan/report_sw_tags.c index bee43717d6f0..1b026793ad57 100644 --- a/mm/kasan/tags_report.c +++ b/mm/kasan/report_sw_tags.c @@ -1,17 +1,12 @@ // SPDX-License-Identifier: GPL-2.0 /* - * This file contains tag-based KASAN specific error reporting code. + * This file contains software tag-based KASAN specific error reporting code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov <andreyknvl@gmail.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * */ #include <linux/bitops.h> @@ -46,16 +41,19 @@ const char *get_bug_type(struct kasan_access_info *info) int i; tag = get_tag(info->access_addr); - addr = reset_tag(info->access_addr); + addr = kasan_reset_tag(info->access_addr); page = kasan_addr_to_page(addr); if (page && PageSlab(page)) { cache = page->slab_cache; object = nearest_obj(cache, page, (void *)addr); - alloc_meta = get_alloc_info(cache, object); + alloc_meta = kasan_get_alloc_meta(cache, object); - for (i = 0; i < KASAN_NR_FREE_STACKS; i++) - if (alloc_meta->free_pointer_tag[i] == tag) - return "use-after-free"; + if (alloc_meta) { + for (i = 0; i < KASAN_NR_FREE_STACKS; i++) { + if (alloc_meta->free_pointer_tag[i] == tag) + return "use-after-free"; + } + } return "out-of-bounds"; } @@ -77,14 +75,19 @@ const char *get_bug_type(struct kasan_access_info *info) void *find_first_bad_addr(void *addr, size_t size) { u8 tag = get_tag(addr); - void *p = reset_tag(addr); + void *p = kasan_reset_tag(addr); void *end = p + size; while (p < end && tag == *(u8 *)kasan_mem_to_shadow(p)) - p += KASAN_SHADOW_SCALE_SIZE; + p += KASAN_GRANULE_SIZE; return p; } +void metadata_fetch_row(char *buffer, void *row) +{ + memcpy(buffer, kasan_mem_to_shadow(row), META_BYTES_PER_ROW); +} + void print_tags(u8 addr_tag, const void *addr) { u8 *shadow = (u8 *)kasan_mem_to_shadow(addr); diff --git a/mm/kasan/shadow.c b/mm/kasan/shadow.c new file mode 100644 index 000000000000..7c2c08c55f32 --- /dev/null +++ b/mm/kasan/shadow.c @@ -0,0 +1,504 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This file contains KASAN runtime code that manages shadow memory for + * generic and software tag-based KASAN modes. + * + * Copyright (c) 2014 Samsung Electronics Co., Ltd. + * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> + * + * Some code borrowed from https://github.com/xairy/kasan-prototype by + * Andrey Konovalov <andreyknvl@gmail.com> + */ + +#include <linux/init.h> +#include <linux/kasan.h> +#include <linux/kernel.h> +#include <linux/kmemleak.h> +#include <linux/memory.h> +#include <linux/mm.h> +#include <linux/string.h> +#include <linux/types.h> +#include <linux/vmalloc.h> + +#include <asm/cacheflush.h> +#include <asm/tlbflush.h> + +#include "kasan.h" + +bool __kasan_check_read(const volatile void *p, unsigned int size) +{ + return check_memory_region((unsigned long)p, size, false, _RET_IP_); +} +EXPORT_SYMBOL(__kasan_check_read); + +bool __kasan_check_write(const volatile void *p, unsigned int size) +{ + return check_memory_region((unsigned long)p, size, true, _RET_IP_); +} +EXPORT_SYMBOL(__kasan_check_write); + +#undef memset +void *memset(void *addr, int c, size_t len) +{ + if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_)) + return NULL; + + return __memset(addr, c, len); +} + +#ifdef __HAVE_ARCH_MEMMOVE +#undef memmove +void *memmove(void *dest, const void *src, size_t len) +{ + if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || + !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) + return NULL; + + return __memmove(dest, src, len); +} +#endif + +#undef memcpy +void *memcpy(void *dest, const void *src, size_t len) +{ + if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || + !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) + return NULL; + + return __memcpy(dest, src, len); +} + +/* + * Poisons the shadow memory for 'size' bytes starting from 'addr'. + * Memory addresses should be aligned to KASAN_GRANULE_SIZE. + */ +void poison_range(const void *address, size_t size, u8 value) +{ + void *shadow_start, *shadow_end; + + /* + * Perform shadow offset calculation based on untagged address, as + * some of the callers (e.g. kasan_poison_object_data) pass tagged + * addresses to this function. + */ + address = kasan_reset_tag(address); + size = round_up(size, KASAN_GRANULE_SIZE); + + shadow_start = kasan_mem_to_shadow(address); + shadow_end = kasan_mem_to_shadow(address + size); + + __memset(shadow_start, value, shadow_end - shadow_start); +} + +void unpoison_range(const void *address, size_t size) +{ + u8 tag = get_tag(address); + + /* + * Perform shadow offset calculation based on untagged address, as + * some of the callers (e.g. kasan_unpoison_object_data) pass tagged + * addresses to this function. + */ + address = kasan_reset_tag(address); + + poison_range(address, size, tag); + + if (size & KASAN_GRANULE_MASK) { + u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); + + if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) + *shadow = tag; + else /* CONFIG_KASAN_GENERIC */ + *shadow = size & KASAN_GRANULE_MASK; + } +} + +#ifdef CONFIG_MEMORY_HOTPLUG +static bool shadow_mapped(unsigned long addr) +{ + pgd_t *pgd = pgd_offset_k(addr); + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + if (pgd_none(*pgd)) + return false; + p4d = p4d_offset(pgd, addr); + if (p4d_none(*p4d)) + return false; + pud = pud_offset(p4d, addr); + if (pud_none(*pud)) + return false; + + /* + * We can't use pud_large() or pud_huge(), the first one is + * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse + * pud_bad(), if pud is bad then it's bad because it's huge. + */ + if (pud_bad(*pud)) + return true; + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) + return false; + + if (pmd_bad(*pmd)) + return true; + pte = pte_offset_kernel(pmd, addr); + return !pte_none(*pte); +} + +static int __meminit kasan_mem_notifier(struct notifier_block *nb, + unsigned long action, void *data) +{ + struct memory_notify *mem_data = data; + unsigned long nr_shadow_pages, start_kaddr, shadow_start; + unsigned long shadow_end, shadow_size; + + nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; + start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); + shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); + shadow_size = nr_shadow_pages << PAGE_SHIFT; + shadow_end = shadow_start + shadow_size; + + if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) || + WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE)) + return NOTIFY_BAD; + + switch (action) { + case MEM_GOING_ONLINE: { + void *ret; + + /* + * If shadow is mapped already than it must have been mapped + * during the boot. This could happen if we onlining previously + * offlined memory. + */ + if (shadow_mapped(shadow_start)) + return NOTIFY_OK; + + ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, + shadow_end, GFP_KERNEL, + PAGE_KERNEL, VM_NO_GUARD, + pfn_to_nid(mem_data->start_pfn), + __builtin_return_address(0)); + if (!ret) + return NOTIFY_BAD; + + kmemleak_ignore(ret); + return NOTIFY_OK; + } + case MEM_CANCEL_ONLINE: + case MEM_OFFLINE: { + struct vm_struct *vm; + + /* + * shadow_start was either mapped during boot by kasan_init() + * or during memory online by __vmalloc_node_range(). + * In the latter case we can use vfree() to free shadow. + * Non-NULL result of the find_vm_area() will tell us if + * that was the second case. + * + * Currently it's not possible to free shadow mapped + * during boot by kasan_init(). It's because the code + * to do that hasn't been written yet. So we'll just + * leak the memory. + */ + vm = find_vm_area((void *)shadow_start); + if (vm) + vfree((void *)shadow_start); + } + } + + return NOTIFY_OK; +} + +static int __init kasan_memhotplug_init(void) +{ + hotplug_memory_notifier(kasan_mem_notifier, 0); + + return 0; +} + +core_initcall(kasan_memhotplug_init); +#endif + +#ifdef CONFIG_KASAN_VMALLOC + +static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, + void *unused) +{ + unsigned long page; + pte_t pte; + + if (likely(!pte_none(*ptep))) + return 0; + + page = __get_free_page(GFP_KERNEL); + if (!page) + return -ENOMEM; + + memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); + pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); + + spin_lock(&init_mm.page_table_lock); + if (likely(pte_none(*ptep))) { + set_pte_at(&init_mm, addr, ptep, pte); + page = 0; + } + spin_unlock(&init_mm.page_table_lock); + if (page) + free_page(page); + return 0; +} + +int kasan_populate_vmalloc(unsigned long addr, unsigned long size) +{ + unsigned long shadow_start, shadow_end; + int ret; + + if (!is_vmalloc_or_module_addr((void *)addr)) + return 0; + + shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); + shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); + shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); + shadow_end = ALIGN(shadow_end, PAGE_SIZE); + + ret = apply_to_page_range(&init_mm, shadow_start, + shadow_end - shadow_start, + kasan_populate_vmalloc_pte, NULL); + if (ret) + return ret; + + flush_cache_vmap(shadow_start, shadow_end); + + /* + * We need to be careful about inter-cpu effects here. Consider: + * + * CPU#0 CPU#1 + * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; + * p[99] = 1; + * + * With compiler instrumentation, that ends up looking like this: + * + * CPU#0 CPU#1 + * // vmalloc() allocates memory + * // let a = area->addr + * // we reach kasan_populate_vmalloc + * // and call unpoison_range: + * STORE shadow(a), unpoison_val + * ... + * STORE shadow(a+99), unpoison_val x = LOAD p + * // rest of vmalloc process <data dependency> + * STORE p, a LOAD shadow(x+99) + * + * If there is no barrier between the end of unpoisioning the shadow + * and the store of the result to p, the stores could be committed + * in a different order by CPU#0, and CPU#1 could erroneously observe + * poison in the shadow. + * + * We need some sort of barrier between the stores. + * + * In the vmalloc() case, this is provided by a smp_wmb() in + * clear_vm_uninitialized_flag(). In the per-cpu allocator and in + * get_vm_area() and friends, the caller gets shadow allocated but + * doesn't have any pages mapped into the virtual address space that + * has been reserved. Mapping those pages in will involve taking and + * releasing a page-table lock, which will provide the barrier. + */ + + return 0; +} + +/* + * Poison the shadow for a vmalloc region. Called as part of the + * freeing process at the time the region is freed. + */ +void kasan_poison_vmalloc(const void *start, unsigned long size) +{ + if (!is_vmalloc_or_module_addr(start)) + return; + + size = round_up(size, KASAN_GRANULE_SIZE); + poison_range(start, size, KASAN_VMALLOC_INVALID); +} + +void kasan_unpoison_vmalloc(const void *start, unsigned long size) +{ + if (!is_vmalloc_or_module_addr(start)) + return; + + unpoison_range(start, size); +} + +static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, + void *unused) +{ + unsigned long page; + + page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); + + spin_lock(&init_mm.page_table_lock); + + if (likely(!pte_none(*ptep))) { + pte_clear(&init_mm, addr, ptep); + free_page(page); + } + spin_unlock(&init_mm.page_table_lock); + + return 0; +} + +/* + * Release the backing for the vmalloc region [start, end), which + * lies within the free region [free_region_start, free_region_end). + * + * This can be run lazily, long after the region was freed. It runs + * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap + * infrastructure. + * + * How does this work? + * ------------------- + * + * We have a region that is page aligned, labelled as A. + * That might not map onto the shadow in a way that is page-aligned: + * + * start end + * v v + * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc + * -------- -------- -------- -------- -------- + * | | | | | + * | | | /-------/ | + * \-------\|/------/ |/---------------/ + * ||| || + * |??AAAAAA|AAAAAAAA|AA??????| < shadow + * (1) (2) (3) + * + * First we align the start upwards and the end downwards, so that the + * shadow of the region aligns with shadow page boundaries. In the + * example, this gives us the shadow page (2). This is the shadow entirely + * covered by this allocation. + * + * Then we have the tricky bits. We want to know if we can free the + * partially covered shadow pages - (1) and (3) in the example. For this, + * we are given the start and end of the free region that contains this + * allocation. Extending our previous example, we could have: + * + * free_region_start free_region_end + * | start end | + * v v v v + * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc + * -------- -------- -------- -------- -------- + * | | | | | + * | | | /-------/ | + * \-------\|/------/ |/---------------/ + * ||| || + * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow + * (1) (2) (3) + * + * Once again, we align the start of the free region up, and the end of + * the free region down so that the shadow is page aligned. So we can free + * page (1) - we know no allocation currently uses anything in that page, + * because all of it is in the vmalloc free region. But we cannot free + * page (3), because we can't be sure that the rest of it is unused. + * + * We only consider pages that contain part of the original region for + * freeing: we don't try to free other pages from the free region or we'd + * end up trying to free huge chunks of virtual address space. + * + * Concurrency + * ----------- + * + * How do we know that we're not freeing a page that is simultaneously + * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? + * + * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running + * at the same time. While we run under free_vmap_area_lock, the population + * code does not. + * + * free_vmap_area_lock instead operates to ensure that the larger range + * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and + * the per-cpu region-finding algorithm both run under free_vmap_area_lock, + * no space identified as free will become used while we are running. This + * means that so long as we are careful with alignment and only free shadow + * pages entirely covered by the free region, we will not run in to any + * trouble - any simultaneous allocations will be for disjoint regions. + */ +void kasan_release_vmalloc(unsigned long start, unsigned long end, + unsigned long free_region_start, + unsigned long free_region_end) +{ + void *shadow_start, *shadow_end; + unsigned long region_start, region_end; + unsigned long size; + + region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE); + region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE); + + free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE); + + if (start != region_start && + free_region_start < region_start) + region_start -= KASAN_MEMORY_PER_SHADOW_PAGE; + + free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE); + + if (end != region_end && + free_region_end > region_end) + region_end += KASAN_MEMORY_PER_SHADOW_PAGE; + + shadow_start = kasan_mem_to_shadow((void *)region_start); + shadow_end = kasan_mem_to_shadow((void *)region_end); + + if (shadow_end > shadow_start) { + size = shadow_end - shadow_start; + apply_to_existing_page_range(&init_mm, + (unsigned long)shadow_start, + size, kasan_depopulate_vmalloc_pte, + NULL); + flush_tlb_kernel_range((unsigned long)shadow_start, + (unsigned long)shadow_end); + } +} + +#else /* CONFIG_KASAN_VMALLOC */ + +int kasan_module_alloc(void *addr, size_t size) +{ + void *ret; + size_t scaled_size; + size_t shadow_size; + unsigned long shadow_start; + + shadow_start = (unsigned long)kasan_mem_to_shadow(addr); + scaled_size = (size + KASAN_GRANULE_SIZE - 1) >> + KASAN_SHADOW_SCALE_SHIFT; + shadow_size = round_up(scaled_size, PAGE_SIZE); + + if (WARN_ON(!PAGE_ALIGNED(shadow_start))) + return -EINVAL; + + ret = __vmalloc_node_range(shadow_size, 1, shadow_start, + shadow_start + shadow_size, + GFP_KERNEL, + PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, + __builtin_return_address(0)); + + if (ret) { + __memset(ret, KASAN_SHADOW_INIT, shadow_size); + find_vm_area(addr)->flags |= VM_KASAN; + kmemleak_ignore(ret); + return 0; + } + + return -ENOMEM; +} + +void kasan_free_shadow(const struct vm_struct *vm) +{ + if (vm->flags & VM_KASAN) + vfree(kasan_mem_to_shadow(vm->addr)); +} + +#endif diff --git a/mm/kasan/tags.c b/mm/kasan/sw_tags.c index e02a36a51f42..5dcd830805b2 100644 --- a/mm/kasan/tags.c +++ b/mm/kasan/sw_tags.c @@ -1,17 +1,12 @@ // SPDX-License-Identifier: GPL-2.0 /* - * This file contains core tag-based KASAN code. + * This file contains core software tag-based KASAN code. * * Copyright (c) 2018 Google, Inc. * Author: Andrey Konovalov <andreyknvl@google.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * */ -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#define pr_fmt(fmt) "kasan: " fmt #include <linux/export.h> #include <linux/interrupt.h> @@ -40,12 +35,14 @@ static DEFINE_PER_CPU(u32, prng_state); -void kasan_init_tags(void) +void __init kasan_init_sw_tags(void) { int cpu; for_each_possible_cpu(cpu) per_cpu(prng_state, cpu) = (u32)get_cycles(); + + pr_info("KernelAddressSanitizer initialized\n"); } /* @@ -70,11 +67,6 @@ u8 random_tag(void) return (u8)(state % (KASAN_TAG_MAX + 1)); } -void *kasan_reset_tag(const void *addr) -{ - return reset_tag(addr); -} - bool check_memory_region(unsigned long addr, size_t size, bool write, unsigned long ret_ip) { @@ -110,7 +102,7 @@ bool check_memory_region(unsigned long addr, size_t size, bool write, if (tag == KASAN_TAG_KERNEL) return true; - untagged_addr = reset_tag((const void *)addr); + untagged_addr = kasan_reset_tag((const void *)addr); if (unlikely(untagged_addr < kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) { return !kasan_report(addr, size, write, ret_ip); @@ -126,6 +118,15 @@ bool check_memory_region(unsigned long addr, size_t size, bool write, return true; } +bool check_invalid_free(void *addr) +{ + u8 tag = get_tag(addr); + u8 shadow_byte = READ_ONCE(*(u8 *)kasan_mem_to_shadow(kasan_reset_tag(addr))); + + return (shadow_byte == KASAN_TAG_INVALID) || + (tag != KASAN_TAG_KERNEL && tag != shadow_byte); +} + #define DEFINE_HWASAN_LOAD_STORE(size) \ void __hwasan_load##size##_noabort(unsigned long addr) \ { \ @@ -158,7 +159,7 @@ EXPORT_SYMBOL(__hwasan_storeN_noabort); void __hwasan_tag_memory(unsigned long addr, u8 tag, unsigned long size) { - kasan_poison_shadow((void *)addr, size, tag); + poison_range((void *)addr, size, tag); } EXPORT_SYMBOL(__hwasan_tag_memory); @@ -168,7 +169,9 @@ void kasan_set_free_info(struct kmem_cache *cache, struct kasan_alloc_meta *alloc_meta; u8 idx = 0; - alloc_meta = get_alloc_info(cache, object); + alloc_meta = kasan_get_alloc_meta(cache, object); + if (!alloc_meta) + return; #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY idx = alloc_meta->free_track_idx; @@ -185,7 +188,9 @@ struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, struct kasan_alloc_meta *alloc_meta; int i = 0; - alloc_meta = get_alloc_info(cache, object); + alloc_meta = kasan_get_alloc_meta(cache, object); + if (!alloc_meta) + return NULL; #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY for (i = 0; i < KASAN_NR_FREE_STACKS; i++) { diff --git a/mm/memcontrol.c b/mm/memcontrol.c index e3c7ca7dc174..605f671203ef 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -1343,46 +1343,6 @@ void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) #endif /** - * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page - * @page: the page - * @pgdat: pgdat of the page - * - * This function relies on page's memcg being stable - see the - * access rules in commit_charge(). - */ -struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) -{ - struct mem_cgroup_per_node *mz; - struct mem_cgroup *memcg; - struct lruvec *lruvec; - - if (mem_cgroup_disabled()) { - lruvec = &pgdat->__lruvec; - goto out; - } - - memcg = page_memcg(page); - /* - * Swapcache readahead pages are added to the LRU - and - * possibly migrated - before they are charged. - */ - if (!memcg) - memcg = root_mem_cgroup; - - mz = mem_cgroup_page_nodeinfo(memcg, page); - lruvec = &mz->lruvec; -out: - /* - * Since a node can be onlined after the mem_cgroup was created, - * we have to be prepared to initialize lruvec->zone here; - * and if offlined then reonlined, we need to reinitialize it. - */ - if (unlikely(lruvec->pgdat != pgdat)) - lruvec->pgdat = pgdat; - return lruvec; -} - -/** * lock_page_lruvec - lock and return lruvec for a given page. * @page: the page * @@ -6987,6 +6947,7 @@ void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) return; memcg = page_memcg(oldpage); + VM_WARN_ON_ONCE_PAGE(!memcg, oldpage); if (!memcg) return; @@ -7178,12 +7139,15 @@ void mem_cgroup_swapout(struct page *page, swp_entry_t entry) VM_BUG_ON_PAGE(PageLRU(page), page); VM_BUG_ON_PAGE(page_count(page), page); + if (mem_cgroup_disabled()) + return; + if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) return; memcg = page_memcg(page); - /* Readahead page, never charged */ + VM_WARN_ON_ONCE_PAGE(!memcg, page); if (!memcg) return; @@ -7242,12 +7206,15 @@ int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) struct mem_cgroup *memcg; unsigned short oldid; + if (mem_cgroup_disabled()) + return 0; + if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) return 0; memcg = page_memcg(page); - /* Readahead page, never charged */ + VM_WARN_ON_ONCE_PAGE(!memcg, page); if (!memcg) return 0; diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index c01604224299..af41fb990820 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -1784,39 +1784,112 @@ int remove_memory(int nid, u64 start, u64 size) } EXPORT_SYMBOL_GPL(remove_memory); +static int try_offline_memory_block(struct memory_block *mem, void *arg) +{ + uint8_t online_type = MMOP_ONLINE_KERNEL; + uint8_t **online_types = arg; + struct page *page; + int rc; + + /* + * Sense the online_type via the zone of the memory block. Offlining + * with multiple zones within one memory block will be rejected + * by offlining code ... so we don't care about that. + */ + page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); + if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) + online_type = MMOP_ONLINE_MOVABLE; + + rc = device_offline(&mem->dev); + /* + * Default is MMOP_OFFLINE - change it only if offlining succeeded, + * so try_reonline_memory_block() can do the right thing. + */ + if (!rc) + **online_types = online_type; + + (*online_types)++; + /* Ignore if already offline. */ + return rc < 0 ? rc : 0; +} + +static int try_reonline_memory_block(struct memory_block *mem, void *arg) +{ + uint8_t **online_types = arg; + int rc; + + if (**online_types != MMOP_OFFLINE) { + mem->online_type = **online_types; + rc = device_online(&mem->dev); + if (rc < 0) + pr_warn("%s: Failed to re-online memory: %d", + __func__, rc); + } + + /* Continue processing all remaining memory blocks. */ + (*online_types)++; + return 0; +} + /* - * Try to offline and remove a memory block. Might take a long time to - * finish in case memory is still in use. Primarily useful for memory devices - * that logically unplugged all memory (so it's no longer in use) and want to - * offline + remove the memory block. + * Try to offline and remove memory. Might take a long time to finish in case + * memory is still in use. Primarily useful for memory devices that logically + * unplugged all memory (so it's no longer in use) and want to offline + remove + * that memory. */ int offline_and_remove_memory(int nid, u64 start, u64 size) { - struct memory_block *mem; - int rc = -EINVAL; + const unsigned long mb_count = size / memory_block_size_bytes(); + uint8_t *online_types, *tmp; + int rc; if (!IS_ALIGNED(start, memory_block_size_bytes()) || - size != memory_block_size_bytes()) - return rc; + !IS_ALIGNED(size, memory_block_size_bytes()) || !size) + return -EINVAL; + + /* + * We'll remember the old online type of each memory block, so we can + * try to revert whatever we did when offlining one memory block fails + * after offlining some others succeeded. + */ + online_types = kmalloc_array(mb_count, sizeof(*online_types), + GFP_KERNEL); + if (!online_types) + return -ENOMEM; + /* + * Initialize all states to MMOP_OFFLINE, so when we abort processing in + * try_offline_memory_block(), we'll skip all unprocessed blocks in + * try_reonline_memory_block(). + */ + memset(online_types, MMOP_OFFLINE, mb_count); lock_device_hotplug(); - mem = find_memory_block(__pfn_to_section(PFN_DOWN(start))); - if (mem) - rc = device_offline(&mem->dev); - /* Ignore if the device is already offline. */ - if (rc > 0) - rc = 0; + + tmp = online_types; + rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); /* - * In case we succeeded to offline the memory block, remove it. + * In case we succeeded to offline all memory, remove it. * This cannot fail as it cannot get onlined in the meantime. */ if (!rc) { rc = try_remove_memory(nid, start, size); - WARN_ON_ONCE(rc); + if (rc) + pr_err("%s: Failed to remove memory: %d", __func__, rc); + } + + /* + * Rollback what we did. While memory onlining might theoretically fail + * (nacked by a notifier), it barely ever happens. + */ + if (rc) { + tmp = online_types; + walk_memory_blocks(start, size, &tmp, + try_reonline_memory_block); } unlock_device_hotplug(); + kfree(online_types); return rc; } EXPORT_SYMBOL_GPL(offline_and_remove_memory); diff --git a/mm/mempool.c b/mm/mempool.c index f473cdddaff0..624ed51b060f 100644 --- a/mm/mempool.c +++ b/mm/mempool.c @@ -104,7 +104,7 @@ static inline void poison_element(mempool_t *pool, void *element) static __always_inline void kasan_poison_element(mempool_t *pool, void *element) { if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) - kasan_poison_kfree(element, _RET_IP_); + kasan_slab_free_mempool(element, _RET_IP_); else if (pool->alloc == mempool_alloc_pages) kasan_free_pages(element, (unsigned long)pool->pool_data); } @@ -112,7 +112,7 @@ static __always_inline void kasan_poison_element(mempool_t *pool, void *element) static void kasan_unpoison_element(mempool_t *pool, void *element) { if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) - kasan_unpoison_slab(element); + kasan_unpoison_range(element, __ksize(element)); else if (pool->alloc == mempool_alloc_pages) kasan_alloc_pages(element, (unsigned long)pool->pool_data); } diff --git a/mm/mmap.c b/mm/mmap.c index 10598e5d4757..dc7206032387 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -1897,8 +1897,8 @@ out: return addr; unmap_and_free_vma: + fput(vma->vm_file); vma->vm_file = NULL; - fput(file); /* Undo any partial mapping done by a device driver. */ unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 3beeb8d722f3..7a2c89b21115 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -1204,8 +1204,10 @@ static void kernel_init_free_pages(struct page *page, int numpages) /* s390's use of memset() could override KASAN redzones. */ kasan_disable_current(); - for (i = 0; i < numpages; i++) + for (i = 0; i < numpages; i++) { + page_kasan_tag_reset(page + i); clear_highpage(page + i); + } kasan_enable_current(); } @@ -7671,6 +7673,11 @@ unsigned long free_reserved_area(void *start, void *end, int poison, const char * alias for the memset(). */ direct_map_addr = page_address(page); + /* + * Perform a kasan-unchecked memset() since this memory + * has not been initialized. + */ + direct_map_addr = kasan_reset_tag(direct_map_addr); if ((unsigned int)poison <= 0xFF) memset(direct_map_addr, poison, PAGE_SIZE); diff --git a/mm/page_poison.c b/mm/page_poison.c index 06ec518b2089..65cdf844c8ad 100644 --- a/mm/page_poison.c +++ b/mm/page_poison.c @@ -25,7 +25,7 @@ static void poison_page(struct page *page) /* KASAN still think the page is in-use, so skip it. */ kasan_disable_current(); - memset(addr, PAGE_POISON, PAGE_SIZE); + memset(kasan_reset_tag(addr), PAGE_POISON, PAGE_SIZE); kasan_enable_current(); kunmap_atomic(addr); } diff --git a/mm/ptdump.c b/mm/ptdump.c index ba88ec43ff21..4354c1422d57 100644 --- a/mm/ptdump.c +++ b/mm/ptdump.c @@ -4,7 +4,7 @@ #include <linux/ptdump.h> #include <linux/kasan.h> -#ifdef CONFIG_KASAN +#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) /* * This is an optimization for KASAN=y case. Since all kasan page tables * eventually point to the kasan_early_shadow_page we could call note_page() @@ -31,7 +31,8 @@ static int ptdump_pgd_entry(pgd_t *pgd, unsigned long addr, struct ptdump_state *st = walk->private; pgd_t val = READ_ONCE(*pgd); -#if CONFIG_PGTABLE_LEVELS > 4 && defined(CONFIG_KASAN) +#if CONFIG_PGTABLE_LEVELS > 4 && \ + (defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)) if (pgd_page(val) == virt_to_page(lm_alias(kasan_early_shadow_p4d))) return note_kasan_page_table(walk, addr); #endif @@ -51,7 +52,8 @@ static int ptdump_p4d_entry(p4d_t *p4d, unsigned long addr, struct ptdump_state *st = walk->private; p4d_t val = READ_ONCE(*p4d); -#if CONFIG_PGTABLE_LEVELS > 3 && defined(CONFIG_KASAN) +#if CONFIG_PGTABLE_LEVELS > 3 && \ + (defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)) if (p4d_page(val) == virt_to_page(lm_alias(kasan_early_shadow_pud))) return note_kasan_page_table(walk, addr); #endif @@ -71,7 +73,8 @@ static int ptdump_pud_entry(pud_t *pud, unsigned long addr, struct ptdump_state *st = walk->private; pud_t val = READ_ONCE(*pud); -#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_KASAN) +#if CONFIG_PGTABLE_LEVELS > 2 && \ + (defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)) if (pud_page(val) == virt_to_page(lm_alias(kasan_early_shadow_pmd))) return note_kasan_page_table(walk, addr); #endif @@ -91,7 +94,7 @@ static int ptdump_pmd_entry(pmd_t *pmd, unsigned long addr, struct ptdump_state *st = walk->private; pmd_t val = READ_ONCE(*pmd); -#if defined(CONFIG_KASAN) +#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) if (pmd_page(val) == virt_to_page(lm_alias(kasan_early_shadow_pte))) return note_kasan_page_table(walk, addr); #endif diff --git a/mm/slab_common.c b/mm/slab_common.c index 2f2b55c2798e..e981c80d216c 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -18,6 +18,7 @@ #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/debugfs.h> +#include <linux/kasan.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/page.h> @@ -53,7 +54,7 @@ static DECLARE_WORK(slab_caches_to_rcu_destroy_work, */ #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ - SLAB_FAILSLAB | SLAB_KASAN) + SLAB_FAILSLAB | kasan_never_merge()) #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ SLAB_CACHE_DMA32 | SLAB_ACCOUNT) @@ -1176,7 +1177,7 @@ size_t ksize(const void *objp) * We assume that ksize callers could use whole allocated area, * so we need to unpoison this area. */ - kasan_unpoison_shadow(objp, size); + kasan_unpoison_range(objp, size); return size; } EXPORT_SYMBOL(ksize); diff --git a/mm/slub.c b/mm/slub.c index 4552319148f6..0c8b43a5b3b0 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -249,7 +249,7 @@ static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, { #ifdef CONFIG_SLAB_FREELIST_HARDENED /* - * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. + * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. * Normally, this doesn't cause any issues, as both set_freepointer() * and get_freepointer() are called with a pointer with the same tag. * However, there are some issues with CONFIG_SLUB_DEBUG code. For @@ -275,6 +275,7 @@ static inline void *freelist_dereference(const struct kmem_cache *s, static inline void *get_freepointer(struct kmem_cache *s, void *object) { + object = kasan_reset_tag(object); return freelist_dereference(s, object + s->offset); } @@ -304,6 +305,7 @@ static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) BUG_ON(object == fp); /* naive detection of double free or corruption */ #endif + freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); } @@ -538,8 +540,8 @@ static void print_section(char *level, char *text, u8 *addr, unsigned int length) { metadata_access_enable(); - print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, - length, 1); + print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS, + 16, 1, addr, length, 1); metadata_access_disable(); } @@ -570,7 +572,7 @@ static struct track *get_track(struct kmem_cache *s, void *object, p = object + get_info_end(s); - return p + alloc; + return kasan_reset_tag(p + alloc); } static void set_track(struct kmem_cache *s, void *object, @@ -583,7 +585,8 @@ static void set_track(struct kmem_cache *s, void *object, unsigned int nr_entries; metadata_access_enable(); - nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); + nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), + TRACK_ADDRS_COUNT, 3); metadata_access_disable(); if (nr_entries < TRACK_ADDRS_COUNT) @@ -747,7 +750,7 @@ static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, static void init_object(struct kmem_cache *s, void *object, u8 val) { - u8 *p = object; + u8 *p = kasan_reset_tag(object); if (s->flags & SLAB_RED_ZONE) memset(p - s->red_left_pad, val, s->red_left_pad); @@ -777,7 +780,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page, u8 *addr = page_address(page); metadata_access_enable(); - fault = memchr_inv(start, value, bytes); + fault = memchr_inv(kasan_reset_tag(start), value, bytes); metadata_access_disable(); if (!fault) return 1; @@ -873,7 +876,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page) pad = end - remainder; metadata_access_enable(); - fault = memchr_inv(pad, POISON_INUSE, remainder); + fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); metadata_access_disable(); if (!fault) return 1; @@ -1118,7 +1121,7 @@ void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) return; metadata_access_enable(); - memset(addr, POISON_INUSE, page_size(page)); + memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); metadata_access_disable(); } @@ -1566,10 +1569,10 @@ static inline bool slab_free_freelist_hook(struct kmem_cache *s, * Clear the object and the metadata, but don't touch * the redzone. */ - memset(object, 0, s->object_size); + memset(kasan_reset_tag(object), 0, s->object_size); rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; - memset((char *)object + s->inuse, 0, + memset((char *)kasan_reset_tag(object) + s->inuse, 0, s->size - s->inuse - rsize); } @@ -2881,10 +2884,10 @@ redo: stat(s, ALLOC_FASTPATH); } - maybe_wipe_obj_freeptr(s, object); + maybe_wipe_obj_freeptr(s, kasan_reset_tag(object)); if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) - memset(object, 0, s->object_size); + memset(kasan_reset_tag(object), 0, s->object_size); slab_post_alloc_hook(s, objcg, gfpflags, 1, &object); diff --git a/mm/util.c b/mm/util.c index 4ddb6e186dd5..8c9b7d1e7c49 100644 --- a/mm/util.c +++ b/mm/util.c @@ -311,6 +311,18 @@ int vma_is_stack_for_current(struct vm_area_struct *vma) return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); } +/* + * Change backing file, only valid to use during initial VMA setup. + */ +void vma_set_file(struct vm_area_struct *vma, struct file *file) +{ + /* Changing an anonymous vma with this is illegal */ + get_file(file); + swap(vma->vm_file, file); + fput(file); +} +EXPORT_SYMBOL(vma_set_file); + #ifndef STACK_RND_MASK #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ #endif |