summaryrefslogtreecommitdiff
path: root/mm/userfaultfd.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/userfaultfd.c')
-rw-r--r--mm/userfaultfd.c67
1 files changed, 38 insertions, 29 deletions
diff --git a/mm/userfaultfd.c b/mm/userfaultfd.c
index 9a3d451402d7..63a73e164d55 100644
--- a/mm/userfaultfd.c
+++ b/mm/userfaultfd.c
@@ -207,7 +207,7 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
unsigned long dst_start,
unsigned long src_start,
unsigned long len,
- bool zeropage)
+ enum mcopy_atomic_mode mode)
{
int vm_alloc_shared = dst_vma->vm_flags & VM_SHARED;
int vm_shared = dst_vma->vm_flags & VM_SHARED;
@@ -227,7 +227,7 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
* by THP. Since we can not reliably insert a zero page, this
* feature is not supported.
*/
- if (zeropage) {
+ if (mode == MCOPY_ATOMIC_ZEROPAGE) {
mmap_read_unlock(dst_mm);
return -EINVAL;
}
@@ -273,8 +273,6 @@ retry:
}
while (src_addr < src_start + len) {
- pte_t dst_pteval;
-
BUG_ON(dst_addr >= dst_start + len);
/*
@@ -290,23 +288,23 @@ retry:
mutex_lock(&hugetlb_fault_mutex_table[hash]);
err = -ENOMEM;
- dst_pte = huge_pte_alloc(dst_mm, dst_addr, vma_hpagesize);
+ dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize);
if (!dst_pte) {
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
goto out_unlock;
}
- err = -EEXIST;
- dst_pteval = huge_ptep_get(dst_pte);
- if (!huge_pte_none(dst_pteval)) {
+ if (mode != MCOPY_ATOMIC_CONTINUE &&
+ !huge_pte_none(huge_ptep_get(dst_pte))) {
+ err = -EEXIST;
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
goto out_unlock;
}
err = hugetlb_mcopy_atomic_pte(dst_mm, dst_pte, dst_vma,
- dst_addr, src_addr, &page);
+ dst_addr, src_addr, mode, &page);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
@@ -362,38 +360,38 @@ out:
* If a reservation for the page existed in the reservation
* map of a private mapping, the map was modified to indicate
* the reservation was consumed when the page was allocated.
- * We clear the PagePrivate flag now so that the global
+ * We clear the HPageRestoreReserve flag now so that the global
* reserve count will not be incremented in free_huge_page.
* The reservation map will still indicate the reservation
* was consumed and possibly prevent later page allocation.
* This is better than leaking a global reservation. If no
- * reservation existed, it is still safe to clear PagePrivate
- * as no adjustments to reservation counts were made during
- * allocation.
+ * reservation existed, it is still safe to clear
+ * HPageRestoreReserve as no adjustments to reservation counts
+ * were made during allocation.
*
* The reservation map for shared mappings indicates which
* pages have reservations. When a huge page is allocated
* for an address with a reservation, no change is made to
- * the reserve map. In this case PagePrivate will be set
- * to indicate that the global reservation count should be
+ * the reserve map. In this case HPageRestoreReserve will be
+ * set to indicate that the global reservation count should be
* incremented when the page is freed. This is the desired
* behavior. However, when a huge page is allocated for an
* address without a reservation a reservation entry is added
- * to the reservation map, and PagePrivate will not be set.
- * When the page is freed, the global reserve count will NOT
- * be incremented and it will appear as though we have leaked
- * reserved page. In this case, set PagePrivate so that the
- * global reserve count will be incremented to match the
- * reservation map entry which was created.
+ * to the reservation map, and HPageRestoreReserve will not be
+ * set. When the page is freed, the global reserve count will
+ * NOT be incremented and it will appear as though we have
+ * leaked reserved page. In this case, set HPageRestoreReserve
+ * so that the global reserve count will be incremented to
+ * match the reservation map entry which was created.
*
* Note that vm_alloc_shared is based on the flags of the vma
* for which the page was originally allocated. dst_vma could
* be different or NULL on error.
*/
if (vm_alloc_shared)
- SetPagePrivate(page);
+ SetHPageRestoreReserve(page);
else
- ClearPagePrivate(page);
+ ClearHPageRestoreReserve(page);
put_page(page);
}
BUG_ON(copied < 0);
@@ -408,7 +406,7 @@ extern ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
unsigned long dst_start,
unsigned long src_start,
unsigned long len,
- bool zeropage);
+ enum mcopy_atomic_mode mode);
#endif /* CONFIG_HUGETLB_PAGE */
static __always_inline ssize_t mfill_atomic_pte(struct mm_struct *dst_mm,
@@ -458,7 +456,7 @@ static __always_inline ssize_t __mcopy_atomic(struct mm_struct *dst_mm,
unsigned long dst_start,
unsigned long src_start,
unsigned long len,
- bool zeropage,
+ enum mcopy_atomic_mode mcopy_mode,
bool *mmap_changing,
__u64 mode)
{
@@ -469,6 +467,7 @@ static __always_inline ssize_t __mcopy_atomic(struct mm_struct *dst_mm,
long copied;
struct page *page;
bool wp_copy;
+ bool zeropage = (mcopy_mode == MCOPY_ATOMIC_ZEROPAGE);
/*
* Sanitize the command parameters:
@@ -527,10 +526,12 @@ retry:
*/
if (is_vm_hugetlb_page(dst_vma))
return __mcopy_atomic_hugetlb(dst_mm, dst_vma, dst_start,
- src_start, len, zeropage);
+ src_start, len, mcopy_mode);
if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma))
goto out_unlock;
+ if (mcopy_mode == MCOPY_ATOMIC_CONTINUE)
+ goto out_unlock;
/*
* Ensure the dst_vma has a anon_vma or this page
@@ -626,14 +627,22 @@ ssize_t mcopy_atomic(struct mm_struct *dst_mm, unsigned long dst_start,
unsigned long src_start, unsigned long len,
bool *mmap_changing, __u64 mode)
{
- return __mcopy_atomic(dst_mm, dst_start, src_start, len, false,
- mmap_changing, mode);
+ return __mcopy_atomic(dst_mm, dst_start, src_start, len,
+ MCOPY_ATOMIC_NORMAL, mmap_changing, mode);
}
ssize_t mfill_zeropage(struct mm_struct *dst_mm, unsigned long start,
unsigned long len, bool *mmap_changing)
{
- return __mcopy_atomic(dst_mm, start, 0, len, true, mmap_changing, 0);
+ return __mcopy_atomic(dst_mm, start, 0, len, MCOPY_ATOMIC_ZEROPAGE,
+ mmap_changing, 0);
+}
+
+ssize_t mcopy_continue(struct mm_struct *dst_mm, unsigned long start,
+ unsigned long len, bool *mmap_changing)
+{
+ return __mcopy_atomic(dst_mm, start, 0, len, MCOPY_ATOMIC_CONTINUE,
+ mmap_changing, 0);
}
int mwriteprotect_range(struct mm_struct *dst_mm, unsigned long start,