summaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Kconfig.locks2
-rw-r--r--kernel/audit.h5
-rw-r--r--kernel/audit_tree.c2
-rw-r--r--kernel/cgroup/cgroup-v1.c8
-rw-r--r--kernel/cgroup/cgroup.c27
-rw-r--r--kernel/cgroup/cpuset.c221
-rw-r--r--kernel/cpu.c84
-rw-r--r--kernel/cpu_pm.c50
-rw-r--r--kernel/events/hw_breakpoint.c4
-rw-r--r--kernel/exit.c2
-rw-r--r--kernel/fork.c2
-rw-r--r--kernel/futex.c556
-rw-r--r--kernel/irq/affinity.c8
-rw-r--r--kernel/irq/cpuhotplug.c2
-rw-r--r--kernel/irq/generic-chip.c17
-rw-r--r--kernel/irq/ipi.c32
-rw-r--r--kernel/irq/irqdesc.c2
-rw-r--r--kernel/irq/irqdomain.c1
-rw-r--r--kernel/irq/manage.c19
-rw-r--r--kernel/irq/matrix.c3
-rw-r--r--kernel/irq/msi.c153
-rw-r--r--kernel/irq/pm.c2
-rw-r--r--kernel/irq/proc.c2
-rw-r--r--kernel/irq/timings.c2
-rw-r--r--kernel/kcsan/debugfs.c2
-rw-r--r--kernel/locking/Makefile3
-rw-r--r--kernel/locking/locktorture.c25
-rw-r--r--kernel/locking/mutex-debug.c5
-rw-r--r--kernel/locking/mutex-debug.h29
-rw-r--r--kernel/locking/mutex.c541
-rw-r--r--kernel/locking/mutex.h48
-rw-r--r--kernel/locking/rtmutex.c1170
-rw-r--r--kernel/locking/rtmutex_api.c590
-rw-r--r--kernel/locking/rtmutex_common.h135
-rw-r--r--kernel/locking/rwbase_rt.c263
-rw-r--r--kernel/locking/rwsem.c115
-rw-r--r--kernel/locking/semaphore.c4
-rw-r--r--kernel/locking/spinlock.c7
-rw-r--r--kernel/locking/spinlock_debug.c5
-rw-r--r--kernel/locking/spinlock_rt.c263
-rw-r--r--kernel/locking/ww_mutex.h569
-rw-r--r--kernel/locking/ww_rt_mutex.c76
-rw-r--r--kernel/notifier.c19
-rw-r--r--kernel/padata.c35
-rw-r--r--kernel/params.c18
-rw-r--r--kernel/pid.c15
-rw-r--r--kernel/power/energy_model.c4
-rw-r--r--kernel/power/main.c2
-rw-r--r--kernel/power/suspend.c4
-rw-r--r--kernel/power/suspend_test.c2
-rw-r--r--kernel/rcu/rcuscale.c4
-rw-r--r--kernel/rcu/rcutorture.c7
-rw-r--r--kernel/rcu/refscale.c36
-rw-r--r--kernel/rcu/srcutiny.c2
-rw-r--r--kernel/rcu/tasks.h36
-rw-r--r--kernel/rcu/tree.c107
-rw-r--r--kernel/rcu/tree_nocb.h1496
-rw-r--r--kernel/rcu/tree_plugin.h1512
-rw-r--r--kernel/rcu/tree_stall.h111
-rw-r--r--kernel/scftorture.c78
-rw-r--r--kernel/sched/core.c703
-rw-r--r--kernel/sched/cpufreq_schedutil.c16
-rw-r--r--kernel/sched/deadline.c8
-rw-r--r--kernel/sched/debug.c10
-rw-r--r--kernel/sched/fair.c211
-rw-r--r--kernel/sched/sched.h31
-rw-r--r--kernel/sched/topology.c65
-rw-r--r--kernel/signal.c15
-rw-r--r--kernel/smp.c14
-rw-r--r--kernel/smpboot.c8
-rw-r--r--kernel/softirq.c2
-rw-r--r--kernel/sys.c3
-rw-r--r--kernel/sysctl.c42
-rw-r--r--kernel/time/clocksource-wdtest.c5
-rw-r--r--kernel/time/clocksource.c6
-rw-r--r--kernel/time/hrtimer.c340
-rw-r--r--kernel/time/jiffies.c21
-rw-r--r--kernel/time/posix-cpu-timers.c90
-rw-r--r--kernel/time/posix-timers.c2
-rw-r--r--kernel/time/tick-common.c7
-rw-r--r--kernel/time/tick-internal.h32
-rw-r--r--kernel/time/timekeeping.c36
-rw-r--r--kernel/torture.c6
-rw-r--r--kernel/trace/ftrace.c4
-rw-r--r--kernel/workqueue.c186
-rw-r--r--kernel/workqueue_internal.h3
86 files changed, 6738 insertions, 3672 deletions
diff --git a/kernel/Kconfig.locks b/kernel/Kconfig.locks
index 3de8fd11873b..4198f0273ecd 100644
--- a/kernel/Kconfig.locks
+++ b/kernel/Kconfig.locks
@@ -251,7 +251,7 @@ config ARCH_USE_QUEUED_RWLOCKS
config QUEUED_RWLOCKS
def_bool y if ARCH_USE_QUEUED_RWLOCKS
- depends on SMP
+ depends on SMP && !PREEMPT_RT
config ARCH_HAS_MMIOWB
bool
diff --git a/kernel/audit.h b/kernel/audit.h
index b565ea16c0a5..d6a2c899a8db 100644
--- a/kernel/audit.h
+++ b/kernel/audit.h
@@ -6,6 +6,9 @@
* Copyright 2005 IBM Corporation
*/
+#ifndef _KERNEL_AUDIT_H_
+#define _KERNEL_AUDIT_H_
+
#include <linux/fs.h>
#include <linux/audit.h>
#include <linux/skbuff.h>
@@ -331,3 +334,5 @@ extern int audit_filter(int msgtype, unsigned int listtype);
extern void audit_ctl_lock(void);
extern void audit_ctl_unlock(void);
+
+#endif
diff --git a/kernel/audit_tree.c b/kernel/audit_tree.c
index b2be4e978ba3..2cd7b5694422 100644
--- a/kernel/audit_tree.c
+++ b/kernel/audit_tree.c
@@ -593,7 +593,6 @@ static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
spin_lock(&hash_lock);
}
spin_unlock(&hash_lock);
- put_tree(victim);
}
/*
@@ -602,6 +601,7 @@ static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
static void prune_one(struct audit_tree *victim)
{
prune_tree_chunks(victim, false);
+ put_tree(victim);
}
/* trim the uncommitted chunks from tree */
diff --git a/kernel/cgroup/cgroup-v1.c b/kernel/cgroup/cgroup-v1.c
index de2c432dee20..35b920328344 100644
--- a/kernel/cgroup/cgroup-v1.c
+++ b/kernel/cgroup/cgroup-v1.c
@@ -50,6 +50,8 @@ bool cgroup1_ssid_disabled(int ssid)
* cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
* @from: attach to all cgroups of a given task
* @tsk: the task to be attached
+ *
+ * Return: %0 on success or a negative errno code on failure
*/
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
@@ -80,7 +82,7 @@ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
/**
- * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
+ * cgroup_transfer_tasks - move tasks from one cgroup to another
* @to: cgroup to which the tasks will be moved
* @from: cgroup in which the tasks currently reside
*
@@ -89,6 +91,8 @@ EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
* is guaranteed to be either visible in the source cgroup after the
* parent's migration is complete or put into the target cgroup. No task
* can slip out of migration through forking.
+ *
+ * Return: %0 on success or a negative errno code on failure
*/
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
@@ -682,6 +686,8 @@ int proc_cgroupstats_show(struct seq_file *m, void *v)
*
* Build and fill cgroupstats so that taskstats can export it to user
* space.
+ *
+ * Return: %0 on success or a negative errno code on failure
*/
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c
index 3a0161c21b6b..881ce1470beb 100644
--- a/kernel/cgroup/cgroup.c
+++ b/kernel/cgroup/cgroup.c
@@ -68,6 +68,14 @@
#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
/*
+ * To avoid confusing the compiler (and generating warnings) with code
+ * that attempts to access what would be a 0-element array (i.e. sized
+ * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
+ * constant expression can be added.
+ */
+#define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
+
+/*
* cgroup_mutex is the master lock. Any modification to cgroup or its
* hierarchy must be performed while holding it.
*
@@ -248,7 +256,7 @@ static int cgroup_addrm_files(struct cgroup_subsys_state *css,
*/
bool cgroup_ssid_enabled(int ssid)
{
- if (CGROUP_SUBSYS_COUNT == 0)
+ if (!CGROUP_HAS_SUBSYS_CONFIG)
return false;
return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
@@ -472,7 +480,7 @@ static u16 cgroup_ss_mask(struct cgroup *cgrp)
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
struct cgroup_subsys *ss)
{
- if (ss)
+ if (CGROUP_HAS_SUBSYS_CONFIG && ss)
return rcu_dereference_check(cgrp->subsys[ss->id],
lockdep_is_held(&cgroup_mutex));
else
@@ -550,6 +558,9 @@ struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
{
struct cgroup_subsys_state *css;
+ if (!CGROUP_HAS_SUBSYS_CONFIG)
+ return NULL;
+
do {
css = cgroup_css(cgrp, ss);
@@ -577,6 +588,9 @@ struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
{
struct cgroup_subsys_state *css;
+ if (!CGROUP_HAS_SUBSYS_CONFIG)
+ return NULL;
+
rcu_read_lock();
do {
@@ -647,7 +661,7 @@ struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
* the matching css from the cgroup's subsys table is guaranteed to
* be and stay valid until the enclosing operation is complete.
*/
- if (cft->ss)
+ if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
else
return &cgrp->self;
@@ -695,7 +709,7 @@ EXPORT_SYMBOL_GPL(of_css);
*/
#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
unsigned long __ss_mask = (ss_mask); \
- if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
+ if (!CGROUP_HAS_SUBSYS_CONFIG) { \
(ssid) = 0; \
break; \
} \
@@ -2169,7 +2183,6 @@ static void cgroup_kill_sb(struct super_block *sb)
/*
* If @root doesn't have any children, start killing it.
* This prevents new mounts by disabling percpu_ref_tryget_live().
- * cgroup_mount() may wait for @root's release.
*
* And don't kill the default root.
*/
@@ -2373,7 +2386,7 @@ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
struct css_set *cset = tset->cur_cset;
struct task_struct *task = tset->cur_task;
- while (&cset->mg_node != tset->csets) {
+ while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
if (!task)
task = list_first_entry(&cset->mg_tasks,
struct task_struct, cg_list);
@@ -4644,7 +4657,7 @@ void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
it->ss = css->ss;
it->flags = flags;
- if (it->ss)
+ if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
it->cset_pos = &css->cgroup->e_csets[css->ss->id];
else
it->cset_pos = &css->cgroup->cset_links;
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index adb5190c4429..df1ccf4558f8 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -160,6 +160,9 @@ struct cpuset {
*/
int use_parent_ecpus;
int child_ecpus_count;
+
+ /* Handle for cpuset.cpus.partition */
+ struct cgroup_file partition_file;
};
/*
@@ -263,6 +266,16 @@ static inline int is_partition_root(const struct cpuset *cs)
return cs->partition_root_state > 0;
}
+/*
+ * Send notification event of whenever partition_root_state changes.
+ */
+static inline void notify_partition_change(struct cpuset *cs,
+ int old_prs, int new_prs)
+{
+ if (old_prs != new_prs)
+ cgroup_file_notify(&cs->partition_file);
+}
+
static struct cpuset top_cpuset = {
.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
(1 << CS_MEM_EXCLUSIVE)),
@@ -372,18 +385,29 @@ static inline bool is_in_v2_mode(void)
}
/*
- * Return in pmask the portion of a cpusets's cpus_allowed that
- * are online. If none are online, walk up the cpuset hierarchy
- * until we find one that does have some online cpus.
+ * Return in pmask the portion of a task's cpusets's cpus_allowed that
+ * are online and are capable of running the task. If none are found,
+ * walk up the cpuset hierarchy until we find one that does have some
+ * appropriate cpus.
*
* One way or another, we guarantee to return some non-empty subset
* of cpu_online_mask.
*
* Call with callback_lock or cpuset_mutex held.
*/
-static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
+static void guarantee_online_cpus(struct task_struct *tsk,
+ struct cpumask *pmask)
{
- while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
+ const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
+ struct cpuset *cs;
+
+ if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
+ cpumask_copy(pmask, cpu_online_mask);
+
+ rcu_read_lock();
+ cs = task_cs(tsk);
+
+ while (!cpumask_intersects(cs->effective_cpus, pmask)) {
cs = parent_cs(cs);
if (unlikely(!cs)) {
/*
@@ -393,11 +417,13 @@ static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
* cpuset's effective_cpus is on its way to be
* identical to cpu_online_mask.
*/
- cpumask_copy(pmask, cpu_online_mask);
- return;
+ goto out_unlock;
}
}
- cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
+ cpumask_and(pmask, pmask, cs->effective_cpus);
+
+out_unlock:
+ rcu_read_unlock();
}
/*
@@ -979,7 +1005,7 @@ partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
* 'cpus' is removed, then call this routine to rebuild the
* scheduler's dynamic sched domains.
*
- * Call with cpuset_mutex held. Takes get_online_cpus().
+ * Call with cpuset_mutex held. Takes cpus_read_lock().
*/
static void rebuild_sched_domains_locked(void)
{
@@ -1040,11 +1066,11 @@ static void rebuild_sched_domains_locked(void)
void rebuild_sched_domains(void)
{
- get_online_cpus();
+ cpus_read_lock();
percpu_down_write(&cpuset_rwsem);
rebuild_sched_domains_locked();
percpu_up_write(&cpuset_rwsem);
- put_online_cpus();
+ cpus_read_unlock();
}
/**
@@ -1114,7 +1140,7 @@ enum subparts_cmd {
* cpus_allowed can be granted or an error code will be returned.
*
* For partcmd_disable, the cpuset is being transofrmed from a partition
- * root back to a non-partition root. any CPUs in cpus_allowed that are in
+ * root back to a non-partition root. Any CPUs in cpus_allowed that are in
* parent's subparts_cpus will be taken away from that cpumask and put back
* into parent's effective_cpus. 0 should always be returned.
*
@@ -1148,6 +1174,7 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
struct cpuset *parent = parent_cs(cpuset);
int adding; /* Moving cpus from effective_cpus to subparts_cpus */
int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
+ int old_prs, new_prs;
bool part_error = false; /* Partition error? */
percpu_rwsem_assert_held(&cpuset_rwsem);
@@ -1183,6 +1210,7 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
* A cpumask update cannot make parent's effective_cpus become empty.
*/
adding = deleting = false;
+ old_prs = new_prs = cpuset->partition_root_state;
if (cmd == partcmd_enable) {
cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
adding = true;
@@ -1225,7 +1253,7 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
/*
* partcmd_update w/o newmask:
*
- * addmask = cpus_allowed & parent->effectiveb_cpus
+ * addmask = cpus_allowed & parent->effective_cpus
*
* Note that parent's subparts_cpus may have been
* pre-shrunk in case there is a change in the cpu list.
@@ -1247,11 +1275,11 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
switch (cpuset->partition_root_state) {
case PRS_ENABLED:
if (part_error)
- cpuset->partition_root_state = PRS_ERROR;
+ new_prs = PRS_ERROR;
break;
case PRS_ERROR:
if (!part_error)
- cpuset->partition_root_state = PRS_ENABLED;
+ new_prs = PRS_ENABLED;
break;
}
/*
@@ -1260,10 +1288,10 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
part_error = (prev_prs == PRS_ERROR);
}
- if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
+ if (!part_error && (new_prs == PRS_ERROR))
return 0; /* Nothing need to be done */
- if (cpuset->partition_root_state == PRS_ERROR) {
+ if (new_prs == PRS_ERROR) {
/*
* Remove all its cpus from parent's subparts_cpus.
*/
@@ -1272,7 +1300,7 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
parent->subparts_cpus);
}
- if (!adding && !deleting)
+ if (!adding && !deleting && (new_prs == old_prs))
return 0;
/*
@@ -1299,7 +1327,12 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
}
parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
+
+ if (old_prs != new_prs)
+ cpuset->partition_root_state = new_prs;
+
spin_unlock_irq(&callback_lock);
+ notify_partition_change(cpuset, old_prs, new_prs);
return cmd == partcmd_update;
}
@@ -1321,6 +1354,7 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
bool need_rebuild_sched_domains = false;
+ int old_prs, new_prs;
rcu_read_lock();
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
@@ -1360,17 +1394,18 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
* update_tasks_cpumask() again for tasks in the parent
* cpuset if the parent's subparts_cpus changes.
*/
- if ((cp != cs) && cp->partition_root_state) {
+ old_prs = new_prs = cp->partition_root_state;
+ if ((cp != cs) && old_prs) {
switch (parent->partition_root_state) {
case PRS_DISABLED:
/*
* If parent is not a partition root or an
- * invalid partition root, clear the state
- * state and the CS_CPU_EXCLUSIVE flag.
+ * invalid partition root, clear its state
+ * and its CS_CPU_EXCLUSIVE flag.
*/
WARN_ON_ONCE(cp->partition_root_state
!= PRS_ERROR);
- cp->partition_root_state = 0;
+ new_prs = PRS_DISABLED;
/*
* clear_bit() is an atomic operation and
@@ -1391,11 +1426,7 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
/*
* When parent is invalid, it has to be too.
*/
- cp->partition_root_state = PRS_ERROR;
- if (cp->nr_subparts_cpus) {
- cp->nr_subparts_cpus = 0;
- cpumask_clear(cp->subparts_cpus);
- }
+ new_prs = PRS_ERROR;
break;
}
}
@@ -1407,8 +1438,7 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
spin_lock_irq(&callback_lock);
cpumask_copy(cp->effective_cpus, tmp->new_cpus);
- if (cp->nr_subparts_cpus &&
- (cp->partition_root_state != PRS_ENABLED)) {
+ if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
cp->nr_subparts_cpus = 0;
cpumask_clear(cp->subparts_cpus);
} else if (cp->nr_subparts_cpus) {
@@ -1435,7 +1465,12 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
= cpumask_weight(cp->subparts_cpus);
}
}
+
+ if (new_prs != old_prs)
+ cp->partition_root_state = new_prs;
+
spin_unlock_irq(&callback_lock);
+ notify_partition_change(cp, old_prs, new_prs);
WARN_ON(!is_in_v2_mode() &&
!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
@@ -1612,6 +1647,11 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
{
struct cpuset_migrate_mm_work *mwork;
+ if (nodes_equal(*from, *to)) {
+ mmput(mm);
+ return;
+ }
+
mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
if (mwork) {
mwork->mm = mm;
@@ -1937,34 +1977,32 @@ out:
/*
* update_prstate - update partititon_root_state
- * cs: the cpuset to update
- * val: 0 - disabled, 1 - enabled
+ * cs: the cpuset to update
+ * new_prs: new partition root state
*
* Call with cpuset_mutex held.
*/
-static int update_prstate(struct cpuset *cs, int val)
+static int update_prstate(struct cpuset *cs, int new_prs)
{
- int err;
+ int err, old_prs = cs->partition_root_state;
struct cpuset *parent = parent_cs(cs);
- struct tmpmasks tmp;
+ struct tmpmasks tmpmask;
- if ((val != 0) && (val != 1))
- return -EINVAL;
- if (val == cs->partition_root_state)
+ if (old_prs == new_prs)
return 0;
/*
* Cannot force a partial or invalid partition root to a full
* partition root.
*/
- if (val && cs->partition_root_state)
+ if (new_prs && (old_prs == PRS_ERROR))
return -EINVAL;
- if (alloc_cpumasks(NULL, &tmp))
+ if (alloc_cpumasks(NULL, &tmpmask))
return -ENOMEM;
err = -EINVAL;
- if (!cs->partition_root_state) {
+ if (!old_prs) {
/*
* Turning on partition root requires setting the
* CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
@@ -1978,31 +2016,27 @@ static int update_prstate(struct cpuset *cs, int val)
goto out;
err = update_parent_subparts_cpumask(cs, partcmd_enable,
- NULL, &tmp);
+ NULL, &tmpmask);
if (err) {
update_flag(CS_CPU_EXCLUSIVE, cs, 0);
goto out;
}
- cs->partition_root_state = PRS_ENABLED;
} else {
/*
* Turning off partition root will clear the
* CS_CPU_EXCLUSIVE bit.
*/
- if (cs->partition_root_state == PRS_ERROR) {
- cs->partition_root_state = 0;
+ if (old_prs == PRS_ERROR) {
update_flag(CS_CPU_EXCLUSIVE, cs, 0);
err = 0;
goto out;
}
err = update_parent_subparts_cpumask(cs, partcmd_disable,
- NULL, &tmp);
+ NULL, &tmpmask);
if (err)
goto out;
- cs->partition_root_state = 0;
-
/* Turning off CS_CPU_EXCLUSIVE will not return error */
update_flag(CS_CPU_EXCLUSIVE, cs, 0);
}
@@ -2015,11 +2049,18 @@ static int update_prstate(struct cpuset *cs, int val)
update_tasks_cpumask(parent);
if (parent->child_ecpus_count)
- update_sibling_cpumasks(parent, cs, &tmp);
+ update_sibling_cpumasks(parent, cs, &tmpmask);
rebuild_sched_domains_locked();
out:
- free_cpumasks(NULL, &tmp);
+ if (!err) {
+ spin_lock_irq(&callback_lock);
+ cs->partition_root_state = new_prs;
+ spin_unlock_irq(&callback_lock);
+ notify_partition_change(cs, old_prs, new_prs);
+ }
+
+ free_cpumasks(NULL, &tmpmask);
return err;
}
@@ -2199,15 +2240,13 @@ static void cpuset_attach(struct cgroup_taskset *tset)
percpu_down_write(&cpuset_rwsem);
- /* prepare for attach */
- if (cs == &top_cpuset)
- cpumask_copy(cpus_attach, cpu_possible_mask);
- else
- guarantee_online_cpus(cs, cpus_attach);
-
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
cgroup_taskset_for_each(task, css, tset) {
+ if (cs != &top_cpuset)
+ guarantee_online_cpus(task, cpus_attach);
+ else
+ cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
/*
* can_attach beforehand should guarantee that this doesn't
* fail. TODO: have a better way to handle failure here
@@ -2282,7 +2321,7 @@ static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
cpuset_filetype_t type = cft->private;
int retval = 0;
- get_online_cpus();
+ cpus_read_lock();
percpu_down_write(&cpuset_rwsem);
if (!is_cpuset_online(cs)) {
retval = -ENODEV;
@@ -2320,7 +2359,7 @@ static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
}
out_unlock:
percpu_up_write(&cpuset_rwsem);
- put_online_cpus();
+ cpus_read_unlock();
return retval;
}
@@ -2331,7 +2370,7 @@ static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
cpuset_filetype_t type = cft->private;
int retval = -ENODEV;
- get_online_cpus();
+ cpus_read_lock();
percpu_down_write(&cpuset_rwsem);
if (!is_cpuset_online(cs))
goto out_unlock;
@@ -2346,7 +2385,7 @@ static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
}
out_unlock:
percpu_up_write(&cpuset_rwsem);
- put_online_cpus();
+ cpus_read_unlock();
return retval;
}
@@ -2385,7 +2424,7 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
kernfs_break_active_protection(of->kn);
flush_work(&cpuset_hotplug_work);
- get_online_cpus();
+ cpus_read_lock();
percpu_down_write(&cpuset_rwsem);
if (!is_cpuset_online(cs))
goto out_unlock;
@@ -2411,7 +2450,7 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
free_cpuset(trialcs);
out_unlock:
percpu_up_write(&cpuset_rwsem);
- put_online_cpus();
+ cpus_read_unlock();
kernfs_unbreak_active_protection(of->kn);
css_put(&cs->css);
flush_workqueue(cpuset_migrate_mm_wq);
@@ -2542,7 +2581,7 @@ static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
return -EINVAL;
css_get(&cs->css);
- get_online_cpus();
+ cpus_read_lock();
percpu_down_write(&cpuset_rwsem);
if (!is_cpuset_online(cs))
goto out_unlock;
@@ -2550,7 +2589,7 @@ static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
retval = update_prstate(cs, val);
out_unlock:
percpu_up_write(&cpuset_rwsem);
- put_online_cpus();
+ cpus_read_unlock();
css_put(&cs->css);
return retval ?: nbytes;
}
@@ -2702,6 +2741,7 @@ static struct cftype dfl_files[] = {
.write = sched_partition_write,
.private = FILE_PARTITION_ROOT,
.flags = CFTYPE_NOT_ON_ROOT,
+ .file_offset = offsetof(struct cpuset, partition_file),
},
{
@@ -2737,12 +2777,16 @@ cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
return ERR_PTR(-ENOMEM);
}
- set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+ __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
nodes_clear(cs->mems_allowed);
nodes_clear(cs->effective_mems);
fmeter_init(&cs->fmeter);
cs->relax_domain_level = -1;
+ /* Set CS_MEMORY_MIGRATE for default hierarchy */
+ if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
+ __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
+
return &cs->css;
}
@@ -2756,7 +2800,7 @@ static int cpuset_css_online(struct cgroup_subsys_state *css)
if (!parent)
return 0;
- get_online_cpus();
+ cpus_read_lock();
percpu_down_write(&cpuset_rwsem);
set_bit(CS_ONLINE, &cs->flags);
@@ -2809,7 +2853,7 @@ static int cpuset_css_online(struct cgroup_subsys_state *css)
spin_unlock_irq(&callback_lock);
out_unlock:
percpu_up_write(&cpuset_rwsem);
- put_online_cpus();
+ cpus_read_unlock();
return 0;
}
@@ -2828,7 +2872,7 @@ static void cpuset_css_offline(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
- get_online_cpus();
+ cpus_read_lock();
percpu_down_write(&cpuset_rwsem);
if (is_partition_root(cs))
@@ -2849,7 +2893,7 @@ static void cpuset_css_offline(struct cgroup_subsys_state *css)
clear_bit(CS_ONLINE, &cs->flags);
percpu_up_write(&cpuset_rwsem);
- put_online_cpus();
+ cpus_read_unlock();
}
static void cpuset_css_free(struct cgroup_subsys_state *css)
@@ -3060,7 +3104,7 @@ retry:
goto retry;
}
- parent = parent_cs(cs);
+ parent = parent_cs(cs);
compute_effective_cpumask(&new_cpus, cs, parent);
nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
@@ -3082,8 +3126,10 @@ retry:
if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
(parent->partition_root_state == PRS_ERROR))) {
if (cs->nr_subparts_cpus) {
+ spin_lock_irq(&callback_lock);
cs->nr_subparts_cpus = 0;
cpumask_clear(cs->subparts_cpus);
+ spin_unlock_irq(&callback_lock);
compute_effective_cpumask(&new_cpus, cs, parent);
}
@@ -3095,9 +3141,17 @@ retry:
*/
if ((parent->partition_root_state == PRS_ERROR) ||
cpumask_empty(&new_cpus)) {
+ int old_prs;
+
update_parent_subparts_cpumask(cs, partcmd_disable,
NULL, tmp);
- cs->partition_root_state = PRS_ERROR;
+ old_prs = cs->partition_root_state;
+ if (old_prs != PRS_ERROR) {
+ spin_lock_irq(&callback_lock);
+ cs->partition_root_state = PRS_ERROR;
+ spin_unlock_irq(&callback_lock);
+ notify_partition_change(cs, old_prs, PRS_ERROR);
+ }
}
cpuset_force_rebuild();
}
@@ -3168,6 +3222,13 @@ static void cpuset_hotplug_workfn(struct work_struct *work)
cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
+ /*
+ * In the rare case that hotplug removes all the cpus in subparts_cpus,
+ * we assumed that cpus are updated.
+ */
+ if (!cpus_updated && top_cpuset.nr_subparts_cpus)
+ cpus_updated = true;
+
/* synchronize cpus_allowed to cpu_active_mask */
if (cpus_updated) {
spin_lock_irq(&callback_lock);
@@ -3302,9 +3363,7 @@ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
unsigned long flags;
spin_lock_irqsave(&callback_lock, flags);
- rcu_read_lock();
- guarantee_online_cpus(task_cs(tsk), pmask);
- rcu_read_unlock();
+ guarantee_online_cpus(tsk, pmask);
spin_unlock_irqrestore(&callback_lock, flags);
}
@@ -3318,13 +3377,22 @@ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
* which will not contain a sane cpumask during cases such as cpu hotplugging.
* This is the absolute last resort for the scheduler and it is only used if
* _every_ other avenue has been traveled.
+ *
+ * Returns true if the affinity of @tsk was changed, false otherwise.
**/
-void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
+bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
{
+ const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
+ const struct cpumask *cs_mask;
+ bool changed = false;
+
rcu_read_lock();
- do_set_cpus_allowed(tsk, is_in_v2_mode() ?
- task_cs(tsk)->cpus_allowed : cpu_possible_mask);
+ cs_mask = task_cs(tsk)->cpus_allowed;
+ if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
+ do_set_cpus_allowed(tsk, cs_mask);
+ changed = true;
+ }
rcu_read_unlock();
/*
@@ -3344,6 +3412,7 @@ void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
* select_fallback_rq() will fix things ups and set cpu_possible_mask
* if required.
*/
+ return changed;
}
void __init cpuset_init_current_mems_allowed(void)
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 804b847912dc..192e43a87407 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -41,14 +41,19 @@
#include "smpboot.h"
/**
- * cpuhp_cpu_state - Per cpu hotplug state storage
+ * struct cpuhp_cpu_state - Per cpu hotplug state storage
* @state: The current cpu state
* @target: The target state
+ * @fail: Current CPU hotplug callback state
* @thread: Pointer to the hotplug thread
* @should_run: Thread should execute
* @rollback: Perform a rollback
* @single: Single callback invocation
* @bringup: Single callback bringup or teardown selector
+ * @cpu: CPU number
+ * @node: Remote CPU node; for multi-instance, do a
+ * single entry callback for install/remove
+ * @last: For multi-instance rollback, remember how far we got
* @cb_state: The state for a single callback (install/uninstall)
* @result: Result of the operation
* @done_up: Signal completion to the issuer of the task for cpu-up
@@ -106,11 +111,12 @@ static inline void cpuhp_lock_release(bool bringup) { }
#endif
/**
- * cpuhp_step - Hotplug state machine step
+ * struct cpuhp_step - Hotplug state machine step
* @name: Name of the step
* @startup: Startup function of the step
* @teardown: Teardown function of the step
* @cant_stop: Bringup/teardown can't be stopped at this step
+ * @multi_instance: State has multiple instances which get added afterwards
*/
struct cpuhp_step {
const char *name;
@@ -124,7 +130,9 @@ struct cpuhp_step {
int (*multi)(unsigned int cpu,
struct hlist_node *node);
} teardown;
+ /* private: */
struct hlist_head list;
+ /* public: */
bool cant_stop;
bool multi_instance;
};
@@ -143,7 +151,7 @@ static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
}
/**
- * cpuhp_invoke_callback _ Invoke the callbacks for a given state
+ * cpuhp_invoke_callback - Invoke the callbacks for a given state
* @cpu: The cpu for which the callback should be invoked
* @state: The state to do callbacks for
* @bringup: True if the bringup callback should be invoked
@@ -151,6 +159,8 @@ static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
* @lastp: For multi-instance rollback, remember how far we got
*
* Called from cpu hotplug and from the state register machinery.
+ *
+ * Return: %0 on success or a negative errno code
*/
static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
bool bringup, struct hlist_node *node,
@@ -682,6 +692,10 @@ static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
ret = cpuhp_invoke_callback_range(true, cpu, st, target);
if (ret) {
+ pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
+ ret, cpu, cpuhp_get_step(st->state)->name,
+ st->state);
+
cpuhp_reset_state(st, prev_state);
if (can_rollback_cpu(st))
WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
@@ -1081,6 +1095,9 @@ static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
ret = cpuhp_invoke_callback_range(false, cpu, st, target);
if (ret) {
+ pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
+ ret, cpu, cpuhp_get_step(st->state)->name,
+ st->state);
cpuhp_reset_state(st, prev_state);
@@ -1183,6 +1200,8 @@ static int cpu_down(unsigned int cpu, enum cpuhp_state target)
* This function is meant to be used by device core cpu subsystem only.
*
* Other subsystems should use remove_cpu() instead.
+ *
+ * Return: %0 on success or a negative errno code
*/
int cpu_device_down(struct device *dev)
{
@@ -1395,6 +1414,8 @@ out:
* This function is meant to be used by device core cpu subsystem only.
*
* Other subsystems should use add_cpu() instead.
+ *
+ * Return: %0 on success or a negative errno code
*/
int cpu_device_up(struct device *dev)
{
@@ -1420,6 +1441,8 @@ EXPORT_SYMBOL_GPL(add_cpu);
* On some architectures like arm64, we can hibernate on any CPU, but on
* wake up the CPU we hibernated on might be offline as a side effect of
* using maxcpus= for example.
+ *
+ * Return: %0 on success or a negative errno code
*/
int bringup_hibernate_cpu(unsigned int sleep_cpu)
{
@@ -1976,6 +1999,7 @@ EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
/**
* __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
* @state: The state to setup
+ * @name: Name of the step
* @invoke: If true, the startup function is invoked for cpus where
* cpu state >= @state
* @startup: startup callback function
@@ -1984,9 +2008,9 @@ EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
* added afterwards.
*
* The caller needs to hold cpus read locked while calling this function.
- * Returns:
+ * Return:
* On success:
- * Positive state number if @state is CPUHP_AP_ONLINE_DYN
+ * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
* 0 for all other states
* On failure: proper (negative) error code
*/
@@ -2232,18 +2256,17 @@ int cpuhp_smt_enable(void)
#endif
#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
-static ssize_t show_cpuhp_state(struct device *dev,
- struct device_attribute *attr, char *buf)
+static ssize_t state_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
{
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
return sprintf(buf, "%d\n", st->state);
}
-static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
+static DEVICE_ATTR_RO(state);
-static ssize_t write_cpuhp_target(struct device *dev,
- struct device_attribute *attr,
- const char *buf, size_t count)
+static ssize_t target_store(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count)
{
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
struct cpuhp_step *sp;
@@ -2281,19 +2304,17 @@ out:
return ret ? ret : count;
}
-static ssize_t show_cpuhp_target(struct device *dev,
- struct device_attribute *attr, char *buf)
+static ssize_t target_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
{
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
return sprintf(buf, "%d\n", st->target);
}
-static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
-
+static DEVICE_ATTR_RW(target);
-static ssize_t write_cpuhp_fail(struct device *dev,
- struct device_attribute *attr,
- const char *buf, size_t count)
+static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count)
{
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
struct cpuhp_step *sp;
@@ -2342,15 +2363,15 @@ static ssize_t write_cpuhp_fail(struct device *dev,
return count;
}
-static ssize_t show_cpuhp_fail(struct device *dev,
- struct device_attribute *attr, char *buf)
+static ssize_t fail_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
{
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
return sprintf(buf, "%d\n", st->fail);
}
-static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
+static DEVICE_ATTR_RW(fail);
static struct attribute *cpuhp_cpu_attrs[] = {
&dev_attr_state.attr,
@@ -2365,7 +2386,7 @@ static const struct attribute_group cpuhp_cpu_attr_group = {
NULL
};
-static ssize_t show_cpuhp_states(struct device *dev,
+static ssize_t states_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t cur, res = 0;
@@ -2384,7 +2405,7 @@ static ssize_t show_cpuhp_states(struct device *dev,
mutex_unlock(&cpuhp_state_mutex);
return res;
}
-static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
+static DEVICE_ATTR_RO(states);
static struct attribute *cpuhp_cpu_root_attrs[] = {
&dev_attr_states.attr,
@@ -2457,28 +2478,27 @@ static const char *smt_states[] = {
[CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
};
-static ssize_t
-show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
+static ssize_t control_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
{
const char *state = smt_states[cpu_smt_control];
return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
}
-static ssize_t
-store_smt_control(struct device *dev, struct device_attribute *attr,
- const char *buf, size_t count)
+static ssize_t control_store(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count)
{
return __store_smt_control(dev, attr, buf, count);
}
-static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
+static DEVICE_ATTR_RW(control);
-static ssize_t
-show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
+static ssize_t active_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
}
-static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
+static DEVICE_ATTR_RO(active);
static struct attribute *cpuhp_smt_attrs[] = {
&dev_attr_control.attr,
diff --git a/kernel/cpu_pm.c b/kernel/cpu_pm.c
index f7e1d0eccdbc..246efc74e3f3 100644
--- a/kernel/cpu_pm.c
+++ b/kernel/cpu_pm.c
@@ -13,19 +13,32 @@
#include <linux/spinlock.h>
#include <linux/syscore_ops.h>
-static ATOMIC_NOTIFIER_HEAD(cpu_pm_notifier_chain);
+/*
+ * atomic_notifiers use a spinlock_t, which can block under PREEMPT_RT.
+ * Notifications for cpu_pm will be issued by the idle task itself, which can
+ * never block, IOW it requires using a raw_spinlock_t.
+ */
+static struct {
+ struct raw_notifier_head chain;
+ raw_spinlock_t lock;
+} cpu_pm_notifier = {
+ .chain = RAW_NOTIFIER_INIT(cpu_pm_notifier.chain),
+ .lock = __RAW_SPIN_LOCK_UNLOCKED(cpu_pm_notifier.lock),
+};
static int cpu_pm_notify(enum cpu_pm_event event)
{
int ret;
/*
- * atomic_notifier_call_chain has a RCU read critical section, which
- * could be disfunctional in cpu idle. Copy RCU_NONIDLE code to let
- * RCU know this.
+ * This introduces a RCU read critical section, which could be
+ * disfunctional in cpu idle. Copy RCU_NONIDLE code to let RCU know
+ * this.
*/
rcu_irq_enter_irqson();
- ret = atomic_notifier_call_chain(&cpu_pm_notifier_chain, event, NULL);
+ rcu_read_lock();
+ ret = raw_notifier_call_chain(&cpu_pm_notifier.chain, event, NULL);
+ rcu_read_unlock();
rcu_irq_exit_irqson();
return notifier_to_errno(ret);
@@ -33,10 +46,13 @@ static int cpu_pm_notify(enum cpu_pm_event event)
static int cpu_pm_notify_robust(enum cpu_pm_event event_up, enum cpu_pm_event event_down)
{
+ unsigned long flags;
int ret;
rcu_irq_enter_irqson();
- ret = atomic_notifier_call_chain_robust(&cpu_pm_notifier_chain, event_up, event_down, NULL);
+ raw_spin_lock_irqsave(&cpu_pm_notifier.lock, flags);
+ ret = raw_notifier_call_chain_robust(&cpu_pm_notifier.chain, event_up, event_down, NULL);
+ raw_spin_unlock_irqrestore(&cpu_pm_notifier.lock, flags);
rcu_irq_exit_irqson();
return notifier_to_errno(ret);
@@ -49,12 +65,17 @@ static int cpu_pm_notify_robust(enum cpu_pm_event event_up, enum cpu_pm_event ev
* Add a driver to a list of drivers that are notified about
* CPU and CPU cluster low power entry and exit.
*
- * This function may sleep, and has the same return conditions as
- * raw_notifier_chain_register.
+ * This function has the same return conditions as raw_notifier_chain_register.
*/
int cpu_pm_register_notifier(struct notifier_block *nb)
{
- return atomic_notifier_chain_register(&cpu_pm_notifier_chain, nb);
+ unsigned long flags;
+ int ret;
+
+ raw_spin_lock_irqsave(&cpu_pm_notifier.lock, flags);
+ ret = raw_notifier_chain_register(&cpu_pm_notifier.chain, nb);
+ raw_spin_unlock_irqrestore(&cpu_pm_notifier.lock, flags);
+ return ret;
}
EXPORT_SYMBOL_GPL(cpu_pm_register_notifier);
@@ -64,12 +85,17 @@ EXPORT_SYMBOL_GPL(cpu_pm_register_notifier);
*
* Remove a driver from the CPU PM notifier list.
*
- * This function may sleep, and has the same return conditions as
- * raw_notifier_chain_unregister.
+ * This function has the same return conditions as raw_notifier_chain_unregister.
*/
int cpu_pm_unregister_notifier(struct notifier_block *nb)
{
- return atomic_notifier_chain_unregister(&cpu_pm_notifier_chain, nb);
+ unsigned long flags;
+ int ret;
+
+ raw_spin_lock_irqsave(&cpu_pm_notifier.lock, flags);
+ ret = raw_notifier_chain_unregister(&cpu_pm_notifier.chain, nb);
+ raw_spin_unlock_irqrestore(&cpu_pm_notifier.lock, flags);
+ return ret;
}
EXPORT_SYMBOL_GPL(cpu_pm_unregister_notifier);
diff --git a/kernel/events/hw_breakpoint.c b/kernel/events/hw_breakpoint.c
index 835973444a1e..f32320ac02fd 100644
--- a/kernel/events/hw_breakpoint.c
+++ b/kernel/events/hw_breakpoint.c
@@ -568,7 +568,7 @@ register_wide_hw_breakpoint(struct perf_event_attr *attr,
if (!cpu_events)
return (void __percpu __force *)ERR_PTR(-ENOMEM);
- get_online_cpus();
+ cpus_read_lock();
for_each_online_cpu(cpu) {
bp = perf_event_create_kernel_counter(attr, cpu, NULL,
triggered, context);
@@ -579,7 +579,7 @@ register_wide_hw_breakpoint(struct perf_event_attr *attr,
per_cpu(*cpu_events, cpu) = bp;
}
- put_online_cpus();
+ cpus_read_unlock();
if (likely(!err))
return cpu_events;
diff --git a/kernel/exit.c b/kernel/exit.c
index 9a89e7f36acb..91a43e57a32e 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -777,7 +777,7 @@ void __noreturn do_exit(long code)
schedule();
}
- io_uring_files_cancel(tsk->files);
+ io_uring_files_cancel();
exit_signals(tsk); /* sets PF_EXITING */
/* sync mm's RSS info before statistics gathering */
diff --git a/kernel/fork.c b/kernel/fork.c
index c97e85245dfc..695d1343a254 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -446,6 +446,7 @@ void put_task_stack(struct task_struct *tsk)
void free_task(struct task_struct *tsk)
{
+ release_user_cpus_ptr(tsk);
scs_release(tsk);
#ifndef CONFIG_THREAD_INFO_IN_TASK
@@ -924,6 +925,7 @@ static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
#endif
if (orig->cpus_ptr == &orig->cpus_mask)
tsk->cpus_ptr = &tsk->cpus_mask;
+ dup_user_cpus_ptr(tsk, orig, node);
/*
* One for the user space visible state that goes away when reaped.
diff --git a/kernel/futex.c b/kernel/futex.c
index 2ecb07575055..e7b4c6121da4 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -179,7 +179,7 @@ struct futex_pi_state {
/*
* The PI object:
*/
- struct rt_mutex pi_mutex;
+ struct rt_mutex_base pi_mutex;
struct task_struct *owner;
refcount_t refcount;
@@ -197,6 +197,8 @@ struct futex_pi_state {
* @rt_waiter: rt_waiter storage for use with requeue_pi
* @requeue_pi_key: the requeue_pi target futex key
* @bitset: bitset for the optional bitmasked wakeup
+ * @requeue_state: State field for futex_requeue_pi()
+ * @requeue_wait: RCU wait for futex_requeue_pi() (RT only)
*
* We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
* we can wake only the relevant ones (hashed queues may be shared).
@@ -219,12 +221,68 @@ struct futex_q {
struct rt_mutex_waiter *rt_waiter;
union futex_key *requeue_pi_key;
u32 bitset;
+ atomic_t requeue_state;
+#ifdef CONFIG_PREEMPT_RT
+ struct rcuwait requeue_wait;
+#endif
} __randomize_layout;
+/*
+ * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
+ * underlying rtmutex. The task which is about to be requeued could have
+ * just woken up (timeout, signal). After the wake up the task has to
+ * acquire hash bucket lock, which is held by the requeue code. As a task
+ * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
+ * and the hash bucket lock blocking would collide and corrupt state.
+ *
+ * On !PREEMPT_RT this is not a problem and everything could be serialized
+ * on hash bucket lock, but aside of having the benefit of common code,
+ * this allows to avoid doing the requeue when the task is already on the
+ * way out and taking the hash bucket lock of the original uaddr1 when the
+ * requeue has been completed.
+ *
+ * The following state transitions are valid:
+ *
+ * On the waiter side:
+ * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_IGNORE
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_WAIT
+ *
+ * On the requeue side:
+ * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_INPROGRESS
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_DONE/LOCKED
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_NONE (requeue failed)
+ * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_DONE/LOCKED
+ * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_IGNORE (requeue failed)
+ *
+ * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
+ * signals that the waiter is already on the way out. It also means that
+ * the waiter is still on the 'wait' futex, i.e. uaddr1.
+ *
+ * The waiter side signals early wakeup to the requeue side either through
+ * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
+ * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
+ * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
+ * which means the wakeup is interleaving with a requeue in progress it has
+ * to wait for the requeue side to change the state. Either to DONE/LOCKED
+ * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
+ * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
+ * the requeue side when the requeue attempt failed via deadlock detection
+ * and therefore the waiter q is still on the uaddr1 futex.
+ */
+enum {
+ Q_REQUEUE_PI_NONE = 0,
+ Q_REQUEUE_PI_IGNORE,
+ Q_REQUEUE_PI_IN_PROGRESS,
+ Q_REQUEUE_PI_WAIT,
+ Q_REQUEUE_PI_DONE,
+ Q_REQUEUE_PI_LOCKED,
+};
+
static const struct futex_q futex_q_init = {
/* list gets initialized in queue_me()*/
- .key = FUTEX_KEY_INIT,
- .bitset = FUTEX_BITSET_MATCH_ANY
+ .key = FUTEX_KEY_INIT,
+ .bitset = FUTEX_BITSET_MATCH_ANY,
+ .requeue_state = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
};
/*
@@ -1299,27 +1357,6 @@ static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
return 0;
}
-static int lookup_pi_state(u32 __user *uaddr, u32 uval,
- struct futex_hash_bucket *hb,
- union futex_key *key, struct futex_pi_state **ps,
- struct task_struct **exiting)
-{
- struct futex_q *top_waiter = futex_top_waiter(hb, key);
-
- /*
- * If there is a waiter on that futex, validate it and
- * attach to the pi_state when the validation succeeds.
- */
- if (top_waiter)
- return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
-
- /*
- * We are the first waiter - try to look up the owner based on
- * @uval and attach to it.
- */
- return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
-}
-
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
int err;
@@ -1354,7 +1391,7 @@ static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
* - 1 - acquired the lock;
* - <0 - error
*
- * The hb->lock and futex_key refs shall be held by the caller.
+ * The hb->lock must be held by the caller.
*
* @exiting is only set when the return value is -EBUSY. If so, this holds
* a refcount on the exiting task on return and the caller needs to drop it
@@ -1493,11 +1530,11 @@ static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
*/
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
{
- u32 curval, newval;
struct rt_mutex_waiter *top_waiter;
struct task_struct *new_owner;
bool postunlock = false;
- DEFINE_WAKE_Q(wake_q);
+ DEFINE_RT_WAKE_Q(wqh);
+ u32 curval, newval;
int ret = 0;
top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
@@ -1549,14 +1586,14 @@ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_
* not fail.
*/
pi_state_update_owner(pi_state, new_owner);
- postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
+ postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh);
}
out_unlock:
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
if (postunlock)
- rt_mutex_postunlock(&wake_q);
+ rt_mutex_postunlock(&wqh);
return ret;
}
@@ -1793,6 +1830,108 @@ void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
q->key = *key2;
}
+static inline bool futex_requeue_pi_prepare(struct futex_q *q,
+ struct futex_pi_state *pi_state)
+{
+ int old, new;
+
+ /*
+ * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
+ * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
+ * ignore the waiter.
+ */
+ old = atomic_read_acquire(&q->requeue_state);
+ do {
+ if (old == Q_REQUEUE_PI_IGNORE)
+ return false;
+
+ /*
+ * futex_proxy_trylock_atomic() might have set it to
+ * IN_PROGRESS and a interleaved early wake to WAIT.
+ *
+ * It was considered to have an extra state for that
+ * trylock, but that would just add more conditionals
+ * all over the place for a dubious value.
+ */
+ if (old != Q_REQUEUE_PI_NONE)
+ break;
+
+ new = Q_REQUEUE_PI_IN_PROGRESS;
+ } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+ q->pi_state = pi_state;
+ return true;
+}
+
+static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
+{
+ int old, new;
+
+ old = atomic_read_acquire(&q->requeue_state);
+ do {
+ if (old == Q_REQUEUE_PI_IGNORE)
+ return;
+
+ if (locked >= 0) {
+ /* Requeue succeeded. Set DONE or LOCKED */
+ WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
+ old != Q_REQUEUE_PI_WAIT);
+ new = Q_REQUEUE_PI_DONE + locked;
+ } else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
+ /* Deadlock, no early wakeup interleave */
+ new = Q_REQUEUE_PI_NONE;
+ } else {
+ /* Deadlock, early wakeup interleave. */
+ WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
+ new = Q_REQUEUE_PI_IGNORE;
+ }
+ } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+#ifdef CONFIG_PREEMPT_RT
+ /* If the waiter interleaved with the requeue let it know */
+ if (unlikely(old == Q_REQUEUE_PI_WAIT))
+ rcuwait_wake_up(&q->requeue_wait);
+#endif
+}
+
+static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
+{
+ int old, new;
+
+ old = atomic_read_acquire(&q->requeue_state);
+ do {
+ /* Is requeue done already? */
+ if (old >= Q_REQUEUE_PI_DONE)
+ return old;
+
+ /*
+ * If not done, then tell the requeue code to either ignore
+ * the waiter or to wake it up once the requeue is done.
+ */
+ new = Q_REQUEUE_PI_WAIT;
+ if (old == Q_REQUEUE_PI_NONE)
+ new = Q_REQUEUE_PI_IGNORE;
+ } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+ /* If the requeue was in progress, wait for it to complete */
+ if (old == Q_REQUEUE_PI_IN_PROGRESS) {
+#ifdef CONFIG_PREEMPT_RT
+ rcuwait_wait_event(&q->requeue_wait,
+ atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
+ TASK_UNINTERRUPTIBLE);
+#else
+ (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
+#endif
+ }
+
+ /*
+ * Requeue is now either prohibited or complete. Reread state
+ * because during the wait above it might have changed. Nothing
+ * will modify q->requeue_state after this point.
+ */
+ return atomic_read(&q->requeue_state);
+}
+
/**
* requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
* @q: the futex_q
@@ -1820,6 +1959,8 @@ void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
q->lock_ptr = &hb->lock;
+ /* Signal locked state to the waiter */
+ futex_requeue_pi_complete(q, 1);
wake_up_state(q->task, TASK_NORMAL);
}
@@ -1879,10 +2020,21 @@ futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
if (!top_waiter)
return 0;
+ /*
+ * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
+ * and waiting on the 'waitqueue' futex which is always !PI.
+ */
+ if (!top_waiter->rt_waiter || top_waiter->pi_state)
+ ret = -EINVAL;
+
/* Ensure we requeue to the expected futex. */
if (!match_futex(top_waiter->requeue_pi_key, key2))
return -EINVAL;
+ /* Ensure that this does not race against an early wakeup */
+ if (!futex_requeue_pi_prepare(top_waiter, NULL))
+ return -EAGAIN;
+
/*
* Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
* the contended case or if set_waiters is 1. The pi_state is returned
@@ -1892,8 +2044,22 @@ futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
exiting, set_waiters);
if (ret == 1) {
+ /* Dequeue, wake up and update top_waiter::requeue_state */
requeue_pi_wake_futex(top_waiter, key2, hb2);
return vpid;
+ } else if (ret < 0) {
+ /* Rewind top_waiter::requeue_state */
+ futex_requeue_pi_complete(top_waiter, ret);
+ } else {
+ /*
+ * futex_lock_pi_atomic() did not acquire the user space
+ * futex, but managed to establish the proxy lock and pi
+ * state. top_waiter::requeue_state cannot be fixed up here
+ * because the waiter is not enqueued on the rtmutex
+ * yet. This is handled at the callsite depending on the
+ * result of rt_mutex_start_proxy_lock() which is
+ * guaranteed to be reached with this function returning 0.
+ */
}
return ret;
}
@@ -1948,23 +2114,35 @@ static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
return -EINVAL;
/*
+ * futex_requeue() allows the caller to define the number
+ * of waiters to wake up via the @nr_wake argument. With
+ * REQUEUE_PI, waking up more than one waiter is creating
+ * more problems than it solves. Waking up a waiter makes
+ * only sense if the PI futex @uaddr2 is uncontended as
+ * this allows the requeue code to acquire the futex
+ * @uaddr2 before waking the waiter. The waiter can then
+ * return to user space without further action. A secondary
+ * wakeup would just make the futex_wait_requeue_pi()
+ * handling more complex, because that code would have to
+ * look up pi_state and do more or less all the handling
+ * which the requeue code has to do for the to be requeued
+ * waiters. So restrict the number of waiters to wake to
+ * one, and only wake it up when the PI futex is
+ * uncontended. Otherwise requeue it and let the unlock of
+ * the PI futex handle the wakeup.
+ *
+ * All REQUEUE_PI users, e.g. pthread_cond_signal() and
+ * pthread_cond_broadcast() must use nr_wake=1.
+ */
+ if (nr_wake != 1)
+ return -EINVAL;
+
+ /*
* requeue_pi requires a pi_state, try to allocate it now
* without any locks in case it fails.
*/
if (refill_pi_state_cache())
return -ENOMEM;
- /*
- * requeue_pi must wake as many tasks as it can, up to nr_wake
- * + nr_requeue, since it acquires the rt_mutex prior to
- * returning to userspace, so as to not leave the rt_mutex with
- * waiters and no owner. However, second and third wake-ups
- * cannot be predicted as they involve race conditions with the
- * first wake and a fault while looking up the pi_state. Both
- * pthread_cond_signal() and pthread_cond_broadcast() should
- * use nr_wake=1.
- */
- if (nr_wake != 1)
- return -EINVAL;
}
retry:
@@ -2014,7 +2192,7 @@ retry_private:
}
}
- if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
+ if (requeue_pi) {
struct task_struct *exiting = NULL;
/*
@@ -2022,6 +2200,8 @@ retry_private:
* intend to requeue waiters, force setting the FUTEX_WAITERS
* bit. We force this here where we are able to easily handle
* faults rather in the requeue loop below.
+ *
+ * Updates topwaiter::requeue_state if a top waiter exists.
*/
ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
&key2, &pi_state,
@@ -2031,28 +2211,52 @@ retry_private:
* At this point the top_waiter has either taken uaddr2 or is
* waiting on it. If the former, then the pi_state will not
* exist yet, look it up one more time to ensure we have a
- * reference to it. If the lock was taken, ret contains the
- * vpid of the top waiter task.
+ * reference to it. If the lock was taken, @ret contains the
+ * VPID of the top waiter task.
* If the lock was not taken, we have pi_state and an initial
* refcount on it. In case of an error we have nothing.
+ *
+ * The top waiter's requeue_state is up to date:
+ *
+ * - If the lock was acquired atomically (ret > 0), then
+ * the state is Q_REQUEUE_PI_LOCKED.
+ *
+ * - If the trylock failed with an error (ret < 0) then
+ * the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
+ * happened", or Q_REQUEUE_PI_IGNORE when there was an
+ * interleaved early wakeup.
+ *
+ * - If the trylock did not succeed (ret == 0) then the
+ * state is either Q_REQUEUE_PI_IN_PROGRESS or
+ * Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
+ * This will be cleaned up in the loop below, which
+ * cannot fail because futex_proxy_trylock_atomic() did
+ * the same sanity checks for requeue_pi as the loop
+ * below does.
*/
if (ret > 0) {
WARN_ON(pi_state);
task_count++;
/*
- * If we acquired the lock, then the user space value
- * of uaddr2 should be vpid. It cannot be changed by
- * the top waiter as it is blocked on hb2 lock if it
- * tries to do so. If something fiddled with it behind
- * our back the pi state lookup might unearth it. So
- * we rather use the known value than rereading and
- * handing potential crap to lookup_pi_state.
+ * If futex_proxy_trylock_atomic() acquired the
+ * user space futex, then the user space value
+ * @uaddr2 has been set to the @hb1's top waiter
+ * task VPID. This task is guaranteed to be alive
+ * and cannot be exiting because it is either
+ * sleeping or blocked on @hb2 lock.
+ *
+ * The @uaddr2 futex cannot have waiters either as
+ * otherwise futex_proxy_trylock_atomic() would not
+ * have succeeded.
*
- * If that call succeeds then we have pi_state and an
- * initial refcount on it.
+ * In order to requeue waiters to @hb2, pi state is
+ * required. Hand in the VPID value (@ret) and
+ * allocate PI state with an initial refcount on
+ * it.
*/
- ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
- &pi_state, &exiting);
+ ret = attach_to_pi_owner(uaddr2, ret, &key2, &pi_state,
+ &exiting);
+ WARN_ON(ret);
}
switch (ret) {
@@ -2060,7 +2264,10 @@ retry_private:
/* We hold a reference on the pi state. */
break;
- /* If the above failed, then pi_state is NULL */
+ /*
+ * If the above failed, then pi_state is NULL and
+ * waiter::requeue_state is correct.
+ */
case -EFAULT:
double_unlock_hb(hb1, hb2);
hb_waiters_dec(hb2);
@@ -2112,18 +2319,17 @@ retry_private:
break;
}
- /*
- * Wake nr_wake waiters. For requeue_pi, if we acquired the
- * lock, we already woke the top_waiter. If not, it will be
- * woken by futex_unlock_pi().
- */
- if (++task_count <= nr_wake && !requeue_pi) {
- mark_wake_futex(&wake_q, this);
+ /* Plain futexes just wake or requeue and are done */
+ if (!requeue_pi) {
+ if (++task_count <= nr_wake)
+ mark_wake_futex(&wake_q, this);
+ else
+ requeue_futex(this, hb1, hb2, &key2);
continue;
}
/* Ensure we requeue to the expected futex for requeue_pi. */
- if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
+ if (!match_futex(this->requeue_pi_key, &key2)) {
ret = -EINVAL;
break;
}
@@ -2131,54 +2337,67 @@ retry_private:
/*
* Requeue nr_requeue waiters and possibly one more in the case
* of requeue_pi if we couldn't acquire the lock atomically.
+ *
+ * Prepare the waiter to take the rt_mutex. Take a refcount
+ * on the pi_state and store the pointer in the futex_q
+ * object of the waiter.
*/
- if (requeue_pi) {
+ get_pi_state(pi_state);
+
+ /* Don't requeue when the waiter is already on the way out. */
+ if (!futex_requeue_pi_prepare(this, pi_state)) {
/*
- * Prepare the waiter to take the rt_mutex. Take a
- * refcount on the pi_state and store the pointer in
- * the futex_q object of the waiter.
+ * Early woken waiter signaled that it is on the
+ * way out. Drop the pi_state reference and try the
+ * next waiter. @this->pi_state is still NULL.
*/
- get_pi_state(pi_state);
- this->pi_state = pi_state;
- ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
- this->rt_waiter,
- this->task);
- if (ret == 1) {
- /*
- * We got the lock. We do neither drop the
- * refcount on pi_state nor clear
- * this->pi_state because the waiter needs the
- * pi_state for cleaning up the user space
- * value. It will drop the refcount after
- * doing so.
- */
- requeue_pi_wake_futex(this, &key2, hb2);
- continue;
- } else if (ret) {
- /*
- * rt_mutex_start_proxy_lock() detected a
- * potential deadlock when we tried to queue
- * that waiter. Drop the pi_state reference
- * which we took above and remove the pointer
- * to the state from the waiters futex_q
- * object.
- */
- this->pi_state = NULL;
- put_pi_state(pi_state);
- /*
- * We stop queueing more waiters and let user
- * space deal with the mess.
- */
- break;
- }
+ put_pi_state(pi_state);
+ continue;
+ }
+
+ ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
+ this->rt_waiter,
+ this->task);
+
+ if (ret == 1) {
+ /*
+ * We got the lock. We do neither drop the refcount
+ * on pi_state nor clear this->pi_state because the
+ * waiter needs the pi_state for cleaning up the
+ * user space value. It will drop the refcount
+ * after doing so. this::requeue_state is updated
+ * in the wakeup as well.
+ */
+ requeue_pi_wake_futex(this, &key2, hb2);
+ task_count++;
+ } else if (!ret) {
+ /* Waiter is queued, move it to hb2 */
+ requeue_futex(this, hb1, hb2, &key2);
+ futex_requeue_pi_complete(this, 0);
+ task_count++;
+ } else {
+ /*
+ * rt_mutex_start_proxy_lock() detected a potential
+ * deadlock when we tried to queue that waiter.
+ * Drop the pi_state reference which we took above
+ * and remove the pointer to the state from the
+ * waiters futex_q object.
+ */
+ this->pi_state = NULL;
+ put_pi_state(pi_state);
+ futex_requeue_pi_complete(this, ret);
+ /*
+ * We stop queueing more waiters and let user space
+ * deal with the mess.
+ */
+ break;
}
- requeue_futex(this, hb1, hb2, &key2);
}
/*
- * We took an extra initial reference to the pi_state either
- * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
- * need to drop it here again.
+ * We took an extra initial reference to the pi_state either in
+ * futex_proxy_trylock_atomic() or in attach_to_pi_owner(). We need
+ * to drop it here again.
*/
put_pi_state(pi_state);
@@ -2357,7 +2576,7 @@ static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
* Modifying pi_state _before_ the user space value would leave the
* pi_state in an inconsistent state when we fault here, because we
* need to drop the locks to handle the fault. This might be observed
- * in the PID check in lookup_pi_state.
+ * in the PID checks when attaching to PI state .
*/
retry:
if (!argowner) {
@@ -2614,8 +2833,7 @@ static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
*
* Setup the futex_q and locate the hash_bucket. Get the futex value and
* compare it with the expected value. Handle atomic faults internally.
- * Return with the hb lock held and a q.key reference on success, and unlocked
- * with no q.key reference on failure.
+ * Return with the hb lock held on success, and unlocked on failure.
*
* Return:
* - 0 - uaddr contains val and hb has been locked;
@@ -2693,8 +2911,8 @@ static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
current->timer_slack_ns);
retry:
/*
- * Prepare to wait on uaddr. On success, holds hb lock and increments
- * q.key refs.
+ * Prepare to wait on uaddr. On success, it holds hb->lock and q
+ * is initialized.
*/
ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
if (ret)
@@ -2705,7 +2923,6 @@ retry:
/* If we were woken (and unqueued), we succeeded, whatever. */
ret = 0;
- /* unqueue_me() drops q.key ref */
if (!unqueue_me(&q))
goto out;
ret = -ETIMEDOUT;
@@ -3072,27 +3289,22 @@ pi_faulted:
}
/**
- * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
+ * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
* @hb: the hash_bucket futex_q was original enqueued on
* @q: the futex_q woken while waiting to be requeued
- * @key2: the futex_key of the requeue target futex
* @timeout: the timeout associated with the wait (NULL if none)
*
- * Detect if the task was woken on the initial futex as opposed to the requeue
- * target futex. If so, determine if it was a timeout or a signal that caused
- * the wakeup and return the appropriate error code to the caller. Must be
- * called with the hb lock held.
+ * Determine the cause for the early wakeup.
*
* Return:
- * - 0 = no early wakeup detected;
- * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
+ * -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
*/
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
- struct futex_q *q, union futex_key *key2,
+ struct futex_q *q,
struct hrtimer_sleeper *timeout)
{
- int ret = 0;
+ int ret;
/*
* With the hb lock held, we avoid races while we process the wakeup.
@@ -3101,22 +3313,21 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
* It can't be requeued from uaddr2 to something else since we don't
* support a PI aware source futex for requeue.
*/
- if (!match_futex(&q->key, key2)) {
- WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
- /*
- * We were woken prior to requeue by a timeout or a signal.
- * Unqueue the futex_q and determine which it was.
- */
- plist_del(&q->list, &hb->chain);
- hb_waiters_dec(hb);
+ WARN_ON_ONCE(&hb->lock != q->lock_ptr);
- /* Handle spurious wakeups gracefully */
- ret = -EWOULDBLOCK;
- if (timeout && !timeout->task)
- ret = -ETIMEDOUT;
- else if (signal_pending(current))
- ret = -ERESTARTNOINTR;
- }
+ /*
+ * We were woken prior to requeue by a timeout or a signal.
+ * Unqueue the futex_q and determine which it was.
+ */
+ plist_del(&q->list, &hb->chain);
+ hb_waiters_dec(hb);
+
+ /* Handle spurious wakeups gracefully */
+ ret = -EWOULDBLOCK;
+ if (timeout && !timeout->task)
+ ret = -ETIMEDOUT;
+ else if (signal_pending(current))
+ ret = -ERESTARTNOINTR;
return ret;
}
@@ -3169,6 +3380,7 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
struct futex_hash_bucket *hb;
union futex_key key2 = FUTEX_KEY_INIT;
struct futex_q q = futex_q_init;
+ struct rt_mutex_base *pi_mutex;
int res, ret;
if (!IS_ENABLED(CONFIG_FUTEX_PI))
@@ -3198,8 +3410,8 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
q.requeue_pi_key = &key2;
/*
- * Prepare to wait on uaddr. On success, increments q.key (key1) ref
- * count.
+ * Prepare to wait on uaddr. On success, it holds hb->lock and q
+ * is initialized.
*/
ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
if (ret)
@@ -3218,32 +3430,22 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
/* Queue the futex_q, drop the hb lock, wait for wakeup. */
futex_wait_queue_me(hb, &q, to);
- spin_lock(&hb->lock);
- ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
- spin_unlock(&hb->lock);
- if (ret)
- goto out;
-
- /*
- * In order for us to be here, we know our q.key == key2, and since
- * we took the hb->lock above, we also know that futex_requeue() has
- * completed and we no longer have to concern ourselves with a wakeup
- * race with the atomic proxy lock acquisition by the requeue code. The
- * futex_requeue dropped our key1 reference and incremented our key2
- * reference count.
- */
+ switch (futex_requeue_pi_wakeup_sync(&q)) {
+ case Q_REQUEUE_PI_IGNORE:
+ /* The waiter is still on uaddr1 */
+ spin_lock(&hb->lock);
+ ret = handle_early_requeue_pi_wakeup(hb, &q, to);
+ spin_unlock(&hb->lock);
+ break;
- /*
- * Check if the requeue code acquired the second futex for us and do
- * any pertinent fixup.
- */
- if (!q.rt_waiter) {
+ case Q_REQUEUE_PI_LOCKED:
+ /* The requeue acquired the lock */
if (q.pi_state && (q.pi_state->owner != current)) {
spin_lock(q.lock_ptr);
ret = fixup_owner(uaddr2, &q, true);
/*
- * Drop the reference to the pi state which
- * the requeue_pi() code acquired for us.
+ * Drop the reference to the pi state which the
+ * requeue_pi() code acquired for us.
*/
put_pi_state(q.pi_state);
spin_unlock(q.lock_ptr);
@@ -3253,18 +3455,14 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
*/
ret = ret < 0 ? ret : 0;
}
- } else {
- struct rt_mutex *pi_mutex;
+ break;
- /*
- * We have been woken up by futex_unlock_pi(), a timeout, or a
- * signal. futex_unlock_pi() will not destroy the lock_ptr nor
- * the pi_state.
- */
- WARN_ON(!q.pi_state);
+ case Q_REQUEUE_PI_DONE:
+ /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
pi_mutex = &q.pi_state->pi_mutex;
ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
+ /* Current is not longer pi_blocked_on */
spin_lock(q.lock_ptr);
if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
ret = 0;
@@ -3284,17 +3482,21 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
unqueue_me_pi(&q);
spin_unlock(q.lock_ptr);
- }
- if (ret == -EINTR) {
- /*
- * We've already been requeued, but cannot restart by calling
- * futex_lock_pi() directly. We could restart this syscall, but
- * it would detect that the user space "val" changed and return
- * -EWOULDBLOCK. Save the overhead of the restart and return
- * -EWOULDBLOCK directly.
- */
- ret = -EWOULDBLOCK;
+ if (ret == -EINTR) {
+ /*
+ * We've already been requeued, but cannot restart
+ * by calling futex_lock_pi() directly. We could
+ * restart this syscall, but it would detect that
+ * the user space "val" changed and return
+ * -EWOULDBLOCK. Save the overhead of the restart
+ * and return -EWOULDBLOCK directly.
+ */
+ ret = -EWOULDBLOCK;
+ }
+ break;
+ default:
+ BUG();
}
out:
diff --git a/kernel/irq/affinity.c b/kernel/irq/affinity.c
index 4d89ad4fae3b..f7ff8919dc9b 100644
--- a/kernel/irq/affinity.c
+++ b/kernel/irq/affinity.c
@@ -355,7 +355,7 @@ static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
goto fail_npresmsk;
/* Stabilize the cpumasks */
- get_online_cpus();
+ cpus_read_lock();
build_node_to_cpumask(node_to_cpumask);
/* Spread on present CPUs starting from affd->pre_vectors */
@@ -384,7 +384,7 @@ static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
nr_others = ret;
fail_build_affinity:
- put_online_cpus();
+ cpus_read_unlock();
if (ret >= 0)
WARN_ON(nr_present + nr_others < numvecs);
@@ -505,9 +505,9 @@ unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
if (affd->calc_sets) {
set_vecs = maxvec - resv;
} else {
- get_online_cpus();
+ cpus_read_lock();
set_vecs = cpumask_weight(cpu_possible_mask);
- put_online_cpus();
+ cpus_read_unlock();
}
return resv + min(set_vecs, maxvec - resv);
diff --git a/kernel/irq/cpuhotplug.c b/kernel/irq/cpuhotplug.c
index 02236b13b359..39a41c56ad4f 100644
--- a/kernel/irq/cpuhotplug.c
+++ b/kernel/irq/cpuhotplug.c
@@ -166,7 +166,7 @@ void irq_migrate_all_off_this_cpu(void)
raw_spin_unlock(&desc->lock);
if (affinity_broken) {
- pr_warn_ratelimited("IRQ %u: no longer affine to CPU%u\n",
+ pr_debug_ratelimited("IRQ %u: no longer affine to CPU%u\n",
irq, smp_processor_id());
}
}
diff --git a/kernel/irq/generic-chip.c b/kernel/irq/generic-chip.c
index f8f23af6ab0d..cc7cdd26e23e 100644
--- a/kernel/irq/generic-chip.c
+++ b/kernel/irq/generic-chip.c
@@ -240,9 +240,8 @@ irq_alloc_generic_chip(const char *name, int num_ct, unsigned int irq_base,
void __iomem *reg_base, irq_flow_handler_t handler)
{
struct irq_chip_generic *gc;
- unsigned long sz = sizeof(*gc) + num_ct * sizeof(struct irq_chip_type);
- gc = kzalloc(sz, GFP_KERNEL);
+ gc = kzalloc(struct_size(gc, chip_types, num_ct), GFP_KERNEL);
if (gc) {
irq_init_generic_chip(gc, name, num_ct, irq_base, reg_base,
handler);
@@ -288,8 +287,11 @@ int __irq_alloc_domain_generic_chips(struct irq_domain *d, int irqs_per_chip,
{
struct irq_domain_chip_generic *dgc;
struct irq_chip_generic *gc;
- int numchips, sz, i;
unsigned long flags;
+ int numchips, i;
+ size_t dgc_sz;
+ size_t gc_sz;
+ size_t sz;
void *tmp;
if (d->gc)
@@ -300,8 +302,9 @@ int __irq_alloc_domain_generic_chips(struct irq_domain *d, int irqs_per_chip,
return -EINVAL;
/* Allocate a pointer, generic chip and chiptypes for each chip */
- sz = sizeof(*dgc) + numchips * sizeof(gc);
- sz += numchips * (sizeof(*gc) + num_ct * sizeof(struct irq_chip_type));
+ gc_sz = struct_size(gc, chip_types, num_ct);
+ dgc_sz = struct_size(dgc, gc, numchips);
+ sz = dgc_sz + numchips * gc_sz;
tmp = dgc = kzalloc(sz, GFP_KERNEL);
if (!dgc)
@@ -314,7 +317,7 @@ int __irq_alloc_domain_generic_chips(struct irq_domain *d, int irqs_per_chip,
d->gc = dgc;
/* Calc pointer to the first generic chip */
- tmp += sizeof(*dgc) + numchips * sizeof(gc);
+ tmp += dgc_sz;
for (i = 0; i < numchips; i++) {
/* Store the pointer to the generic chip */
dgc->gc[i] = gc = tmp;
@@ -331,7 +334,7 @@ int __irq_alloc_domain_generic_chips(struct irq_domain *d, int irqs_per_chip,
list_add_tail(&gc->list, &gc_list);
raw_spin_unlock_irqrestore(&gc_lock, flags);
/* Calc pointer to the next generic chip */
- tmp += sizeof(*gc) + num_ct * sizeof(struct irq_chip_type);
+ tmp += gc_sz;
}
return 0;
}
diff --git a/kernel/irq/ipi.c b/kernel/irq/ipi.c
index 52f11c791bf8..08ce7da3b57c 100644
--- a/kernel/irq/ipi.c
+++ b/kernel/irq/ipi.c
@@ -14,11 +14,11 @@
/**
* irq_reserve_ipi() - Setup an IPI to destination cpumask
* @domain: IPI domain
- * @dest: cpumask of cpus which can receive the IPI
+ * @dest: cpumask of CPUs which can receive the IPI
*
* Allocate a virq that can be used to send IPI to any CPU in dest mask.
*
- * On success it'll return linux irq number and error code on failure
+ * Return: Linux IRQ number on success or error code on failure
*/
int irq_reserve_ipi(struct irq_domain *domain,
const struct cpumask *dest)
@@ -104,13 +104,13 @@ free_descs:
/**
* irq_destroy_ipi() - unreserve an IPI that was previously allocated
- * @irq: linux irq number to be destroyed
- * @dest: cpumask of cpus which should have the IPI removed
+ * @irq: Linux IRQ number to be destroyed
+ * @dest: cpumask of CPUs which should have the IPI removed
*
* The IPIs allocated with irq_reserve_ipi() are returned to the system
* destroying all virqs associated with them.
*
- * Return 0 on success or error code on failure.
+ * Return: %0 on success or error code on failure.
*/
int irq_destroy_ipi(unsigned int irq, const struct cpumask *dest)
{
@@ -150,14 +150,14 @@ int irq_destroy_ipi(unsigned int irq, const struct cpumask *dest)
}
/**
- * ipi_get_hwirq - Get the hwirq associated with an IPI to a cpu
- * @irq: linux irq number
- * @cpu: the target cpu
+ * ipi_get_hwirq - Get the hwirq associated with an IPI to a CPU
+ * @irq: Linux IRQ number
+ * @cpu: the target CPU
*
* When dealing with coprocessors IPI, we need to inform the coprocessor of
* the hwirq it needs to use to receive and send IPIs.
*
- * Returns hwirq value on success and INVALID_HWIRQ on failure.
+ * Return: hwirq value on success or INVALID_HWIRQ on failure.
*/
irq_hw_number_t ipi_get_hwirq(unsigned int irq, unsigned int cpu)
{
@@ -216,7 +216,7 @@ static int ipi_send_verify(struct irq_chip *chip, struct irq_data *data,
* This function is for architecture or core code to speed up IPI sending. Not
* usable from driver code.
*
- * Returns zero on success and negative error number on failure.
+ * Return: %0 on success or negative error number on failure.
*/
int __ipi_send_single(struct irq_desc *desc, unsigned int cpu)
{
@@ -250,7 +250,7 @@ int __ipi_send_single(struct irq_desc *desc, unsigned int cpu)
}
/**
- * ipi_send_mask - send an IPI to target Linux SMP CPU(s)
+ * __ipi_send_mask - send an IPI to target Linux SMP CPU(s)
* @desc: pointer to irq_desc of the IRQ
* @dest: dest CPU(s), must be a subset of the mask passed to
* irq_reserve_ipi()
@@ -258,7 +258,7 @@ int __ipi_send_single(struct irq_desc *desc, unsigned int cpu)
* This function is for architecture or core code to speed up IPI sending. Not
* usable from driver code.
*
- * Returns zero on success and negative error number on failure.
+ * Return: %0 on success or negative error number on failure.
*/
int __ipi_send_mask(struct irq_desc *desc, const struct cpumask *dest)
{
@@ -298,11 +298,11 @@ int __ipi_send_mask(struct irq_desc *desc, const struct cpumask *dest)
/**
* ipi_send_single - Send an IPI to a single CPU
- * @virq: linux irq number from irq_reserve_ipi()
+ * @virq: Linux IRQ number from irq_reserve_ipi()
* @cpu: destination CPU, must in the destination mask passed to
* irq_reserve_ipi()
*
- * Returns zero on success and negative error number on failure.
+ * Return: %0 on success or negative error number on failure.
*/
int ipi_send_single(unsigned int virq, unsigned int cpu)
{
@@ -319,11 +319,11 @@ EXPORT_SYMBOL_GPL(ipi_send_single);
/**
* ipi_send_mask - Send an IPI to target CPU(s)
- * @virq: linux irq number from irq_reserve_ipi()
+ * @virq: Linux IRQ number from irq_reserve_ipi()
* @dest: dest CPU(s), must be a subset of the mask passed to
* irq_reserve_ipi()
*
- * Returns zero on success and negative error number on failure.
+ * Return: %0 on success or negative error number on failure.
*/
int ipi_send_mask(unsigned int virq, const struct cpumask *dest)
{
diff --git a/kernel/irq/irqdesc.c b/kernel/irq/irqdesc.c
index fadb93766020..4e3c29bb603c 100644
--- a/kernel/irq/irqdesc.c
+++ b/kernel/irq/irqdesc.c
@@ -188,7 +188,7 @@ static ssize_t hwirq_show(struct kobject *kobj,
raw_spin_lock_irq(&desc->lock);
if (desc->irq_data.domain)
- ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq);
+ ret = sprintf(buf, "%lu\n", desc->irq_data.hwirq);
raw_spin_unlock_irq(&desc->lock);
return ret;
diff --git a/kernel/irq/irqdomain.c b/kernel/irq/irqdomain.c
index 51c483ce2447..62be16135e7c 100644
--- a/kernel/irq/irqdomain.c
+++ b/kernel/irq/irqdomain.c
@@ -1215,6 +1215,7 @@ int irq_domain_disconnect_hierarchy(struct irq_domain *domain,
irqd->chip = ERR_PTR(-ENOTCONN);
return 0;
}
+EXPORT_SYMBOL_GPL(irq_domain_disconnect_hierarchy);
static int irq_domain_trim_hierarchy(unsigned int virq)
{
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index ef30b4762947..27667e82ecc9 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -25,12 +25,11 @@
#include "internals.h"
#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
-__read_mostly bool force_irqthreads;
-EXPORT_SYMBOL_GPL(force_irqthreads);
+DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
static int __init setup_forced_irqthreads(char *arg)
{
- force_irqthreads = true;
+ static_branch_enable(&force_irqthreads_key);
return 0;
}
early_param("threadirqs", setup_forced_irqthreads);
@@ -1260,8 +1259,8 @@ static int irq_thread(void *data)
irqreturn_t (*handler_fn)(struct irq_desc *desc,
struct irqaction *action);
- if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
- &action->thread_flags))
+ if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
+ &action->thread_flags))
handler_fn = irq_forced_thread_fn;
else
handler_fn = irq_thread_fn;
@@ -1322,7 +1321,7 @@ EXPORT_SYMBOL_GPL(irq_wake_thread);
static int irq_setup_forced_threading(struct irqaction *new)
{
- if (!force_irqthreads)
+ if (!force_irqthreads())
return 0;
if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
return 0;
@@ -2072,9 +2071,9 @@ const void *free_nmi(unsigned int irq, void *dev_id)
* request_threaded_irq - allocate an interrupt line
* @irq: Interrupt line to allocate
* @handler: Function to be called when the IRQ occurs.
- * Primary handler for threaded interrupts
- * If NULL and thread_fn != NULL the default
- * primary handler is installed
+ * Primary handler for threaded interrupts.
+ * If handler is NULL and thread_fn != NULL
+ * the default primary handler is installed.
* @thread_fn: Function called from the irq handler thread
* If NULL, no irq thread is created
* @irqflags: Interrupt type flags
@@ -2108,7 +2107,7 @@ const void *free_nmi(unsigned int irq, void *dev_id)
*
* IRQF_SHARED Interrupt is shared
* IRQF_TRIGGER_* Specify active edge(s) or level
- *
+ * IRQF_ONESHOT Run thread_fn with interrupt line masked
*/
int request_threaded_irq(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags,
diff --git a/kernel/irq/matrix.c b/kernel/irq/matrix.c
index 578596e41cb6..bbfb26489aa1 100644
--- a/kernel/irq/matrix.c
+++ b/kernel/irq/matrix.c
@@ -280,7 +280,8 @@ void irq_matrix_remove_managed(struct irq_matrix *m, const struct cpumask *msk)
/**
* irq_matrix_alloc_managed - Allocate a managed interrupt in a CPU map
* @m: Matrix pointer
- * @cpu: On which CPU the interrupt should be allocated
+ * @msk: Which CPUs to search in
+ * @mapped_cpu: Pointer to store the CPU for which the irq was allocated
*/
int irq_matrix_alloc_managed(struct irq_matrix *m, const struct cpumask *msk,
unsigned int *mapped_cpu)
diff --git a/kernel/irq/msi.c b/kernel/irq/msi.c
index 85df3ca03efe..6a5ecee6e567 100644
--- a/kernel/irq/msi.c
+++ b/kernel/irq/msi.c
@@ -14,17 +14,20 @@
#include <linux/irqdomain.h>
#include <linux/msi.h>
#include <linux/slab.h>
+#include <linux/pci.h>
#include "internals.h"
/**
- * alloc_msi_entry - Allocate an initialize msi_entry
+ * alloc_msi_entry - Allocate an initialized msi_desc
* @dev: Pointer to the device for which this is allocated
* @nvec: The number of vectors used in this entry
* @affinity: Optional pointer to an affinity mask array size of @nvec
*
- * If @affinity is not NULL then an affinity array[@nvec] is allocated
+ * If @affinity is not %NULL then an affinity array[@nvec] is allocated
* and the affinity masks and flags from @affinity are copied.
+ *
+ * Return: pointer to allocated &msi_desc on success or %NULL on failure
*/
struct msi_desc *alloc_msi_entry(struct device *dev, int nvec,
const struct irq_affinity_desc *affinity)
@@ -69,6 +72,139 @@ void get_cached_msi_msg(unsigned int irq, struct msi_msg *msg)
}
EXPORT_SYMBOL_GPL(get_cached_msi_msg);
+static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct msi_desc *entry;
+ bool is_msix = false;
+ unsigned long irq;
+ int retval;
+
+ retval = kstrtoul(attr->attr.name, 10, &irq);
+ if (retval)
+ return retval;
+
+ entry = irq_get_msi_desc(irq);
+ if (!entry)
+ return -ENODEV;
+
+ if (dev_is_pci(dev))
+ is_msix = entry->msi_attrib.is_msix;
+
+ return sysfs_emit(buf, "%s\n", is_msix ? "msix" : "msi");
+}
+
+/**
+ * msi_populate_sysfs - Populate msi_irqs sysfs entries for devices
+ * @dev: The device(PCI, platform etc) who will get sysfs entries
+ *
+ * Return attribute_group ** so that specific bus MSI can save it to
+ * somewhere during initilizing msi irqs. If devices has no MSI irq,
+ * return NULL; if it fails to populate sysfs, return ERR_PTR
+ */
+const struct attribute_group **msi_populate_sysfs(struct device *dev)
+{
+ const struct attribute_group **msi_irq_groups;
+ struct attribute **msi_attrs, *msi_attr;
+ struct device_attribute *msi_dev_attr;
+ struct attribute_group *msi_irq_group;
+ struct msi_desc *entry;
+ int ret = -ENOMEM;
+ int num_msi = 0;
+ int count = 0;
+ int i;
+
+ /* Determine how many msi entries we have */
+ for_each_msi_entry(entry, dev)
+ num_msi += entry->nvec_used;
+ if (!num_msi)
+ return NULL;
+
+ /* Dynamically create the MSI attributes for the device */
+ msi_attrs = kcalloc(num_msi + 1, sizeof(void *), GFP_KERNEL);
+ if (!msi_attrs)
+ return ERR_PTR(-ENOMEM);
+
+ for_each_msi_entry(entry, dev) {
+ for (i = 0; i < entry->nvec_used; i++) {
+ msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
+ if (!msi_dev_attr)
+ goto error_attrs;
+ msi_attrs[count] = &msi_dev_attr->attr;
+
+ sysfs_attr_init(&msi_dev_attr->attr);
+ msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d",
+ entry->irq + i);
+ if (!msi_dev_attr->attr.name)
+ goto error_attrs;
+ msi_dev_attr->attr.mode = 0444;
+ msi_dev_attr->show = msi_mode_show;
+ ++count;
+ }
+ }
+
+ msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
+ if (!msi_irq_group)
+ goto error_attrs;
+ msi_irq_group->name = "msi_irqs";
+ msi_irq_group->attrs = msi_attrs;
+
+ msi_irq_groups = kcalloc(2, sizeof(void *), GFP_KERNEL);
+ if (!msi_irq_groups)
+ goto error_irq_group;
+ msi_irq_groups[0] = msi_irq_group;
+
+ ret = sysfs_create_groups(&dev->kobj, msi_irq_groups);
+ if (ret)
+ goto error_irq_groups;
+
+ return msi_irq_groups;
+
+error_irq_groups:
+ kfree(msi_irq_groups);
+error_irq_group:
+ kfree(msi_irq_group);
+error_attrs:
+ count = 0;
+ msi_attr = msi_attrs[count];
+ while (msi_attr) {
+ msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
+ kfree(msi_attr->name);
+ kfree(msi_dev_attr);
+ ++count;
+ msi_attr = msi_attrs[count];
+ }
+ kfree(msi_attrs);
+ return ERR_PTR(ret);
+}
+
+/**
+ * msi_destroy_sysfs - Destroy msi_irqs sysfs entries for devices
+ * @dev: The device(PCI, platform etc) who will remove sysfs entries
+ * @msi_irq_groups: attribute_group for device msi_irqs entries
+ */
+void msi_destroy_sysfs(struct device *dev, const struct attribute_group **msi_irq_groups)
+{
+ struct device_attribute *dev_attr;
+ struct attribute **msi_attrs;
+ int count = 0;
+
+ if (msi_irq_groups) {
+ sysfs_remove_groups(&dev->kobj, msi_irq_groups);
+ msi_attrs = msi_irq_groups[0]->attrs;
+ while (msi_attrs[count]) {
+ dev_attr = container_of(msi_attrs[count],
+ struct device_attribute, attr);
+ kfree(dev_attr->attr.name);
+ kfree(dev_attr);
+ ++count;
+ }
+ kfree(msi_attrs);
+ kfree(msi_irq_groups[0]);
+ kfree(msi_irq_groups);
+ }
+}
+
#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
static inline void irq_chip_write_msi_msg(struct irq_data *data,
struct msi_msg *msg)
@@ -97,6 +233,8 @@ static void msi_check_level(struct irq_domain *domain, struct msi_msg *msg)
*
* Intended to be used by MSI interrupt controllers which are
* implemented with hierarchical domains.
+ *
+ * Return: IRQ_SET_MASK_* result code
*/
int msi_domain_set_affinity(struct irq_data *irq_data,
const struct cpumask *mask, bool force)
@@ -277,10 +415,12 @@ static void msi_domain_update_chip_ops(struct msi_domain_info *info)
}
/**
- * msi_create_irq_domain - Create a MSI interrupt domain
+ * msi_create_irq_domain - Create an MSI interrupt domain
* @fwnode: Optional fwnode of the interrupt controller
* @info: MSI domain info
* @parent: Parent irq domain
+ *
+ * Return: pointer to the created &struct irq_domain or %NULL on failure
*/
struct irq_domain *msi_create_irq_domain(struct fwnode_handle *fwnode,
struct msi_domain_info *info,
@@ -487,7 +627,7 @@ cleanup:
* are allocated
* @nvec: The number of interrupts to allocate
*
- * Returns 0 on success or an error code.
+ * Return: %0 on success or an error code.
*/
int msi_domain_alloc_irqs(struct irq_domain *domain, struct device *dev,
int nvec)
@@ -524,7 +664,7 @@ void __msi_domain_free_irqs(struct irq_domain *domain, struct device *dev)
}
/**
- * __msi_domain_free_irqs - Free interrupts from a MSI interrupt @domain associated tp @dev
+ * msi_domain_free_irqs - Free interrupts from a MSI interrupt @domain associated to @dev
* @domain: The domain to managing the interrupts
* @dev: Pointer to device struct of the device for which the interrupts
* are free
@@ -541,8 +681,7 @@ void msi_domain_free_irqs(struct irq_domain *domain, struct device *dev)
* msi_get_domain_info - Get the MSI interrupt domain info for @domain
* @domain: The interrupt domain to retrieve data from
*
- * Returns the pointer to the msi_domain_info stored in
- * @domain->host_data.
+ * Return: the pointer to the msi_domain_info stored in @domain->host_data.
*/
struct msi_domain_info *msi_get_domain_info(struct irq_domain *domain)
{
diff --git a/kernel/irq/pm.c b/kernel/irq/pm.c
index ce0adb22ee96..ca71123a6130 100644
--- a/kernel/irq/pm.c
+++ b/kernel/irq/pm.c
@@ -227,7 +227,7 @@ unlock:
}
/**
- * irq_pm_syscore_ops - enable interrupt lines early
+ * irq_pm_syscore_resume - enable interrupt lines early
*
* Enable all interrupt lines with %IRQF_EARLY_RESUME set.
*/
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c
index 7c5cd42df3b9..ee595ec09778 100644
--- a/kernel/irq/proc.c
+++ b/kernel/irq/proc.c
@@ -513,7 +513,7 @@ int show_interrupts(struct seq_file *p, void *v)
seq_printf(p, " %8s", "None");
}
if (desc->irq_data.domain)
- seq_printf(p, " %*d", prec, (int) desc->irq_data.hwirq);
+ seq_printf(p, " %*lu", prec, desc->irq_data.hwirq);
else
seq_printf(p, " %*s", prec, "");
#ifdef CONFIG_GENERIC_IRQ_SHOW_LEVEL
diff --git a/kernel/irq/timings.c b/kernel/irq/timings.c
index 4d2a702d7aa9..c43e2ac2f8de 100644
--- a/kernel/irq/timings.c
+++ b/kernel/irq/timings.c
@@ -799,12 +799,14 @@ static int __init irq_timings_test_irqs(struct timings_intervals *ti)
__irq_timings_store(irq, irqs, ti->intervals[i]);
if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) {
+ ret = -EBADSLT;
pr_err("Failed to store in the circular buffer\n");
goto out;
}
}
if (irqs->count != ti->count) {
+ ret = -ERANGE;
pr_err("Count differs\n");
goto out;
}
diff --git a/kernel/kcsan/debugfs.c b/kernel/kcsan/debugfs.c
index e65de172ccf7..1d1d1b0e4248 100644
--- a/kernel/kcsan/debugfs.c
+++ b/kernel/kcsan/debugfs.c
@@ -64,7 +64,7 @@ static noinline void microbenchmark(unsigned long iters)
{
const struct kcsan_ctx ctx_save = current->kcsan_ctx;
const bool was_enabled = READ_ONCE(kcsan_enabled);
- cycles_t cycles;
+ u64 cycles;
/* We may have been called from an atomic region; reset context. */
memset(&current->kcsan_ctx, 0, sizeof(current->kcsan_ctx));
diff --git a/kernel/locking/Makefile b/kernel/locking/Makefile
index 3572808223e4..d51cabf28f38 100644
--- a/kernel/locking/Makefile
+++ b/kernel/locking/Makefile
@@ -24,7 +24,8 @@ obj-$(CONFIG_SMP) += spinlock.o
obj-$(CONFIG_LOCK_SPIN_ON_OWNER) += osq_lock.o
obj-$(CONFIG_PROVE_LOCKING) += spinlock.o
obj-$(CONFIG_QUEUED_SPINLOCKS) += qspinlock.o
-obj-$(CONFIG_RT_MUTEXES) += rtmutex.o
+obj-$(CONFIG_RT_MUTEXES) += rtmutex_api.o
+obj-$(CONFIG_PREEMPT_RT) += spinlock_rt.o ww_rt_mutex.o
obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o
obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock_debug.o
obj-$(CONFIG_QUEUED_RWLOCKS) += qrwlock.o
diff --git a/kernel/locking/locktorture.c b/kernel/locking/locktorture.c
index b3adb40549bf..7c5a4a087cc7 100644
--- a/kernel/locking/locktorture.c
+++ b/kernel/locking/locktorture.c
@@ -59,7 +59,7 @@ static struct task_struct **writer_tasks;
static struct task_struct **reader_tasks;
static bool lock_is_write_held;
-static bool lock_is_read_held;
+static atomic_t lock_is_read_held;
static unsigned long last_lock_release;
struct lock_stress_stats {
@@ -682,7 +682,7 @@ static int lock_torture_writer(void *arg)
if (WARN_ON_ONCE(lock_is_write_held))
lwsp->n_lock_fail++;
lock_is_write_held = true;
- if (WARN_ON_ONCE(lock_is_read_held))
+ if (WARN_ON_ONCE(atomic_read(&lock_is_read_held)))
lwsp->n_lock_fail++; /* rare, but... */
lwsp->n_lock_acquired++;
@@ -717,13 +717,13 @@ static int lock_torture_reader(void *arg)
schedule_timeout_uninterruptible(1);
cxt.cur_ops->readlock(tid);
- lock_is_read_held = true;
+ atomic_inc(&lock_is_read_held);
if (WARN_ON_ONCE(lock_is_write_held))
lrsp->n_lock_fail++; /* rare, but... */
lrsp->n_lock_acquired++;
cxt.cur_ops->read_delay(&rand);
- lock_is_read_held = false;
+ atomic_dec(&lock_is_read_held);
cxt.cur_ops->readunlock(tid);
stutter_wait("lock_torture_reader");
@@ -738,20 +738,22 @@ static int lock_torture_reader(void *arg)
static void __torture_print_stats(char *page,
struct lock_stress_stats *statp, bool write)
{
+ long cur;
bool fail = false;
int i, n_stress;
- long max = 0, min = statp ? statp[0].n_lock_acquired : 0;
+ long max = 0, min = statp ? data_race(statp[0].n_lock_acquired) : 0;
long long sum = 0;
n_stress = write ? cxt.nrealwriters_stress : cxt.nrealreaders_stress;
for (i = 0; i < n_stress; i++) {
- if (statp[i].n_lock_fail)
+ if (data_race(statp[i].n_lock_fail))
fail = true;
- sum += statp[i].n_lock_acquired;
- if (max < statp[i].n_lock_acquired)
- max = statp[i].n_lock_acquired;
- if (min > statp[i].n_lock_acquired)
- min = statp[i].n_lock_acquired;
+ cur = data_race(statp[i].n_lock_acquired);
+ sum += cur;
+ if (max < cur)
+ max = cur;
+ if (min > cur)
+ min = cur;
}
page += sprintf(page,
"%s: Total: %lld Max/Min: %ld/%ld %s Fail: %d %s\n",
@@ -996,7 +998,6 @@ static int __init lock_torture_init(void)
}
if (nreaders_stress) {
- lock_is_read_held = false;
cxt.lrsa = kmalloc_array(cxt.nrealreaders_stress,
sizeof(*cxt.lrsa),
GFP_KERNEL);
diff --git a/kernel/locking/mutex-debug.c b/kernel/locking/mutex-debug.c
index db9301591e3f..bc8abb8549d2 100644
--- a/kernel/locking/mutex-debug.c
+++ b/kernel/locking/mutex-debug.c
@@ -1,6 +1,4 @@
/*
- * kernel/mutex-debug.c
- *
* Debugging code for mutexes
*
* Started by Ingo Molnar:
@@ -22,7 +20,7 @@
#include <linux/interrupt.h>
#include <linux/debug_locks.h>
-#include "mutex-debug.h"
+#include "mutex.h"
/*
* Must be called with lock->wait_lock held.
@@ -32,6 +30,7 @@ void debug_mutex_lock_common(struct mutex *lock, struct mutex_waiter *waiter)
memset(waiter, MUTEX_DEBUG_INIT, sizeof(*waiter));
waiter->magic = waiter;
INIT_LIST_HEAD(&waiter->list);
+ waiter->ww_ctx = MUTEX_POISON_WW_CTX;
}
void debug_mutex_wake_waiter(struct mutex *lock, struct mutex_waiter *waiter)
diff --git a/kernel/locking/mutex-debug.h b/kernel/locking/mutex-debug.h
deleted file mode 100644
index 53e631e1d76d..000000000000
--- a/kernel/locking/mutex-debug.h
+++ /dev/null
@@ -1,29 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-/*
- * Mutexes: blocking mutual exclusion locks
- *
- * started by Ingo Molnar:
- *
- * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
- *
- * This file contains mutex debugging related internal declarations,
- * prototypes and inline functions, for the CONFIG_DEBUG_MUTEXES case.
- * More details are in kernel/mutex-debug.c.
- */
-
-/*
- * This must be called with lock->wait_lock held.
- */
-extern void debug_mutex_lock_common(struct mutex *lock,
- struct mutex_waiter *waiter);
-extern void debug_mutex_wake_waiter(struct mutex *lock,
- struct mutex_waiter *waiter);
-extern void debug_mutex_free_waiter(struct mutex_waiter *waiter);
-extern void debug_mutex_add_waiter(struct mutex *lock,
- struct mutex_waiter *waiter,
- struct task_struct *task);
-extern void debug_mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter,
- struct task_struct *task);
-extern void debug_mutex_unlock(struct mutex *lock);
-extern void debug_mutex_init(struct mutex *lock, const char *name,
- struct lock_class_key *key);
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index d2df5e68b503..d456579d0952 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -30,17 +30,20 @@
#include <linux/debug_locks.h>
#include <linux/osq_lock.h>
+#ifndef CONFIG_PREEMPT_RT
+#include "mutex.h"
+
#ifdef CONFIG_DEBUG_MUTEXES
-# include "mutex-debug.h"
+# define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
#else
-# include "mutex.h"
+# define MUTEX_WARN_ON(cond)
#endif
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
atomic_long_set(&lock->owner, 0);
- spin_lock_init(&lock->wait_lock);
+ raw_spin_lock_init(&lock->wait_lock);
INIT_LIST_HEAD(&lock->wait_list);
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
osq_lock_init(&lock->osq);
@@ -91,55 +94,56 @@ static inline unsigned long __owner_flags(unsigned long owner)
return owner & MUTEX_FLAGS;
}
-/*
- * Trylock variant that returns the owning task on failure.
- */
-static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
+static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
{
unsigned long owner, curr = (unsigned long)current;
owner = atomic_long_read(&lock->owner);
for (;;) { /* must loop, can race against a flag */
- unsigned long old, flags = __owner_flags(owner);
+ unsigned long flags = __owner_flags(owner);
unsigned long task = owner & ~MUTEX_FLAGS;
if (task) {
- if (likely(task != curr))
- break;
-
- if (likely(!(flags & MUTEX_FLAG_PICKUP)))
+ if (flags & MUTEX_FLAG_PICKUP) {
+ if (task != curr)
+ break;
+ flags &= ~MUTEX_FLAG_PICKUP;
+ } else if (handoff) {
+ if (flags & MUTEX_FLAG_HANDOFF)
+ break;
+ flags |= MUTEX_FLAG_HANDOFF;
+ } else {
break;
-
- flags &= ~MUTEX_FLAG_PICKUP;
+ }
} else {
-#ifdef CONFIG_DEBUG_MUTEXES
- DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
-#endif
+ MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
+ task = curr;
}
- /*
- * We set the HANDOFF bit, we must make sure it doesn't live
- * past the point where we acquire it. This would be possible
- * if we (accidentally) set the bit on an unlocked mutex.
- */
- flags &= ~MUTEX_FLAG_HANDOFF;
-
- old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
- if (old == owner)
- return NULL;
-
- owner = old;
+ if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
+ if (task == curr)
+ return NULL;
+ break;
+ }
}
return __owner_task(owner);
}
/*
+ * Trylock or set HANDOFF
+ */
+static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
+{
+ return !__mutex_trylock_common(lock, handoff);
+}
+
+/*
* Actual trylock that will work on any unlocked state.
*/
static inline bool __mutex_trylock(struct mutex *lock)
{
- return !__mutex_trylock_or_owner(lock);
+ return !__mutex_trylock_common(lock, false);
}
#ifndef CONFIG_DEBUG_LOCK_ALLOC
@@ -168,10 +172,7 @@ static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
{
unsigned long curr = (unsigned long)current;
- if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
- return true;
-
- return false;
+ return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
}
#endif
@@ -226,23 +227,18 @@ static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
unsigned long owner = atomic_long_read(&lock->owner);
for (;;) {
- unsigned long old, new;
+ unsigned long new;
-#ifdef CONFIG_DEBUG_MUTEXES
- DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
- DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
-#endif
+ MUTEX_WARN_ON(__owner_task(owner) != current);
+ MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
new = (owner & MUTEX_FLAG_WAITERS);
new |= (unsigned long)task;
if (task)
new |= MUTEX_FLAG_PICKUP;
- old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
- if (old == owner)
+ if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
break;
-
- owner = old;
}
}
@@ -286,218 +282,18 @@ void __sched mutex_lock(struct mutex *lock)
EXPORT_SYMBOL(mutex_lock);
#endif
-/*
- * Wait-Die:
- * The newer transactions are killed when:
- * It (the new transaction) makes a request for a lock being held
- * by an older transaction.
- *
- * Wound-Wait:
- * The newer transactions are wounded when:
- * An older transaction makes a request for a lock being held by
- * the newer transaction.
- */
-
-/*
- * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
- * it.
- */
-static __always_inline void
-ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
-{
-#ifdef CONFIG_DEBUG_MUTEXES
- /*
- * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
- * but released with a normal mutex_unlock in this call.
- *
- * This should never happen, always use ww_mutex_unlock.
- */
- DEBUG_LOCKS_WARN_ON(ww->ctx);
-
- /*
- * Not quite done after calling ww_acquire_done() ?
- */
- DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
+#include "ww_mutex.h"
- if (ww_ctx->contending_lock) {
- /*
- * After -EDEADLK you tried to
- * acquire a different ww_mutex? Bad!
- */
- DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
-
- /*
- * You called ww_mutex_lock after receiving -EDEADLK,
- * but 'forgot' to unlock everything else first?
- */
- DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
- ww_ctx->contending_lock = NULL;
- }
-
- /*
- * Naughty, using a different class will lead to undefined behavior!
- */
- DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
-#endif
- ww_ctx->acquired++;
- ww->ctx = ww_ctx;
-}
-
-/*
- * Determine if context @a is 'after' context @b. IOW, @a is a younger
- * transaction than @b and depending on algorithm either needs to wait for
- * @b or die.
- */
-static inline bool __sched
-__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
-{
-
- return (signed long)(a->stamp - b->stamp) > 0;
-}
-
-/*
- * Wait-Die; wake a younger waiter context (when locks held) such that it can
- * die.
- *
- * Among waiters with context, only the first one can have other locks acquired
- * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
- * __ww_mutex_check_kill() wake any but the earliest context.
- */
-static bool __sched
-__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
- struct ww_acquire_ctx *ww_ctx)
-{
- if (!ww_ctx->is_wait_die)
- return false;
-
- if (waiter->ww_ctx->acquired > 0 &&
- __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
- debug_mutex_wake_waiter(lock, waiter);
- wake_up_process(waiter->task);
- }
-
- return true;
-}
-
-/*
- * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
- *
- * Wound the lock holder if there are waiters with older transactions than
- * the lock holders. Even if multiple waiters may wound the lock holder,
- * it's sufficient that only one does.
- */
-static bool __ww_mutex_wound(struct mutex *lock,
- struct ww_acquire_ctx *ww_ctx,
- struct ww_acquire_ctx *hold_ctx)
-{
- struct task_struct *owner = __mutex_owner(lock);
-
- lockdep_assert_held(&lock->wait_lock);
-
- /*
- * Possible through __ww_mutex_add_waiter() when we race with
- * ww_mutex_set_context_fastpath(). In that case we'll get here again
- * through __ww_mutex_check_waiters().
- */
- if (!hold_ctx)
- return false;
-
- /*
- * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
- * it cannot go away because we'll have FLAG_WAITERS set and hold
- * wait_lock.
- */
- if (!owner)
- return false;
-
- if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
- hold_ctx->wounded = 1;
-
- /*
- * wake_up_process() paired with set_current_state()
- * inserts sufficient barriers to make sure @owner either sees
- * it's wounded in __ww_mutex_check_kill() or has a
- * wakeup pending to re-read the wounded state.
- */
- if (owner != current)
- wake_up_process(owner);
-
- return true;
- }
-
- return false;
-}
-
-/*
- * We just acquired @lock under @ww_ctx, if there are later contexts waiting
- * behind us on the wait-list, check if they need to die, or wound us.
- *
- * See __ww_mutex_add_waiter() for the list-order construction; basically the
- * list is ordered by stamp, smallest (oldest) first.
- *
- * This relies on never mixing wait-die/wound-wait on the same wait-list;
- * which is currently ensured by that being a ww_class property.
- *
- * The current task must not be on the wait list.
- */
-static void __sched
-__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
-{
- struct mutex_waiter *cur;
-
- lockdep_assert_held(&lock->wait_lock);
-
- list_for_each_entry(cur, &lock->wait_list, list) {
- if (!cur->ww_ctx)
- continue;
-
- if (__ww_mutex_die(lock, cur, ww_ctx) ||
- __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
- break;
- }
-}
+#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
/*
- * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
- * and wake up any waiters so they can recheck.
+ * Trylock variant that returns the owning task on failure.
*/
-static __always_inline void
-ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
+static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
{
- ww_mutex_lock_acquired(lock, ctx);
-
- /*
- * The lock->ctx update should be visible on all cores before
- * the WAITERS check is done, otherwise contended waiters might be
- * missed. The contended waiters will either see ww_ctx == NULL
- * and keep spinning, or it will acquire wait_lock, add itself
- * to waiter list and sleep.
- */
- smp_mb(); /* See comments above and below. */
-
- /*
- * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
- * MB MB
- * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
- *
- * The memory barrier above pairs with the memory barrier in
- * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
- * and/or !empty list.
- */
- if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
- return;
-
- /*
- * Uh oh, we raced in fastpath, check if any of the waiters need to
- * die or wound us.
- */
- spin_lock(&lock->base.wait_lock);
- __ww_mutex_check_waiters(&lock->base, ctx);
- spin_unlock(&lock->base.wait_lock);
+ return __mutex_trylock_common(lock, false);
}
-#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
-
static inline
bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
struct mutex_waiter *waiter)
@@ -754,171 +550,11 @@ EXPORT_SYMBOL(mutex_unlock);
*/
void __sched ww_mutex_unlock(struct ww_mutex *lock)
{
- /*
- * The unlocking fastpath is the 0->1 transition from 'locked'
- * into 'unlocked' state:
- */
- if (lock->ctx) {
-#ifdef CONFIG_DEBUG_MUTEXES
- DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
-#endif
- if (lock->ctx->acquired > 0)
- lock->ctx->acquired--;
- lock->ctx = NULL;
- }
-
+ __ww_mutex_unlock(lock);
mutex_unlock(&lock->base);
}
EXPORT_SYMBOL(ww_mutex_unlock);
-
-static __always_inline int __sched
-__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
-{
- if (ww_ctx->acquired > 0) {
-#ifdef CONFIG_DEBUG_MUTEXES
- struct ww_mutex *ww;
-
- ww = container_of(lock, struct ww_mutex, base);
- DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
- ww_ctx->contending_lock = ww;
-#endif
- return -EDEADLK;
- }
-
- return 0;
-}
-
-
-/*
- * Check the wound condition for the current lock acquire.
- *
- * Wound-Wait: If we're wounded, kill ourself.
- *
- * Wait-Die: If we're trying to acquire a lock already held by an older
- * context, kill ourselves.
- *
- * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
- * look at waiters before us in the wait-list.
- */
-static inline int __sched
-__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
- struct ww_acquire_ctx *ctx)
-{
- struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
- struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
- struct mutex_waiter *cur;
-
- if (ctx->acquired == 0)
- return 0;
-
- if (!ctx->is_wait_die) {
- if (ctx->wounded)
- return __ww_mutex_kill(lock, ctx);
-
- return 0;
- }
-
- if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
- return __ww_mutex_kill(lock, ctx);
-
- /*
- * If there is a waiter in front of us that has a context, then its
- * stamp is earlier than ours and we must kill ourself.
- */
- cur = waiter;
- list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
- if (!cur->ww_ctx)
- continue;
-
- return __ww_mutex_kill(lock, ctx);
- }
-
- return 0;
-}
-
-/*
- * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
- * first. Such that older contexts are preferred to acquire the lock over
- * younger contexts.
- *
- * Waiters without context are interspersed in FIFO order.
- *
- * Furthermore, for Wait-Die kill ourself immediately when possible (there are
- * older contexts already waiting) to avoid unnecessary waiting and for
- * Wound-Wait ensure we wound the owning context when it is younger.
- */
-static inline int __sched
-__ww_mutex_add_waiter(struct mutex_waiter *waiter,
- struct mutex *lock,
- struct ww_acquire_ctx *ww_ctx)
-{
- struct mutex_waiter *cur;
- struct list_head *pos;
- bool is_wait_die;
-
- if (!ww_ctx) {
- __mutex_add_waiter(lock, waiter, &lock->wait_list);
- return 0;
- }
-
- is_wait_die = ww_ctx->is_wait_die;
-
- /*
- * Add the waiter before the first waiter with a higher stamp.
- * Waiters without a context are skipped to avoid starving
- * them. Wait-Die waiters may die here. Wound-Wait waiters
- * never die here, but they are sorted in stamp order and
- * may wound the lock holder.
- */
- pos = &lock->wait_list;
- list_for_each_entry_reverse(cur, &lock->wait_list, list) {
- if (!cur->ww_ctx)
- continue;
-
- if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
- /*
- * Wait-Die: if we find an older context waiting, there
- * is no point in queueing behind it, as we'd have to
- * die the moment it would acquire the lock.
- */
- if (is_wait_die) {
- int ret = __ww_mutex_kill(lock, ww_ctx);
-
- if (ret)
- return ret;
- }
-
- break;
- }
-
- pos = &cur->list;
-
- /* Wait-Die: ensure younger waiters die. */
- __ww_mutex_die(lock, cur, ww_ctx);
- }
-
- __mutex_add_waiter(lock, waiter, pos);
-
- /*
- * Wound-Wait: if we're blocking on a mutex owned by a younger context,
- * wound that such that we might proceed.
- */
- if (!is_wait_die) {
- struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
-
- /*
- * See ww_mutex_set_context_fastpath(). Orders setting
- * MUTEX_FLAG_WAITERS vs the ww->ctx load,
- * such that either we or the fastpath will wound @ww->ctx.
- */
- smp_mb();
- __ww_mutex_wound(lock, ww_ctx, ww->ctx);
- }
-
- return 0;
-}
-
/*
* Lock a mutex (possibly interruptible), slowpath:
*/
@@ -928,7 +564,6 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
struct mutex_waiter waiter;
- bool first = false;
struct ww_mutex *ww;
int ret;
@@ -937,9 +572,7 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
might_sleep();
-#ifdef CONFIG_DEBUG_MUTEXES
- DEBUG_LOCKS_WARN_ON(lock->magic != lock);
-#endif
+ MUTEX_WARN_ON(lock->magic != lock);
ww = container_of(lock, struct ww_mutex, base);
if (ww_ctx) {
@@ -953,6 +586,10 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
*/
if (ww_ctx->acquired == 0)
ww_ctx->wounded = 0;
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+ nest_lock = &ww_ctx->dep_map;
+#endif
}
preempt_disable();
@@ -968,7 +605,7 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
return 0;
}
- spin_lock(&lock->wait_lock);
+ raw_spin_lock(&lock->wait_lock);
/*
* After waiting to acquire the wait_lock, try again.
*/
@@ -980,17 +617,15 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
}
debug_mutex_lock_common(lock, &waiter);
+ waiter.task = current;
+ if (use_ww_ctx)
+ waiter.ww_ctx = ww_ctx;
lock_contended(&lock->dep_map, ip);
if (!use_ww_ctx) {
/* add waiting tasks to the end of the waitqueue (FIFO): */
__mutex_add_waiter(lock, &waiter, &lock->wait_list);
-
-
-#ifdef CONFIG_DEBUG_MUTEXES
- waiter.ww_ctx = MUTEX_POISON_WW_CTX;
-#endif
} else {
/*
* Add in stamp order, waking up waiters that must kill
@@ -999,14 +634,12 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
if (ret)
goto err_early_kill;
-
- waiter.ww_ctx = ww_ctx;
}
- waiter.task = current;
-
set_current_state(state);
for (;;) {
+ bool first;
+
/*
* Once we hold wait_lock, we're serialized against
* mutex_unlock() handing the lock off to us, do a trylock
@@ -1032,18 +665,10 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
goto err;
}
- spin_unlock(&lock->wait_lock);
+ raw_spin_unlock(&lock->wait_lock);
schedule_preempt_disabled();
- /*
- * ww_mutex needs to always recheck its position since its waiter
- * list is not FIFO ordered.
- */
- if (ww_ctx || !first) {
- first = __mutex_waiter_is_first(lock, &waiter);
- if (first)
- __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
- }
+ first = __mutex_waiter_is_first(lock, &waiter);
set_current_state(state);
/*
@@ -1051,13 +676,13 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
* state back to RUNNING and fall through the next schedule(),
* or we must see its unlock and acquire.
*/
- if (__mutex_trylock(lock) ||
+ if (__mutex_trylock_or_handoff(lock, first) ||
(first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
break;
- spin_lock(&lock->wait_lock);
+ raw_spin_lock(&lock->wait_lock);
}
- spin_lock(&lock->wait_lock);
+ raw_spin_lock(&lock->wait_lock);
acquired:
__set_current_state(TASK_RUNNING);
@@ -1082,7 +707,7 @@ skip_wait:
if (ww_ctx)
ww_mutex_lock_acquired(ww, ww_ctx);
- spin_unlock(&lock->wait_lock);
+ raw_spin_unlock(&lock->wait_lock);
preempt_enable();
return 0;
@@ -1090,7 +715,7 @@ err:
__set_current_state(TASK_RUNNING);
__mutex_remove_waiter(lock, &waiter);
err_early_kill:
- spin_unlock(&lock->wait_lock);
+ raw_spin_unlock(&lock->wait_lock);
debug_mutex_free_waiter(&waiter);
mutex_release(&lock->dep_map, ip);
preempt_enable();
@@ -1106,10 +731,9 @@ __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
static int __sched
__ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
- struct lockdep_map *nest_lock, unsigned long ip,
- struct ww_acquire_ctx *ww_ctx)
+ unsigned long ip, struct ww_acquire_ctx *ww_ctx)
{
- return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
+ return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
}
#ifdef CONFIG_DEBUG_LOCK_ALLOC
@@ -1189,8 +813,7 @@ ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
might_sleep();
ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
- 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
- ctx);
+ 0, _RET_IP_, ctx);
if (!ret && ctx && ctx->acquired > 1)
return ww_mutex_deadlock_injection(lock, ctx);
@@ -1205,8 +828,7 @@ ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
might_sleep();
ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
- 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
- ctx);
+ 0, _RET_IP_, ctx);
if (!ret && ctx && ctx->acquired > 1)
return ww_mutex_deadlock_injection(lock, ctx);
@@ -1237,29 +859,21 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
*/
owner = atomic_long_read(&lock->owner);
for (;;) {
- unsigned long old;
-
-#ifdef CONFIG_DEBUG_MUTEXES
- DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
- DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
-#endif
+ MUTEX_WARN_ON(__owner_task(owner) != current);
+ MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
if (owner & MUTEX_FLAG_HANDOFF)
break;
- old = atomic_long_cmpxchg_release(&lock->owner, owner,
- __owner_flags(owner));
- if (old == owner) {
+ if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
if (owner & MUTEX_FLAG_WAITERS)
break;
return;
}
-
- owner = old;
}
- spin_lock(&lock->wait_lock);
+ raw_spin_lock(&lock->wait_lock);
debug_mutex_unlock(lock);
if (!list_empty(&lock->wait_list)) {
/* get the first entry from the wait-list: */
@@ -1276,7 +890,7 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
if (owner & MUTEX_FLAG_HANDOFF)
__mutex_handoff(lock, next);
- spin_unlock(&lock->wait_lock);
+ raw_spin_unlock(&lock->wait_lock);
wake_up_q(&wake_q);
}
@@ -1380,7 +994,7 @@ __mutex_lock_interruptible_slowpath(struct mutex *lock)
static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
- return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
+ return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
_RET_IP_, ctx);
}
@@ -1388,7 +1002,7 @@ static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
struct ww_acquire_ctx *ctx)
{
- return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
+ return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
_RET_IP_, ctx);
}
@@ -1412,9 +1026,7 @@ int __sched mutex_trylock(struct mutex *lock)
{
bool locked;
-#ifdef CONFIG_DEBUG_MUTEXES
- DEBUG_LOCKS_WARN_ON(lock->magic != lock);
-#endif
+ MUTEX_WARN_ON(lock->magic != lock);
locked = __mutex_trylock(lock);
if (locked)
@@ -1455,7 +1067,8 @@ ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
}
EXPORT_SYMBOL(ww_mutex_lock_interruptible);
-#endif
+#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
+#endif /* !CONFIG_PREEMPT_RT */
/**
* atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
diff --git a/kernel/locking/mutex.h b/kernel/locking/mutex.h
index f0c710b1d192..0b2a79c4013b 100644
--- a/kernel/locking/mutex.h
+++ b/kernel/locking/mutex.h
@@ -5,19 +5,41 @@
* started by Ingo Molnar:
*
* Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
- *
- * This file contains mutex debugging related internal prototypes, for the
- * !CONFIG_DEBUG_MUTEXES case. Most of them are NOPs:
*/
-#define debug_mutex_wake_waiter(lock, waiter) do { } while (0)
-#define debug_mutex_free_waiter(waiter) do { } while (0)
-#define debug_mutex_add_waiter(lock, waiter, ti) do { } while (0)
-#define debug_mutex_remove_waiter(lock, waiter, ti) do { } while (0)
-#define debug_mutex_unlock(lock) do { } while (0)
-#define debug_mutex_init(lock, name, key) do { } while (0)
+/*
+ * This is the control structure for tasks blocked on mutex, which resides
+ * on the blocked task's kernel stack:
+ */
+struct mutex_waiter {
+ struct list_head list;
+ struct task_struct *task;
+ struct ww_acquire_ctx *ww_ctx;
+#ifdef CONFIG_DEBUG_MUTEXES
+ void *magic;
+#endif
+};
-static inline void
-debug_mutex_lock_common(struct mutex *lock, struct mutex_waiter *waiter)
-{
-}
+#ifdef CONFIG_DEBUG_MUTEXES
+extern void debug_mutex_lock_common(struct mutex *lock,
+ struct mutex_waiter *waiter);
+extern void debug_mutex_wake_waiter(struct mutex *lock,
+ struct mutex_waiter *waiter);
+extern void debug_mutex_free_waiter(struct mutex_waiter *waiter);
+extern void debug_mutex_add_waiter(struct mutex *lock,
+ struct mutex_waiter *waiter,
+ struct task_struct *task);
+extern void debug_mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter,
+ struct task_struct *task);
+extern void debug_mutex_unlock(struct mutex *lock);
+extern void debug_mutex_init(struct mutex *lock, const char *name,
+ struct lock_class_key *key);
+#else /* CONFIG_DEBUG_MUTEXES */
+# define debug_mutex_lock_common(lock, waiter) do { } while (0)
+# define debug_mutex_wake_waiter(lock, waiter) do { } while (0)
+# define debug_mutex_free_waiter(waiter) do { } while (0)
+# define debug_mutex_add_waiter(lock, waiter, ti) do { } while (0)
+# define debug_mutex_remove_waiter(lock, waiter, ti) do { } while (0)
+# define debug_mutex_unlock(lock) do { } while (0)
+# define debug_mutex_init(lock, name, key) do { } while (0)
+#endif /* !CONFIG_DEBUG_MUTEXES */
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index ad0db322ed3b..8eabdc79602b 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -8,20 +8,58 @@
* Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
* Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
* Copyright (C) 2006 Esben Nielsen
+ * Adaptive Spinlocks:
+ * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
+ * and Peter Morreale,
+ * Adaptive Spinlocks simplification:
+ * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
*
* See Documentation/locking/rt-mutex-design.rst for details.
*/
-#include <linux/spinlock.h>
-#include <linux/export.h>
+#include <linux/sched.h>
+#include <linux/sched/debug.h>
+#include <linux/sched/deadline.h>
#include <linux/sched/signal.h>
#include <linux/sched/rt.h>
-#include <linux/sched/deadline.h>
#include <linux/sched/wake_q.h>
-#include <linux/sched/debug.h>
-#include <linux/timer.h>
+#include <linux/ww_mutex.h>
#include "rtmutex_common.h"
+#ifndef WW_RT
+# define build_ww_mutex() (false)
+# define ww_container_of(rtm) NULL
+
+static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
+ struct rt_mutex *lock,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ return 0;
+}
+
+static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
+ struct ww_acquire_ctx *ww_ctx)
+{
+}
+
+static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
+ struct ww_acquire_ctx *ww_ctx)
+{
+}
+
+static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
+ struct rt_mutex_waiter *waiter,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ return 0;
+}
+
+#else
+# define build_ww_mutex() (true)
+# define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base)
+# include "ww_mutex.h"
+#endif
+
/*
* lock->owner state tracking:
*
@@ -50,7 +88,7 @@
*/
static __always_inline void
-rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
+rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
{
unsigned long val = (unsigned long)owner;
@@ -60,13 +98,13 @@ rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
WRITE_ONCE(lock->owner, (struct task_struct *)val);
}
-static __always_inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
+static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
{
lock->owner = (struct task_struct *)
((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
}
-static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex *lock)
+static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex_base *lock)
{
unsigned long owner, *p = (unsigned long *) &lock->owner;
@@ -141,15 +179,26 @@ static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex *lock)
* set up.
*/
#ifndef CONFIG_DEBUG_RT_MUTEXES
-# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
-# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
+static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
+ struct task_struct *old,
+ struct task_struct *new)
+{
+ return try_cmpxchg_acquire(&lock->owner, &old, new);
+}
+
+static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
+ struct task_struct *old,
+ struct task_struct *new)
+{
+ return try_cmpxchg_release(&lock->owner, &old, new);
+}
/*
* Callers must hold the ->wait_lock -- which is the whole purpose as we force
* all future threads that attempt to [Rmw] the lock to the slowpath. As such
* relaxed semantics suffice.
*/
-static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
+static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
{
unsigned long owner, *p = (unsigned long *) &lock->owner;
@@ -165,7 +214,7 @@ static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
* 2) Drop lock->wait_lock
* 3) Try to unlock the lock with cmpxchg
*/
-static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
+static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
unsigned long flags)
__releases(lock->wait_lock)
{
@@ -201,10 +250,22 @@ static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
}
#else
-# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
-# define rt_mutex_cmpxchg_release(l,c,n) (0)
+static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
+ struct task_struct *old,
+ struct task_struct *new)
+{
+ return false;
+
+}
-static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
+static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
+ struct task_struct *old,
+ struct task_struct *new)
+{
+ return false;
+}
+
+static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
{
lock->owner = (struct task_struct *)
((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
@@ -213,7 +274,7 @@ static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
/*
* Simple slow path only version: lock->owner is protected by lock->wait_lock.
*/
-static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
+static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
unsigned long flags)
__releases(lock->wait_lock)
{
@@ -223,11 +284,28 @@ static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
}
#endif
+static __always_inline int __waiter_prio(struct task_struct *task)
+{
+ int prio = task->prio;
+
+ if (!rt_prio(prio))
+ return DEFAULT_PRIO;
+
+ return prio;
+}
+
+static __always_inline void
+waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
+{
+ waiter->prio = __waiter_prio(task);
+ waiter->deadline = task->dl.deadline;
+}
+
/*
* Only use with rt_mutex_waiter_{less,equal}()
*/
#define task_to_waiter(p) \
- &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
+ &(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
struct rt_mutex_waiter *right)
@@ -265,22 +343,63 @@ static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
return 1;
}
+static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
+ struct rt_mutex_waiter *top_waiter)
+{
+ if (rt_mutex_waiter_less(waiter, top_waiter))
+ return true;
+
+#ifdef RT_MUTEX_BUILD_SPINLOCKS
+ /*
+ * Note that RT tasks are excluded from same priority (lateral)
+ * steals to prevent the introduction of an unbounded latency.
+ */
+ if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
+ return false;
+
+ return rt_mutex_waiter_equal(waiter, top_waiter);
+#else
+ return false;
+#endif
+}
+
#define __node_2_waiter(node) \
rb_entry((node), struct rt_mutex_waiter, tree_entry)
static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
{
- return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b));
+ struct rt_mutex_waiter *aw = __node_2_waiter(a);
+ struct rt_mutex_waiter *bw = __node_2_waiter(b);
+
+ if (rt_mutex_waiter_less(aw, bw))
+ return 1;
+
+ if (!build_ww_mutex())
+ return 0;
+
+ if (rt_mutex_waiter_less(bw, aw))
+ return 0;
+
+ /* NOTE: relies on waiter->ww_ctx being set before insertion */
+ if (aw->ww_ctx) {
+ if (!bw->ww_ctx)
+ return 1;
+
+ return (signed long)(aw->ww_ctx->stamp -
+ bw->ww_ctx->stamp) < 0;
+ }
+
+ return 0;
}
static __always_inline void
-rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
+rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
{
rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
}
static __always_inline void
-rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
+rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
{
if (RB_EMPTY_NODE(&waiter->tree_entry))
return;
@@ -326,6 +445,35 @@ static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
rt_mutex_setprio(p, pi_task);
}
+/* RT mutex specific wake_q wrappers */
+static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
+ struct rt_mutex_waiter *w)
+{
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) && w->wake_state != TASK_NORMAL) {
+ if (IS_ENABLED(CONFIG_PROVE_LOCKING))
+ WARN_ON_ONCE(wqh->rtlock_task);
+ get_task_struct(w->task);
+ wqh->rtlock_task = w->task;
+ } else {
+ wake_q_add(&wqh->head, w->task);
+ }
+}
+
+static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
+{
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
+ wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
+ put_task_struct(wqh->rtlock_task);
+ wqh->rtlock_task = NULL;
+ }
+
+ if (!wake_q_empty(&wqh->head))
+ wake_up_q(&wqh->head);
+
+ /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
+ preempt_enable();
+}
+
/*
* Deadlock detection is conditional:
*
@@ -348,12 +496,7 @@ rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
return chwalk == RT_MUTEX_FULL_CHAINWALK;
}
-/*
- * Max number of times we'll walk the boosting chain:
- */
-int max_lock_depth = 1024;
-
-static __always_inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
+static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
{
return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
}
@@ -423,15 +566,15 @@ static __always_inline struct rt_mutex *task_blocked_on_lock(struct task_struct
*/
static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
enum rtmutex_chainwalk chwalk,
- struct rt_mutex *orig_lock,
- struct rt_mutex *next_lock,
+ struct rt_mutex_base *orig_lock,
+ struct rt_mutex_base *next_lock,
struct rt_mutex_waiter *orig_waiter,
struct task_struct *top_task)
{
struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
struct rt_mutex_waiter *prerequeue_top_waiter;
int ret = 0, depth = 0;
- struct rt_mutex *lock;
+ struct rt_mutex_base *lock;
bool detect_deadlock;
bool requeue = true;
@@ -514,6 +657,31 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
goto out_unlock_pi;
/*
+ * There could be 'spurious' loops in the lock graph due to ww_mutex,
+ * consider:
+ *
+ * P1: A, ww_A, ww_B
+ * P2: ww_B, ww_A
+ * P3: A
+ *
+ * P3 should not return -EDEADLK because it gets trapped in the cycle
+ * created by P1 and P2 (which will resolve -- and runs into
+ * max_lock_depth above). Therefore disable detect_deadlock such that
+ * the below termination condition can trigger once all relevant tasks
+ * are boosted.
+ *
+ * Even when we start with ww_mutex we can disable deadlock detection,
+ * since we would supress a ww_mutex induced deadlock at [6] anyway.
+ * Supressing it here however is not sufficient since we might still
+ * hit [6] due to adjustment driven iteration.
+ *
+ * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
+ * utterly fail to report it; lockdep should.
+ */
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
+ detect_deadlock = false;
+
+ /*
* Drop out, when the task has no waiters. Note,
* top_waiter can be NULL, when we are in the deboosting
* mode!
@@ -574,8 +742,21 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
* walk, we detected a deadlock.
*/
if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
- raw_spin_unlock(&lock->wait_lock);
ret = -EDEADLK;
+
+ /*
+ * When the deadlock is due to ww_mutex; also see above. Don't
+ * report the deadlock and instead let the ww_mutex wound/die
+ * logic pick which of the contending threads gets -EDEADLK.
+ *
+ * NOTE: assumes the cycle only contains a single ww_class; any
+ * other configuration and we fail to report; also, see
+ * lockdep.
+ */
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter->ww_ctx)
+ ret = 0;
+
+ raw_spin_unlock(&lock->wait_lock);
goto out_unlock_pi;
}
@@ -653,8 +834,7 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
* serializes all pi_waiters access and rb_erase() does not care about
* the values of the node being removed.
*/
- waiter->prio = task->prio;
- waiter->deadline = task->dl.deadline;
+ waiter_update_prio(waiter, task);
rt_mutex_enqueue(lock, waiter);
@@ -676,7 +856,7 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
* to get the lock.
*/
if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
- wake_up_process(rt_mutex_top_waiter(lock)->task);
+ wake_up_state(waiter->task, waiter->wake_state);
raw_spin_unlock_irq(&lock->wait_lock);
return 0;
}
@@ -779,7 +959,7 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
* callsite called task_blocked_on_lock(), otherwise NULL
*/
static int __sched
-try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
+try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
struct rt_mutex_waiter *waiter)
{
lockdep_assert_held(&lock->wait_lock);
@@ -815,19 +995,21 @@ try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
* trylock attempt.
*/
if (waiter) {
- /*
- * If waiter is not the highest priority waiter of
- * @lock, give up.
- */
- if (waiter != rt_mutex_top_waiter(lock))
- return 0;
+ struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
/*
- * We can acquire the lock. Remove the waiter from the
- * lock waiters tree.
+ * If waiter is the highest priority waiter of @lock,
+ * or allowed to steal it, take it over.
*/
- rt_mutex_dequeue(lock, waiter);
-
+ if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
+ /*
+ * We can acquire the lock. Remove the waiter from the
+ * lock waiters tree.
+ */
+ rt_mutex_dequeue(lock, waiter);
+ } else {
+ return 0;
+ }
} else {
/*
* If the lock has waiters already we check whether @task is
@@ -838,13 +1020,9 @@ try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
* not need to be dequeued.
*/
if (rt_mutex_has_waiters(lock)) {
- /*
- * If @task->prio is greater than or equal to
- * the top waiter priority (kernel view),
- * @task lost.
- */
- if (!rt_mutex_waiter_less(task_to_waiter(task),
- rt_mutex_top_waiter(lock)))
+ /* Check whether the trylock can steal it. */
+ if (!rt_mutex_steal(task_to_waiter(task),
+ rt_mutex_top_waiter(lock)))
return 0;
/*
@@ -897,14 +1075,15 @@ takeit:
*
* This must be called with lock->wait_lock held and interrupts disabled
*/
-static int __sched task_blocks_on_rt_mutex(struct rt_mutex *lock,
+static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
struct task_struct *task,
+ struct ww_acquire_ctx *ww_ctx,
enum rtmutex_chainwalk chwalk)
{
struct task_struct *owner = rt_mutex_owner(lock);
struct rt_mutex_waiter *top_waiter = waiter;
- struct rt_mutex *next_lock;
+ struct rt_mutex_base *next_lock;
int chain_walk = 0, res;
lockdep_assert_held(&lock->wait_lock);
@@ -924,8 +1103,7 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex *lock,
raw_spin_lock(&task->pi_lock);
waiter->task = task;
waiter->lock = lock;
- waiter->prio = task->prio;
- waiter->deadline = task->dl.deadline;
+ waiter_update_prio(waiter, task);
/* Get the top priority waiter on the lock */
if (rt_mutex_has_waiters(lock))
@@ -936,6 +1114,21 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex *lock,
raw_spin_unlock(&task->pi_lock);
+ if (build_ww_mutex() && ww_ctx) {
+ struct rt_mutex *rtm;
+
+ /* Check whether the waiter should back out immediately */
+ rtm = container_of(lock, struct rt_mutex, rtmutex);
+ res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
+ if (res) {
+ raw_spin_lock(&task->pi_lock);
+ rt_mutex_dequeue(lock, waiter);
+ task->pi_blocked_on = NULL;
+ raw_spin_unlock(&task->pi_lock);
+ return res;
+ }
+ }
+
if (!owner)
return 0;
@@ -986,8 +1179,8 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex *lock,
*
* Called with lock->wait_lock held and interrupts disabled.
*/
-static void __sched mark_wakeup_next_waiter(struct wake_q_head *wake_q,
- struct rt_mutex *lock)
+static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
+ struct rt_mutex_base *lock)
{
struct rt_mutex_waiter *waiter;
@@ -1023,235 +1216,14 @@ static void __sched mark_wakeup_next_waiter(struct wake_q_head *wake_q,
* deboost but before waking our donor task, hence the preempt_disable()
* before unlock.
*
- * Pairs with preempt_enable() in rt_mutex_postunlock();
+ * Pairs with preempt_enable() in rt_mutex_wake_up_q();
*/
preempt_disable();
- wake_q_add(wake_q, waiter->task);
- raw_spin_unlock(&current->pi_lock);
-}
-
-/*
- * Remove a waiter from a lock and give up
- *
- * Must be called with lock->wait_lock held and interrupts disabled. I must
- * have just failed to try_to_take_rt_mutex().
- */
-static void __sched remove_waiter(struct rt_mutex *lock,
- struct rt_mutex_waiter *waiter)
-{
- bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
- struct task_struct *owner = rt_mutex_owner(lock);
- struct rt_mutex *next_lock;
-
- lockdep_assert_held(&lock->wait_lock);
-
- raw_spin_lock(&current->pi_lock);
- rt_mutex_dequeue(lock, waiter);
- current->pi_blocked_on = NULL;
+ rt_mutex_wake_q_add(wqh, waiter);
raw_spin_unlock(&current->pi_lock);
-
- /*
- * Only update priority if the waiter was the highest priority
- * waiter of the lock and there is an owner to update.
- */
- if (!owner || !is_top_waiter)
- return;
-
- raw_spin_lock(&owner->pi_lock);
-
- rt_mutex_dequeue_pi(owner, waiter);
-
- if (rt_mutex_has_waiters(lock))
- rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
-
- rt_mutex_adjust_prio(owner);
-
- /* Store the lock on which owner is blocked or NULL */
- next_lock = task_blocked_on_lock(owner);
-
- raw_spin_unlock(&owner->pi_lock);
-
- /*
- * Don't walk the chain, if the owner task is not blocked
- * itself.
- */
- if (!next_lock)
- return;
-
- /* gets dropped in rt_mutex_adjust_prio_chain()! */
- get_task_struct(owner);
-
- raw_spin_unlock_irq(&lock->wait_lock);
-
- rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
- next_lock, NULL, current);
-
- raw_spin_lock_irq(&lock->wait_lock);
-}
-
-/*
- * Recheck the pi chain, in case we got a priority setting
- *
- * Called from sched_setscheduler
- */
-void __sched rt_mutex_adjust_pi(struct task_struct *task)
-{
- struct rt_mutex_waiter *waiter;
- struct rt_mutex *next_lock;
- unsigned long flags;
-
- raw_spin_lock_irqsave(&task->pi_lock, flags);
-
- waiter = task->pi_blocked_on;
- if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
- raw_spin_unlock_irqrestore(&task->pi_lock, flags);
- return;
- }
- next_lock = waiter->lock;
- raw_spin_unlock_irqrestore(&task->pi_lock, flags);
-
- /* gets dropped in rt_mutex_adjust_prio_chain()! */
- get_task_struct(task);
-
- rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
- next_lock, NULL, task);
}
-void __sched rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
-{
- debug_rt_mutex_init_waiter(waiter);
- RB_CLEAR_NODE(&waiter->pi_tree_entry);
- RB_CLEAR_NODE(&waiter->tree_entry);
- waiter->task = NULL;
-}
-
-/**
- * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
- * @lock: the rt_mutex to take
- * @state: the state the task should block in (TASK_INTERRUPTIBLE
- * or TASK_UNINTERRUPTIBLE)
- * @timeout: the pre-initialized and started timer, or NULL for none
- * @waiter: the pre-initialized rt_mutex_waiter
- *
- * Must be called with lock->wait_lock held and interrupts disabled
- */
-static int __sched __rt_mutex_slowlock(struct rt_mutex *lock, unsigned int state,
- struct hrtimer_sleeper *timeout,
- struct rt_mutex_waiter *waiter)
-{
- int ret = 0;
-
- for (;;) {
- /* Try to acquire the lock: */
- if (try_to_take_rt_mutex(lock, current, waiter))
- break;
-
- if (timeout && !timeout->task) {
- ret = -ETIMEDOUT;
- break;
- }
- if (signal_pending_state(state, current)) {
- ret = -EINTR;
- break;
- }
-
- raw_spin_unlock_irq(&lock->wait_lock);
-
- schedule();
-
- raw_spin_lock_irq(&lock->wait_lock);
- set_current_state(state);
- }
-
- __set_current_state(TASK_RUNNING);
- return ret;
-}
-
-static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
- struct rt_mutex_waiter *w)
-{
- /*
- * If the result is not -EDEADLOCK or the caller requested
- * deadlock detection, nothing to do here.
- */
- if (res != -EDEADLOCK || detect_deadlock)
- return;
-
- /*
- * Yell loudly and stop the task right here.
- */
- WARN(1, "rtmutex deadlock detected\n");
- while (1) {
- set_current_state(TASK_INTERRUPTIBLE);
- schedule();
- }
-}
-
-/*
- * Slow path lock function:
- */
-static int __sched rt_mutex_slowlock(struct rt_mutex *lock, unsigned int state,
- struct hrtimer_sleeper *timeout,
- enum rtmutex_chainwalk chwalk)
-{
- struct rt_mutex_waiter waiter;
- unsigned long flags;
- int ret = 0;
-
- rt_mutex_init_waiter(&waiter);
-
- /*
- * Technically we could use raw_spin_[un]lock_irq() here, but this can
- * be called in early boot if the cmpxchg() fast path is disabled
- * (debug, no architecture support). In this case we will acquire the
- * rtmutex with lock->wait_lock held. But we cannot unconditionally
- * enable interrupts in that early boot case. So we need to use the
- * irqsave/restore variants.
- */
- raw_spin_lock_irqsave(&lock->wait_lock, flags);
-
- /* Try to acquire the lock again: */
- if (try_to_take_rt_mutex(lock, current, NULL)) {
- raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
- return 0;
- }
-
- set_current_state(state);
-
- /* Setup the timer, when timeout != NULL */
- if (unlikely(timeout))
- hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
-
- ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
-
- if (likely(!ret))
- /* sleep on the mutex */
- ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
-
- if (unlikely(ret)) {
- __set_current_state(TASK_RUNNING);
- remove_waiter(lock, &waiter);
- rt_mutex_handle_deadlock(ret, chwalk, &waiter);
- }
-
- /*
- * try_to_take_rt_mutex() sets the waiter bit
- * unconditionally. We might have to fix that up.
- */
- fixup_rt_mutex_waiters(lock);
-
- raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
-
- /* Remove pending timer: */
- if (unlikely(timeout))
- hrtimer_cancel(&timeout->timer);
-
- debug_rt_mutex_free_waiter(&waiter);
-
- return ret;
-}
-
-static int __sched __rt_mutex_slowtrylock(struct rt_mutex *lock)
+static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
{
int ret = try_to_take_rt_mutex(lock, current, NULL);
@@ -1267,7 +1239,7 @@ static int __sched __rt_mutex_slowtrylock(struct rt_mutex *lock)
/*
* Slow path try-lock function:
*/
-static int __sched rt_mutex_slowtrylock(struct rt_mutex *lock)
+static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
{
unsigned long flags;
int ret;
@@ -1293,25 +1265,20 @@ static int __sched rt_mutex_slowtrylock(struct rt_mutex *lock)
return ret;
}
-/*
- * Performs the wakeup of the top-waiter and re-enables preemption.
- */
-void __sched rt_mutex_postunlock(struct wake_q_head *wake_q)
+static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
{
- wake_up_q(wake_q);
+ if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
+ return 1;
- /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
- preempt_enable();
+ return rt_mutex_slowtrylock(lock);
}
/*
* Slow path to release a rt-mutex.
- *
- * Return whether the current task needs to call rt_mutex_postunlock().
*/
-static void __sched rt_mutex_slowunlock(struct rt_mutex *lock)
+static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
{
- DEFINE_WAKE_Q(wake_q);
+ DEFINE_RT_WAKE_Q(wqh);
unsigned long flags;
/* irqsave required to support early boot calls */
@@ -1364,422 +1331,387 @@ static void __sched rt_mutex_slowunlock(struct rt_mutex *lock)
*
* Queue the next waiter for wakeup once we release the wait_lock.
*/
- mark_wakeup_next_waiter(&wake_q, lock);
+ mark_wakeup_next_waiter(&wqh, lock);
raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
- rt_mutex_postunlock(&wake_q);
+ rt_mutex_wake_up_q(&wqh);
}
-/*
- * debug aware fast / slowpath lock,trylock,unlock
- *
- * The atomic acquire/release ops are compiled away, when either the
- * architecture does not support cmpxchg or when debugging is enabled.
- */
-static __always_inline int __rt_mutex_lock(struct rt_mutex *lock, long state,
- unsigned int subclass)
+static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
{
- int ret;
-
- might_sleep();
- mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
-
- if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
- return 0;
+ if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
+ return;
- ret = rt_mutex_slowlock(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
- if (ret)
- mutex_release(&lock->dep_map, _RET_IP_);
- return ret;
+ rt_mutex_slowunlock(lock);
}
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
-/**
- * rt_mutex_lock_nested - lock a rt_mutex
- *
- * @lock: the rt_mutex to be locked
- * @subclass: the lockdep subclass
- */
-void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
+#ifdef CONFIG_SMP
+static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter,
+ struct task_struct *owner)
{
- __rt_mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass);
-}
-EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
-
-#else /* !CONFIG_DEBUG_LOCK_ALLOC */
+ bool res = true;
-/**
- * rt_mutex_lock - lock a rt_mutex
- *
- * @lock: the rt_mutex to be locked
- */
-void __sched rt_mutex_lock(struct rt_mutex *lock)
+ rcu_read_lock();
+ for (;;) {
+ /* If owner changed, trylock again. */
+ if (owner != rt_mutex_owner(lock))
+ break;
+ /*
+ * Ensure that @owner is dereferenced after checking that
+ * the lock owner still matches @owner. If that fails,
+ * @owner might point to freed memory. If it still matches,
+ * the rcu_read_lock() ensures the memory stays valid.
+ */
+ barrier();
+ /*
+ * Stop spinning when:
+ * - the lock owner has been scheduled out
+ * - current is not longer the top waiter
+ * - current is requested to reschedule (redundant
+ * for CONFIG_PREEMPT_RCU=y)
+ * - the VCPU on which owner runs is preempted
+ */
+ if (!owner->on_cpu || need_resched() ||
+ rt_mutex_waiter_is_top_waiter(lock, waiter) ||
+ vcpu_is_preempted(task_cpu(owner))) {
+ res = false;
+ break;
+ }
+ cpu_relax();
+ }
+ rcu_read_unlock();
+ return res;
+}
+#else
+static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter,
+ struct task_struct *owner)
{
- __rt_mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0);
+ return false;
}
-EXPORT_SYMBOL_GPL(rt_mutex_lock);
#endif
-/**
- * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
- *
- * @lock: the rt_mutex to be locked
- *
- * Returns:
- * 0 on success
- * -EINTR when interrupted by a signal
+#ifdef RT_MUTEX_BUILD_MUTEX
+/*
+ * Functions required for:
+ * - rtmutex, futex on all kernels
+ * - mutex and rwsem substitutions on RT kernels
*/
-int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
-{
- return __rt_mutex_lock(lock, TASK_INTERRUPTIBLE, 0);
-}
-EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
-/**
- * rt_mutex_trylock - try to lock a rt_mutex
- *
- * @lock: the rt_mutex to be locked
- *
- * This function can only be called in thread context. It's safe to call it
- * from atomic regions, but not from hard or soft interrupt context.
+/*
+ * Remove a waiter from a lock and give up
*
- * Returns:
- * 1 on success
- * 0 on contention
+ * Must be called with lock->wait_lock held and interrupts disabled. It must
+ * have just failed to try_to_take_rt_mutex().
*/
-int __sched rt_mutex_trylock(struct rt_mutex *lock)
+static void __sched remove_waiter(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter)
{
- int ret;
+ bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
+ struct task_struct *owner = rt_mutex_owner(lock);
+ struct rt_mutex_base *next_lock;
- if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
- return 0;
+ lockdep_assert_held(&lock->wait_lock);
+
+ raw_spin_lock(&current->pi_lock);
+ rt_mutex_dequeue(lock, waiter);
+ current->pi_blocked_on = NULL;
+ raw_spin_unlock(&current->pi_lock);
/*
- * No lockdep annotation required because lockdep disables the fast
- * path.
+ * Only update priority if the waiter was the highest priority
+ * waiter of the lock and there is an owner to update.
*/
- if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
- return 1;
-
- ret = rt_mutex_slowtrylock(lock);
- if (ret)
- mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
-
- return ret;
-}
-EXPORT_SYMBOL_GPL(rt_mutex_trylock);
-
-/**
- * rt_mutex_unlock - unlock a rt_mutex
- *
- * @lock: the rt_mutex to be unlocked
- */
-void __sched rt_mutex_unlock(struct rt_mutex *lock)
-{
- mutex_release(&lock->dep_map, _RET_IP_);
- if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
+ if (!owner || !is_top_waiter)
return;
- rt_mutex_slowunlock(lock);
-}
-EXPORT_SYMBOL_GPL(rt_mutex_unlock);
+ raw_spin_lock(&owner->pi_lock);
-/*
- * Futex variants, must not use fastpath.
- */
-int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
-{
- return rt_mutex_slowtrylock(lock);
-}
+ rt_mutex_dequeue_pi(owner, waiter);
-int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
-{
- return __rt_mutex_slowtrylock(lock);
-}
+ if (rt_mutex_has_waiters(lock))
+ rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
-/**
- * __rt_mutex_futex_unlock - Futex variant, that since futex variants
- * do not use the fast-path, can be simple and will not need to retry.
- *
- * @lock: The rt_mutex to be unlocked
- * @wake_q: The wake queue head from which to get the next lock waiter
- */
-bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
- struct wake_q_head *wake_q)
-{
- lockdep_assert_held(&lock->wait_lock);
+ rt_mutex_adjust_prio(owner);
- debug_rt_mutex_unlock(lock);
+ /* Store the lock on which owner is blocked or NULL */
+ next_lock = task_blocked_on_lock(owner);
- if (!rt_mutex_has_waiters(lock)) {
- lock->owner = NULL;
- return false; /* done */
- }
+ raw_spin_unlock(&owner->pi_lock);
/*
- * We've already deboosted, mark_wakeup_next_waiter() will
- * retain preempt_disabled when we drop the wait_lock, to
- * avoid inversion prior to the wakeup. preempt_disable()
- * therein pairs with rt_mutex_postunlock().
+ * Don't walk the chain, if the owner task is not blocked
+ * itself.
*/
- mark_wakeup_next_waiter(wake_q, lock);
+ if (!next_lock)
+ return;
- return true; /* call postunlock() */
-}
+ /* gets dropped in rt_mutex_adjust_prio_chain()! */
+ get_task_struct(owner);
-void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
-{
- DEFINE_WAKE_Q(wake_q);
- unsigned long flags;
- bool postunlock;
+ raw_spin_unlock_irq(&lock->wait_lock);
- raw_spin_lock_irqsave(&lock->wait_lock, flags);
- postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
- raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
+ next_lock, NULL, current);
- if (postunlock)
- rt_mutex_postunlock(&wake_q);
+ raw_spin_lock_irq(&lock->wait_lock);
}
/**
- * __rt_mutex_init - initialize the rt_mutex
- *
- * @lock: The rt_mutex to be initialized
- * @name: The lock name used for debugging
- * @key: The lock class key used for debugging
- *
- * Initialize the rt_mutex to unlocked state.
+ * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
+ * @lock: the rt_mutex to take
+ * @ww_ctx: WW mutex context pointer
+ * @state: the state the task should block in (TASK_INTERRUPTIBLE
+ * or TASK_UNINTERRUPTIBLE)
+ * @timeout: the pre-initialized and started timer, or NULL for none
+ * @waiter: the pre-initialized rt_mutex_waiter
*
- * Initializing of a locked rt_mutex is not allowed
+ * Must be called with lock->wait_lock held and interrupts disabled
*/
-void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
- struct lock_class_key *key)
+static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
+ struct ww_acquire_ctx *ww_ctx,
+ unsigned int state,
+ struct hrtimer_sleeper *timeout,
+ struct rt_mutex_waiter *waiter)
{
- debug_check_no_locks_freed((void *)lock, sizeof(*lock));
- lockdep_init_map(&lock->dep_map, name, key, 0);
+ struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
+ struct task_struct *owner;
+ int ret = 0;
- __rt_mutex_basic_init(lock);
-}
-EXPORT_SYMBOL_GPL(__rt_mutex_init);
+ for (;;) {
+ /* Try to acquire the lock: */
+ if (try_to_take_rt_mutex(lock, current, waiter))
+ break;
-/**
- * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
- * proxy owner
- *
- * @lock: the rt_mutex to be locked
- * @proxy_owner:the task to set as owner
- *
- * No locking. Caller has to do serializing itself
- *
- * Special API call for PI-futex support. This initializes the rtmutex and
- * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
- * possible at this point because the pi_state which contains the rtmutex
- * is not yet visible to other tasks.
- */
-void __sched rt_mutex_init_proxy_locked(struct rt_mutex *lock,
- struct task_struct *proxy_owner)
-{
- __rt_mutex_basic_init(lock);
- rt_mutex_set_owner(lock, proxy_owner);
+ if (timeout && !timeout->task) {
+ ret = -ETIMEDOUT;
+ break;
+ }
+ if (signal_pending_state(state, current)) {
+ ret = -EINTR;
+ break;
+ }
+
+ if (build_ww_mutex() && ww_ctx) {
+ ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
+ if (ret)
+ break;
+ }
+
+ if (waiter == rt_mutex_top_waiter(lock))
+ owner = rt_mutex_owner(lock);
+ else
+ owner = NULL;
+ raw_spin_unlock_irq(&lock->wait_lock);
+
+ if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
+ schedule();
+
+ raw_spin_lock_irq(&lock->wait_lock);
+ set_current_state(state);
+ }
+
+ __set_current_state(TASK_RUNNING);
+ return ret;
}
-/**
- * rt_mutex_proxy_unlock - release a lock on behalf of owner
- *
- * @lock: the rt_mutex to be locked
- *
- * No locking. Caller has to do serializing itself
- *
- * Special API call for PI-futex support. This merrily cleans up the rtmutex
- * (debugging) state. Concurrent operations on this rt_mutex are not
- * possible because it belongs to the pi_state which is about to be freed
- * and it is not longer visible to other tasks.
- */
-void __sched rt_mutex_proxy_unlock(struct rt_mutex *lock)
+static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
+ struct rt_mutex_waiter *w)
{
- debug_rt_mutex_proxy_unlock(lock);
- rt_mutex_set_owner(lock, NULL);
+ /*
+ * If the result is not -EDEADLOCK or the caller requested
+ * deadlock detection, nothing to do here.
+ */
+ if (res != -EDEADLOCK || detect_deadlock)
+ return;
+
+ if (build_ww_mutex() && w->ww_ctx)
+ return;
+
+ /*
+ * Yell loudly and stop the task right here.
+ */
+ WARN(1, "rtmutex deadlock detected\n");
+ while (1) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ schedule();
+ }
}
/**
- * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
- * @lock: the rt_mutex to take
- * @waiter: the pre-initialized rt_mutex_waiter
- * @task: the task to prepare
- *
- * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
- * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
- *
- * NOTE: does _NOT_ remove the @waiter on failure; must either call
- * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
- *
- * Returns:
- * 0 - task blocked on lock
- * 1 - acquired the lock for task, caller should wake it up
- * <0 - error
- *
- * Special API call for PI-futex support.
+ * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
+ * @lock: The rtmutex to block lock
+ * @ww_ctx: WW mutex context pointer
+ * @state: The task state for sleeping
+ * @chwalk: Indicator whether full or partial chainwalk is requested
+ * @waiter: Initializer waiter for blocking
*/
-int __sched __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
- struct rt_mutex_waiter *waiter,
- struct task_struct *task)
+static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
+ struct ww_acquire_ctx *ww_ctx,
+ unsigned int state,
+ enum rtmutex_chainwalk chwalk,
+ struct rt_mutex_waiter *waiter)
{
+ struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
+ struct ww_mutex *ww = ww_container_of(rtm);
int ret;
lockdep_assert_held(&lock->wait_lock);
- if (try_to_take_rt_mutex(lock, task, NULL))
- return 1;
+ /* Try to acquire the lock again: */
+ if (try_to_take_rt_mutex(lock, current, NULL)) {
+ if (build_ww_mutex() && ww_ctx) {
+ __ww_mutex_check_waiters(rtm, ww_ctx);
+ ww_mutex_lock_acquired(ww, ww_ctx);
+ }
+ return 0;
+ }
- /* We enforce deadlock detection for futexes */
- ret = task_blocks_on_rt_mutex(lock, waiter, task,
- RT_MUTEX_FULL_CHAINWALK);
+ set_current_state(state);
- if (ret && !rt_mutex_owner(lock)) {
- /*
- * Reset the return value. We might have
- * returned with -EDEADLK and the owner
- * released the lock while we were walking the
- * pi chain. Let the waiter sort it out.
- */
- ret = 0;
+ ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
+ if (likely(!ret))
+ ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
+
+ if (likely(!ret)) {
+ /* acquired the lock */
+ if (build_ww_mutex() && ww_ctx) {
+ if (!ww_ctx->is_wait_die)
+ __ww_mutex_check_waiters(rtm, ww_ctx);
+ ww_mutex_lock_acquired(ww, ww_ctx);
+ }
+ } else {
+ __set_current_state(TASK_RUNNING);
+ remove_waiter(lock, waiter);
+ rt_mutex_handle_deadlock(ret, chwalk, waiter);
}
+ /*
+ * try_to_take_rt_mutex() sets the waiter bit
+ * unconditionally. We might have to fix that up.
+ */
+ fixup_rt_mutex_waiters(lock);
return ret;
}
-/**
- * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
- * @lock: the rt_mutex to take
- * @waiter: the pre-initialized rt_mutex_waiter
- * @task: the task to prepare
- *
- * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
- * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
- *
- * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
- * on failure.
- *
- * Returns:
- * 0 - task blocked on lock
- * 1 - acquired the lock for task, caller should wake it up
- * <0 - error
- *
- * Special API call for PI-futex support.
- */
-int __sched rt_mutex_start_proxy_lock(struct rt_mutex *lock,
- struct rt_mutex_waiter *waiter,
- struct task_struct *task)
+static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
+ struct ww_acquire_ctx *ww_ctx,
+ unsigned int state)
{
+ struct rt_mutex_waiter waiter;
int ret;
- raw_spin_lock_irq(&lock->wait_lock);
- ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
- if (unlikely(ret))
- remove_waiter(lock, waiter);
- raw_spin_unlock_irq(&lock->wait_lock);
+ rt_mutex_init_waiter(&waiter);
+ waiter.ww_ctx = ww_ctx;
+ ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
+ &waiter);
+
+ debug_rt_mutex_free_waiter(&waiter);
return ret;
}
-/**
- * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
- * @lock: the rt_mutex we were woken on
- * @to: the timeout, null if none. hrtimer should already have
- * been started.
- * @waiter: the pre-initialized rt_mutex_waiter
- *
- * Wait for the lock acquisition started on our behalf by
- * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
- * rt_mutex_cleanup_proxy_lock().
- *
- * Returns:
- * 0 - success
- * <0 - error, one of -EINTR, -ETIMEDOUT
- *
- * Special API call for PI-futex support
+/*
+ * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
+ * @lock: The rtmutex to block lock
+ * @ww_ctx: WW mutex context pointer
+ * @state: The task state for sleeping
*/
-int __sched rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
- struct hrtimer_sleeper *to,
- struct rt_mutex_waiter *waiter)
+static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
+ struct ww_acquire_ctx *ww_ctx,
+ unsigned int state)
{
+ unsigned long flags;
int ret;
- raw_spin_lock_irq(&lock->wait_lock);
- /* sleep on the mutex */
- set_current_state(TASK_INTERRUPTIBLE);
- ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
/*
- * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
- * have to fix that up.
+ * Technically we could use raw_spin_[un]lock_irq() here, but this can
+ * be called in early boot if the cmpxchg() fast path is disabled
+ * (debug, no architecture support). In this case we will acquire the
+ * rtmutex with lock->wait_lock held. But we cannot unconditionally
+ * enable interrupts in that early boot case. So we need to use the
+ * irqsave/restore variants.
*/
- fixup_rt_mutex_waiters(lock);
- raw_spin_unlock_irq(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
+ ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
return ret;
}
+static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
+ unsigned int state)
+{
+ if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
+ return 0;
+
+ return rt_mutex_slowlock(lock, NULL, state);
+}
+#endif /* RT_MUTEX_BUILD_MUTEX */
+
+#ifdef RT_MUTEX_BUILD_SPINLOCKS
+/*
+ * Functions required for spin/rw_lock substitution on RT kernels
+ */
+
/**
- * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
- * @lock: the rt_mutex we were woken on
- * @waiter: the pre-initialized rt_mutex_waiter
- *
- * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
- * rt_mutex_wait_proxy_lock().
- *
- * Unless we acquired the lock; we're still enqueued on the wait-list and can
- * in fact still be granted ownership until we're removed. Therefore we can
- * find we are in fact the owner and must disregard the
- * rt_mutex_wait_proxy_lock() failure.
- *
- * Returns:
- * true - did the cleanup, we done.
- * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
- * caller should disregards its return value.
- *
- * Special API call for PI-futex support
+ * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
+ * @lock: The underlying RT mutex
*/
-bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
- struct rt_mutex_waiter *waiter)
+static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
{
- bool cleanup = false;
+ struct rt_mutex_waiter waiter;
+ struct task_struct *owner;
- raw_spin_lock_irq(&lock->wait_lock);
- /*
- * Do an unconditional try-lock, this deals with the lock stealing
- * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
- * sets a NULL owner.
- *
- * We're not interested in the return value, because the subsequent
- * test on rt_mutex_owner() will infer that. If the trylock succeeded,
- * we will own the lock and it will have removed the waiter. If we
- * failed the trylock, we're still not owner and we need to remove
- * ourselves.
- */
- try_to_take_rt_mutex(lock, current, waiter);
- /*
- * Unless we're the owner; we're still enqueued on the wait_list.
- * So check if we became owner, if not, take us off the wait_list.
- */
- if (rt_mutex_owner(lock) != current) {
- remove_waiter(lock, waiter);
- cleanup = true;
+ lockdep_assert_held(&lock->wait_lock);
+
+ if (try_to_take_rt_mutex(lock, current, NULL))
+ return;
+
+ rt_mutex_init_rtlock_waiter(&waiter);
+
+ /* Save current state and set state to TASK_RTLOCK_WAIT */
+ current_save_and_set_rtlock_wait_state();
+
+ task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
+
+ for (;;) {
+ /* Try to acquire the lock again */
+ if (try_to_take_rt_mutex(lock, current, &waiter))
+ break;
+
+ if (&waiter == rt_mutex_top_waiter(lock))
+ owner = rt_mutex_owner(lock);
+ else
+ owner = NULL;
+ raw_spin_unlock_irq(&lock->wait_lock);
+
+ if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
+ schedule_rtlock();
+
+ raw_spin_lock_irq(&lock->wait_lock);
+ set_current_state(TASK_RTLOCK_WAIT);
}
+
+ /* Restore the task state */
+ current_restore_rtlock_saved_state();
+
/*
- * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
- * have to fix that up.
+ * try_to_take_rt_mutex() sets the waiter bit unconditionally.
+ * We might have to fix that up:
*/
fixup_rt_mutex_waiters(lock);
-
- raw_spin_unlock_irq(&lock->wait_lock);
-
- return cleanup;
+ debug_rt_mutex_free_waiter(&waiter);
}
-#ifdef CONFIG_DEBUG_RT_MUTEXES
-void rt_mutex_debug_task_free(struct task_struct *task)
+static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
{
- DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
- DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
+ rtlock_slowlock_locked(lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
}
-#endif
+
+#endif /* RT_MUTEX_BUILD_SPINLOCKS */
diff --git a/kernel/locking/rtmutex_api.c b/kernel/locking/rtmutex_api.c
new file mode 100644
index 000000000000..5c9299aaabae
--- /dev/null
+++ b/kernel/locking/rtmutex_api.c
@@ -0,0 +1,590 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * rtmutex API
+ */
+#include <linux/spinlock.h>
+#include <linux/export.h>
+
+#define RT_MUTEX_BUILD_MUTEX
+#include "rtmutex.c"
+
+/*
+ * Max number of times we'll walk the boosting chain:
+ */
+int max_lock_depth = 1024;
+
+/*
+ * Debug aware fast / slowpath lock,trylock,unlock
+ *
+ * The atomic acquire/release ops are compiled away, when either the
+ * architecture does not support cmpxchg or when debugging is enabled.
+ */
+static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
+ unsigned int state,
+ unsigned int subclass)
+{
+ int ret;
+
+ might_sleep();
+ mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
+ ret = __rt_mutex_lock(&lock->rtmutex, state);
+ if (ret)
+ mutex_release(&lock->dep_map, _RET_IP_);
+ return ret;
+}
+
+void rt_mutex_base_init(struct rt_mutex_base *rtb)
+{
+ __rt_mutex_base_init(rtb);
+}
+EXPORT_SYMBOL(rt_mutex_base_init);
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+/**
+ * rt_mutex_lock_nested - lock a rt_mutex
+ *
+ * @lock: the rt_mutex to be locked
+ * @subclass: the lockdep subclass
+ */
+void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
+{
+ __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
+
+#else /* !CONFIG_DEBUG_LOCK_ALLOC */
+
+/**
+ * rt_mutex_lock - lock a rt_mutex
+ *
+ * @lock: the rt_mutex to be locked
+ */
+void __sched rt_mutex_lock(struct rt_mutex *lock)
+{
+ __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_lock);
+#endif
+
+/**
+ * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
+ *
+ * @lock: the rt_mutex to be locked
+ *
+ * Returns:
+ * 0 on success
+ * -EINTR when interrupted by a signal
+ */
+int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
+{
+ return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
+
+/**
+ * rt_mutex_trylock - try to lock a rt_mutex
+ *
+ * @lock: the rt_mutex to be locked
+ *
+ * This function can only be called in thread context. It's safe to call it
+ * from atomic regions, but not from hard or soft interrupt context.
+ *
+ * Returns:
+ * 1 on success
+ * 0 on contention
+ */
+int __sched rt_mutex_trylock(struct rt_mutex *lock)
+{
+ int ret;
+
+ if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
+ return 0;
+
+ ret = __rt_mutex_trylock(&lock->rtmutex);
+ if (ret)
+ mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(rt_mutex_trylock);
+
+/**
+ * rt_mutex_unlock - unlock a rt_mutex
+ *
+ * @lock: the rt_mutex to be unlocked
+ */
+void __sched rt_mutex_unlock(struct rt_mutex *lock)
+{
+ mutex_release(&lock->dep_map, _RET_IP_);
+ __rt_mutex_unlock(&lock->rtmutex);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_unlock);
+
+/*
+ * Futex variants, must not use fastpath.
+ */
+int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
+{
+ return rt_mutex_slowtrylock(lock);
+}
+
+int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
+{
+ return __rt_mutex_slowtrylock(lock);
+}
+
+/**
+ * __rt_mutex_futex_unlock - Futex variant, that since futex variants
+ * do not use the fast-path, can be simple and will not need to retry.
+ *
+ * @lock: The rt_mutex to be unlocked
+ * @wqh: The wake queue head from which to get the next lock waiter
+ */
+bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
+ struct rt_wake_q_head *wqh)
+{
+ lockdep_assert_held(&lock->wait_lock);
+
+ debug_rt_mutex_unlock(lock);
+
+ if (!rt_mutex_has_waiters(lock)) {
+ lock->owner = NULL;
+ return false; /* done */
+ }
+
+ /*
+ * We've already deboosted, mark_wakeup_next_waiter() will
+ * retain preempt_disabled when we drop the wait_lock, to
+ * avoid inversion prior to the wakeup. preempt_disable()
+ * therein pairs with rt_mutex_postunlock().
+ */
+ mark_wakeup_next_waiter(wqh, lock);
+
+ return true; /* call postunlock() */
+}
+
+void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
+{
+ DEFINE_RT_WAKE_Q(wqh);
+ unsigned long flags;
+ bool postunlock;
+
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
+ postunlock = __rt_mutex_futex_unlock(lock, &wqh);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+
+ if (postunlock)
+ rt_mutex_postunlock(&wqh);
+}
+
+/**
+ * __rt_mutex_init - initialize the rt_mutex
+ *
+ * @lock: The rt_mutex to be initialized
+ * @name: The lock name used for debugging
+ * @key: The lock class key used for debugging
+ *
+ * Initialize the rt_mutex to unlocked state.
+ *
+ * Initializing of a locked rt_mutex is not allowed
+ */
+void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
+ struct lock_class_key *key)
+{
+ debug_check_no_locks_freed((void *)lock, sizeof(*lock));
+ __rt_mutex_base_init(&lock->rtmutex);
+ lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
+}
+EXPORT_SYMBOL_GPL(__rt_mutex_init);
+
+/**
+ * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
+ * proxy owner
+ *
+ * @lock: the rt_mutex to be locked
+ * @proxy_owner:the task to set as owner
+ *
+ * No locking. Caller has to do serializing itself
+ *
+ * Special API call for PI-futex support. This initializes the rtmutex and
+ * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
+ * possible at this point because the pi_state which contains the rtmutex
+ * is not yet visible to other tasks.
+ */
+void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
+ struct task_struct *proxy_owner)
+{
+ static struct lock_class_key pi_futex_key;
+
+ __rt_mutex_base_init(lock);
+ /*
+ * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
+ * and rtmutex based. That causes a lockdep false positive, because
+ * some of the futex functions invoke spin_unlock(&hb->lock) with
+ * the wait_lock of the rtmutex associated to the pi_futex held.
+ * spin_unlock() in turn takes wait_lock of the rtmutex on which
+ * the spinlock is based, which makes lockdep notice a lock
+ * recursion. Give the futex/rtmutex wait_lock a separate key.
+ */
+ lockdep_set_class(&lock->wait_lock, &pi_futex_key);
+ rt_mutex_set_owner(lock, proxy_owner);
+}
+
+/**
+ * rt_mutex_proxy_unlock - release a lock on behalf of owner
+ *
+ * @lock: the rt_mutex to be locked
+ *
+ * No locking. Caller has to do serializing itself
+ *
+ * Special API call for PI-futex support. This just cleans up the rtmutex
+ * (debugging) state. Concurrent operations on this rt_mutex are not
+ * possible because it belongs to the pi_state which is about to be freed
+ * and it is not longer visible to other tasks.
+ */
+void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
+{
+ debug_rt_mutex_proxy_unlock(lock);
+ rt_mutex_set_owner(lock, NULL);
+}
+
+/**
+ * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
+ * @lock: the rt_mutex to take
+ * @waiter: the pre-initialized rt_mutex_waiter
+ * @task: the task to prepare
+ *
+ * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
+ * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
+ *
+ * NOTE: does _NOT_ remove the @waiter on failure; must either call
+ * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
+ *
+ * Returns:
+ * 0 - task blocked on lock
+ * 1 - acquired the lock for task, caller should wake it up
+ * <0 - error
+ *
+ * Special API call for PI-futex support.
+ */
+int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter,
+ struct task_struct *task)
+{
+ int ret;
+
+ lockdep_assert_held(&lock->wait_lock);
+
+ if (try_to_take_rt_mutex(lock, task, NULL))
+ return 1;
+
+ /* We enforce deadlock detection for futexes */
+ ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
+ RT_MUTEX_FULL_CHAINWALK);
+
+ if (ret && !rt_mutex_owner(lock)) {
+ /*
+ * Reset the return value. We might have
+ * returned with -EDEADLK and the owner
+ * released the lock while we were walking the
+ * pi chain. Let the waiter sort it out.
+ */
+ ret = 0;
+ }
+
+ return ret;
+}
+
+/**
+ * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
+ * @lock: the rt_mutex to take
+ * @waiter: the pre-initialized rt_mutex_waiter
+ * @task: the task to prepare
+ *
+ * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
+ * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
+ *
+ * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
+ * on failure.
+ *
+ * Returns:
+ * 0 - task blocked on lock
+ * 1 - acquired the lock for task, caller should wake it up
+ * <0 - error
+ *
+ * Special API call for PI-futex support.
+ */
+int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter,
+ struct task_struct *task)
+{
+ int ret;
+
+ raw_spin_lock_irq(&lock->wait_lock);
+ ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
+ if (unlikely(ret))
+ remove_waiter(lock, waiter);
+ raw_spin_unlock_irq(&lock->wait_lock);
+
+ return ret;
+}
+
+/**
+ * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
+ * @lock: the rt_mutex we were woken on
+ * @to: the timeout, null if none. hrtimer should already have
+ * been started.
+ * @waiter: the pre-initialized rt_mutex_waiter
+ *
+ * Wait for the lock acquisition started on our behalf by
+ * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
+ * rt_mutex_cleanup_proxy_lock().
+ *
+ * Returns:
+ * 0 - success
+ * <0 - error, one of -EINTR, -ETIMEDOUT
+ *
+ * Special API call for PI-futex support
+ */
+int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
+ struct hrtimer_sleeper *to,
+ struct rt_mutex_waiter *waiter)
+{
+ int ret;
+
+ raw_spin_lock_irq(&lock->wait_lock);
+ /* sleep on the mutex */
+ set_current_state(TASK_INTERRUPTIBLE);
+ ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
+ /*
+ * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
+ * have to fix that up.
+ */
+ fixup_rt_mutex_waiters(lock);
+ raw_spin_unlock_irq(&lock->wait_lock);
+
+ return ret;
+}
+
+/**
+ * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
+ * @lock: the rt_mutex we were woken on
+ * @waiter: the pre-initialized rt_mutex_waiter
+ *
+ * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
+ * rt_mutex_wait_proxy_lock().
+ *
+ * Unless we acquired the lock; we're still enqueued on the wait-list and can
+ * in fact still be granted ownership until we're removed. Therefore we can
+ * find we are in fact the owner and must disregard the
+ * rt_mutex_wait_proxy_lock() failure.
+ *
+ * Returns:
+ * true - did the cleanup, we done.
+ * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
+ * caller should disregards its return value.
+ *
+ * Special API call for PI-futex support
+ */
+bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter)
+{
+ bool cleanup = false;
+
+ raw_spin_lock_irq(&lock->wait_lock);
+ /*
+ * Do an unconditional try-lock, this deals with the lock stealing
+ * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
+ * sets a NULL owner.
+ *
+ * We're not interested in the return value, because the subsequent
+ * test on rt_mutex_owner() will infer that. If the trylock succeeded,
+ * we will own the lock and it will have removed the waiter. If we
+ * failed the trylock, we're still not owner and we need to remove
+ * ourselves.
+ */
+ try_to_take_rt_mutex(lock, current, waiter);
+ /*
+ * Unless we're the owner; we're still enqueued on the wait_list.
+ * So check if we became owner, if not, take us off the wait_list.
+ */
+ if (rt_mutex_owner(lock) != current) {
+ remove_waiter(lock, waiter);
+ cleanup = true;
+ }
+ /*
+ * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
+ * have to fix that up.
+ */
+ fixup_rt_mutex_waiters(lock);
+
+ raw_spin_unlock_irq(&lock->wait_lock);
+
+ return cleanup;
+}
+
+/*
+ * Recheck the pi chain, in case we got a priority setting
+ *
+ * Called from sched_setscheduler
+ */
+void __sched rt_mutex_adjust_pi(struct task_struct *task)
+{
+ struct rt_mutex_waiter *waiter;
+ struct rt_mutex_base *next_lock;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&task->pi_lock, flags);
+
+ waiter = task->pi_blocked_on;
+ if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
+ raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+ return;
+ }
+ next_lock = waiter->lock;
+ raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+
+ /* gets dropped in rt_mutex_adjust_prio_chain()! */
+ get_task_struct(task);
+
+ rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
+ next_lock, NULL, task);
+}
+
+/*
+ * Performs the wakeup of the top-waiter and re-enables preemption.
+ */
+void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
+{
+ rt_mutex_wake_up_q(wqh);
+}
+
+#ifdef CONFIG_DEBUG_RT_MUTEXES
+void rt_mutex_debug_task_free(struct task_struct *task)
+{
+ DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
+ DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
+}
+#endif
+
+#ifdef CONFIG_PREEMPT_RT
+/* Mutexes */
+void __mutex_rt_init(struct mutex *mutex, const char *name,
+ struct lock_class_key *key)
+{
+ debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
+ lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
+}
+EXPORT_SYMBOL(__mutex_rt_init);
+
+static __always_inline int __mutex_lock_common(struct mutex *lock,
+ unsigned int state,
+ unsigned int subclass,
+ struct lockdep_map *nest_lock,
+ unsigned long ip)
+{
+ int ret;
+
+ might_sleep();
+ mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
+ ret = __rt_mutex_lock(&lock->rtmutex, state);
+ if (ret)
+ mutex_release(&lock->dep_map, ip);
+ else
+ lock_acquired(&lock->dep_map, ip);
+ return ret;
+}
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
+{
+ __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
+}
+EXPORT_SYMBOL_GPL(mutex_lock_nested);
+
+void __sched _mutex_lock_nest_lock(struct mutex *lock,
+ struct lockdep_map *nest_lock)
+{
+ __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
+}
+EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
+
+int __sched mutex_lock_interruptible_nested(struct mutex *lock,
+ unsigned int subclass)
+{
+ return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
+}
+EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
+
+int __sched mutex_lock_killable_nested(struct mutex *lock,
+ unsigned int subclass)
+{
+ return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
+}
+EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
+
+void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
+{
+ int token;
+
+ might_sleep();
+
+ token = io_schedule_prepare();
+ __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
+ io_schedule_finish(token);
+}
+EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
+
+#else /* CONFIG_DEBUG_LOCK_ALLOC */
+
+void __sched mutex_lock(struct mutex *lock)
+{
+ __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
+}
+EXPORT_SYMBOL(mutex_lock);
+
+int __sched mutex_lock_interruptible(struct mutex *lock)
+{
+ return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
+}
+EXPORT_SYMBOL(mutex_lock_interruptible);
+
+int __sched mutex_lock_killable(struct mutex *lock)
+{
+ return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
+}
+EXPORT_SYMBOL(mutex_lock_killable);
+
+void __sched mutex_lock_io(struct mutex *lock)
+{
+ int token = io_schedule_prepare();
+
+ __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
+ io_schedule_finish(token);
+}
+EXPORT_SYMBOL(mutex_lock_io);
+#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
+
+int __sched mutex_trylock(struct mutex *lock)
+{
+ int ret;
+
+ if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
+ return 0;
+
+ ret = __rt_mutex_trylock(&lock->rtmutex);
+ if (ret)
+ mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+
+ return ret;
+}
+EXPORT_SYMBOL(mutex_trylock);
+
+void __sched mutex_unlock(struct mutex *lock)
+{
+ mutex_release(&lock->dep_map, _RET_IP_);
+ __rt_mutex_unlock(&lock->rtmutex);
+}
+EXPORT_SYMBOL(mutex_unlock);
+
+#endif /* CONFIG_PREEMPT_RT */
diff --git a/kernel/locking/rtmutex_common.h b/kernel/locking/rtmutex_common.h
index a90c22abdbca..c47e8361bfb5 100644
--- a/kernel/locking/rtmutex_common.h
+++ b/kernel/locking/rtmutex_common.h
@@ -25,29 +25,90 @@
* @pi_tree_entry: pi node to enqueue into the mutex owner waiters tree
* @task: task reference to the blocked task
* @lock: Pointer to the rt_mutex on which the waiter blocks
+ * @wake_state: Wakeup state to use (TASK_NORMAL or TASK_RTLOCK_WAIT)
* @prio: Priority of the waiter
* @deadline: Deadline of the waiter if applicable
+ * @ww_ctx: WW context pointer
*/
struct rt_mutex_waiter {
struct rb_node tree_entry;
struct rb_node pi_tree_entry;
struct task_struct *task;
- struct rt_mutex *lock;
+ struct rt_mutex_base *lock;
+ unsigned int wake_state;
int prio;
u64 deadline;
+ struct ww_acquire_ctx *ww_ctx;
};
+/**
+ * rt_wake_q_head - Wrapper around regular wake_q_head to support
+ * "sleeping" spinlocks on RT
+ * @head: The regular wake_q_head for sleeping lock variants
+ * @rtlock_task: Task pointer for RT lock (spin/rwlock) wakeups
+ */
+struct rt_wake_q_head {
+ struct wake_q_head head;
+ struct task_struct *rtlock_task;
+};
+
+#define DEFINE_RT_WAKE_Q(name) \
+ struct rt_wake_q_head name = { \
+ .head = WAKE_Q_HEAD_INITIALIZER(name.head), \
+ .rtlock_task = NULL, \
+ }
+
+/*
+ * PI-futex support (proxy locking functions, etc.):
+ */
+extern void rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
+ struct task_struct *proxy_owner);
+extern void rt_mutex_proxy_unlock(struct rt_mutex_base *lock);
+extern int __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter,
+ struct task_struct *task);
+extern int rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter,
+ struct task_struct *task);
+extern int rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
+ struct hrtimer_sleeper *to,
+ struct rt_mutex_waiter *waiter);
+extern bool rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter);
+
+extern int rt_mutex_futex_trylock(struct rt_mutex_base *l);
+extern int __rt_mutex_futex_trylock(struct rt_mutex_base *l);
+
+extern void rt_mutex_futex_unlock(struct rt_mutex_base *lock);
+extern bool __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
+ struct rt_wake_q_head *wqh);
+
+extern void rt_mutex_postunlock(struct rt_wake_q_head *wqh);
+
/*
* Must be guarded because this header is included from rcu/tree_plugin.h
* unconditionally.
*/
#ifdef CONFIG_RT_MUTEXES
-static inline int rt_mutex_has_waiters(struct rt_mutex *lock)
+static inline int rt_mutex_has_waiters(struct rt_mutex_base *lock)
{
return !RB_EMPTY_ROOT(&lock->waiters.rb_root);
}
-static inline struct rt_mutex_waiter *rt_mutex_top_waiter(struct rt_mutex *lock)
+/*
+ * Lockless speculative check whether @waiter is still the top waiter on
+ * @lock. This is solely comparing pointers and not derefencing the
+ * leftmost entry which might be about to vanish.
+ */
+static inline bool rt_mutex_waiter_is_top_waiter(struct rt_mutex_base *lock,
+ struct rt_mutex_waiter *waiter)
+{
+ struct rb_node *leftmost = rb_first_cached(&lock->waiters);
+
+ return rb_entry(leftmost, struct rt_mutex_waiter, tree_entry) == waiter;
+}
+
+static inline struct rt_mutex_waiter *rt_mutex_top_waiter(struct rt_mutex_base *lock)
{
struct rb_node *leftmost = rb_first_cached(&lock->waiters);
struct rt_mutex_waiter *w = NULL;
@@ -72,19 +133,12 @@ static inline struct rt_mutex_waiter *task_top_pi_waiter(struct task_struct *p)
#define RT_MUTEX_HAS_WAITERS 1UL
-static inline struct task_struct *rt_mutex_owner(struct rt_mutex *lock)
+static inline struct task_struct *rt_mutex_owner(struct rt_mutex_base *lock)
{
unsigned long owner = (unsigned long) READ_ONCE(lock->owner);
return (struct task_struct *) (owner & ~RT_MUTEX_HAS_WAITERS);
}
-#else /* CONFIG_RT_MUTEXES */
-/* Used in rcu/tree_plugin.h */
-static inline struct task_struct *rt_mutex_owner(struct rt_mutex *lock)
-{
- return NULL;
-}
-#endif /* !CONFIG_RT_MUTEXES */
/*
* Constants for rt mutex functions which have a selectable deadlock
@@ -101,49 +155,21 @@ enum rtmutex_chainwalk {
RT_MUTEX_FULL_CHAINWALK,
};
-static inline void __rt_mutex_basic_init(struct rt_mutex *lock)
+static inline void __rt_mutex_base_init(struct rt_mutex_base *lock)
{
- lock->owner = NULL;
raw_spin_lock_init(&lock->wait_lock);
lock->waiters = RB_ROOT_CACHED;
+ lock->owner = NULL;
}
-/*
- * PI-futex support (proxy locking functions, etc.):
- */
-extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
- struct task_struct *proxy_owner);
-extern void rt_mutex_proxy_unlock(struct rt_mutex *lock);
-extern void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter);
-extern int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
- struct rt_mutex_waiter *waiter,
- struct task_struct *task);
-extern int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
- struct rt_mutex_waiter *waiter,
- struct task_struct *task);
-extern int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
- struct hrtimer_sleeper *to,
- struct rt_mutex_waiter *waiter);
-extern bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
- struct rt_mutex_waiter *waiter);
-
-extern int rt_mutex_futex_trylock(struct rt_mutex *l);
-extern int __rt_mutex_futex_trylock(struct rt_mutex *l);
-
-extern void rt_mutex_futex_unlock(struct rt_mutex *lock);
-extern bool __rt_mutex_futex_unlock(struct rt_mutex *lock,
- struct wake_q_head *wqh);
-
-extern void rt_mutex_postunlock(struct wake_q_head *wake_q);
-
/* Debug functions */
-static inline void debug_rt_mutex_unlock(struct rt_mutex *lock)
+static inline void debug_rt_mutex_unlock(struct rt_mutex_base *lock)
{
if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
DEBUG_LOCKS_WARN_ON(rt_mutex_owner(lock) != current);
}
-static inline void debug_rt_mutex_proxy_unlock(struct rt_mutex *lock)
+static inline void debug_rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
{
if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
DEBUG_LOCKS_WARN_ON(!rt_mutex_owner(lock));
@@ -161,4 +187,27 @@ static inline void debug_rt_mutex_free_waiter(struct rt_mutex_waiter *waiter)
memset(waiter, 0x22, sizeof(*waiter));
}
+static inline void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
+{
+ debug_rt_mutex_init_waiter(waiter);
+ RB_CLEAR_NODE(&waiter->pi_tree_entry);
+ RB_CLEAR_NODE(&waiter->tree_entry);
+ waiter->wake_state = TASK_NORMAL;
+ waiter->task = NULL;
+}
+
+static inline void rt_mutex_init_rtlock_waiter(struct rt_mutex_waiter *waiter)
+{
+ rt_mutex_init_waiter(waiter);
+ waiter->wake_state = TASK_RTLOCK_WAIT;
+}
+
+#else /* CONFIG_RT_MUTEXES */
+/* Used in rcu/tree_plugin.h */
+static inline struct task_struct *rt_mutex_owner(struct rt_mutex_base *lock)
+{
+ return NULL;
+}
+#endif /* !CONFIG_RT_MUTEXES */
+
#endif
diff --git a/kernel/locking/rwbase_rt.c b/kernel/locking/rwbase_rt.c
new file mode 100644
index 000000000000..4ba15088e640
--- /dev/null
+++ b/kernel/locking/rwbase_rt.c
@@ -0,0 +1,263 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+/*
+ * RT-specific reader/writer semaphores and reader/writer locks
+ *
+ * down_write/write_lock()
+ * 1) Lock rtmutex
+ * 2) Remove the reader BIAS to force readers into the slow path
+ * 3) Wait until all readers have left the critical section
+ * 4) Mark it write locked
+ *
+ * up_write/write_unlock()
+ * 1) Remove the write locked marker
+ * 2) Set the reader BIAS, so readers can use the fast path again
+ * 3) Unlock rtmutex, to release blocked readers
+ *
+ * down_read/read_lock()
+ * 1) Try fast path acquisition (reader BIAS is set)
+ * 2) Take tmutex::wait_lock, which protects the writelocked flag
+ * 3) If !writelocked, acquire it for read
+ * 4) If writelocked, block on tmutex
+ * 5) unlock rtmutex, goto 1)
+ *
+ * up_read/read_unlock()
+ * 1) Try fast path release (reader count != 1)
+ * 2) Wake the writer waiting in down_write()/write_lock() #3
+ *
+ * down_read/read_lock()#3 has the consequence, that rw semaphores and rw
+ * locks on RT are not writer fair, but writers, which should be avoided in
+ * RT tasks (think mmap_sem), are subject to the rtmutex priority/DL
+ * inheritance mechanism.
+ *
+ * It's possible to make the rw primitives writer fair by keeping a list of
+ * active readers. A blocked writer would force all newly incoming readers
+ * to block on the rtmutex, but the rtmutex would have to be proxy locked
+ * for one reader after the other. We can't use multi-reader inheritance
+ * because there is no way to support that with SCHED_DEADLINE.
+ * Implementing the one by one reader boosting/handover mechanism is a
+ * major surgery for a very dubious value.
+ *
+ * The risk of writer starvation is there, but the pathological use cases
+ * which trigger it are not necessarily the typical RT workloads.
+ *
+ * Common code shared between RT rw_semaphore and rwlock
+ */
+
+static __always_inline int rwbase_read_trylock(struct rwbase_rt *rwb)
+{
+ int r;
+
+ /*
+ * Increment reader count, if sem->readers < 0, i.e. READER_BIAS is
+ * set.
+ */
+ for (r = atomic_read(&rwb->readers); r < 0;) {
+ if (likely(atomic_try_cmpxchg(&rwb->readers, &r, r + 1)))
+ return 1;
+ }
+ return 0;
+}
+
+static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ int ret;
+
+ raw_spin_lock_irq(&rtm->wait_lock);
+ /*
+ * Allow readers, as long as the writer has not completely
+ * acquired the semaphore for write.
+ */
+ if (atomic_read(&rwb->readers) != WRITER_BIAS) {
+ atomic_inc(&rwb->readers);
+ raw_spin_unlock_irq(&rtm->wait_lock);
+ return 0;
+ }
+
+ /*
+ * Call into the slow lock path with the rtmutex->wait_lock
+ * held, so this can't result in the following race:
+ *
+ * Reader1 Reader2 Writer
+ * down_read()
+ * down_write()
+ * rtmutex_lock(m)
+ * wait()
+ * down_read()
+ * unlock(m->wait_lock)
+ * up_read()
+ * wake(Writer)
+ * lock(m->wait_lock)
+ * sem->writelocked=true
+ * unlock(m->wait_lock)
+ *
+ * up_write()
+ * sem->writelocked=false
+ * rtmutex_unlock(m)
+ * down_read()
+ * down_write()
+ * rtmutex_lock(m)
+ * wait()
+ * rtmutex_lock(m)
+ *
+ * That would put Reader1 behind the writer waiting on
+ * Reader2 to call up_read(), which might be unbound.
+ */
+
+ /*
+ * For rwlocks this returns 0 unconditionally, so the below
+ * !ret conditionals are optimized out.
+ */
+ ret = rwbase_rtmutex_slowlock_locked(rtm, state);
+
+ /*
+ * On success the rtmutex is held, so there can't be a writer
+ * active. Increment the reader count and immediately drop the
+ * rtmutex again.
+ *
+ * rtmutex->wait_lock has to be unlocked in any case of course.
+ */
+ if (!ret)
+ atomic_inc(&rwb->readers);
+ raw_spin_unlock_irq(&rtm->wait_lock);
+ if (!ret)
+ rwbase_rtmutex_unlock(rtm);
+ return ret;
+}
+
+static __always_inline int rwbase_read_lock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ if (rwbase_read_trylock(rwb))
+ return 0;
+
+ return __rwbase_read_lock(rwb, state);
+}
+
+static void __sched __rwbase_read_unlock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ struct task_struct *owner;
+
+ raw_spin_lock_irq(&rtm->wait_lock);
+ /*
+ * Wake the writer, i.e. the rtmutex owner. It might release the
+ * rtmutex concurrently in the fast path (due to a signal), but to
+ * clean up rwb->readers it needs to acquire rtm->wait_lock. The
+ * worst case which can happen is a spurious wakeup.
+ */
+ owner = rt_mutex_owner(rtm);
+ if (owner)
+ wake_up_state(owner, state);
+
+ raw_spin_unlock_irq(&rtm->wait_lock);
+}
+
+static __always_inline void rwbase_read_unlock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ /*
+ * rwb->readers can only hit 0 when a writer is waiting for the
+ * active readers to leave the critical section.
+ */
+ if (unlikely(atomic_dec_and_test(&rwb->readers)))
+ __rwbase_read_unlock(rwb, state);
+}
+
+static inline void __rwbase_write_unlock(struct rwbase_rt *rwb, int bias,
+ unsigned long flags)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+
+ atomic_add(READER_BIAS - bias, &rwb->readers);
+ raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
+ rwbase_rtmutex_unlock(rtm);
+}
+
+static inline void rwbase_write_unlock(struct rwbase_rt *rwb)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ __rwbase_write_unlock(rwb, WRITER_BIAS, flags);
+}
+
+static inline void rwbase_write_downgrade(struct rwbase_rt *rwb)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ /* Release it and account current as reader */
+ __rwbase_write_unlock(rwb, WRITER_BIAS - 1, flags);
+}
+
+static int __sched rwbase_write_lock(struct rwbase_rt *rwb,
+ unsigned int state)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ unsigned long flags;
+
+ /* Take the rtmutex as a first step */
+ if (rwbase_rtmutex_lock_state(rtm, state))
+ return -EINTR;
+
+ /* Force readers into slow path */
+ atomic_sub(READER_BIAS, &rwb->readers);
+
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ /*
+ * set_current_state() for rw_semaphore
+ * current_save_and_set_rtlock_wait_state() for rwlock
+ */
+ rwbase_set_and_save_current_state(state);
+
+ /* Block until all readers have left the critical section. */
+ for (; atomic_read(&rwb->readers);) {
+ /* Optimized out for rwlocks */
+ if (rwbase_signal_pending_state(state, current)) {
+ __set_current_state(TASK_RUNNING);
+ __rwbase_write_unlock(rwb, 0, flags);
+ return -EINTR;
+ }
+ raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
+
+ /*
+ * Schedule and wait for the readers to leave the critical
+ * section. The last reader leaving it wakes the waiter.
+ */
+ if (atomic_read(&rwb->readers) != 0)
+ rwbase_schedule();
+ set_current_state(state);
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ }
+
+ atomic_set(&rwb->readers, WRITER_BIAS);
+ rwbase_restore_current_state();
+ raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
+ return 0;
+}
+
+static inline int rwbase_write_trylock(struct rwbase_rt *rwb)
+{
+ struct rt_mutex_base *rtm = &rwb->rtmutex;
+ unsigned long flags;
+
+ if (!rwbase_rtmutex_trylock(rtm))
+ return 0;
+
+ atomic_sub(READER_BIAS, &rwb->readers);
+
+ raw_spin_lock_irqsave(&rtm->wait_lock, flags);
+ if (!atomic_read(&rwb->readers)) {
+ atomic_set(&rwb->readers, WRITER_BIAS);
+ raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
+ return 1;
+ }
+ __rwbase_write_unlock(rwb, 0, flags);
+ return 0;
+}
diff --git a/kernel/locking/rwsem.c b/kernel/locking/rwsem.c
index 16bfbb10c74d..9215b4d6a9de 100644
--- a/kernel/locking/rwsem.c
+++ b/kernel/locking/rwsem.c
@@ -28,6 +28,7 @@
#include <linux/rwsem.h>
#include <linux/atomic.h>
+#ifndef CONFIG_PREEMPT_RT
#include "lock_events.h"
/*
@@ -1165,7 +1166,7 @@ out_nolock:
* handle waking up a waiter on the semaphore
* - up_read/up_write has decremented the active part of count if we come here
*/
-static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
+static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
{
unsigned long flags;
DEFINE_WAKE_Q(wake_q);
@@ -1297,7 +1298,7 @@ static inline void __up_read(struct rw_semaphore *sem)
if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
RWSEM_FLAG_WAITERS)) {
clear_nonspinnable(sem);
- rwsem_wake(sem, tmp);
+ rwsem_wake(sem);
}
}
@@ -1319,7 +1320,7 @@ static inline void __up_write(struct rw_semaphore *sem)
rwsem_clear_owner(sem);
tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
if (unlikely(tmp & RWSEM_FLAG_WAITERS))
- rwsem_wake(sem, tmp);
+ rwsem_wake(sem);
}
/*
@@ -1344,6 +1345,114 @@ static inline void __downgrade_write(struct rw_semaphore *sem)
rwsem_downgrade_wake(sem);
}
+#else /* !CONFIG_PREEMPT_RT */
+
+#define RT_MUTEX_BUILD_MUTEX
+#include "rtmutex.c"
+
+#define rwbase_set_and_save_current_state(state) \
+ set_current_state(state)
+
+#define rwbase_restore_current_state() \
+ __set_current_state(TASK_RUNNING)
+
+#define rwbase_rtmutex_lock_state(rtm, state) \
+ __rt_mutex_lock(rtm, state)
+
+#define rwbase_rtmutex_slowlock_locked(rtm, state) \
+ __rt_mutex_slowlock_locked(rtm, NULL, state)
+
+#define rwbase_rtmutex_unlock(rtm) \
+ __rt_mutex_unlock(rtm)
+
+#define rwbase_rtmutex_trylock(rtm) \
+ __rt_mutex_trylock(rtm)
+
+#define rwbase_signal_pending_state(state, current) \
+ signal_pending_state(state, current)
+
+#define rwbase_schedule() \
+ schedule()
+
+#include "rwbase_rt.c"
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void __rwsem_init(struct rw_semaphore *sem, const char *name,
+ struct lock_class_key *key)
+{
+ debug_check_no_locks_freed((void *)sem, sizeof(*sem));
+ lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
+}
+EXPORT_SYMBOL(__rwsem_init);
+#endif
+
+static inline void __down_read(struct rw_semaphore *sem)
+{
+ rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
+}
+
+static inline int __down_read_interruptible(struct rw_semaphore *sem)
+{
+ return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
+}
+
+static inline int __down_read_killable(struct rw_semaphore *sem)
+{
+ return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
+}
+
+static inline int __down_read_trylock(struct rw_semaphore *sem)
+{
+ return rwbase_read_trylock(&sem->rwbase);
+}
+
+static inline void __up_read(struct rw_semaphore *sem)
+{
+ rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
+}
+
+static inline void __sched __down_write(struct rw_semaphore *sem)
+{
+ rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
+}
+
+static inline int __sched __down_write_killable(struct rw_semaphore *sem)
+{
+ return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
+}
+
+static inline int __down_write_trylock(struct rw_semaphore *sem)
+{
+ return rwbase_write_trylock(&sem->rwbase);
+}
+
+static inline void __up_write(struct rw_semaphore *sem)
+{
+ rwbase_write_unlock(&sem->rwbase);
+}
+
+static inline void __downgrade_write(struct rw_semaphore *sem)
+{
+ rwbase_write_downgrade(&sem->rwbase);
+}
+
+/* Debug stubs for the common API */
+#define DEBUG_RWSEMS_WARN_ON(c, sem)
+
+static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
+ struct task_struct *owner)
+{
+}
+
+static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
+{
+ int count = atomic_read(&sem->rwbase.readers);
+
+ return count < 0 && count != READER_BIAS;
+}
+
+#endif /* CONFIG_PREEMPT_RT */
+
/*
* lock for reading
*/
diff --git a/kernel/locking/semaphore.c b/kernel/locking/semaphore.c
index 9aa855a96c4a..9ee381e4d2a4 100644
--- a/kernel/locking/semaphore.c
+++ b/kernel/locking/semaphore.c
@@ -54,6 +54,7 @@ void down(struct semaphore *sem)
{
unsigned long flags;
+ might_sleep();
raw_spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
@@ -77,6 +78,7 @@ int down_interruptible(struct semaphore *sem)
unsigned long flags;
int result = 0;
+ might_sleep();
raw_spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
@@ -103,6 +105,7 @@ int down_killable(struct semaphore *sem)
unsigned long flags;
int result = 0;
+ might_sleep();
raw_spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
@@ -157,6 +160,7 @@ int down_timeout(struct semaphore *sem, long timeout)
unsigned long flags;
int result = 0;
+ might_sleep();
raw_spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
diff --git a/kernel/locking/spinlock.c b/kernel/locking/spinlock.c
index c8d7ad9fb9b2..c5830cfa379a 100644
--- a/kernel/locking/spinlock.c
+++ b/kernel/locking/spinlock.c
@@ -124,8 +124,11 @@ void __lockfunc __raw_##op##_lock_bh(locktype##_t *lock) \
* __[spin|read|write]_lock_bh()
*/
BUILD_LOCK_OPS(spin, raw_spinlock);
+
+#ifndef CONFIG_PREEMPT_RT
BUILD_LOCK_OPS(read, rwlock);
BUILD_LOCK_OPS(write, rwlock);
+#endif
#endif
@@ -209,6 +212,8 @@ void __lockfunc _raw_spin_unlock_bh(raw_spinlock_t *lock)
EXPORT_SYMBOL(_raw_spin_unlock_bh);
#endif
+#ifndef CONFIG_PREEMPT_RT
+
#ifndef CONFIG_INLINE_READ_TRYLOCK
int __lockfunc _raw_read_trylock(rwlock_t *lock)
{
@@ -353,6 +358,8 @@ void __lockfunc _raw_write_unlock_bh(rwlock_t *lock)
EXPORT_SYMBOL(_raw_write_unlock_bh);
#endif
+#endif /* !CONFIG_PREEMPT_RT */
+
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __lockfunc _raw_spin_lock_nested(raw_spinlock_t *lock, int subclass)
diff --git a/kernel/locking/spinlock_debug.c b/kernel/locking/spinlock_debug.c
index b9d93087ee66..14235671a1a7 100644
--- a/kernel/locking/spinlock_debug.c
+++ b/kernel/locking/spinlock_debug.c
@@ -31,6 +31,7 @@ void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name,
EXPORT_SYMBOL(__raw_spin_lock_init);
+#ifndef CONFIG_PREEMPT_RT
void __rwlock_init(rwlock_t *lock, const char *name,
struct lock_class_key *key)
{
@@ -48,6 +49,7 @@ void __rwlock_init(rwlock_t *lock, const char *name,
}
EXPORT_SYMBOL(__rwlock_init);
+#endif
static void spin_dump(raw_spinlock_t *lock, const char *msg)
{
@@ -139,6 +141,7 @@ void do_raw_spin_unlock(raw_spinlock_t *lock)
arch_spin_unlock(&lock->raw_lock);
}
+#ifndef CONFIG_PREEMPT_RT
static void rwlock_bug(rwlock_t *lock, const char *msg)
{
if (!debug_locks_off())
@@ -228,3 +231,5 @@ void do_raw_write_unlock(rwlock_t *lock)
debug_write_unlock(lock);
arch_write_unlock(&lock->raw_lock);
}
+
+#endif /* !CONFIG_PREEMPT_RT */
diff --git a/kernel/locking/spinlock_rt.c b/kernel/locking/spinlock_rt.c
new file mode 100644
index 000000000000..d2912e44d61f
--- /dev/null
+++ b/kernel/locking/spinlock_rt.c
@@ -0,0 +1,263 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * PREEMPT_RT substitution for spin/rw_locks
+ *
+ * spinlocks and rwlocks on RT are based on rtmutexes, with a few twists to
+ * resemble the non RT semantics:
+ *
+ * - Contrary to plain rtmutexes, spinlocks and rwlocks are state
+ * preserving. The task state is saved before blocking on the underlying
+ * rtmutex, and restored when the lock has been acquired. Regular wakeups
+ * during that time are redirected to the saved state so no wake up is
+ * missed.
+ *
+ * - Non RT spin/rwlocks disable preemption and eventually interrupts.
+ * Disabling preemption has the side effect of disabling migration and
+ * preventing RCU grace periods.
+ *
+ * The RT substitutions explicitly disable migration and take
+ * rcu_read_lock() across the lock held section.
+ */
+#include <linux/spinlock.h>
+#include <linux/export.h>
+
+#define RT_MUTEX_BUILD_SPINLOCKS
+#include "rtmutex.c"
+
+static __always_inline void rtlock_lock(struct rt_mutex_base *rtm)
+{
+ if (unlikely(!rt_mutex_cmpxchg_acquire(rtm, NULL, current)))
+ rtlock_slowlock(rtm);
+}
+
+static __always_inline void __rt_spin_lock(spinlock_t *lock)
+{
+ ___might_sleep(__FILE__, __LINE__, 0);
+ rtlock_lock(&lock->lock);
+ rcu_read_lock();
+ migrate_disable();
+}
+
+void __sched rt_spin_lock(spinlock_t *lock)
+{
+ spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
+ __rt_spin_lock(lock);
+}
+EXPORT_SYMBOL(rt_spin_lock);
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void __sched rt_spin_lock_nested(spinlock_t *lock, int subclass)
+{
+ spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
+ __rt_spin_lock(lock);
+}
+EXPORT_SYMBOL(rt_spin_lock_nested);
+
+void __sched rt_spin_lock_nest_lock(spinlock_t *lock,
+ struct lockdep_map *nest_lock)
+{
+ spin_acquire_nest(&lock->dep_map, 0, 0, nest_lock, _RET_IP_);
+ __rt_spin_lock(lock);
+}
+EXPORT_SYMBOL(rt_spin_lock_nest_lock);
+#endif
+
+void __sched rt_spin_unlock(spinlock_t *lock)
+{
+ spin_release(&lock->dep_map, _RET_IP_);
+ migrate_enable();
+ rcu_read_unlock();
+
+ if (unlikely(!rt_mutex_cmpxchg_release(&lock->lock, current, NULL)))
+ rt_mutex_slowunlock(&lock->lock);
+}
+EXPORT_SYMBOL(rt_spin_unlock);
+
+/*
+ * Wait for the lock to get unlocked: instead of polling for an unlock
+ * (like raw spinlocks do), lock and unlock, to force the kernel to
+ * schedule if there's contention:
+ */
+void __sched rt_spin_lock_unlock(spinlock_t *lock)
+{
+ spin_lock(lock);
+ spin_unlock(lock);
+}
+EXPORT_SYMBOL(rt_spin_lock_unlock);
+
+static __always_inline int __rt_spin_trylock(spinlock_t *lock)
+{
+ int ret = 1;
+
+ if (unlikely(!rt_mutex_cmpxchg_acquire(&lock->lock, NULL, current)))
+ ret = rt_mutex_slowtrylock(&lock->lock);
+
+ if (ret) {
+ spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+ rcu_read_lock();
+ migrate_disable();
+ }
+ return ret;
+}
+
+int __sched rt_spin_trylock(spinlock_t *lock)
+{
+ return __rt_spin_trylock(lock);
+}
+EXPORT_SYMBOL(rt_spin_trylock);
+
+int __sched rt_spin_trylock_bh(spinlock_t *lock)
+{
+ int ret;
+
+ local_bh_disable();
+ ret = __rt_spin_trylock(lock);
+ if (!ret)
+ local_bh_enable();
+ return ret;
+}
+EXPORT_SYMBOL(rt_spin_trylock_bh);
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void __rt_spin_lock_init(spinlock_t *lock, const char *name,
+ struct lock_class_key *key, bool percpu)
+{
+ u8 type = percpu ? LD_LOCK_PERCPU : LD_LOCK_NORMAL;
+
+ debug_check_no_locks_freed((void *)lock, sizeof(*lock));
+ lockdep_init_map_type(&lock->dep_map, name, key, 0, LD_WAIT_CONFIG,
+ LD_WAIT_INV, type);
+}
+EXPORT_SYMBOL(__rt_spin_lock_init);
+#endif
+
+/*
+ * RT-specific reader/writer locks
+ */
+#define rwbase_set_and_save_current_state(state) \
+ current_save_and_set_rtlock_wait_state()
+
+#define rwbase_restore_current_state() \
+ current_restore_rtlock_saved_state()
+
+static __always_inline int
+rwbase_rtmutex_lock_state(struct rt_mutex_base *rtm, unsigned int state)
+{
+ if (unlikely(!rt_mutex_cmpxchg_acquire(rtm, NULL, current)))
+ rtlock_slowlock(rtm);
+ return 0;
+}
+
+static __always_inline int
+rwbase_rtmutex_slowlock_locked(struct rt_mutex_base *rtm, unsigned int state)
+{
+ rtlock_slowlock_locked(rtm);
+ return 0;
+}
+
+static __always_inline void rwbase_rtmutex_unlock(struct rt_mutex_base *rtm)
+{
+ if (likely(rt_mutex_cmpxchg_acquire(rtm, current, NULL)))
+ return;
+
+ rt_mutex_slowunlock(rtm);
+}
+
+static __always_inline int rwbase_rtmutex_trylock(struct rt_mutex_base *rtm)
+{
+ if (likely(rt_mutex_cmpxchg_acquire(rtm, NULL, current)))
+ return 1;
+
+ return rt_mutex_slowtrylock(rtm);
+}
+
+#define rwbase_signal_pending_state(state, current) (0)
+
+#define rwbase_schedule() \
+ schedule_rtlock()
+
+#include "rwbase_rt.c"
+/*
+ * The common functions which get wrapped into the rwlock API.
+ */
+int __sched rt_read_trylock(rwlock_t *rwlock)
+{
+ int ret;
+
+ ret = rwbase_read_trylock(&rwlock->rwbase);
+ if (ret) {
+ rwlock_acquire_read(&rwlock->dep_map, 0, 1, _RET_IP_);
+ rcu_read_lock();
+ migrate_disable();
+ }
+ return ret;
+}
+EXPORT_SYMBOL(rt_read_trylock);
+
+int __sched rt_write_trylock(rwlock_t *rwlock)
+{
+ int ret;
+
+ ret = rwbase_write_trylock(&rwlock->rwbase);
+ if (ret) {
+ rwlock_acquire(&rwlock->dep_map, 0, 1, _RET_IP_);
+ rcu_read_lock();
+ migrate_disable();
+ }
+ return ret;
+}
+EXPORT_SYMBOL(rt_write_trylock);
+
+void __sched rt_read_lock(rwlock_t *rwlock)
+{
+ ___might_sleep(__FILE__, __LINE__, 0);
+ rwlock_acquire_read(&rwlock->dep_map, 0, 0, _RET_IP_);
+ rwbase_read_lock(&rwlock->rwbase, TASK_RTLOCK_WAIT);
+ rcu_read_lock();
+ migrate_disable();
+}
+EXPORT_SYMBOL(rt_read_lock);
+
+void __sched rt_write_lock(rwlock_t *rwlock)
+{
+ ___might_sleep(__FILE__, __LINE__, 0);
+ rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_);
+ rwbase_write_lock(&rwlock->rwbase, TASK_RTLOCK_WAIT);
+ rcu_read_lock();
+ migrate_disable();
+}
+EXPORT_SYMBOL(rt_write_lock);
+
+void __sched rt_read_unlock(rwlock_t *rwlock)
+{
+ rwlock_release(&rwlock->dep_map, _RET_IP_);
+ migrate_enable();
+ rcu_read_unlock();
+ rwbase_read_unlock(&rwlock->rwbase, TASK_RTLOCK_WAIT);
+}
+EXPORT_SYMBOL(rt_read_unlock);
+
+void __sched rt_write_unlock(rwlock_t *rwlock)
+{
+ rwlock_release(&rwlock->dep_map, _RET_IP_);
+ rcu_read_unlock();
+ migrate_enable();
+ rwbase_write_unlock(&rwlock->rwbase);
+}
+EXPORT_SYMBOL(rt_write_unlock);
+
+int __sched rt_rwlock_is_contended(rwlock_t *rwlock)
+{
+ return rw_base_is_contended(&rwlock->rwbase);
+}
+EXPORT_SYMBOL(rt_rwlock_is_contended);
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void __rt_rwlock_init(rwlock_t *rwlock, const char *name,
+ struct lock_class_key *key)
+{
+ debug_check_no_locks_freed((void *)rwlock, sizeof(*rwlock));
+ lockdep_init_map_wait(&rwlock->dep_map, name, key, 0, LD_WAIT_CONFIG);
+}
+EXPORT_SYMBOL(__rt_rwlock_init);
+#endif
diff --git a/kernel/locking/ww_mutex.h b/kernel/locking/ww_mutex.h
new file mode 100644
index 000000000000..56f139201f24
--- /dev/null
+++ b/kernel/locking/ww_mutex.h
@@ -0,0 +1,569 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef WW_RT
+
+#define MUTEX mutex
+#define MUTEX_WAITER mutex_waiter
+
+static inline struct mutex_waiter *
+__ww_waiter_first(struct mutex *lock)
+{
+ struct mutex_waiter *w;
+
+ w = list_first_entry(&lock->wait_list, struct mutex_waiter, list);
+ if (list_entry_is_head(w, &lock->wait_list, list))
+ return NULL;
+
+ return w;
+}
+
+static inline struct mutex_waiter *
+__ww_waiter_next(struct mutex *lock, struct mutex_waiter *w)
+{
+ w = list_next_entry(w, list);
+ if (list_entry_is_head(w, &lock->wait_list, list))
+ return NULL;
+
+ return w;
+}
+
+static inline struct mutex_waiter *
+__ww_waiter_prev(struct mutex *lock, struct mutex_waiter *w)
+{
+ w = list_prev_entry(w, list);
+ if (list_entry_is_head(w, &lock->wait_list, list))
+ return NULL;
+
+ return w;
+}
+
+static inline struct mutex_waiter *
+__ww_waiter_last(struct mutex *lock)
+{
+ struct mutex_waiter *w;
+
+ w = list_last_entry(&lock->wait_list, struct mutex_waiter, list);
+ if (list_entry_is_head(w, &lock->wait_list, list))
+ return NULL;
+
+ return w;
+}
+
+static inline void
+__ww_waiter_add(struct mutex *lock, struct mutex_waiter *waiter, struct mutex_waiter *pos)
+{
+ struct list_head *p = &lock->wait_list;
+ if (pos)
+ p = &pos->list;
+ __mutex_add_waiter(lock, waiter, p);
+}
+
+static inline struct task_struct *
+__ww_mutex_owner(struct mutex *lock)
+{
+ return __mutex_owner(lock);
+}
+
+static inline bool
+__ww_mutex_has_waiters(struct mutex *lock)
+{
+ return atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS;
+}
+
+static inline void lock_wait_lock(struct mutex *lock)
+{
+ raw_spin_lock(&lock->wait_lock);
+}
+
+static inline void unlock_wait_lock(struct mutex *lock)
+{
+ raw_spin_unlock(&lock->wait_lock);
+}
+
+static inline void lockdep_assert_wait_lock_held(struct mutex *lock)
+{
+ lockdep_assert_held(&lock->wait_lock);
+}
+
+#else /* WW_RT */
+
+#define MUTEX rt_mutex
+#define MUTEX_WAITER rt_mutex_waiter
+
+static inline struct rt_mutex_waiter *
+__ww_waiter_first(struct rt_mutex *lock)
+{
+ struct rb_node *n = rb_first(&lock->rtmutex.waiters.rb_root);
+ if (!n)
+ return NULL;
+ return rb_entry(n, struct rt_mutex_waiter, tree_entry);
+}
+
+static inline struct rt_mutex_waiter *
+__ww_waiter_next(struct rt_mutex *lock, struct rt_mutex_waiter *w)
+{
+ struct rb_node *n = rb_next(&w->tree_entry);
+ if (!n)
+ return NULL;
+ return rb_entry(n, struct rt_mutex_waiter, tree_entry);
+}
+
+static inline struct rt_mutex_waiter *
+__ww_waiter_prev(struct rt_mutex *lock, struct rt_mutex_waiter *w)
+{
+ struct rb_node *n = rb_prev(&w->tree_entry);
+ if (!n)
+ return NULL;
+ return rb_entry(n, struct rt_mutex_waiter, tree_entry);
+}
+
+static inline struct rt_mutex_waiter *
+__ww_waiter_last(struct rt_mutex *lock)
+{
+ struct rb_node *n = rb_last(&lock->rtmutex.waiters.rb_root);
+ if (!n)
+ return NULL;
+ return rb_entry(n, struct rt_mutex_waiter, tree_entry);
+}
+
+static inline void
+__ww_waiter_add(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct rt_mutex_waiter *pos)
+{
+ /* RT unconditionally adds the waiter first and then removes it on error */
+}
+
+static inline struct task_struct *
+__ww_mutex_owner(struct rt_mutex *lock)
+{
+ return rt_mutex_owner(&lock->rtmutex);
+}
+
+static inline bool
+__ww_mutex_has_waiters(struct rt_mutex *lock)
+{
+ return rt_mutex_has_waiters(&lock->rtmutex);
+}
+
+static inline void lock_wait_lock(struct rt_mutex *lock)
+{
+ raw_spin_lock(&lock->rtmutex.wait_lock);
+}
+
+static inline void unlock_wait_lock(struct rt_mutex *lock)
+{
+ raw_spin_unlock(&lock->rtmutex.wait_lock);
+}
+
+static inline void lockdep_assert_wait_lock_held(struct rt_mutex *lock)
+{
+ lockdep_assert_held(&lock->rtmutex.wait_lock);
+}
+
+#endif /* WW_RT */
+
+/*
+ * Wait-Die:
+ * The newer transactions are killed when:
+ * It (the new transaction) makes a request for a lock being held
+ * by an older transaction.
+ *
+ * Wound-Wait:
+ * The newer transactions are wounded when:
+ * An older transaction makes a request for a lock being held by
+ * the newer transaction.
+ */
+
+/*
+ * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
+ * it.
+ */
+static __always_inline void
+ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
+{
+#ifdef DEBUG_WW_MUTEXES
+ /*
+ * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
+ * but released with a normal mutex_unlock in this call.
+ *
+ * This should never happen, always use ww_mutex_unlock.
+ */
+ DEBUG_LOCKS_WARN_ON(ww->ctx);
+
+ /*
+ * Not quite done after calling ww_acquire_done() ?
+ */
+ DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
+
+ if (ww_ctx->contending_lock) {
+ /*
+ * After -EDEADLK you tried to
+ * acquire a different ww_mutex? Bad!
+ */
+ DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
+
+ /*
+ * You called ww_mutex_lock after receiving -EDEADLK,
+ * but 'forgot' to unlock everything else first?
+ */
+ DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
+ ww_ctx->contending_lock = NULL;
+ }
+
+ /*
+ * Naughty, using a different class will lead to undefined behavior!
+ */
+ DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
+#endif
+ ww_ctx->acquired++;
+ ww->ctx = ww_ctx;
+}
+
+/*
+ * Determine if @a is 'less' than @b. IOW, either @a is a lower priority task
+ * or, when of equal priority, a younger transaction than @b.
+ *
+ * Depending on the algorithm, @a will either need to wait for @b, or die.
+ */
+static inline bool
+__ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
+{
+/*
+ * Can only do the RT prio for WW_RT, because task->prio isn't stable due to PI,
+ * so the wait_list ordering will go wobbly. rt_mutex re-queues the waiter and
+ * isn't affected by this.
+ */
+#ifdef WW_RT
+ /* kernel prio; less is more */
+ int a_prio = a->task->prio;
+ int b_prio = b->task->prio;
+
+ if (rt_prio(a_prio) || rt_prio(b_prio)) {
+
+ if (a_prio > b_prio)
+ return true;
+
+ if (a_prio < b_prio)
+ return false;
+
+ /* equal static prio */
+
+ if (dl_prio(a_prio)) {
+ if (dl_time_before(b->task->dl.deadline,
+ a->task->dl.deadline))
+ return true;
+
+ if (dl_time_before(a->task->dl.deadline,
+ b->task->dl.deadline))
+ return false;
+ }
+
+ /* equal prio */
+ }
+#endif
+
+ /* FIFO order tie break -- bigger is younger */
+ return (signed long)(a->stamp - b->stamp) > 0;
+}
+
+/*
+ * Wait-Die; wake a lesser waiter context (when locks held) such that it can
+ * die.
+ *
+ * Among waiters with context, only the first one can have other locks acquired
+ * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
+ * __ww_mutex_check_kill() wake any but the earliest context.
+ */
+static bool
+__ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ if (!ww_ctx->is_wait_die)
+ return false;
+
+ if (waiter->ww_ctx->acquired > 0 && __ww_ctx_less(waiter->ww_ctx, ww_ctx)) {
+#ifndef WW_RT
+ debug_mutex_wake_waiter(lock, waiter);
+#endif
+ wake_up_process(waiter->task);
+ }
+
+ return true;
+}
+
+/*
+ * Wound-Wait; wound a lesser @hold_ctx if it holds the lock.
+ *
+ * Wound the lock holder if there are waiters with more important transactions
+ * than the lock holders. Even if multiple waiters may wound the lock holder,
+ * it's sufficient that only one does.
+ */
+static bool __ww_mutex_wound(struct MUTEX *lock,
+ struct ww_acquire_ctx *ww_ctx,
+ struct ww_acquire_ctx *hold_ctx)
+{
+ struct task_struct *owner = __ww_mutex_owner(lock);
+
+ lockdep_assert_wait_lock_held(lock);
+
+ /*
+ * Possible through __ww_mutex_add_waiter() when we race with
+ * ww_mutex_set_context_fastpath(). In that case we'll get here again
+ * through __ww_mutex_check_waiters().
+ */
+ if (!hold_ctx)
+ return false;
+
+ /*
+ * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
+ * it cannot go away because we'll have FLAG_WAITERS set and hold
+ * wait_lock.
+ */
+ if (!owner)
+ return false;
+
+ if (ww_ctx->acquired > 0 && __ww_ctx_less(hold_ctx, ww_ctx)) {
+ hold_ctx->wounded = 1;
+
+ /*
+ * wake_up_process() paired with set_current_state()
+ * inserts sufficient barriers to make sure @owner either sees
+ * it's wounded in __ww_mutex_check_kill() or has a
+ * wakeup pending to re-read the wounded state.
+ */
+ if (owner != current)
+ wake_up_process(owner);
+
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * We just acquired @lock under @ww_ctx, if there are more important contexts
+ * waiting behind us on the wait-list, check if they need to die, or wound us.
+ *
+ * See __ww_mutex_add_waiter() for the list-order construction; basically the
+ * list is ordered by stamp, smallest (oldest) first.
+ *
+ * This relies on never mixing wait-die/wound-wait on the same wait-list;
+ * which is currently ensured by that being a ww_class property.
+ *
+ * The current task must not be on the wait list.
+ */
+static void
+__ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
+{
+ struct MUTEX_WAITER *cur;
+
+ lockdep_assert_wait_lock_held(lock);
+
+ for (cur = __ww_waiter_first(lock); cur;
+ cur = __ww_waiter_next(lock, cur)) {
+
+ if (!cur->ww_ctx)
+ continue;
+
+ if (__ww_mutex_die(lock, cur, ww_ctx) ||
+ __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
+ break;
+ }
+}
+
+/*
+ * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
+ * and wake up any waiters so they can recheck.
+ */
+static __always_inline void
+ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
+{
+ ww_mutex_lock_acquired(lock, ctx);
+
+ /*
+ * The lock->ctx update should be visible on all cores before
+ * the WAITERS check is done, otherwise contended waiters might be
+ * missed. The contended waiters will either see ww_ctx == NULL
+ * and keep spinning, or it will acquire wait_lock, add itself
+ * to waiter list and sleep.
+ */
+ smp_mb(); /* See comments above and below. */
+
+ /*
+ * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
+ * MB MB
+ * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
+ *
+ * The memory barrier above pairs with the memory barrier in
+ * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
+ * and/or !empty list.
+ */
+ if (likely(!__ww_mutex_has_waiters(&lock->base)))
+ return;
+
+ /*
+ * Uh oh, we raced in fastpath, check if any of the waiters need to
+ * die or wound us.
+ */
+ lock_wait_lock(&lock->base);
+ __ww_mutex_check_waiters(&lock->base, ctx);
+ unlock_wait_lock(&lock->base);
+}
+
+static __always_inline int
+__ww_mutex_kill(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
+{
+ if (ww_ctx->acquired > 0) {
+#ifdef DEBUG_WW_MUTEXES
+ struct ww_mutex *ww;
+
+ ww = container_of(lock, struct ww_mutex, base);
+ DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
+ ww_ctx->contending_lock = ww;
+#endif
+ return -EDEADLK;
+ }
+
+ return 0;
+}
+
+/*
+ * Check the wound condition for the current lock acquire.
+ *
+ * Wound-Wait: If we're wounded, kill ourself.
+ *
+ * Wait-Die: If we're trying to acquire a lock already held by an older
+ * context, kill ourselves.
+ *
+ * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
+ * look at waiters before us in the wait-list.
+ */
+static inline int
+__ww_mutex_check_kill(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
+ struct ww_acquire_ctx *ctx)
+{
+ struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
+ struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
+ struct MUTEX_WAITER *cur;
+
+ if (ctx->acquired == 0)
+ return 0;
+
+ if (!ctx->is_wait_die) {
+ if (ctx->wounded)
+ return __ww_mutex_kill(lock, ctx);
+
+ return 0;
+ }
+
+ if (hold_ctx && __ww_ctx_less(ctx, hold_ctx))
+ return __ww_mutex_kill(lock, ctx);
+
+ /*
+ * If there is a waiter in front of us that has a context, then its
+ * stamp is earlier than ours and we must kill ourself.
+ */
+ for (cur = __ww_waiter_prev(lock, waiter); cur;
+ cur = __ww_waiter_prev(lock, cur)) {
+
+ if (!cur->ww_ctx)
+ continue;
+
+ return __ww_mutex_kill(lock, ctx);
+ }
+
+ return 0;
+}
+
+/*
+ * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
+ * first. Such that older contexts are preferred to acquire the lock over
+ * younger contexts.
+ *
+ * Waiters without context are interspersed in FIFO order.
+ *
+ * Furthermore, for Wait-Die kill ourself immediately when possible (there are
+ * older contexts already waiting) to avoid unnecessary waiting and for
+ * Wound-Wait ensure we wound the owning context when it is younger.
+ */
+static inline int
+__ww_mutex_add_waiter(struct MUTEX_WAITER *waiter,
+ struct MUTEX *lock,
+ struct ww_acquire_ctx *ww_ctx)
+{
+ struct MUTEX_WAITER *cur, *pos = NULL;
+ bool is_wait_die;
+
+ if (!ww_ctx) {
+ __ww_waiter_add(lock, waiter, NULL);
+ return 0;
+ }
+
+ is_wait_die = ww_ctx->is_wait_die;
+
+ /*
+ * Add the waiter before the first waiter with a higher stamp.
+ * Waiters without a context are skipped to avoid starving
+ * them. Wait-Die waiters may die here. Wound-Wait waiters
+ * never die here, but they are sorted in stamp order and
+ * may wound the lock holder.
+ */
+ for (cur = __ww_waiter_last(lock); cur;
+ cur = __ww_waiter_prev(lock, cur)) {
+
+ if (!cur->ww_ctx)
+ continue;
+
+ if (__ww_ctx_less(ww_ctx, cur->ww_ctx)) {
+ /*
+ * Wait-Die: if we find an older context waiting, there
+ * is no point in queueing behind it, as we'd have to
+ * die the moment it would acquire the lock.
+ */
+ if (is_wait_die) {
+ int ret = __ww_mutex_kill(lock, ww_ctx);
+
+ if (ret)
+ return ret;
+ }
+
+ break;
+ }
+
+ pos = cur;
+
+ /* Wait-Die: ensure younger waiters die. */
+ __ww_mutex_die(lock, cur, ww_ctx);
+ }
+
+ __ww_waiter_add(lock, waiter, pos);
+
+ /*
+ * Wound-Wait: if we're blocking on a mutex owned by a younger context,
+ * wound that such that we might proceed.
+ */
+ if (!is_wait_die) {
+ struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
+
+ /*
+ * See ww_mutex_set_context_fastpath(). Orders setting
+ * MUTEX_FLAG_WAITERS vs the ww->ctx load,
+ * such that either we or the fastpath will wound @ww->ctx.
+ */
+ smp_mb();
+ __ww_mutex_wound(lock, ww_ctx, ww->ctx);
+ }
+
+ return 0;
+}
+
+static inline void __ww_mutex_unlock(struct ww_mutex *lock)
+{
+ if (lock->ctx) {
+#ifdef DEBUG_WW_MUTEXES
+ DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
+#endif
+ if (lock->ctx->acquired > 0)
+ lock->ctx->acquired--;
+ lock->ctx = NULL;
+ }
+}
diff --git a/kernel/locking/ww_rt_mutex.c b/kernel/locking/ww_rt_mutex.c
new file mode 100644
index 000000000000..3f1fff7d2780
--- /dev/null
+++ b/kernel/locking/ww_rt_mutex.c
@@ -0,0 +1,76 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * rtmutex API
+ */
+#include <linux/spinlock.h>
+#include <linux/export.h>
+
+#define RT_MUTEX_BUILD_MUTEX
+#define WW_RT
+#include "rtmutex.c"
+
+static int __sched
+__ww_rt_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ww_ctx,
+ unsigned int state, unsigned long ip)
+{
+ struct lockdep_map __maybe_unused *nest_lock = NULL;
+ struct rt_mutex *rtm = &lock->base;
+ int ret;
+
+ might_sleep();
+
+ if (ww_ctx) {
+ if (unlikely(ww_ctx == READ_ONCE(lock->ctx)))
+ return -EALREADY;
+
+ /*
+ * Reset the wounded flag after a kill. No other process can
+ * race and wound us here, since they can't have a valid owner
+ * pointer if we don't have any locks held.
+ */
+ if (ww_ctx->acquired == 0)
+ ww_ctx->wounded = 0;
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+ nest_lock = &ww_ctx->dep_map;
+#endif
+ }
+ mutex_acquire_nest(&rtm->dep_map, 0, 0, nest_lock, ip);
+
+ if (likely(rt_mutex_cmpxchg_acquire(&rtm->rtmutex, NULL, current))) {
+ if (ww_ctx)
+ ww_mutex_set_context_fastpath(lock, ww_ctx);
+ return 0;
+ }
+
+ ret = rt_mutex_slowlock(&rtm->rtmutex, ww_ctx, state);
+
+ if (ret)
+ mutex_release(&rtm->dep_map, ip);
+ return ret;
+}
+
+int __sched
+ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
+{
+ return __ww_rt_mutex_lock(lock, ctx, TASK_UNINTERRUPTIBLE, _RET_IP_);
+}
+EXPORT_SYMBOL(ww_mutex_lock);
+
+int __sched
+ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
+{
+ return __ww_rt_mutex_lock(lock, ctx, TASK_INTERRUPTIBLE, _RET_IP_);
+}
+EXPORT_SYMBOL(ww_mutex_lock_interruptible);
+
+void __sched ww_mutex_unlock(struct ww_mutex *lock)
+{
+ struct rt_mutex *rtm = &lock->base;
+
+ __ww_mutex_unlock(lock);
+
+ mutex_release(&rtm->dep_map, _RET_IP_);
+ __rt_mutex_unlock(&rtm->rtmutex);
+}
+EXPORT_SYMBOL(ww_mutex_unlock);
diff --git a/kernel/notifier.c b/kernel/notifier.c
index 1b019cbca594..b8251dc0bc0f 100644
--- a/kernel/notifier.c
+++ b/kernel/notifier.c
@@ -172,25 +172,6 @@ int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
}
EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
-int atomic_notifier_call_chain_robust(struct atomic_notifier_head *nh,
- unsigned long val_up, unsigned long val_down, void *v)
-{
- unsigned long flags;
- int ret;
-
- /*
- * Musn't use RCU; because then the notifier list can
- * change between the up and down traversal.
- */
- spin_lock_irqsave(&nh->lock, flags);
- ret = notifier_call_chain_robust(&nh->head, val_up, val_down, v);
- spin_unlock_irqrestore(&nh->lock, flags);
-
- return ret;
-}
-EXPORT_SYMBOL_GPL(atomic_notifier_call_chain_robust);
-NOKPROBE_SYMBOL(atomic_notifier_call_chain_robust);
-
/**
* atomic_notifier_call_chain - Call functions in an atomic notifier chain
* @nh: Pointer to head of the atomic notifier chain
diff --git a/kernel/padata.c b/kernel/padata.c
index d4d3ba6e1728..18d3a5c699d8 100644
--- a/kernel/padata.c
+++ b/kernel/padata.c
@@ -9,19 +9,6 @@
*
* Copyright (c) 2020 Oracle and/or its affiliates.
* Author: Daniel Jordan <daniel.m.jordan@oracle.com>
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/completion.h>
@@ -211,7 +198,7 @@ int padata_do_parallel(struct padata_shell *ps,
if ((pinst->flags & PADATA_RESET))
goto out;
- atomic_inc(&pd->refcnt);
+ refcount_inc(&pd->refcnt);
padata->pd = pd;
padata->cb_cpu = *cb_cpu;
@@ -383,7 +370,7 @@ static void padata_serial_worker(struct work_struct *serial_work)
}
local_bh_enable();
- if (atomic_sub_and_test(cnt, &pd->refcnt))
+ if (refcount_sub_and_test(cnt, &pd->refcnt))
padata_free_pd(pd);
}
@@ -593,7 +580,7 @@ static struct parallel_data *padata_alloc_pd(struct padata_shell *ps)
padata_init_reorder_list(pd);
padata_init_squeues(pd);
pd->seq_nr = -1;
- atomic_set(&pd->refcnt, 1);
+ refcount_set(&pd->refcnt, 1);
spin_lock_init(&pd->lock);
pd->cpu = cpumask_first(pd->cpumask.pcpu);
INIT_WORK(&pd->reorder_work, invoke_padata_reorder);
@@ -667,7 +654,7 @@ static int padata_replace(struct padata_instance *pinst)
synchronize_rcu();
list_for_each_entry_continue_reverse(ps, &pinst->pslist, list)
- if (atomic_dec_and_test(&ps->opd->refcnt))
+ if (refcount_dec_and_test(&ps->opd->refcnt))
padata_free_pd(ps->opd);
pinst->flags &= ~PADATA_RESET;
@@ -733,7 +720,7 @@ int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type,
struct cpumask *serial_mask, *parallel_mask;
int err = -EINVAL;
- get_online_cpus();
+ cpus_read_lock();
mutex_lock(&pinst->lock);
switch (cpumask_type) {
@@ -753,7 +740,7 @@ int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type,
out:
mutex_unlock(&pinst->lock);
- put_online_cpus();
+ cpus_read_unlock();
return err;
}
@@ -992,7 +979,7 @@ struct padata_instance *padata_alloc(const char *name)
if (!pinst->parallel_wq)
goto err_free_inst;
- get_online_cpus();
+ cpus_read_lock();
pinst->serial_wq = alloc_workqueue("%s_serial", WQ_MEM_RECLAIM |
WQ_CPU_INTENSIVE, 1, name);
@@ -1026,7 +1013,7 @@ struct padata_instance *padata_alloc(const char *name)
&pinst->cpu_dead_node);
#endif
- put_online_cpus();
+ cpus_read_unlock();
return pinst;
@@ -1036,7 +1023,7 @@ err_free_masks:
err_free_serial_wq:
destroy_workqueue(pinst->serial_wq);
err_put_cpus:
- put_online_cpus();
+ cpus_read_unlock();
destroy_workqueue(pinst->parallel_wq);
err_free_inst:
kfree(pinst);
@@ -1074,9 +1061,9 @@ struct padata_shell *padata_alloc_shell(struct padata_instance *pinst)
ps->pinst = pinst;
- get_online_cpus();
+ cpus_read_lock();
pd = padata_alloc_pd(ps);
- put_online_cpus();
+ cpus_read_unlock();
if (!pd)
goto out_free_ps;
diff --git a/kernel/params.c b/kernel/params.c
index 2daa2780a92c..8299bd764e42 100644
--- a/kernel/params.c
+++ b/kernel/params.c
@@ -243,6 +243,24 @@ STANDARD_PARAM_DEF(ulong, unsigned long, "%lu", kstrtoul);
STANDARD_PARAM_DEF(ullong, unsigned long long, "%llu", kstrtoull);
STANDARD_PARAM_DEF(hexint, unsigned int, "%#08x", kstrtouint);
+int param_set_uint_minmax(const char *val, const struct kernel_param *kp,
+ unsigned int min, unsigned int max)
+{
+ unsigned int num;
+ int ret;
+
+ if (!val)
+ return -EINVAL;
+ ret = kstrtouint(val, 0, &num);
+ if (ret)
+ return ret;
+ if (num < min || num > max)
+ return -EINVAL;
+ *((unsigned int *)kp->arg) = num;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(param_set_uint_minmax);
+
int param_set_charp(const char *val, const struct kernel_param *kp)
{
if (strlen(val) > 1024) {
diff --git a/kernel/pid.c b/kernel/pid.c
index ebdf9c60cd0b..efe87db44683 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -550,13 +550,21 @@ struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
* Note, that this function can only be called after the fd table has
* been unshared to avoid leaking the pidfd to the new process.
*
+ * This symbol should not be explicitly exported to loadable modules.
+ *
* Return: On success, a cloexec pidfd is returned.
* On error, a negative errno number will be returned.
*/
-static int pidfd_create(struct pid *pid, unsigned int flags)
+int pidfd_create(struct pid *pid, unsigned int flags)
{
int fd;
+ if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
+ return -EINVAL;
+
+ if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
+ return -EINVAL;
+
fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
flags | O_RDWR | O_CLOEXEC);
if (fd < 0)
@@ -596,10 +604,7 @@ SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
if (!p)
return -ESRCH;
- if (pid_has_task(p, PIDTYPE_TGID))
- fd = pidfd_create(p, flags);
- else
- fd = -EINVAL;
+ fd = pidfd_create(p, flags);
put_pid(p);
return fd;
diff --git a/kernel/power/energy_model.c b/kernel/power/energy_model.c
index 0f4530b3a8cd..a332ccd829e2 100644
--- a/kernel/power/energy_model.c
+++ b/kernel/power/energy_model.c
@@ -170,7 +170,9 @@ static int em_create_perf_table(struct device *dev, struct em_perf_domain *pd,
/* Compute the cost of each performance state. */
fmax = (u64) table[nr_states - 1].frequency;
for (i = 0; i < nr_states; i++) {
- table[i].cost = div64_u64(fmax * table[i].power,
+ unsigned long power_res = em_scale_power(table[i].power);
+
+ table[i].cost = div64_u64(fmax * power_res,
table[i].frequency);
}
diff --git a/kernel/power/main.c b/kernel/power/main.c
index 12c7e1bb442f..44169f3081fd 100644
--- a/kernel/power/main.c
+++ b/kernel/power/main.c
@@ -577,7 +577,7 @@ static inline void pm_print_times_init(void) {}
struct kobject *power_kobj;
-/**
+/*
* state - control system sleep states.
*
* show() returns available sleep state labels, which may be "mem", "standby",
diff --git a/kernel/power/suspend.c b/kernel/power/suspend.c
index d8cae434f9eb..eb75f394a059 100644
--- a/kernel/power/suspend.c
+++ b/kernel/power/suspend.c
@@ -96,7 +96,7 @@ static void s2idle_enter(void)
s2idle_state = S2IDLE_STATE_ENTER;
raw_spin_unlock_irq(&s2idle_lock);
- get_online_cpus();
+ cpus_read_lock();
cpuidle_resume();
/* Push all the CPUs into the idle loop. */
@@ -106,7 +106,7 @@ static void s2idle_enter(void)
s2idle_state == S2IDLE_STATE_WAKE);
cpuidle_pause();
- put_online_cpus();
+ cpus_read_unlock();
raw_spin_lock_irq(&s2idle_lock);
diff --git a/kernel/power/suspend_test.c b/kernel/power/suspend_test.c
index e1ed58adb69e..d20526c5be15 100644
--- a/kernel/power/suspend_test.c
+++ b/kernel/power/suspend_test.c
@@ -129,7 +129,7 @@ static int __init has_wakealarm(struct device *dev, const void *data)
{
struct rtc_device *candidate = to_rtc_device(dev);
- if (!candidate->ops->set_alarm)
+ if (!test_bit(RTC_FEATURE_ALARM, candidate->features))
return 0;
if (!device_may_wakeup(candidate->dev.parent))
return 0;
diff --git a/kernel/rcu/rcuscale.c b/kernel/rcu/rcuscale.c
index dca51fe9c73f..2cc34a22a506 100644
--- a/kernel/rcu/rcuscale.c
+++ b/kernel/rcu/rcuscale.c
@@ -487,7 +487,7 @@ retry:
if (gp_async) {
cur_ops->gp_barrier();
}
- writer_n_durations[me] = i_max;
+ writer_n_durations[me] = i_max + 1;
torture_kthread_stopping("rcu_scale_writer");
return 0;
}
@@ -561,7 +561,7 @@ rcu_scale_cleanup(void)
wdpp = writer_durations[i];
if (!wdpp)
continue;
- for (j = 0; j <= writer_n_durations[i]; j++) {
+ for (j = 0; j < writer_n_durations[i]; j++) {
wdp = &wdpp[j];
pr_alert("%s%s %4d writer-duration: %5d %llu\n",
scale_type, SCALE_FLAG,
diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c
index 40ef5417d954..ab4215266ebe 100644
--- a/kernel/rcu/rcutorture.c
+++ b/kernel/rcu/rcutorture.c
@@ -2022,8 +2022,13 @@ static int rcu_torture_stall(void *args)
__func__, raw_smp_processor_id());
while (ULONG_CMP_LT((unsigned long)ktime_get_seconds(),
stop_at))
- if (stall_cpu_block)
+ if (stall_cpu_block) {
+#ifdef CONFIG_PREEMPTION
+ preempt_schedule();
+#else
schedule_timeout_uninterruptible(HZ);
+#endif
+ }
if (stall_cpu_irqsoff)
local_irq_enable();
else if (!stall_cpu_block)
diff --git a/kernel/rcu/refscale.c b/kernel/rcu/refscale.c
index d998a76fb542..66dc14cf5687 100644
--- a/kernel/rcu/refscale.c
+++ b/kernel/rcu/refscale.c
@@ -467,6 +467,40 @@ static struct ref_scale_ops acqrel_ops = {
.name = "acqrel"
};
+static volatile u64 stopopts;
+
+static void ref_clock_section(const int nloops)
+{
+ u64 x = 0;
+ int i;
+
+ preempt_disable();
+ for (i = nloops; i >= 0; i--)
+ x += ktime_get_real_fast_ns();
+ preempt_enable();
+ stopopts = x;
+}
+
+static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
+{
+ u64 x = 0;
+ int i;
+
+ preempt_disable();
+ for (i = nloops; i >= 0; i--) {
+ x += ktime_get_real_fast_ns();
+ un_delay(udl, ndl);
+ }
+ preempt_enable();
+ stopopts = x;
+}
+
+static struct ref_scale_ops clock_ops = {
+ .readsection = ref_clock_section,
+ .delaysection = ref_clock_delay_section,
+ .name = "clock"
+};
+
static void rcu_scale_one_reader(void)
{
if (readdelay <= 0)
@@ -759,7 +793,7 @@ ref_scale_init(void)
int firsterr = 0;
static struct ref_scale_ops *scale_ops[] = {
&rcu_ops, &srcu_ops, &rcu_trace_ops, &rcu_tasks_ops, &refcnt_ops, &rwlock_ops,
- &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops,
+ &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops,
};
if (!torture_init_begin(scale_type, verbose))
diff --git a/kernel/rcu/srcutiny.c b/kernel/rcu/srcutiny.c
index 26344dc6483b..a0ba2ed49bc6 100644
--- a/kernel/rcu/srcutiny.c
+++ b/kernel/rcu/srcutiny.c
@@ -96,7 +96,7 @@ EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
*/
void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
{
- int newval = ssp->srcu_lock_nesting[idx] - 1;
+ int newval = READ_ONCE(ssp->srcu_lock_nesting[idx]) - 1;
WRITE_ONCE(ssp->srcu_lock_nesting[idx], newval);
if (!newval && READ_ONCE(ssp->srcu_gp_waiting))
diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h
index 8536c55df514..806160c44b17 100644
--- a/kernel/rcu/tasks.h
+++ b/kernel/rcu/tasks.h
@@ -643,8 +643,8 @@ void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
//
// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
// passing an empty function to schedule_on_each_cpu(). This approach
-// provides an asynchronous call_rcu_tasks_rude() API and batching
-// of concurrent calls to the synchronous synchronize_rcu_rude() API.
+// provides an asynchronous call_rcu_tasks_rude() API and batching of
+// concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
// This invokes schedule_on_each_cpu() in order to send IPIs far and wide
// and induces otherwise unnecessary context switches on all online CPUs,
// whether idle or not.
@@ -785,7 +785,10 @@ EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
// set that task's .need_qs flag so that task's next outermost
// rcu_read_unlock_trace() will report the quiescent state (in which
// case the count of readers is incremented). If both attempts fail,
-// the task is added to a "holdout" list.
+// the task is added to a "holdout" list. Note that IPIs are used
+// to invoke trc_read_check_handler() in the context of running tasks
+// in order to avoid ordering overhead on common-case shared-variable
+// accessses.
// rcu_tasks_trace_postscan():
// Initialize state and attempt to identify an immediate quiescent
// state as above (but only for idle tasks), unblock CPU-hotplug
@@ -847,7 +850,7 @@ static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
/* If we are the last reader, wake up the grace-period kthread. */
void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
{
- int nq = t->trc_reader_special.b.need_qs;
+ int nq = READ_ONCE(t->trc_reader_special.b.need_qs);
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
t->trc_reader_special.b.need_mb)
@@ -894,7 +897,7 @@ static void trc_read_check_handler(void *t_in)
// If the task is not in a read-side critical section, and
// if this is the last reader, awaken the grace-period kthread.
- if (likely(!t->trc_reader_nesting)) {
+ if (likely(!READ_ONCE(t->trc_reader_nesting))) {
if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
wake_up(&trc_wait);
// Mark as checked after decrement to avoid false
@@ -903,7 +906,7 @@ static void trc_read_check_handler(void *t_in)
goto reset_ipi;
}
// If we are racing with an rcu_read_unlock_trace(), try again later.
- if (unlikely(t->trc_reader_nesting < 0)) {
+ if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0)) {
if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
wake_up(&trc_wait);
goto reset_ipi;
@@ -913,14 +916,14 @@ static void trc_read_check_handler(void *t_in)
// Get here if the task is in a read-side critical section. Set
// its state so that it will awaken the grace-period kthread upon
// exit from that critical section.
- WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
+ WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
reset_ipi:
// Allow future IPIs to be sent on CPU and for task.
// Also order this IPI handler against any later manipulations of
// the intended task.
- smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
+ smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
}
@@ -950,6 +953,7 @@ static bool trc_inspect_reader(struct task_struct *t, void *arg)
n_heavy_reader_ofl_updates++;
in_qs = true;
} else {
+ // The task is not running, so C-language access is safe.
in_qs = likely(!t->trc_reader_nesting);
}
@@ -964,7 +968,7 @@ static bool trc_inspect_reader(struct task_struct *t, void *arg)
// state so that it will awaken the grace-period kthread upon exit
// from that critical section.
atomic_inc(&trc_n_readers_need_end); // One more to wait on.
- WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
+ WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
return true;
}
@@ -982,7 +986,7 @@ static void trc_wait_for_one_reader(struct task_struct *t,
// The current task had better be in a quiescent state.
if (t == current) {
t->trc_reader_checked = true;
- WARN_ON_ONCE(t->trc_reader_nesting);
+ WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
return;
}
@@ -994,6 +998,12 @@ static void trc_wait_for_one_reader(struct task_struct *t,
}
put_task_struct(t);
+ // If this task is not yet on the holdout list, then we are in
+ // an RCU read-side critical section. Otherwise, the invocation of
+ // rcu_add_holdout() that added it to the list did the necessary
+ // get_task_struct(). Either way, the task cannot be freed out
+ // from under this code.
+
// If currently running, send an IPI, either way, add to list.
trc_add_holdout(t, bhp);
if (task_curr(t) &&
@@ -1092,8 +1102,8 @@ static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
".i"[is_idle_task(t)],
".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
- t->trc_reader_nesting,
- " N"[!!t->trc_reader_special.b.need_qs],
+ READ_ONCE(t->trc_reader_nesting),
+ " N"[!!READ_ONCE(t->trc_reader_special.b.need_qs)],
cpu);
sched_show_task(t);
}
@@ -1187,7 +1197,7 @@ static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
static void exit_tasks_rcu_finish_trace(struct task_struct *t)
{
WRITE_ONCE(t->trc_reader_checked, true);
- WARN_ON_ONCE(t->trc_reader_nesting);
+ WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
WRITE_ONCE(t->trc_reader_nesting, 0);
if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
rcu_read_unlock_trace_special(t, 0);
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index 51f24ecd94b2..bce848e50512 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -74,17 +74,10 @@
/* Data structures. */
-/*
- * Steal a bit from the bottom of ->dynticks for idle entry/exit
- * control. Initially this is for TLB flushing.
- */
-#define RCU_DYNTICK_CTRL_MASK 0x1
-#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
-
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
.dynticks_nesting = 1,
.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
- .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
+ .dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_RCU_NOCB_CPU
.cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
#endif
@@ -259,6 +252,15 @@ void rcu_softirq_qs(void)
}
/*
+ * Increment the current CPU's rcu_data structure's ->dynticks field
+ * with ordering. Return the new value.
+ */
+static noinline noinstr unsigned long rcu_dynticks_inc(int incby)
+{
+ return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks));
+}
+
+/*
* Record entry into an extended quiescent state. This is only to be
* called when not already in an extended quiescent state, that is,
* RCU is watching prior to the call to this function and is no longer
@@ -266,7 +268,6 @@ void rcu_softirq_qs(void)
*/
static noinstr void rcu_dynticks_eqs_enter(void)
{
- struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
int seq;
/*
@@ -275,13 +276,9 @@ static noinstr void rcu_dynticks_eqs_enter(void)
* next idle sojourn.
*/
rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
- seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
+ seq = rcu_dynticks_inc(1);
// RCU is no longer watching. Better be in extended quiescent state!
- WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
- (seq & RCU_DYNTICK_CTRL_CTR));
- /* Better not have special action (TLB flush) pending! */
- WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
- (seq & RCU_DYNTICK_CTRL_MASK));
+ WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1));
}
/*
@@ -291,7 +288,6 @@ static noinstr void rcu_dynticks_eqs_enter(void)
*/
static noinstr void rcu_dynticks_eqs_exit(void)
{
- struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
int seq;
/*
@@ -299,15 +295,10 @@ static noinstr void rcu_dynticks_eqs_exit(void)
* and we also must force ordering with the next RCU read-side
* critical section.
*/
- seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
+ seq = rcu_dynticks_inc(1);
// RCU is now watching. Better not be in an extended quiescent state!
rcu_dynticks_task_trace_exit(); // After ->dynticks update!
- WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
- !(seq & RCU_DYNTICK_CTRL_CTR));
- if (seq & RCU_DYNTICK_CTRL_MASK) {
- arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
- smp_mb__after_atomic(); /* _exit after clearing mask. */
- }
+ WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1));
}
/*
@@ -324,9 +315,9 @@ static void rcu_dynticks_eqs_online(void)
{
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
- if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
+ if (atomic_read(&rdp->dynticks) & 0x1)
return;
- atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
+ rcu_dynticks_inc(1);
}
/*
@@ -336,9 +327,7 @@ static void rcu_dynticks_eqs_online(void)
*/
static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
{
- struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
-
- return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
+ return !(atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1);
}
/*
@@ -347,9 +336,8 @@ static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
*/
static int rcu_dynticks_snap(struct rcu_data *rdp)
{
- int snap = atomic_add_return(0, &rdp->dynticks);
-
- return snap & ~RCU_DYNTICK_CTRL_MASK;
+ smp_mb(); // Fundamental RCU ordering guarantee.
+ return atomic_read_acquire(&rdp->dynticks);
}
/*
@@ -358,7 +346,7 @@ static int rcu_dynticks_snap(struct rcu_data *rdp)
*/
static bool rcu_dynticks_in_eqs(int snap)
{
- return !(snap & RCU_DYNTICK_CTRL_CTR);
+ return !(snap & 0x1);
}
/* Return true if the specified CPU is currently idle from an RCU viewpoint. */
@@ -389,8 +377,7 @@ bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
int snap;
// If not quiescent, force back to earlier extended quiescent state.
- snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
- RCU_DYNTICK_CTRL_CTR);
+ snap = atomic_read(&rdp->dynticks) & ~0x1;
smp_rmb(); // Order ->dynticks and *vp reads.
if (READ_ONCE(*vp))
@@ -398,32 +385,7 @@ bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
smp_rmb(); // Order *vp read and ->dynticks re-read.
// If still in the same extended quiescent state, we are good!
- return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
-}
-
-/*
- * Set the special (bottom) bit of the specified CPU so that it
- * will take special action (such as flushing its TLB) on the
- * next exit from an extended quiescent state. Returns true if
- * the bit was successfully set, or false if the CPU was not in
- * an extended quiescent state.
- */
-bool rcu_eqs_special_set(int cpu)
-{
- int old;
- int new;
- int new_old;
- struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
-
- new_old = atomic_read(&rdp->dynticks);
- do {
- old = new_old;
- if (old & RCU_DYNTICK_CTRL_CTR)
- return false;
- new = old | RCU_DYNTICK_CTRL_MASK;
- new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
- } while (new_old != old);
- return true;
+ return snap == atomic_read(&rdp->dynticks);
}
/*
@@ -439,13 +401,12 @@ bool rcu_eqs_special_set(int cpu)
*/
notrace void rcu_momentary_dyntick_idle(void)
{
- int special;
+ int seq;
raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
- special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
- &this_cpu_ptr(&rcu_data)->dynticks);
+ seq = rcu_dynticks_inc(2);
/* It is illegal to call this from idle state. */
- WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
+ WARN_ON_ONCE(!(seq & 0x1));
rcu_preempt_deferred_qs(current);
}
EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
@@ -1325,7 +1286,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
*/
jtsq = READ_ONCE(jiffies_to_sched_qs);
ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
- rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
+ rnhqp = per_cpu_ptr(&rcu_data.rcu_need_heavy_qs, rdp->cpu);
if (!READ_ONCE(*rnhqp) &&
(time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
time_after(jiffies, rcu_state.jiffies_resched) ||
@@ -1772,7 +1733,7 @@ static void rcu_strict_gp_boundary(void *unused)
/*
* Initialize a new grace period. Return false if no grace period required.
*/
-static bool rcu_gp_init(void)
+static noinline_for_stack bool rcu_gp_init(void)
{
unsigned long firstseq;
unsigned long flags;
@@ -1966,7 +1927,7 @@ static void rcu_gp_fqs(bool first_time)
/*
* Loop doing repeated quiescent-state forcing until the grace period ends.
*/
-static void rcu_gp_fqs_loop(void)
+static noinline_for_stack void rcu_gp_fqs_loop(void)
{
bool first_gp_fqs;
int gf = 0;
@@ -1993,8 +1954,8 @@ static void rcu_gp_fqs_loop(void)
trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
TPS("fqswait"));
WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
- ret = swait_event_idle_timeout_exclusive(
- rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
+ (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
+ rcu_gp_fqs_check_wake(&gf), j);
rcu_gp_torture_wait();
WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
/* Locking provides needed memory barriers. */
@@ -2471,9 +2432,6 @@ int rcutree_dead_cpu(unsigned int cpu)
WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
/* Adjust any no-longer-needed kthreads. */
rcu_boost_kthread_setaffinity(rnp, -1);
- /* Do any needed no-CB deferred wakeups from this CPU. */
- do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
-
// Stop-machine done, so allow nohz_full to disable tick.
tick_dep_clear(TICK_DEP_BIT_RCU);
return 0;
@@ -4050,7 +4008,7 @@ void rcu_barrier(void)
*/
init_completion(&rcu_state.barrier_completion);
atomic_set(&rcu_state.barrier_cpu_count, 2);
- get_online_cpus();
+ cpus_read_lock();
/*
* Force each CPU with callbacks to register a new callback.
@@ -4081,7 +4039,7 @@ void rcu_barrier(void)
rcu_state.barrier_sequence);
}
}
- put_online_cpus();
+ cpus_read_unlock();
/*
* Now that we have an rcu_barrier_callback() callback on each
@@ -4784,4 +4742,5 @@ void __init rcu_init(void)
#include "tree_stall.h"
#include "tree_exp.h"
+#include "tree_nocb.h"
#include "tree_plugin.h"
diff --git a/kernel/rcu/tree_nocb.h b/kernel/rcu/tree_nocb.h
new file mode 100644
index 000000000000..8fdf44f8523f
--- /dev/null
+++ b/kernel/rcu/tree_nocb.h
@@ -0,0 +1,1496 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Read-Copy Update mechanism for mutual exclusion (tree-based version)
+ * Internal non-public definitions that provide either classic
+ * or preemptible semantics.
+ *
+ * Copyright Red Hat, 2009
+ * Copyright IBM Corporation, 2009
+ * Copyright SUSE, 2021
+ *
+ * Author: Ingo Molnar <mingo@elte.hu>
+ * Paul E. McKenney <paulmck@linux.ibm.com>
+ * Frederic Weisbecker <frederic@kernel.org>
+ */
+
+#ifdef CONFIG_RCU_NOCB_CPU
+static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
+static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
+static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
+{
+ return lockdep_is_held(&rdp->nocb_lock);
+}
+
+static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
+{
+ /* Race on early boot between thread creation and assignment */
+ if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
+ return true;
+
+ if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
+ if (in_task())
+ return true;
+ return false;
+}
+
+/*
+ * Offload callback processing from the boot-time-specified set of CPUs
+ * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
+ * created that pull the callbacks from the corresponding CPU, wait for
+ * a grace period to elapse, and invoke the callbacks. These kthreads
+ * are organized into GP kthreads, which manage incoming callbacks, wait for
+ * grace periods, and awaken CB kthreads, and the CB kthreads, which only
+ * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
+ * do a wake_up() on their GP kthread when they insert a callback into any
+ * empty list, unless the rcu_nocb_poll boot parameter has been specified,
+ * in which case each kthread actively polls its CPU. (Which isn't so great
+ * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
+ *
+ * This is intended to be used in conjunction with Frederic Weisbecker's
+ * adaptive-idle work, which would seriously reduce OS jitter on CPUs
+ * running CPU-bound user-mode computations.
+ *
+ * Offloading of callbacks can also be used as an energy-efficiency
+ * measure because CPUs with no RCU callbacks queued are more aggressive
+ * about entering dyntick-idle mode.
+ */
+
+
+/*
+ * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
+ * If the list is invalid, a warning is emitted and all CPUs are offloaded.
+ */
+static int __init rcu_nocb_setup(char *str)
+{
+ alloc_bootmem_cpumask_var(&rcu_nocb_mask);
+ if (cpulist_parse(str, rcu_nocb_mask)) {
+ pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
+ cpumask_setall(rcu_nocb_mask);
+ }
+ return 1;
+}
+__setup("rcu_nocbs=", rcu_nocb_setup);
+
+static int __init parse_rcu_nocb_poll(char *arg)
+{
+ rcu_nocb_poll = true;
+ return 0;
+}
+early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
+
+/*
+ * Don't bother bypassing ->cblist if the call_rcu() rate is low.
+ * After all, the main point of bypassing is to avoid lock contention
+ * on ->nocb_lock, which only can happen at high call_rcu() rates.
+ */
+static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
+module_param(nocb_nobypass_lim_per_jiffy, int, 0);
+
+/*
+ * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
+ * lock isn't immediately available, increment ->nocb_lock_contended to
+ * flag the contention.
+ */
+static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
+ __acquires(&rdp->nocb_bypass_lock)
+{
+ lockdep_assert_irqs_disabled();
+ if (raw_spin_trylock(&rdp->nocb_bypass_lock))
+ return;
+ atomic_inc(&rdp->nocb_lock_contended);
+ WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
+ smp_mb__after_atomic(); /* atomic_inc() before lock. */
+ raw_spin_lock(&rdp->nocb_bypass_lock);
+ smp_mb__before_atomic(); /* atomic_dec() after lock. */
+ atomic_dec(&rdp->nocb_lock_contended);
+}
+
+/*
+ * Spinwait until the specified rcu_data structure's ->nocb_lock is
+ * not contended. Please note that this is extremely special-purpose,
+ * relying on the fact that at most two kthreads and one CPU contend for
+ * this lock, and also that the two kthreads are guaranteed to have frequent
+ * grace-period-duration time intervals between successive acquisitions
+ * of the lock. This allows us to use an extremely simple throttling
+ * mechanism, and further to apply it only to the CPU doing floods of
+ * call_rcu() invocations. Don't try this at home!
+ */
+static void rcu_nocb_wait_contended(struct rcu_data *rdp)
+{
+ WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
+ while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
+ cpu_relax();
+}
+
+/*
+ * Conditionally acquire the specified rcu_data structure's
+ * ->nocb_bypass_lock.
+ */
+static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
+{
+ lockdep_assert_irqs_disabled();
+ return raw_spin_trylock(&rdp->nocb_bypass_lock);
+}
+
+/*
+ * Release the specified rcu_data structure's ->nocb_bypass_lock.
+ */
+static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
+ __releases(&rdp->nocb_bypass_lock)
+{
+ lockdep_assert_irqs_disabled();
+ raw_spin_unlock(&rdp->nocb_bypass_lock);
+}
+
+/*
+ * Acquire the specified rcu_data structure's ->nocb_lock, but only
+ * if it corresponds to a no-CBs CPU.
+ */
+static void rcu_nocb_lock(struct rcu_data *rdp)
+{
+ lockdep_assert_irqs_disabled();
+ if (!rcu_rdp_is_offloaded(rdp))
+ return;
+ raw_spin_lock(&rdp->nocb_lock);
+}
+
+/*
+ * Release the specified rcu_data structure's ->nocb_lock, but only
+ * if it corresponds to a no-CBs CPU.
+ */
+static void rcu_nocb_unlock(struct rcu_data *rdp)
+{
+ if (rcu_rdp_is_offloaded(rdp)) {
+ lockdep_assert_irqs_disabled();
+ raw_spin_unlock(&rdp->nocb_lock);
+ }
+}
+
+/*
+ * Release the specified rcu_data structure's ->nocb_lock and restore
+ * interrupts, but only if it corresponds to a no-CBs CPU.
+ */
+static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
+ unsigned long flags)
+{
+ if (rcu_rdp_is_offloaded(rdp)) {
+ lockdep_assert_irqs_disabled();
+ raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
+ } else {
+ local_irq_restore(flags);
+ }
+}
+
+/* Lockdep check that ->cblist may be safely accessed. */
+static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
+{
+ lockdep_assert_irqs_disabled();
+ if (rcu_rdp_is_offloaded(rdp))
+ lockdep_assert_held(&rdp->nocb_lock);
+}
+
+/*
+ * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
+ * grace period.
+ */
+static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
+{
+ swake_up_all(sq);
+}
+
+static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
+{
+ return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
+}
+
+static void rcu_init_one_nocb(struct rcu_node *rnp)
+{
+ init_swait_queue_head(&rnp->nocb_gp_wq[0]);
+ init_swait_queue_head(&rnp->nocb_gp_wq[1]);
+}
+
+/* Is the specified CPU a no-CBs CPU? */
+bool rcu_is_nocb_cpu(int cpu)
+{
+ if (cpumask_available(rcu_nocb_mask))
+ return cpumask_test_cpu(cpu, rcu_nocb_mask);
+ return false;
+}
+
+static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
+ struct rcu_data *rdp,
+ bool force, unsigned long flags)
+ __releases(rdp_gp->nocb_gp_lock)
+{
+ bool needwake = false;
+
+ if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
+ raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("AlreadyAwake"));
+ return false;
+ }
+
+ if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
+ WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
+ del_timer(&rdp_gp->nocb_timer);
+ }
+
+ if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
+ WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
+ needwake = true;
+ }
+ raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
+ if (needwake) {
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
+ wake_up_process(rdp_gp->nocb_gp_kthread);
+ }
+
+ return needwake;
+}
+
+/*
+ * Kick the GP kthread for this NOCB group.
+ */
+static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
+{
+ unsigned long flags;
+ struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
+
+ raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
+ return __wake_nocb_gp(rdp_gp, rdp, force, flags);
+}
+
+/*
+ * Arrange to wake the GP kthread for this NOCB group at some future
+ * time when it is safe to do so.
+ */
+static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
+ const char *reason)
+{
+ unsigned long flags;
+ struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
+
+ raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
+
+ /*
+ * Bypass wakeup overrides previous deferments. In case
+ * of callback storm, no need to wake up too early.
+ */
+ if (waketype == RCU_NOCB_WAKE_BYPASS) {
+ mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
+ WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
+ } else {
+ if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
+ mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
+ if (rdp_gp->nocb_defer_wakeup < waketype)
+ WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
+ }
+
+ raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
+
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
+}
+
+/*
+ * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
+ * However, if there is a callback to be enqueued and if ->nocb_bypass
+ * proves to be initially empty, just return false because the no-CB GP
+ * kthread may need to be awakened in this case.
+ *
+ * Note that this function always returns true if rhp is NULL.
+ */
+static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
+ unsigned long j)
+{
+ struct rcu_cblist rcl;
+
+ WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
+ rcu_lockdep_assert_cblist_protected(rdp);
+ lockdep_assert_held(&rdp->nocb_bypass_lock);
+ if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
+ raw_spin_unlock(&rdp->nocb_bypass_lock);
+ return false;
+ }
+ /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
+ if (rhp)
+ rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
+ rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
+ rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
+ WRITE_ONCE(rdp->nocb_bypass_first, j);
+ rcu_nocb_bypass_unlock(rdp);
+ return true;
+}
+
+/*
+ * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
+ * However, if there is a callback to be enqueued and if ->nocb_bypass
+ * proves to be initially empty, just return false because the no-CB GP
+ * kthread may need to be awakened in this case.
+ *
+ * Note that this function always returns true if rhp is NULL.
+ */
+static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
+ unsigned long j)
+{
+ if (!rcu_rdp_is_offloaded(rdp))
+ return true;
+ rcu_lockdep_assert_cblist_protected(rdp);
+ rcu_nocb_bypass_lock(rdp);
+ return rcu_nocb_do_flush_bypass(rdp, rhp, j);
+}
+
+/*
+ * If the ->nocb_bypass_lock is immediately available, flush the
+ * ->nocb_bypass queue into ->cblist.
+ */
+static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
+{
+ rcu_lockdep_assert_cblist_protected(rdp);
+ if (!rcu_rdp_is_offloaded(rdp) ||
+ !rcu_nocb_bypass_trylock(rdp))
+ return;
+ WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
+}
+
+/*
+ * See whether it is appropriate to use the ->nocb_bypass list in order
+ * to control contention on ->nocb_lock. A limited number of direct
+ * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
+ * is non-empty, further callbacks must be placed into ->nocb_bypass,
+ * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
+ * back to direct use of ->cblist. However, ->nocb_bypass should not be
+ * used if ->cblist is empty, because otherwise callbacks can be stranded
+ * on ->nocb_bypass because we cannot count on the current CPU ever again
+ * invoking call_rcu(). The general rule is that if ->nocb_bypass is
+ * non-empty, the corresponding no-CBs grace-period kthread must not be
+ * in an indefinite sleep state.
+ *
+ * Finally, it is not permitted to use the bypass during early boot,
+ * as doing so would confuse the auto-initialization code. Besides
+ * which, there is no point in worrying about lock contention while
+ * there is only one CPU in operation.
+ */
+static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
+ bool *was_alldone, unsigned long flags)
+{
+ unsigned long c;
+ unsigned long cur_gp_seq;
+ unsigned long j = jiffies;
+ long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
+
+ lockdep_assert_irqs_disabled();
+
+ // Pure softirq/rcuc based processing: no bypassing, no
+ // locking.
+ if (!rcu_rdp_is_offloaded(rdp)) {
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
+ return false;
+ }
+
+ // In the process of (de-)offloading: no bypassing, but
+ // locking.
+ if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
+ rcu_nocb_lock(rdp);
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
+ return false; /* Not offloaded, no bypassing. */
+ }
+
+ // Don't use ->nocb_bypass during early boot.
+ if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
+ rcu_nocb_lock(rdp);
+ WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
+ return false;
+ }
+
+ // If we have advanced to a new jiffy, reset counts to allow
+ // moving back from ->nocb_bypass to ->cblist.
+ if (j == rdp->nocb_nobypass_last) {
+ c = rdp->nocb_nobypass_count + 1;
+ } else {
+ WRITE_ONCE(rdp->nocb_nobypass_last, j);
+ c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
+ if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
+ nocb_nobypass_lim_per_jiffy))
+ c = 0;
+ else if (c > nocb_nobypass_lim_per_jiffy)
+ c = nocb_nobypass_lim_per_jiffy;
+ }
+ WRITE_ONCE(rdp->nocb_nobypass_count, c);
+
+ // If there hasn't yet been all that many ->cblist enqueues
+ // this jiffy, tell the caller to enqueue onto ->cblist. But flush
+ // ->nocb_bypass first.
+ if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
+ rcu_nocb_lock(rdp);
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
+ if (*was_alldone)
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("FirstQ"));
+ WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
+ WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
+ return false; // Caller must enqueue the callback.
+ }
+
+ // If ->nocb_bypass has been used too long or is too full,
+ // flush ->nocb_bypass to ->cblist.
+ if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
+ ncbs >= qhimark) {
+ rcu_nocb_lock(rdp);
+ if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
+ *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
+ if (*was_alldone)
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("FirstQ"));
+ WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
+ return false; // Caller must enqueue the callback.
+ }
+ if (j != rdp->nocb_gp_adv_time &&
+ rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
+ rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
+ rcu_advance_cbs_nowake(rdp->mynode, rdp);
+ rdp->nocb_gp_adv_time = j;
+ }
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ return true; // Callback already enqueued.
+ }
+
+ // We need to use the bypass.
+ rcu_nocb_wait_contended(rdp);
+ rcu_nocb_bypass_lock(rdp);
+ ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
+ rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
+ rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
+ if (!ncbs) {
+ WRITE_ONCE(rdp->nocb_bypass_first, j);
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
+ }
+ rcu_nocb_bypass_unlock(rdp);
+ smp_mb(); /* Order enqueue before wake. */
+ if (ncbs) {
+ local_irq_restore(flags);
+ } else {
+ // No-CBs GP kthread might be indefinitely asleep, if so, wake.
+ rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
+ if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("FirstBQwake"));
+ __call_rcu_nocb_wake(rdp, true, flags);
+ } else {
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("FirstBQnoWake"));
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ }
+ }
+ return true; // Callback already enqueued.
+}
+
+/*
+ * Awaken the no-CBs grace-period kthread if needed, either due to it
+ * legitimately being asleep or due to overload conditions.
+ *
+ * If warranted, also wake up the kthread servicing this CPUs queues.
+ */
+static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
+ unsigned long flags)
+ __releases(rdp->nocb_lock)
+{
+ unsigned long cur_gp_seq;
+ unsigned long j;
+ long len;
+ struct task_struct *t;
+
+ // If we are being polled or there is no kthread, just leave.
+ t = READ_ONCE(rdp->nocb_gp_kthread);
+ if (rcu_nocb_poll || !t) {
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("WakeNotPoll"));
+ return;
+ }
+ // Need to actually to a wakeup.
+ len = rcu_segcblist_n_cbs(&rdp->cblist);
+ if (was_alldone) {
+ rdp->qlen_last_fqs_check = len;
+ if (!irqs_disabled_flags(flags)) {
+ /* ... if queue was empty ... */
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ wake_nocb_gp(rdp, false);
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("WakeEmpty"));
+ } else {
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
+ TPS("WakeEmptyIsDeferred"));
+ }
+ } else if (len > rdp->qlen_last_fqs_check + qhimark) {
+ /* ... or if many callbacks queued. */
+ rdp->qlen_last_fqs_check = len;
+ j = jiffies;
+ if (j != rdp->nocb_gp_adv_time &&
+ rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
+ rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
+ rcu_advance_cbs_nowake(rdp->mynode, rdp);
+ rdp->nocb_gp_adv_time = j;
+ }
+ smp_mb(); /* Enqueue before timer_pending(). */
+ if ((rdp->nocb_cb_sleep ||
+ !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
+ !timer_pending(&rdp->nocb_timer)) {
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
+ TPS("WakeOvfIsDeferred"));
+ } else {
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
+ }
+ } else {
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
+ }
+ return;
+}
+
+/*
+ * Check if we ignore this rdp.
+ *
+ * We check that without holding the nocb lock but
+ * we make sure not to miss a freshly offloaded rdp
+ * with the current ordering:
+ *
+ * rdp_offload_toggle() nocb_gp_enabled_cb()
+ * ------------------------- ----------------------------
+ * WRITE flags LOCK nocb_gp_lock
+ * LOCK nocb_gp_lock READ/WRITE nocb_gp_sleep
+ * READ/WRITE nocb_gp_sleep UNLOCK nocb_gp_lock
+ * UNLOCK nocb_gp_lock READ flags
+ */
+static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
+{
+ u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
+
+ return rcu_segcblist_test_flags(&rdp->cblist, flags);
+}
+
+static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
+ bool *needwake_state)
+{
+ struct rcu_segcblist *cblist = &rdp->cblist;
+
+ if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
+ if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
+ rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
+ if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
+ *needwake_state = true;
+ }
+ return false;
+ }
+
+ /*
+ * De-offloading. Clear our flag and notify the de-offload worker.
+ * We will ignore this rdp until it ever gets re-offloaded.
+ */
+ WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
+ rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
+ if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
+ *needwake_state = true;
+ return true;
+}
+
+
+/*
+ * No-CBs GP kthreads come here to wait for additional callbacks to show up
+ * or for grace periods to end.
+ */
+static void nocb_gp_wait(struct rcu_data *my_rdp)
+{
+ bool bypass = false;
+ long bypass_ncbs;
+ int __maybe_unused cpu = my_rdp->cpu;
+ unsigned long cur_gp_seq;
+ unsigned long flags;
+ bool gotcbs = false;
+ unsigned long j = jiffies;
+ bool needwait_gp = false; // This prevents actual uninitialized use.
+ bool needwake;
+ bool needwake_gp;
+ struct rcu_data *rdp;
+ struct rcu_node *rnp;
+ unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
+ bool wasempty = false;
+
+ /*
+ * Each pass through the following loop checks for CBs and for the
+ * nearest grace period (if any) to wait for next. The CB kthreads
+ * and the global grace-period kthread are awakened if needed.
+ */
+ WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
+ for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
+ bool needwake_state = false;
+
+ if (!nocb_gp_enabled_cb(rdp))
+ continue;
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
+ rcu_nocb_lock_irqsave(rdp, flags);
+ if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ if (needwake_state)
+ swake_up_one(&rdp->nocb_state_wq);
+ continue;
+ }
+ bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
+ if (bypass_ncbs &&
+ (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
+ bypass_ncbs > 2 * qhimark)) {
+ // Bypass full or old, so flush it.
+ (void)rcu_nocb_try_flush_bypass(rdp, j);
+ bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
+ } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ if (needwake_state)
+ swake_up_one(&rdp->nocb_state_wq);
+ continue; /* No callbacks here, try next. */
+ }
+ if (bypass_ncbs) {
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("Bypass"));
+ bypass = true;
+ }
+ rnp = rdp->mynode;
+
+ // Advance callbacks if helpful and low contention.
+ needwake_gp = false;
+ if (!rcu_segcblist_restempty(&rdp->cblist,
+ RCU_NEXT_READY_TAIL) ||
+ (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
+ rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
+ raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
+ needwake_gp = rcu_advance_cbs(rnp, rdp);
+ wasempty = rcu_segcblist_restempty(&rdp->cblist,
+ RCU_NEXT_READY_TAIL);
+ raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
+ }
+ // Need to wait on some grace period?
+ WARN_ON_ONCE(wasempty &&
+ !rcu_segcblist_restempty(&rdp->cblist,
+ RCU_NEXT_READY_TAIL));
+ if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
+ if (!needwait_gp ||
+ ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
+ wait_gp_seq = cur_gp_seq;
+ needwait_gp = true;
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
+ TPS("NeedWaitGP"));
+ }
+ if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
+ needwake = rdp->nocb_cb_sleep;
+ WRITE_ONCE(rdp->nocb_cb_sleep, false);
+ smp_mb(); /* CB invocation -after- GP end. */
+ } else {
+ needwake = false;
+ }
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ if (needwake) {
+ swake_up_one(&rdp->nocb_cb_wq);
+ gotcbs = true;
+ }
+ if (needwake_gp)
+ rcu_gp_kthread_wake();
+ if (needwake_state)
+ swake_up_one(&rdp->nocb_state_wq);
+ }
+
+ my_rdp->nocb_gp_bypass = bypass;
+ my_rdp->nocb_gp_gp = needwait_gp;
+ my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
+
+ if (bypass && !rcu_nocb_poll) {
+ // At least one child with non-empty ->nocb_bypass, so set
+ // timer in order to avoid stranding its callbacks.
+ wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
+ TPS("WakeBypassIsDeferred"));
+ }
+ if (rcu_nocb_poll) {
+ /* Polling, so trace if first poll in the series. */
+ if (gotcbs)
+ trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
+ schedule_timeout_idle(1);
+ } else if (!needwait_gp) {
+ /* Wait for callbacks to appear. */
+ trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
+ swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
+ !READ_ONCE(my_rdp->nocb_gp_sleep));
+ trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
+ } else {
+ rnp = my_rdp->mynode;
+ trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
+ swait_event_interruptible_exclusive(
+ rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
+ rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
+ !READ_ONCE(my_rdp->nocb_gp_sleep));
+ trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
+ }
+ if (!rcu_nocb_poll) {
+ raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
+ if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
+ WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
+ del_timer(&my_rdp->nocb_timer);
+ }
+ WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
+ raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
+ }
+ my_rdp->nocb_gp_seq = -1;
+ WARN_ON(signal_pending(current));
+}
+
+/*
+ * No-CBs grace-period-wait kthread. There is one of these per group
+ * of CPUs, but only once at least one CPU in that group has come online
+ * at least once since boot. This kthread checks for newly posted
+ * callbacks from any of the CPUs it is responsible for, waits for a
+ * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
+ * that then have callback-invocation work to do.
+ */
+static int rcu_nocb_gp_kthread(void *arg)
+{
+ struct rcu_data *rdp = arg;
+
+ for (;;) {
+ WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
+ nocb_gp_wait(rdp);
+ cond_resched_tasks_rcu_qs();
+ }
+ return 0;
+}
+
+static inline bool nocb_cb_can_run(struct rcu_data *rdp)
+{
+ u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
+ return rcu_segcblist_test_flags(&rdp->cblist, flags);
+}
+
+static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
+{
+ return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
+}
+
+/*
+ * Invoke any ready callbacks from the corresponding no-CBs CPU,
+ * then, if there are no more, wait for more to appear.
+ */
+static void nocb_cb_wait(struct rcu_data *rdp)
+{
+ struct rcu_segcblist *cblist = &rdp->cblist;
+ unsigned long cur_gp_seq;
+ unsigned long flags;
+ bool needwake_state = false;
+ bool needwake_gp = false;
+ bool can_sleep = true;
+ struct rcu_node *rnp = rdp->mynode;
+
+ local_irq_save(flags);
+ rcu_momentary_dyntick_idle();
+ local_irq_restore(flags);
+ /*
+ * Disable BH to provide the expected environment. Also, when
+ * transitioning to/from NOCB mode, a self-requeuing callback might
+ * be invoked from softirq. A short grace period could cause both
+ * instances of this callback would execute concurrently.
+ */
+ local_bh_disable();
+ rcu_do_batch(rdp);
+ local_bh_enable();
+ lockdep_assert_irqs_enabled();
+ rcu_nocb_lock_irqsave(rdp, flags);
+ if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
+ rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
+ raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
+ needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
+ raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
+ }
+
+ if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
+ if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
+ rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
+ if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
+ needwake_state = true;
+ }
+ if (rcu_segcblist_ready_cbs(cblist))
+ can_sleep = false;
+ } else {
+ /*
+ * De-offloading. Clear our flag and notify the de-offload worker.
+ * We won't touch the callbacks and keep sleeping until we ever
+ * get re-offloaded.
+ */
+ WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
+ rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
+ if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
+ needwake_state = true;
+ }
+
+ WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
+
+ if (rdp->nocb_cb_sleep)
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
+
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ if (needwake_gp)
+ rcu_gp_kthread_wake();
+
+ if (needwake_state)
+ swake_up_one(&rdp->nocb_state_wq);
+
+ do {
+ swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
+ nocb_cb_wait_cond(rdp));
+
+ // VVV Ensure CB invocation follows _sleep test.
+ if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
+ WARN_ON(signal_pending(current));
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
+ }
+ } while (!nocb_cb_can_run(rdp));
+}
+
+/*
+ * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
+ * nocb_cb_wait() to do the dirty work.
+ */
+static int rcu_nocb_cb_kthread(void *arg)
+{
+ struct rcu_data *rdp = arg;
+
+ // Each pass through this loop does one callback batch, and,
+ // if there are no more ready callbacks, waits for them.
+ for (;;) {
+ nocb_cb_wait(rdp);
+ cond_resched_tasks_rcu_qs();
+ }
+ return 0;
+}
+
+/* Is a deferred wakeup of rcu_nocb_kthread() required? */
+static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
+{
+ return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
+}
+
+/* Do a deferred wakeup of rcu_nocb_kthread(). */
+static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
+ struct rcu_data *rdp, int level,
+ unsigned long flags)
+ __releases(rdp_gp->nocb_gp_lock)
+{
+ int ndw;
+ int ret;
+
+ if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
+ raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
+ return false;
+ }
+
+ ndw = rdp_gp->nocb_defer_wakeup;
+ ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
+
+ return ret;
+}
+
+/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
+static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
+{
+ unsigned long flags;
+ struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
+
+ WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
+ trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
+
+ raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
+ smp_mb__after_spinlock(); /* Timer expire before wakeup. */
+ do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
+}
+
+/*
+ * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
+ * This means we do an inexact common-case check. Note that if
+ * we miss, ->nocb_timer will eventually clean things up.
+ */
+static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
+{
+ unsigned long flags;
+ struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
+
+ if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
+ return false;
+
+ raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
+ return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
+}
+
+void rcu_nocb_flush_deferred_wakeup(void)
+{
+ do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
+}
+EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
+
+static int rdp_offload_toggle(struct rcu_data *rdp,
+ bool offload, unsigned long flags)
+ __releases(rdp->nocb_lock)
+{
+ struct rcu_segcblist *cblist = &rdp->cblist;
+ struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
+ bool wake_gp = false;
+
+ rcu_segcblist_offload(cblist, offload);
+
+ if (rdp->nocb_cb_sleep)
+ rdp->nocb_cb_sleep = false;
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+
+ /*
+ * Ignore former value of nocb_cb_sleep and force wake up as it could
+ * have been spuriously set to false already.
+ */
+ swake_up_one(&rdp->nocb_cb_wq);
+
+ raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
+ if (rdp_gp->nocb_gp_sleep) {
+ rdp_gp->nocb_gp_sleep = false;
+ wake_gp = true;
+ }
+ raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
+
+ if (wake_gp)
+ wake_up_process(rdp_gp->nocb_gp_kthread);
+
+ return 0;
+}
+
+static long rcu_nocb_rdp_deoffload(void *arg)
+{
+ struct rcu_data *rdp = arg;
+ struct rcu_segcblist *cblist = &rdp->cblist;
+ unsigned long flags;
+ int ret;
+
+ WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
+
+ pr_info("De-offloading %d\n", rdp->cpu);
+
+ rcu_nocb_lock_irqsave(rdp, flags);
+ /*
+ * Flush once and for all now. This suffices because we are
+ * running on the target CPU holding ->nocb_lock (thus having
+ * interrupts disabled), and because rdp_offload_toggle()
+ * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
+ * Thus future calls to rcu_segcblist_completely_offloaded() will
+ * return false, which means that future calls to rcu_nocb_try_bypass()
+ * will refuse to put anything into the bypass.
+ */
+ WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
+ ret = rdp_offload_toggle(rdp, false, flags);
+ swait_event_exclusive(rdp->nocb_state_wq,
+ !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
+ SEGCBLIST_KTHREAD_GP));
+ /*
+ * Lock one last time to acquire latest callback updates from kthreads
+ * so we can later handle callbacks locally without locking.
+ */
+ rcu_nocb_lock_irqsave(rdp, flags);
+ /*
+ * Theoretically we could set SEGCBLIST_SOFTIRQ_ONLY after the nocb
+ * lock is released but how about being paranoid for once?
+ */
+ rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY);
+ /*
+ * With SEGCBLIST_SOFTIRQ_ONLY, we can't use
+ * rcu_nocb_unlock_irqrestore() anymore.
+ */
+ raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
+
+ /* Sanity check */
+ WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
+
+
+ return ret;
+}
+
+int rcu_nocb_cpu_deoffload(int cpu)
+{
+ struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
+ int ret = 0;
+
+ mutex_lock(&rcu_state.barrier_mutex);
+ cpus_read_lock();
+ if (rcu_rdp_is_offloaded(rdp)) {
+ if (cpu_online(cpu)) {
+ ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
+ if (!ret)
+ cpumask_clear_cpu(cpu, rcu_nocb_mask);
+ } else {
+ pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
+ ret = -EINVAL;
+ }
+ }
+ cpus_read_unlock();
+ mutex_unlock(&rcu_state.barrier_mutex);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
+
+static long rcu_nocb_rdp_offload(void *arg)
+{
+ struct rcu_data *rdp = arg;
+ struct rcu_segcblist *cblist = &rdp->cblist;
+ unsigned long flags;
+ int ret;
+
+ WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
+ /*
+ * For now we only support re-offload, ie: the rdp must have been
+ * offloaded on boot first.
+ */
+ if (!rdp->nocb_gp_rdp)
+ return -EINVAL;
+
+ pr_info("Offloading %d\n", rdp->cpu);
+ /*
+ * Can't use rcu_nocb_lock_irqsave() while we are in
+ * SEGCBLIST_SOFTIRQ_ONLY mode.
+ */
+ raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
+
+ /*
+ * We didn't take the nocb lock while working on the
+ * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode.
+ * Every modifications that have been done previously on
+ * rdp->cblist must be visible remotely by the nocb kthreads
+ * upon wake up after reading the cblist flags.
+ *
+ * The layout against nocb_lock enforces that ordering:
+ *
+ * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait()
+ * ------------------------- ----------------------------
+ * WRITE callbacks rcu_nocb_lock()
+ * rcu_nocb_lock() READ flags
+ * WRITE flags READ callbacks
+ * rcu_nocb_unlock() rcu_nocb_unlock()
+ */
+ ret = rdp_offload_toggle(rdp, true, flags);
+ swait_event_exclusive(rdp->nocb_state_wq,
+ rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
+ rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
+
+ return ret;
+}
+
+int rcu_nocb_cpu_offload(int cpu)
+{
+ struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
+ int ret = 0;
+
+ mutex_lock(&rcu_state.barrier_mutex);
+ cpus_read_lock();
+ if (!rcu_rdp_is_offloaded(rdp)) {
+ if (cpu_online(cpu)) {
+ ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
+ if (!ret)
+ cpumask_set_cpu(cpu, rcu_nocb_mask);
+ } else {
+ pr_info("NOCB: Can't CB-offload an offline CPU\n");
+ ret = -EINVAL;
+ }
+ }
+ cpus_read_unlock();
+ mutex_unlock(&rcu_state.barrier_mutex);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
+
+void __init rcu_init_nohz(void)
+{
+ int cpu;
+ bool need_rcu_nocb_mask = false;
+ struct rcu_data *rdp;
+
+#if defined(CONFIG_NO_HZ_FULL)
+ if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
+ need_rcu_nocb_mask = true;
+#endif /* #if defined(CONFIG_NO_HZ_FULL) */
+
+ if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
+ if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
+ pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
+ return;
+ }
+ }
+ if (!cpumask_available(rcu_nocb_mask))
+ return;
+
+#if defined(CONFIG_NO_HZ_FULL)
+ if (tick_nohz_full_running)
+ cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
+#endif /* #if defined(CONFIG_NO_HZ_FULL) */
+
+ if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
+ pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
+ cpumask_and(rcu_nocb_mask, cpu_possible_mask,
+ rcu_nocb_mask);
+ }
+ if (cpumask_empty(rcu_nocb_mask))
+ pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
+ else
+ pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
+ cpumask_pr_args(rcu_nocb_mask));
+ if (rcu_nocb_poll)
+ pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
+
+ for_each_cpu(cpu, rcu_nocb_mask) {
+ rdp = per_cpu_ptr(&rcu_data, cpu);
+ if (rcu_segcblist_empty(&rdp->cblist))
+ rcu_segcblist_init(&rdp->cblist);
+ rcu_segcblist_offload(&rdp->cblist, true);
+ rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
+ rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP);
+ }
+ rcu_organize_nocb_kthreads();
+}
+
+/* Initialize per-rcu_data variables for no-CBs CPUs. */
+static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
+{
+ init_swait_queue_head(&rdp->nocb_cb_wq);
+ init_swait_queue_head(&rdp->nocb_gp_wq);
+ init_swait_queue_head(&rdp->nocb_state_wq);
+ raw_spin_lock_init(&rdp->nocb_lock);
+ raw_spin_lock_init(&rdp->nocb_bypass_lock);
+ raw_spin_lock_init(&rdp->nocb_gp_lock);
+ timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
+ rcu_cblist_init(&rdp->nocb_bypass);
+}
+
+/*
+ * If the specified CPU is a no-CBs CPU that does not already have its
+ * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
+ * for this CPU's group has not yet been created, spawn it as well.
+ */
+static void rcu_spawn_one_nocb_kthread(int cpu)
+{
+ struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
+ struct rcu_data *rdp_gp;
+ struct task_struct *t;
+
+ /*
+ * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
+ * then nothing to do.
+ */
+ if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
+ return;
+
+ /* If we didn't spawn the GP kthread first, reorganize! */
+ rdp_gp = rdp->nocb_gp_rdp;
+ if (!rdp_gp->nocb_gp_kthread) {
+ t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
+ "rcuog/%d", rdp_gp->cpu);
+ if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
+ return;
+ WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
+ }
+
+ /* Spawn the kthread for this CPU. */
+ t = kthread_run(rcu_nocb_cb_kthread, rdp,
+ "rcuo%c/%d", rcu_state.abbr, cpu);
+ if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
+ return;
+ WRITE_ONCE(rdp->nocb_cb_kthread, t);
+ WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
+}
+
+/*
+ * If the specified CPU is a no-CBs CPU that does not already have its
+ * rcuo kthread, spawn it.
+ */
+static void rcu_spawn_cpu_nocb_kthread(int cpu)
+{
+ if (rcu_scheduler_fully_active)
+ rcu_spawn_one_nocb_kthread(cpu);
+}
+
+/*
+ * Once the scheduler is running, spawn rcuo kthreads for all online
+ * no-CBs CPUs. This assumes that the early_initcall()s happen before
+ * non-boot CPUs come online -- if this changes, we will need to add
+ * some mutual exclusion.
+ */
+static void __init rcu_spawn_nocb_kthreads(void)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu)
+ rcu_spawn_cpu_nocb_kthread(cpu);
+}
+
+/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
+static int rcu_nocb_gp_stride = -1;
+module_param(rcu_nocb_gp_stride, int, 0444);
+
+/*
+ * Initialize GP-CB relationships for all no-CBs CPU.
+ */
+static void __init rcu_organize_nocb_kthreads(void)
+{
+ int cpu;
+ bool firsttime = true;
+ bool gotnocbs = false;
+ bool gotnocbscbs = true;
+ int ls = rcu_nocb_gp_stride;
+ int nl = 0; /* Next GP kthread. */
+ struct rcu_data *rdp;
+ struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
+ struct rcu_data *rdp_prev = NULL;
+
+ if (!cpumask_available(rcu_nocb_mask))
+ return;
+ if (ls == -1) {
+ ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
+ rcu_nocb_gp_stride = ls;
+ }
+
+ /*
+ * Each pass through this loop sets up one rcu_data structure.
+ * Should the corresponding CPU come online in the future, then
+ * we will spawn the needed set of rcu_nocb_kthread() kthreads.
+ */
+ for_each_cpu(cpu, rcu_nocb_mask) {
+ rdp = per_cpu_ptr(&rcu_data, cpu);
+ if (rdp->cpu >= nl) {
+ /* New GP kthread, set up for CBs & next GP. */
+ gotnocbs = true;
+ nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
+ rdp->nocb_gp_rdp = rdp;
+ rdp_gp = rdp;
+ if (dump_tree) {
+ if (!firsttime)
+ pr_cont("%s\n", gotnocbscbs
+ ? "" : " (self only)");
+ gotnocbscbs = false;
+ firsttime = false;
+ pr_alert("%s: No-CB GP kthread CPU %d:",
+ __func__, cpu);
+ }
+ } else {
+ /* Another CB kthread, link to previous GP kthread. */
+ gotnocbscbs = true;
+ rdp->nocb_gp_rdp = rdp_gp;
+ rdp_prev->nocb_next_cb_rdp = rdp;
+ if (dump_tree)
+ pr_cont(" %d", cpu);
+ }
+ rdp_prev = rdp;
+ }
+ if (gotnocbs && dump_tree)
+ pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
+}
+
+/*
+ * Bind the current task to the offloaded CPUs. If there are no offloaded
+ * CPUs, leave the task unbound. Splat if the bind attempt fails.
+ */
+void rcu_bind_current_to_nocb(void)
+{
+ if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
+ WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
+}
+EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
+
+// The ->on_cpu field is available only in CONFIG_SMP=y, so...
+#ifdef CONFIG_SMP
+static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
+{
+ return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
+}
+#else // #ifdef CONFIG_SMP
+static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
+{
+ return "";
+}
+#endif // #else #ifdef CONFIG_SMP
+
+/*
+ * Dump out nocb grace-period kthread state for the specified rcu_data
+ * structure.
+ */
+static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
+{
+ struct rcu_node *rnp = rdp->mynode;
+
+ pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
+ rdp->cpu,
+ "kK"[!!rdp->nocb_gp_kthread],
+ "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
+ "dD"[!!rdp->nocb_defer_wakeup],
+ "tT"[timer_pending(&rdp->nocb_timer)],
+ "sS"[!!rdp->nocb_gp_sleep],
+ ".W"[swait_active(&rdp->nocb_gp_wq)],
+ ".W"[swait_active(&rnp->nocb_gp_wq[0])],
+ ".W"[swait_active(&rnp->nocb_gp_wq[1])],
+ ".B"[!!rdp->nocb_gp_bypass],
+ ".G"[!!rdp->nocb_gp_gp],
+ (long)rdp->nocb_gp_seq,
+ rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
+ rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
+ rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
+ show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
+}
+
+/* Dump out nocb kthread state for the specified rcu_data structure. */
+static void show_rcu_nocb_state(struct rcu_data *rdp)
+{
+ char bufw[20];
+ char bufr[20];
+ struct rcu_segcblist *rsclp = &rdp->cblist;
+ bool waslocked;
+ bool wassleep;
+
+ if (rdp->nocb_gp_rdp == rdp)
+ show_rcu_nocb_gp_state(rdp);
+
+ sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
+ sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
+ pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
+ rdp->cpu, rdp->nocb_gp_rdp->cpu,
+ rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1,
+ "kK"[!!rdp->nocb_cb_kthread],
+ "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
+ "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
+ "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
+ "sS"[!!rdp->nocb_cb_sleep],
+ ".W"[swait_active(&rdp->nocb_cb_wq)],
+ jiffies - rdp->nocb_bypass_first,
+ jiffies - rdp->nocb_nobypass_last,
+ rdp->nocb_nobypass_count,
+ ".D"[rcu_segcblist_ready_cbs(rsclp)],
+ ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
+ rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
+ ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
+ rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
+ ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
+ ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
+ rcu_segcblist_n_cbs(&rdp->cblist),
+ rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
+ rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
+ show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
+
+ /* It is OK for GP kthreads to have GP state. */
+ if (rdp->nocb_gp_rdp == rdp)
+ return;
+
+ waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
+ wassleep = swait_active(&rdp->nocb_gp_wq);
+ if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
+ return; /* Nothing untoward. */
+
+ pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
+ "lL"[waslocked],
+ "dD"[!!rdp->nocb_defer_wakeup],
+ "sS"[!!rdp->nocb_gp_sleep],
+ ".W"[wassleep]);
+}
+
+#else /* #ifdef CONFIG_RCU_NOCB_CPU */
+
+static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
+{
+ return 0;
+}
+
+static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
+{
+ return false;
+}
+
+/* No ->nocb_lock to acquire. */
+static void rcu_nocb_lock(struct rcu_data *rdp)
+{
+}
+
+/* No ->nocb_lock to release. */
+static void rcu_nocb_unlock(struct rcu_data *rdp)
+{
+}
+
+/* No ->nocb_lock to release. */
+static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
+ unsigned long flags)
+{
+ local_irq_restore(flags);
+}
+
+/* Lockdep check that ->cblist may be safely accessed. */
+static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
+{
+ lockdep_assert_irqs_disabled();
+}
+
+static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
+{
+}
+
+static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
+{
+ return NULL;
+}
+
+static void rcu_init_one_nocb(struct rcu_node *rnp)
+{
+}
+
+static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
+ unsigned long j)
+{
+ return true;
+}
+
+static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
+ bool *was_alldone, unsigned long flags)
+{
+ return false;
+}
+
+static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
+ unsigned long flags)
+{
+ WARN_ON_ONCE(1); /* Should be dead code! */
+}
+
+static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
+{
+}
+
+static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
+{
+ return false;
+}
+
+static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
+{
+ return false;
+}
+
+static void rcu_spawn_cpu_nocb_kthread(int cpu)
+{
+}
+
+static void __init rcu_spawn_nocb_kthreads(void)
+{
+}
+
+static void show_rcu_nocb_state(struct rcu_data *rdp)
+{
+}
+
+#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index de1dc3bb7f70..d070059163d7 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -13,39 +13,6 @@
#include "../locking/rtmutex_common.h"
-#ifdef CONFIG_RCU_NOCB_CPU
-static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
-static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
-static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
-{
- return lockdep_is_held(&rdp->nocb_lock);
-}
-
-static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
-{
- /* Race on early boot between thread creation and assignment */
- if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
- return true;
-
- if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
- if (in_task())
- return true;
- return false;
-}
-
-#else
-static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
-{
- return 0;
-}
-
-static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
-{
- return false;
-}
-
-#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
-
static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
{
/*
@@ -346,7 +313,7 @@ void rcu_note_context_switch(bool preempt)
trace_rcu_utilization(TPS("Start context switch"));
lockdep_assert_irqs_disabled();
- WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
+ WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
if (rcu_preempt_depth() > 0 &&
!t->rcu_read_unlock_special.b.blocked) {
@@ -405,17 +372,20 @@ static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
static void rcu_preempt_read_enter(void)
{
- current->rcu_read_lock_nesting++;
+ WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
}
static int rcu_preempt_read_exit(void)
{
- return --current->rcu_read_lock_nesting;
+ int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
+
+ WRITE_ONCE(current->rcu_read_lock_nesting, ret);
+ return ret;
}
static void rcu_preempt_depth_set(int val)
{
- current->rcu_read_lock_nesting = val;
+ WRITE_ONCE(current->rcu_read_lock_nesting, val);
}
/*
@@ -559,7 +529,7 @@ rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
WRITE_ONCE(rnp->exp_tasks, np);
if (IS_ENABLED(CONFIG_RCU_BOOST)) {
/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
- drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
+ drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
if (&t->rcu_node_entry == rnp->boost_tasks)
WRITE_ONCE(rnp->boost_tasks, np);
}
@@ -586,7 +556,7 @@ rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
/* Unboost if we were boosted. */
if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
- rt_mutex_futex_unlock(&rnp->boost_mtx);
+ rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
/*
* If this was the last task on the expedited lists,
@@ -1083,7 +1053,7 @@ static int rcu_boost(struct rcu_node *rnp)
* section.
*/
t = container_of(tb, struct task_struct, rcu_node_entry);
- rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
+ rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
/* Lock only for side effect: boosts task t's priority. */
rt_mutex_lock(&rnp->boost_mtx);
@@ -1479,1460 +1449,6 @@ static void rcu_cleanup_after_idle(void)
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
-#ifdef CONFIG_RCU_NOCB_CPU
-
-/*
- * Offload callback processing from the boot-time-specified set of CPUs
- * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
- * created that pull the callbacks from the corresponding CPU, wait for
- * a grace period to elapse, and invoke the callbacks. These kthreads
- * are organized into GP kthreads, which manage incoming callbacks, wait for
- * grace periods, and awaken CB kthreads, and the CB kthreads, which only
- * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
- * do a wake_up() on their GP kthread when they insert a callback into any
- * empty list, unless the rcu_nocb_poll boot parameter has been specified,
- * in which case each kthread actively polls its CPU. (Which isn't so great
- * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
- *
- * This is intended to be used in conjunction with Frederic Weisbecker's
- * adaptive-idle work, which would seriously reduce OS jitter on CPUs
- * running CPU-bound user-mode computations.
- *
- * Offloading of callbacks can also be used as an energy-efficiency
- * measure because CPUs with no RCU callbacks queued are more aggressive
- * about entering dyntick-idle mode.
- */
-
-
-/*
- * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
- * If the list is invalid, a warning is emitted and all CPUs are offloaded.
- */
-static int __init rcu_nocb_setup(char *str)
-{
- alloc_bootmem_cpumask_var(&rcu_nocb_mask);
- if (cpulist_parse(str, rcu_nocb_mask)) {
- pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
- cpumask_setall(rcu_nocb_mask);
- }
- return 1;
-}
-__setup("rcu_nocbs=", rcu_nocb_setup);
-
-static int __init parse_rcu_nocb_poll(char *arg)
-{
- rcu_nocb_poll = true;
- return 0;
-}
-early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
-
-/*
- * Don't bother bypassing ->cblist if the call_rcu() rate is low.
- * After all, the main point of bypassing is to avoid lock contention
- * on ->nocb_lock, which only can happen at high call_rcu() rates.
- */
-static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
-module_param(nocb_nobypass_lim_per_jiffy, int, 0);
-
-/*
- * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
- * lock isn't immediately available, increment ->nocb_lock_contended to
- * flag the contention.
- */
-static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
- __acquires(&rdp->nocb_bypass_lock)
-{
- lockdep_assert_irqs_disabled();
- if (raw_spin_trylock(&rdp->nocb_bypass_lock))
- return;
- atomic_inc(&rdp->nocb_lock_contended);
- WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
- smp_mb__after_atomic(); /* atomic_inc() before lock. */
- raw_spin_lock(&rdp->nocb_bypass_lock);
- smp_mb__before_atomic(); /* atomic_dec() after lock. */
- atomic_dec(&rdp->nocb_lock_contended);
-}
-
-/*
- * Spinwait until the specified rcu_data structure's ->nocb_lock is
- * not contended. Please note that this is extremely special-purpose,
- * relying on the fact that at most two kthreads and one CPU contend for
- * this lock, and also that the two kthreads are guaranteed to have frequent
- * grace-period-duration time intervals between successive acquisitions
- * of the lock. This allows us to use an extremely simple throttling
- * mechanism, and further to apply it only to the CPU doing floods of
- * call_rcu() invocations. Don't try this at home!
- */
-static void rcu_nocb_wait_contended(struct rcu_data *rdp)
-{
- WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
- while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
- cpu_relax();
-}
-
-/*
- * Conditionally acquire the specified rcu_data structure's
- * ->nocb_bypass_lock.
- */
-static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
-{
- lockdep_assert_irqs_disabled();
- return raw_spin_trylock(&rdp->nocb_bypass_lock);
-}
-
-/*
- * Release the specified rcu_data structure's ->nocb_bypass_lock.
- */
-static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
- __releases(&rdp->nocb_bypass_lock)
-{
- lockdep_assert_irqs_disabled();
- raw_spin_unlock(&rdp->nocb_bypass_lock);
-}
-
-/*
- * Acquire the specified rcu_data structure's ->nocb_lock, but only
- * if it corresponds to a no-CBs CPU.
- */
-static void rcu_nocb_lock(struct rcu_data *rdp)
-{
- lockdep_assert_irqs_disabled();
- if (!rcu_rdp_is_offloaded(rdp))
- return;
- raw_spin_lock(&rdp->nocb_lock);
-}
-
-/*
- * Release the specified rcu_data structure's ->nocb_lock, but only
- * if it corresponds to a no-CBs CPU.
- */
-static void rcu_nocb_unlock(struct rcu_data *rdp)
-{
- if (rcu_rdp_is_offloaded(rdp)) {
- lockdep_assert_irqs_disabled();
- raw_spin_unlock(&rdp->nocb_lock);
- }
-}
-
-/*
- * Release the specified rcu_data structure's ->nocb_lock and restore
- * interrupts, but only if it corresponds to a no-CBs CPU.
- */
-static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
- unsigned long flags)
-{
- if (rcu_rdp_is_offloaded(rdp)) {
- lockdep_assert_irqs_disabled();
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
- } else {
- local_irq_restore(flags);
- }
-}
-
-/* Lockdep check that ->cblist may be safely accessed. */
-static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
-{
- lockdep_assert_irqs_disabled();
- if (rcu_rdp_is_offloaded(rdp))
- lockdep_assert_held(&rdp->nocb_lock);
-}
-
-/*
- * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
- * grace period.
- */
-static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
-{
- swake_up_all(sq);
-}
-
-static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
-{
- return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
-}
-
-static void rcu_init_one_nocb(struct rcu_node *rnp)
-{
- init_swait_queue_head(&rnp->nocb_gp_wq[0]);
- init_swait_queue_head(&rnp->nocb_gp_wq[1]);
-}
-
-/* Is the specified CPU a no-CBs CPU? */
-bool rcu_is_nocb_cpu(int cpu)
-{
- if (cpumask_available(rcu_nocb_mask))
- return cpumask_test_cpu(cpu, rcu_nocb_mask);
- return false;
-}
-
-static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
- struct rcu_data *rdp,
- bool force, unsigned long flags)
- __releases(rdp_gp->nocb_gp_lock)
-{
- bool needwake = false;
-
- if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
- raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("AlreadyAwake"));
- return false;
- }
-
- if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
- WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
- del_timer(&rdp_gp->nocb_timer);
- }
-
- if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
- WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
- needwake = true;
- }
- raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
- if (needwake) {
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
- wake_up_process(rdp_gp->nocb_gp_kthread);
- }
-
- return needwake;
-}
-
-/*
- * Kick the GP kthread for this NOCB group.
- */
-static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
-{
- unsigned long flags;
- struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
-
- raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
- return __wake_nocb_gp(rdp_gp, rdp, force, flags);
-}
-
-/*
- * Arrange to wake the GP kthread for this NOCB group at some future
- * time when it is safe to do so.
- */
-static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
- const char *reason)
-{
- unsigned long flags;
- struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
-
- raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
-
- /*
- * Bypass wakeup overrides previous deferments. In case
- * of callback storm, no need to wake up too early.
- */
- if (waketype == RCU_NOCB_WAKE_BYPASS) {
- mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
- WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
- } else {
- if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
- mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
- if (rdp_gp->nocb_defer_wakeup < waketype)
- WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
- }
-
- raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
-
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
-}
-
-/*
- * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
- * However, if there is a callback to be enqueued and if ->nocb_bypass
- * proves to be initially empty, just return false because the no-CB GP
- * kthread may need to be awakened in this case.
- *
- * Note that this function always returns true if rhp is NULL.
- */
-static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
- unsigned long j)
-{
- struct rcu_cblist rcl;
-
- WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
- rcu_lockdep_assert_cblist_protected(rdp);
- lockdep_assert_held(&rdp->nocb_bypass_lock);
- if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
- raw_spin_unlock(&rdp->nocb_bypass_lock);
- return false;
- }
- /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
- if (rhp)
- rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
- rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
- rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
- WRITE_ONCE(rdp->nocb_bypass_first, j);
- rcu_nocb_bypass_unlock(rdp);
- return true;
-}
-
-/*
- * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
- * However, if there is a callback to be enqueued and if ->nocb_bypass
- * proves to be initially empty, just return false because the no-CB GP
- * kthread may need to be awakened in this case.
- *
- * Note that this function always returns true if rhp is NULL.
- */
-static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
- unsigned long j)
-{
- if (!rcu_rdp_is_offloaded(rdp))
- return true;
- rcu_lockdep_assert_cblist_protected(rdp);
- rcu_nocb_bypass_lock(rdp);
- return rcu_nocb_do_flush_bypass(rdp, rhp, j);
-}
-
-/*
- * If the ->nocb_bypass_lock is immediately available, flush the
- * ->nocb_bypass queue into ->cblist.
- */
-static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
-{
- rcu_lockdep_assert_cblist_protected(rdp);
- if (!rcu_rdp_is_offloaded(rdp) ||
- !rcu_nocb_bypass_trylock(rdp))
- return;
- WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
-}
-
-/*
- * See whether it is appropriate to use the ->nocb_bypass list in order
- * to control contention on ->nocb_lock. A limited number of direct
- * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
- * is non-empty, further callbacks must be placed into ->nocb_bypass,
- * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
- * back to direct use of ->cblist. However, ->nocb_bypass should not be
- * used if ->cblist is empty, because otherwise callbacks can be stranded
- * on ->nocb_bypass because we cannot count on the current CPU ever again
- * invoking call_rcu(). The general rule is that if ->nocb_bypass is
- * non-empty, the corresponding no-CBs grace-period kthread must not be
- * in an indefinite sleep state.
- *
- * Finally, it is not permitted to use the bypass during early boot,
- * as doing so would confuse the auto-initialization code. Besides
- * which, there is no point in worrying about lock contention while
- * there is only one CPU in operation.
- */
-static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
- bool *was_alldone, unsigned long flags)
-{
- unsigned long c;
- unsigned long cur_gp_seq;
- unsigned long j = jiffies;
- long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
-
- lockdep_assert_irqs_disabled();
-
- // Pure softirq/rcuc based processing: no bypassing, no
- // locking.
- if (!rcu_rdp_is_offloaded(rdp)) {
- *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
- return false;
- }
-
- // In the process of (de-)offloading: no bypassing, but
- // locking.
- if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
- rcu_nocb_lock(rdp);
- *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
- return false; /* Not offloaded, no bypassing. */
- }
-
- // Don't use ->nocb_bypass during early boot.
- if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
- rcu_nocb_lock(rdp);
- WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
- *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
- return false;
- }
-
- // If we have advanced to a new jiffy, reset counts to allow
- // moving back from ->nocb_bypass to ->cblist.
- if (j == rdp->nocb_nobypass_last) {
- c = rdp->nocb_nobypass_count + 1;
- } else {
- WRITE_ONCE(rdp->nocb_nobypass_last, j);
- c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
- if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
- nocb_nobypass_lim_per_jiffy))
- c = 0;
- else if (c > nocb_nobypass_lim_per_jiffy)
- c = nocb_nobypass_lim_per_jiffy;
- }
- WRITE_ONCE(rdp->nocb_nobypass_count, c);
-
- // If there hasn't yet been all that many ->cblist enqueues
- // this jiffy, tell the caller to enqueue onto ->cblist. But flush
- // ->nocb_bypass first.
- if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
- rcu_nocb_lock(rdp);
- *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
- if (*was_alldone)
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("FirstQ"));
- WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
- WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
- return false; // Caller must enqueue the callback.
- }
-
- // If ->nocb_bypass has been used too long or is too full,
- // flush ->nocb_bypass to ->cblist.
- if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
- ncbs >= qhimark) {
- rcu_nocb_lock(rdp);
- if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
- *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
- if (*was_alldone)
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("FirstQ"));
- WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
- return false; // Caller must enqueue the callback.
- }
- if (j != rdp->nocb_gp_adv_time &&
- rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
- rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
- rcu_advance_cbs_nowake(rdp->mynode, rdp);
- rdp->nocb_gp_adv_time = j;
- }
- rcu_nocb_unlock_irqrestore(rdp, flags);
- return true; // Callback already enqueued.
- }
-
- // We need to use the bypass.
- rcu_nocb_wait_contended(rdp);
- rcu_nocb_bypass_lock(rdp);
- ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
- rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
- rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
- if (!ncbs) {
- WRITE_ONCE(rdp->nocb_bypass_first, j);
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
- }
- rcu_nocb_bypass_unlock(rdp);
- smp_mb(); /* Order enqueue before wake. */
- if (ncbs) {
- local_irq_restore(flags);
- } else {
- // No-CBs GP kthread might be indefinitely asleep, if so, wake.
- rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
- if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("FirstBQwake"));
- __call_rcu_nocb_wake(rdp, true, flags);
- } else {
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("FirstBQnoWake"));
- rcu_nocb_unlock_irqrestore(rdp, flags);
- }
- }
- return true; // Callback already enqueued.
-}
-
-/*
- * Awaken the no-CBs grace-period kthread if needed, either due to it
- * legitimately being asleep or due to overload conditions.
- *
- * If warranted, also wake up the kthread servicing this CPUs queues.
- */
-static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
- unsigned long flags)
- __releases(rdp->nocb_lock)
-{
- unsigned long cur_gp_seq;
- unsigned long j;
- long len;
- struct task_struct *t;
-
- // If we are being polled or there is no kthread, just leave.
- t = READ_ONCE(rdp->nocb_gp_kthread);
- if (rcu_nocb_poll || !t) {
- rcu_nocb_unlock_irqrestore(rdp, flags);
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("WakeNotPoll"));
- return;
- }
- // Need to actually to a wakeup.
- len = rcu_segcblist_n_cbs(&rdp->cblist);
- if (was_alldone) {
- rdp->qlen_last_fqs_check = len;
- if (!irqs_disabled_flags(flags)) {
- /* ... if queue was empty ... */
- rcu_nocb_unlock_irqrestore(rdp, flags);
- wake_nocb_gp(rdp, false);
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("WakeEmpty"));
- } else {
- rcu_nocb_unlock_irqrestore(rdp, flags);
- wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
- TPS("WakeEmptyIsDeferred"));
- }
- } else if (len > rdp->qlen_last_fqs_check + qhimark) {
- /* ... or if many callbacks queued. */
- rdp->qlen_last_fqs_check = len;
- j = jiffies;
- if (j != rdp->nocb_gp_adv_time &&
- rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
- rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
- rcu_advance_cbs_nowake(rdp->mynode, rdp);
- rdp->nocb_gp_adv_time = j;
- }
- smp_mb(); /* Enqueue before timer_pending(). */
- if ((rdp->nocb_cb_sleep ||
- !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
- !timer_pending(&rdp->nocb_timer)) {
- rcu_nocb_unlock_irqrestore(rdp, flags);
- wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
- TPS("WakeOvfIsDeferred"));
- } else {
- rcu_nocb_unlock_irqrestore(rdp, flags);
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
- }
- } else {
- rcu_nocb_unlock_irqrestore(rdp, flags);
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
- }
- return;
-}
-
-/*
- * Check if we ignore this rdp.
- *
- * We check that without holding the nocb lock but
- * we make sure not to miss a freshly offloaded rdp
- * with the current ordering:
- *
- * rdp_offload_toggle() nocb_gp_enabled_cb()
- * ------------------------- ----------------------------
- * WRITE flags LOCK nocb_gp_lock
- * LOCK nocb_gp_lock READ/WRITE nocb_gp_sleep
- * READ/WRITE nocb_gp_sleep UNLOCK nocb_gp_lock
- * UNLOCK nocb_gp_lock READ flags
- */
-static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
-{
- u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
-
- return rcu_segcblist_test_flags(&rdp->cblist, flags);
-}
-
-static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
- bool *needwake_state)
-{
- struct rcu_segcblist *cblist = &rdp->cblist;
-
- if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
- if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
- rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
- if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
- *needwake_state = true;
- }
- return false;
- }
-
- /*
- * De-offloading. Clear our flag and notify the de-offload worker.
- * We will ignore this rdp until it ever gets re-offloaded.
- */
- WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
- rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
- if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
- *needwake_state = true;
- return true;
-}
-
-
-/*
- * No-CBs GP kthreads come here to wait for additional callbacks to show up
- * or for grace periods to end.
- */
-static void nocb_gp_wait(struct rcu_data *my_rdp)
-{
- bool bypass = false;
- long bypass_ncbs;
- int __maybe_unused cpu = my_rdp->cpu;
- unsigned long cur_gp_seq;
- unsigned long flags;
- bool gotcbs = false;
- unsigned long j = jiffies;
- bool needwait_gp = false; // This prevents actual uninitialized use.
- bool needwake;
- bool needwake_gp;
- struct rcu_data *rdp;
- struct rcu_node *rnp;
- unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
- bool wasempty = false;
-
- /*
- * Each pass through the following loop checks for CBs and for the
- * nearest grace period (if any) to wait for next. The CB kthreads
- * and the global grace-period kthread are awakened if needed.
- */
- WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
- for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
- bool needwake_state = false;
-
- if (!nocb_gp_enabled_cb(rdp))
- continue;
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
- rcu_nocb_lock_irqsave(rdp, flags);
- if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
- rcu_nocb_unlock_irqrestore(rdp, flags);
- if (needwake_state)
- swake_up_one(&rdp->nocb_state_wq);
- continue;
- }
- bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
- if (bypass_ncbs &&
- (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
- bypass_ncbs > 2 * qhimark)) {
- // Bypass full or old, so flush it.
- (void)rcu_nocb_try_flush_bypass(rdp, j);
- bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
- } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
- rcu_nocb_unlock_irqrestore(rdp, flags);
- if (needwake_state)
- swake_up_one(&rdp->nocb_state_wq);
- continue; /* No callbacks here, try next. */
- }
- if (bypass_ncbs) {
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("Bypass"));
- bypass = true;
- }
- rnp = rdp->mynode;
-
- // Advance callbacks if helpful and low contention.
- needwake_gp = false;
- if (!rcu_segcblist_restempty(&rdp->cblist,
- RCU_NEXT_READY_TAIL) ||
- (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
- rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
- raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
- needwake_gp = rcu_advance_cbs(rnp, rdp);
- wasempty = rcu_segcblist_restempty(&rdp->cblist,
- RCU_NEXT_READY_TAIL);
- raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
- }
- // Need to wait on some grace period?
- WARN_ON_ONCE(wasempty &&
- !rcu_segcblist_restempty(&rdp->cblist,
- RCU_NEXT_READY_TAIL));
- if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
- if (!needwait_gp ||
- ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
- wait_gp_seq = cur_gp_seq;
- needwait_gp = true;
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
- TPS("NeedWaitGP"));
- }
- if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
- needwake = rdp->nocb_cb_sleep;
- WRITE_ONCE(rdp->nocb_cb_sleep, false);
- smp_mb(); /* CB invocation -after- GP end. */
- } else {
- needwake = false;
- }
- rcu_nocb_unlock_irqrestore(rdp, flags);
- if (needwake) {
- swake_up_one(&rdp->nocb_cb_wq);
- gotcbs = true;
- }
- if (needwake_gp)
- rcu_gp_kthread_wake();
- if (needwake_state)
- swake_up_one(&rdp->nocb_state_wq);
- }
-
- my_rdp->nocb_gp_bypass = bypass;
- my_rdp->nocb_gp_gp = needwait_gp;
- my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
-
- if (bypass && !rcu_nocb_poll) {
- // At least one child with non-empty ->nocb_bypass, so set
- // timer in order to avoid stranding its callbacks.
- wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
- TPS("WakeBypassIsDeferred"));
- }
- if (rcu_nocb_poll) {
- /* Polling, so trace if first poll in the series. */
- if (gotcbs)
- trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
- schedule_timeout_idle(1);
- } else if (!needwait_gp) {
- /* Wait for callbacks to appear. */
- trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
- swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
- !READ_ONCE(my_rdp->nocb_gp_sleep));
- trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
- } else {
- rnp = my_rdp->mynode;
- trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
- swait_event_interruptible_exclusive(
- rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
- rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
- !READ_ONCE(my_rdp->nocb_gp_sleep));
- trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
- }
- if (!rcu_nocb_poll) {
- raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
- if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
- WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
- del_timer(&my_rdp->nocb_timer);
- }
- WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
- raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
- }
- my_rdp->nocb_gp_seq = -1;
- WARN_ON(signal_pending(current));
-}
-
-/*
- * No-CBs grace-period-wait kthread. There is one of these per group
- * of CPUs, but only once at least one CPU in that group has come online
- * at least once since boot. This kthread checks for newly posted
- * callbacks from any of the CPUs it is responsible for, waits for a
- * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
- * that then have callback-invocation work to do.
- */
-static int rcu_nocb_gp_kthread(void *arg)
-{
- struct rcu_data *rdp = arg;
-
- for (;;) {
- WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
- nocb_gp_wait(rdp);
- cond_resched_tasks_rcu_qs();
- }
- return 0;
-}
-
-static inline bool nocb_cb_can_run(struct rcu_data *rdp)
-{
- u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
- return rcu_segcblist_test_flags(&rdp->cblist, flags);
-}
-
-static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
-{
- return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
-}
-
-/*
- * Invoke any ready callbacks from the corresponding no-CBs CPU,
- * then, if there are no more, wait for more to appear.
- */
-static void nocb_cb_wait(struct rcu_data *rdp)
-{
- struct rcu_segcblist *cblist = &rdp->cblist;
- unsigned long cur_gp_seq;
- unsigned long flags;
- bool needwake_state = false;
- bool needwake_gp = false;
- bool can_sleep = true;
- struct rcu_node *rnp = rdp->mynode;
-
- local_irq_save(flags);
- rcu_momentary_dyntick_idle();
- local_irq_restore(flags);
- /*
- * Disable BH to provide the expected environment. Also, when
- * transitioning to/from NOCB mode, a self-requeuing callback might
- * be invoked from softirq. A short grace period could cause both
- * instances of this callback would execute concurrently.
- */
- local_bh_disable();
- rcu_do_batch(rdp);
- local_bh_enable();
- lockdep_assert_irqs_enabled();
- rcu_nocb_lock_irqsave(rdp, flags);
- if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
- rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
- raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
- needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
- raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
- }
-
- if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
- if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
- rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
- if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
- needwake_state = true;
- }
- if (rcu_segcblist_ready_cbs(cblist))
- can_sleep = false;
- } else {
- /*
- * De-offloading. Clear our flag and notify the de-offload worker.
- * We won't touch the callbacks and keep sleeping until we ever
- * get re-offloaded.
- */
- WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
- rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
- if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
- needwake_state = true;
- }
-
- WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
-
- if (rdp->nocb_cb_sleep)
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
-
- rcu_nocb_unlock_irqrestore(rdp, flags);
- if (needwake_gp)
- rcu_gp_kthread_wake();
-
- if (needwake_state)
- swake_up_one(&rdp->nocb_state_wq);
-
- do {
- swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
- nocb_cb_wait_cond(rdp));
-
- // VVV Ensure CB invocation follows _sleep test.
- if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
- WARN_ON(signal_pending(current));
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
- }
- } while (!nocb_cb_can_run(rdp));
-}
-
-/*
- * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
- * nocb_cb_wait() to do the dirty work.
- */
-static int rcu_nocb_cb_kthread(void *arg)
-{
- struct rcu_data *rdp = arg;
-
- // Each pass through this loop does one callback batch, and,
- // if there are no more ready callbacks, waits for them.
- for (;;) {
- nocb_cb_wait(rdp);
- cond_resched_tasks_rcu_qs();
- }
- return 0;
-}
-
-/* Is a deferred wakeup of rcu_nocb_kthread() required? */
-static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
-{
- return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
-}
-
-/* Do a deferred wakeup of rcu_nocb_kthread(). */
-static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
- struct rcu_data *rdp, int level,
- unsigned long flags)
- __releases(rdp_gp->nocb_gp_lock)
-{
- int ndw;
- int ret;
-
- if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
- raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
- return false;
- }
-
- ndw = rdp_gp->nocb_defer_wakeup;
- ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
-
- return ret;
-}
-
-/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
-static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
-{
- unsigned long flags;
- struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
-
- WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
- trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
-
- raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
- smp_mb__after_spinlock(); /* Timer expire before wakeup. */
- do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
-}
-
-/*
- * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
- * This means we do an inexact common-case check. Note that if
- * we miss, ->nocb_timer will eventually clean things up.
- */
-static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
-{
- unsigned long flags;
- struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
-
- if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
- return false;
-
- raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
- return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
-}
-
-void rcu_nocb_flush_deferred_wakeup(void)
-{
- do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
-}
-EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
-
-static int rdp_offload_toggle(struct rcu_data *rdp,
- bool offload, unsigned long flags)
- __releases(rdp->nocb_lock)
-{
- struct rcu_segcblist *cblist = &rdp->cblist;
- struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
- bool wake_gp = false;
-
- rcu_segcblist_offload(cblist, offload);
-
- if (rdp->nocb_cb_sleep)
- rdp->nocb_cb_sleep = false;
- rcu_nocb_unlock_irqrestore(rdp, flags);
-
- /*
- * Ignore former value of nocb_cb_sleep and force wake up as it could
- * have been spuriously set to false already.
- */
- swake_up_one(&rdp->nocb_cb_wq);
-
- raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
- if (rdp_gp->nocb_gp_sleep) {
- rdp_gp->nocb_gp_sleep = false;
- wake_gp = true;
- }
- raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
-
- if (wake_gp)
- wake_up_process(rdp_gp->nocb_gp_kthread);
-
- return 0;
-}
-
-static long rcu_nocb_rdp_deoffload(void *arg)
-{
- struct rcu_data *rdp = arg;
- struct rcu_segcblist *cblist = &rdp->cblist;
- unsigned long flags;
- int ret;
-
- WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
-
- pr_info("De-offloading %d\n", rdp->cpu);
-
- rcu_nocb_lock_irqsave(rdp, flags);
- /*
- * Flush once and for all now. This suffices because we are
- * running on the target CPU holding ->nocb_lock (thus having
- * interrupts disabled), and because rdp_offload_toggle()
- * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
- * Thus future calls to rcu_segcblist_completely_offloaded() will
- * return false, which means that future calls to rcu_nocb_try_bypass()
- * will refuse to put anything into the bypass.
- */
- WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
- ret = rdp_offload_toggle(rdp, false, flags);
- swait_event_exclusive(rdp->nocb_state_wq,
- !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
- SEGCBLIST_KTHREAD_GP));
- /*
- * Lock one last time to acquire latest callback updates from kthreads
- * so we can later handle callbacks locally without locking.
- */
- rcu_nocb_lock_irqsave(rdp, flags);
- /*
- * Theoretically we could set SEGCBLIST_SOFTIRQ_ONLY after the nocb
- * lock is released but how about being paranoid for once?
- */
- rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY);
- /*
- * With SEGCBLIST_SOFTIRQ_ONLY, we can't use
- * rcu_nocb_unlock_irqrestore() anymore.
- */
- raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
-
- /* Sanity check */
- WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
-
-
- return ret;
-}
-
-int rcu_nocb_cpu_deoffload(int cpu)
-{
- struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
- int ret = 0;
-
- mutex_lock(&rcu_state.barrier_mutex);
- cpus_read_lock();
- if (rcu_rdp_is_offloaded(rdp)) {
- if (cpu_online(cpu)) {
- ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
- if (!ret)
- cpumask_clear_cpu(cpu, rcu_nocb_mask);
- } else {
- pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
- ret = -EINVAL;
- }
- }
- cpus_read_unlock();
- mutex_unlock(&rcu_state.barrier_mutex);
-
- return ret;
-}
-EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
-
-static long rcu_nocb_rdp_offload(void *arg)
-{
- struct rcu_data *rdp = arg;
- struct rcu_segcblist *cblist = &rdp->cblist;
- unsigned long flags;
- int ret;
-
- WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
- /*
- * For now we only support re-offload, ie: the rdp must have been
- * offloaded on boot first.
- */
- if (!rdp->nocb_gp_rdp)
- return -EINVAL;
-
- pr_info("Offloading %d\n", rdp->cpu);
- /*
- * Can't use rcu_nocb_lock_irqsave() while we are in
- * SEGCBLIST_SOFTIRQ_ONLY mode.
- */
- raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
-
- /*
- * We didn't take the nocb lock while working on the
- * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode.
- * Every modifications that have been done previously on
- * rdp->cblist must be visible remotely by the nocb kthreads
- * upon wake up after reading the cblist flags.
- *
- * The layout against nocb_lock enforces that ordering:
- *
- * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait()
- * ------------------------- ----------------------------
- * WRITE callbacks rcu_nocb_lock()
- * rcu_nocb_lock() READ flags
- * WRITE flags READ callbacks
- * rcu_nocb_unlock() rcu_nocb_unlock()
- */
- ret = rdp_offload_toggle(rdp, true, flags);
- swait_event_exclusive(rdp->nocb_state_wq,
- rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
- rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
-
- return ret;
-}
-
-int rcu_nocb_cpu_offload(int cpu)
-{
- struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
- int ret = 0;
-
- mutex_lock(&rcu_state.barrier_mutex);
- cpus_read_lock();
- if (!rcu_rdp_is_offloaded(rdp)) {
- if (cpu_online(cpu)) {
- ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
- if (!ret)
- cpumask_set_cpu(cpu, rcu_nocb_mask);
- } else {
- pr_info("NOCB: Can't CB-offload an offline CPU\n");
- ret = -EINVAL;
- }
- }
- cpus_read_unlock();
- mutex_unlock(&rcu_state.barrier_mutex);
-
- return ret;
-}
-EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
-
-void __init rcu_init_nohz(void)
-{
- int cpu;
- bool need_rcu_nocb_mask = false;
- struct rcu_data *rdp;
-
-#if defined(CONFIG_NO_HZ_FULL)
- if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
- need_rcu_nocb_mask = true;
-#endif /* #if defined(CONFIG_NO_HZ_FULL) */
-
- if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
- if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
- pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
- return;
- }
- }
- if (!cpumask_available(rcu_nocb_mask))
- return;
-
-#if defined(CONFIG_NO_HZ_FULL)
- if (tick_nohz_full_running)
- cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
-#endif /* #if defined(CONFIG_NO_HZ_FULL) */
-
- if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
- pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
- cpumask_and(rcu_nocb_mask, cpu_possible_mask,
- rcu_nocb_mask);
- }
- if (cpumask_empty(rcu_nocb_mask))
- pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
- else
- pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
- cpumask_pr_args(rcu_nocb_mask));
- if (rcu_nocb_poll)
- pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
-
- for_each_cpu(cpu, rcu_nocb_mask) {
- rdp = per_cpu_ptr(&rcu_data, cpu);
- if (rcu_segcblist_empty(&rdp->cblist))
- rcu_segcblist_init(&rdp->cblist);
- rcu_segcblist_offload(&rdp->cblist, true);
- rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
- rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP);
- }
- rcu_organize_nocb_kthreads();
-}
-
-/* Initialize per-rcu_data variables for no-CBs CPUs. */
-static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
-{
- init_swait_queue_head(&rdp->nocb_cb_wq);
- init_swait_queue_head(&rdp->nocb_gp_wq);
- init_swait_queue_head(&rdp->nocb_state_wq);
- raw_spin_lock_init(&rdp->nocb_lock);
- raw_spin_lock_init(&rdp->nocb_bypass_lock);
- raw_spin_lock_init(&rdp->nocb_gp_lock);
- timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
- rcu_cblist_init(&rdp->nocb_bypass);
-}
-
-/*
- * If the specified CPU is a no-CBs CPU that does not already have its
- * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
- * for this CPU's group has not yet been created, spawn it as well.
- */
-static void rcu_spawn_one_nocb_kthread(int cpu)
-{
- struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
- struct rcu_data *rdp_gp;
- struct task_struct *t;
-
- /*
- * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
- * then nothing to do.
- */
- if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
- return;
-
- /* If we didn't spawn the GP kthread first, reorganize! */
- rdp_gp = rdp->nocb_gp_rdp;
- if (!rdp_gp->nocb_gp_kthread) {
- t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
- "rcuog/%d", rdp_gp->cpu);
- if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
- return;
- WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
- }
-
- /* Spawn the kthread for this CPU. */
- t = kthread_run(rcu_nocb_cb_kthread, rdp,
- "rcuo%c/%d", rcu_state.abbr, cpu);
- if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
- return;
- WRITE_ONCE(rdp->nocb_cb_kthread, t);
- WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
-}
-
-/*
- * If the specified CPU is a no-CBs CPU that does not already have its
- * rcuo kthread, spawn it.
- */
-static void rcu_spawn_cpu_nocb_kthread(int cpu)
-{
- if (rcu_scheduler_fully_active)
- rcu_spawn_one_nocb_kthread(cpu);
-}
-
-/*
- * Once the scheduler is running, spawn rcuo kthreads for all online
- * no-CBs CPUs. This assumes that the early_initcall()s happen before
- * non-boot CPUs come online -- if this changes, we will need to add
- * some mutual exclusion.
- */
-static void __init rcu_spawn_nocb_kthreads(void)
-{
- int cpu;
-
- for_each_online_cpu(cpu)
- rcu_spawn_cpu_nocb_kthread(cpu);
-}
-
-/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
-static int rcu_nocb_gp_stride = -1;
-module_param(rcu_nocb_gp_stride, int, 0444);
-
-/*
- * Initialize GP-CB relationships for all no-CBs CPU.
- */
-static void __init rcu_organize_nocb_kthreads(void)
-{
- int cpu;
- bool firsttime = true;
- bool gotnocbs = false;
- bool gotnocbscbs = true;
- int ls = rcu_nocb_gp_stride;
- int nl = 0; /* Next GP kthread. */
- struct rcu_data *rdp;
- struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
- struct rcu_data *rdp_prev = NULL;
-
- if (!cpumask_available(rcu_nocb_mask))
- return;
- if (ls == -1) {
- ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
- rcu_nocb_gp_stride = ls;
- }
-
- /*
- * Each pass through this loop sets up one rcu_data structure.
- * Should the corresponding CPU come online in the future, then
- * we will spawn the needed set of rcu_nocb_kthread() kthreads.
- */
- for_each_cpu(cpu, rcu_nocb_mask) {
- rdp = per_cpu_ptr(&rcu_data, cpu);
- if (rdp->cpu >= nl) {
- /* New GP kthread, set up for CBs & next GP. */
- gotnocbs = true;
- nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
- rdp->nocb_gp_rdp = rdp;
- rdp_gp = rdp;
- if (dump_tree) {
- if (!firsttime)
- pr_cont("%s\n", gotnocbscbs
- ? "" : " (self only)");
- gotnocbscbs = false;
- firsttime = false;
- pr_alert("%s: No-CB GP kthread CPU %d:",
- __func__, cpu);
- }
- } else {
- /* Another CB kthread, link to previous GP kthread. */
- gotnocbscbs = true;
- rdp->nocb_gp_rdp = rdp_gp;
- rdp_prev->nocb_next_cb_rdp = rdp;
- if (dump_tree)
- pr_cont(" %d", cpu);
- }
- rdp_prev = rdp;
- }
- if (gotnocbs && dump_tree)
- pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
-}
-
-/*
- * Bind the current task to the offloaded CPUs. If there are no offloaded
- * CPUs, leave the task unbound. Splat if the bind attempt fails.
- */
-void rcu_bind_current_to_nocb(void)
-{
- if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
- WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
-}
-EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
-
-// The ->on_cpu field is available only in CONFIG_SMP=y, so...
-#ifdef CONFIG_SMP
-static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
-{
- return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
-}
-#else // #ifdef CONFIG_SMP
-static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
-{
- return "";
-}
-#endif // #else #ifdef CONFIG_SMP
-
-/*
- * Dump out nocb grace-period kthread state for the specified rcu_data
- * structure.
- */
-static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
-{
- struct rcu_node *rnp = rdp->mynode;
-
- pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
- rdp->cpu,
- "kK"[!!rdp->nocb_gp_kthread],
- "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
- "dD"[!!rdp->nocb_defer_wakeup],
- "tT"[timer_pending(&rdp->nocb_timer)],
- "sS"[!!rdp->nocb_gp_sleep],
- ".W"[swait_active(&rdp->nocb_gp_wq)],
- ".W"[swait_active(&rnp->nocb_gp_wq[0])],
- ".W"[swait_active(&rnp->nocb_gp_wq[1])],
- ".B"[!!rdp->nocb_gp_bypass],
- ".G"[!!rdp->nocb_gp_gp],
- (long)rdp->nocb_gp_seq,
- rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
- rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
- rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
- show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
-}
-
-/* Dump out nocb kthread state for the specified rcu_data structure. */
-static void show_rcu_nocb_state(struct rcu_data *rdp)
-{
- char bufw[20];
- char bufr[20];
- struct rcu_segcblist *rsclp = &rdp->cblist;
- bool waslocked;
- bool wassleep;
-
- if (rdp->nocb_gp_rdp == rdp)
- show_rcu_nocb_gp_state(rdp);
-
- sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
- sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
- pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
- rdp->cpu, rdp->nocb_gp_rdp->cpu,
- rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1,
- "kK"[!!rdp->nocb_cb_kthread],
- "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
- "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
- "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
- "sS"[!!rdp->nocb_cb_sleep],
- ".W"[swait_active(&rdp->nocb_cb_wq)],
- jiffies - rdp->nocb_bypass_first,
- jiffies - rdp->nocb_nobypass_last,
- rdp->nocb_nobypass_count,
- ".D"[rcu_segcblist_ready_cbs(rsclp)],
- ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
- rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
- ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
- rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
- ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
- ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
- rcu_segcblist_n_cbs(&rdp->cblist),
- rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
- rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
- show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
-
- /* It is OK for GP kthreads to have GP state. */
- if (rdp->nocb_gp_rdp == rdp)
- return;
-
- waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
- wassleep = swait_active(&rdp->nocb_gp_wq);
- if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
- return; /* Nothing untoward. */
-
- pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
- "lL"[waslocked],
- "dD"[!!rdp->nocb_defer_wakeup],
- "sS"[!!rdp->nocb_gp_sleep],
- ".W"[wassleep]);
-}
-
-#else /* #ifdef CONFIG_RCU_NOCB_CPU */
-
-/* No ->nocb_lock to acquire. */
-static void rcu_nocb_lock(struct rcu_data *rdp)
-{
-}
-
-/* No ->nocb_lock to release. */
-static void rcu_nocb_unlock(struct rcu_data *rdp)
-{
-}
-
-/* No ->nocb_lock to release. */
-static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
- unsigned long flags)
-{
- local_irq_restore(flags);
-}
-
-/* Lockdep check that ->cblist may be safely accessed. */
-static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
-{
- lockdep_assert_irqs_disabled();
-}
-
-static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
-{
-}
-
-static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
-{
- return NULL;
-}
-
-static void rcu_init_one_nocb(struct rcu_node *rnp)
-{
-}
-
-static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
- unsigned long j)
-{
- return true;
-}
-
-static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
- bool *was_alldone, unsigned long flags)
-{
- return false;
-}
-
-static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
- unsigned long flags)
-{
- WARN_ON_ONCE(1); /* Should be dead code! */
-}
-
-static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
-{
-}
-
-static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
-{
- return false;
-}
-
-static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
-{
- return false;
-}
-
-static void rcu_spawn_cpu_nocb_kthread(int cpu)
-{
-}
-
-static void __init rcu_spawn_nocb_kthreads(void)
-{
-}
-
-static void show_rcu_nocb_state(struct rcu_data *rdp)
-{
-}
-
-#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
-
/*
* Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
* grace-period kthread will do force_quiescent_state() processing?
@@ -2982,17 +1498,17 @@ static void noinstr rcu_dynticks_task_exit(void)
/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
static void rcu_dynticks_task_trace_enter(void)
{
-#ifdef CONFIG_TASKS_RCU_TRACE
+#ifdef CONFIG_TASKS_TRACE_RCU
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
current->trc_reader_special.b.need_mb = true;
-#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
+#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}
/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
static void rcu_dynticks_task_trace_exit(void)
{
-#ifdef CONFIG_TASKS_RCU_TRACE
+#ifdef CONFIG_TASKS_TRACE_RCU
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
current->trc_reader_special.b.need_mb = false;
-#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
+#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}
diff --git a/kernel/rcu/tree_stall.h b/kernel/rcu/tree_stall.h
index 6c76988cc019..677ee3d8671b 100644
--- a/kernel/rcu/tree_stall.h
+++ b/kernel/rcu/tree_stall.h
@@ -7,6 +7,8 @@
* Author: Paul E. McKenney <paulmck@linux.ibm.com>
*/
+#include <linux/kvm_para.h>
+
//////////////////////////////////////////////////////////////////////////////
//
// Controlling CPU stall warnings, including delay calculation.
@@ -117,17 +119,14 @@ static void panic_on_rcu_stall(void)
}
/**
- * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
- *
- * Set the stall-warning timeout way off into the future, thus preventing
- * any RCU CPU stall-warning messages from appearing in the current set of
- * RCU grace periods.
+ * rcu_cpu_stall_reset - restart stall-warning timeout for current grace period
*
* The caller must disable hard irqs.
*/
void rcu_cpu_stall_reset(void)
{
- WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
+ WRITE_ONCE(rcu_state.jiffies_stall,
+ jiffies + rcu_jiffies_till_stall_check());
}
//////////////////////////////////////////////////////////////////////////////
@@ -267,8 +266,10 @@ static int rcu_print_task_stall(struct rcu_node *rnp, unsigned long flags)
struct task_struct *ts[8];
lockdep_assert_irqs_disabled();
- if (!rcu_preempt_blocked_readers_cgp(rnp))
+ if (!rcu_preempt_blocked_readers_cgp(rnp)) {
+ raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
return 0;
+ }
pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
rnp->level, rnp->grplo, rnp->grphi);
t = list_entry(rnp->gp_tasks->prev,
@@ -280,8 +281,8 @@ static int rcu_print_task_stall(struct rcu_node *rnp, unsigned long flags)
break;
}
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
- for (i--; i; i--) {
- t = ts[i];
+ while (i) {
+ t = ts[--i];
if (!try_invoke_on_locked_down_task(t, check_slow_task, &rscr))
pr_cont(" P%d", t->pid);
else
@@ -350,7 +351,7 @@ static void rcu_dump_cpu_stacks(void)
static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
- struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
+ struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
sprintf(cp, "last_accelerate: %04lx/%04lx dyntick_enabled: %d",
rdp->last_accelerate & 0xffff, jiffies & 0xffff,
@@ -464,9 +465,10 @@ static void rcu_check_gp_kthread_starvation(void)
pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#x ->cpu=%d\n",
rcu_state.name, j,
(long)rcu_seq_current(&rcu_state.gp_seq),
- data_race(rcu_state.gp_flags),
- gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
- gpk ? gpk->__state : ~0, cpu);
+ data_race(READ_ONCE(rcu_state.gp_flags)),
+ gp_state_getname(rcu_state.gp_state),
+ data_race(READ_ONCE(rcu_state.gp_state)),
+ gpk ? data_race(READ_ONCE(gpk->__state)) : ~0, cpu);
if (gpk) {
pr_err("\tUnless %s kthread gets sufficient CPU time, OOM is now expected behavior.\n", rcu_state.name);
pr_err("RCU grace-period kthread stack dump:\n");
@@ -509,7 +511,7 @@ static void rcu_check_gp_kthread_expired_fqs_timer(void)
(long)rcu_seq_current(&rcu_state.gp_seq),
data_race(rcu_state.gp_flags),
gp_state_getname(RCU_GP_WAIT_FQS), RCU_GP_WAIT_FQS,
- gpk->__state);
+ data_race(READ_ONCE(gpk->__state)));
pr_err("\tPossible timer handling issue on cpu=%d timer-softirq=%u\n",
cpu, kstat_softirqs_cpu(TIMER_SOFTIRQ, cpu));
}
@@ -568,11 +570,11 @@ static void print_other_cpu_stall(unsigned long gp_seq, unsigned long gps)
pr_err("INFO: Stall ended before state dump start\n");
} else {
j = jiffies;
- gpa = data_race(rcu_state.gp_activity);
+ gpa = data_race(READ_ONCE(rcu_state.gp_activity));
pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
rcu_state.name, j - gpa, j, gpa,
- data_race(jiffies_till_next_fqs),
- rcu_get_root()->qsmask);
+ data_race(READ_ONCE(jiffies_till_next_fqs)),
+ data_race(READ_ONCE(rcu_get_root()->qsmask)));
}
}
/* Rewrite if needed in case of slow consoles. */
@@ -646,6 +648,7 @@ static void print_cpu_stall(unsigned long gps)
static void check_cpu_stall(struct rcu_data *rdp)
{
+ bool didstall = false;
unsigned long gs1;
unsigned long gs2;
unsigned long gps;
@@ -691,24 +694,46 @@ static void check_cpu_stall(struct rcu_data *rdp)
ULONG_CMP_GE(gps, js))
return; /* No stall or GP completed since entering function. */
rnp = rdp->mynode;
- jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
+ jn = jiffies + ULONG_MAX / 2;
if (rcu_gp_in_progress() &&
(READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
+ /*
+ * If a virtual machine is stopped by the host it can look to
+ * the watchdog like an RCU stall. Check to see if the host
+ * stopped the vm.
+ */
+ if (kvm_check_and_clear_guest_paused())
+ return;
+
/* We haven't checked in, so go dump stack. */
print_cpu_stall(gps);
if (READ_ONCE(rcu_cpu_stall_ftrace_dump))
rcu_ftrace_dump(DUMP_ALL);
+ didstall = true;
} else if (rcu_gp_in_progress() &&
ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
+ /*
+ * If a virtual machine is stopped by the host it can look to
+ * the watchdog like an RCU stall. Check to see if the host
+ * stopped the vm.
+ */
+ if (kvm_check_and_clear_guest_paused())
+ return;
+
/* They had a few time units to dump stack, so complain. */
print_other_cpu_stall(gs2, gps);
if (READ_ONCE(rcu_cpu_stall_ftrace_dump))
rcu_ftrace_dump(DUMP_ALL);
+ didstall = true;
+ }
+ if (didstall && READ_ONCE(rcu_state.jiffies_stall) == jn) {
+ jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
+ WRITE_ONCE(rcu_state.jiffies_stall, jn);
}
}
@@ -742,7 +767,7 @@ bool rcu_check_boost_fail(unsigned long gp_state, int *cpup)
rcu_for_each_leaf_node(rnp) {
if (!cpup) {
- if (READ_ONCE(rnp->qsmask)) {
+ if (data_race(READ_ONCE(rnp->qsmask))) {
return false;
} else {
if (READ_ONCE(rnp->gp_tasks))
@@ -791,32 +816,34 @@ void show_rcu_gp_kthreads(void)
struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
j = jiffies;
- ja = j - data_race(rcu_state.gp_activity);
- jr = j - data_race(rcu_state.gp_req_activity);
- js = j - data_race(rcu_state.gp_start);
- jw = j - data_race(rcu_state.gp_wake_time);
+ ja = j - data_race(READ_ONCE(rcu_state.gp_activity));
+ jr = j - data_race(READ_ONCE(rcu_state.gp_req_activity));
+ js = j - data_race(READ_ONCE(rcu_state.gp_start));
+ jw = j - data_race(READ_ONCE(rcu_state.gp_wake_time));
pr_info("%s: wait state: %s(%d) ->state: %#x ->rt_priority %u delta ->gp_start %lu ->gp_activity %lu ->gp_req_activity %lu ->gp_wake_time %lu ->gp_wake_seq %ld ->gp_seq %ld ->gp_seq_needed %ld ->gp_max %lu ->gp_flags %#x\n",
rcu_state.name, gp_state_getname(rcu_state.gp_state),
- rcu_state.gp_state, t ? t->__state : 0x1ffff, t ? t->rt_priority : 0xffU,
- js, ja, jr, jw, (long)data_race(rcu_state.gp_wake_seq),
- (long)data_race(rcu_state.gp_seq),
- (long)data_race(rcu_get_root()->gp_seq_needed),
- data_race(rcu_state.gp_max),
- data_race(rcu_state.gp_flags));
+ data_race(READ_ONCE(rcu_state.gp_state)),
+ t ? data_race(READ_ONCE(t->__state)) : 0x1ffff, t ? t->rt_priority : 0xffU,
+ js, ja, jr, jw, (long)data_race(READ_ONCE(rcu_state.gp_wake_seq)),
+ (long)data_race(READ_ONCE(rcu_state.gp_seq)),
+ (long)data_race(READ_ONCE(rcu_get_root()->gp_seq_needed)),
+ data_race(READ_ONCE(rcu_state.gp_max)),
+ data_race(READ_ONCE(rcu_state.gp_flags)));
rcu_for_each_node_breadth_first(rnp) {
if (ULONG_CMP_GE(READ_ONCE(rcu_state.gp_seq), READ_ONCE(rnp->gp_seq_needed)) &&
- !data_race(rnp->qsmask) && !data_race(rnp->boost_tasks) &&
- !data_race(rnp->exp_tasks) && !data_race(rnp->gp_tasks))
+ !data_race(READ_ONCE(rnp->qsmask)) && !data_race(READ_ONCE(rnp->boost_tasks)) &&
+ !data_race(READ_ONCE(rnp->exp_tasks)) && !data_race(READ_ONCE(rnp->gp_tasks)))
continue;
pr_info("\trcu_node %d:%d ->gp_seq %ld ->gp_seq_needed %ld ->qsmask %#lx %c%c%c%c ->n_boosts %ld\n",
rnp->grplo, rnp->grphi,
- (long)data_race(rnp->gp_seq), (long)data_race(rnp->gp_seq_needed),
- data_race(rnp->qsmask),
- ".b"[!!data_race(rnp->boost_kthread_task)],
- ".B"[!!data_race(rnp->boost_tasks)],
- ".E"[!!data_race(rnp->exp_tasks)],
- ".G"[!!data_race(rnp->gp_tasks)],
- data_race(rnp->n_boosts));
+ (long)data_race(READ_ONCE(rnp->gp_seq)),
+ (long)data_race(READ_ONCE(rnp->gp_seq_needed)),
+ data_race(READ_ONCE(rnp->qsmask)),
+ ".b"[!!data_race(READ_ONCE(rnp->boost_kthread_task))],
+ ".B"[!!data_race(READ_ONCE(rnp->boost_tasks))],
+ ".E"[!!data_race(READ_ONCE(rnp->exp_tasks))],
+ ".G"[!!data_race(READ_ONCE(rnp->gp_tasks))],
+ data_race(READ_ONCE(rnp->n_boosts)));
if (!rcu_is_leaf_node(rnp))
continue;
for_each_leaf_node_possible_cpu(rnp, cpu) {
@@ -826,12 +853,12 @@ void show_rcu_gp_kthreads(void)
READ_ONCE(rdp->gp_seq_needed)))
continue;
pr_info("\tcpu %d ->gp_seq_needed %ld\n",
- cpu, (long)data_race(rdp->gp_seq_needed));
+ cpu, (long)data_race(READ_ONCE(rdp->gp_seq_needed)));
}
}
for_each_possible_cpu(cpu) {
rdp = per_cpu_ptr(&rcu_data, cpu);
- cbs += data_race(rdp->n_cbs_invoked);
+ cbs += data_race(READ_ONCE(rdp->n_cbs_invoked));
if (rcu_segcblist_is_offloaded(&rdp->cblist))
show_rcu_nocb_state(rdp);
}
@@ -913,11 +940,11 @@ void rcu_fwd_progress_check(unsigned long j)
if (rcu_gp_in_progress()) {
pr_info("%s: GP age %lu jiffies\n",
- __func__, jiffies - rcu_state.gp_start);
+ __func__, jiffies - data_race(READ_ONCE(rcu_state.gp_start)));
show_rcu_gp_kthreads();
} else {
pr_info("%s: Last GP end %lu jiffies ago\n",
- __func__, jiffies - rcu_state.gp_end);
+ __func__, jiffies - data_race(READ_ONCE(rcu_state.gp_end)));
preempt_disable();
rdp = this_cpu_ptr(&rcu_data);
rcu_check_gp_start_stall(rdp->mynode, rdp, j);
diff --git a/kernel/scftorture.c b/kernel/scftorture.c
index 29e8fc5d91a7..64a08288b1a6 100644
--- a/kernel/scftorture.c
+++ b/kernel/scftorture.c
@@ -64,6 +64,7 @@ torture_param(bool, use_cpus_read_lock, 0, "Use cpus_read_lock() to exclude CPU
torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
torture_param(int, weight_resched, -1, "Testing weight for resched_cpu() operations.");
torture_param(int, weight_single, -1, "Testing weight for single-CPU no-wait operations.");
+torture_param(int, weight_single_rpc, -1, "Testing weight for single-CPU RPC operations.");
torture_param(int, weight_single_wait, -1, "Testing weight for single-CPU operations.");
torture_param(int, weight_many, -1, "Testing weight for multi-CPU no-wait operations.");
torture_param(int, weight_many_wait, -1, "Testing weight for multi-CPU operations.");
@@ -86,6 +87,8 @@ struct scf_statistics {
long long n_resched;
long long n_single;
long long n_single_ofl;
+ long long n_single_rpc;
+ long long n_single_rpc_ofl;
long long n_single_wait;
long long n_single_wait_ofl;
long long n_many;
@@ -101,14 +104,17 @@ static DEFINE_PER_CPU(long long, scf_invoked_count);
// Data for random primitive selection
#define SCF_PRIM_RESCHED 0
#define SCF_PRIM_SINGLE 1
-#define SCF_PRIM_MANY 2
-#define SCF_PRIM_ALL 3
-#define SCF_NPRIMS 7 // Need wait and no-wait versions of each,
- // except for SCF_PRIM_RESCHED.
+#define SCF_PRIM_SINGLE_RPC 2
+#define SCF_PRIM_MANY 3
+#define SCF_PRIM_ALL 4
+#define SCF_NPRIMS 8 // Need wait and no-wait versions of each,
+ // except for SCF_PRIM_RESCHED and
+ // SCF_PRIM_SINGLE_RPC.
static char *scf_prim_name[] = {
"resched_cpu",
"smp_call_function_single",
+ "smp_call_function_single_rpc",
"smp_call_function_many",
"smp_call_function",
};
@@ -128,6 +134,8 @@ struct scf_check {
bool scfc_out;
int scfc_cpu; // -1 for not _single().
bool scfc_wait;
+ bool scfc_rpc;
+ struct completion scfc_completion;
};
// Use to wait for all threads to start.
@@ -158,6 +166,7 @@ static void scf_torture_stats_print(void)
scfs.n_resched += scf_stats_p[i].n_resched;
scfs.n_single += scf_stats_p[i].n_single;
scfs.n_single_ofl += scf_stats_p[i].n_single_ofl;
+ scfs.n_single_rpc += scf_stats_p[i].n_single_rpc;
scfs.n_single_wait += scf_stats_p[i].n_single_wait;
scfs.n_single_wait_ofl += scf_stats_p[i].n_single_wait_ofl;
scfs.n_many += scf_stats_p[i].n_many;
@@ -168,9 +177,10 @@ static void scf_torture_stats_print(void)
if (atomic_read(&n_errs) || atomic_read(&n_mb_in_errs) ||
atomic_read(&n_mb_out_errs) || atomic_read(&n_alloc_errs))
bangstr = "!!! ";
- pr_alert("%s %sscf_invoked_count %s: %lld resched: %lld single: %lld/%lld single_ofl: %lld/%lld many: %lld/%lld all: %lld/%lld ",
+ pr_alert("%s %sscf_invoked_count %s: %lld resched: %lld single: %lld/%lld single_ofl: %lld/%lld single_rpc: %lld single_rpc_ofl: %lld many: %lld/%lld all: %lld/%lld ",
SCFTORT_FLAG, bangstr, isdone ? "VER" : "ver", invoked_count, scfs.n_resched,
scfs.n_single, scfs.n_single_wait, scfs.n_single_ofl, scfs.n_single_wait_ofl,
+ scfs.n_single_rpc, scfs.n_single_rpc_ofl,
scfs.n_many, scfs.n_many_wait, scfs.n_all, scfs.n_all_wait);
torture_onoff_stats();
pr_cont("ste: %d stnmie: %d stnmoe: %d staf: %d\n", atomic_read(&n_errs),
@@ -282,10 +292,13 @@ static void scf_handler(void *scfc_in)
out:
if (unlikely(!scfcp))
return;
- if (scfcp->scfc_wait)
+ if (scfcp->scfc_wait) {
WRITE_ONCE(scfcp->scfc_out, true);
- else
+ if (scfcp->scfc_rpc)
+ complete(&scfcp->scfc_completion);
+ } else {
kfree(scfcp);
+ }
}
// As above, but check for correct CPU.
@@ -319,6 +332,7 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
scfcp->scfc_cpu = -1;
scfcp->scfc_wait = scfsp->scfs_wait;
scfcp->scfc_out = false;
+ scfcp->scfc_rpc = false;
}
}
switch (scfsp->scfs_prim) {
@@ -350,6 +364,34 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
scfcp = NULL;
}
break;
+ case SCF_PRIM_SINGLE_RPC:
+ if (!scfcp)
+ break;
+ cpu = torture_random(trsp) % nr_cpu_ids;
+ scfp->n_single_rpc++;
+ scfcp->scfc_cpu = cpu;
+ scfcp->scfc_wait = true;
+ init_completion(&scfcp->scfc_completion);
+ scfcp->scfc_rpc = true;
+ barrier(); // Prevent race-reduction compiler optimizations.
+ scfcp->scfc_in = true;
+ ret = smp_call_function_single(cpu, scf_handler_1, (void *)scfcp, 0);
+ if (!ret) {
+ if (use_cpus_read_lock)
+ cpus_read_unlock();
+ else
+ preempt_enable();
+ wait_for_completion(&scfcp->scfc_completion);
+ if (use_cpus_read_lock)
+ cpus_read_lock();
+ else
+ preempt_disable();
+ } else {
+ scfp->n_single_rpc_ofl++;
+ kfree(scfcp);
+ scfcp = NULL;
+ }
+ break;
case SCF_PRIM_MANY:
if (scfsp->scfs_wait)
scfp->n_many_wait++;
@@ -379,10 +421,12 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
}
if (scfcp && scfsp->scfs_wait) {
if (WARN_ON_ONCE((num_online_cpus() > 1 || scfsp->scfs_prim == SCF_PRIM_SINGLE) &&
- !scfcp->scfc_out))
+ !scfcp->scfc_out)) {
+ pr_warn("%s: Memory-ordering failure, scfs_prim: %d.\n", __func__, scfsp->scfs_prim);
atomic_inc(&n_mb_out_errs); // Leak rather than trash!
- else
+ } else {
kfree(scfcp);
+ }
barrier(); // Prevent race-reduction compiler optimizations.
}
if (use_cpus_read_lock)
@@ -453,8 +497,8 @@ static void
scftorture_print_module_parms(const char *tag)
{
pr_alert(SCFTORT_FLAG
- "--- %s: verbose=%d holdoff=%d longwait=%d nthreads=%d onoff_holdoff=%d onoff_interval=%d shutdown_secs=%d stat_interval=%d stutter=%d use_cpus_read_lock=%d, weight_resched=%d, weight_single=%d, weight_single_wait=%d, weight_many=%d, weight_many_wait=%d, weight_all=%d, weight_all_wait=%d\n", tag,
- verbose, holdoff, longwait, nthreads, onoff_holdoff, onoff_interval, shutdown, stat_interval, stutter, use_cpus_read_lock, weight_resched, weight_single, weight_single_wait, weight_many, weight_many_wait, weight_all, weight_all_wait);
+ "--- %s: verbose=%d holdoff=%d longwait=%d nthreads=%d onoff_holdoff=%d onoff_interval=%d shutdown_secs=%d stat_interval=%d stutter=%d use_cpus_read_lock=%d, weight_resched=%d, weight_single=%d, weight_single_rpc=%d, weight_single_wait=%d, weight_many=%d, weight_many_wait=%d, weight_all=%d, weight_all_wait=%d\n", tag,
+ verbose, holdoff, longwait, nthreads, onoff_holdoff, onoff_interval, shutdown, stat_interval, stutter, use_cpus_read_lock, weight_resched, weight_single, weight_single_rpc, weight_single_wait, weight_many, weight_many_wait, weight_all, weight_all_wait);
}
static void scf_cleanup_handler(void *unused)
@@ -469,7 +513,7 @@ static void scf_torture_cleanup(void)
return;
WRITE_ONCE(scfdone, true);
- if (nthreads)
+ if (nthreads && scf_stats_p)
for (i = 0; i < nthreads; i++)
torture_stop_kthread("scftorture_invoker", scf_stats_p[i].task);
else
@@ -497,6 +541,7 @@ static int __init scf_torture_init(void)
int firsterr = 0;
unsigned long weight_resched1 = weight_resched;
unsigned long weight_single1 = weight_single;
+ unsigned long weight_single_rpc1 = weight_single_rpc;
unsigned long weight_single_wait1 = weight_single_wait;
unsigned long weight_many1 = weight_many;
unsigned long weight_many_wait1 = weight_many_wait;
@@ -508,11 +553,13 @@ static int __init scf_torture_init(void)
scftorture_print_module_parms("Start of test");
- if (weight_resched == -1 && weight_single == -1 && weight_single_wait == -1 &&
+ if (weight_resched == -1 &&
+ weight_single == -1 && weight_single_rpc == -1 && weight_single_wait == -1 &&
weight_many == -1 && weight_many_wait == -1 &&
weight_all == -1 && weight_all_wait == -1) {
weight_resched1 = 2 * nr_cpu_ids;
weight_single1 = 2 * nr_cpu_ids;
+ weight_single_rpc1 = 2 * nr_cpu_ids;
weight_single_wait1 = 2 * nr_cpu_ids;
weight_many1 = 2;
weight_many_wait1 = 2;
@@ -523,6 +570,8 @@ static int __init scf_torture_init(void)
weight_resched1 = 0;
if (weight_single == -1)
weight_single1 = 0;
+ if (weight_single_rpc == -1)
+ weight_single_rpc1 = 0;
if (weight_single_wait == -1)
weight_single_wait1 = 0;
if (weight_many == -1)
@@ -534,7 +583,7 @@ static int __init scf_torture_init(void)
if (weight_all_wait == -1)
weight_all_wait1 = 0;
}
- if (weight_single1 == 0 && weight_single_wait1 == 0 &&
+ if (weight_single1 == 0 && weight_single_rpc1 == 0 && weight_single_wait1 == 0 &&
weight_many1 == 0 && weight_many_wait1 == 0 &&
weight_all1 == 0 && weight_all_wait1 == 0) {
VERBOSE_SCFTORTOUT_ERRSTRING("all zero weights makes no sense");
@@ -546,6 +595,7 @@ static int __init scf_torture_init(void)
else if (weight_resched1)
VERBOSE_SCFTORTOUT_ERRSTRING("built as module, weight_resched ignored");
scf_sel_add(weight_single1, SCF_PRIM_SINGLE, false);
+ scf_sel_add(weight_single_rpc1, SCF_PRIM_SINGLE_RPC, true);
scf_sel_add(weight_single_wait1, SCF_PRIM_SINGLE, true);
scf_sel_add(weight_many1, SCF_PRIM_MANY, false);
scf_sel_add(weight_many_wait1, SCF_PRIM_MANY, true);
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 20ffcc044134..c4462c454ab9 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -237,9 +237,30 @@ static DEFINE_MUTEX(sched_core_mutex);
static atomic_t sched_core_count;
static struct cpumask sched_core_mask;
+static void sched_core_lock(int cpu, unsigned long *flags)
+{
+ const struct cpumask *smt_mask = cpu_smt_mask(cpu);
+ int t, i = 0;
+
+ local_irq_save(*flags);
+ for_each_cpu(t, smt_mask)
+ raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
+}
+
+static void sched_core_unlock(int cpu, unsigned long *flags)
+{
+ const struct cpumask *smt_mask = cpu_smt_mask(cpu);
+ int t;
+
+ for_each_cpu(t, smt_mask)
+ raw_spin_unlock(&cpu_rq(t)->__lock);
+ local_irq_restore(*flags);
+}
+
static void __sched_core_flip(bool enabled)
{
- int cpu, t, i;
+ unsigned long flags;
+ int cpu, t;
cpus_read_lock();
@@ -250,19 +271,12 @@ static void __sched_core_flip(bool enabled)
for_each_cpu(cpu, &sched_core_mask) {
const struct cpumask *smt_mask = cpu_smt_mask(cpu);
- i = 0;
- local_irq_disable();
- for_each_cpu(t, smt_mask) {
- /* supports up to SMT8 */
- raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
- }
+ sched_core_lock(cpu, &flags);
for_each_cpu(t, smt_mask)
cpu_rq(t)->core_enabled = enabled;
- for_each_cpu(t, smt_mask)
- raw_spin_unlock(&cpu_rq(t)->__lock);
- local_irq_enable();
+ sched_core_unlock(cpu, &flags);
cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
}
@@ -993,6 +1007,7 @@ int get_nohz_timer_target(void)
{
int i, cpu = smp_processor_id(), default_cpu = -1;
struct sched_domain *sd;
+ const struct cpumask *hk_mask;
if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
if (!idle_cpu(cpu))
@@ -1000,10 +1015,11 @@ int get_nohz_timer_target(void)
default_cpu = cpu;
}
+ hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
+
rcu_read_lock();
for_each_domain(cpu, sd) {
- for_each_cpu_and(i, sched_domain_span(sd),
- housekeeping_cpumask(HK_FLAG_TIMER)) {
+ for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
if (cpu == i)
continue;
@@ -1619,6 +1635,23 @@ static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
uclamp_rq_dec_id(rq, p, clamp_id);
}
+static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
+ enum uclamp_id clamp_id)
+{
+ if (!p->uclamp[clamp_id].active)
+ return;
+
+ uclamp_rq_dec_id(rq, p, clamp_id);
+ uclamp_rq_inc_id(rq, p, clamp_id);
+
+ /*
+ * Make sure to clear the idle flag if we've transiently reached 0
+ * active tasks on rq.
+ */
+ if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
+ rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
+}
+
static inline void
uclamp_update_active(struct task_struct *p)
{
@@ -1642,12 +1675,8 @@ uclamp_update_active(struct task_struct *p)
* affecting a valid clamp bucket, the next time it's enqueued,
* it will already see the updated clamp bucket value.
*/
- for_each_clamp_id(clamp_id) {
- if (p->uclamp[clamp_id].active) {
- uclamp_rq_dec_id(rq, p, clamp_id);
- uclamp_rq_inc_id(rq, p, clamp_id);
- }
- }
+ for_each_clamp_id(clamp_id)
+ uclamp_rq_reinc_id(rq, p, clamp_id);
task_rq_unlock(rq, p, &rf);
}
@@ -2161,7 +2190,7 @@ static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
/* Non kernel threads are not allowed during either online or offline. */
if (!(p->flags & PF_KTHREAD))
- return cpu_active(cpu);
+ return cpu_active(cpu) && task_cpu_possible(cpu, p);
/* KTHREAD_IS_PER_CPU is always allowed. */
if (kthread_is_per_cpu(p))
@@ -2468,6 +2497,34 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
__do_set_cpus_allowed(p, new_mask, 0);
}
+int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
+ int node)
+{
+ if (!src->user_cpus_ptr)
+ return 0;
+
+ dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
+ if (!dst->user_cpus_ptr)
+ return -ENOMEM;
+
+ cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
+ return 0;
+}
+
+static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
+{
+ struct cpumask *user_mask = NULL;
+
+ swap(p->user_cpus_ptr, user_mask);
+
+ return user_mask;
+}
+
+void release_user_cpus_ptr(struct task_struct *p)
+{
+ kfree(clear_user_cpus_ptr(p));
+}
+
/*
* This function is wildly self concurrent; here be dragons.
*
@@ -2685,28 +2742,26 @@ static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flag
}
/*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely. The
- * call is not atomic; no spinlocks may be held.
+ * Called with both p->pi_lock and rq->lock held; drops both before returning.
*/
-static int __set_cpus_allowed_ptr(struct task_struct *p,
- const struct cpumask *new_mask,
- u32 flags)
+static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
+ const struct cpumask *new_mask,
+ u32 flags,
+ struct rq *rq,
+ struct rq_flags *rf)
+ __releases(rq->lock)
+ __releases(p->pi_lock)
{
+ const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
const struct cpumask *cpu_valid_mask = cpu_active_mask;
+ bool kthread = p->flags & PF_KTHREAD;
+ struct cpumask *user_mask = NULL;
unsigned int dest_cpu;
- struct rq_flags rf;
- struct rq *rq;
int ret = 0;
- rq = task_rq_lock(p, &rf);
update_rq_clock(rq);
- if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
+ if (kthread || is_migration_disabled(p)) {
/*
* Kernel threads are allowed on online && !active CPUs,
* however, during cpu-hot-unplug, even these might get pushed
@@ -2720,6 +2775,11 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
cpu_valid_mask = cpu_online_mask;
}
+ if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
/*
* Must re-check here, to close a race against __kthread_bind(),
* sched_setaffinity() is not guaranteed to observe the flag.
@@ -2754,20 +2814,178 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
__do_set_cpus_allowed(p, new_mask, flags);
- return affine_move_task(rq, p, &rf, dest_cpu, flags);
+ if (flags & SCA_USER)
+ user_mask = clear_user_cpus_ptr(p);
+
+ ret = affine_move_task(rq, p, rf, dest_cpu, flags);
+
+ kfree(user_mask);
+
+ return ret;
out:
- task_rq_unlock(rq, p, &rf);
+ task_rq_unlock(rq, p, rf);
return ret;
}
+/*
+ * Change a given task's CPU affinity. Migrate the thread to a
+ * proper CPU and schedule it away if the CPU it's executing on
+ * is removed from the allowed bitmask.
+ *
+ * NOTE: the caller must have a valid reference to the task, the
+ * task must not exit() & deallocate itself prematurely. The
+ * call is not atomic; no spinlocks may be held.
+ */
+static int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, u32 flags)
+{
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+ return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
+}
+
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
return __set_cpus_allowed_ptr(p, new_mask, 0);
}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
+/*
+ * Change a given task's CPU affinity to the intersection of its current
+ * affinity mask and @subset_mask, writing the resulting mask to @new_mask
+ * and pointing @p->user_cpus_ptr to a copy of the old mask.
+ * If the resulting mask is empty, leave the affinity unchanged and return
+ * -EINVAL.
+ */
+static int restrict_cpus_allowed_ptr(struct task_struct *p,
+ struct cpumask *new_mask,
+ const struct cpumask *subset_mask)
+{
+ struct cpumask *user_mask = NULL;
+ struct rq_flags rf;
+ struct rq *rq;
+ int err;
+
+ if (!p->user_cpus_ptr) {
+ user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
+ if (!user_mask)
+ return -ENOMEM;
+ }
+
+ rq = task_rq_lock(p, &rf);
+
+ /*
+ * Forcefully restricting the affinity of a deadline task is
+ * likely to cause problems, so fail and noisily override the
+ * mask entirely.
+ */
+ if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
+ err = -EPERM;
+ goto err_unlock;
+ }
+
+ if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
+ err = -EINVAL;
+ goto err_unlock;
+ }
+
+ /*
+ * We're about to butcher the task affinity, so keep track of what
+ * the user asked for in case we're able to restore it later on.
+ */
+ if (user_mask) {
+ cpumask_copy(user_mask, p->cpus_ptr);
+ p->user_cpus_ptr = user_mask;
+ }
+
+ return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
+
+err_unlock:
+ task_rq_unlock(rq, p, &rf);
+ kfree(user_mask);
+ return err;
+}
+
+/*
+ * Restrict the CPU affinity of task @p so that it is a subset of
+ * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
+ * old affinity mask. If the resulting mask is empty, we warn and walk
+ * up the cpuset hierarchy until we find a suitable mask.
+ */
+void force_compatible_cpus_allowed_ptr(struct task_struct *p)
+{
+ cpumask_var_t new_mask;
+ const struct cpumask *override_mask = task_cpu_possible_mask(p);
+
+ alloc_cpumask_var(&new_mask, GFP_KERNEL);
+
+ /*
+ * __migrate_task() can fail silently in the face of concurrent
+ * offlining of the chosen destination CPU, so take the hotplug
+ * lock to ensure that the migration succeeds.
+ */
+ cpus_read_lock();
+ if (!cpumask_available(new_mask))
+ goto out_set_mask;
+
+ if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
+ goto out_free_mask;
+
+ /*
+ * We failed to find a valid subset of the affinity mask for the
+ * task, so override it based on its cpuset hierarchy.
+ */
+ cpuset_cpus_allowed(p, new_mask);
+ override_mask = new_mask;
+
+out_set_mask:
+ if (printk_ratelimit()) {
+ printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
+ task_pid_nr(p), p->comm,
+ cpumask_pr_args(override_mask));
+ }
+
+ WARN_ON(set_cpus_allowed_ptr(p, override_mask));
+out_free_mask:
+ cpus_read_unlock();
+ free_cpumask_var(new_mask);
+}
+
+static int
+__sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
+
+/*
+ * Restore the affinity of a task @p which was previously restricted by a
+ * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
+ * @p->user_cpus_ptr.
+ *
+ * It is the caller's responsibility to serialise this with any calls to
+ * force_compatible_cpus_allowed_ptr(@p).
+ */
+void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
+{
+ struct cpumask *user_mask = p->user_cpus_ptr;
+ unsigned long flags;
+
+ /*
+ * Try to restore the old affinity mask. If this fails, then
+ * we free the mask explicitly to avoid it being inherited across
+ * a subsequent fork().
+ */
+ if (!user_mask || !__sched_setaffinity(p, user_mask))
+ return;
+
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ user_mask = clear_user_cpus_ptr(p);
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+ kfree(user_mask);
+}
+
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
{
#ifdef CONFIG_SCHED_DEBUG
@@ -3112,9 +3330,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
/* Look for allowed, online CPU in same node. */
for_each_cpu(dest_cpu, nodemask) {
- if (!cpu_active(dest_cpu))
- continue;
- if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
+ if (is_cpu_allowed(p, dest_cpu))
return dest_cpu;
}
}
@@ -3131,8 +3347,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
/* No more Mr. Nice Guy. */
switch (state) {
case cpuset:
- if (IS_ENABLED(CONFIG_CPUSETS)) {
- cpuset_cpus_allowed_fallback(p);
+ if (cpuset_cpus_allowed_fallback(p)) {
state = possible;
break;
}
@@ -3144,10 +3359,9 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
*
* More yuck to audit.
*/
- do_set_cpus_allowed(p, cpu_possible_mask);
+ do_set_cpus_allowed(p, task_cpu_possible_mask(p));
state = fail;
break;
-
case fail:
BUG();
break;
@@ -3562,6 +3776,55 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
}
/*
+ * Invoked from try_to_wake_up() to check whether the task can be woken up.
+ *
+ * The caller holds p::pi_lock if p != current or has preemption
+ * disabled when p == current.
+ *
+ * The rules of PREEMPT_RT saved_state:
+ *
+ * The related locking code always holds p::pi_lock when updating
+ * p::saved_state, which means the code is fully serialized in both cases.
+ *
+ * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
+ * bits set. This allows to distinguish all wakeup scenarios.
+ */
+static __always_inline
+bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
+{
+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
+ WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
+ state != TASK_RTLOCK_WAIT);
+ }
+
+ if (READ_ONCE(p->__state) & state) {
+ *success = 1;
+ return true;
+ }
+
+#ifdef CONFIG_PREEMPT_RT
+ /*
+ * Saved state preserves the task state across blocking on
+ * an RT lock. If the state matches, set p::saved_state to
+ * TASK_RUNNING, but do not wake the task because it waits
+ * for a lock wakeup. Also indicate success because from
+ * the regular waker's point of view this has succeeded.
+ *
+ * After acquiring the lock the task will restore p::__state
+ * from p::saved_state which ensures that the regular
+ * wakeup is not lost. The restore will also set
+ * p::saved_state to TASK_RUNNING so any further tests will
+ * not result in false positives vs. @success
+ */
+ if (p->saved_state & state) {
+ p->saved_state = TASK_RUNNING;
+ *success = 1;
+ }
+#endif
+ return false;
+}
+
+/*
* Notes on Program-Order guarantees on SMP systems.
*
* MIGRATION
@@ -3700,10 +3963,9 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
* - we're serialized against set_special_state() by virtue of
* it disabling IRQs (this allows not taking ->pi_lock).
*/
- if (!(READ_ONCE(p->__state) & state))
+ if (!ttwu_state_match(p, state, &success))
goto out;
- success = 1;
trace_sched_waking(p);
WRITE_ONCE(p->__state, TASK_RUNNING);
trace_sched_wakeup(p);
@@ -3718,14 +3980,11 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
*/
raw_spin_lock_irqsave(&p->pi_lock, flags);
smp_mb__after_spinlock();
- if (!(READ_ONCE(p->__state) & state))
+ if (!ttwu_state_match(p, state, &success))
goto unlock;
trace_sched_waking(p);
- /* We're going to change ->state: */
- success = 1;
-
/*
* Ensure we load p->on_rq _after_ p->state, otherwise it would
* be possible to, falsely, observe p->on_rq == 0 and get stuck
@@ -5660,11 +5919,9 @@ static bool try_steal_cookie(int this, int that)
if (p->core_occupation > dst->idle->core_occupation)
goto next;
- p->on_rq = TASK_ON_RQ_MIGRATING;
deactivate_task(src, p, 0);
set_task_cpu(p, this);
activate_task(dst, p, 0);
- p->on_rq = TASK_ON_RQ_QUEUED;
resched_curr(dst);
@@ -5736,35 +5993,109 @@ void queue_core_balance(struct rq *rq)
queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
}
-static inline void sched_core_cpu_starting(unsigned int cpu)
+static void sched_core_cpu_starting(unsigned int cpu)
{
const struct cpumask *smt_mask = cpu_smt_mask(cpu);
- struct rq *rq, *core_rq = NULL;
- int i;
+ struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
+ unsigned long flags;
+ int t;
- core_rq = cpu_rq(cpu)->core;
+ sched_core_lock(cpu, &flags);
- if (!core_rq) {
- for_each_cpu(i, smt_mask) {
- rq = cpu_rq(i);
- if (rq->core && rq->core == rq)
- core_rq = rq;
+ WARN_ON_ONCE(rq->core != rq);
+
+ /* if we're the first, we'll be our own leader */
+ if (cpumask_weight(smt_mask) == 1)
+ goto unlock;
+
+ /* find the leader */
+ for_each_cpu(t, smt_mask) {
+ if (t == cpu)
+ continue;
+ rq = cpu_rq(t);
+ if (rq->core == rq) {
+ core_rq = rq;
+ break;
}
+ }
- if (!core_rq)
- core_rq = cpu_rq(cpu);
+ if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
+ goto unlock;
- for_each_cpu(i, smt_mask) {
- rq = cpu_rq(i);
+ /* install and validate core_rq */
+ for_each_cpu(t, smt_mask) {
+ rq = cpu_rq(t);
- WARN_ON_ONCE(rq->core && rq->core != core_rq);
+ if (t == cpu)
rq->core = core_rq;
- }
+
+ WARN_ON_ONCE(rq->core != core_rq);
+ }
+
+unlock:
+ sched_core_unlock(cpu, &flags);
+}
+
+static void sched_core_cpu_deactivate(unsigned int cpu)
+{
+ const struct cpumask *smt_mask = cpu_smt_mask(cpu);
+ struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
+ unsigned long flags;
+ int t;
+
+ sched_core_lock(cpu, &flags);
+
+ /* if we're the last man standing, nothing to do */
+ if (cpumask_weight(smt_mask) == 1) {
+ WARN_ON_ONCE(rq->core != rq);
+ goto unlock;
+ }
+
+ /* if we're not the leader, nothing to do */
+ if (rq->core != rq)
+ goto unlock;
+
+ /* find a new leader */
+ for_each_cpu(t, smt_mask) {
+ if (t == cpu)
+ continue;
+ core_rq = cpu_rq(t);
+ break;
}
+
+ if (WARN_ON_ONCE(!core_rq)) /* impossible */
+ goto unlock;
+
+ /* copy the shared state to the new leader */
+ core_rq->core_task_seq = rq->core_task_seq;
+ core_rq->core_pick_seq = rq->core_pick_seq;
+ core_rq->core_cookie = rq->core_cookie;
+ core_rq->core_forceidle = rq->core_forceidle;
+ core_rq->core_forceidle_seq = rq->core_forceidle_seq;
+
+ /* install new leader */
+ for_each_cpu(t, smt_mask) {
+ rq = cpu_rq(t);
+ rq->core = core_rq;
+ }
+
+unlock:
+ sched_core_unlock(cpu, &flags);
}
+
+static inline void sched_core_cpu_dying(unsigned int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+
+ if (rq->core != rq)
+ rq->core = rq;
+}
+
#else /* !CONFIG_SCHED_CORE */
static inline void sched_core_cpu_starting(unsigned int cpu) {}
+static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
+static inline void sched_core_cpu_dying(unsigned int cpu) {}
static struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
@@ -5775,6 +6106,24 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
#endif /* CONFIG_SCHED_CORE */
/*
+ * Constants for the sched_mode argument of __schedule().
+ *
+ * The mode argument allows RT enabled kernels to differentiate a
+ * preemption from blocking on an 'sleeping' spin/rwlock. Note that
+ * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
+ * optimize the AND operation out and just check for zero.
+ */
+#define SM_NONE 0x0
+#define SM_PREEMPT 0x1
+#define SM_RTLOCK_WAIT 0x2
+
+#ifndef CONFIG_PREEMPT_RT
+# define SM_MASK_PREEMPT (~0U)
+#else
+# define SM_MASK_PREEMPT SM_PREEMPT
+#endif
+
+/*
* __schedule() is the main scheduler function.
*
* The main means of driving the scheduler and thus entering this function are:
@@ -5813,7 +6162,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
*
* WARNING: must be called with preemption disabled!
*/
-static void __sched notrace __schedule(bool preempt)
+static void __sched notrace __schedule(unsigned int sched_mode)
{
struct task_struct *prev, *next;
unsigned long *switch_count;
@@ -5826,13 +6175,13 @@ static void __sched notrace __schedule(bool preempt)
rq = cpu_rq(cpu);
prev = rq->curr;
- schedule_debug(prev, preempt);
+ schedule_debug(prev, !!sched_mode);
if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
hrtick_clear(rq);
local_irq_disable();
- rcu_note_context_switch(preempt);
+ rcu_note_context_switch(!!sched_mode);
/*
* Make sure that signal_pending_state()->signal_pending() below
@@ -5866,7 +6215,7 @@ static void __sched notrace __schedule(bool preempt)
* - ptrace_{,un}freeze_traced() can change ->state underneath us.
*/
prev_state = READ_ONCE(prev->__state);
- if (!preempt && prev_state) {
+ if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
if (signal_pending_state(prev_state, prev)) {
WRITE_ONCE(prev->__state, TASK_RUNNING);
} else {
@@ -5932,7 +6281,7 @@ static void __sched notrace __schedule(bool preempt)
migrate_disable_switch(rq, prev);
psi_sched_switch(prev, next, !task_on_rq_queued(prev));
- trace_sched_switch(preempt, prev, next);
+ trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
/* Also unlocks the rq: */
rq = context_switch(rq, prev, next, &rf);
@@ -5953,7 +6302,7 @@ void __noreturn do_task_dead(void)
/* Tell freezer to ignore us: */
current->flags |= PF_NOFREEZE;
- __schedule(false);
+ __schedule(SM_NONE);
BUG();
/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
@@ -6014,7 +6363,7 @@ asmlinkage __visible void __sched schedule(void)
sched_submit_work(tsk);
do {
preempt_disable();
- __schedule(false);
+ __schedule(SM_NONE);
sched_preempt_enable_no_resched();
} while (need_resched());
sched_update_worker(tsk);
@@ -6042,7 +6391,7 @@ void __sched schedule_idle(void)
*/
WARN_ON_ONCE(current->__state);
do {
- __schedule(false);
+ __schedule(SM_NONE);
} while (need_resched());
}
@@ -6077,6 +6426,18 @@ void __sched schedule_preempt_disabled(void)
preempt_disable();
}
+#ifdef CONFIG_PREEMPT_RT
+void __sched notrace schedule_rtlock(void)
+{
+ do {
+ preempt_disable();
+ __schedule(SM_RTLOCK_WAIT);
+ sched_preempt_enable_no_resched();
+ } while (need_resched());
+}
+NOKPROBE_SYMBOL(schedule_rtlock);
+#endif
+
static void __sched notrace preempt_schedule_common(void)
{
do {
@@ -6095,7 +6456,7 @@ static void __sched notrace preempt_schedule_common(void)
*/
preempt_disable_notrace();
preempt_latency_start(1);
- __schedule(true);
+ __schedule(SM_PREEMPT);
preempt_latency_stop(1);
preempt_enable_no_resched_notrace();
@@ -6174,7 +6535,7 @@ asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
* an infinite recursion.
*/
prev_ctx = exception_enter();
- __schedule(true);
+ __schedule(SM_PREEMPT);
exception_exit(prev_ctx);
preempt_latency_stop(1);
@@ -6323,7 +6684,7 @@ asmlinkage __visible void __sched preempt_schedule_irq(void)
do {
preempt_disable();
local_irq_enable();
- __schedule(true);
+ __schedule(SM_PREEMPT);
local_irq_disable();
sched_preempt_enable_no_resched();
} while (need_resched());
@@ -7300,6 +7661,16 @@ err_size:
return -E2BIG;
}
+static void get_params(struct task_struct *p, struct sched_attr *attr)
+{
+ if (task_has_dl_policy(p))
+ __getparam_dl(p, attr);
+ else if (task_has_rt_policy(p))
+ attr->sched_priority = p->rt_priority;
+ else
+ attr->sched_nice = task_nice(p);
+}
+
/**
* sys_sched_setscheduler - set/change the scheduler policy and RT priority
* @pid: the pid in question.
@@ -7361,6 +7732,8 @@ SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
rcu_read_unlock();
if (likely(p)) {
+ if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
+ get_params(p, &attr);
retval = sched_setattr(p, &attr);
put_task_struct(p);
}
@@ -7509,12 +7882,8 @@ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
kattr.sched_policy = p->policy;
if (p->sched_reset_on_fork)
kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
- if (task_has_dl_policy(p))
- __getparam_dl(p, &kattr);
- else if (task_has_rt_policy(p))
- kattr.sched_priority = p->rt_priority;
- else
- kattr.sched_nice = task_nice(p);
+ get_params(p, &kattr);
+ kattr.sched_flags &= SCHED_FLAG_ALL;
#ifdef CONFIG_UCLAMP_TASK
/*
@@ -7535,9 +7904,76 @@ out_unlock:
return retval;
}
-long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
+#ifdef CONFIG_SMP
+int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
{
+ int ret = 0;
+
+ /*
+ * If the task isn't a deadline task or admission control is
+ * disabled then we don't care about affinity changes.
+ */
+ if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
+ return 0;
+
+ /*
+ * Since bandwidth control happens on root_domain basis,
+ * if admission test is enabled, we only admit -deadline
+ * tasks allowed to run on all the CPUs in the task's
+ * root_domain.
+ */
+ rcu_read_lock();
+ if (!cpumask_subset(task_rq(p)->rd->span, mask))
+ ret = -EBUSY;
+ rcu_read_unlock();
+ return ret;
+}
+#endif
+
+static int
+__sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
+{
+ int retval;
cpumask_var_t cpus_allowed, new_mask;
+
+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
+ return -ENOMEM;
+
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
+ retval = -ENOMEM;
+ goto out_free_cpus_allowed;
+ }
+
+ cpuset_cpus_allowed(p, cpus_allowed);
+ cpumask_and(new_mask, mask, cpus_allowed);
+
+ retval = dl_task_check_affinity(p, new_mask);
+ if (retval)
+ goto out_free_new_mask;
+again:
+ retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
+ if (retval)
+ goto out_free_new_mask;
+
+ cpuset_cpus_allowed(p, cpus_allowed);
+ if (!cpumask_subset(new_mask, cpus_allowed)) {
+ /*
+ * We must have raced with a concurrent cpuset update.
+ * Just reset the cpumask to the cpuset's cpus_allowed.
+ */
+ cpumask_copy(new_mask, cpus_allowed);
+ goto again;
+ }
+
+out_free_new_mask:
+ free_cpumask_var(new_mask);
+out_free_cpus_allowed:
+ free_cpumask_var(cpus_allowed);
+ return retval;
+}
+
+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
+{
struct task_struct *p;
int retval;
@@ -7557,68 +7993,22 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
retval = -EINVAL;
goto out_put_task;
}
- if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
- retval = -ENOMEM;
- goto out_put_task;
- }
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
- retval = -ENOMEM;
- goto out_free_cpus_allowed;
- }
- retval = -EPERM;
+
if (!check_same_owner(p)) {
rcu_read_lock();
if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
rcu_read_unlock();
- goto out_free_new_mask;
+ retval = -EPERM;
+ goto out_put_task;
}
rcu_read_unlock();
}
retval = security_task_setscheduler(p);
if (retval)
- goto out_free_new_mask;
-
-
- cpuset_cpus_allowed(p, cpus_allowed);
- cpumask_and(new_mask, in_mask, cpus_allowed);
-
- /*
- * Since bandwidth control happens on root_domain basis,
- * if admission test is enabled, we only admit -deadline
- * tasks allowed to run on all the CPUs in the task's
- * root_domain.
- */
-#ifdef CONFIG_SMP
- if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
- rcu_read_lock();
- if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
- retval = -EBUSY;
- rcu_read_unlock();
- goto out_free_new_mask;
- }
- rcu_read_unlock();
- }
-#endif
-again:
- retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
+ goto out_put_task;
- if (!retval) {
- cpuset_cpus_allowed(p, cpus_allowed);
- if (!cpumask_subset(new_mask, cpus_allowed)) {
- /*
- * We must have raced with a concurrent cpuset
- * update. Just reset the cpus_allowed to the
- * cpuset's cpus_allowed
- */
- cpumask_copy(new_mask, cpus_allowed);
- goto again;
- }
- }
-out_free_new_mask:
- free_cpumask_var(new_mask);
-out_free_cpus_allowed:
- free_cpumask_var(cpus_allowed);
+ retval = __sched_setaffinity(p, in_mask);
out_put_task:
put_task_struct(p);
return retval;
@@ -7761,6 +8151,17 @@ int __sched __cond_resched(void)
preempt_schedule_common();
return 1;
}
+ /*
+ * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
+ * whether the current CPU is in an RCU read-side critical section,
+ * so the tick can report quiescent states even for CPUs looping
+ * in kernel context. In contrast, in non-preemptible kernels,
+ * RCU readers leave no in-memory hints, which means that CPU-bound
+ * processes executing in kernel context might never report an
+ * RCU quiescent state. Therefore, the following code causes
+ * cond_resched() to report a quiescent state, but only when RCU
+ * is in urgent need of one.
+ */
#ifndef CONFIG_PREEMPT_RCU
rcu_all_qs();
#endif
@@ -8707,6 +9108,8 @@ int sched_cpu_deactivate(unsigned int cpu)
*/
if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
static_branch_dec_cpuslocked(&sched_smt_present);
+
+ sched_core_cpu_deactivate(cpu);
#endif
if (!sched_smp_initialized)
@@ -8811,6 +9214,7 @@ int sched_cpu_dying(unsigned int cpu)
calc_load_migrate(rq);
update_max_interval();
hrtick_clear(rq);
+ sched_core_cpu_dying(cpu);
return 0;
}
#endif
@@ -9022,7 +9426,7 @@ void __init sched_init(void)
atomic_set(&rq->nr_iowait, 0);
#ifdef CONFIG_SCHED_CORE
- rq->core = NULL;
+ rq->core = rq;
rq->core_pick = NULL;
rq->core_enabled = 0;
rq->core_tree = RB_ROOT;
@@ -9804,7 +10208,7 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
* Prevent race between setting of cfs_rq->runtime_enabled and
* unthrottle_offline_cfs_rqs().
*/
- get_online_cpus();
+ cpus_read_lock();
mutex_lock(&cfs_constraints_mutex);
ret = __cfs_schedulable(tg, period, quota);
if (ret)
@@ -9848,7 +10252,7 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
cfs_bandwidth_usage_dec();
out_unlock:
mutex_unlock(&cfs_constraints_mutex);
- put_online_cpus();
+ cpus_read_unlock();
return ret;
}
@@ -10099,6 +10503,20 @@ static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
}
#endif /* CONFIG_RT_GROUP_SCHED */
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ return css_tg(css)->idle;
+}
+
+static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
+ struct cftype *cft, s64 idle)
+{
+ return sched_group_set_idle(css_tg(css), idle);
+}
+#endif
+
static struct cftype cpu_legacy_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
{
@@ -10106,6 +10524,11 @@ static struct cftype cpu_legacy_files[] = {
.read_u64 = cpu_shares_read_u64,
.write_u64 = cpu_shares_write_u64,
},
+ {
+ .name = "idle",
+ .read_s64 = cpu_idle_read_s64,
+ .write_s64 = cpu_idle_write_s64,
+ },
#endif
#ifdef CONFIG_CFS_BANDWIDTH
{
@@ -10313,6 +10736,12 @@ static struct cftype cpu_files[] = {
.read_s64 = cpu_weight_nice_read_s64,
.write_s64 = cpu_weight_nice_write_s64,
},
+ {
+ .name = "idle",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .read_s64 = cpu_idle_read_s64,
+ .write_s64 = cpu_idle_write_s64,
+ },
#endif
#ifdef CONFIG_CFS_BANDWIDTH
{
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index 57124614363d..e7af18857371 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -537,9 +537,17 @@ static struct attribute *sugov_attrs[] = {
};
ATTRIBUTE_GROUPS(sugov);
+static void sugov_tunables_free(struct kobject *kobj)
+{
+ struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
+
+ kfree(to_sugov_tunables(attr_set));
+}
+
static struct kobj_type sugov_tunables_ktype = {
.default_groups = sugov_groups,
.sysfs_ops = &governor_sysfs_ops,
+ .release = &sugov_tunables_free,
};
/********************** cpufreq governor interface *********************/
@@ -639,12 +647,10 @@ static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_polic
return tunables;
}
-static void sugov_tunables_free(struct sugov_tunables *tunables)
+static void sugov_clear_global_tunables(void)
{
if (!have_governor_per_policy())
global_tunables = NULL;
-
- kfree(tunables);
}
static int sugov_init(struct cpufreq_policy *policy)
@@ -707,7 +713,7 @@ out:
fail:
kobject_put(&tunables->attr_set.kobj);
policy->governor_data = NULL;
- sugov_tunables_free(tunables);
+ sugov_clear_global_tunables();
stop_kthread:
sugov_kthread_stop(sg_policy);
@@ -734,7 +740,7 @@ static void sugov_exit(struct cpufreq_policy *policy)
count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
policy->governor_data = NULL;
if (!count)
- sugov_tunables_free(tunables);
+ sugov_clear_global_tunables();
mutex_unlock(&global_tunables_lock);
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index aaacd6cfd42f..e94314633b39 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -1733,6 +1733,7 @@ static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused
*/
raw_spin_rq_lock(rq);
if (p->dl.dl_non_contending) {
+ update_rq_clock(rq);
sub_running_bw(&p->dl, &rq->dl);
p->dl.dl_non_contending = 0;
/*
@@ -2741,7 +2742,7 @@ void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
dl_se->dl_runtime = attr->sched_runtime;
dl_se->dl_deadline = attr->sched_deadline;
dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
- dl_se->flags = attr->sched_flags;
+ dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
}
@@ -2754,7 +2755,8 @@ void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
attr->sched_runtime = dl_se->dl_runtime;
attr->sched_deadline = dl_se->dl_deadline;
attr->sched_period = dl_se->dl_period;
- attr->sched_flags = dl_se->flags;
+ attr->sched_flags &= ~SCHED_DL_FLAGS;
+ attr->sched_flags |= dl_se->flags;
}
/*
@@ -2851,7 +2853,7 @@ bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
if (dl_se->dl_runtime != attr->sched_runtime ||
dl_se->dl_deadline != attr->sched_deadline ||
dl_se->dl_period != attr->sched_period ||
- dl_se->flags != attr->sched_flags)
+ dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
return true;
return false;
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index 0c5ec2776ddf..49716228efb4 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -388,6 +388,13 @@ void update_sched_domain_debugfs(void)
{
int cpu, i;
+ /*
+ * This can unfortunately be invoked before sched_debug_init() creates
+ * the debug directory. Don't touch sd_sysctl_cpus until then.
+ */
+ if (!debugfs_sched)
+ return;
+
if (!cpumask_available(sd_sysctl_cpus)) {
if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
return;
@@ -600,6 +607,9 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
cfs_rq->nr_spread_over);
SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
+ SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
+ SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
+ cfs_rq->idle_h_nr_running);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
#ifdef CONFIG_SMP
SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 44c452072a1b..ff69f245b939 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -431,6 +431,23 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse)
}
}
+static int tg_is_idle(struct task_group *tg)
+{
+ return tg->idle > 0;
+}
+
+static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->idle > 0;
+}
+
+static int se_is_idle(struct sched_entity *se)
+{
+ if (entity_is_task(se))
+ return task_has_idle_policy(task_of(se));
+ return cfs_rq_is_idle(group_cfs_rq(se));
+}
+
#else /* !CONFIG_FAIR_GROUP_SCHED */
#define for_each_sched_entity(se) \
@@ -468,6 +485,21 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}
+static inline int tg_is_idle(struct task_group *tg)
+{
+ return 0;
+}
+
+static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
+{
+ return 0;
+}
+
+static int se_is_idle(struct sched_entity *se)
+{
+ return 0;
+}
+
#endif /* CONFIG_FAIR_GROUP_SCHED */
static __always_inline
@@ -1486,7 +1518,7 @@ static inline bool is_core_idle(int cpu)
if (cpu == sibling)
continue;
- if (!idle_cpu(cpu))
+ if (!idle_cpu(sibling))
return false;
}
#endif
@@ -4841,6 +4873,9 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
+ if (cfs_rq_is_idle(group_cfs_rq(se)))
+ idle_task_delta = cfs_rq->h_nr_running;
+
qcfs_rq->h_nr_running -= task_delta;
qcfs_rq->idle_h_nr_running -= idle_task_delta;
@@ -4860,6 +4895,9 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
update_load_avg(qcfs_rq, se, 0);
se_update_runnable(se);
+ if (cfs_rq_is_idle(group_cfs_rq(se)))
+ idle_task_delta = cfs_rq->h_nr_running;
+
qcfs_rq->h_nr_running -= task_delta;
qcfs_rq->idle_h_nr_running -= idle_task_delta;
}
@@ -4904,39 +4942,45 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
task_delta = cfs_rq->h_nr_running;
idle_task_delta = cfs_rq->idle_h_nr_running;
for_each_sched_entity(se) {
+ struct cfs_rq *qcfs_rq = cfs_rq_of(se);
+
if (se->on_rq)
break;
- cfs_rq = cfs_rq_of(se);
- enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
+ enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
+
+ if (cfs_rq_is_idle(group_cfs_rq(se)))
+ idle_task_delta = cfs_rq->h_nr_running;
- cfs_rq->h_nr_running += task_delta;
- cfs_rq->idle_h_nr_running += idle_task_delta;
+ qcfs_rq->h_nr_running += task_delta;
+ qcfs_rq->idle_h_nr_running += idle_task_delta;
/* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
+ if (cfs_rq_throttled(qcfs_rq))
goto unthrottle_throttle;
}
for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
+ struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- update_load_avg(cfs_rq, se, UPDATE_TG);
+ update_load_avg(qcfs_rq, se, UPDATE_TG);
se_update_runnable(se);
- cfs_rq->h_nr_running += task_delta;
- cfs_rq->idle_h_nr_running += idle_task_delta;
+ if (cfs_rq_is_idle(group_cfs_rq(se)))
+ idle_task_delta = cfs_rq->h_nr_running;
+ qcfs_rq->h_nr_running += task_delta;
+ qcfs_rq->idle_h_nr_running += idle_task_delta;
/* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
+ if (cfs_rq_throttled(qcfs_rq))
goto unthrottle_throttle;
/*
* One parent has been throttled and cfs_rq removed from the
* list. Add it back to not break the leaf list.
*/
- if (throttled_hierarchy(cfs_rq))
- list_add_leaf_cfs_rq(cfs_rq);
+ if (throttled_hierarchy(qcfs_rq))
+ list_add_leaf_cfs_rq(qcfs_rq);
}
/* At this point se is NULL and we are at root level*/
@@ -4949,9 +4993,9 @@ unthrottle_throttle:
* assertion below.
*/
for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
+ struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- if (list_add_leaf_cfs_rq(cfs_rq))
+ if (list_add_leaf_cfs_rq(qcfs_rq))
break;
}
@@ -5574,6 +5618,9 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
+ if (cfs_rq_is_idle(cfs_rq))
+ idle_h_nr_running = 1;
+
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto enqueue_throttle;
@@ -5591,6 +5638,9 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
+ if (cfs_rq_is_idle(cfs_rq))
+ idle_h_nr_running = 1;
+
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto enqueue_throttle;
@@ -5668,6 +5718,9 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cfs_rq->h_nr_running--;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
+ if (cfs_rq_is_idle(cfs_rq))
+ idle_h_nr_running = 1;
+
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto dequeue_throttle;
@@ -5697,6 +5750,9 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cfs_rq->h_nr_running--;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
+ if (cfs_rq_is_idle(cfs_rq))
+ idle_h_nr_running = 1;
+
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto dequeue_throttle;
@@ -6249,7 +6305,7 @@ static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool
time = cpu_clock(this);
}
- for_each_cpu_wrap(cpu, cpus, target) {
+ for_each_cpu_wrap(cpu, cpus, target + 1) {
if (has_idle_core) {
i = select_idle_core(p, cpu, cpus, &idle_cpu);
if ((unsigned int)i < nr_cpumask_bits)
@@ -6376,6 +6432,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
/* Check a recently used CPU as a potential idle candidate: */
recent_used_cpu = p->recent_used_cpu;
+ p->recent_used_cpu = prev;
if (recent_used_cpu != prev &&
recent_used_cpu != target &&
cpus_share_cache(recent_used_cpu, target) &&
@@ -6902,9 +6959,6 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
} else if (wake_flags & WF_TTWU) { /* XXX always ? */
/* Fast path */
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
-
- if (want_affine)
- current->recent_used_cpu = cpu;
}
rcu_read_unlock();
@@ -7041,24 +7095,22 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
static void set_last_buddy(struct sched_entity *se)
{
- if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
- return;
-
for_each_sched_entity(se) {
if (SCHED_WARN_ON(!se->on_rq))
return;
+ if (se_is_idle(se))
+ return;
cfs_rq_of(se)->last = se;
}
}
static void set_next_buddy(struct sched_entity *se)
{
- if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
- return;
-
for_each_sched_entity(se) {
if (SCHED_WARN_ON(!se->on_rq))
return;
+ if (se_is_idle(se))
+ return;
cfs_rq_of(se)->next = se;
}
}
@@ -7079,6 +7131,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
int scale = cfs_rq->nr_running >= sched_nr_latency;
int next_buddy_marked = 0;
+ int cse_is_idle, pse_is_idle;
if (unlikely(se == pse))
return;
@@ -7123,8 +7176,21 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
return;
find_matching_se(&se, &pse);
- update_curr(cfs_rq_of(se));
BUG_ON(!pse);
+
+ cse_is_idle = se_is_idle(se);
+ pse_is_idle = se_is_idle(pse);
+
+ /*
+ * Preempt an idle group in favor of a non-idle group (and don't preempt
+ * in the inverse case).
+ */
+ if (cse_is_idle && !pse_is_idle)
+ goto preempt;
+ if (cse_is_idle != pse_is_idle)
+ return;
+
+ update_curr(cfs_rq_of(se));
if (wakeup_preempt_entity(se, pse) == 1) {
/*
* Bias pick_next to pick the sched entity that is
@@ -10217,9 +10283,11 @@ static inline int on_null_domain(struct rq *rq)
static inline int find_new_ilb(void)
{
int ilb;
+ const struct cpumask *hk_mask;
+
+ hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
- for_each_cpu_and(ilb, nohz.idle_cpus_mask,
- housekeeping_cpumask(HK_FLAG_MISC)) {
+ for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
if (ilb == smp_processor_id())
continue;
@@ -11416,10 +11484,12 @@ void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
static DEFINE_MUTEX(shares_mutex);
-int sched_group_set_shares(struct task_group *tg, unsigned long shares)
+static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
int i;
+ lockdep_assert_held(&shares_mutex);
+
/*
* We can't change the weight of the root cgroup.
*/
@@ -11428,9 +11498,8 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
- mutex_lock(&shares_mutex);
if (tg->shares == shares)
- goto done;
+ return 0;
tg->shares = shares;
for_each_possible_cpu(i) {
@@ -11448,10 +11517,88 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
rq_unlock_irqrestore(rq, &rf);
}
-done:
+ return 0;
+}
+
+int sched_group_set_shares(struct task_group *tg, unsigned long shares)
+{
+ int ret;
+
+ mutex_lock(&shares_mutex);
+ if (tg_is_idle(tg))
+ ret = -EINVAL;
+ else
+ ret = __sched_group_set_shares(tg, shares);
+ mutex_unlock(&shares_mutex);
+
+ return ret;
+}
+
+int sched_group_set_idle(struct task_group *tg, long idle)
+{
+ int i;
+
+ if (tg == &root_task_group)
+ return -EINVAL;
+
+ if (idle < 0 || idle > 1)
+ return -EINVAL;
+
+ mutex_lock(&shares_mutex);
+
+ if (tg->idle == idle) {
+ mutex_unlock(&shares_mutex);
+ return 0;
+ }
+
+ tg->idle = idle;
+
+ for_each_possible_cpu(i) {
+ struct rq *rq = cpu_rq(i);
+ struct sched_entity *se = tg->se[i];
+ struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
+ bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
+ long idle_task_delta;
+ struct rq_flags rf;
+
+ rq_lock_irqsave(rq, &rf);
+
+ grp_cfs_rq->idle = idle;
+ if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
+ goto next_cpu;
+
+ idle_task_delta = grp_cfs_rq->h_nr_running -
+ grp_cfs_rq->idle_h_nr_running;
+ if (!cfs_rq_is_idle(grp_cfs_rq))
+ idle_task_delta *= -1;
+
+ for_each_sched_entity(se) {
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ if (!se->on_rq)
+ break;
+
+ cfs_rq->idle_h_nr_running += idle_task_delta;
+
+ /* Already accounted at parent level and above. */
+ if (cfs_rq_is_idle(cfs_rq))
+ break;
+ }
+
+next_cpu:
+ rq_unlock_irqrestore(rq, &rf);
+ }
+
+ /* Idle groups have minimum weight. */
+ if (tg_is_idle(tg))
+ __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
+ else
+ __sched_group_set_shares(tg, NICE_0_LOAD);
+
mutex_unlock(&shares_mutex);
return 0;
}
+
#else /* CONFIG_FAIR_GROUP_SCHED */
void free_fair_sched_group(struct task_group *tg) { }
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 14a41a243f7b..3d3e5793e117 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -227,6 +227,8 @@ static inline void update_avg(u64 *avg, u64 sample)
*/
#define SCHED_FLAG_SUGOV 0x10000000
+#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
+
static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
{
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
@@ -394,6 +396,9 @@ struct task_group {
struct cfs_rq **cfs_rq;
unsigned long shares;
+ /* A positive value indicates that this is a SCHED_IDLE group. */
+ int idle;
+
#ifdef CONFIG_SMP
/*
* load_avg can be heavily contended at clock tick time, so put
@@ -503,6 +508,8 @@ extern void sched_move_task(struct task_struct *tsk);
#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
+extern int sched_group_set_idle(struct task_group *tg, long idle);
+
#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next);
@@ -599,6 +606,9 @@ struct cfs_rq {
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
+ /* Locally cached copy of our task_group's idle value */
+ int idle;
+
#ifdef CONFIG_CFS_BANDWIDTH
int runtime_enabled;
s64 runtime_remaining;
@@ -1093,7 +1103,7 @@ struct rq {
unsigned int core_sched_seq;
struct rb_root core_tree;
- /* shared state */
+ /* shared state -- careful with sched_core_cpu_deactivate() */
unsigned int core_task_seq;
unsigned int core_pick_seq;
unsigned long core_cookie;
@@ -2234,6 +2244,7 @@ extern struct task_struct *pick_next_task_idle(struct rq *rq);
#define SCA_CHECK 0x01
#define SCA_MIGRATE_DISABLE 0x02
#define SCA_MIGRATE_ENABLE 0x04
+#define SCA_USER 0x08
#ifdef CONFIG_SMP
@@ -2255,6 +2266,9 @@ static inline struct task_struct *get_push_task(struct rq *rq)
if (p->nr_cpus_allowed == 1)
return NULL;
+ if (p->migration_disabled)
+ return NULL;
+
rq->push_busy = true;
return get_task_struct(p);
}
@@ -2385,6 +2399,21 @@ extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;
+#ifdef CONFIG_SCHED_DEBUG
+extern unsigned int sysctl_sched_latency;
+extern unsigned int sysctl_sched_min_granularity;
+extern unsigned int sysctl_sched_wakeup_granularity;
+extern int sysctl_resched_latency_warn_ms;
+extern int sysctl_resched_latency_warn_once;
+
+extern unsigned int sysctl_sched_tunable_scaling;
+
+extern unsigned int sysctl_numa_balancing_scan_delay;
+extern unsigned int sysctl_numa_balancing_scan_period_min;
+extern unsigned int sysctl_numa_balancing_scan_period_max;
+extern unsigned int sysctl_numa_balancing_scan_size;
+#endif
+
#ifdef CONFIG_SCHED_HRTICK
/*
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index b77ad49dc14f..4e8698e62f07 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -1482,6 +1482,8 @@ int sched_max_numa_distance;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
+
+static unsigned long __read_mostly *sched_numa_onlined_nodes;
#endif
/*
@@ -1833,6 +1835,16 @@ void sched_init_numa(void)
sched_domains_numa_masks[i][j] = mask;
for_each_node(k) {
+ /*
+ * Distance information can be unreliable for
+ * offline nodes, defer building the node
+ * masks to its bringup.
+ * This relies on all unique distance values
+ * still being visible at init time.
+ */
+ if (!node_online(j))
+ continue;
+
if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
sched_numa_warn("Node-distance not symmetric");
@@ -1886,6 +1898,53 @@ void sched_init_numa(void)
sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
init_numa_topology_type();
+
+ sched_numa_onlined_nodes = bitmap_alloc(nr_node_ids, GFP_KERNEL);
+ if (!sched_numa_onlined_nodes)
+ return;
+
+ bitmap_zero(sched_numa_onlined_nodes, nr_node_ids);
+ for_each_online_node(i)
+ bitmap_set(sched_numa_onlined_nodes, i, 1);
+}
+
+static void __sched_domains_numa_masks_set(unsigned int node)
+{
+ int i, j;
+
+ /*
+ * NUMA masks are not built for offline nodes in sched_init_numa().
+ * Thus, when a CPU of a never-onlined-before node gets plugged in,
+ * adding that new CPU to the right NUMA masks is not sufficient: the
+ * masks of that CPU's node must also be updated.
+ */
+ if (test_bit(node, sched_numa_onlined_nodes))
+ return;
+
+ bitmap_set(sched_numa_onlined_nodes, node, 1);
+
+ for (i = 0; i < sched_domains_numa_levels; i++) {
+ for (j = 0; j < nr_node_ids; j++) {
+ if (!node_online(j) || node == j)
+ continue;
+
+ if (node_distance(j, node) > sched_domains_numa_distance[i])
+ continue;
+
+ /* Add remote nodes in our masks */
+ cpumask_or(sched_domains_numa_masks[i][node],
+ sched_domains_numa_masks[i][node],
+ sched_domains_numa_masks[0][j]);
+ }
+ }
+
+ /*
+ * A new node has been brought up, potentially changing the topology
+ * classification.
+ *
+ * Note that this is racy vs any use of sched_numa_topology_type :/
+ */
+ init_numa_topology_type();
}
void sched_domains_numa_masks_set(unsigned int cpu)
@@ -1893,8 +1952,14 @@ void sched_domains_numa_masks_set(unsigned int cpu)
int node = cpu_to_node(cpu);
int i, j;
+ __sched_domains_numa_masks_set(node);
+
for (i = 0; i < sched_domains_numa_levels; i++) {
for (j = 0; j < nr_node_ids; j++) {
+ if (!node_online(j))
+ continue;
+
+ /* Set ourselves in the remote node's masks */
if (node_distance(j, node) <= sched_domains_numa_distance[i])
cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
}
diff --git a/kernel/signal.c b/kernel/signal.c
index a3229add4455..52b6abec0ff8 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -1413,6 +1413,21 @@ struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
return sighand;
}
+#ifdef CONFIG_LOCKDEP
+void lockdep_assert_task_sighand_held(struct task_struct *task)
+{
+ struct sighand_struct *sighand;
+
+ rcu_read_lock();
+ sighand = rcu_dereference(task->sighand);
+ if (sighand)
+ lockdep_assert_held(&sighand->siglock);
+ else
+ WARN_ON_ONCE(1);
+ rcu_read_unlock();
+}
+#endif
+
/*
* send signal info to all the members of a group
*/
diff --git a/kernel/smp.c b/kernel/smp.c
index 52bf159ec400..f43ede0ab183 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -764,7 +764,7 @@ int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
EXPORT_SYMBOL(smp_call_function_single);
/**
- * smp_call_function_single_async(): Run an asynchronous function on a
+ * smp_call_function_single_async() - Run an asynchronous function on a
* specific CPU.
* @cpu: The CPU to run on.
* @csd: Pre-allocated and setup data structure
@@ -783,6 +783,8 @@ EXPORT_SYMBOL(smp_call_function_single);
*
* NOTE: Be careful, there is unfortunately no current debugging facility to
* validate the correctness of this serialization.
+ *
+ * Return: %0 on success or negative errno value on error
*/
int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
{
@@ -974,7 +976,7 @@ static void smp_call_function_many_cond(const struct cpumask *mask,
* @mask: The set of cpus to run on (only runs on online subset).
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
- * @flags: Bitmask that controls the operation. If %SCF_WAIT is set, wait
+ * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
* (atomically) until function has completed on other CPUs. If
* %SCF_RUN_LOCAL is set, the function will also be run locally
* if the local CPU is set in the @cpumask.
@@ -1180,7 +1182,13 @@ void wake_up_all_idle_cpus(void)
EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
/**
- * smp_call_on_cpu - Call a function on a specific cpu
+ * struct smp_call_on_cpu_struct - Call a function on a specific CPU
+ * @work: &work_struct
+ * @done: &completion to signal
+ * @func: function to call
+ * @data: function's data argument
+ * @ret: return value from @func
+ * @cpu: target CPU (%-1 for any CPU)
*
* Used to call a function on a specific cpu and wait for it to return.
* Optionally make sure the call is done on a specified physical cpu via vcpu
diff --git a/kernel/smpboot.c b/kernel/smpboot.c
index cf6acab78538..f6bc0bc8a2aa 100644
--- a/kernel/smpboot.c
+++ b/kernel/smpboot.c
@@ -291,7 +291,7 @@ int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
unsigned int cpu;
int ret = 0;
- get_online_cpus();
+ cpus_read_lock();
mutex_lock(&smpboot_threads_lock);
for_each_online_cpu(cpu) {
ret = __smpboot_create_thread(plug_thread, cpu);
@@ -304,7 +304,7 @@ int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
list_add(&plug_thread->list, &hotplug_threads);
out:
mutex_unlock(&smpboot_threads_lock);
- put_online_cpus();
+ cpus_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
@@ -317,12 +317,12 @@ EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
*/
void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
{
- get_online_cpus();
+ cpus_read_lock();
mutex_lock(&smpboot_threads_lock);
list_del(&plug_thread->list);
smpboot_destroy_threads(plug_thread);
mutex_unlock(&smpboot_threads_lock);
- put_online_cpus();
+ cpus_read_unlock();
}
EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
diff --git a/kernel/softirq.c b/kernel/softirq.c
index f3a012179f47..322b65d45676 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -422,7 +422,7 @@ static inline void invoke_softirq(void)
if (ksoftirqd_running(local_softirq_pending()))
return;
- if (!force_irqthreads || !__this_cpu_read(ksoftirqd)) {
+ if (!force_irqthreads() || !__this_cpu_read(ksoftirqd)) {
#ifdef CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK
/*
* We can safely execute softirq on the current stack if
diff --git a/kernel/sys.c b/kernel/sys.c
index ef1a78f5d71c..72c7639e3c98 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -480,7 +480,8 @@ static int set_user(struct cred *new)
* failure to the execve() stage.
*/
if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
- new_user != INIT_USER)
+ new_user != INIT_USER &&
+ !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
current->flags |= PF_NPROC_EXCEEDED;
else
current->flags &= ~PF_NPROC_EXCEEDED;
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 272f4a272f8c..25e49b4d8049 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -536,6 +536,21 @@ static void proc_put_char(void **buf, size_t *size, char c)
}
}
+static int do_proc_dobool_conv(bool *negp, unsigned long *lvalp,
+ int *valp,
+ int write, void *data)
+{
+ if (write) {
+ *(bool *)valp = *lvalp;
+ } else {
+ int val = *(bool *)valp;
+
+ *lvalp = (unsigned long)val;
+ *negp = false;
+ }
+ return 0;
+}
+
static int do_proc_dointvec_conv(bool *negp, unsigned long *lvalp,
int *valp,
int write, void *data)
@@ -799,6 +814,26 @@ static int do_proc_douintvec(struct ctl_table *table, int write,
}
/**
+ * proc_dobool - read/write a bool
+ * @table: the sysctl table
+ * @write: %TRUE if this is a write to the sysctl file
+ * @buffer: the user buffer
+ * @lenp: the size of the user buffer
+ * @ppos: file position
+ *
+ * Reads/writes up to table->maxlen/sizeof(unsigned int) integer
+ * values from/to the user buffer, treated as an ASCII string.
+ *
+ * Returns 0 on success.
+ */
+int proc_dobool(struct ctl_table *table, int write, void *buffer,
+ size_t *lenp, loff_t *ppos)
+{
+ return do_proc_dointvec(table, write, buffer, lenp, ppos,
+ do_proc_dobool_conv, NULL);
+}
+
+/**
* proc_dointvec - read a vector of integers
* @table: the sysctl table
* @write: %TRUE if this is a write to the sysctl file
@@ -1630,6 +1665,12 @@ int proc_dostring(struct ctl_table *table, int write,
return -ENOSYS;
}
+int proc_dobool(struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
+{
+ return -ENOSYS;
+}
+
int proc_dointvec(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
@@ -3425,6 +3466,7 @@ int __init sysctl_init(void)
* No sense putting this after each symbol definition, twice,
* exception granted :-)
*/
+EXPORT_SYMBOL(proc_dobool);
EXPORT_SYMBOL(proc_dointvec);
EXPORT_SYMBOL(proc_douintvec);
EXPORT_SYMBOL(proc_dointvec_jiffies);
diff --git a/kernel/time/clocksource-wdtest.c b/kernel/time/clocksource-wdtest.c
index 01df12395c0e..df922f49d171 100644
--- a/kernel/time/clocksource-wdtest.c
+++ b/kernel/time/clocksource-wdtest.c
@@ -19,6 +19,8 @@
#include <linux/prandom.h>
#include <linux/cpu.h>
+#include "tick-internal.h"
+
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul E. McKenney <paulmck@kernel.org>");
@@ -34,9 +36,6 @@ static u64 wdtest_jiffies_read(struct clocksource *cs)
return (u64)jiffies;
}
-/* Assume HZ > 100. */
-#define JIFFIES_SHIFT 8
-
static struct clocksource clocksource_wdtest_jiffies = {
.name = "wdtest-jiffies",
.rating = 1, /* lowest valid rating*/
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index b89c76e1c02c..b8a14d2fb5ba 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -306,12 +306,12 @@ void clocksource_verify_percpu(struct clocksource *cs)
return;
cpumask_clear(&cpus_ahead);
cpumask_clear(&cpus_behind);
- get_online_cpus();
+ cpus_read_lock();
preempt_disable();
clocksource_verify_choose_cpus();
if (cpumask_weight(&cpus_chosen) == 0) {
preempt_enable();
- put_online_cpus();
+ cpus_read_unlock();
pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
return;
}
@@ -337,7 +337,7 @@ void clocksource_verify_percpu(struct clocksource *cs)
cs_nsec_min = cs_nsec;
}
preempt_enable();
- put_online_cpus();
+ cpus_read_unlock();
if (!cpumask_empty(&cpus_ahead))
pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index 4a66725b1d4a..0ea8702eb516 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -652,21 +652,10 @@ static inline int hrtimer_hres_active(void)
return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}
-/*
- * Reprogram the event source with checking both queues for the
- * next event
- * Called with interrupts disabled and base->lock held
- */
-static void
-hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
+static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
+ struct hrtimer *next_timer,
+ ktime_t expires_next)
{
- ktime_t expires_next;
-
- expires_next = hrtimer_update_next_event(cpu_base);
-
- if (skip_equal && expires_next == cpu_base->expires_next)
- return;
-
cpu_base->expires_next = expires_next;
/*
@@ -689,7 +678,25 @@ hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
return;
- tick_program_event(cpu_base->expires_next, 1);
+ tick_program_event(expires_next, 1);
+}
+
+/*
+ * Reprogram the event source with checking both queues for the
+ * next event
+ * Called with interrupts disabled and base->lock held
+ */
+static void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
+{
+ ktime_t expires_next;
+
+ expires_next = hrtimer_update_next_event(cpu_base);
+
+ if (skip_equal && expires_next == cpu_base->expires_next)
+ return;
+
+ __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
}
/* High resolution timer related functions */
@@ -720,23 +727,7 @@ static inline int hrtimer_is_hres_enabled(void)
return hrtimer_hres_enabled;
}
-/*
- * Retrigger next event is called after clock was set
- *
- * Called with interrupts disabled via on_each_cpu()
- */
-static void retrigger_next_event(void *arg)
-{
- struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
-
- if (!__hrtimer_hres_active(base))
- return;
-
- raw_spin_lock(&base->lock);
- hrtimer_update_base(base);
- hrtimer_force_reprogram(base, 0);
- raw_spin_unlock(&base->lock);
-}
+static void retrigger_next_event(void *arg);
/*
* Switch to high resolution mode
@@ -758,29 +749,54 @@ static void hrtimer_switch_to_hres(void)
retrigger_next_event(NULL);
}
-static void clock_was_set_work(struct work_struct *work)
-{
- clock_was_set();
-}
+#else
-static DECLARE_WORK(hrtimer_work, clock_was_set_work);
+static inline int hrtimer_is_hres_enabled(void) { return 0; }
+static inline void hrtimer_switch_to_hres(void) { }
+#endif /* CONFIG_HIGH_RES_TIMERS */
/*
- * Called from timekeeping and resume code to reprogram the hrtimer
- * interrupt device on all cpus.
+ * Retrigger next event is called after clock was set with interrupts
+ * disabled through an SMP function call or directly from low level
+ * resume code.
+ *
+ * This is only invoked when:
+ * - CONFIG_HIGH_RES_TIMERS is enabled.
+ * - CONFIG_NOHZ_COMMON is enabled
+ *
+ * For the other cases this function is empty and because the call sites
+ * are optimized out it vanishes as well, i.e. no need for lots of
+ * #ifdeffery.
*/
-void clock_was_set_delayed(void)
+static void retrigger_next_event(void *arg)
{
- schedule_work(&hrtimer_work);
-}
-
-#else
+ struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
-static inline int hrtimer_is_hres_enabled(void) { return 0; }
-static inline void hrtimer_switch_to_hres(void) { }
-static inline void retrigger_next_event(void *arg) { }
+ /*
+ * When high resolution mode or nohz is active, then the offsets of
+ * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
+ * next tick will take care of that.
+ *
+ * If high resolution mode is active then the next expiring timer
+ * must be reevaluated and the clock event device reprogrammed if
+ * necessary.
+ *
+ * In the NOHZ case the update of the offset and the reevaluation
+ * of the next expiring timer is enough. The return from the SMP
+ * function call will take care of the reprogramming in case the
+ * CPU was in a NOHZ idle sleep.
+ */
+ if (!__hrtimer_hres_active(base) && !tick_nohz_active)
+ return;
-#endif /* CONFIG_HIGH_RES_TIMERS */
+ raw_spin_lock(&base->lock);
+ hrtimer_update_base(base);
+ if (__hrtimer_hres_active(base))
+ hrtimer_force_reprogram(base, 0);
+ else
+ hrtimer_update_next_event(base);
+ raw_spin_unlock(&base->lock);
+}
/*
* When a timer is enqueued and expires earlier than the already enqueued
@@ -835,75 +851,161 @@ static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
if (base->cpu_base != cpu_base)
return;
+ if (expires >= cpu_base->expires_next)
+ return;
+
/*
- * If the hrtimer interrupt is running, then it will
- * reevaluate the clock bases and reprogram the clock event
- * device. The callbacks are always executed in hard interrupt
- * context so we don't need an extra check for a running
- * callback.
+ * If the hrtimer interrupt is running, then it will reevaluate the
+ * clock bases and reprogram the clock event device.
*/
if (cpu_base->in_hrtirq)
return;
- if (expires >= cpu_base->expires_next)
- return;
-
- /* Update the pointer to the next expiring timer */
cpu_base->next_timer = timer;
- cpu_base->expires_next = expires;
+
+ __hrtimer_reprogram(cpu_base, timer, expires);
+}
+
+static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
+ unsigned int active)
+{
+ struct hrtimer_clock_base *base;
+ unsigned int seq;
+ ktime_t expires;
/*
- * If hres is not active, hardware does not have to be
- * programmed yet.
+ * Update the base offsets unconditionally so the following
+ * checks whether the SMP function call is required works.
*
- * If a hang was detected in the last timer interrupt then we
- * do not schedule a timer which is earlier than the expiry
- * which we enforced in the hang detection. We want the system
- * to make progress.
+ * The update is safe even when the remote CPU is in the hrtimer
+ * interrupt or the hrtimer soft interrupt and expiring affected
+ * bases. Either it will see the update before handling a base or
+ * it will see it when it finishes the processing and reevaluates
+ * the next expiring timer.
*/
- if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
- return;
+ seq = cpu_base->clock_was_set_seq;
+ hrtimer_update_base(cpu_base);
+
+ /*
+ * If the sequence did not change over the update then the
+ * remote CPU already handled it.
+ */
+ if (seq == cpu_base->clock_was_set_seq)
+ return false;
+
+ /*
+ * If the remote CPU is currently handling an hrtimer interrupt, it
+ * will reevaluate the first expiring timer of all clock bases
+ * before reprogramming. Nothing to do here.
+ */
+ if (cpu_base->in_hrtirq)
+ return false;
/*
- * Program the timer hardware. We enforce the expiry for
- * events which are already in the past.
+ * Walk the affected clock bases and check whether the first expiring
+ * timer in a clock base is moving ahead of the first expiring timer of
+ * @cpu_base. If so, the IPI must be invoked because per CPU clock
+ * event devices cannot be remotely reprogrammed.
*/
- tick_program_event(expires, 1);
+ active &= cpu_base->active_bases;
+
+ for_each_active_base(base, cpu_base, active) {
+ struct timerqueue_node *next;
+
+ next = timerqueue_getnext(&base->active);
+ expires = ktime_sub(next->expires, base->offset);
+ if (expires < cpu_base->expires_next)
+ return true;
+
+ /* Extra check for softirq clock bases */
+ if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
+ continue;
+ if (cpu_base->softirq_activated)
+ continue;
+ if (expires < cpu_base->softirq_expires_next)
+ return true;
+ }
+ return false;
}
/*
- * Clock realtime was set
- *
- * Change the offset of the realtime clock vs. the monotonic
- * clock.
+ * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
+ * CLOCK_BOOTTIME (for late sleep time injection).
*
- * We might have to reprogram the high resolution timer interrupt. On
- * SMP we call the architecture specific code to retrigger _all_ high
- * resolution timer interrupts. On UP we just disable interrupts and
- * call the high resolution interrupt code.
+ * This requires to update the offsets for these clocks
+ * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
+ * also requires to eventually reprogram the per CPU clock event devices
+ * when the change moves an affected timer ahead of the first expiring
+ * timer on that CPU. Obviously remote per CPU clock event devices cannot
+ * be reprogrammed. The other reason why an IPI has to be sent is when the
+ * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
+ * in the tick, which obviously might be stopped, so this has to bring out
+ * the remote CPU which might sleep in idle to get this sorted.
*/
-void clock_was_set(void)
+void clock_was_set(unsigned int bases)
{
-#ifdef CONFIG_HIGH_RES_TIMERS
- /* Retrigger the CPU local events everywhere */
- on_each_cpu(retrigger_next_event, NULL, 1);
-#endif
+ struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
+ cpumask_var_t mask;
+ int cpu;
+
+ if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
+ goto out_timerfd;
+
+ if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
+ on_each_cpu(retrigger_next_event, NULL, 1);
+ goto out_timerfd;
+ }
+
+ /* Avoid interrupting CPUs if possible */
+ cpus_read_lock();
+ for_each_online_cpu(cpu) {
+ unsigned long flags;
+
+ cpu_base = &per_cpu(hrtimer_bases, cpu);
+ raw_spin_lock_irqsave(&cpu_base->lock, flags);
+
+ if (update_needs_ipi(cpu_base, bases))
+ cpumask_set_cpu(cpu, mask);
+
+ raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
+ }
+
+ preempt_disable();
+ smp_call_function_many(mask, retrigger_next_event, NULL, 1);
+ preempt_enable();
+ cpus_read_unlock();
+ free_cpumask_var(mask);
+
+out_timerfd:
timerfd_clock_was_set();
}
+static void clock_was_set_work(struct work_struct *work)
+{
+ clock_was_set(CLOCK_SET_WALL);
+}
+
+static DECLARE_WORK(hrtimer_work, clock_was_set_work);
+
+/*
+ * Called from timekeeping code to reprogram the hrtimer interrupt device
+ * on all cpus and to notify timerfd.
+ */
+void clock_was_set_delayed(void)
+{
+ schedule_work(&hrtimer_work);
+}
+
/*
- * During resume we might have to reprogram the high resolution timer
- * interrupt on all online CPUs. However, all other CPUs will be
- * stopped with IRQs interrupts disabled so the clock_was_set() call
- * must be deferred.
+ * Called during resume either directly from via timekeeping_resume()
+ * or in the case of s2idle from tick_unfreeze() to ensure that the
+ * hrtimers are up to date.
*/
-void hrtimers_resume(void)
+void hrtimers_resume_local(void)
{
lockdep_assert_irqs_disabled();
/* Retrigger on the local CPU */
retrigger_next_event(NULL);
- /* And schedule a retrigger for all others */
- clock_was_set_delayed();
}
/*
@@ -1030,12 +1132,13 @@ static void __remove_hrtimer(struct hrtimer *timer,
* remove hrtimer, called with base lock held
*/
static inline int
-remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
+remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
+ bool restart, bool keep_local)
{
u8 state = timer->state;
if (state & HRTIMER_STATE_ENQUEUED) {
- int reprogram;
+ bool reprogram;
/*
* Remove the timer and force reprogramming when high
@@ -1048,8 +1151,16 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool rest
debug_deactivate(timer);
reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
+ /*
+ * If the timer is not restarted then reprogramming is
+ * required if the timer is local. If it is local and about
+ * to be restarted, avoid programming it twice (on removal
+ * and a moment later when it's requeued).
+ */
if (!restart)
state = HRTIMER_STATE_INACTIVE;
+ else
+ reprogram &= !keep_local;
__remove_hrtimer(timer, base, state, reprogram);
return 1;
@@ -1103,9 +1214,31 @@ static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
struct hrtimer_clock_base *base)
{
struct hrtimer_clock_base *new_base;
+ bool force_local, first;
- /* Remove an active timer from the queue: */
- remove_hrtimer(timer, base, true);
+ /*
+ * If the timer is on the local cpu base and is the first expiring
+ * timer then this might end up reprogramming the hardware twice
+ * (on removal and on enqueue). To avoid that by prevent the
+ * reprogram on removal, keep the timer local to the current CPU
+ * and enforce reprogramming after it is queued no matter whether
+ * it is the new first expiring timer again or not.
+ */
+ force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
+ force_local &= base->cpu_base->next_timer == timer;
+
+ /*
+ * Remove an active timer from the queue. In case it is not queued
+ * on the current CPU, make sure that remove_hrtimer() updates the
+ * remote data correctly.
+ *
+ * If it's on the current CPU and the first expiring timer, then
+ * skip reprogramming, keep the timer local and enforce
+ * reprogramming later if it was the first expiring timer. This
+ * avoids programming the underlying clock event twice (once at
+ * removal and once after enqueue).
+ */
+ remove_hrtimer(timer, base, true, force_local);
if (mode & HRTIMER_MODE_REL)
tim = ktime_add_safe(tim, base->get_time());
@@ -1115,9 +1248,24 @@ static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
hrtimer_set_expires_range_ns(timer, tim, delta_ns);
/* Switch the timer base, if necessary: */
- new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
+ if (!force_local) {
+ new_base = switch_hrtimer_base(timer, base,
+ mode & HRTIMER_MODE_PINNED);
+ } else {
+ new_base = base;
+ }
- return enqueue_hrtimer(timer, new_base, mode);
+ first = enqueue_hrtimer(timer, new_base, mode);
+ if (!force_local)
+ return first;
+
+ /*
+ * Timer was forced to stay on the current CPU to avoid
+ * reprogramming on removal and enqueue. Force reprogram the
+ * hardware by evaluating the new first expiring timer.
+ */
+ hrtimer_force_reprogram(new_base->cpu_base, 1);
+ return 0;
}
/**
@@ -1183,7 +1331,7 @@ int hrtimer_try_to_cancel(struct hrtimer *timer)
base = lock_hrtimer_base(timer, &flags);
if (!hrtimer_callback_running(timer))
- ret = remove_hrtimer(timer, base, false);
+ ret = remove_hrtimer(timer, base, false, false);
unlock_hrtimer_base(timer, &flags);
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c
index 01935aafdb46..bc4db9e5ab70 100644
--- a/kernel/time/jiffies.c
+++ b/kernel/time/jiffies.c
@@ -10,28 +10,9 @@
#include <linux/init.h>
#include "timekeeping.h"
+#include "tick-internal.h"
-/* Since jiffies uses a simple TICK_NSEC multiplier
- * conversion, the .shift value could be zero. However
- * this would make NTP adjustments impossible as they are
- * in units of 1/2^.shift. Thus we use JIFFIES_SHIFT to
- * shift both the nominator and denominator the same
- * amount, and give ntp adjustments in units of 1/2^8
- *
- * The value 8 is somewhat carefully chosen, as anything
- * larger can result in overflows. TICK_NSEC grows as HZ
- * shrinks, so values greater than 8 overflow 32bits when
- * HZ=100.
- */
-#if HZ < 34
-#define JIFFIES_SHIFT 6
-#elif HZ < 67
-#define JIFFIES_SHIFT 7
-#else
-#define JIFFIES_SHIFT 8
-#endif
-
static u64 jiffies_read(struct clocksource *cs)
{
return (u64) jiffies;
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 517be7fd175e..ee736861b18f 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -291,6 +291,8 @@ static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
+ lockdep_assert_task_sighand_held(tsk);
+
/* Check if cputimer isn't running. This is accessed without locking. */
if (!READ_ONCE(pct->timers_active)) {
struct task_cputime sum;
@@ -405,6 +407,55 @@ static int posix_cpu_timer_create(struct k_itimer *new_timer)
return 0;
}
+static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
+ struct task_struct *tsk)
+{
+ int clkidx = CPUCLOCK_WHICH(timer->it_clock);
+
+ if (CPUCLOCK_PERTHREAD(timer->it_clock))
+ return tsk->posix_cputimers.bases + clkidx;
+ else
+ return tsk->signal->posix_cputimers.bases + clkidx;
+}
+
+/*
+ * Force recalculating the base earliest expiration on the next tick.
+ * This will also re-evaluate the need to keep around the process wide
+ * cputime counter and tick dependency and eventually shut these down
+ * if necessary.
+ */
+static void trigger_base_recalc_expires(struct k_itimer *timer,
+ struct task_struct *tsk)
+{
+ struct posix_cputimer_base *base = timer_base(timer, tsk);
+
+ base->nextevt = 0;
+}
+
+/*
+ * Dequeue the timer and reset the base if it was its earliest expiration.
+ * It makes sure the next tick recalculates the base next expiration so we
+ * don't keep the costly process wide cputime counter around for a random
+ * amount of time, along with the tick dependency.
+ *
+ * If another timer gets queued between this and the next tick, its
+ * expiration will update the base next event if necessary on the next
+ * tick.
+ */
+static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
+{
+ struct cpu_timer *ctmr = &timer->it.cpu;
+ struct posix_cputimer_base *base;
+
+ if (!cpu_timer_dequeue(ctmr))
+ return;
+
+ base = timer_base(timer, p);
+ if (cpu_timer_getexpires(ctmr) == base->nextevt)
+ trigger_base_recalc_expires(timer, p);
+}
+
+
/*
* Clean up a CPU-clock timer that is about to be destroyed.
* This is called from timer deletion with the timer already locked.
@@ -439,7 +490,7 @@ static int posix_cpu_timer_del(struct k_itimer *timer)
if (timer->it.cpu.firing)
ret = TIMER_RETRY;
else
- cpu_timer_dequeue(ctmr);
+ disarm_timer(timer, p);
unlock_task_sighand(p, &flags);
}
@@ -498,15 +549,9 @@ void posix_cpu_timers_exit_group(struct task_struct *tsk)
*/
static void arm_timer(struct k_itimer *timer, struct task_struct *p)
{
- int clkidx = CPUCLOCK_WHICH(timer->it_clock);
+ struct posix_cputimer_base *base = timer_base(timer, p);
struct cpu_timer *ctmr = &timer->it.cpu;
u64 newexp = cpu_timer_getexpires(ctmr);
- struct posix_cputimer_base *base;
-
- if (CPUCLOCK_PERTHREAD(timer->it_clock))
- base = p->posix_cputimers.bases + clkidx;
- else
- base = p->signal->posix_cputimers.bases + clkidx;
if (!cpu_timer_enqueue(&base->tqhead, ctmr))
return;
@@ -703,16 +748,29 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
timer->it_overrun_last = 0;
timer->it_overrun = -1;
- if (new_expires != 0 && !(val < new_expires)) {
+ if (val >= new_expires) {
+ if (new_expires != 0) {
+ /*
+ * The designated time already passed, so we notify
+ * immediately, even if the thread never runs to
+ * accumulate more time on this clock.
+ */
+ cpu_timer_fire(timer);
+ }
+
/*
- * The designated time already passed, so we notify
- * immediately, even if the thread never runs to
- * accumulate more time on this clock.
+ * Make sure we don't keep around the process wide cputime
+ * counter or the tick dependency if they are not necessary.
*/
- cpu_timer_fire(timer);
- }
+ sighand = lock_task_sighand(p, &flags);
+ if (!sighand)
+ goto out;
+
+ if (!cpu_timer_queued(ctmr))
+ trigger_base_recalc_expires(timer, p);
- ret = 0;
+ unlock_task_sighand(p, &flags);
+ }
out:
rcu_read_unlock();
if (old)
@@ -1346,8 +1404,6 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
}
}
- if (!*newval)
- return;
*newval += now;
}
diff --git a/kernel/time/posix-timers.c b/kernel/time/posix-timers.c
index dd5697d7347b..3913222e7bcf 100644
--- a/kernel/time/posix-timers.c
+++ b/kernel/time/posix-timers.c
@@ -336,7 +336,7 @@ void posixtimer_rearm(struct kernel_siginfo *info)
int posix_timer_event(struct k_itimer *timr, int si_private)
{
enum pid_type type;
- int ret = -1;
+ int ret;
/*
* FIXME: if ->sigq is queued we can race with
* dequeue_signal()->posixtimer_rearm().
diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c
index d663249652ef..46789356f856 100644
--- a/kernel/time/tick-common.c
+++ b/kernel/time/tick-common.c
@@ -470,6 +470,13 @@ void tick_resume_local(void)
else
tick_resume_oneshot();
}
+
+ /*
+ * Ensure that hrtimers are up to date and the clockevents device
+ * is reprogrammed correctly when high resolution timers are
+ * enabled.
+ */
+ hrtimers_resume_local();
}
/**
diff --git a/kernel/time/tick-internal.h b/kernel/time/tick-internal.h
index 6a742a29e545..649f2b48e8f0 100644
--- a/kernel/time/tick-internal.h
+++ b/kernel/time/tick-internal.h
@@ -165,3 +165,35 @@ DECLARE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases);
extern u64 get_next_timer_interrupt(unsigned long basej, u64 basem);
void timer_clear_idle(void);
+
+#define CLOCK_SET_WALL \
+ (BIT(HRTIMER_BASE_REALTIME) | BIT(HRTIMER_BASE_REALTIME_SOFT) | \
+ BIT(HRTIMER_BASE_TAI) | BIT(HRTIMER_BASE_TAI_SOFT))
+
+#define CLOCK_SET_BOOT \
+ (BIT(HRTIMER_BASE_BOOTTIME) | BIT(HRTIMER_BASE_BOOTTIME_SOFT))
+
+void clock_was_set(unsigned int bases);
+void clock_was_set_delayed(void);
+
+void hrtimers_resume_local(void);
+
+/* Since jiffies uses a simple TICK_NSEC multiplier
+ * conversion, the .shift value could be zero. However
+ * this would make NTP adjustments impossible as they are
+ * in units of 1/2^.shift. Thus we use JIFFIES_SHIFT to
+ * shift both the nominator and denominator the same
+ * amount, and give ntp adjustments in units of 1/2^8
+ *
+ * The value 8 is somewhat carefully chosen, as anything
+ * larger can result in overflows. TICK_NSEC grows as HZ
+ * shrinks, so values greater than 8 overflow 32bits when
+ * HZ=100.
+ */
+#if HZ < 34
+#define JIFFIES_SHIFT 6
+#elif HZ < 67
+#define JIFFIES_SHIFT 7
+#else
+#define JIFFIES_SHIFT 8
+#endif
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 8a364aa9881a..b348749a9fc6 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -1323,8 +1323,8 @@ out:
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- /* signal hrtimers about time change */
- clock_was_set();
+ /* Signal hrtimers about time change */
+ clock_was_set(CLOCK_SET_WALL);
if (!ret)
audit_tk_injoffset(ts_delta);
@@ -1371,8 +1371,8 @@ error: /* even if we error out, we forwarded the time, so call update */
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- /* signal hrtimers about time change */
- clock_was_set();
+ /* Signal hrtimers about time change */
+ clock_was_set(CLOCK_SET_WALL);
return ret;
}
@@ -1746,8 +1746,8 @@ void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
write_seqcount_end(&tk_core.seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- /* signal hrtimers about time change */
- clock_was_set();
+ /* Signal hrtimers about time change */
+ clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
}
#endif
@@ -1810,8 +1810,10 @@ void timekeeping_resume(void)
touch_softlockup_watchdog();
+ /* Resume the clockevent device(s) and hrtimers */
tick_resume();
- hrtimers_resume();
+ /* Notify timerfd as resume is equivalent to clock_was_set() */
+ timerfd_resume();
}
int timekeeping_suspend(void)
@@ -2125,7 +2127,7 @@ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
* timekeeping_advance - Updates the timekeeper to the current time and
* current NTP tick length
*/
-static void timekeeping_advance(enum timekeeping_adv_mode mode)
+static bool timekeeping_advance(enum timekeeping_adv_mode mode)
{
struct timekeeper *real_tk = &tk_core.timekeeper;
struct timekeeper *tk = &shadow_timekeeper;
@@ -2196,9 +2198,8 @@ static void timekeeping_advance(enum timekeeping_adv_mode mode)
write_seqcount_end(&tk_core.seq);
out:
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
- if (clock_set)
- /* Have to call _delayed version, since in irq context*/
- clock_was_set_delayed();
+
+ return !!clock_set;
}
/**
@@ -2207,7 +2208,8 @@ out:
*/
void update_wall_time(void)
{
- timekeeping_advance(TK_ADV_TICK);
+ if (timekeeping_advance(TK_ADV_TICK))
+ clock_was_set_delayed();
}
/**
@@ -2387,8 +2389,9 @@ int do_adjtimex(struct __kernel_timex *txc)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct audit_ntp_data ad;
- unsigned long flags;
+ bool clock_set = false;
struct timespec64 ts;
+ unsigned long flags;
s32 orig_tai, tai;
int ret;
@@ -2423,6 +2426,7 @@ int do_adjtimex(struct __kernel_timex *txc)
if (tai != orig_tai) {
__timekeeping_set_tai_offset(tk, tai);
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
+ clock_set = true;
}
tk_update_leap_state(tk);
@@ -2433,10 +2437,10 @@ int do_adjtimex(struct __kernel_timex *txc)
/* Update the multiplier immediately if frequency was set directly */
if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
- timekeeping_advance(TK_ADV_FREQ);
+ clock_set |= timekeeping_advance(TK_ADV_FREQ);
- if (tai != orig_tai)
- clock_was_set();
+ if (clock_set)
+ clock_was_set(CLOCK_REALTIME);
ntp_notify_cmos_timer();
diff --git a/kernel/torture.c b/kernel/torture.c
index 0a315c387bed..bb8f411c974b 100644
--- a/kernel/torture.c
+++ b/kernel/torture.c
@@ -521,11 +521,11 @@ static void torture_shuffle_tasks(void)
struct shuffle_task *stp;
cpumask_setall(shuffle_tmp_mask);
- get_online_cpus();
+ cpus_read_lock();
/* No point in shuffling if there is only one online CPU (ex: UP) */
if (num_online_cpus() == 1) {
- put_online_cpus();
+ cpus_read_unlock();
return;
}
@@ -541,7 +541,7 @@ static void torture_shuffle_tasks(void)
set_cpus_allowed_ptr(stp->st_t, shuffle_tmp_mask);
mutex_unlock(&shuffle_task_mutex);
- put_online_cpus();
+ cpus_read_unlock();
}
/* Shuffle tasks across CPUs, with the intent of allowing each CPU in the
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index 7b180f61e6d3..7efbc8aaf7f6 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -3100,6 +3100,7 @@ ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
{
+ bool init_nop = ftrace_need_init_nop();
struct ftrace_page *pg;
struct dyn_ftrace *p;
u64 start, stop;
@@ -3138,8 +3139,7 @@ static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
* Do the initial record conversion from mcount jump
* to the NOP instructions.
*/
- if (!__is_defined(CC_USING_NOP_MCOUNT) &&
- !ftrace_nop_initialize(mod, p))
+ if (init_nop && !ftrace_nop_initialize(mod, p))
break;
update_cnt++;
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index f148eacda55a..33a6b4a2443d 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -205,9 +205,26 @@ struct pool_workqueue {
int refcnt; /* L: reference count */
int nr_in_flight[WORK_NR_COLORS];
/* L: nr of in_flight works */
+
+ /*
+ * nr_active management and WORK_STRUCT_INACTIVE:
+ *
+ * When pwq->nr_active >= max_active, new work item is queued to
+ * pwq->inactive_works instead of pool->worklist and marked with
+ * WORK_STRUCT_INACTIVE.
+ *
+ * All work items marked with WORK_STRUCT_INACTIVE do not participate
+ * in pwq->nr_active and all work items in pwq->inactive_works are
+ * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
+ * work items are in pwq->inactive_works. Some of them are ready to
+ * run in pool->worklist or worker->scheduled. Those work itmes are
+ * only struct wq_barrier which is used for flush_work() and should
+ * not participate in pwq->nr_active. For non-barrier work item, it
+ * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
+ */
int nr_active; /* L: nr of active works */
int max_active; /* L: max active works */
- struct list_head delayed_works; /* L: delayed works */
+ struct list_head inactive_works; /* L: inactive works */
struct list_head pwqs_node; /* WR: node on wq->pwqs */
struct list_head mayday_node; /* MD: node on wq->maydays */
@@ -524,7 +541,7 @@ static inline void debug_work_deactivate(struct work_struct *work) { }
#endif
/**
- * worker_pool_assign_id - allocate ID and assing it to @pool
+ * worker_pool_assign_id - allocate ID and assign it to @pool
* @pool: the pool pointer of interest
*
* Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
@@ -579,9 +596,9 @@ static unsigned int work_color_to_flags(int color)
return color << WORK_STRUCT_COLOR_SHIFT;
}
-static int get_work_color(struct work_struct *work)
+static int get_work_color(unsigned long work_data)
{
- return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
+ return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
((1 << WORK_STRUCT_COLOR_BITS) - 1);
}
@@ -1136,7 +1153,7 @@ static void put_pwq_unlocked(struct pool_workqueue *pwq)
}
}
-static void pwq_activate_delayed_work(struct work_struct *work)
+static void pwq_activate_inactive_work(struct work_struct *work)
{
struct pool_workqueue *pwq = get_work_pwq(work);
@@ -1144,22 +1161,22 @@ static void pwq_activate_delayed_work(struct work_struct *work)
if (list_empty(&pwq->pool->worklist))
pwq->pool->watchdog_ts = jiffies;
move_linked_works(work, &pwq->pool->worklist, NULL);
- __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
+ __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
pwq->nr_active++;
}
-static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
+static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
{
- struct work_struct *work = list_first_entry(&pwq->delayed_works,
+ struct work_struct *work = list_first_entry(&pwq->inactive_works,
struct work_struct, entry);
- pwq_activate_delayed_work(work);
+ pwq_activate_inactive_work(work);
}
/**
* pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
* @pwq: pwq of interest
- * @color: color of work which left the queue
+ * @work_data: work_data of work which left the queue
*
* A work either has completed or is removed from pending queue,
* decrement nr_in_flight of its pwq and handle workqueue flushing.
@@ -1167,21 +1184,21 @@ static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
* CONTEXT:
* raw_spin_lock_irq(pool->lock).
*/
-static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
+static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
{
- /* uncolored work items don't participate in flushing or nr_active */
- if (color == WORK_NO_COLOR)
- goto out_put;
-
- pwq->nr_in_flight[color]--;
+ int color = get_work_color(work_data);
- pwq->nr_active--;
- if (!list_empty(&pwq->delayed_works)) {
- /* one down, submit a delayed one */
- if (pwq->nr_active < pwq->max_active)
- pwq_activate_first_delayed(pwq);
+ if (!(work_data & WORK_STRUCT_INACTIVE)) {
+ pwq->nr_active--;
+ if (!list_empty(&pwq->inactive_works)) {
+ /* one down, submit an inactive one */
+ if (pwq->nr_active < pwq->max_active)
+ pwq_activate_first_inactive(pwq);
+ }
}
+ pwq->nr_in_flight[color]--;
+
/* is flush in progress and are we at the flushing tip? */
if (likely(pwq->flush_color != color))
goto out_put;
@@ -1281,17 +1298,21 @@ static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
debug_work_deactivate(work);
/*
- * A delayed work item cannot be grabbed directly because
- * it might have linked NO_COLOR work items which, if left
- * on the delayed_list, will confuse pwq->nr_active
+ * A cancelable inactive work item must be in the
+ * pwq->inactive_works since a queued barrier can't be
+ * canceled (see the comments in insert_wq_barrier()).
+ *
+ * An inactive work item cannot be grabbed directly because
+ * it might have linked barrier work items which, if left
+ * on the inactive_works list, will confuse pwq->nr_active
* management later on and cause stall. Make sure the work
* item is activated before grabbing.
*/
- if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
- pwq_activate_delayed_work(work);
+ if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
+ pwq_activate_inactive_work(work);
list_del_init(&work->entry);
- pwq_dec_nr_in_flight(pwq, get_work_color(work));
+ pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
/* work->data points to pwq iff queued, point to pool */
set_work_pool_and_keep_pending(work, pool->id);
@@ -1490,8 +1511,8 @@ retry:
if (list_empty(worklist))
pwq->pool->watchdog_ts = jiffies;
} else {
- work_flags |= WORK_STRUCT_DELAYED;
- worklist = &pwq->delayed_works;
+ work_flags |= WORK_STRUCT_INACTIVE;
+ worklist = &pwq->inactive_works;
}
debug_work_activate(work);
@@ -1912,14 +1933,14 @@ static void worker_detach_from_pool(struct worker *worker)
*/
static struct worker *create_worker(struct worker_pool *pool)
{
- struct worker *worker = NULL;
- int id = -1;
+ struct worker *worker;
+ int id;
char id_buf[16];
/* ID is needed to determine kthread name */
- id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
+ id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
if (id < 0)
- goto fail;
+ return NULL;
worker = alloc_worker(pool->node);
if (!worker)
@@ -1954,8 +1975,7 @@ static struct worker *create_worker(struct worker_pool *pool)
return worker;
fail:
- if (id >= 0)
- ida_simple_remove(&pool->worker_ida, id);
+ ida_free(&pool->worker_ida, id);
kfree(worker);
return NULL;
}
@@ -2173,7 +2193,7 @@ __acquires(&pool->lock)
struct pool_workqueue *pwq = get_work_pwq(work);
struct worker_pool *pool = worker->pool;
bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
- int work_color;
+ unsigned long work_data;
struct worker *collision;
#ifdef CONFIG_LOCKDEP
/*
@@ -2209,7 +2229,8 @@ __acquires(&pool->lock)
worker->current_work = work;
worker->current_func = work->func;
worker->current_pwq = pwq;
- work_color = get_work_color(work);
+ work_data = *work_data_bits(work);
+ worker->current_color = get_work_color(work_data);
/*
* Record wq name for cmdline and debug reporting, may get
@@ -2315,7 +2336,8 @@ __acquires(&pool->lock)
worker->current_work = NULL;
worker->current_func = NULL;
worker->current_pwq = NULL;
- pwq_dec_nr_in_flight(pwq, work_color);
+ worker->current_color = INT_MAX;
+ pwq_dec_nr_in_flight(pwq, work_data);
}
/**
@@ -2378,7 +2400,7 @@ woke_up:
set_pf_worker(false);
set_task_comm(worker->task, "kworker/dying");
- ida_simple_remove(&pool->worker_ida, worker->id);
+ ida_free(&pool->worker_ida, worker->id);
worker_detach_from_pool(worker);
kfree(worker);
return 0;
@@ -2531,7 +2553,7 @@ repeat:
/*
* The above execution of rescued work items could
* have created more to rescue through
- * pwq_activate_first_delayed() or chained
+ * pwq_activate_first_inactive() or chained
* queueing. Let's put @pwq back on mayday list so
* that such back-to-back work items, which may be
* being used to relieve memory pressure, don't
@@ -2658,8 +2680,9 @@ static void insert_wq_barrier(struct pool_workqueue *pwq,
struct wq_barrier *barr,
struct work_struct *target, struct worker *worker)
{
+ unsigned int work_flags = 0;
+ unsigned int work_color;
struct list_head *head;
- unsigned int linked = 0;
/*
* debugobject calls are safe here even with pool->lock locked
@@ -2674,24 +2697,31 @@ static void insert_wq_barrier(struct pool_workqueue *pwq,
barr->task = current;
+ /* The barrier work item does not participate in pwq->nr_active. */
+ work_flags |= WORK_STRUCT_INACTIVE;
+
/*
* If @target is currently being executed, schedule the
* barrier to the worker; otherwise, put it after @target.
*/
- if (worker)
+ if (worker) {
head = worker->scheduled.next;
- else {
+ work_color = worker->current_color;
+ } else {
unsigned long *bits = work_data_bits(target);
head = target->entry.next;
/* there can already be other linked works, inherit and set */
- linked = *bits & WORK_STRUCT_LINKED;
+ work_flags |= *bits & WORK_STRUCT_LINKED;
+ work_color = get_work_color(*bits);
__set_bit(WORK_STRUCT_LINKED_BIT, bits);
}
+ pwq->nr_in_flight[work_color]++;
+ work_flags |= work_color_to_flags(work_color);
+
debug_work_activate(&barr->work);
- insert_work(pwq, &barr->work, head,
- work_color_to_flags(WORK_NO_COLOR) | linked);
+ insert_work(pwq, &barr->work, head, work_flags);
}
/**
@@ -2957,7 +2987,7 @@ reflush:
bool drained;
raw_spin_lock_irq(&pwq->pool->lock);
- drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
+ drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
raw_spin_unlock_irq(&pwq->pool->lock);
if (drained)
@@ -3293,7 +3323,7 @@ int schedule_on_each_cpu(work_func_t func)
if (!works)
return -ENOMEM;
- get_online_cpus();
+ cpus_read_lock();
for_each_online_cpu(cpu) {
struct work_struct *work = per_cpu_ptr(works, cpu);
@@ -3305,7 +3335,7 @@ int schedule_on_each_cpu(work_func_t func)
for_each_online_cpu(cpu)
flush_work(per_cpu_ptr(works, cpu));
- put_online_cpus();
+ cpus_read_unlock();
free_percpu(works);
return 0;
}
@@ -3713,7 +3743,7 @@ static void pwq_unbound_release_workfn(struct work_struct *work)
* @pwq: target pool_workqueue
*
* If @pwq isn't freezing, set @pwq->max_active to the associated
- * workqueue's saved_max_active and activate delayed work items
+ * workqueue's saved_max_active and activate inactive work items
* accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
*/
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
@@ -3742,9 +3772,9 @@ static void pwq_adjust_max_active(struct pool_workqueue *pwq)
pwq->max_active = wq->saved_max_active;
- while (!list_empty(&pwq->delayed_works) &&
+ while (!list_empty(&pwq->inactive_works) &&
pwq->nr_active < pwq->max_active) {
- pwq_activate_first_delayed(pwq);
+ pwq_activate_first_inactive(pwq);
kick = true;
}
@@ -3763,7 +3793,7 @@ static void pwq_adjust_max_active(struct pool_workqueue *pwq)
raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
}
-/* initialize newly alloced @pwq which is associated with @wq and @pool */
+/* initialize newly allocated @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
struct worker_pool *pool)
{
@@ -3775,7 +3805,7 @@ static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
pwq->wq = wq;
pwq->flush_color = -1;
pwq->refcnt = 1;
- INIT_LIST_HEAD(&pwq->delayed_works);
+ INIT_LIST_HEAD(&pwq->inactive_works);
INIT_LIST_HEAD(&pwq->pwqs_node);
INIT_LIST_HEAD(&pwq->mayday_node);
INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
@@ -4016,14 +4046,14 @@ static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
static void apply_wqattrs_lock(void)
{
/* CPUs should stay stable across pwq creations and installations */
- get_online_cpus();
+ cpus_read_lock();
mutex_lock(&wq_pool_mutex);
}
static void apply_wqattrs_unlock(void)
{
mutex_unlock(&wq_pool_mutex);
- put_online_cpus();
+ cpus_read_unlock();
}
static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
@@ -4068,7 +4098,7 @@ static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
*
* Performs GFP_KERNEL allocations.
*
- * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
+ * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
*
* Return: 0 on success and -errno on failure.
*/
@@ -4196,7 +4226,7 @@ static int alloc_and_link_pwqs(struct workqueue_struct *wq)
return 0;
}
- get_online_cpus();
+ cpus_read_lock();
if (wq->flags & __WQ_ORDERED) {
ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
/* there should only be single pwq for ordering guarantee */
@@ -4206,7 +4236,7 @@ static int alloc_and_link_pwqs(struct workqueue_struct *wq)
} else {
ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
}
- put_online_cpus();
+ cpus_read_unlock();
return ret;
}
@@ -4362,7 +4392,7 @@ static bool pwq_busy(struct pool_workqueue *pwq)
if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
return true;
- if (pwq->nr_active || !list_empty(&pwq->delayed_works))
+ if (pwq->nr_active || !list_empty(&pwq->inactive_works))
return true;
return false;
@@ -4558,7 +4588,7 @@ bool workqueue_congested(int cpu, struct workqueue_struct *wq)
else
pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
- ret = !list_empty(&pwq->delayed_works);
+ ret = !list_empty(&pwq->inactive_works);
preempt_enable();
rcu_read_unlock();
@@ -4754,11 +4784,11 @@ static void show_pwq(struct pool_workqueue *pwq)
pr_cont("\n");
}
- if (!list_empty(&pwq->delayed_works)) {
+ if (!list_empty(&pwq->inactive_works)) {
bool comma = false;
- pr_info(" delayed:");
- list_for_each_entry(work, &pwq->delayed_works, entry) {
+ pr_info(" inactive:");
+ list_for_each_entry(work, &pwq->inactive_works, entry) {
pr_cont_work(comma, work);
comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
}
@@ -4788,7 +4818,7 @@ void show_workqueue_state(void)
bool idle = true;
for_each_pwq(pwq, wq) {
- if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
+ if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
idle = false;
break;
}
@@ -4800,7 +4830,7 @@ void show_workqueue_state(void)
for_each_pwq(pwq, wq) {
raw_spin_lock_irqsave(&pwq->pool->lock, flags);
- if (pwq->nr_active || !list_empty(&pwq->delayed_works))
+ if (pwq->nr_active || !list_empty(&pwq->inactive_works))
show_pwq(pwq);
raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
/*
@@ -5168,10 +5198,10 @@ long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
{
long ret = -ENODEV;
- get_online_cpus();
+ cpus_read_lock();
if (cpu_online(cpu))
ret = work_on_cpu(cpu, fn, arg);
- put_online_cpus();
+ cpus_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu_safe);
@@ -5183,7 +5213,7 @@ EXPORT_SYMBOL_GPL(work_on_cpu_safe);
* freeze_workqueues_begin - begin freezing workqueues
*
* Start freezing workqueues. After this function returns, all freezable
- * workqueues will queue new works to their delayed_works list instead of
+ * workqueues will queue new works to their inactive_works list instead of
* pool->worklist.
*
* CONTEXT:
@@ -5331,7 +5361,7 @@ static int workqueue_apply_unbound_cpumask(void)
* the affinity of all unbound workqueues. This function check the @cpumask
* and apply it to all unbound workqueues and updates all pwqs of them.
*
- * Retun: 0 - Success
+ * Return: 0 - Success
* -EINVAL - Invalid @cpumask
* -ENOMEM - Failed to allocate memory for attrs or pwqs.
*/
@@ -5443,7 +5473,7 @@ static ssize_t wq_pool_ids_show(struct device *dev,
const char *delim = "";
int node, written = 0;
- get_online_cpus();
+ cpus_read_lock();
rcu_read_lock();
for_each_node(node) {
written += scnprintf(buf + written, PAGE_SIZE - written,
@@ -5453,7 +5483,7 @@ static ssize_t wq_pool_ids_show(struct device *dev,
}
written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
rcu_read_unlock();
- put_online_cpus();
+ cpus_read_unlock();
return written;
}
@@ -5902,6 +5932,13 @@ static void __init wq_numa_init(void)
return;
}
+ for_each_possible_cpu(cpu) {
+ if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
+ pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
+ return;
+ }
+ }
+
wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
BUG_ON(!wq_update_unbound_numa_attrs_buf);
@@ -5919,11 +5956,6 @@ static void __init wq_numa_init(void)
for_each_possible_cpu(cpu) {
node = cpu_to_node(cpu);
- if (WARN_ON(node == NUMA_NO_NODE)) {
- pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
- /* happens iff arch is bonkers, let's just proceed */
- return;
- }
cpumask_set_cpu(cpu, tbl[node]);
}
diff --git a/kernel/workqueue_internal.h b/kernel/workqueue_internal.h
index 498de0e909a4..e00b1204a8e9 100644
--- a/kernel/workqueue_internal.h
+++ b/kernel/workqueue_internal.h
@@ -30,7 +30,8 @@ struct worker {
struct work_struct *current_work; /* L: work being processed */
work_func_t current_func; /* L: current_work's fn */
- struct pool_workqueue *current_pwq; /* L: current_work's pwq */
+ struct pool_workqueue *current_pwq; /* L: current_work's pwq */
+ unsigned int current_color; /* L: current_work's color */
struct list_head scheduled; /* L: scheduled works */
/* 64 bytes boundary on 64bit, 32 on 32bit */