summaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Kconfig.locks2
-rw-r--r--kernel/audit.c5
-rw-r--r--kernel/bpf/Makefile3
-rw-r--r--kernel/bpf/bpf_lru_list.c695
-rw-r--r--kernel/bpf/bpf_lru_list.h84
-rw-r--r--kernel/bpf/cgroup.c200
-rw-r--r--kernel/bpf/core.c68
-rw-r--r--kernel/bpf/hashtab.c441
-rw-r--r--kernel/bpf/helpers.c12
-rw-r--r--kernel/bpf/inode.c99
-rw-r--r--kernel/bpf/syscall.c186
-rw-r--r--kernel/bpf/verifier.c210
-rw-r--r--kernel/cgroup.c18
-rw-r--r--kernel/cpu.c2
-rw-r--r--kernel/events/core.c14
-rw-r--r--kernel/exit.c1
-rw-r--r--kernel/fork.c4
-rw-r--r--kernel/futex.c8
-rw-r--r--kernel/irq/manage.c4
-rw-r--r--kernel/kcov.c1
-rw-r--r--kernel/kthread.c144
-rw-r--r--kernel/locking/lockdep.c121
-rw-r--r--kernel/locking/lockdep_internals.h20
-rw-r--r--kernel/locking/mcs_spinlock.h4
-rw-r--r--kernel/locking/mutex-debug.c13
-rw-r--r--kernel/locking/mutex-debug.h10
-rw-r--r--kernel/locking/mutex.c588
-rw-r--r--kernel/locking/mutex.h26
-rw-r--r--kernel/locking/osq_lock.c15
-rw-r--r--kernel/locking/qrwlock.c6
-rw-r--r--kernel/locking/rtmutex.c86
-rw-r--r--kernel/locking/rtmutex_common.h6
-rw-r--r--kernel/locking/rwsem-xadd.c28
-rw-r--r--kernel/module.c5
-rw-r--r--kernel/printk/printk.c11
-rw-r--r--kernel/rcu/rcutorture.c11
-rw-r--r--kernel/rcu/tree.c17
-rw-r--r--kernel/rcu/tree.h1
-rw-r--r--kernel/rcu/tree_exp.h12
-rw-r--r--kernel/sched/auto_group.c40
-rw-r--r--kernel/sched/core.c36
-rw-r--r--kernel/sched/cpuacct.c2
-rw-r--r--kernel/sched/cputime.c124
-rw-r--r--kernel/sched/deadline.c4
-rw-r--r--kernel/sched/fair.c665
-rw-r--r--kernel/sched/sched.h11
-rw-r--r--kernel/seccomp.c2
-rw-r--r--kernel/smp.c18
-rw-r--r--kernel/stop_machine.c2
-rw-r--r--kernel/sysctl.c7
-rw-r--r--kernel/taskstats.c24
-rw-r--r--kernel/time/clocksource.c1
-rw-r--r--kernel/time/posix-cpu-timers.c4
-rw-r--r--kernel/trace/bpf_trace.c2
-rw-r--r--kernel/trace/ftrace.c24
55 files changed, 3223 insertions, 924 deletions
diff --git a/kernel/Kconfig.locks b/kernel/Kconfig.locks
index ebdb0043203a..84d882f3e299 100644
--- a/kernel/Kconfig.locks
+++ b/kernel/Kconfig.locks
@@ -225,7 +225,7 @@ config ARCH_SUPPORTS_ATOMIC_RMW
config MUTEX_SPIN_ON_OWNER
def_bool y
- depends on SMP && !DEBUG_MUTEXES && ARCH_SUPPORTS_ATOMIC_RMW
+ depends on SMP && ARCH_SUPPORTS_ATOMIC_RMW
config RWSEM_SPIN_ON_OWNER
def_bool y
diff --git a/kernel/audit.c b/kernel/audit.c
index f1ca11613379..67b9fbd871be 100644
--- a/kernel/audit.c
+++ b/kernel/audit.c
@@ -126,7 +126,7 @@ static atomic_t audit_lost = ATOMIC_INIT(0);
/* The netlink socket. */
static struct sock *audit_sock;
-static int audit_net_id;
+static unsigned int audit_net_id;
/* Hash for inode-based rules */
struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
@@ -1172,9 +1172,8 @@ static void __net_exit audit_net_exit(struct net *net)
audit_sock = NULL;
}
- RCU_INIT_POINTER(aunet->nlsk, NULL);
- synchronize_net();
netlink_kernel_release(sock);
+ aunet->nlsk = NULL;
}
static struct pernet_operations audit_net_ops __net_initdata = {
diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile
index eed911d091da..1276474ac3cd 100644
--- a/kernel/bpf/Makefile
+++ b/kernel/bpf/Makefile
@@ -1,7 +1,8 @@
obj-y := core.o
obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o
-obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o
+obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o
ifeq ($(CONFIG_PERF_EVENTS),y)
obj-$(CONFIG_BPF_SYSCALL) += stackmap.o
endif
+obj-$(CONFIG_CGROUP_BPF) += cgroup.o
diff --git a/kernel/bpf/bpf_lru_list.c b/kernel/bpf/bpf_lru_list.c
new file mode 100644
index 000000000000..89b7ef41c86b
--- /dev/null
+++ b/kernel/bpf/bpf_lru_list.c
@@ -0,0 +1,695 @@
+/* Copyright (c) 2016 Facebook
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of version 2 of the GNU General Public
+ * License as published by the Free Software Foundation.
+ */
+#include <linux/cpumask.h>
+#include <linux/spinlock.h>
+#include <linux/percpu.h>
+
+#include "bpf_lru_list.h"
+
+#define LOCAL_FREE_TARGET (128)
+#define LOCAL_NR_SCANS LOCAL_FREE_TARGET
+
+#define PERCPU_FREE_TARGET (16)
+#define PERCPU_NR_SCANS PERCPU_FREE_TARGET
+
+/* Helpers to get the local list index */
+#define LOCAL_LIST_IDX(t) ((t) - BPF_LOCAL_LIST_T_OFFSET)
+#define LOCAL_FREE_LIST_IDX LOCAL_LIST_IDX(BPF_LRU_LOCAL_LIST_T_FREE)
+#define LOCAL_PENDING_LIST_IDX LOCAL_LIST_IDX(BPF_LRU_LOCAL_LIST_T_PENDING)
+#define IS_LOCAL_LIST_TYPE(t) ((t) >= BPF_LOCAL_LIST_T_OFFSET)
+
+static int get_next_cpu(int cpu)
+{
+ cpu = cpumask_next(cpu, cpu_possible_mask);
+ if (cpu >= nr_cpu_ids)
+ cpu = cpumask_first(cpu_possible_mask);
+ return cpu;
+}
+
+/* Local list helpers */
+static struct list_head *local_free_list(struct bpf_lru_locallist *loc_l)
+{
+ return &loc_l->lists[LOCAL_FREE_LIST_IDX];
+}
+
+static struct list_head *local_pending_list(struct bpf_lru_locallist *loc_l)
+{
+ return &loc_l->lists[LOCAL_PENDING_LIST_IDX];
+}
+
+/* bpf_lru_node helpers */
+static bool bpf_lru_node_is_ref(const struct bpf_lru_node *node)
+{
+ return node->ref;
+}
+
+static void bpf_lru_list_count_inc(struct bpf_lru_list *l,
+ enum bpf_lru_list_type type)
+{
+ if (type < NR_BPF_LRU_LIST_COUNT)
+ l->counts[type]++;
+}
+
+static void bpf_lru_list_count_dec(struct bpf_lru_list *l,
+ enum bpf_lru_list_type type)
+{
+ if (type < NR_BPF_LRU_LIST_COUNT)
+ l->counts[type]--;
+}
+
+static void __bpf_lru_node_move_to_free(struct bpf_lru_list *l,
+ struct bpf_lru_node *node,
+ struct list_head *free_list,
+ enum bpf_lru_list_type tgt_free_type)
+{
+ if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type)))
+ return;
+
+ /* If the removing node is the next_inactive_rotation candidate,
+ * move the next_inactive_rotation pointer also.
+ */
+ if (&node->list == l->next_inactive_rotation)
+ l->next_inactive_rotation = l->next_inactive_rotation->prev;
+
+ bpf_lru_list_count_dec(l, node->type);
+
+ node->type = tgt_free_type;
+ list_move(&node->list, free_list);
+}
+
+/* Move nodes from local list to the LRU list */
+static void __bpf_lru_node_move_in(struct bpf_lru_list *l,
+ struct bpf_lru_node *node,
+ enum bpf_lru_list_type tgt_type)
+{
+ if (WARN_ON_ONCE(!IS_LOCAL_LIST_TYPE(node->type)) ||
+ WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(tgt_type)))
+ return;
+
+ bpf_lru_list_count_inc(l, tgt_type);
+ node->type = tgt_type;
+ node->ref = 0;
+ list_move(&node->list, &l->lists[tgt_type]);
+}
+
+/* Move nodes between or within active and inactive list (like
+ * active to inactive, inactive to active or tail of active back to
+ * the head of active).
+ */
+static void __bpf_lru_node_move(struct bpf_lru_list *l,
+ struct bpf_lru_node *node,
+ enum bpf_lru_list_type tgt_type)
+{
+ if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type)) ||
+ WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(tgt_type)))
+ return;
+
+ if (node->type != tgt_type) {
+ bpf_lru_list_count_dec(l, node->type);
+ bpf_lru_list_count_inc(l, tgt_type);
+ node->type = tgt_type;
+ }
+ node->ref = 0;
+
+ /* If the moving node is the next_inactive_rotation candidate,
+ * move the next_inactive_rotation pointer also.
+ */
+ if (&node->list == l->next_inactive_rotation)
+ l->next_inactive_rotation = l->next_inactive_rotation->prev;
+
+ list_move(&node->list, &l->lists[tgt_type]);
+}
+
+static bool bpf_lru_list_inactive_low(const struct bpf_lru_list *l)
+{
+ return l->counts[BPF_LRU_LIST_T_INACTIVE] <
+ l->counts[BPF_LRU_LIST_T_ACTIVE];
+}
+
+/* Rotate the active list:
+ * 1. Start from tail
+ * 2. If the node has the ref bit set, it will be rotated
+ * back to the head of active list with the ref bit cleared.
+ * Give this node one more chance to survive in the active list.
+ * 3. If the ref bit is not set, move it to the head of the
+ * inactive list.
+ * 4. It will at most scan nr_scans nodes
+ */
+static void __bpf_lru_list_rotate_active(struct bpf_lru *lru,
+ struct bpf_lru_list *l)
+{
+ struct list_head *active = &l->lists[BPF_LRU_LIST_T_ACTIVE];
+ struct bpf_lru_node *node, *tmp_node, *first_node;
+ unsigned int i = 0;
+
+ first_node = list_first_entry(active, struct bpf_lru_node, list);
+ list_for_each_entry_safe_reverse(node, tmp_node, active, list) {
+ if (bpf_lru_node_is_ref(node))
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE);
+ else
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_INACTIVE);
+
+ if (++i == lru->nr_scans || node == first_node)
+ break;
+ }
+}
+
+/* Rotate the inactive list. It starts from the next_inactive_rotation
+ * 1. If the node has ref bit set, it will be moved to the head
+ * of active list with the ref bit cleared.
+ * 2. If the node does not have ref bit set, it will leave it
+ * at its current location (i.e. do nothing) so that it can
+ * be considered during the next inactive_shrink.
+ * 3. It will at most scan nr_scans nodes
+ */
+static void __bpf_lru_list_rotate_inactive(struct bpf_lru *lru,
+ struct bpf_lru_list *l)
+{
+ struct list_head *inactive = &l->lists[BPF_LRU_LIST_T_INACTIVE];
+ struct list_head *cur, *last, *next = inactive;
+ struct bpf_lru_node *node;
+ unsigned int i = 0;
+
+ if (list_empty(inactive))
+ return;
+
+ last = l->next_inactive_rotation->next;
+ if (last == inactive)
+ last = last->next;
+
+ cur = l->next_inactive_rotation;
+ while (i < lru->nr_scans) {
+ if (cur == inactive) {
+ cur = cur->prev;
+ continue;
+ }
+
+ node = list_entry(cur, struct bpf_lru_node, list);
+ next = cur->prev;
+ if (bpf_lru_node_is_ref(node))
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE);
+ if (cur == last)
+ break;
+ cur = next;
+ i++;
+ }
+
+ l->next_inactive_rotation = next;
+}
+
+/* Shrink the inactive list. It starts from the tail of the
+ * inactive list and only move the nodes without the ref bit
+ * set to the designated free list.
+ */
+static unsigned int
+__bpf_lru_list_shrink_inactive(struct bpf_lru *lru,
+ struct bpf_lru_list *l,
+ unsigned int tgt_nshrink,
+ struct list_head *free_list,
+ enum bpf_lru_list_type tgt_free_type)
+{
+ struct list_head *inactive = &l->lists[BPF_LRU_LIST_T_INACTIVE];
+ struct bpf_lru_node *node, *tmp_node, *first_node;
+ unsigned int nshrinked = 0;
+ unsigned int i = 0;
+
+ first_node = list_first_entry(inactive, struct bpf_lru_node, list);
+ list_for_each_entry_safe_reverse(node, tmp_node, inactive, list) {
+ if (bpf_lru_node_is_ref(node)) {
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE);
+ } else if (lru->del_from_htab(lru->del_arg, node)) {
+ __bpf_lru_node_move_to_free(l, node, free_list,
+ tgt_free_type);
+ if (++nshrinked == tgt_nshrink)
+ break;
+ }
+
+ if (++i == lru->nr_scans)
+ break;
+ }
+
+ return nshrinked;
+}
+
+/* 1. Rotate the active list (if needed)
+ * 2. Always rotate the inactive list
+ */
+static void __bpf_lru_list_rotate(struct bpf_lru *lru, struct bpf_lru_list *l)
+{
+ if (bpf_lru_list_inactive_low(l))
+ __bpf_lru_list_rotate_active(lru, l);
+
+ __bpf_lru_list_rotate_inactive(lru, l);
+}
+
+/* Calls __bpf_lru_list_shrink_inactive() to shrink some
+ * ref-bit-cleared nodes and move them to the designated
+ * free list.
+ *
+ * If it cannot get a free node after calling
+ * __bpf_lru_list_shrink_inactive(). It will just remove
+ * one node from either inactive or active list without
+ * honoring the ref-bit. It prefers inactive list to active
+ * list in this situation.
+ */
+static unsigned int __bpf_lru_list_shrink(struct bpf_lru *lru,
+ struct bpf_lru_list *l,
+ unsigned int tgt_nshrink,
+ struct list_head *free_list,
+ enum bpf_lru_list_type tgt_free_type)
+
+{
+ struct bpf_lru_node *node, *tmp_node;
+ struct list_head *force_shrink_list;
+ unsigned int nshrinked;
+
+ nshrinked = __bpf_lru_list_shrink_inactive(lru, l, tgt_nshrink,
+ free_list, tgt_free_type);
+ if (nshrinked)
+ return nshrinked;
+
+ /* Do a force shrink by ignoring the reference bit */
+ if (!list_empty(&l->lists[BPF_LRU_LIST_T_INACTIVE]))
+ force_shrink_list = &l->lists[BPF_LRU_LIST_T_INACTIVE];
+ else
+ force_shrink_list = &l->lists[BPF_LRU_LIST_T_ACTIVE];
+
+ list_for_each_entry_safe_reverse(node, tmp_node, force_shrink_list,
+ list) {
+ if (lru->del_from_htab(lru->del_arg, node)) {
+ __bpf_lru_node_move_to_free(l, node, free_list,
+ tgt_free_type);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/* Flush the nodes from the local pending list to the LRU list */
+static void __local_list_flush(struct bpf_lru_list *l,
+ struct bpf_lru_locallist *loc_l)
+{
+ struct bpf_lru_node *node, *tmp_node;
+
+ list_for_each_entry_safe_reverse(node, tmp_node,
+ local_pending_list(loc_l), list) {
+ if (bpf_lru_node_is_ref(node))
+ __bpf_lru_node_move_in(l, node, BPF_LRU_LIST_T_ACTIVE);
+ else
+ __bpf_lru_node_move_in(l, node,
+ BPF_LRU_LIST_T_INACTIVE);
+ }
+}
+
+static void bpf_lru_list_push_free(struct bpf_lru_list *l,
+ struct bpf_lru_node *node)
+{
+ unsigned long flags;
+
+ if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type)))
+ return;
+
+ raw_spin_lock_irqsave(&l->lock, flags);
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_FREE);
+ raw_spin_unlock_irqrestore(&l->lock, flags);
+}
+
+static void bpf_lru_list_pop_free_to_local(struct bpf_lru *lru,
+ struct bpf_lru_locallist *loc_l)
+{
+ struct bpf_lru_list *l = &lru->common_lru.lru_list;
+ struct bpf_lru_node *node, *tmp_node;
+ unsigned int nfree = 0;
+
+ raw_spin_lock(&l->lock);
+
+ __local_list_flush(l, loc_l);
+
+ __bpf_lru_list_rotate(lru, l);
+
+ list_for_each_entry_safe(node, tmp_node, &l->lists[BPF_LRU_LIST_T_FREE],
+ list) {
+ __bpf_lru_node_move_to_free(l, node, local_free_list(loc_l),
+ BPF_LRU_LOCAL_LIST_T_FREE);
+ if (++nfree == LOCAL_FREE_TARGET)
+ break;
+ }
+
+ if (nfree < LOCAL_FREE_TARGET)
+ __bpf_lru_list_shrink(lru, l, LOCAL_FREE_TARGET - nfree,
+ local_free_list(loc_l),
+ BPF_LRU_LOCAL_LIST_T_FREE);
+
+ raw_spin_unlock(&l->lock);
+}
+
+static void __local_list_add_pending(struct bpf_lru *lru,
+ struct bpf_lru_locallist *loc_l,
+ int cpu,
+ struct bpf_lru_node *node,
+ u32 hash)
+{
+ *(u32 *)((void *)node + lru->hash_offset) = hash;
+ node->cpu = cpu;
+ node->type = BPF_LRU_LOCAL_LIST_T_PENDING;
+ node->ref = 0;
+ list_add(&node->list, local_pending_list(loc_l));
+}
+
+struct bpf_lru_node *__local_list_pop_free(struct bpf_lru_locallist *loc_l)
+{
+ struct bpf_lru_node *node;
+
+ node = list_first_entry_or_null(local_free_list(loc_l),
+ struct bpf_lru_node,
+ list);
+ if (node)
+ list_del(&node->list);
+
+ return node;
+}
+
+struct bpf_lru_node *__local_list_pop_pending(struct bpf_lru *lru,
+ struct bpf_lru_locallist *loc_l)
+{
+ struct bpf_lru_node *node;
+ bool force = false;
+
+ignore_ref:
+ /* Get from the tail (i.e. older element) of the pending list. */
+ list_for_each_entry_reverse(node, local_pending_list(loc_l),
+ list) {
+ if ((!bpf_lru_node_is_ref(node) || force) &&
+ lru->del_from_htab(lru->del_arg, node)) {
+ list_del(&node->list);
+ return node;
+ }
+ }
+
+ if (!force) {
+ force = true;
+ goto ignore_ref;
+ }
+
+ return NULL;
+}
+
+static struct bpf_lru_node *bpf_percpu_lru_pop_free(struct bpf_lru *lru,
+ u32 hash)
+{
+ struct list_head *free_list;
+ struct bpf_lru_node *node = NULL;
+ struct bpf_lru_list *l;
+ unsigned long flags;
+ int cpu = raw_smp_processor_id();
+
+ l = per_cpu_ptr(lru->percpu_lru, cpu);
+
+ raw_spin_lock_irqsave(&l->lock, flags);
+
+ __bpf_lru_list_rotate(lru, l);
+
+ free_list = &l->lists[BPF_LRU_LIST_T_FREE];
+ if (list_empty(free_list))
+ __bpf_lru_list_shrink(lru, l, PERCPU_FREE_TARGET, free_list,
+ BPF_LRU_LIST_T_FREE);
+
+ if (!list_empty(free_list)) {
+ node = list_first_entry(free_list, struct bpf_lru_node, list);
+ *(u32 *)((void *)node + lru->hash_offset) = hash;
+ node->ref = 0;
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_INACTIVE);
+ }
+
+ raw_spin_unlock_irqrestore(&l->lock, flags);
+
+ return node;
+}
+
+static struct bpf_lru_node *bpf_common_lru_pop_free(struct bpf_lru *lru,
+ u32 hash)
+{
+ struct bpf_lru_locallist *loc_l, *steal_loc_l;
+ struct bpf_common_lru *clru = &lru->common_lru;
+ struct bpf_lru_node *node;
+ int steal, first_steal;
+ unsigned long flags;
+ int cpu = raw_smp_processor_id();
+
+ loc_l = per_cpu_ptr(clru->local_list, cpu);
+
+ raw_spin_lock_irqsave(&loc_l->lock, flags);
+
+ node = __local_list_pop_free(loc_l);
+ if (!node) {
+ bpf_lru_list_pop_free_to_local(lru, loc_l);
+ node = __local_list_pop_free(loc_l);
+ }
+
+ if (node)
+ __local_list_add_pending(lru, loc_l, cpu, node, hash);
+
+ raw_spin_unlock_irqrestore(&loc_l->lock, flags);
+
+ if (node)
+ return node;
+
+ /* No free nodes found from the local free list and
+ * the global LRU list.
+ *
+ * Steal from the local free/pending list of the
+ * current CPU and remote CPU in RR. It starts
+ * with the loc_l->next_steal CPU.
+ */
+
+ first_steal = loc_l->next_steal;
+ steal = first_steal;
+ do {
+ steal_loc_l = per_cpu_ptr(clru->local_list, steal);
+
+ raw_spin_lock_irqsave(&steal_loc_l->lock, flags);
+
+ node = __local_list_pop_free(steal_loc_l);
+ if (!node)
+ node = __local_list_pop_pending(lru, steal_loc_l);
+
+ raw_spin_unlock_irqrestore(&steal_loc_l->lock, flags);
+
+ steal = get_next_cpu(steal);
+ } while (!node && steal != first_steal);
+
+ loc_l->next_steal = steal;
+
+ if (node) {
+ raw_spin_lock_irqsave(&loc_l->lock, flags);
+ __local_list_add_pending(lru, loc_l, cpu, node, hash);
+ raw_spin_unlock_irqrestore(&loc_l->lock, flags);
+ }
+
+ return node;
+}
+
+struct bpf_lru_node *bpf_lru_pop_free(struct bpf_lru *lru, u32 hash)
+{
+ if (lru->percpu)
+ return bpf_percpu_lru_pop_free(lru, hash);
+ else
+ return bpf_common_lru_pop_free(lru, hash);
+}
+
+static void bpf_common_lru_push_free(struct bpf_lru *lru,
+ struct bpf_lru_node *node)
+{
+ unsigned long flags;
+
+ if (WARN_ON_ONCE(node->type == BPF_LRU_LIST_T_FREE) ||
+ WARN_ON_ONCE(node->type == BPF_LRU_LOCAL_LIST_T_FREE))
+ return;
+
+ if (node->type == BPF_LRU_LOCAL_LIST_T_PENDING) {
+ struct bpf_lru_locallist *loc_l;
+
+ loc_l = per_cpu_ptr(lru->common_lru.local_list, node->cpu);
+
+ raw_spin_lock_irqsave(&loc_l->lock, flags);
+
+ if (unlikely(node->type != BPF_LRU_LOCAL_LIST_T_PENDING)) {
+ raw_spin_unlock_irqrestore(&loc_l->lock, flags);
+ goto check_lru_list;
+ }
+
+ node->type = BPF_LRU_LOCAL_LIST_T_FREE;
+ node->ref = 0;
+ list_move(&node->list, local_free_list(loc_l));
+
+ raw_spin_unlock_irqrestore(&loc_l->lock, flags);
+ return;
+ }
+
+check_lru_list:
+ bpf_lru_list_push_free(&lru->common_lru.lru_list, node);
+}
+
+static void bpf_percpu_lru_push_free(struct bpf_lru *lru,
+ struct bpf_lru_node *node)
+{
+ struct bpf_lru_list *l;
+ unsigned long flags;
+
+ l = per_cpu_ptr(lru->percpu_lru, node->cpu);
+
+ raw_spin_lock_irqsave(&l->lock, flags);
+
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_FREE);
+
+ raw_spin_unlock_irqrestore(&l->lock, flags);
+}
+
+void bpf_lru_push_free(struct bpf_lru *lru, struct bpf_lru_node *node)
+{
+ if (lru->percpu)
+ bpf_percpu_lru_push_free(lru, node);
+ else
+ bpf_common_lru_push_free(lru, node);
+}
+
+void bpf_common_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset,
+ u32 elem_size, u32 nr_elems)
+{
+ struct bpf_lru_list *l = &lru->common_lru.lru_list;
+ u32 i;
+
+ for (i = 0; i < nr_elems; i++) {
+ struct bpf_lru_node *node;
+
+ node = (struct bpf_lru_node *)(buf + node_offset);
+ node->type = BPF_LRU_LIST_T_FREE;
+ node->ref = 0;
+ list_add(&node->list, &l->lists[BPF_LRU_LIST_T_FREE]);
+ buf += elem_size;
+ }
+}
+
+void bpf_percpu_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset,
+ u32 elem_size, u32 nr_elems)
+{
+ u32 i, pcpu_entries;
+ int cpu;
+ struct bpf_lru_list *l;
+
+ pcpu_entries = nr_elems / num_possible_cpus();
+
+ i = 0;
+
+ for_each_possible_cpu(cpu) {
+ struct bpf_lru_node *node;
+
+ l = per_cpu_ptr(lru->percpu_lru, cpu);
+again:
+ node = (struct bpf_lru_node *)(buf + node_offset);
+ node->cpu = cpu;
+ node->type = BPF_LRU_LIST_T_FREE;
+ node->ref = 0;
+ list_add(&node->list, &l->lists[BPF_LRU_LIST_T_FREE]);
+ i++;
+ buf += elem_size;
+ if (i == nr_elems)
+ break;
+ if (i % pcpu_entries)
+ goto again;
+ }
+}
+
+void bpf_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset,
+ u32 elem_size, u32 nr_elems)
+{
+ if (lru->percpu)
+ bpf_percpu_lru_populate(lru, buf, node_offset, elem_size,
+ nr_elems);
+ else
+ bpf_common_lru_populate(lru, buf, node_offset, elem_size,
+ nr_elems);
+}
+
+static void bpf_lru_locallist_init(struct bpf_lru_locallist *loc_l, int cpu)
+{
+ int i;
+
+ for (i = 0; i < NR_BPF_LRU_LOCAL_LIST_T; i++)
+ INIT_LIST_HEAD(&loc_l->lists[i]);
+
+ loc_l->next_steal = cpu;
+
+ raw_spin_lock_init(&loc_l->lock);
+}
+
+static void bpf_lru_list_init(struct bpf_lru_list *l)
+{
+ int i;
+
+ for (i = 0; i < NR_BPF_LRU_LIST_T; i++)
+ INIT_LIST_HEAD(&l->lists[i]);
+
+ for (i = 0; i < NR_BPF_LRU_LIST_COUNT; i++)
+ l->counts[i] = 0;
+
+ l->next_inactive_rotation = &l->lists[BPF_LRU_LIST_T_INACTIVE];
+
+ raw_spin_lock_init(&l->lock);
+}
+
+int bpf_lru_init(struct bpf_lru *lru, bool percpu, u32 hash_offset,
+ del_from_htab_func del_from_htab, void *del_arg)
+{
+ int cpu;
+
+ if (percpu) {
+ lru->percpu_lru = alloc_percpu(struct bpf_lru_list);
+ if (!lru->percpu_lru)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu) {
+ struct bpf_lru_list *l;
+
+ l = per_cpu_ptr(lru->percpu_lru, cpu);
+ bpf_lru_list_init(l);
+ }
+ lru->nr_scans = PERCPU_NR_SCANS;
+ } else {
+ struct bpf_common_lru *clru = &lru->common_lru;
+
+ clru->local_list = alloc_percpu(struct bpf_lru_locallist);
+ if (!clru->local_list)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu) {
+ struct bpf_lru_locallist *loc_l;
+
+ loc_l = per_cpu_ptr(clru->local_list, cpu);
+ bpf_lru_locallist_init(loc_l, cpu);
+ }
+
+ bpf_lru_list_init(&clru->lru_list);
+ lru->nr_scans = LOCAL_NR_SCANS;
+ }
+
+ lru->percpu = percpu;
+ lru->del_from_htab = del_from_htab;
+ lru->del_arg = del_arg;
+ lru->hash_offset = hash_offset;
+
+ return 0;
+}
+
+void bpf_lru_destroy(struct bpf_lru *lru)
+{
+ if (lru->percpu)
+ free_percpu(lru->percpu_lru);
+ else
+ free_percpu(lru->common_lru.local_list);
+}
diff --git a/kernel/bpf/bpf_lru_list.h b/kernel/bpf/bpf_lru_list.h
new file mode 100644
index 000000000000..5c35a98d02bf
--- /dev/null
+++ b/kernel/bpf/bpf_lru_list.h
@@ -0,0 +1,84 @@
+/* Copyright (c) 2016 Facebook
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of version 2 of the GNU General Public
+ * License as published by the Free Software Foundation.
+ */
+#ifndef __BPF_LRU_LIST_H_
+#define __BPF_LRU_LIST_H_
+
+#include <linux/list.h>
+#include <linux/spinlock_types.h>
+
+#define NR_BPF_LRU_LIST_T (3)
+#define NR_BPF_LRU_LIST_COUNT (2)
+#define NR_BPF_LRU_LOCAL_LIST_T (2)
+#define BPF_LOCAL_LIST_T_OFFSET NR_BPF_LRU_LIST_T
+
+enum bpf_lru_list_type {
+ BPF_LRU_LIST_T_ACTIVE,
+ BPF_LRU_LIST_T_INACTIVE,
+ BPF_LRU_LIST_T_FREE,
+ BPF_LRU_LOCAL_LIST_T_FREE,
+ BPF_LRU_LOCAL_LIST_T_PENDING,
+};
+
+struct bpf_lru_node {
+ struct list_head list;
+ u16 cpu;
+ u8 type;
+ u8 ref;
+};
+
+struct bpf_lru_list {
+ struct list_head lists[NR_BPF_LRU_LIST_T];
+ unsigned int counts[NR_BPF_LRU_LIST_COUNT];
+ /* The next inacitve list rotation starts from here */
+ struct list_head *next_inactive_rotation;
+
+ raw_spinlock_t lock ____cacheline_aligned_in_smp;
+};
+
+struct bpf_lru_locallist {
+ struct list_head lists[NR_BPF_LRU_LOCAL_LIST_T];
+ u16 next_steal;
+ raw_spinlock_t lock;
+};
+
+struct bpf_common_lru {
+ struct bpf_lru_list lru_list;
+ struct bpf_lru_locallist __percpu *local_list;
+};
+
+typedef bool (*del_from_htab_func)(void *arg, struct bpf_lru_node *node);
+
+struct bpf_lru {
+ union {
+ struct bpf_common_lru common_lru;
+ struct bpf_lru_list __percpu *percpu_lru;
+ };
+ del_from_htab_func del_from_htab;
+ void *del_arg;
+ unsigned int hash_offset;
+ unsigned int nr_scans;
+ bool percpu;
+};
+
+static inline void bpf_lru_node_set_ref(struct bpf_lru_node *node)
+{
+ /* ref is an approximation on access frequency. It does not
+ * have to be very accurate. Hence, no protection is used.
+ */
+ node->ref = 1;
+}
+
+int bpf_lru_init(struct bpf_lru *lru, bool percpu, u32 hash_offset,
+ del_from_htab_func del_from_htab, void *delete_arg);
+void bpf_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset,
+ u32 elem_size, u32 nr_elems);
+void bpf_lru_destroy(struct bpf_lru *lru);
+struct bpf_lru_node *bpf_lru_pop_free(struct bpf_lru *lru, u32 hash);
+void bpf_lru_push_free(struct bpf_lru *lru, struct bpf_lru_node *node);
+void bpf_lru_promote(struct bpf_lru *lru, struct bpf_lru_node *node);
+
+#endif
diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c
new file mode 100644
index 000000000000..a515f7b007c6
--- /dev/null
+++ b/kernel/bpf/cgroup.c
@@ -0,0 +1,200 @@
+/*
+ * Functions to manage eBPF programs attached to cgroups
+ *
+ * Copyright (c) 2016 Daniel Mack
+ *
+ * This file is subject to the terms and conditions of version 2 of the GNU
+ * General Public License. See the file COPYING in the main directory of the
+ * Linux distribution for more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/atomic.h>
+#include <linux/cgroup.h>
+#include <linux/slab.h>
+#include <linux/bpf.h>
+#include <linux/bpf-cgroup.h>
+#include <net/sock.h>
+
+DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
+EXPORT_SYMBOL(cgroup_bpf_enabled_key);
+
+/**
+ * cgroup_bpf_put() - put references of all bpf programs
+ * @cgrp: the cgroup to modify
+ */
+void cgroup_bpf_put(struct cgroup *cgrp)
+{
+ unsigned int type;
+
+ for (type = 0; type < ARRAY_SIZE(cgrp->bpf.prog); type++) {
+ struct bpf_prog *prog = cgrp->bpf.prog[type];
+
+ if (prog) {
+ bpf_prog_put(prog);
+ static_branch_dec(&cgroup_bpf_enabled_key);
+ }
+ }
+}
+
+/**
+ * cgroup_bpf_inherit() - inherit effective programs from parent
+ * @cgrp: the cgroup to modify
+ * @parent: the parent to inherit from
+ */
+void cgroup_bpf_inherit(struct cgroup *cgrp, struct cgroup *parent)
+{
+ unsigned int type;
+
+ for (type = 0; type < ARRAY_SIZE(cgrp->bpf.effective); type++) {
+ struct bpf_prog *e;
+
+ e = rcu_dereference_protected(parent->bpf.effective[type],
+ lockdep_is_held(&cgroup_mutex));
+ rcu_assign_pointer(cgrp->bpf.effective[type], e);
+ }
+}
+
+/**
+ * __cgroup_bpf_update() - Update the pinned program of a cgroup, and
+ * propagate the change to descendants
+ * @cgrp: The cgroup which descendants to traverse
+ * @parent: The parent of @cgrp, or %NULL if @cgrp is the root
+ * @prog: A new program to pin
+ * @type: Type of pinning operation (ingress/egress)
+ *
+ * Each cgroup has a set of two pointers for bpf programs; one for eBPF
+ * programs it owns, and which is effective for execution.
+ *
+ * If @prog is not %NULL, this function attaches a new program to the cgroup
+ * and releases the one that is currently attached, if any. @prog is then made
+ * the effective program of type @type in that cgroup.
+ *
+ * If @prog is %NULL, the currently attached program of type @type is released,
+ * and the effective program of the parent cgroup (if any) is inherited to
+ * @cgrp.
+ *
+ * Then, the descendants of @cgrp are walked and the effective program for
+ * each of them is set to the effective program of @cgrp unless the
+ * descendant has its own program attached, in which case the subbranch is
+ * skipped. This ensures that delegated subcgroups with own programs are left
+ * untouched.
+ *
+ * Must be called with cgroup_mutex held.
+ */
+void __cgroup_bpf_update(struct cgroup *cgrp,
+ struct cgroup *parent,
+ struct bpf_prog *prog,
+ enum bpf_attach_type type)
+{
+ struct bpf_prog *old_prog, *effective;
+ struct cgroup_subsys_state *pos;
+
+ old_prog = xchg(cgrp->bpf.prog + type, prog);
+
+ effective = (!prog && parent) ?
+ rcu_dereference_protected(parent->bpf.effective[type],
+ lockdep_is_held(&cgroup_mutex)) :
+ prog;
+
+ css_for_each_descendant_pre(pos, &cgrp->self) {
+ struct cgroup *desc = container_of(pos, struct cgroup, self);
+
+ /* skip the subtree if the descendant has its own program */
+ if (desc->bpf.prog[type] && desc != cgrp)
+ pos = css_rightmost_descendant(pos);
+ else
+ rcu_assign_pointer(desc->bpf.effective[type],
+ effective);
+ }
+
+ if (prog)
+ static_branch_inc(&cgroup_bpf_enabled_key);
+
+ if (old_prog) {
+ bpf_prog_put(old_prog);
+ static_branch_dec(&cgroup_bpf_enabled_key);
+ }
+}
+
+/**
+ * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
+ * @sk: The socken sending or receiving traffic
+ * @skb: The skb that is being sent or received
+ * @type: The type of program to be exectuted
+ *
+ * If no socket is passed, or the socket is not of type INET or INET6,
+ * this function does nothing and returns 0.
+ *
+ * The program type passed in via @type must be suitable for network
+ * filtering. No further check is performed to assert that.
+ *
+ * This function will return %-EPERM if any if an attached program was found
+ * and if it returned != 1 during execution. In all other cases, 0 is returned.
+ */
+int __cgroup_bpf_run_filter_skb(struct sock *sk,
+ struct sk_buff *skb,
+ enum bpf_attach_type type)
+{
+ struct bpf_prog *prog;
+ struct cgroup *cgrp;
+ int ret = 0;
+
+ if (!sk || !sk_fullsock(sk))
+ return 0;
+
+ if (sk->sk_family != AF_INET &&
+ sk->sk_family != AF_INET6)
+ return 0;
+
+ cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+
+ rcu_read_lock();
+
+ prog = rcu_dereference(cgrp->bpf.effective[type]);
+ if (prog) {
+ unsigned int offset = skb->data - skb_network_header(skb);
+
+ __skb_push(skb, offset);
+ ret = bpf_prog_run_save_cb(prog, skb) == 1 ? 0 : -EPERM;
+ __skb_pull(skb, offset);
+ }
+
+ rcu_read_unlock();
+
+ return ret;
+}
+EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
+
+/**
+ * __cgroup_bpf_run_filter_sk() - Run a program on a sock
+ * @sk: sock structure to manipulate
+ * @type: The type of program to be exectuted
+ *
+ * socket is passed is expected to be of type INET or INET6.
+ *
+ * The program type passed in via @type must be suitable for sock
+ * filtering. No further check is performed to assert that.
+ *
+ * This function will return %-EPERM if any if an attached program was found
+ * and if it returned != 1 during execution. In all other cases, 0 is returned.
+ */
+int __cgroup_bpf_run_filter_sk(struct sock *sk,
+ enum bpf_attach_type type)
+{
+ struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+ struct bpf_prog *prog;
+ int ret = 0;
+
+
+ rcu_read_lock();
+
+ prog = rcu_dereference(cgrp->bpf.effective[type]);
+ if (prog)
+ ret = BPF_PROG_RUN(prog, sk) == 1 ? 0 : -EPERM;
+
+ rcu_read_unlock();
+
+ return ret;
+}
+EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c
index aa6d98154106..83e0d153b0b4 100644
--- a/kernel/bpf/core.c
+++ b/kernel/bpf/core.c
@@ -136,6 +136,71 @@ void __bpf_prog_free(struct bpf_prog *fp)
vfree(fp);
}
+#define SHA_BPF_RAW_SIZE \
+ round_up(MAX_BPF_SIZE + sizeof(__be64) + 1, SHA_MESSAGE_BYTES)
+
+/* Called under verifier mutex. */
+void bpf_prog_calc_digest(struct bpf_prog *fp)
+{
+ const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
+ static u32 ws[SHA_WORKSPACE_WORDS];
+ static u8 raw[SHA_BPF_RAW_SIZE];
+ struct bpf_insn *dst = (void *)raw;
+ u32 i, bsize, psize, blocks;
+ bool was_ld_map;
+ u8 *todo = raw;
+ __be32 *result;
+ __be64 *bits;
+
+ sha_init(fp->digest);
+ memset(ws, 0, sizeof(ws));
+
+ /* We need to take out the map fd for the digest calculation
+ * since they are unstable from user space side.
+ */
+ for (i = 0, was_ld_map = false; i < fp->len; i++) {
+ dst[i] = fp->insnsi[i];
+ if (!was_ld_map &&
+ dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
+ dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
+ was_ld_map = true;
+ dst[i].imm = 0;
+ } else if (was_ld_map &&
+ dst[i].code == 0 &&
+ dst[i].dst_reg == 0 &&
+ dst[i].src_reg == 0 &&
+ dst[i].off == 0) {
+ was_ld_map = false;
+ dst[i].imm = 0;
+ } else {
+ was_ld_map = false;
+ }
+ }
+
+ psize = fp->len * sizeof(struct bpf_insn);
+ memset(&raw[psize], 0, sizeof(raw) - psize);
+ raw[psize++] = 0x80;
+
+ bsize = round_up(psize, SHA_MESSAGE_BYTES);
+ blocks = bsize / SHA_MESSAGE_BYTES;
+ if (bsize - psize >= sizeof(__be64)) {
+ bits = (__be64 *)(todo + bsize - sizeof(__be64));
+ } else {
+ bits = (__be64 *)(todo + bsize + bits_offset);
+ blocks++;
+ }
+ *bits = cpu_to_be64((psize - 1) << 3);
+
+ while (blocks--) {
+ sha_transform(fp->digest, todo, ws);
+ todo += SHA_MESSAGE_BYTES;
+ }
+
+ result = (__force __be32 *)fp->digest;
+ for (i = 0; i < SHA_DIGEST_WORDS; i++)
+ result[i] = cpu_to_be32(fp->digest[i]);
+}
+
static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
{
return BPF_CLASS(insn->code) == BPF_JMP &&
@@ -1043,6 +1108,7 @@ const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
+const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
@@ -1077,7 +1143,7 @@ struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
return prog;
}
-bool __weak bpf_helper_changes_skb_data(void *func)
+bool __weak bpf_helper_changes_pkt_data(void *func)
{
return false;
}
diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c
index 570eeca7bdfa..34debc1a9641 100644
--- a/kernel/bpf/hashtab.c
+++ b/kernel/bpf/hashtab.c
@@ -15,6 +15,7 @@
#include <linux/filter.h>
#include <linux/vmalloc.h>
#include "percpu_freelist.h"
+#include "bpf_lru_list.h"
struct bucket {
struct hlist_head head;
@@ -25,7 +26,10 @@ struct bpf_htab {
struct bpf_map map;
struct bucket *buckets;
void *elems;
- struct pcpu_freelist freelist;
+ union {
+ struct pcpu_freelist freelist;
+ struct bpf_lru lru;
+ };
void __percpu *extra_elems;
atomic_t count; /* number of elements in this hashtable */
u32 n_buckets; /* number of hash buckets */
@@ -48,11 +52,26 @@ struct htab_elem {
union {
struct rcu_head rcu;
enum extra_elem_state state;
+ struct bpf_lru_node lru_node;
};
u32 hash;
char key[0] __aligned(8);
};
+static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
+
+static bool htab_is_lru(const struct bpf_htab *htab)
+{
+ return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
+ htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
+}
+
+static bool htab_is_percpu(const struct bpf_htab *htab)
+{
+ return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
+}
+
static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
void __percpu *pptr)
{
@@ -73,7 +92,7 @@ static void htab_free_elems(struct bpf_htab *htab)
{
int i;
- if (htab->map.map_type != BPF_MAP_TYPE_PERCPU_HASH)
+ if (!htab_is_percpu(htab))
goto free_elems;
for (i = 0; i < htab->map.max_entries; i++) {
@@ -87,7 +106,22 @@ free_elems:
vfree(htab->elems);
}
-static int prealloc_elems_and_freelist(struct bpf_htab *htab)
+static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
+ u32 hash)
+{
+ struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
+ struct htab_elem *l;
+
+ if (node) {
+ l = container_of(node, struct htab_elem, lru_node);
+ memcpy(l->key, key, htab->map.key_size);
+ return l;
+ }
+
+ return NULL;
+}
+
+static int prealloc_init(struct bpf_htab *htab)
{
int err = -ENOMEM, i;
@@ -95,7 +129,7 @@ static int prealloc_elems_and_freelist(struct bpf_htab *htab)
if (!htab->elems)
return -ENOMEM;
- if (htab->map.map_type != BPF_MAP_TYPE_PERCPU_HASH)
+ if (!htab_is_percpu(htab))
goto skip_percpu_elems;
for (i = 0; i < htab->map.max_entries; i++) {
@@ -110,12 +144,27 @@ static int prealloc_elems_and_freelist(struct bpf_htab *htab)
}
skip_percpu_elems:
- err = pcpu_freelist_init(&htab->freelist);
+ if (htab_is_lru(htab))
+ err = bpf_lru_init(&htab->lru,
+ htab->map.map_flags & BPF_F_NO_COMMON_LRU,
+ offsetof(struct htab_elem, hash) -
+ offsetof(struct htab_elem, lru_node),
+ htab_lru_map_delete_node,
+ htab);
+ else
+ err = pcpu_freelist_init(&htab->freelist);
+
if (err)
goto free_elems;
- pcpu_freelist_populate(&htab->freelist, htab->elems, htab->elem_size,
- htab->map.max_entries);
+ if (htab_is_lru(htab))
+ bpf_lru_populate(&htab->lru, htab->elems,
+ offsetof(struct htab_elem, lru_node),
+ htab->elem_size, htab->map.max_entries);
+ else
+ pcpu_freelist_populate(&htab->freelist, htab->elems,
+ htab->elem_size, htab->map.max_entries);
+
return 0;
free_elems:
@@ -123,6 +172,16 @@ free_elems:
return err;
}
+static void prealloc_destroy(struct bpf_htab *htab)
+{
+ htab_free_elems(htab);
+
+ if (htab_is_lru(htab))
+ bpf_lru_destroy(&htab->lru);
+ else
+ pcpu_freelist_destroy(&htab->freelist);
+}
+
static int alloc_extra_elems(struct bpf_htab *htab)
{
void __percpu *pptr;
@@ -143,15 +202,37 @@ static int alloc_extra_elems(struct bpf_htab *htab)
/* Called from syscall */
static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
{
- bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_HASH;
+ bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
+ bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
+ attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
+ /* percpu_lru means each cpu has its own LRU list.
+ * it is different from BPF_MAP_TYPE_PERCPU_HASH where
+ * the map's value itself is percpu. percpu_lru has
+ * nothing to do with the map's value.
+ */
+ bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
+ bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
struct bpf_htab *htab;
int err, i;
u64 cost;
- if (attr->map_flags & ~BPF_F_NO_PREALLOC)
+ if (lru && !capable(CAP_SYS_ADMIN))
+ /* LRU implementation is much complicated than other
+ * maps. Hence, limit to CAP_SYS_ADMIN for now.
+ */
+ return ERR_PTR(-EPERM);
+
+ if (attr->map_flags & ~(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU))
/* reserved bits should not be used */
return ERR_PTR(-EINVAL);
+ if (!lru && percpu_lru)
+ return ERR_PTR(-EINVAL);
+
+ if (lru && !prealloc)
+ return ERR_PTR(-ENOTSUPP);
+
htab = kzalloc(sizeof(*htab), GFP_USER);
if (!htab)
return ERR_PTR(-ENOMEM);
@@ -171,6 +252,18 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
htab->map.value_size == 0)
goto free_htab;
+ if (percpu_lru) {
+ /* ensure each CPU's lru list has >=1 elements.
+ * since we are at it, make each lru list has the same
+ * number of elements.
+ */
+ htab->map.max_entries = roundup(attr->max_entries,
+ num_possible_cpus());
+ if (htab->map.max_entries < attr->max_entries)
+ htab->map.max_entries = rounddown(attr->max_entries,
+ num_possible_cpus());
+ }
+
/* hash table size must be power of 2 */
htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
@@ -241,14 +334,17 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
raw_spin_lock_init(&htab->buckets[i].lock);
}
- if (!percpu) {
+ if (!percpu && !lru) {
+ /* lru itself can remove the least used element, so
+ * there is no need for an extra elem during map_update.
+ */
err = alloc_extra_elems(htab);
if (err)
goto free_buckets;
}
- if (!(attr->map_flags & BPF_F_NO_PREALLOC)) {
- err = prealloc_elems_and_freelist(htab);
+ if (prealloc) {
+ err = prealloc_init(htab);
if (err)
goto free_extra_elems;
}
@@ -323,6 +419,46 @@ static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
return NULL;
}
+static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct htab_elem *l = __htab_map_lookup_elem(map, key);
+
+ if (l) {
+ bpf_lru_node_set_ref(&l->lru_node);
+ return l->key + round_up(map->key_size, 8);
+ }
+
+ return NULL;
+}
+
+/* It is called from the bpf_lru_list when the LRU needs to delete
+ * older elements from the htab.
+ */
+static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
+{
+ struct bpf_htab *htab = (struct bpf_htab *)arg;
+ struct htab_elem *l, *tgt_l;
+ struct hlist_head *head;
+ unsigned long flags;
+ struct bucket *b;
+
+ tgt_l = container_of(node, struct htab_elem, lru_node);
+ b = __select_bucket(htab, tgt_l->hash);
+ head = &b->head;
+
+ raw_spin_lock_irqsave(&b->lock, flags);
+
+ hlist_for_each_entry_rcu(l, head, hash_node)
+ if (l == tgt_l) {
+ hlist_del_rcu(&l->hash_node);
+ break;
+ }
+
+ raw_spin_unlock_irqrestore(&b->lock, flags);
+
+ return l == tgt_l;
+}
+
/* Called from syscall */
static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
@@ -420,6 +556,24 @@ static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
}
}
+static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
+ void *value, bool onallcpus)
+{
+ if (!onallcpus) {
+ /* copy true value_size bytes */
+ memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
+ } else {
+ u32 size = round_up(htab->map.value_size, 8);
+ int off = 0, cpu;
+
+ for_each_possible_cpu(cpu) {
+ bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
+ value + off, size);
+ off += size;
+ }
+ }
+}
+
static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
void *value, u32 key_size, u32 hash,
bool percpu, bool onallcpus,
@@ -479,18 +633,8 @@ static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
}
}
- if (!onallcpus) {
- /* copy true value_size bytes */
- memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
- } else {
- int off = 0, cpu;
+ pcpu_copy_value(htab, pptr, value, onallcpus);
- for_each_possible_cpu(cpu) {
- bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
- value + off, size);
- off += size;
- }
- }
if (!prealloc)
htab_elem_set_ptr(l_new, key_size, pptr);
} else {
@@ -571,6 +715,70 @@ err:
return ret;
}
+static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct htab_elem *l_new, *l_old = NULL;
+ struct hlist_head *head;
+ unsigned long flags;
+ struct bucket *b;
+ u32 key_size, hash;
+ int ret;
+
+ if (unlikely(map_flags > BPF_EXIST))
+ /* unknown flags */
+ return -EINVAL;
+
+ WARN_ON_ONCE(!rcu_read_lock_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size);
+
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ /* For LRU, we need to alloc before taking bucket's
+ * spinlock because getting free nodes from LRU may need
+ * to remove older elements from htab and this removal
+ * operation will need a bucket lock.
+ */
+ l_new = prealloc_lru_pop(htab, key, hash);
+ if (!l_new)
+ return -ENOMEM;
+ memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
+
+ /* bpf_map_update_elem() can be called in_irq() */
+ raw_spin_lock_irqsave(&b->lock, flags);
+
+ l_old = lookup_elem_raw(head, hash, key, key_size);
+
+ ret = check_flags(htab, l_old, map_flags);
+ if (ret)
+ goto err;
+
+ /* add new element to the head of the list, so that
+ * concurrent search will find it before old elem
+ */
+ hlist_add_head_rcu(&l_new->hash_node, head);
+ if (l_old) {
+ bpf_lru_node_set_ref(&l_new->lru_node);
+ hlist_del_rcu(&l_old->hash_node);
+ }
+ ret = 0;
+
+err:
+ raw_spin_unlock_irqrestore(&b->lock, flags);
+
+ if (ret)
+ bpf_lru_push_free(&htab->lru, &l_new->lru_node);
+ else if (l_old)
+ bpf_lru_push_free(&htab->lru, &l_old->lru_node);
+
+ return ret;
+}
+
static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags,
bool onallcpus)
@@ -606,22 +814,9 @@ static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
goto err;
if (l_old) {
- void __percpu *pptr = htab_elem_get_ptr(l_old, key_size);
- u32 size = htab->map.value_size;
-
/* per-cpu hash map can update value in-place */
- if (!onallcpus) {
- memcpy(this_cpu_ptr(pptr), value, size);
- } else {
- int off = 0, cpu;
-
- size = round_up(size, 8);
- for_each_possible_cpu(cpu) {
- bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
- value + off, size);
- off += size;
- }
- }
+ pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
+ value, onallcpus);
} else {
l_new = alloc_htab_elem(htab, key, value, key_size,
hash, true, onallcpus, false);
@@ -637,12 +832,84 @@ err:
return ret;
}
+static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags,
+ bool onallcpus)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct htab_elem *l_new = NULL, *l_old;
+ struct hlist_head *head;
+ unsigned long flags;
+ struct bucket *b;
+ u32 key_size, hash;
+ int ret;
+
+ if (unlikely(map_flags > BPF_EXIST))
+ /* unknown flags */
+ return -EINVAL;
+
+ WARN_ON_ONCE(!rcu_read_lock_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size);
+
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ /* For LRU, we need to alloc before taking bucket's
+ * spinlock because LRU's elem alloc may need
+ * to remove older elem from htab and this removal
+ * operation will need a bucket lock.
+ */
+ if (map_flags != BPF_EXIST) {
+ l_new = prealloc_lru_pop(htab, key, hash);
+ if (!l_new)
+ return -ENOMEM;
+ }
+
+ /* bpf_map_update_elem() can be called in_irq() */
+ raw_spin_lock_irqsave(&b->lock, flags);
+
+ l_old = lookup_elem_raw(head, hash, key, key_size);
+
+ ret = check_flags(htab, l_old, map_flags);
+ if (ret)
+ goto err;
+
+ if (l_old) {
+ bpf_lru_node_set_ref(&l_old->lru_node);
+
+ /* per-cpu hash map can update value in-place */
+ pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
+ value, onallcpus);
+ } else {
+ pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size),
+ value, onallcpus);
+ hlist_add_head_rcu(&l_new->hash_node, head);
+ l_new = NULL;
+ }
+ ret = 0;
+err:
+ raw_spin_unlock_irqrestore(&b->lock, flags);
+ if (l_new)
+ bpf_lru_push_free(&htab->lru, &l_new->lru_node);
+ return ret;
+}
+
static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags)
{
return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
}
+static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags)
+{
+ return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
+ false);
+}
+
/* Called from syscall or from eBPF program */
static int htab_map_delete_elem(struct bpf_map *map, void *key)
{
@@ -676,6 +943,39 @@ static int htab_map_delete_elem(struct bpf_map *map, void *key)
return ret;
}
+static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct hlist_head *head;
+ struct bucket *b;
+ struct htab_elem *l;
+ unsigned long flags;
+ u32 hash, key_size;
+ int ret = -ENOENT;
+
+ WARN_ON_ONCE(!rcu_read_lock_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size);
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ raw_spin_lock_irqsave(&b->lock, flags);
+
+ l = lookup_elem_raw(head, hash, key, key_size);
+
+ if (l) {
+ hlist_del_rcu(&l->hash_node);
+ ret = 0;
+ }
+
+ raw_spin_unlock_irqrestore(&b->lock, flags);
+ if (l)
+ bpf_lru_push_free(&htab->lru, &l->lru_node);
+ return ret;
+}
+
static void delete_all_elements(struct bpf_htab *htab)
{
int i;
@@ -687,7 +987,8 @@ static void delete_all_elements(struct bpf_htab *htab)
hlist_for_each_entry_safe(l, n, head, hash_node) {
hlist_del_rcu(&l->hash_node);
- htab_elem_free(htab, l);
+ if (l->state != HTAB_EXTRA_ELEM_USED)
+ htab_elem_free(htab, l);
}
}
}
@@ -707,12 +1008,11 @@ static void htab_map_free(struct bpf_map *map)
* not have executed. Wait for them.
*/
rcu_barrier();
- if (htab->map.map_flags & BPF_F_NO_PREALLOC) {
+ if (htab->map.map_flags & BPF_F_NO_PREALLOC)
delete_all_elements(htab);
- } else {
- htab_free_elems(htab);
- pcpu_freelist_destroy(&htab->freelist);
- }
+ else
+ prealloc_destroy(htab);
+
free_percpu(htab->extra_elems);
kvfree(htab->buckets);
kfree(htab);
@@ -732,6 +1032,20 @@ static struct bpf_map_type_list htab_type __read_mostly = {
.type = BPF_MAP_TYPE_HASH,
};
+static const struct bpf_map_ops htab_lru_ops = {
+ .map_alloc = htab_map_alloc,
+ .map_free = htab_map_free,
+ .map_get_next_key = htab_map_get_next_key,
+ .map_lookup_elem = htab_lru_map_lookup_elem,
+ .map_update_elem = htab_lru_map_update_elem,
+ .map_delete_elem = htab_lru_map_delete_elem,
+};
+
+static struct bpf_map_type_list htab_lru_type __read_mostly = {
+ .ops = &htab_lru_ops,
+ .type = BPF_MAP_TYPE_LRU_HASH,
+};
+
/* Called from eBPF program */
static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
{
@@ -743,8 +1057,21 @@ static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
return NULL;
}
+static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct htab_elem *l = __htab_map_lookup_elem(map, key);
+
+ if (l) {
+ bpf_lru_node_set_ref(&l->lru_node);
+ return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
+ }
+
+ return NULL;
+}
+
int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct htab_elem *l;
void __percpu *pptr;
int ret = -ENOENT;
@@ -760,6 +1087,8 @@ int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
l = __htab_map_lookup_elem(map, key);
if (!l)
goto out;
+ if (htab_is_lru(htab))
+ bpf_lru_node_set_ref(&l->lru_node);
pptr = htab_elem_get_ptr(l, map->key_size);
for_each_possible_cpu(cpu) {
bpf_long_memcpy(value + off,
@@ -775,10 +1104,16 @@ out:
int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
int ret;
rcu_read_lock();
- ret = __htab_percpu_map_update_elem(map, key, value, map_flags, true);
+ if (htab_is_lru(htab))
+ ret = __htab_lru_percpu_map_update_elem(map, key, value,
+ map_flags, true);
+ else
+ ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
+ true);
rcu_read_unlock();
return ret;
@@ -798,10 +1133,26 @@ static struct bpf_map_type_list htab_percpu_type __read_mostly = {
.type = BPF_MAP_TYPE_PERCPU_HASH,
};
+static const struct bpf_map_ops htab_lru_percpu_ops = {
+ .map_alloc = htab_map_alloc,
+ .map_free = htab_map_free,
+ .map_get_next_key = htab_map_get_next_key,
+ .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
+ .map_update_elem = htab_lru_percpu_map_update_elem,
+ .map_delete_elem = htab_lru_map_delete_elem,
+};
+
+static struct bpf_map_type_list htab_lru_percpu_type __read_mostly = {
+ .ops = &htab_lru_percpu_ops,
+ .type = BPF_MAP_TYPE_LRU_PERCPU_HASH,
+};
+
static int __init register_htab_map(void)
{
bpf_register_map_type(&htab_type);
bpf_register_map_type(&htab_percpu_type);
+ bpf_register_map_type(&htab_lru_type);
+ bpf_register_map_type(&htab_lru_percpu_type);
return 0;
}
late_initcall(register_htab_map);
diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c
index 39918402e6e9..045cbe673356 100644
--- a/kernel/bpf/helpers.c
+++ b/kernel/bpf/helpers.c
@@ -13,6 +13,7 @@
#include <linux/rcupdate.h>
#include <linux/random.h>
#include <linux/smp.h>
+#include <linux/topology.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/uidgid.h>
@@ -92,6 +93,17 @@ const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
.ret_type = RET_INTEGER,
};
+BPF_CALL_0(bpf_get_numa_node_id)
+{
+ return numa_node_id();
+}
+
+const struct bpf_func_proto bpf_get_numa_node_id_proto = {
+ .func = bpf_get_numa_node_id,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
BPF_CALL_0(bpf_ktime_get_ns)
{
/* NMI safe access to clock monotonic */
diff --git a/kernel/bpf/inode.c b/kernel/bpf/inode.c
index 1ed8473ec537..0b030c9126d3 100644
--- a/kernel/bpf/inode.c
+++ b/kernel/bpf/inode.c
@@ -18,6 +18,7 @@
#include <linux/namei.h>
#include <linux/fs.h>
#include <linux/kdev_t.h>
+#include <linux/parser.h>
#include <linux/filter.h>
#include <linux/bpf.h>
@@ -87,6 +88,7 @@ static struct inode *bpf_get_inode(struct super_block *sb,
switch (mode & S_IFMT) {
case S_IFDIR:
case S_IFREG:
+ case S_IFLNK:
break;
default:
return ERR_PTR(-EINVAL);
@@ -119,6 +121,16 @@ static int bpf_inode_type(const struct inode *inode, enum bpf_type *type)
return 0;
}
+static void bpf_dentry_finalize(struct dentry *dentry, struct inode *inode,
+ struct inode *dir)
+{
+ d_instantiate(dentry, inode);
+ dget(dentry);
+
+ dir->i_mtime = current_time(dir);
+ dir->i_ctime = dir->i_mtime;
+}
+
static int bpf_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
struct inode *inode;
@@ -133,9 +145,7 @@ static int bpf_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
inc_nlink(inode);
inc_nlink(dir);
- d_instantiate(dentry, inode);
- dget(dentry);
-
+ bpf_dentry_finalize(dentry, inode, dir);
return 0;
}
@@ -151,9 +161,7 @@ static int bpf_mkobj_ops(struct inode *dir, struct dentry *dentry,
inode->i_op = iops;
inode->i_private = dentry->d_fsdata;
- d_instantiate(dentry, inode);
- dget(dentry);
-
+ bpf_dentry_finalize(dentry, inode, dir);
return 0;
}
@@ -181,13 +189,37 @@ bpf_lookup(struct inode *dir, struct dentry *dentry, unsigned flags)
{
if (strchr(dentry->d_name.name, '.'))
return ERR_PTR(-EPERM);
+
return simple_lookup(dir, dentry, flags);
}
+static int bpf_symlink(struct inode *dir, struct dentry *dentry,
+ const char *target)
+{
+ char *link = kstrdup(target, GFP_USER | __GFP_NOWARN);
+ struct inode *inode;
+
+ if (!link)
+ return -ENOMEM;
+
+ inode = bpf_get_inode(dir->i_sb, dir, S_IRWXUGO | S_IFLNK);
+ if (IS_ERR(inode)) {
+ kfree(link);
+ return PTR_ERR(inode);
+ }
+
+ inode->i_op = &simple_symlink_inode_operations;
+ inode->i_link = link;
+
+ bpf_dentry_finalize(dentry, inode, dir);
+ return 0;
+}
+
static const struct inode_operations bpf_dir_iops = {
.lookup = bpf_lookup,
.mknod = bpf_mkobj,
.mkdir = bpf_mkdir,
+ .symlink = bpf_symlink,
.rmdir = simple_rmdir,
.rename = simple_rename,
.link = simple_link,
@@ -324,6 +356,8 @@ static void bpf_evict_inode(struct inode *inode)
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
+ if (S_ISLNK(inode->i_mode))
+ kfree(inode->i_link);
if (!bpf_inode_type(inode, &type))
bpf_any_put(inode->i_private, type);
}
@@ -331,15 +365,66 @@ static void bpf_evict_inode(struct inode *inode)
static const struct super_operations bpf_super_ops = {
.statfs = simple_statfs,
.drop_inode = generic_delete_inode,
+ .show_options = generic_show_options,
.evict_inode = bpf_evict_inode,
};
+enum {
+ OPT_MODE,
+ OPT_ERR,
+};
+
+static const match_table_t bpf_mount_tokens = {
+ { OPT_MODE, "mode=%o" },
+ { OPT_ERR, NULL },
+};
+
+struct bpf_mount_opts {
+ umode_t mode;
+};
+
+static int bpf_parse_options(char *data, struct bpf_mount_opts *opts)
+{
+ substring_t args[MAX_OPT_ARGS];
+ int option, token;
+ char *ptr;
+
+ opts->mode = S_IRWXUGO;
+
+ while ((ptr = strsep(&data, ",")) != NULL) {
+ if (!*ptr)
+ continue;
+
+ token = match_token(ptr, bpf_mount_tokens, args);
+ switch (token) {
+ case OPT_MODE:
+ if (match_octal(&args[0], &option))
+ return -EINVAL;
+ opts->mode = option & S_IALLUGO;
+ break;
+ /* We might like to report bad mount options here, but
+ * traditionally we've ignored all mount options, so we'd
+ * better continue to ignore non-existing options for bpf.
+ */
+ }
+ }
+
+ return 0;
+}
+
static int bpf_fill_super(struct super_block *sb, void *data, int silent)
{
static struct tree_descr bpf_rfiles[] = { { "" } };
+ struct bpf_mount_opts opts;
struct inode *inode;
int ret;
+ save_mount_options(sb, data);
+
+ ret = bpf_parse_options(data, &opts);
+ if (ret)
+ return ret;
+
ret = simple_fill_super(sb, BPF_FS_MAGIC, bpf_rfiles);
if (ret)
return ret;
@@ -349,7 +434,7 @@ static int bpf_fill_super(struct super_block *sb, void *data, int silent)
inode = sb->s_root->d_inode;
inode->i_op = &bpf_dir_iops;
inode->i_mode &= ~S_IALLUGO;
- inode->i_mode |= S_ISVTX | S_IRWXUGO;
+ inode->i_mode |= S_ISVTX | opts.mode;
return 0;
}
diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
index 228f962447a5..4819ec9d95f6 100644
--- a/kernel/bpf/syscall.c
+++ b/kernel/bpf/syscall.c
@@ -17,6 +17,7 @@
#include <linux/license.h>
#include <linux/filter.h>
#include <linux/version.h>
+#include <linux/kernel.h>
DEFINE_PER_CPU(int, bpf_prog_active);
@@ -137,18 +138,31 @@ static int bpf_map_release(struct inode *inode, struct file *filp)
static void bpf_map_show_fdinfo(struct seq_file *m, struct file *filp)
{
const struct bpf_map *map = filp->private_data;
+ const struct bpf_array *array;
+ u32 owner_prog_type = 0;
+
+ if (map->map_type == BPF_MAP_TYPE_PROG_ARRAY) {
+ array = container_of(map, struct bpf_array, map);
+ owner_prog_type = array->owner_prog_type;
+ }
seq_printf(m,
"map_type:\t%u\n"
"key_size:\t%u\n"
"value_size:\t%u\n"
"max_entries:\t%u\n"
- "map_flags:\t%#x\n",
+ "map_flags:\t%#x\n"
+ "memlock:\t%llu\n",
map->map_type,
map->key_size,
map->value_size,
map->max_entries,
- map->map_flags);
+ map->map_flags,
+ map->pages * 1ULL << PAGE_SHIFT);
+
+ if (owner_prog_type)
+ seq_printf(m, "owner_prog_type:\t%u\n",
+ owner_prog_type);
}
#endif
@@ -194,7 +208,7 @@ static int map_create(union bpf_attr *attr)
err = bpf_map_charge_memlock(map);
if (err)
- goto free_map;
+ goto free_map_nouncharge;
err = bpf_map_new_fd(map);
if (err < 0)
@@ -204,6 +218,8 @@ static int map_create(union bpf_attr *attr)
return err;
free_map:
+ bpf_map_uncharge_memlock(map);
+free_map_nouncharge:
map->ops->map_free(map);
return err;
}
@@ -252,12 +268,6 @@ struct bpf_map *bpf_map_get_with_uref(u32 ufd)
return map;
}
-/* helper to convert user pointers passed inside __aligned_u64 fields */
-static void __user *u64_to_ptr(__u64 val)
-{
- return (void __user *) (unsigned long) val;
-}
-
int __weak bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
{
return -ENOTSUPP;
@@ -268,8 +278,8 @@ int __weak bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
static int map_lookup_elem(union bpf_attr *attr)
{
- void __user *ukey = u64_to_ptr(attr->key);
- void __user *uvalue = u64_to_ptr(attr->value);
+ void __user *ukey = u64_to_user_ptr(attr->key);
+ void __user *uvalue = u64_to_user_ptr(attr->value);
int ufd = attr->map_fd;
struct bpf_map *map;
void *key, *value, *ptr;
@@ -295,6 +305,7 @@ static int map_lookup_elem(union bpf_attr *attr)
goto free_key;
if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH ||
map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
value_size = round_up(map->value_size, 8) * num_possible_cpus();
else
@@ -305,7 +316,8 @@ static int map_lookup_elem(union bpf_attr *attr)
if (!value)
goto free_key;
- if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH) {
+ if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
err = bpf_percpu_hash_copy(map, key, value);
} else if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
err = bpf_percpu_array_copy(map, key, value);
@@ -342,8 +354,8 @@ err_put:
static int map_update_elem(union bpf_attr *attr)
{
- void __user *ukey = u64_to_ptr(attr->key);
- void __user *uvalue = u64_to_ptr(attr->value);
+ void __user *ukey = u64_to_user_ptr(attr->key);
+ void __user *uvalue = u64_to_user_ptr(attr->value);
int ufd = attr->map_fd;
struct bpf_map *map;
void *key, *value;
@@ -369,6 +381,7 @@ static int map_update_elem(union bpf_attr *attr)
goto free_key;
if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH ||
map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
value_size = round_up(map->value_size, 8) * num_possible_cpus();
else
@@ -388,7 +401,8 @@ static int map_update_elem(union bpf_attr *attr)
*/
preempt_disable();
__this_cpu_inc(bpf_prog_active);
- if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH) {
+ if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
err = bpf_percpu_hash_update(map, key, value, attr->flags);
} else if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
err = bpf_percpu_array_update(map, key, value, attr->flags);
@@ -420,7 +434,7 @@ err_put:
static int map_delete_elem(union bpf_attr *attr)
{
- void __user *ukey = u64_to_ptr(attr->key);
+ void __user *ukey = u64_to_user_ptr(attr->key);
int ufd = attr->map_fd;
struct bpf_map *map;
struct fd f;
@@ -464,8 +478,8 @@ err_put:
static int map_get_next_key(union bpf_attr *attr)
{
- void __user *ukey = u64_to_ptr(attr->key);
- void __user *unext_key = u64_to_ptr(attr->next_key);
+ void __user *ukey = u64_to_user_ptr(attr->key);
+ void __user *unext_key = u64_to_user_ptr(attr->next_key);
int ufd = attr->map_fd;
struct bpf_map *map;
void *key, *next_key;
@@ -565,6 +579,8 @@ static void fixup_bpf_calls(struct bpf_prog *prog)
prog->dst_needed = 1;
if (insn->imm == BPF_FUNC_get_prandom_u32)
bpf_user_rnd_init_once();
+ if (insn->imm == BPF_FUNC_xdp_adjust_head)
+ prog->xdp_adjust_head = 1;
if (insn->imm == BPF_FUNC_tail_call) {
/* mark bpf_tail_call as different opcode
* to avoid conditional branch in
@@ -648,8 +664,30 @@ static int bpf_prog_release(struct inode *inode, struct file *filp)
return 0;
}
+#ifdef CONFIG_PROC_FS
+static void bpf_prog_show_fdinfo(struct seq_file *m, struct file *filp)
+{
+ const struct bpf_prog *prog = filp->private_data;
+ char prog_digest[sizeof(prog->digest) * 2 + 1] = { };
+
+ bin2hex(prog_digest, prog->digest, sizeof(prog->digest));
+ seq_printf(m,
+ "prog_type:\t%u\n"
+ "prog_jited:\t%u\n"
+ "prog_digest:\t%s\n"
+ "memlock:\t%llu\n",
+ prog->type,
+ prog->jited,
+ prog_digest,
+ prog->pages * 1ULL << PAGE_SHIFT);
+}
+#endif
+
static const struct file_operations bpf_prog_fops = {
- .release = bpf_prog_release,
+#ifdef CONFIG_PROC_FS
+ .show_fdinfo = bpf_prog_show_fdinfo,
+#endif
+ .release = bpf_prog_release,
};
int bpf_prog_new_fd(struct bpf_prog *prog)
@@ -680,10 +718,22 @@ struct bpf_prog *bpf_prog_add(struct bpf_prog *prog, int i)
}
EXPORT_SYMBOL_GPL(bpf_prog_add);
+void bpf_prog_sub(struct bpf_prog *prog, int i)
+{
+ /* Only to be used for undoing previous bpf_prog_add() in some
+ * error path. We still know that another entity in our call
+ * path holds a reference to the program, thus atomic_sub() can
+ * be safely used in such cases!
+ */
+ WARN_ON(atomic_sub_return(i, &prog->aux->refcnt) == 0);
+}
+EXPORT_SYMBOL_GPL(bpf_prog_sub);
+
struct bpf_prog *bpf_prog_inc(struct bpf_prog *prog)
{
return bpf_prog_add(prog, 1);
}
+EXPORT_SYMBOL_GPL(bpf_prog_inc);
static struct bpf_prog *__bpf_prog_get(u32 ufd, enum bpf_prog_type *type)
{
@@ -730,7 +780,7 @@ static int bpf_prog_load(union bpf_attr *attr)
return -EINVAL;
/* copy eBPF program license from user space */
- if (strncpy_from_user(license, u64_to_ptr(attr->license),
+ if (strncpy_from_user(license, u64_to_user_ptr(attr->license),
sizeof(license) - 1) < 0)
return -EFAULT;
license[sizeof(license) - 1] = 0;
@@ -738,8 +788,8 @@ static int bpf_prog_load(union bpf_attr *attr)
/* eBPF programs must be GPL compatible to use GPL-ed functions */
is_gpl = license_is_gpl_compatible(license);
- if (attr->insn_cnt >= BPF_MAXINSNS)
- return -EINVAL;
+ if (attr->insn_cnt == 0 || attr->insn_cnt > BPF_MAXINSNS)
+ return -E2BIG;
if (type == BPF_PROG_TYPE_KPROBE &&
attr->kern_version != LINUX_VERSION_CODE)
@@ -760,7 +810,7 @@ static int bpf_prog_load(union bpf_attr *attr)
prog->len = attr->insn_cnt;
err = -EFAULT;
- if (copy_from_user(prog->insns, u64_to_ptr(attr->insns),
+ if (copy_from_user(prog->insns, u64_to_user_ptr(attr->insns),
prog->len * sizeof(struct bpf_insn)) != 0)
goto free_prog;
@@ -811,7 +861,7 @@ static int bpf_obj_pin(const union bpf_attr *attr)
if (CHECK_ATTR(BPF_OBJ))
return -EINVAL;
- return bpf_obj_pin_user(attr->bpf_fd, u64_to_ptr(attr->pathname));
+ return bpf_obj_pin_user(attr->bpf_fd, u64_to_user_ptr(attr->pathname));
}
static int bpf_obj_get(const union bpf_attr *attr)
@@ -819,9 +869,85 @@ static int bpf_obj_get(const union bpf_attr *attr)
if (CHECK_ATTR(BPF_OBJ) || attr->bpf_fd != 0)
return -EINVAL;
- return bpf_obj_get_user(u64_to_ptr(attr->pathname));
+ return bpf_obj_get_user(u64_to_user_ptr(attr->pathname));
+}
+
+#ifdef CONFIG_CGROUP_BPF
+
+#define BPF_PROG_ATTACH_LAST_FIELD attach_type
+
+static int bpf_prog_attach(const union bpf_attr *attr)
+{
+ struct bpf_prog *prog;
+ struct cgroup *cgrp;
+ enum bpf_prog_type ptype;
+
+ if (!capable(CAP_NET_ADMIN))
+ return -EPERM;
+
+ if (CHECK_ATTR(BPF_PROG_ATTACH))
+ return -EINVAL;
+
+ switch (attr->attach_type) {
+ case BPF_CGROUP_INET_INGRESS:
+ case BPF_CGROUP_INET_EGRESS:
+ ptype = BPF_PROG_TYPE_CGROUP_SKB;
+ break;
+ case BPF_CGROUP_INET_SOCK_CREATE:
+ ptype = BPF_PROG_TYPE_CGROUP_SOCK;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ cgrp = cgroup_get_from_fd(attr->target_fd);
+ if (IS_ERR(cgrp)) {
+ bpf_prog_put(prog);
+ return PTR_ERR(cgrp);
+ }
+
+ cgroup_bpf_update(cgrp, prog, attr->attach_type);
+ cgroup_put(cgrp);
+
+ return 0;
}
+#define BPF_PROG_DETACH_LAST_FIELD attach_type
+
+static int bpf_prog_detach(const union bpf_attr *attr)
+{
+ struct cgroup *cgrp;
+
+ if (!capable(CAP_NET_ADMIN))
+ return -EPERM;
+
+ if (CHECK_ATTR(BPF_PROG_DETACH))
+ return -EINVAL;
+
+ switch (attr->attach_type) {
+ case BPF_CGROUP_INET_INGRESS:
+ case BPF_CGROUP_INET_EGRESS:
+ case BPF_CGROUP_INET_SOCK_CREATE:
+ cgrp = cgroup_get_from_fd(attr->target_fd);
+ if (IS_ERR(cgrp))
+ return PTR_ERR(cgrp);
+
+ cgroup_bpf_update(cgrp, NULL, attr->attach_type);
+ cgroup_put(cgrp);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+#endif /* CONFIG_CGROUP_BPF */
+
SYSCALL_DEFINE3(bpf, int, cmd, union bpf_attr __user *, uattr, unsigned int, size)
{
union bpf_attr attr = {};
@@ -888,6 +1014,16 @@ SYSCALL_DEFINE3(bpf, int, cmd, union bpf_attr __user *, uattr, unsigned int, siz
case BPF_OBJ_GET:
err = bpf_obj_get(&attr);
break;
+
+#ifdef CONFIG_CGROUP_BPF
+ case BPF_PROG_ATTACH:
+ err = bpf_prog_attach(&attr);
+ break;
+ case BPF_PROG_DETACH:
+ err = bpf_prog_detach(&attr);
+ break;
+#endif
+
default:
err = -EINVAL;
break;
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index 99a7e5b388f2..d28f9a3380a9 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -19,6 +19,7 @@
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
+#include <linux/stringify.h>
/* bpf_check() is a static code analyzer that walks eBPF program
* instruction by instruction and updates register/stack state.
@@ -190,6 +191,22 @@ static const char * const reg_type_str[] = {
[PTR_TO_PACKET_END] = "pkt_end",
};
+#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
+static const char * const func_id_str[] = {
+ __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
+};
+#undef __BPF_FUNC_STR_FN
+
+static const char *func_id_name(int id)
+{
+ BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
+
+ if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
+ return func_id_str[id];
+ else
+ return "unknown";
+}
+
static void print_verifier_state(struct bpf_verifier_state *state)
{
struct bpf_reg_state *reg;
@@ -212,12 +229,13 @@ static void print_verifier_state(struct bpf_verifier_state *state)
else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
t == PTR_TO_MAP_VALUE_OR_NULL ||
t == PTR_TO_MAP_VALUE_ADJ)
- verbose("(ks=%d,vs=%d)",
+ verbose("(ks=%d,vs=%d,id=%u)",
reg->map_ptr->key_size,
- reg->map_ptr->value_size);
+ reg->map_ptr->value_size,
+ reg->id);
if (reg->min_value != BPF_REGISTER_MIN_RANGE)
- verbose(",min_value=%llu",
- (unsigned long long)reg->min_value);
+ verbose(",min_value=%lld",
+ (long long)reg->min_value);
if (reg->max_value != BPF_REGISTER_MAX_RANGE)
verbose(",max_value=%llu",
(unsigned long long)reg->max_value);
@@ -353,7 +371,8 @@ static void print_bpf_insn(struct bpf_insn *insn)
u8 opcode = BPF_OP(insn->code);
if (opcode == BPF_CALL) {
- verbose("(%02x) call %d\n", insn->code, insn->imm);
+ verbose("(%02x) call %s#%d\n", insn->code,
+ func_id_name(insn->imm), insn->imm);
} else if (insn->code == (BPF_JMP | BPF_JA)) {
verbose("(%02x) goto pc%+d\n",
insn->code, insn->off);
@@ -447,6 +466,7 @@ static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
{
BUG_ON(regno >= MAX_BPF_REG);
regs[regno].type = UNKNOWN_VALUE;
+ regs[regno].id = 0;
regs[regno].imm = 0;
}
@@ -613,12 +633,19 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
#define MAX_PACKET_OFF 0xffff
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
- const struct bpf_call_arg_meta *meta)
+ const struct bpf_call_arg_meta *meta,
+ enum bpf_access_type t)
{
switch (env->prog->type) {
+ case BPF_PROG_TYPE_LWT_IN:
+ case BPF_PROG_TYPE_LWT_OUT:
+ /* dst_input() and dst_output() can't write for now */
+ if (t == BPF_WRITE)
+ return false;
case BPF_PROG_TYPE_SCHED_CLS:
case BPF_PROG_TYPE_SCHED_ACT:
case BPF_PROG_TYPE_XDP:
+ case BPF_PROG_TYPE_LWT_XMIT:
if (meta)
return meta->pkt_access;
@@ -758,7 +785,7 @@ static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
* index'es we need to make sure that whatever we use
* will have a set floor within our range.
*/
- if ((s64)reg->min_value < 0) {
+ if (reg->min_value < 0) {
verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
@@ -817,7 +844,7 @@ static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
err = check_stack_read(state, off, size, value_regno);
}
} else if (state->regs[regno].type == PTR_TO_PACKET) {
- if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL)) {
+ if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
verbose("cannot write into packet\n");
return -EACCES;
}
@@ -950,7 +977,8 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
return 0;
}
- if (type == PTR_TO_PACKET && !may_access_direct_pkt_data(env, meta)) {
+ if (type == PTR_TO_PACKET &&
+ !may_access_direct_pkt_data(env, meta, BPF_READ)) {
verbose("helper access to the packet is not allowed\n");
return -EACCES;
}
@@ -1112,8 +1140,8 @@ static int check_map_func_compatibility(struct bpf_map *map, int func_id)
return 0;
error:
- verbose("cannot pass map_type %d into func %d\n",
- map->map_type, func_id);
+ verbose("cannot pass map_type %d into func %s#%d\n",
+ map->map_type, func_id_name(func_id), func_id);
return -EINVAL;
}
@@ -1170,7 +1198,7 @@ static int check_call(struct bpf_verifier_env *env, int func_id)
/* find function prototype */
if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
- verbose("invalid func %d\n", func_id);
+ verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
return -EINVAL;
}
@@ -1178,7 +1206,7 @@ static int check_call(struct bpf_verifier_env *env, int func_id)
fn = env->prog->aux->ops->get_func_proto(func_id);
if (!fn) {
- verbose("unknown func %d\n", func_id);
+ verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
return -EINVAL;
}
@@ -1188,7 +1216,7 @@ static int check_call(struct bpf_verifier_env *env, int func_id)
return -EINVAL;
}
- changes_data = bpf_helper_changes_skb_data(fn->func);
+ changes_data = bpf_helper_changes_pkt_data(fn->func);
memset(&meta, 0, sizeof(meta));
meta.pkt_access = fn->pkt_access;
@@ -1198,7 +1226,8 @@ static int check_call(struct bpf_verifier_env *env, int func_id)
*/
err = check_raw_mode(fn);
if (err) {
- verbose("kernel subsystem misconfigured func %d\n", func_id);
+ verbose("kernel subsystem misconfigured func %s#%d\n",
+ func_id_name(func_id), func_id);
return err;
}
@@ -1252,9 +1281,10 @@ static int check_call(struct bpf_verifier_env *env, int func_id)
return -EINVAL;
}
regs[BPF_REG_0].map_ptr = meta.map_ptr;
+ regs[BPF_REG_0].id = ++env->id_gen;
} else {
- verbose("unknown return type %d of func %d\n",
- fn->ret_type, func_id);
+ verbose("unknown return type %d of func %s#%d\n",
+ fn->ret_type, func_id_name(func_id), func_id);
return -EINVAL;
}
@@ -1451,14 +1481,19 @@ static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
u8 opcode = BPF_OP(insn->code);
- /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
- * Don't care about overflow or negative values, just add them
+ /* dst_reg->type == CONST_IMM here, simulate execution of 'add'/'or'
+ * insn. Don't care about overflow or negative values, just add them
*/
if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
dst_reg->imm += insn->imm;
else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM)
dst_reg->imm += src_reg->imm;
+ else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K)
+ dst_reg->imm |= insn->imm;
+ else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
+ src_reg->type == CONST_IMM)
+ dst_reg->imm |= src_reg->imm;
else
mark_reg_unknown_value(regs, insn->dst_reg);
return 0;
@@ -1468,7 +1503,8 @@ static void check_reg_overflow(struct bpf_reg_state *reg)
{
if (reg->max_value > BPF_REGISTER_MAX_RANGE)
reg->max_value = BPF_REGISTER_MAX_RANGE;
- if ((s64)reg->min_value < BPF_REGISTER_MIN_RANGE)
+ if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
+ reg->min_value > BPF_REGISTER_MAX_RANGE)
reg->min_value = BPF_REGISTER_MIN_RANGE;
}
@@ -1476,8 +1512,8 @@ static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
- u64 min_val = BPF_REGISTER_MIN_RANGE, max_val = BPF_REGISTER_MAX_RANGE;
- bool min_set = false, max_set = false;
+ s64 min_val = BPF_REGISTER_MIN_RANGE;
+ u64 max_val = BPF_REGISTER_MAX_RANGE;
u8 opcode = BPF_OP(insn->code);
dst_reg = &regs[insn->dst_reg];
@@ -1500,7 +1536,6 @@ static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
(s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
min_val = max_val = insn->imm;
- min_set = max_set = true;
}
/* We don't know anything about what was done to this register, mark it
@@ -1512,22 +1547,43 @@ static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
return;
}
+ /* If one of our values was at the end of our ranges then we can't just
+ * do our normal operations to the register, we need to set the values
+ * to the min/max since they are undefined.
+ */
+ if (min_val == BPF_REGISTER_MIN_RANGE)
+ dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
+ if (max_val == BPF_REGISTER_MAX_RANGE)
+ dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
+
switch (opcode) {
case BPF_ADD:
- dst_reg->min_value += min_val;
- dst_reg->max_value += max_val;
+ if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
+ dst_reg->min_value += min_val;
+ if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
+ dst_reg->max_value += max_val;
break;
case BPF_SUB:
- dst_reg->min_value -= min_val;
- dst_reg->max_value -= max_val;
+ if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
+ dst_reg->min_value -= min_val;
+ if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
+ dst_reg->max_value -= max_val;
break;
case BPF_MUL:
- dst_reg->min_value *= min_val;
- dst_reg->max_value *= max_val;
+ if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
+ dst_reg->min_value *= min_val;
+ if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
+ dst_reg->max_value *= max_val;
break;
case BPF_AND:
- /* & is special since it could end up with 0 bits set. */
- dst_reg->min_value &= min_val;
+ /* Disallow AND'ing of negative numbers, ain't nobody got time
+ * for that. Otherwise the minimum is 0 and the max is the max
+ * value we could AND against.
+ */
+ if (min_val < 0)
+ dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
+ else
+ dst_reg->min_value = 0;
dst_reg->max_value = max_val;
break;
case BPF_LSH:
@@ -1537,24 +1593,25 @@ static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
*/
if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
- else
+ else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value <<= min_val;
if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
- else
+ else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value <<= max_val;
break;
case BPF_RSH:
- dst_reg->min_value >>= min_val;
- dst_reg->max_value >>= max_val;
- break;
- case BPF_MOD:
- /* % is special since it is an unsigned modulus, so the floor
- * will always be 0.
+ /* RSH by a negative number is undefined, and the BPF_RSH is an
+ * unsigned shift, so make the appropriate casts.
*/
- dst_reg->min_value = 0;
- dst_reg->max_value = max_val - 1;
+ if (min_val < 0 || dst_reg->min_value < 0)
+ dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
+ else
+ dst_reg->min_value =
+ (u64)(dst_reg->min_value) >> min_val;
+ if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
+ dst_reg->max_value >>= max_val;
break;
default:
reset_reg_range_values(regs, insn->dst_reg);
@@ -1644,8 +1701,7 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
insn->src_reg);
return -EACCES;
}
- regs[insn->dst_reg].type = UNKNOWN_VALUE;
- regs[insn->dst_reg].map_ptr = NULL;
+ mark_reg_unknown_value(regs, insn->dst_reg);
}
} else {
/* case: R = imm
@@ -1907,6 +1963,38 @@ static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
check_reg_overflow(true_reg);
}
+static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
+ enum bpf_reg_type type)
+{
+ struct bpf_reg_state *reg = &regs[regno];
+
+ if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
+ reg->type = type;
+ if (type == UNKNOWN_VALUE)
+ mark_reg_unknown_value(regs, regno);
+ }
+}
+
+/* The logic is similar to find_good_pkt_pointers(), both could eventually
+ * be folded together at some point.
+ */
+static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
+ enum bpf_reg_type type)
+{
+ struct bpf_reg_state *regs = state->regs;
+ int i;
+
+ for (i = 0; i < MAX_BPF_REG; i++)
+ mark_map_reg(regs, i, regs[regno].id, type);
+
+ for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
+ if (state->stack_slot_type[i] != STACK_SPILL)
+ continue;
+ mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE,
+ regs[regno].id, type);
+ }
+}
+
static int check_cond_jmp_op(struct bpf_verifier_env *env,
struct bpf_insn *insn, int *insn_idx)
{
@@ -1994,18 +2082,13 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
if (BPF_SRC(insn->code) == BPF_K &&
insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
- if (opcode == BPF_JEQ) {
- /* next fallthrough insn can access memory via
- * this register
- */
- regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
- /* branch targer cannot access it, since reg == 0 */
- mark_reg_unknown_value(other_branch->regs,
- insn->dst_reg);
- } else {
- other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
- mark_reg_unknown_value(regs, insn->dst_reg);
- }
+ /* Mark all identical map registers in each branch as either
+ * safe or unknown depending R == 0 or R != 0 conditional.
+ */
+ mark_map_regs(this_branch, insn->dst_reg,
+ opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
+ mark_map_regs(other_branch, insn->dst_reg,
+ opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
dst_reg->type == PTR_TO_PACKET &&
regs[insn->src_reg].type == PTR_TO_PACKET_END) {
@@ -2430,6 +2513,7 @@ static bool states_equal(struct bpf_verifier_env *env,
struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
{
+ bool varlen_map_access = env->varlen_map_value_access;
struct bpf_reg_state *rold, *rcur;
int i;
@@ -2443,12 +2527,17 @@ static bool states_equal(struct bpf_verifier_env *env,
/* If the ranges were not the same, but everything else was and
* we didn't do a variable access into a map then we are a-ok.
*/
- if (!env->varlen_map_value_access &&
- rold->type == rcur->type && rold->imm == rcur->imm)
+ if (!varlen_map_access &&
+ memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
continue;
+ /* If we didn't map access then again we don't care about the
+ * mismatched range values and it's ok if our old type was
+ * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
+ */
if (rold->type == NOT_INIT ||
- (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
+ (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
+ rcur->type != NOT_INIT))
continue;
if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
@@ -3044,9 +3133,6 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
struct bpf_verifier_env *env;
int ret = -EINVAL;
- if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
- return -E2BIG;
-
/* 'struct bpf_verifier_env' can be global, but since it's not small,
* allocate/free it every time bpf_check() is called
*/
@@ -3087,6 +3173,8 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
log_level = 0;
}
+ bpf_prog_calc_digest(env->prog);
+
ret = replace_map_fd_with_map_ptr(env);
if (ret < 0)
goto skip_full_check;
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 85bc9beb046d..2ee9ec3051b2 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -5074,6 +5074,8 @@ static void css_release_work_fn(struct work_struct *work)
if (cgrp->kn)
RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
NULL);
+
+ cgroup_bpf_put(cgrp);
}
mutex_unlock(&cgroup_mutex);
@@ -5281,6 +5283,9 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
if (!cgroup_on_dfl(cgrp))
cgrp->subtree_control = cgroup_control(cgrp);
+ if (parent)
+ cgroup_bpf_inherit(cgrp, parent);
+
cgroup_propagate_control(cgrp);
/* @cgrp doesn't have dir yet so the following will only create csses */
@@ -6495,6 +6500,19 @@ static __init int cgroup_namespaces_init(void)
}
subsys_initcall(cgroup_namespaces_init);
+#ifdef CONFIG_CGROUP_BPF
+void cgroup_bpf_update(struct cgroup *cgrp,
+ struct bpf_prog *prog,
+ enum bpf_attach_type type)
+{
+ struct cgroup *parent = cgroup_parent(cgrp);
+
+ mutex_lock(&cgroup_mutex);
+ __cgroup_bpf_update(cgrp, parent, prog, type);
+ mutex_unlock(&cgroup_mutex);
+}
+#endif /* CONFIG_CGROUP_BPF */
+
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state *parent_css)
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 29de1a9352c0..217fd2e7f435 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -659,7 +659,6 @@ void __init cpuhp_threads_init(void)
kthread_unpark(this_cpu_read(cpuhp_state.thread));
}
-#ifdef CONFIG_HOTPLUG_CPU
EXPORT_SYMBOL(register_cpu_notifier);
EXPORT_SYMBOL(__register_cpu_notifier);
void unregister_cpu_notifier(struct notifier_block *nb)
@@ -676,6 +675,7 @@ void __unregister_cpu_notifier(struct notifier_block *nb)
}
EXPORT_SYMBOL(__unregister_cpu_notifier);
+#ifdef CONFIG_HOTPLUG_CPU
/**
* clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
* @cpu: a CPU id
diff --git a/kernel/events/core.c b/kernel/events/core.c
index 0e292132efac..faf073d0287f 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -902,7 +902,15 @@ list_update_cgroup_event(struct perf_event *event,
* this will always be called from the right CPU.
*/
cpuctx = __get_cpu_context(ctx);
- cpuctx->cgrp = add ? event->cgrp : NULL;
+
+ /*
+ * cpuctx->cgrp is NULL until a cgroup event is sched in or
+ * ctx->nr_cgroup == 0 .
+ */
+ if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
+ cpuctx->cgrp = event->cgrp;
+ else if (!add)
+ cpuctx->cgrp = NULL;
}
#else /* !CONFIG_CGROUP_PERF */
@@ -7715,7 +7723,7 @@ static void bpf_overflow_handler(struct perf_event *event,
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
goto out;
rcu_read_lock();
- ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
+ ret = BPF_PROG_RUN(event->prog, &ctx);
rcu_read_unlock();
out:
__this_cpu_dec(bpf_prog_active);
@@ -8018,6 +8026,7 @@ restart:
* if <size> is not specified, the range is treated as a single address.
*/
enum {
+ IF_ACT_NONE = -1,
IF_ACT_FILTER,
IF_ACT_START,
IF_ACT_STOP,
@@ -8041,6 +8050,7 @@ static const match_table_t if_tokens = {
{ IF_SRC_KERNEL, "%u/%u" },
{ IF_SRC_FILEADDR, "%u@%s" },
{ IF_SRC_KERNELADDR, "%u" },
+ { IF_ACT_NONE, NULL },
};
/*
diff --git a/kernel/exit.c b/kernel/exit.c
index 9d68c45ebbe3..3076f3089919 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -836,6 +836,7 @@ void __noreturn do_exit(long code)
*/
perf_event_exit_task(tsk);
+ sched_autogroup_exit_task(tsk);
cgroup_exit(tsk);
/*
diff --git a/kernel/fork.c b/kernel/fork.c
index 997ac1d584f7..7ffa16033ded 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -354,6 +354,8 @@ void free_task(struct task_struct *tsk)
ftrace_graph_exit_task(tsk);
put_seccomp_filter(tsk);
arch_release_task_struct(tsk);
+ if (tsk->flags & PF_KTHREAD)
+ free_kthread_struct(tsk);
free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);
@@ -1551,7 +1553,9 @@ static __latent_entropy struct task_struct *copy_process(
init_sigpending(&p->pending);
p->utime = p->stime = p->gtime = 0;
+#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
p->utimescaled = p->stimescaled = 0;
+#endif
prev_cputime_init(&p->prev_cputime);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
diff --git a/kernel/futex.c b/kernel/futex.c
index 2c4be467fecd..9246d9f593d1 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -1298,7 +1298,7 @@ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
struct task_struct *new_owner;
struct futex_pi_state *pi_state = this->pi_state;
u32 uninitialized_var(curval), newval;
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
bool deboost;
int ret = 0;
@@ -1415,7 +1415,7 @@ futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
struct futex_q *this, *next;
union futex_key key = FUTEX_KEY_INIT;
int ret;
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
if (!bitset)
return -EINVAL;
@@ -1469,7 +1469,7 @@ futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
struct futex_hash_bucket *hb1, *hb2;
struct futex_q *this, *next;
int ret, op_ret;
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
retry:
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
@@ -1708,7 +1708,7 @@ static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
struct futex_pi_state *pi_state = NULL;
struct futex_hash_bucket *hb1, *hb2;
struct futex_q *this, *next;
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
if (requeue_pi) {
/*
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 9c4d30483264..6b669593e7eb 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -1341,12 +1341,12 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
} else if (new->flags & IRQF_TRIGGER_MASK) {
unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
- unsigned int omsk = irq_settings_get_trigger_mask(desc);
+ unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
if (nmsk != omsk)
/* hope the handler works with current trigger mode */
pr_warn("irq %d uses trigger mode %u; requested %u\n",
- irq, nmsk, omsk);
+ irq, omsk, nmsk);
}
*old_ptr = new;
diff --git a/kernel/kcov.c b/kernel/kcov.c
index 30e6d05aa5a9..3cbb0c879705 100644
--- a/kernel/kcov.c
+++ b/kernel/kcov.c
@@ -7,6 +7,7 @@
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/printk.h>
+#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
diff --git a/kernel/kthread.c b/kernel/kthread.c
index be2cc1f9dd57..956495f0efaf 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -53,20 +53,29 @@ enum KTHREAD_BITS {
KTHREAD_IS_PARKED,
};
-#define __to_kthread(vfork) \
- container_of(vfork, struct kthread, exited)
+static inline void set_kthread_struct(void *kthread)
+{
+ /*
+ * We abuse ->set_child_tid to avoid the new member and because it
+ * can't be wrongly copied by copy_process(). We also rely on fact
+ * that the caller can't exec, so PF_KTHREAD can't be cleared.
+ */
+ current->set_child_tid = (__force void __user *)kthread;
+}
static inline struct kthread *to_kthread(struct task_struct *k)
{
- return __to_kthread(k->vfork_done);
+ WARN_ON(!(k->flags & PF_KTHREAD));
+ return (__force void *)k->set_child_tid;
}
-static struct kthread *to_live_kthread(struct task_struct *k)
+void free_kthread_struct(struct task_struct *k)
{
- struct completion *vfork = ACCESS_ONCE(k->vfork_done);
- if (likely(vfork) && try_get_task_stack(k))
- return __to_kthread(vfork);
- return NULL;
+ /*
+ * Can be NULL if this kthread was created by kernel_thread()
+ * or if kmalloc() in kthread() failed.
+ */
+ kfree(to_kthread(k));
}
/**
@@ -181,14 +190,11 @@ static int kthread(void *_create)
int (*threadfn)(void *data) = create->threadfn;
void *data = create->data;
struct completion *done;
- struct kthread self;
+ struct kthread *self;
int ret;
- self.flags = 0;
- self.data = data;
- init_completion(&self.exited);
- init_completion(&self.parked);
- current->vfork_done = &self.exited;
+ self = kmalloc(sizeof(*self), GFP_KERNEL);
+ set_kthread_struct(self);
/* If user was SIGKILLed, I release the structure. */
done = xchg(&create->done, NULL);
@@ -196,6 +202,19 @@ static int kthread(void *_create)
kfree(create);
do_exit(-EINTR);
}
+
+ if (!self) {
+ create->result = ERR_PTR(-ENOMEM);
+ complete(done);
+ do_exit(-ENOMEM);
+ }
+
+ self->flags = 0;
+ self->data = data;
+ init_completion(&self->exited);
+ init_completion(&self->parked);
+ current->vfork_done = &self->exited;
+
/* OK, tell user we're spawned, wait for stop or wakeup */
__set_current_state(TASK_UNINTERRUPTIBLE);
create->result = current;
@@ -203,12 +222,10 @@ static int kthread(void *_create)
schedule();
ret = -EINTR;
-
- if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
- __kthread_parkme(&self);
+ if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
+ __kthread_parkme(self);
ret = threadfn(data);
}
- /* we can't just return, we must preserve "self" on stack */
do_exit(ret);
}
@@ -409,8 +426,18 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
return p;
}
-static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
+/**
+ * kthread_unpark - unpark a thread created by kthread_create().
+ * @k: thread created by kthread_create().
+ *
+ * Sets kthread_should_park() for @k to return false, wakes it, and
+ * waits for it to return. If the thread is marked percpu then its
+ * bound to the cpu again.
+ */
+void kthread_unpark(struct task_struct *k)
{
+ struct kthread *kthread = to_kthread(k);
+
clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
/*
* We clear the IS_PARKED bit here as we don't wait
@@ -428,24 +455,6 @@ static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
wake_up_state(k, TASK_PARKED);
}
}
-
-/**
- * kthread_unpark - unpark a thread created by kthread_create().
- * @k: thread created by kthread_create().
- *
- * Sets kthread_should_park() for @k to return false, wakes it, and
- * waits for it to return. If the thread is marked percpu then its
- * bound to the cpu again.
- */
-void kthread_unpark(struct task_struct *k)
-{
- struct kthread *kthread = to_live_kthread(k);
-
- if (kthread) {
- __kthread_unpark(k, kthread);
- put_task_stack(k);
- }
-}
EXPORT_SYMBOL_GPL(kthread_unpark);
/**
@@ -462,21 +471,20 @@ EXPORT_SYMBOL_GPL(kthread_unpark);
*/
int kthread_park(struct task_struct *k)
{
- struct kthread *kthread = to_live_kthread(k);
- int ret = -ENOSYS;
-
- if (kthread) {
- if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
- set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
- if (k != current) {
- wake_up_process(k);
- wait_for_completion(&kthread->parked);
- }
+ struct kthread *kthread = to_kthread(k);
+
+ if (WARN_ON(k->flags & PF_EXITING))
+ return -ENOSYS;
+
+ if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
+ set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
+ if (k != current) {
+ wake_up_process(k);
+ wait_for_completion(&kthread->parked);
}
- put_task_stack(k);
- ret = 0;
}
- return ret;
+
+ return 0;
}
EXPORT_SYMBOL_GPL(kthread_park);
@@ -503,14 +511,11 @@ int kthread_stop(struct task_struct *k)
trace_sched_kthread_stop(k);
get_task_struct(k);
- kthread = to_live_kthread(k);
- if (kthread) {
- set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
- __kthread_unpark(k, kthread);
- wake_up_process(k);
- wait_for_completion(&kthread->exited);
- put_task_stack(k);
- }
+ kthread = to_kthread(k);
+ set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
+ kthread_unpark(k);
+ wake_up_process(k);
+ wait_for_completion(&kthread->exited);
ret = k->exit_code;
put_task_struct(k);
@@ -636,6 +641,7 @@ __kthread_create_worker(int cpu, unsigned int flags,
{
struct kthread_worker *worker;
struct task_struct *task;
+ int node = -1;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (!worker)
@@ -643,25 +649,17 @@ __kthread_create_worker(int cpu, unsigned int flags,
kthread_init_worker(worker);
- if (cpu >= 0) {
- char name[TASK_COMM_LEN];
-
- /*
- * kthread_create_worker_on_cpu() allows to pass a generic
- * namefmt in compare with kthread_create_on_cpu. We need
- * to format it here.
- */
- vsnprintf(name, sizeof(name), namefmt, args);
- task = kthread_create_on_cpu(kthread_worker_fn, worker,
- cpu, name);
- } else {
- task = __kthread_create_on_node(kthread_worker_fn, worker,
- -1, namefmt, args);
- }
+ if (cpu >= 0)
+ node = cpu_to_node(cpu);
+ task = __kthread_create_on_node(kthread_worker_fn, worker,
+ node, namefmt, args);
if (IS_ERR(task))
goto fail_task;
+ if (cpu >= 0)
+ kthread_bind(task, cpu);
+
worker->flags = flags;
worker->task = task;
wake_up_process(task);
diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c
index 589d763a49b3..7bd265f6b098 100644
--- a/kernel/locking/lockdep.c
+++ b/kernel/locking/lockdep.c
@@ -506,13 +506,13 @@ static void __print_lock_name(struct lock_class *class)
name = class->name;
if (!name) {
name = __get_key_name(class->key, str);
- printk("%s", name);
+ printk(KERN_CONT "%s", name);
} else {
- printk("%s", name);
+ printk(KERN_CONT "%s", name);
if (class->name_version > 1)
- printk("#%d", class->name_version);
+ printk(KERN_CONT "#%d", class->name_version);
if (class->subclass)
- printk("/%d", class->subclass);
+ printk(KERN_CONT "/%d", class->subclass);
}
}
@@ -522,9 +522,9 @@ static void print_lock_name(struct lock_class *class)
get_usage_chars(class, usage);
- printk(" (");
+ printk(KERN_CONT " (");
__print_lock_name(class);
- printk("){%s}", usage);
+ printk(KERN_CONT "){%s}", usage);
}
static void print_lockdep_cache(struct lockdep_map *lock)
@@ -536,7 +536,7 @@ static void print_lockdep_cache(struct lockdep_map *lock)
if (!name)
name = __get_key_name(lock->key->subkeys, str);
- printk("%s", name);
+ printk(KERN_CONT "%s", name);
}
static void print_lock(struct held_lock *hlock)
@@ -551,13 +551,13 @@ static void print_lock(struct held_lock *hlock)
barrier();
if (!class_idx || (class_idx - 1) >= MAX_LOCKDEP_KEYS) {
- printk("<RELEASED>\n");
+ printk(KERN_CONT "<RELEASED>\n");
return;
}
print_lock_name(lock_classes + class_idx - 1);
- printk(", at: ");
- print_ip_sym(hlock->acquire_ip);
+ printk(KERN_CONT ", at: [<%p>] %pS\n",
+ (void *)hlock->acquire_ip, (void *)hlock->acquire_ip);
}
static void lockdep_print_held_locks(struct task_struct *curr)
@@ -792,8 +792,8 @@ register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
printk("\nnew class %p: %s", class->key, class->name);
if (class->name_version > 1)
- printk("#%d", class->name_version);
- printk("\n");
+ printk(KERN_CONT "#%d", class->name_version);
+ printk(KERN_CONT "\n");
dump_stack();
if (!graph_lock()) {
@@ -840,9 +840,9 @@ static struct lock_list *alloc_list_entry(void)
/*
* Add a new dependency to the head of the list:
*/
-static int add_lock_to_list(struct lock_class *class, struct lock_class *this,
- struct list_head *head, unsigned long ip,
- int distance, struct stack_trace *trace)
+static int add_lock_to_list(struct lock_class *this, struct list_head *head,
+ unsigned long ip, int distance,
+ struct stack_trace *trace)
{
struct lock_list *entry;
/*
@@ -1071,7 +1071,7 @@ print_circular_bug_entry(struct lock_list *target, int depth)
return 0;
printk("\n-> #%u", depth);
print_lock_name(target->class);
- printk(":\n");
+ printk(KERN_CONT ":\n");
print_stack_trace(&target->trace, 6);
return 0;
@@ -1102,11 +1102,11 @@ print_circular_lock_scenario(struct held_lock *src,
if (parent != source) {
printk("Chain exists of:\n ");
__print_lock_name(source);
- printk(" --> ");
+ printk(KERN_CONT " --> ");
__print_lock_name(parent);
- printk(" --> ");
+ printk(KERN_CONT " --> ");
__print_lock_name(target);
- printk("\n\n");
+ printk(KERN_CONT "\n\n");
}
printk(" Possible unsafe locking scenario:\n\n");
@@ -1114,16 +1114,16 @@ print_circular_lock_scenario(struct held_lock *src,
printk(" ---- ----\n");
printk(" lock(");
__print_lock_name(target);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk(" lock(");
__print_lock_name(parent);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk(" lock(");
__print_lock_name(target);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk(" lock(");
__print_lock_name(source);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk("\n *** DEADLOCK ***\n\n");
}
@@ -1359,22 +1359,22 @@ static void print_lock_class_header(struct lock_class *class, int depth)
printk("%*s->", depth, "");
print_lock_name(class);
- printk(" ops: %lu", class->ops);
- printk(" {\n");
+ printk(KERN_CONT " ops: %lu", class->ops);
+ printk(KERN_CONT " {\n");
for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
if (class->usage_mask & (1 << bit)) {
int len = depth;
len += printk("%*s %s", depth, "", usage_str[bit]);
- len += printk(" at:\n");
+ len += printk(KERN_CONT " at:\n");
print_stack_trace(class->usage_traces + bit, len);
}
}
printk("%*s }\n", depth, "");
- printk("%*s ... key at: ",depth,"");
- print_ip_sym((unsigned long)class->key);
+ printk("%*s ... key at: [<%p>] %pS\n",
+ depth, "", class->key, class->key);
}
/*
@@ -1437,11 +1437,11 @@ print_irq_lock_scenario(struct lock_list *safe_entry,
if (middle_class != unsafe_class) {
printk("Chain exists of:\n ");
__print_lock_name(safe_class);
- printk(" --> ");
+ printk(KERN_CONT " --> ");
__print_lock_name(middle_class);
- printk(" --> ");
+ printk(KERN_CONT " --> ");
__print_lock_name(unsafe_class);
- printk("\n\n");
+ printk(KERN_CONT "\n\n");
}
printk(" Possible interrupt unsafe locking scenario:\n\n");
@@ -1449,18 +1449,18 @@ print_irq_lock_scenario(struct lock_list *safe_entry,
printk(" ---- ----\n");
printk(" lock(");
__print_lock_name(unsafe_class);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk(" local_irq_disable();\n");
printk(" lock(");
__print_lock_name(safe_class);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk(" lock(");
__print_lock_name(middle_class);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk(" <Interrupt>\n");
printk(" lock(");
__print_lock_name(safe_class);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk("\n *** DEADLOCK ***\n\n");
}
@@ -1497,9 +1497,9 @@ print_bad_irq_dependency(struct task_struct *curr,
print_lock(prev);
printk("which would create a new lock dependency:\n");
print_lock_name(hlock_class(prev));
- printk(" ->");
+ printk(KERN_CONT " ->");
print_lock_name(hlock_class(next));
- printk("\n");
+ printk(KERN_CONT "\n");
printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
irqclass);
@@ -1521,8 +1521,7 @@ print_bad_irq_dependency(struct task_struct *curr,
lockdep_print_held_locks(curr);
- printk("\nthe dependencies between %s-irq-safe lock", irqclass);
- printk(" and the holding lock:\n");
+ printk("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
if (!save_trace(&prev_root->trace))
return 0;
print_shortest_lock_dependencies(backwards_entry, prev_root);
@@ -1694,10 +1693,10 @@ print_deadlock_scenario(struct held_lock *nxt,
printk(" ----\n");
printk(" lock(");
__print_lock_name(prev);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk(" lock(");
__print_lock_name(next);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk("\n *** DEADLOCK ***\n\n");
printk(" May be due to missing lock nesting notation\n\n");
}
@@ -1869,14 +1868,14 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev,
* Ok, all validations passed, add the new lock
* to the previous lock's dependency list:
*/
- ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
+ ret = add_lock_to_list(hlock_class(next),
&hlock_class(prev)->locks_after,
next->acquire_ip, distance, &trace);
if (!ret)
return 0;
- ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
+ ret = add_lock_to_list(hlock_class(prev),
&hlock_class(next)->locks_before,
next->acquire_ip, distance, &trace);
if (!ret)
@@ -1891,9 +1890,9 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev,
graph_unlock();
printk("\n new dependency: ");
print_lock_name(hlock_class(prev));
- printk(" => ");
+ printk(KERN_CONT " => ");
print_lock_name(hlock_class(next));
- printk("\n");
+ printk(KERN_CONT "\n");
dump_stack();
return graph_lock();
}
@@ -2343,11 +2342,11 @@ print_usage_bug_scenario(struct held_lock *lock)
printk(" ----\n");
printk(" lock(");
__print_lock_name(class);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk(" <Interrupt>\n");
printk(" lock(");
__print_lock_name(class);
- printk(");\n");
+ printk(KERN_CONT ");\n");
printk("\n *** DEADLOCK ***\n\n");
}
@@ -2522,14 +2521,18 @@ check_usage_backwards(struct task_struct *curr, struct held_lock *this,
void print_irqtrace_events(struct task_struct *curr)
{
printk("irq event stamp: %u\n", curr->irq_events);
- printk("hardirqs last enabled at (%u): ", curr->hardirq_enable_event);
- print_ip_sym(curr->hardirq_enable_ip);
- printk("hardirqs last disabled at (%u): ", curr->hardirq_disable_event);
- print_ip_sym(curr->hardirq_disable_ip);
- printk("softirqs last enabled at (%u): ", curr->softirq_enable_event);
- print_ip_sym(curr->softirq_enable_ip);
- printk("softirqs last disabled at (%u): ", curr->softirq_disable_event);
- print_ip_sym(curr->softirq_disable_ip);
+ printk("hardirqs last enabled at (%u): [<%p>] %pS\n",
+ curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
+ (void *)curr->hardirq_enable_ip);
+ printk("hardirqs last disabled at (%u): [<%p>] %pS\n",
+ curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
+ (void *)curr->hardirq_disable_ip);
+ printk("softirqs last enabled at (%u): [<%p>] %pS\n",
+ curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
+ (void *)curr->softirq_enable_ip);
+ printk("softirqs last disabled at (%u): [<%p>] %pS\n",
+ curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
+ (void *)curr->softirq_disable_ip);
}
static int HARDIRQ_verbose(struct lock_class *class)
@@ -3235,8 +3238,8 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
if (very_verbose(class)) {
printk("\nacquire class [%p] %s", class->key, class->name);
if (class->name_version > 1)
- printk("#%d", class->name_version);
- printk("\n");
+ printk(KERN_CONT "#%d", class->name_version);
+ printk(KERN_CONT "\n");
dump_stack();
}
@@ -3378,7 +3381,7 @@ print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
printk("%s/%d is trying to release lock (",
curr->comm, task_pid_nr(curr));
print_lockdep_cache(lock);
- printk(") at:\n");
+ printk(KERN_CONT ") at:\n");
print_ip_sym(ip);
printk("but there are no more locks to release!\n");
printk("\nother info that might help us debug this:\n");
@@ -3871,7 +3874,7 @@ print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
printk("%s/%d is trying to contend lock (",
curr->comm, task_pid_nr(curr));
print_lockdep_cache(lock);
- printk(") at:\n");
+ printk(KERN_CONT ") at:\n");
print_ip_sym(ip);
printk("but there are no locks held!\n");
printk("\nother info that might help us debug this:\n");
diff --git a/kernel/locking/lockdep_internals.h b/kernel/locking/lockdep_internals.h
index 51c4b24b6328..c2b88490d857 100644
--- a/kernel/locking/lockdep_internals.h
+++ b/kernel/locking/lockdep_internals.h
@@ -46,6 +46,14 @@ enum {
(LOCKF_USED_IN_HARDIRQ_READ | LOCKF_USED_IN_SOFTIRQ_READ)
/*
+ * CONFIG_PROVE_LOCKING_SMALL is defined for sparc. Sparc requires .text,
+ * .data and .bss to fit in required 32MB limit for the kernel. With
+ * PROVE_LOCKING we could go over this limit and cause system boot-up problems.
+ * So, reduce the static allocations for lockdeps related structures so that
+ * everything fits in current required size limit.
+ */
+#ifdef CONFIG_PROVE_LOCKING_SMALL
+/*
* MAX_LOCKDEP_ENTRIES is the maximum number of lock dependencies
* we track.
*
@@ -54,18 +62,24 @@ enum {
* table (if it's not there yet), and we check it for lock order
* conflicts and deadlocks.
*/
+#define MAX_LOCKDEP_ENTRIES 16384UL
+#define MAX_LOCKDEP_CHAINS_BITS 15
+#define MAX_STACK_TRACE_ENTRIES 262144UL
+#else
#define MAX_LOCKDEP_ENTRIES 32768UL
#define MAX_LOCKDEP_CHAINS_BITS 16
-#define MAX_LOCKDEP_CHAINS (1UL << MAX_LOCKDEP_CHAINS_BITS)
-
-#define MAX_LOCKDEP_CHAIN_HLOCKS (MAX_LOCKDEP_CHAINS*5)
/*
* Stack-trace: tightly packed array of stack backtrace
* addresses. Protected by the hash_lock.
*/
#define MAX_STACK_TRACE_ENTRIES 524288UL
+#endif
+
+#define MAX_LOCKDEP_CHAINS (1UL << MAX_LOCKDEP_CHAINS_BITS)
+
+#define MAX_LOCKDEP_CHAIN_HLOCKS (MAX_LOCKDEP_CHAINS*5)
extern struct list_head all_lock_classes;
extern struct lock_chain lock_chains[];
diff --git a/kernel/locking/mcs_spinlock.h b/kernel/locking/mcs_spinlock.h
index c835270f0c2f..6a385aabcce7 100644
--- a/kernel/locking/mcs_spinlock.h
+++ b/kernel/locking/mcs_spinlock.h
@@ -28,7 +28,7 @@ struct mcs_spinlock {
#define arch_mcs_spin_lock_contended(l) \
do { \
while (!(smp_load_acquire(l))) \
- cpu_relax_lowlatency(); \
+ cpu_relax(); \
} while (0)
#endif
@@ -108,7 +108,7 @@ void mcs_spin_unlock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
return;
/* Wait until the next pointer is set */
while (!(next = READ_ONCE(node->next)))
- cpu_relax_lowlatency();
+ cpu_relax();
}
/* Pass lock to next waiter. */
diff --git a/kernel/locking/mutex-debug.c b/kernel/locking/mutex-debug.c
index 9c951fade415..9aa713629387 100644
--- a/kernel/locking/mutex-debug.c
+++ b/kernel/locking/mutex-debug.c
@@ -73,21 +73,8 @@ void debug_mutex_unlock(struct mutex *lock)
{
if (likely(debug_locks)) {
DEBUG_LOCKS_WARN_ON(lock->magic != lock);
-
- if (!lock->owner)
- DEBUG_LOCKS_WARN_ON(!lock->owner);
- else
- DEBUG_LOCKS_WARN_ON(lock->owner != current);
-
DEBUG_LOCKS_WARN_ON(!lock->wait_list.prev && !lock->wait_list.next);
}
-
- /*
- * __mutex_slowpath_needs_to_unlock() is explicitly 0 for debug
- * mutexes so that we can do it here after we've verified state.
- */
- mutex_clear_owner(lock);
- atomic_set(&lock->count, 1);
}
void debug_mutex_init(struct mutex *lock, const char *name,
diff --git a/kernel/locking/mutex-debug.h b/kernel/locking/mutex-debug.h
index 57a871ae3c81..a459faa48987 100644
--- a/kernel/locking/mutex-debug.h
+++ b/kernel/locking/mutex-debug.h
@@ -27,16 +27,6 @@ extern void debug_mutex_unlock(struct mutex *lock);
extern void debug_mutex_init(struct mutex *lock, const char *name,
struct lock_class_key *key);
-static inline void mutex_set_owner(struct mutex *lock)
-{
- WRITE_ONCE(lock->owner, current);
-}
-
-static inline void mutex_clear_owner(struct mutex *lock)
-{
- WRITE_ONCE(lock->owner, NULL);
-}
-
#define spin_lock_mutex(lock, flags) \
do { \
struct mutex *l = container_of(lock, struct mutex, wait_lock); \
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index a70b90db3909..9b349619f431 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -27,41 +27,176 @@
#include <linux/debug_locks.h>
#include <linux/osq_lock.h>
-/*
- * In the DEBUG case we are using the "NULL fastpath" for mutexes,
- * which forces all calls into the slowpath:
- */
#ifdef CONFIG_DEBUG_MUTEXES
# include "mutex-debug.h"
-# include <asm-generic/mutex-null.h>
-/*
- * Must be 0 for the debug case so we do not do the unlock outside of the
- * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
- * case.
- */
-# undef __mutex_slowpath_needs_to_unlock
-# define __mutex_slowpath_needs_to_unlock() 0
#else
# include "mutex.h"
-# include <asm/mutex.h>
#endif
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
- atomic_set(&lock->count, 1);
+ atomic_long_set(&lock->owner, 0);
spin_lock_init(&lock->wait_lock);
INIT_LIST_HEAD(&lock->wait_list);
- mutex_clear_owner(lock);
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
osq_lock_init(&lock->osq);
#endif
debug_mutex_init(lock, name, key);
}
-
EXPORT_SYMBOL(__mutex_init);
+/*
+ * @owner: contains: 'struct task_struct *' to the current lock owner,
+ * NULL means not owned. Since task_struct pointers are aligned at
+ * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
+ * bits to store extra state.
+ *
+ * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
+ * Bit1 indicates unlock needs to hand the lock to the top-waiter
+ */
+#define MUTEX_FLAG_WAITERS 0x01
+#define MUTEX_FLAG_HANDOFF 0x02
+
+#define MUTEX_FLAGS 0x03
+
+static inline struct task_struct *__owner_task(unsigned long owner)
+{
+ return (struct task_struct *)(owner & ~MUTEX_FLAGS);
+}
+
+static inline unsigned long __owner_flags(unsigned long owner)
+{
+ return owner & MUTEX_FLAGS;
+}
+
+/*
+ * Actual trylock that will work on any unlocked state.
+ *
+ * When setting the owner field, we must preserve the low flag bits.
+ *
+ * Be careful with @handoff, only set that in a wait-loop (where you set
+ * HANDOFF) to avoid recursive lock attempts.
+ */
+static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
+{
+ unsigned long owner, curr = (unsigned long)current;
+
+ owner = atomic_long_read(&lock->owner);
+ for (;;) { /* must loop, can race against a flag */
+ unsigned long old, flags = __owner_flags(owner);
+
+ if (__owner_task(owner)) {
+ if (handoff && unlikely(__owner_task(owner) == current)) {
+ /*
+ * Provide ACQUIRE semantics for the lock-handoff.
+ *
+ * We cannot easily use load-acquire here, since
+ * the actual load is a failed cmpxchg, which
+ * doesn't imply any barriers.
+ *
+ * Also, this is a fairly unlikely scenario, and
+ * this contains the cost.
+ */
+ smp_mb(); /* ACQUIRE */
+ return true;
+ }
+
+ return false;
+ }
+
+ /*
+ * We set the HANDOFF bit, we must make sure it doesn't live
+ * past the point where we acquire it. This would be possible
+ * if we (accidentally) set the bit on an unlocked mutex.
+ */
+ if (handoff)
+ flags &= ~MUTEX_FLAG_HANDOFF;
+
+ old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
+ if (old == owner)
+ return true;
+
+ owner = old;
+ }
+}
+
+#ifndef CONFIG_DEBUG_LOCK_ALLOC
+/*
+ * Lockdep annotations are contained to the slow paths for simplicity.
+ * There is nothing that would stop spreading the lockdep annotations outwards
+ * except more code.
+ */
+
+/*
+ * Optimistic trylock that only works in the uncontended case. Make sure to
+ * follow with a __mutex_trylock() before failing.
+ */
+static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
+{
+ unsigned long curr = (unsigned long)current;
+
+ if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
+ return true;
+
+ return false;
+}
+
+static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
+{
+ unsigned long curr = (unsigned long)current;
+
+ if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
+ return true;
+
+ return false;
+}
+#endif
+
+static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
+{
+ atomic_long_or(flag, &lock->owner);
+}
+
+static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
+{
+ atomic_long_andnot(flag, &lock->owner);
+}
+
+static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
+{
+ return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
+}
+
+/*
+ * Give up ownership to a specific task, when @task = NULL, this is equivalent
+ * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
+ * semantics like a regular unlock, the __mutex_trylock() provides matching
+ * ACQUIRE semantics for the handoff.
+ */
+static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
+{
+ unsigned long owner = atomic_long_read(&lock->owner);
+
+ for (;;) {
+ unsigned long old, new;
+
+#ifdef CONFIG_DEBUG_MUTEXES
+ DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
+#endif
+
+ new = (owner & MUTEX_FLAG_WAITERS);
+ new |= (unsigned long)task;
+
+ old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
+ if (old == owner)
+ break;
+
+ owner = old;
+ }
+}
+
#ifndef CONFIG_DEBUG_LOCK_ALLOC
/*
* We split the mutex lock/unlock logic into separate fastpath and
@@ -69,7 +204,7 @@ EXPORT_SYMBOL(__mutex_init);
* We also put the fastpath first in the kernel image, to make sure the
* branch is predicted by the CPU as default-untaken.
*/
-__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
+static void __sched __mutex_lock_slowpath(struct mutex *lock);
/**
* mutex_lock - acquire the mutex
@@ -95,14 +230,10 @@ __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
void __sched mutex_lock(struct mutex *lock)
{
might_sleep();
- /*
- * The locking fastpath is the 1->0 transition from
- * 'unlocked' into 'locked' state.
- */
- __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
- mutex_set_owner(lock);
-}
+ if (!__mutex_trylock_fast(lock))
+ __mutex_lock_slowpath(lock);
+}
EXPORT_SYMBOL(mutex_lock);
#endif
@@ -149,9 +280,6 @@ static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
/*
* After acquiring lock with fastpath or when we lost out in contested
* slowpath, set ctx and wake up any waiters so they can recheck.
- *
- * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
- * as the fastpath and opportunistic spinning are disabled in that case.
*/
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock,
@@ -176,7 +304,7 @@ ww_mutex_set_context_fastpath(struct ww_mutex *lock,
/*
* Check if lock is contended, if not there is nobody to wake up
*/
- if (likely(atomic_read(&lock->base.count) == 0))
+ if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
return;
/*
@@ -227,7 +355,7 @@ bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
bool ret = true;
rcu_read_lock();
- while (lock->owner == owner) {
+ while (__mutex_owner(lock) == owner) {
/*
* Ensure we emit the owner->on_cpu, dereference _after_
* checking lock->owner still matches owner. If that fails,
@@ -236,12 +364,16 @@ bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
*/
barrier();
- if (!owner->on_cpu || need_resched()) {
+ /*
+ * Use vcpu_is_preempted to detect lock holder preemption issue.
+ */
+ if (!owner->on_cpu || need_resched() ||
+ vcpu_is_preempted(task_cpu(owner))) {
ret = false;
break;
}
- cpu_relax_lowlatency();
+ cpu_relax();
}
rcu_read_unlock();
@@ -260,27 +392,25 @@ static inline int mutex_can_spin_on_owner(struct mutex *lock)
return 0;
rcu_read_lock();
- owner = READ_ONCE(lock->owner);
+ owner = __mutex_owner(lock);
+
+ /*
+ * As lock holder preemption issue, we both skip spinning if task is not
+ * on cpu or its cpu is preempted
+ */
if (owner)
- retval = owner->on_cpu;
+ retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
rcu_read_unlock();
+
/*
- * if lock->owner is not set, the mutex owner may have just acquired
- * it and not set the owner yet or the mutex has been released.
+ * If lock->owner is not set, the mutex has been released. Return true
+ * such that we'll trylock in the spin path, which is a faster option
+ * than the blocking slow path.
*/
return retval;
}
/*
- * Atomically try to take the lock when it is available
- */
-static inline bool mutex_try_to_acquire(struct mutex *lock)
-{
- return !mutex_is_locked(lock) &&
- (atomic_cmpxchg_acquire(&lock->count, 1, 0) == 1);
-}
-
-/*
* Optimistic spinning.
*
* We try to spin for acquisition when we find that the lock owner
@@ -288,13 +418,6 @@ static inline bool mutex_try_to_acquire(struct mutex *lock)
* need to reschedule. The rationale is that if the lock owner is
* running, it is likely to release the lock soon.
*
- * Since this needs the lock owner, and this mutex implementation
- * doesn't track the owner atomically in the lock field, we need to
- * track it non-atomically.
- *
- * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
- * to serialize everything.
- *
* The mutex spinners are queued up using MCS lock so that only one
* spinner can compete for the mutex. However, if mutex spinning isn't
* going to happen, there is no point in going through the lock/unlock
@@ -302,24 +425,39 @@ static inline bool mutex_try_to_acquire(struct mutex *lock)
*
* Returns true when the lock was taken, otherwise false, indicating
* that we need to jump to the slowpath and sleep.
+ *
+ * The waiter flag is set to true if the spinner is a waiter in the wait
+ * queue. The waiter-spinner will spin on the lock directly and concurrently
+ * with the spinner at the head of the OSQ, if present, until the owner is
+ * changed to itself.
*/
static bool mutex_optimistic_spin(struct mutex *lock,
- struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
+ struct ww_acquire_ctx *ww_ctx,
+ const bool use_ww_ctx, const bool waiter)
{
struct task_struct *task = current;
- if (!mutex_can_spin_on_owner(lock))
- goto done;
+ if (!waiter) {
+ /*
+ * The purpose of the mutex_can_spin_on_owner() function is
+ * to eliminate the overhead of osq_lock() and osq_unlock()
+ * in case spinning isn't possible. As a waiter-spinner
+ * is not going to take OSQ lock anyway, there is no need
+ * to call mutex_can_spin_on_owner().
+ */
+ if (!mutex_can_spin_on_owner(lock))
+ goto fail;
- /*
- * In order to avoid a stampede of mutex spinners trying to
- * acquire the mutex all at once, the spinners need to take a
- * MCS (queued) lock first before spinning on the owner field.
- */
- if (!osq_lock(&lock->osq))
- goto done;
+ /*
+ * In order to avoid a stampede of mutex spinners trying to
+ * acquire the mutex all at once, the spinners need to take a
+ * MCS (queued) lock first before spinning on the owner field.
+ */
+ if (!osq_lock(&lock->osq))
+ goto fail;
+ }
- while (true) {
+ for (;;) {
struct task_struct *owner;
if (use_ww_ctx && ww_ctx->acquired > 0) {
@@ -335,40 +473,26 @@ static bool mutex_optimistic_spin(struct mutex *lock,
* performed the optimistic spinning cannot be done.
*/
if (READ_ONCE(ww->ctx))
- break;
+ goto fail_unlock;
}
/*
* If there's an owner, wait for it to either
* release the lock or go to sleep.
*/
- owner = READ_ONCE(lock->owner);
- if (owner && !mutex_spin_on_owner(lock, owner))
- break;
-
- /* Try to acquire the mutex if it is unlocked. */
- if (mutex_try_to_acquire(lock)) {
- lock_acquired(&lock->dep_map, ip);
-
- if (use_ww_ctx) {
- struct ww_mutex *ww;
- ww = container_of(lock, struct ww_mutex, base);
-
- ww_mutex_set_context_fastpath(ww, ww_ctx);
+ owner = __mutex_owner(lock);
+ if (owner) {
+ if (waiter && owner == task) {
+ smp_mb(); /* ACQUIRE */
+ break;
}
- mutex_set_owner(lock);
- osq_unlock(&lock->osq);
- return true;
+ if (!mutex_spin_on_owner(lock, owner))
+ goto fail_unlock;
}
- /*
- * When there's no owner, we might have preempted between the
- * owner acquiring the lock and setting the owner field. If
- * we're an RT task that will live-lock because we won't let
- * the owner complete.
- */
- if (!owner && (need_resched() || rt_task(task)))
+ /* Try to acquire the mutex if it is unlocked. */
+ if (__mutex_trylock(lock, waiter))
break;
/*
@@ -377,11 +501,20 @@ static bool mutex_optimistic_spin(struct mutex *lock,
* memory barriers as we'll eventually observe the right
* values at the cost of a few extra spins.
*/
- cpu_relax_lowlatency();
+ cpu_relax();
}
- osq_unlock(&lock->osq);
-done:
+ if (!waiter)
+ osq_unlock(&lock->osq);
+
+ return true;
+
+
+fail_unlock:
+ if (!waiter)
+ osq_unlock(&lock->osq);
+
+fail:
/*
* If we fell out of the spin path because of need_resched(),
* reschedule now, before we try-lock the mutex. This avoids getting
@@ -400,14 +533,14 @@ done:
}
#else
static bool mutex_optimistic_spin(struct mutex *lock,
- struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
+ struct ww_acquire_ctx *ww_ctx,
+ const bool use_ww_ctx, const bool waiter)
{
return false;
}
#endif
-__visible __used noinline
-void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
+static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
/**
* mutex_unlock - release the mutex
@@ -422,21 +555,12 @@ void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
*/
void __sched mutex_unlock(struct mutex *lock)
{
- /*
- * The unlocking fastpath is the 0->1 transition from 'locked'
- * into 'unlocked' state:
- */
-#ifndef CONFIG_DEBUG_MUTEXES
- /*
- * When debugging is enabled we must not clear the owner before time,
- * the slow path will always be taken, and that clears the owner field
- * after verifying that it was indeed current.
- */
- mutex_clear_owner(lock);
+#ifndef CONFIG_DEBUG_LOCK_ALLOC
+ if (__mutex_unlock_fast(lock))
+ return;
#endif
- __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
+ __mutex_unlock_slowpath(lock, _RET_IP_);
}
-
EXPORT_SYMBOL(mutex_unlock);
/**
@@ -465,15 +589,7 @@ void __sched ww_mutex_unlock(struct ww_mutex *lock)
lock->ctx = NULL;
}
-#ifndef CONFIG_DEBUG_MUTEXES
- /*
- * When debugging is enabled we must not clear the owner before time,
- * the slow path will always be taken, and that clears the owner field
- * after verifying that it was indeed current.
- */
- mutex_clear_owner(&lock->base);
-#endif
- __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
+ mutex_unlock(&lock->base);
}
EXPORT_SYMBOL(ww_mutex_unlock);
@@ -509,10 +625,12 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
struct task_struct *task = current;
struct mutex_waiter waiter;
unsigned long flags;
+ bool first = false;
+ struct ww_mutex *ww;
int ret;
if (use_ww_ctx) {
- struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
+ ww = container_of(lock, struct ww_mutex, base);
if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
return -EALREADY;
}
@@ -520,20 +638,21 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
preempt_disable();
mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
- if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
+ if (__mutex_trylock(lock, false) ||
+ mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
/* got the lock, yay! */
+ lock_acquired(&lock->dep_map, ip);
+ if (use_ww_ctx)
+ ww_mutex_set_context_fastpath(ww, ww_ctx);
preempt_enable();
return 0;
}
spin_lock_mutex(&lock->wait_lock, flags);
-
/*
- * Once more, try to acquire the lock. Only try-lock the mutex if
- * it is unlocked to reduce unnecessary xchg() operations.
+ * After waiting to acquire the wait_lock, try again.
*/
- if (!mutex_is_locked(lock) &&
- (atomic_xchg_acquire(&lock->count, 0) == 1))
+ if (__mutex_trylock(lock, false))
goto skip_wait;
debug_mutex_lock_common(lock, &waiter);
@@ -543,26 +662,26 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
list_add_tail(&waiter.list, &lock->wait_list);
waiter.task = task;
+ if (__mutex_waiter_is_first(lock, &waiter))
+ __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
+
lock_contended(&lock->dep_map, ip);
+ set_task_state(task, state);
for (;;) {
/*
- * Lets try to take the lock again - this is needed even if
- * we get here for the first time (shortly after failing to
- * acquire the lock), to make sure that we get a wakeup once
- * it's unlocked. Later on, if we sleep, this is the
- * operation that gives us the lock. We xchg it to -1, so
- * that when we release the lock, we properly wake up the
- * other waiters. We only attempt the xchg if the count is
- * non-negative in order to avoid unnecessary xchg operations:
+ * Once we hold wait_lock, we're serialized against
+ * mutex_unlock() handing the lock off to us, do a trylock
+ * before testing the error conditions to make sure we pick up
+ * the handoff.
*/
- if (atomic_read(&lock->count) >= 0 &&
- (atomic_xchg_acquire(&lock->count, -1) == 1))
- break;
+ if (__mutex_trylock(lock, first))
+ goto acquired;
/*
- * got a signal? (This code gets eliminated in the
- * TASK_UNINTERRUPTIBLE case.)
+ * Check for signals and wound conditions while holding
+ * wait_lock. This ensures the lock cancellation is ordered
+ * against mutex_unlock() and wake-ups do not go missing.
*/
if (unlikely(signal_pending_state(state, task))) {
ret = -EINTR;
@@ -575,36 +694,49 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
goto err;
}
- __set_task_state(task, state);
-
- /* didn't get the lock, go to sleep: */
spin_unlock_mutex(&lock->wait_lock, flags);
schedule_preempt_disabled();
+
+ if (!first && __mutex_waiter_is_first(lock, &waiter)) {
+ first = true;
+ __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
+ }
+
+ set_task_state(task, state);
+ /*
+ * Here we order against unlock; we must either see it change
+ * state back to RUNNING and fall through the next schedule(),
+ * or we must see its unlock and acquire.
+ */
+ if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) ||
+ __mutex_trylock(lock, first))
+ break;
+
spin_lock_mutex(&lock->wait_lock, flags);
}
+ spin_lock_mutex(&lock->wait_lock, flags);
+acquired:
__set_task_state(task, TASK_RUNNING);
mutex_remove_waiter(lock, &waiter, task);
- /* set it to 0 if there are no waiters left: */
if (likely(list_empty(&lock->wait_list)))
- atomic_set(&lock->count, 0);
+ __mutex_clear_flag(lock, MUTEX_FLAGS);
+
debug_mutex_free_waiter(&waiter);
skip_wait:
/* got the lock - cleanup and rejoice! */
lock_acquired(&lock->dep_map, ip);
- mutex_set_owner(lock);
- if (use_ww_ctx) {
- struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
+ if (use_ww_ctx)
ww_mutex_set_context_slowpath(ww, ww_ctx);
- }
spin_unlock_mutex(&lock->wait_lock, flags);
preempt_enable();
return 0;
err:
+ __set_task_state(task, TASK_RUNNING);
mutex_remove_waiter(lock, &waiter, task);
spin_unlock_mutex(&lock->wait_lock, flags);
debug_mutex_free_waiter(&waiter);
@@ -631,7 +763,6 @@ _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
0, nest, _RET_IP_, NULL, 0);
}
-
EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
int __sched
@@ -650,7 +781,6 @@ mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
subclass, NULL, _RET_IP_, NULL, 0);
}
-
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
static inline int
@@ -715,54 +845,64 @@ EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
/*
* Release the lock, slowpath:
*/
-static inline void
-__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
+static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
{
- unsigned long flags;
- WAKE_Q(wake_q);
+ struct task_struct *next = NULL;
+ unsigned long owner, flags;
+ DEFINE_WAKE_Q(wake_q);
+
+ mutex_release(&lock->dep_map, 1, ip);
/*
- * As a performance measurement, release the lock before doing other
- * wakeup related duties to follow. This allows other tasks to acquire
- * the lock sooner, while still handling cleanups in past unlock calls.
- * This can be done as we do not enforce strict equivalence between the
- * mutex counter and wait_list.
- *
+ * Release the lock before (potentially) taking the spinlock such that
+ * other contenders can get on with things ASAP.
*
- * Some architectures leave the lock unlocked in the fastpath failure
- * case, others need to leave it locked. In the later case we have to
- * unlock it here - as the lock counter is currently 0 or negative.
+ * Except when HANDOFF, in that case we must not clear the owner field,
+ * but instead set it to the top waiter.
*/
- if (__mutex_slowpath_needs_to_unlock())
- atomic_set(&lock->count, 1);
+ owner = atomic_long_read(&lock->owner);
+ for (;;) {
+ unsigned long old;
+
+#ifdef CONFIG_DEBUG_MUTEXES
+ DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
+#endif
+
+ if (owner & MUTEX_FLAG_HANDOFF)
+ break;
+
+ old = atomic_long_cmpxchg_release(&lock->owner, owner,
+ __owner_flags(owner));
+ if (old == owner) {
+ if (owner & MUTEX_FLAG_WAITERS)
+ break;
+
+ return;
+ }
+
+ owner = old;
+ }
spin_lock_mutex(&lock->wait_lock, flags);
- mutex_release(&lock->dep_map, nested, _RET_IP_);
debug_mutex_unlock(lock);
-
if (!list_empty(&lock->wait_list)) {
/* get the first entry from the wait-list: */
struct mutex_waiter *waiter =
- list_entry(lock->wait_list.next,
- struct mutex_waiter, list);
+ list_first_entry(&lock->wait_list,
+ struct mutex_waiter, list);
+
+ next = waiter->task;
debug_mutex_wake_waiter(lock, waiter);
- wake_q_add(&wake_q, waiter->task);
+ wake_q_add(&wake_q, next);
}
- spin_unlock_mutex(&lock->wait_lock, flags);
- wake_up_q(&wake_q);
-}
+ if (owner & MUTEX_FLAG_HANDOFF)
+ __mutex_handoff(lock, next);
-/*
- * Release the lock, slowpath:
- */
-__visible void
-__mutex_unlock_slowpath(atomic_t *lock_count)
-{
- struct mutex *lock = container_of(lock_count, struct mutex, count);
+ spin_unlock_mutex(&lock->wait_lock, flags);
- __mutex_unlock_common_slowpath(lock, 1);
+ wake_up_q(&wake_q);
}
#ifndef CONFIG_DEBUG_LOCK_ALLOC
@@ -789,38 +929,30 @@ __mutex_lock_interruptible_slowpath(struct mutex *lock);
*/
int __sched mutex_lock_interruptible(struct mutex *lock)
{
- int ret;
-
might_sleep();
- ret = __mutex_fastpath_lock_retval(&lock->count);
- if (likely(!ret)) {
- mutex_set_owner(lock);
+
+ if (__mutex_trylock_fast(lock))
return 0;
- } else
- return __mutex_lock_interruptible_slowpath(lock);
+
+ return __mutex_lock_interruptible_slowpath(lock);
}
EXPORT_SYMBOL(mutex_lock_interruptible);
int __sched mutex_lock_killable(struct mutex *lock)
{
- int ret;
-
might_sleep();
- ret = __mutex_fastpath_lock_retval(&lock->count);
- if (likely(!ret)) {
- mutex_set_owner(lock);
+
+ if (__mutex_trylock_fast(lock))
return 0;
- } else
- return __mutex_lock_killable_slowpath(lock);
+
+ return __mutex_lock_killable_slowpath(lock);
}
EXPORT_SYMBOL(mutex_lock_killable);
-__visible void __sched
-__mutex_lock_slowpath(atomic_t *lock_count)
+static noinline void __sched
+__mutex_lock_slowpath(struct mutex *lock)
{
- struct mutex *lock = container_of(lock_count, struct mutex, count);
-
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
NULL, _RET_IP_, NULL, 0);
}
@@ -856,37 +988,6 @@ __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
#endif
-/*
- * Spinlock based trylock, we take the spinlock and check whether we
- * can get the lock:
- */
-static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
-{
- struct mutex *lock = container_of(lock_count, struct mutex, count);
- unsigned long flags;
- int prev;
-
- /* No need to trylock if the mutex is locked. */
- if (mutex_is_locked(lock))
- return 0;
-
- spin_lock_mutex(&lock->wait_lock, flags);
-
- prev = atomic_xchg_acquire(&lock->count, -1);
- if (likely(prev == 1)) {
- mutex_set_owner(lock);
- mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
- }
-
- /* Set it back to 0 if there are no waiters: */
- if (likely(list_empty(&lock->wait_list)))
- atomic_set(&lock->count, 0);
-
- spin_unlock_mutex(&lock->wait_lock, flags);
-
- return prev == 1;
-}
-
/**
* mutex_trylock - try to acquire the mutex, without waiting
* @lock: the mutex to be acquired
@@ -903,13 +1004,12 @@ static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
*/
int __sched mutex_trylock(struct mutex *lock)
{
- int ret;
+ bool locked = __mutex_trylock(lock, false);
- ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
- if (ret)
- mutex_set_owner(lock);
+ if (locked)
+ mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
- return ret;
+ return locked;
}
EXPORT_SYMBOL(mutex_trylock);
@@ -917,36 +1017,28 @@ EXPORT_SYMBOL(mutex_trylock);
int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
- int ret;
-
might_sleep();
- ret = __mutex_fastpath_lock_retval(&lock->base.count);
-
- if (likely(!ret)) {
+ if (__mutex_trylock_fast(&lock->base)) {
ww_mutex_set_context_fastpath(lock, ctx);
- mutex_set_owner(&lock->base);
- } else
- ret = __ww_mutex_lock_slowpath(lock, ctx);
- return ret;
+ return 0;
+ }
+
+ return __ww_mutex_lock_slowpath(lock, ctx);
}
EXPORT_SYMBOL(__ww_mutex_lock);
int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
- int ret;
-
might_sleep();
- ret = __mutex_fastpath_lock_retval(&lock->base.count);
-
- if (likely(!ret)) {
+ if (__mutex_trylock_fast(&lock->base)) {
ww_mutex_set_context_fastpath(lock, ctx);
- mutex_set_owner(&lock->base);
- } else
- ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
- return ret;
+ return 0;
+ }
+
+ return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
}
EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
diff --git a/kernel/locking/mutex.h b/kernel/locking/mutex.h
index 6cd6b8e9efd7..4410a4af42a3 100644
--- a/kernel/locking/mutex.h
+++ b/kernel/locking/mutex.h
@@ -16,32 +16,6 @@
#define mutex_remove_waiter(lock, waiter, task) \
__list_del((waiter)->list.prev, (waiter)->list.next)
-#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
-/*
- * The mutex owner can get read and written to locklessly.
- * We should use WRITE_ONCE when writing the owner value to
- * avoid store tearing, otherwise, a thread could potentially
- * read a partially written and incomplete owner value.
- */
-static inline void mutex_set_owner(struct mutex *lock)
-{
- WRITE_ONCE(lock->owner, current);
-}
-
-static inline void mutex_clear_owner(struct mutex *lock)
-{
- WRITE_ONCE(lock->owner, NULL);
-}
-#else
-static inline void mutex_set_owner(struct mutex *lock)
-{
-}
-
-static inline void mutex_clear_owner(struct mutex *lock)
-{
-}
-#endif
-
#define debug_mutex_wake_waiter(lock, waiter) do { } while (0)
#define debug_mutex_free_waiter(waiter) do { } while (0)
#define debug_mutex_add_waiter(lock, waiter, ti) do { } while (0)
diff --git a/kernel/locking/osq_lock.c b/kernel/locking/osq_lock.c
index 05a37857ab55..a3167941093b 100644
--- a/kernel/locking/osq_lock.c
+++ b/kernel/locking/osq_lock.c
@@ -21,6 +21,11 @@ static inline int encode_cpu(int cpu_nr)
return cpu_nr + 1;
}
+static inline int node_cpu(struct optimistic_spin_node *node)
+{
+ return node->cpu - 1;
+}
+
static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
{
int cpu_nr = encoded_cpu_val - 1;
@@ -75,7 +80,7 @@ osq_wait_next(struct optimistic_spin_queue *lock,
break;
}
- cpu_relax_lowlatency();
+ cpu_relax();
}
return next;
@@ -118,11 +123,13 @@ bool osq_lock(struct optimistic_spin_queue *lock)
while (!READ_ONCE(node->locked)) {
/*
* If we need to reschedule bail... so we can block.
+ * Use vcpu_is_preempted() to avoid waiting for a preempted
+ * lock holder:
*/
- if (need_resched())
+ if (need_resched() || vcpu_is_preempted(node_cpu(node->prev)))
goto unqueue;
- cpu_relax_lowlatency();
+ cpu_relax();
}
return true;
@@ -148,7 +155,7 @@ unqueue:
if (smp_load_acquire(&node->locked))
return true;
- cpu_relax_lowlatency();
+ cpu_relax();
/*
* Or we race against a concurrent unqueue()'s step-B, in which
diff --git a/kernel/locking/qrwlock.c b/kernel/locking/qrwlock.c
index 19248ddf37ce..cc3ed0ccdfa2 100644
--- a/kernel/locking/qrwlock.c
+++ b/kernel/locking/qrwlock.c
@@ -54,7 +54,7 @@ static __always_inline void
rspin_until_writer_unlock(struct qrwlock *lock, u32 cnts)
{
while ((cnts & _QW_WMASK) == _QW_LOCKED) {
- cpu_relax_lowlatency();
+ cpu_relax();
cnts = atomic_read_acquire(&lock->cnts);
}
}
@@ -130,7 +130,7 @@ void queued_write_lock_slowpath(struct qrwlock *lock)
(cmpxchg_relaxed(&l->wmode, 0, _QW_WAITING) == 0))
break;
- cpu_relax_lowlatency();
+ cpu_relax();
}
/* When no more readers, set the locked flag */
@@ -141,7 +141,7 @@ void queued_write_lock_slowpath(struct qrwlock *lock)
_QW_LOCKED) == _QW_WAITING))
break;
- cpu_relax_lowlatency();
+ cpu_relax();
}
unlock:
arch_spin_unlock(&lock->wait_lock);
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index 1ec0f48962b3..2f443ed2320a 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -65,8 +65,72 @@ static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
{
- if (!rt_mutex_has_waiters(lock))
- clear_rt_mutex_waiters(lock);
+ unsigned long owner, *p = (unsigned long *) &lock->owner;
+
+ if (rt_mutex_has_waiters(lock))
+ return;
+
+ /*
+ * The rbtree has no waiters enqueued, now make sure that the
+ * lock->owner still has the waiters bit set, otherwise the
+ * following can happen:
+ *
+ * CPU 0 CPU 1 CPU2
+ * l->owner=T1
+ * rt_mutex_lock(l)
+ * lock(l->lock)
+ * l->owner = T1 | HAS_WAITERS;
+ * enqueue(T2)
+ * boost()
+ * unlock(l->lock)
+ * block()
+ *
+ * rt_mutex_lock(l)
+ * lock(l->lock)
+ * l->owner = T1 | HAS_WAITERS;
+ * enqueue(T3)
+ * boost()
+ * unlock(l->lock)
+ * block()
+ * signal(->T2) signal(->T3)
+ * lock(l->lock)
+ * dequeue(T2)
+ * deboost()
+ * unlock(l->lock)
+ * lock(l->lock)
+ * dequeue(T3)
+ * ==> wait list is empty
+ * deboost()
+ * unlock(l->lock)
+ * lock(l->lock)
+ * fixup_rt_mutex_waiters()
+ * if (wait_list_empty(l) {
+ * l->owner = owner
+ * owner = l->owner & ~HAS_WAITERS;
+ * ==> l->owner = T1
+ * }
+ * lock(l->lock)
+ * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
+ * if (wait_list_empty(l) {
+ * owner = l->owner & ~HAS_WAITERS;
+ * cmpxchg(l->owner, T1, NULL)
+ * ===> Success (l->owner = NULL)
+ *
+ * l->owner = owner
+ * ==> l->owner = T1
+ * }
+ *
+ * With the check for the waiter bit in place T3 on CPU2 will not
+ * overwrite. All tasks fiddling with the waiters bit are
+ * serialized by l->lock, so nothing else can modify the waiters
+ * bit. If the bit is set then nothing can change l->owner either
+ * so the simple RMW is safe. The cmpxchg() will simply fail if it
+ * happens in the middle of the RMW because the waiters bit is
+ * still set.
+ */
+ owner = READ_ONCE(*p);
+ if (owner & RT_MUTEX_HAS_WAITERS)
+ WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
}
/*
@@ -1382,7 +1446,7 @@ rt_mutex_fastunlock(struct rt_mutex *lock,
bool (*slowfn)(struct rt_mutex *lock,
struct wake_q_head *wqh))
{
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
rt_mutex_deadlock_account_unlock(current);
@@ -1555,11 +1619,15 @@ EXPORT_SYMBOL_GPL(__rt_mutex_init);
* rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
* proxy owner
*
- * @lock: the rt_mutex to be locked
+ * @lock: the rt_mutex to be locked
* @proxy_owner:the task to set as owner
*
* No locking. Caller has to do serializing itself
- * Special API call for PI-futex support
+ *
+ * Special API call for PI-futex support. This initializes the rtmutex and
+ * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
+ * possible at this point because the pi_state which contains the rtmutex
+ * is not yet visible to other tasks.
*/
void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
struct task_struct *proxy_owner)
@@ -1573,10 +1641,14 @@ void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
/**
* rt_mutex_proxy_unlock - release a lock on behalf of owner
*
- * @lock: the rt_mutex to be locked
+ * @lock: the rt_mutex to be locked
*
* No locking. Caller has to do serializing itself
- * Special API call for PI-futex support
+ *
+ * Special API call for PI-futex support. This merrily cleans up the rtmutex
+ * (debugging) state. Concurrent operations on this rt_mutex are not
+ * possible because it belongs to the pi_state which is about to be freed
+ * and it is not longer visible to other tasks.
*/
void rt_mutex_proxy_unlock(struct rt_mutex *lock,
struct task_struct *proxy_owner)
diff --git a/kernel/locking/rtmutex_common.h b/kernel/locking/rtmutex_common.h
index 4f5f83c7d2d3..990134617b4c 100644
--- a/kernel/locking/rtmutex_common.h
+++ b/kernel/locking/rtmutex_common.h
@@ -71,12 +71,12 @@ task_top_pi_waiter(struct task_struct *p)
* lock->owner state tracking:
*/
#define RT_MUTEX_HAS_WAITERS 1UL
-#define RT_MUTEX_OWNER_MASKALL 1UL
static inline struct task_struct *rt_mutex_owner(struct rt_mutex *lock)
{
- return (struct task_struct *)
- ((unsigned long)lock->owner & ~RT_MUTEX_OWNER_MASKALL);
+ unsigned long owner = (unsigned long) READ_ONCE(lock->owner);
+
+ return (struct task_struct *) (owner & ~RT_MUTEX_HAS_WAITERS);
}
/*
diff --git a/kernel/locking/rwsem-xadd.c b/kernel/locking/rwsem-xadd.c
index 2337b4bb2366..631506004f9e 100644
--- a/kernel/locking/rwsem-xadd.c
+++ b/kernel/locking/rwsem-xadd.c
@@ -225,7 +225,7 @@ struct rw_semaphore __sched *rwsem_down_read_failed(struct rw_semaphore *sem)
long count, adjustment = -RWSEM_ACTIVE_READ_BIAS;
struct rwsem_waiter waiter;
struct task_struct *tsk = current;
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
waiter.task = tsk;
waiter.type = RWSEM_WAITING_FOR_READ;
@@ -336,7 +336,11 @@ static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
goto done;
}
- ret = owner->on_cpu;
+ /*
+ * As lock holder preemption issue, we both skip spinning if task is not
+ * on cpu or its cpu is preempted
+ */
+ ret = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
done:
rcu_read_unlock();
return ret;
@@ -362,13 +366,17 @@ static noinline bool rwsem_spin_on_owner(struct rw_semaphore *sem)
*/
barrier();
- /* abort spinning when need_resched or owner is not running */
- if (!owner->on_cpu || need_resched()) {
+ /*
+ * abort spinning when need_resched or owner is not running or
+ * owner's cpu is preempted.
+ */
+ if (!owner->on_cpu || need_resched() ||
+ vcpu_is_preempted(task_cpu(owner))) {
rcu_read_unlock();
return false;
}
- cpu_relax_lowlatency();
+ cpu_relax();
}
rcu_read_unlock();
out:
@@ -423,7 +431,7 @@ static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
* memory barriers as we'll eventually observe the right
* values at the cost of a few extra spins.
*/
- cpu_relax_lowlatency();
+ cpu_relax();
}
osq_unlock(&sem->osq);
done:
@@ -461,7 +469,7 @@ __rwsem_down_write_failed_common(struct rw_semaphore *sem, int state)
bool waiting = true; /* any queued threads before us */
struct rwsem_waiter waiter;
struct rw_semaphore *ret = sem;
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
/* undo write bias from down_write operation, stop active locking */
count = atomic_long_sub_return(RWSEM_ACTIVE_WRITE_BIAS, &sem->count);
@@ -495,7 +503,7 @@ __rwsem_down_write_failed_common(struct rw_semaphore *sem, int state)
* wake any read locks that were queued ahead of us.
*/
if (count > RWSEM_WAITING_BIAS) {
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
__rwsem_mark_wake(sem, RWSEM_WAKE_READERS, &wake_q);
/*
@@ -571,7 +579,7 @@ __visible
struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
{
unsigned long flags;
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
/*
* If a spinner is present, it is not necessary to do the wakeup.
@@ -625,7 +633,7 @@ __visible
struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
{
unsigned long flags;
- WAKE_Q(wake_q);
+ DEFINE_WAKE_Q(wake_q);
raw_spin_lock_irqsave(&sem->wait_lock, flags);
diff --git a/kernel/module.c b/kernel/module.c
index f57dd63186e6..0e54d5bf0097 100644
--- a/kernel/module.c
+++ b/kernel/module.c
@@ -1301,8 +1301,9 @@ static int check_version(Elf_Shdr *sechdrs,
goto bad_version;
}
- pr_warn("%s: no symbol version for %s\n", mod->name, symname);
- return 0;
+ /* Broken toolchain. Warn once, then let it go.. */
+ pr_warn_once("%s: no symbol version for %s\n", mod->name, symname);
+ return 1;
bad_version:
pr_warn("%s: disagrees about version of symbol %s\n",
diff --git a/kernel/printk/printk.c b/kernel/printk/printk.c
index 5028f4fd504a..f7a55e9ff2f7 100644
--- a/kernel/printk/printk.c
+++ b/kernel/printk/printk.c
@@ -783,8 +783,6 @@ static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
return ret;
}
-static void cont_flush(void);
-
static ssize_t devkmsg_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
@@ -800,7 +798,6 @@ static ssize_t devkmsg_read(struct file *file, char __user *buf,
if (ret)
return ret;
raw_spin_lock_irq(&logbuf_lock);
- cont_flush();
while (user->seq == log_next_seq) {
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
@@ -863,7 +860,6 @@ static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
return -ESPIPE;
raw_spin_lock_irq(&logbuf_lock);
- cont_flush();
switch (whence) {
case SEEK_SET:
/* the first record */
@@ -902,7 +898,6 @@ static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
poll_wait(file, &log_wait, wait);
raw_spin_lock_irq(&logbuf_lock);
- cont_flush();
if (user->seq < log_next_seq) {
/* return error when data has vanished underneath us */
if (user->seq < log_first_seq)
@@ -1289,7 +1284,6 @@ static int syslog_print(char __user *buf, int size)
size_t skip;
raw_spin_lock_irq(&logbuf_lock);
- cont_flush();
if (syslog_seq < log_first_seq) {
/* messages are gone, move to first one */
syslog_seq = log_first_seq;
@@ -1349,7 +1343,6 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
return -ENOMEM;
raw_spin_lock_irq(&logbuf_lock);
- cont_flush();
if (buf) {
u64 next_seq;
u64 seq;
@@ -1511,7 +1504,6 @@ int do_syslog(int type, char __user *buf, int len, int source)
/* Number of chars in the log buffer */
case SYSLOG_ACTION_SIZE_UNREAD:
raw_spin_lock_irq(&logbuf_lock);
- cont_flush();
if (syslog_seq < log_first_seq) {
/* messages are gone, move to first one */
syslog_seq = log_first_seq;
@@ -3028,7 +3020,6 @@ void kmsg_dump(enum kmsg_dump_reason reason)
dumper->active = true;
raw_spin_lock_irqsave(&logbuf_lock, flags);
- cont_flush();
dumper->cur_seq = clear_seq;
dumper->cur_idx = clear_idx;
dumper->next_seq = log_next_seq;
@@ -3119,7 +3110,6 @@ bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
bool ret;
raw_spin_lock_irqsave(&logbuf_lock, flags);
- cont_flush();
ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
@@ -3162,7 +3152,6 @@ bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
goto out;
raw_spin_lock_irqsave(&logbuf_lock, flags);
- cont_flush();
if (dumper->cur_seq < log_first_seq) {
/* messages are gone, move to first available one */
dumper->cur_seq = log_first_seq;
diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c
index bf08fee53dc7..87c51225ceec 100644
--- a/kernel/rcu/rcutorture.c
+++ b/kernel/rcu/rcutorture.c
@@ -289,15 +289,24 @@ static int rcu_torture_read_lock(void) __acquires(RCU)
static void rcu_read_delay(struct torture_random_state *rrsp)
{
+ unsigned long started;
+ unsigned long completed;
const unsigned long shortdelay_us = 200;
const unsigned long longdelay_ms = 50;
+ unsigned long long ts;
/* We want a short delay sometimes to make a reader delay the grace
* period, and we want a long delay occasionally to trigger
* force_quiescent_state. */
- if (!(torture_random(rrsp) % (nrealreaders * 2000 * longdelay_ms)))
+ if (!(torture_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) {
+ started = cur_ops->completed();
+ ts = rcu_trace_clock_local();
mdelay(longdelay_ms);
+ completed = cur_ops->completed();
+ do_trace_rcu_torture_read(cur_ops->name, NULL, ts,
+ started, completed);
+ }
if (!(torture_random(rrsp) % (nrealreaders * 2 * shortdelay_us)))
udelay(shortdelay_us);
#ifdef CONFIG_PREEMPT
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index 69a5611a7e7c..96c52e43f7ca 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -1304,7 +1304,8 @@ static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
if (!rcu_kick_kthreads)
return;
j = READ_ONCE(rsp->jiffies_kick_kthreads);
- if (time_after(jiffies, j) && rsp->gp_kthread) {
+ if (time_after(jiffies, j) && rsp->gp_kthread &&
+ (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
rcu_ftrace_dump(DUMP_ALL);
wake_up_process(rsp->gp_kthread);
@@ -2828,8 +2829,7 @@ static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
* Also schedule RCU core processing.
*
* This function must be called from hardirq context. It is normally
- * invoked from the scheduling-clock interrupt. If rcu_pending returns
- * false, there is no point in invoking rcu_check_callbacks().
+ * invoked from the scheduling-clock interrupt.
*/
void rcu_check_callbacks(int user)
{
@@ -3121,7 +3121,9 @@ __call_rcu(struct rcu_head *head, rcu_callback_t func,
unsigned long flags;
struct rcu_data *rdp;
- WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
+ /* Misaligned rcu_head! */
+ WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
+
if (debug_rcu_head_queue(head)) {
/* Probable double call_rcu(), so leak the callback. */
WRITE_ONCE(head->func, rcu_leak_callback);
@@ -3130,13 +3132,6 @@ __call_rcu(struct rcu_head *head, rcu_callback_t func,
}
head->func = func;
head->next = NULL;
-
- /*
- * Opportunistically note grace-period endings and beginnings.
- * Note that we might see a beginning right after we see an
- * end, but never vice versa, since this CPU has to pass through
- * a quiescent state betweentimes.
- */
local_irq_save(flags);
rdp = this_cpu_ptr(rsp->rda);
diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h
index e99a5234d9ed..fe98dd24adf8 100644
--- a/kernel/rcu/tree.h
+++ b/kernel/rcu/tree.h
@@ -404,6 +404,7 @@ struct rcu_data {
atomic_long_t exp_workdone1; /* # done by others #1. */
atomic_long_t exp_workdone2; /* # done by others #2. */
atomic_long_t exp_workdone3; /* # done by others #3. */
+ int exp_dynticks_snap; /* Double-check need for IPI. */
/* 7) Callback offloading. */
#ifdef CONFIG_RCU_NOCB_CPU
diff --git a/kernel/rcu/tree_exp.h b/kernel/rcu/tree_exp.h
index 24343eb87b58..d3053e99fdb6 100644
--- a/kernel/rcu/tree_exp.h
+++ b/kernel/rcu/tree_exp.h
@@ -358,8 +358,10 @@ static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
+ rdp->exp_dynticks_snap =
+ atomic_add_return(0, &rdtp->dynticks);
if (raw_smp_processor_id() == cpu ||
- !(atomic_add_return(0, &rdtp->dynticks) & 0x1) ||
+ !(rdp->exp_dynticks_snap & 0x1) ||
!(rnp->qsmaskinitnext & rdp->grpmask))
mask_ofl_test |= rdp->grpmask;
}
@@ -377,9 +379,17 @@ static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
/* IPI the remaining CPUs for expedited quiescent state. */
for_each_leaf_node_possible_cpu(rnp, cpu) {
unsigned long mask = leaf_node_cpu_bit(rnp, cpu);
+ struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
+ struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
+
if (!(mask_ofl_ipi & mask))
continue;
retry_ipi:
+ if (atomic_add_return(0, &rdtp->dynticks) !=
+ rdp->exp_dynticks_snap) {
+ mask_ofl_test |= mask;
+ continue;
+ }
ret = smp_call_function_single(cpu, func, rsp, 0);
if (!ret) {
mask_ofl_ipi &= ~mask;
diff --git a/kernel/sched/auto_group.c b/kernel/sched/auto_group.c
index a5d966cb8891..da39489d2d80 100644
--- a/kernel/sched/auto_group.c
+++ b/kernel/sched/auto_group.c
@@ -111,10 +111,13 @@ bool task_wants_autogroup(struct task_struct *p, struct task_group *tg)
{
if (tg != &root_task_group)
return false;
-
/*
- * We can only assume the task group can't go away on us if
- * autogroup_move_group() can see us on ->thread_group list.
+ * If we race with autogroup_move_group() the caller can use the old
+ * value of signal->autogroup but in this case sched_move_task() will
+ * be called again before autogroup_kref_put().
+ *
+ * However, there is no way sched_autogroup_exit_task() could tell us
+ * to avoid autogroup->tg, so we abuse PF_EXITING flag for this case.
*/
if (p->flags & PF_EXITING)
return false;
@@ -122,6 +125,16 @@ bool task_wants_autogroup(struct task_struct *p, struct task_group *tg)
return true;
}
+void sched_autogroup_exit_task(struct task_struct *p)
+{
+ /*
+ * We are going to call exit_notify() and autogroup_move_group() can't
+ * see this thread after that: we can no longer use signal->autogroup.
+ * See the PF_EXITING check in task_wants_autogroup().
+ */
+ sched_move_task(p);
+}
+
static void
autogroup_move_group(struct task_struct *p, struct autogroup *ag)
{
@@ -138,13 +151,20 @@ autogroup_move_group(struct task_struct *p, struct autogroup *ag)
}
p->signal->autogroup = autogroup_kref_get(ag);
-
- if (!READ_ONCE(sysctl_sched_autogroup_enabled))
- goto out;
-
+ /*
+ * We can't avoid sched_move_task() after we changed signal->autogroup,
+ * this process can already run with task_group() == prev->tg or we can
+ * race with cgroup code which can read autogroup = prev under rq->lock.
+ * In the latter case for_each_thread() can not miss a migrating thread,
+ * cpu_cgroup_attach() must not be possible after cgroup_exit() and it
+ * can't be removed from thread list, we hold ->siglock.
+ *
+ * If an exiting thread was already removed from thread list we rely on
+ * sched_autogroup_exit_task().
+ */
for_each_thread(p, t)
sched_move_task(t);
-out:
+
unlock_task_sighand(p, &flags);
autogroup_kref_put(prev);
}
@@ -192,6 +212,7 @@ int proc_sched_autogroup_set_nice(struct task_struct *p, int nice)
{
static unsigned long next = INITIAL_JIFFIES;
struct autogroup *ag;
+ unsigned long shares;
int err;
if (nice < MIN_NICE || nice > MAX_NICE)
@@ -210,9 +231,10 @@ int proc_sched_autogroup_set_nice(struct task_struct *p, int nice)
next = HZ / 10 + jiffies;
ag = autogroup_task_get(p);
+ shares = scale_load(sched_prio_to_weight[nice + 20]);
down_write(&ag->lock);
- err = sched_group_set_shares(ag->tg, sched_prio_to_weight[nice + 20]);
+ err = sched_group_set_shares(ag->tg, shares);
if (!err)
ag->nice = nice;
up_write(&ag->lock);
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 154fd689fe02..d18804491d9f 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -75,11 +75,11 @@
#include <linux/compiler.h>
#include <linux/frame.h>
#include <linux/prefetch.h>
+#include <linux/mutex.h>
#include <asm/switch_to.h>
#include <asm/tlb.h>
#include <asm/irq_regs.h>
-#include <asm/mutex.h>
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
@@ -1995,14 +1995,15 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
* @state: the mask of task states that can be woken
* @wake_flags: wake modifier flags (WF_*)
*
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
+ * If (@state & @p->state) @p->state = TASK_RUNNING.
*
- * Return: %true if @p was woken up, %false if it was already running.
- * or @state didn't match @p's state.
+ * If the task was not queued/runnable, also place it back on a runqueue.
+ *
+ * Atomic against schedule() which would dequeue a task, also see
+ * set_current_state().
+ *
+ * Return: %true if @p->state changes (an actual wakeup was done),
+ * %false otherwise.
*/
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
@@ -5707,7 +5708,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
printk(KERN_CONT " %*pbl",
cpumask_pr_args(sched_group_cpus(group)));
if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
- printk(KERN_CONT " (cpu_capacity = %d)",
+ printk(KERN_CONT " (cpu_capacity = %lu)",
group->sgc->capacity);
}
@@ -6184,6 +6185,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu)
* die on a /0 trap.
*/
sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
+ sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
/*
* Make sure the first group of this domain contains the
@@ -6301,7 +6303,22 @@ static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
WARN_ON(!sg);
do {
+ int cpu, max_cpu = -1;
+
sg->group_weight = cpumask_weight(sched_group_cpus(sg));
+
+ if (!(sd->flags & SD_ASYM_PACKING))
+ goto next;
+
+ for_each_cpu(cpu, sched_group_cpus(sg)) {
+ if (max_cpu < 0)
+ max_cpu = cpu;
+ else if (sched_asym_prefer(cpu, max_cpu))
+ max_cpu = cpu;
+ }
+ sg->asym_prefer_cpu = max_cpu;
+
+next:
sg = sg->next;
} while (sg != sd->groups);
@@ -7602,6 +7619,7 @@ void __init sched_init(void)
#ifdef CONFIG_FAIR_GROUP_SCHED
root_task_group.shares = ROOT_TASK_GROUP_LOAD;
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
+ rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
/*
* How much cpu bandwidth does root_task_group get?
*
diff --git a/kernel/sched/cpuacct.c b/kernel/sched/cpuacct.c
index bc0b309c3f19..9add206b5608 100644
--- a/kernel/sched/cpuacct.c
+++ b/kernel/sched/cpuacct.c
@@ -297,7 +297,7 @@ static int cpuacct_stats_show(struct seq_file *sf, void *v)
for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) {
seq_printf(sf, "%s %lld\n",
cpuacct_stat_desc[stat],
- cputime64_to_clock_t(val[stat]));
+ (long long)cputime64_to_clock_t(val[stat]));
}
return 0;
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 5ebee3164e64..7700a9cba335 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -128,16 +128,13 @@ static inline void task_group_account_field(struct task_struct *p, int index,
* Account user cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in user space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
*/
-void account_user_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled)
+void account_user_time(struct task_struct *p, cputime_t cputime)
{
int index;
/* Add user time to process. */
p->utime += cputime;
- p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
@@ -153,16 +150,13 @@ void account_user_time(struct task_struct *p, cputime_t cputime,
* Account guest cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in virtual machine since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
*/
-static void account_guest_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled)
+static void account_guest_time(struct task_struct *p, cputime_t cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
/* Add guest time to process. */
p->utime += cputime;
- p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
p->gtime += cputime;
@@ -180,16 +174,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime,
* Account system cpu time to a process and desired cpustat field
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- * @target_cputime64: pointer to cpustat field that has to be updated
+ * @index: pointer to cpustat field that has to be updated
*/
static inline
-void __account_system_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled, int index)
+void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
{
/* Add system time to process. */
p->stime += cputime;
- p->stimescaled += cputime_scaled;
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
@@ -204,15 +195,14 @@ void __account_system_time(struct task_struct *p, cputime_t cputime,
* @p: the process that the cpu time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
* @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
*/
void account_system_time(struct task_struct *p, int hardirq_offset,
- cputime_t cputime, cputime_t cputime_scaled)
+ cputime_t cputime)
{
int index;
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
- account_guest_time(p, cputime, cputime_scaled);
+ account_guest_time(p, cputime);
return;
}
@@ -223,7 +213,7 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
else
index = CPUTIME_SYSTEM;
- __account_system_time(p, cputime, cputime_scaled, index);
+ __account_system_time(p, cputime, index);
}
/*
@@ -390,7 +380,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq, int ticks)
{
u64 cputime = (__force u64) cputime_one_jiffy * ticks;
- cputime_t scaled, other;
+ cputime_t other;
/*
* When returning from idle, many ticks can get accounted at
@@ -403,7 +393,6 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
if (other >= cputime)
return;
cputime -= other;
- scaled = cputime_to_scaled(cputime);
if (this_cpu_ksoftirqd() == p) {
/*
@@ -411,15 +400,15 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
* So, we have to handle it separately here.
* Also, p->stime needs to be updated for ksoftirqd.
*/
- __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
+ __account_system_time(p, cputime, CPUTIME_SOFTIRQ);
} else if (user_tick) {
- account_user_time(p, cputime, scaled);
+ account_user_time(p, cputime);
} else if (p == rq->idle) {
account_idle_time(cputime);
} else if (p->flags & PF_VCPU) { /* System time or guest time */
- account_guest_time(p, cputime, scaled);
+ account_guest_time(p, cputime);
} else {
- __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
+ __account_system_time(p, cputime, CPUTIME_SYSTEM);
}
}
@@ -502,7 +491,7 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
*/
void account_process_tick(struct task_struct *p, int user_tick)
{
- cputime_t cputime, scaled, steal;
+ cputime_t cputime, steal;
struct rq *rq = this_rq();
if (vtime_accounting_cpu_enabled())
@@ -520,12 +509,11 @@ void account_process_tick(struct task_struct *p, int user_tick)
return;
cputime -= steal;
- scaled = cputime_to_scaled(cputime);
if (user_tick)
- account_user_time(p, cputime, scaled);
+ account_user_time(p, cputime);
else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
- account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
+ account_system_time(p, HARDIRQ_OFFSET, cputime);
else
account_idle_time(cputime);
}
@@ -746,7 +734,7 @@ static void __vtime_account_system(struct task_struct *tsk)
{
cputime_t delta_cpu = get_vtime_delta(tsk);
- account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
+ account_system_time(tsk, irq_count(), delta_cpu);
}
void vtime_account_system(struct task_struct *tsk)
@@ -767,7 +755,7 @@ void vtime_account_user(struct task_struct *tsk)
tsk->vtime_snap_whence = VTIME_SYS;
if (vtime_delta(tsk)) {
delta_cpu = get_vtime_delta(tsk);
- account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
+ account_user_time(tsk, delta_cpu);
}
write_seqcount_end(&tsk->vtime_seqcount);
}
@@ -863,29 +851,25 @@ cputime_t task_gtime(struct task_struct *t)
* add up the pending nohz execution time since the last
* cputime snapshot.
*/
-static void
-fetch_task_cputime(struct task_struct *t,
- cputime_t *u_dst, cputime_t *s_dst,
- cputime_t *u_src, cputime_t *s_src,
- cputime_t *udelta, cputime_t *sdelta)
+void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
+ cputime_t delta;
unsigned int seq;
- unsigned long long delta;
- do {
- *udelta = 0;
- *sdelta = 0;
+ if (!vtime_accounting_enabled()) {
+ *utime = t->utime;
+ *stime = t->stime;
+ return;
+ }
+ do {
seq = read_seqcount_begin(&t->vtime_seqcount);
- if (u_dst)
- *u_dst = *u_src;
- if (s_dst)
- *s_dst = *s_src;
+ *utime = t->utime;
+ *stime = t->stime;
/* Task is sleeping, nothing to add */
- if (t->vtime_snap_whence == VTIME_INACTIVE ||
- is_idle_task(t))
+ if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
continue;
delta = vtime_delta(t);
@@ -894,54 +878,10 @@ fetch_task_cputime(struct task_struct *t,
* Task runs either in user or kernel space, add pending nohz time to
* the right place.
*/
- if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
- *udelta = delta;
- } else {
- if (t->vtime_snap_whence == VTIME_SYS)
- *sdelta = delta;
- }
+ if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
+ *utime += delta;
+ else if (t->vtime_snap_whence == VTIME_SYS)
+ *stime += delta;
} while (read_seqcount_retry(&t->vtime_seqcount, seq));
}
-
-
-void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
-{
- cputime_t udelta, sdelta;
-
- if (!vtime_accounting_enabled()) {
- if (utime)
- *utime = t->utime;
- if (stime)
- *stime = t->stime;
- return;
- }
-
- fetch_task_cputime(t, utime, stime, &t->utime,
- &t->stime, &udelta, &sdelta);
- if (utime)
- *utime += udelta;
- if (stime)
- *stime += sdelta;
-}
-
-void task_cputime_scaled(struct task_struct *t,
- cputime_t *utimescaled, cputime_t *stimescaled)
-{
- cputime_t udelta, sdelta;
-
- if (!vtime_accounting_enabled()) {
- if (utimescaled)
- *utimescaled = t->utimescaled;
- if (stimescaled)
- *stimescaled = t->stimescaled;
- return;
- }
-
- fetch_task_cputime(t, utimescaled, stimescaled,
- &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
- if (utimescaled)
- *utimescaled += cputime_to_scaled(udelta);
- if (stimescaled)
- *stimescaled += cputime_to_scaled(sdelta);
-}
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 37e2449186c4..70ef2b1901e4 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -586,7 +586,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
/*
* The task might have changed its scheduling policy to something
- * different than SCHED_DEADLINE (through switched_fromd_dl()).
+ * different than SCHED_DEADLINE (through switched_from_dl()).
*/
if (!dl_task(p)) {
__dl_clear_params(p);
@@ -1137,7 +1137,7 @@ pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie coo
pull_dl_task(rq);
lockdep_repin_lock(&rq->lock, cookie);
/*
- * pull_rt_task() can drop (and re-acquire) rq->lock; this
+ * pull_dl_task() can drop (and re-acquire) rq->lock; this
* means a stop task can slip in, in which case we need to
* re-start task selection.
*/
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c242944f5cbd..6559d197e08a 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -37,7 +37,6 @@
/*
* Targeted preemption latency for CPU-bound tasks:
- * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
*
* NOTE: this latency value is not the same as the concept of
* 'timeslice length' - timeslices in CFS are of variable length
@@ -46,31 +45,35 @@
*
* (to see the precise effective timeslice length of your workload,
* run vmstat and monitor the context-switches (cs) field)
+ *
+ * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
*/
-unsigned int sysctl_sched_latency = 6000000ULL;
-unsigned int normalized_sysctl_sched_latency = 6000000ULL;
+unsigned int sysctl_sched_latency = 6000000ULL;
+unsigned int normalized_sysctl_sched_latency = 6000000ULL;
/*
* The initial- and re-scaling of tunables is configurable
- * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*
* Options are:
- * SCHED_TUNABLESCALING_NONE - unscaled, always *1
- * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
- * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
+ *
+ * SCHED_TUNABLESCALING_NONE - unscaled, always *1
+ * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
+ * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
+ *
+ * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*/
-enum sched_tunable_scaling sysctl_sched_tunable_scaling
- = SCHED_TUNABLESCALING_LOG;
+enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
/*
* Minimal preemption granularity for CPU-bound tasks:
+ *
* (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
-unsigned int sysctl_sched_min_granularity = 750000ULL;
-unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
+unsigned int sysctl_sched_min_granularity = 750000ULL;
+unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
/*
- * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
+ * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
*/
static unsigned int sched_nr_latency = 8;
@@ -82,23 +85,27 @@ unsigned int sysctl_sched_child_runs_first __read_mostly;
/*
* SCHED_OTHER wake-up granularity.
- * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
*
* This option delays the preemption effects of decoupled workloads
* and reduces their over-scheduling. Synchronous workloads will still
* have immediate wakeup/sleep latencies.
+ *
+ * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
-unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
-unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
+unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
+unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
-const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
+const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
+#ifdef CONFIG_SMP
/*
- * The exponential sliding window over which load is averaged for shares
- * distribution.
- * (default: 10msec)
+ * For asym packing, by default the lower numbered cpu has higher priority.
*/
-unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
+int __weak arch_asym_cpu_priority(int cpu)
+{
+ return -cpu;
+}
+#endif
#ifdef CONFIG_CFS_BANDWIDTH
/*
@@ -109,16 +116,18 @@ unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
* to consumption or the quota being specified to be smaller than the slice)
* we will always only issue the remaining available time.
*
- * default: 5 msec, units: microseconds
- */
-unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
+ * (default: 5 msec, units: microseconds)
+ */
+unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif
/*
* The margin used when comparing utilization with CPU capacity:
- * util * 1024 < capacity * margin
+ * util * margin < capacity * 1024
+ *
+ * (default: ~20%)
*/
-unsigned int capacity_margin = 1280; /* ~20% */
+unsigned int capacity_margin = 1280;
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
@@ -290,19 +299,59 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (!cfs_rq->on_list) {
+ struct rq *rq = rq_of(cfs_rq);
+ int cpu = cpu_of(rq);
/*
* Ensure we either appear before our parent (if already
* enqueued) or force our parent to appear after us when it is
- * enqueued. The fact that we always enqueue bottom-up
- * reduces this to two cases.
+ * enqueued. The fact that we always enqueue bottom-up
+ * reduces this to two cases and a special case for the root
+ * cfs_rq. Furthermore, it also means that we will always reset
+ * tmp_alone_branch either when the branch is connected
+ * to a tree or when we reach the beg of the tree
*/
if (cfs_rq->tg->parent &&
- cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
- list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
- &rq_of(cfs_rq)->leaf_cfs_rq_list);
- } else {
+ cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
+ /*
+ * If parent is already on the list, we add the child
+ * just before. Thanks to circular linked property of
+ * the list, this means to put the child at the tail
+ * of the list that starts by parent.
+ */
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
- &rq_of(cfs_rq)->leaf_cfs_rq_list);
+ &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
+ /*
+ * The branch is now connected to its tree so we can
+ * reset tmp_alone_branch to the beginning of the
+ * list.
+ */
+ rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
+ } else if (!cfs_rq->tg->parent) {
+ /*
+ * cfs rq without parent should be put
+ * at the tail of the list.
+ */
+ list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
+ &rq->leaf_cfs_rq_list);
+ /*
+ * We have reach the beg of a tree so we can reset
+ * tmp_alone_branch to the beginning of the list.
+ */
+ rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
+ } else {
+ /*
+ * The parent has not already been added so we want to
+ * make sure that it will be put after us.
+ * tmp_alone_branch points to the beg of the branch
+ * where we will add parent.
+ */
+ list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
+ rq->tmp_alone_branch);
+ /*
+ * update tmp_alone_branch to points to the new beg
+ * of the branch
+ */
+ rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
}
cfs_rq->on_list = 1;
@@ -708,9 +757,7 @@ void init_entity_runnable_average(struct sched_entity *se)
}
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
-static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
-static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
-static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
+static void attach_entity_cfs_rq(struct sched_entity *se);
/*
* With new tasks being created, their initial util_avgs are extrapolated
@@ -742,7 +789,6 @@ void post_init_entity_util_avg(struct sched_entity *se)
struct cfs_rq *cfs_rq = cfs_rq_of(se);
struct sched_avg *sa = &se->avg;
long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
- u64 now = cfs_rq_clock_task(cfs_rq);
if (cap > 0) {
if (cfs_rq->avg.util_avg != 0) {
@@ -770,14 +816,12 @@ void post_init_entity_util_avg(struct sched_entity *se)
* such that the next switched_to_fair() has the
* expected state.
*/
- se->avg.last_update_time = now;
+ se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
return;
}
}
- update_cfs_rq_load_avg(now, cfs_rq, false);
- attach_entity_load_avg(cfs_rq, se);
- update_tg_load_avg(cfs_rq, false);
+ attach_entity_cfs_rq(se);
}
#else /* !CONFIG_SMP */
@@ -2890,6 +2934,26 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
return decayed;
}
+/*
+ * Signed add and clamp on underflow.
+ *
+ * Explicitly do a load-store to ensure the intermediate value never hits
+ * memory. This allows lockless observations without ever seeing the negative
+ * values.
+ */
+#define add_positive(_ptr, _val) do { \
+ typeof(_ptr) ptr = (_ptr); \
+ typeof(_val) val = (_val); \
+ typeof(*ptr) res, var = READ_ONCE(*ptr); \
+ \
+ res = var + val; \
+ \
+ if (val < 0 && res > var) \
+ res = 0; \
+ \
+ WRITE_ONCE(*ptr, res); \
+} while (0)
+
#ifdef CONFIG_FAIR_GROUP_SCHED
/**
* update_tg_load_avg - update the tg's load avg
@@ -2969,8 +3033,138 @@ void set_task_rq_fair(struct sched_entity *se,
se->avg.last_update_time = n_last_update_time;
}
}
+
+/* Take into account change of utilization of a child task group */
+static inline void
+update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ struct cfs_rq *gcfs_rq = group_cfs_rq(se);
+ long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
+
+ /* Nothing to update */
+ if (!delta)
+ return;
+
+ /* Set new sched_entity's utilization */
+ se->avg.util_avg = gcfs_rq->avg.util_avg;
+ se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
+
+ /* Update parent cfs_rq utilization */
+ add_positive(&cfs_rq->avg.util_avg, delta);
+ cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
+}
+
+/* Take into account change of load of a child task group */
+static inline void
+update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ struct cfs_rq *gcfs_rq = group_cfs_rq(se);
+ long delta, load = gcfs_rq->avg.load_avg;
+
+ /*
+ * If the load of group cfs_rq is null, the load of the
+ * sched_entity will also be null so we can skip the formula
+ */
+ if (load) {
+ long tg_load;
+
+ /* Get tg's load and ensure tg_load > 0 */
+ tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
+
+ /* Ensure tg_load >= load and updated with current load*/
+ tg_load -= gcfs_rq->tg_load_avg_contrib;
+ tg_load += load;
+
+ /*
+ * We need to compute a correction term in the case that the
+ * task group is consuming more CPU than a task of equal
+ * weight. A task with a weight equals to tg->shares will have
+ * a load less or equal to scale_load_down(tg->shares).
+ * Similarly, the sched_entities that represent the task group
+ * at parent level, can't have a load higher than
+ * scale_load_down(tg->shares). And the Sum of sched_entities'
+ * load must be <= scale_load_down(tg->shares).
+ */
+ if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
+ /* scale gcfs_rq's load into tg's shares*/
+ load *= scale_load_down(gcfs_rq->tg->shares);
+ load /= tg_load;
+ }
+ }
+
+ delta = load - se->avg.load_avg;
+
+ /* Nothing to update */
+ if (!delta)
+ return;
+
+ /* Set new sched_entity's load */
+ se->avg.load_avg = load;
+ se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
+
+ /* Update parent cfs_rq load */
+ add_positive(&cfs_rq->avg.load_avg, delta);
+ cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
+
+ /*
+ * If the sched_entity is already enqueued, we also have to update the
+ * runnable load avg.
+ */
+ if (se->on_rq) {
+ /* Update parent cfs_rq runnable_load_avg */
+ add_positive(&cfs_rq->runnable_load_avg, delta);
+ cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
+ }
+}
+
+static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
+{
+ cfs_rq->propagate_avg = 1;
+}
+
+static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = group_cfs_rq(se);
+
+ if (!cfs_rq->propagate_avg)
+ return 0;
+
+ cfs_rq->propagate_avg = 0;
+ return 1;
+}
+
+/* Update task and its cfs_rq load average */
+static inline int propagate_entity_load_avg(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq;
+
+ if (entity_is_task(se))
+ return 0;
+
+ if (!test_and_clear_tg_cfs_propagate(se))
+ return 0;
+
+ cfs_rq = cfs_rq_of(se);
+
+ set_tg_cfs_propagate(cfs_rq);
+
+ update_tg_cfs_util(cfs_rq, se);
+ update_tg_cfs_load(cfs_rq, se);
+
+ return 1;
+}
+
#else /* CONFIG_FAIR_GROUP_SCHED */
+
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
+
+static inline int propagate_entity_load_avg(struct sched_entity *se)
+{
+ return 0;
+}
+
+static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
+
#endif /* CONFIG_FAIR_GROUP_SCHED */
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
@@ -3041,6 +3235,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
sub_positive(&sa->load_avg, r);
sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
removed_load = 1;
+ set_tg_cfs_propagate(cfs_rq);
}
if (atomic_long_read(&cfs_rq->removed_util_avg)) {
@@ -3048,6 +3243,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
sub_positive(&sa->util_avg, r);
sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
removed_util = 1;
+ set_tg_cfs_propagate(cfs_rq);
}
decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
@@ -3064,23 +3260,35 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
return decayed || removed_load;
}
+/*
+ * Optional action to be done while updating the load average
+ */
+#define UPDATE_TG 0x1
+#define SKIP_AGE_LOAD 0x2
+
/* Update task and its cfs_rq load average */
-static inline void update_load_avg(struct sched_entity *se, int update_tg)
+static inline void update_load_avg(struct sched_entity *se, int flags)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 now = cfs_rq_clock_task(cfs_rq);
struct rq *rq = rq_of(cfs_rq);
int cpu = cpu_of(rq);
+ int decayed;
/*
* Track task load average for carrying it to new CPU after migrated, and
* track group sched_entity load average for task_h_load calc in migration
*/
- __update_load_avg(now, cpu, &se->avg,
+ if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
+ __update_load_avg(now, cpu, &se->avg,
se->on_rq * scale_load_down(se->load.weight),
cfs_rq->curr == se, NULL);
+ }
- if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
+ decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
+ decayed |= propagate_entity_load_avg(se);
+
+ if (decayed && (flags & UPDATE_TG))
update_tg_load_avg(cfs_rq, 0);
}
@@ -3094,31 +3302,12 @@ static inline void update_load_avg(struct sched_entity *se, int update_tg)
*/
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- if (!sched_feat(ATTACH_AGE_LOAD))
- goto skip_aging;
-
- /*
- * If we got migrated (either between CPUs or between cgroups) we'll
- * have aged the average right before clearing @last_update_time.
- *
- * Or we're fresh through post_init_entity_util_avg().
- */
- if (se->avg.last_update_time) {
- __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
- &se->avg, 0, 0, NULL);
-
- /*
- * XXX: we could have just aged the entire load away if we've been
- * absent from the fair class for too long.
- */
- }
-
-skip_aging:
se->avg.last_update_time = cfs_rq->avg.last_update_time;
cfs_rq->avg.load_avg += se->avg.load_avg;
cfs_rq->avg.load_sum += se->avg.load_sum;
cfs_rq->avg.util_avg += se->avg.util_avg;
cfs_rq->avg.util_sum += se->avg.util_sum;
+ set_tg_cfs_propagate(cfs_rq);
cfs_rq_util_change(cfs_rq);
}
@@ -3133,14 +3322,12 @@ skip_aging:
*/
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
- &se->avg, se->on_rq * scale_load_down(se->load.weight),
- cfs_rq->curr == se, NULL);
sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
+ set_tg_cfs_propagate(cfs_rq);
cfs_rq_util_change(cfs_rq);
}
@@ -3150,34 +3337,20 @@ static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct sched_avg *sa = &se->avg;
- u64 now = cfs_rq_clock_task(cfs_rq);
- int migrated, decayed;
-
- migrated = !sa->last_update_time;
- if (!migrated) {
- __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
- se->on_rq * scale_load_down(se->load.weight),
- cfs_rq->curr == se, NULL);
- }
-
- decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
cfs_rq->runnable_load_avg += sa->load_avg;
cfs_rq->runnable_load_sum += sa->load_sum;
- if (migrated)
+ if (!sa->last_update_time) {
attach_entity_load_avg(cfs_rq, se);
-
- if (decayed || migrated)
update_tg_load_avg(cfs_rq, 0);
+ }
}
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- update_load_avg(se, 1);
-
cfs_rq->runnable_load_avg =
max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
cfs_rq->runnable_load_sum =
@@ -3206,13 +3379,25 @@ static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
#endif
/*
+ * Synchronize entity load avg of dequeued entity without locking
+ * the previous rq.
+ */
+void sync_entity_load_avg(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ u64 last_update_time;
+
+ last_update_time = cfs_rq_last_update_time(cfs_rq);
+ __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
+}
+
+/*
* Task first catches up with cfs_rq, and then subtract
* itself from the cfs_rq (task must be off the queue now).
*/
void remove_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 last_update_time;
/*
* tasks cannot exit without having gone through wake_up_new_task() ->
@@ -3224,9 +3409,7 @@ void remove_entity_load_avg(struct sched_entity *se)
* calls this.
*/
- last_update_time = cfs_rq_last_update_time(cfs_rq);
-
- __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
+ sync_entity_load_avg(se);
atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
}
@@ -3251,7 +3434,10 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
return 0;
}
-static inline void update_load_avg(struct sched_entity *se, int not_used)
+#define UPDATE_TG 0x0
+#define SKIP_AGE_LOAD 0x0
+
+static inline void update_load_avg(struct sched_entity *se, int not_used1)
{
cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
}
@@ -3396,6 +3582,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
if (renorm && !curr)
se->vruntime += cfs_rq->min_vruntime;
+ update_load_avg(se, UPDATE_TG);
enqueue_entity_load_avg(cfs_rq, se);
account_entity_enqueue(cfs_rq, se);
update_cfs_shares(cfs_rq);
@@ -3470,6 +3657,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
+ update_load_avg(se, UPDATE_TG);
dequeue_entity_load_avg(cfs_rq, se);
update_stats_dequeue(cfs_rq, se, flags);
@@ -3557,7 +3745,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
- update_load_avg(se, 1);
+ update_load_avg(se, UPDATE_TG);
}
update_stats_curr_start(cfs_rq, se);
@@ -3675,7 +3863,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
/*
* Ensure that runnable average is periodically updated.
*/
- update_load_avg(curr, 1);
+ update_load_avg(curr, UPDATE_TG);
update_cfs_shares(cfs_rq);
#ifdef CONFIG_SCHED_HRTICK
@@ -4572,7 +4760,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
- update_load_avg(se, 1);
+ update_load_avg(se, UPDATE_TG);
update_cfs_shares(cfs_rq);
}
@@ -4631,7 +4819,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
- update_load_avg(se, 1);
+ update_load_avg(se, UPDATE_TG);
update_cfs_shares(cfs_rq);
}
@@ -5199,6 +5387,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p,
return 1;
}
+static inline int task_util(struct task_struct *p);
+static int cpu_util_wake(int cpu, struct task_struct *p);
+
+static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
+{
+ return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
+}
+
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
@@ -5208,15 +5404,21 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int sd_flag)
{
struct sched_group *idlest = NULL, *group = sd->groups;
- unsigned long min_load = ULONG_MAX, this_load = 0;
+ struct sched_group *most_spare_sg = NULL;
+ unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
+ unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
+ unsigned long most_spare = 0, this_spare = 0;
int load_idx = sd->forkexec_idx;
- int imbalance = 100 + (sd->imbalance_pct-100)/2;
+ int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
+ unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
+ (sd->imbalance_pct-100) / 100;
if (sd_flag & SD_BALANCE_WAKE)
load_idx = sd->wake_idx;
do {
- unsigned long load, avg_load;
+ unsigned long load, avg_load, runnable_load;
+ unsigned long spare_cap, max_spare_cap;
int local_group;
int i;
@@ -5228,8 +5430,13 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
local_group = cpumask_test_cpu(this_cpu,
sched_group_cpus(group));
- /* Tally up the load of all CPUs in the group */
+ /*
+ * Tally up the load of all CPUs in the group and find
+ * the group containing the CPU with most spare capacity.
+ */
avg_load = 0;
+ runnable_load = 0;
+ max_spare_cap = 0;
for_each_cpu(i, sched_group_cpus(group)) {
/* Bias balancing toward cpus of our domain */
@@ -5238,22 +5445,84 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
else
load = target_load(i, load_idx);
- avg_load += load;
+ runnable_load += load;
+
+ avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
+
+ spare_cap = capacity_spare_wake(i, p);
+
+ if (spare_cap > max_spare_cap)
+ max_spare_cap = spare_cap;
}
/* Adjust by relative CPU capacity of the group */
- avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
+ avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
+ group->sgc->capacity;
+ runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
+ group->sgc->capacity;
if (local_group) {
- this_load = avg_load;
- } else if (avg_load < min_load) {
- min_load = avg_load;
- idlest = group;
+ this_runnable_load = runnable_load;
+ this_avg_load = avg_load;
+ this_spare = max_spare_cap;
+ } else {
+ if (min_runnable_load > (runnable_load + imbalance)) {
+ /*
+ * The runnable load is significantly smaller
+ * so we can pick this new cpu
+ */
+ min_runnable_load = runnable_load;
+ min_avg_load = avg_load;
+ idlest = group;
+ } else if ((runnable_load < (min_runnable_load + imbalance)) &&
+ (100*min_avg_load > imbalance_scale*avg_load)) {
+ /*
+ * The runnable loads are close so take the
+ * blocked load into account through avg_load.
+ */
+ min_avg_load = avg_load;
+ idlest = group;
+ }
+
+ if (most_spare < max_spare_cap) {
+ most_spare = max_spare_cap;
+ most_spare_sg = group;
+ }
}
} while (group = group->next, group != sd->groups);
- if (!idlest || 100*this_load < imbalance*min_load)
+ /*
+ * The cross-over point between using spare capacity or least load
+ * is too conservative for high utilization tasks on partially
+ * utilized systems if we require spare_capacity > task_util(p),
+ * so we allow for some task stuffing by using
+ * spare_capacity > task_util(p)/2.
+ *
+ * Spare capacity can't be used for fork because the utilization has
+ * not been set yet, we must first select a rq to compute the initial
+ * utilization.
+ */
+ if (sd_flag & SD_BALANCE_FORK)
+ goto skip_spare;
+
+ if (this_spare > task_util(p) / 2 &&
+ imbalance_scale*this_spare > 100*most_spare)
+ return NULL;
+
+ if (most_spare > task_util(p) / 2)
+ return most_spare_sg;
+
+skip_spare:
+ if (!idlest)
+ return NULL;
+
+ if (min_runnable_load > (this_runnable_load + imbalance))
return NULL;
+
+ if ((this_runnable_load < (min_runnable_load + imbalance)) &&
+ (100*this_avg_load < imbalance_scale*min_avg_load))
+ return NULL;
+
return idlest;
}
@@ -5590,6 +5859,24 @@ static inline int task_util(struct task_struct *p)
}
/*
+ * cpu_util_wake: Compute cpu utilization with any contributions from
+ * the waking task p removed.
+ */
+static int cpu_util_wake(int cpu, struct task_struct *p)
+{
+ unsigned long util, capacity;
+
+ /* Task has no contribution or is new */
+ if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
+ return cpu_util(cpu);
+
+ capacity = capacity_orig_of(cpu);
+ util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
+
+ return (util >= capacity) ? capacity : util;
+}
+
+/*
* Disable WAKE_AFFINE in the case where task @p doesn't fit in the
* capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
*
@@ -5607,6 +5894,9 @@ static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
if (max_cap - min_cap < max_cap >> 3)
return 0;
+ /* Bring task utilization in sync with prev_cpu */
+ sync_entity_load_avg(&p->se);
+
return min_cap * 1024 < task_util(p) * capacity_margin;
}
@@ -6641,6 +6931,10 @@ static void update_blocked_averages(int cpu)
if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
update_tg_load_avg(cfs_rq, 0);
+
+ /* Propagate pending load changes to the parent */
+ if (cfs_rq->tg->se[cpu])
+ update_load_avg(cfs_rq->tg->se[cpu], 0);
}
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -6845,13 +7139,14 @@ static void update_cpu_capacity(struct sched_domain *sd, int cpu)
cpu_rq(cpu)->cpu_capacity = capacity;
sdg->sgc->capacity = capacity;
+ sdg->sgc->min_capacity = capacity;
}
void update_group_capacity(struct sched_domain *sd, int cpu)
{
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
- unsigned long capacity;
+ unsigned long capacity, min_capacity;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
@@ -6864,6 +7159,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
}
capacity = 0;
+ min_capacity = ULONG_MAX;
if (child->flags & SD_OVERLAP) {
/*
@@ -6888,11 +7184,12 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
*/
if (unlikely(!rq->sd)) {
capacity += capacity_of(cpu);
- continue;
+ } else {
+ sgc = rq->sd->groups->sgc;
+ capacity += sgc->capacity;
}
- sgc = rq->sd->groups->sgc;
- capacity += sgc->capacity;
+ min_capacity = min(capacity, min_capacity);
}
} else {
/*
@@ -6902,12 +7199,16 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
group = child->groups;
do {
- capacity += group->sgc->capacity;
+ struct sched_group_capacity *sgc = group->sgc;
+
+ capacity += sgc->capacity;
+ min_capacity = min(sgc->min_capacity, min_capacity);
group = group->next;
} while (group != child->groups);
}
sdg->sgc->capacity = capacity;
+ sdg->sgc->min_capacity = min_capacity;
}
/*
@@ -6930,8 +7231,8 @@ check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
* cpumask covering 1 cpu of the first group and 3 cpus of the second group.
* Something like:
*
- * { 0 1 2 3 } { 4 5 6 7 }
- * * * * *
+ * { 0 1 2 3 } { 4 5 6 7 }
+ * * * * *
*
* If we were to balance group-wise we'd place two tasks in the first group and
* two tasks in the second group. Clearly this is undesired as it will overload
@@ -7002,6 +7303,17 @@ group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
return false;
}
+/*
+ * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
+ * per-CPU capacity than sched_group ref.
+ */
+static inline bool
+group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
+{
+ return sg->sgc->min_capacity * capacity_margin <
+ ref->sgc->min_capacity * 1024;
+}
+
static inline enum
group_type group_classify(struct sched_group *group,
struct sg_lb_stats *sgs)
@@ -7105,6 +7417,20 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (sgs->avg_load <= busiest->avg_load)
return false;
+ if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
+ goto asym_packing;
+
+ /*
+ * Candidate sg has no more than one task per CPU and
+ * has higher per-CPU capacity. Migrating tasks to less
+ * capable CPUs may harm throughput. Maximize throughput,
+ * power/energy consequences are not considered.
+ */
+ if (sgs->sum_nr_running <= sgs->group_weight &&
+ group_smaller_cpu_capacity(sds->local, sg))
+ return false;
+
+asym_packing:
/* This is the busiest node in its class. */
if (!(env->sd->flags & SD_ASYM_PACKING))
return true;
@@ -7113,16 +7439,18 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (env->idle == CPU_NOT_IDLE)
return true;
/*
- * ASYM_PACKING needs to move all the work to the lowest
- * numbered CPUs in the group, therefore mark all groups
- * higher than ourself as busy.
+ * ASYM_PACKING needs to move all the work to the highest
+ * prority CPUs in the group, therefore mark all groups
+ * of lower priority than ourself as busy.
*/
- if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
+ if (sgs->sum_nr_running &&
+ sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
if (!sds->busiest)
return true;
- /* Prefer to move from highest possible cpu's work */
- if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
+ /* Prefer to move from lowest priority cpu's work */
+ if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
+ sg->asym_prefer_cpu))
return true;
}
@@ -7274,8 +7602,8 @@ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
if (!sds->busiest)
return 0;
- busiest_cpu = group_first_cpu(sds->busiest);
- if (env->dst_cpu > busiest_cpu)
+ busiest_cpu = sds->busiest->asym_prefer_cpu;
+ if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
return 0;
env->imbalance = DIV_ROUND_CLOSEST(
@@ -7613,10 +7941,11 @@ static int need_active_balance(struct lb_env *env)
/*
* ASYM_PACKING needs to force migrate tasks from busy but
- * higher numbered CPUs in order to pack all tasks in the
- * lowest numbered CPUs.
+ * lower priority CPUs in order to pack all tasks in the
+ * highest priority CPUs.
*/
- if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
+ if ((sd->flags & SD_ASYM_PACKING) &&
+ sched_asym_prefer(env->dst_cpu, env->src_cpu))
return 1;
}
@@ -8465,7 +8794,7 @@ static inline bool nohz_kick_needed(struct rq *rq)
unsigned long now = jiffies;
struct sched_domain_shared *sds;
struct sched_domain *sd;
- int nr_busy, cpu = rq->cpu;
+ int nr_busy, i, cpu = rq->cpu;
bool kick = false;
if (unlikely(rq->idle_balance))
@@ -8516,12 +8845,18 @@ static inline bool nohz_kick_needed(struct rq *rq)
}
sd = rcu_dereference(per_cpu(sd_asym, cpu));
- if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
- sched_domain_span(sd)) < cpu)) {
- kick = true;
- goto unlock;
- }
+ if (sd) {
+ for_each_cpu(i, sched_domain_span(sd)) {
+ if (i == cpu ||
+ !cpumask_test_cpu(i, nohz.idle_cpus_mask))
+ continue;
+ if (sched_asym_prefer(i, cpu)) {
+ kick = true;
+ goto unlock;
+ }
+ }
+ }
unlock:
rcu_read_unlock();
return kick;
@@ -8687,32 +9022,45 @@ static inline bool vruntime_normalized(struct task_struct *p)
return false;
}
-static void detach_task_cfs_rq(struct task_struct *p)
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * Propagate the changes of the sched_entity across the tg tree to make it
+ * visible to the root
+ */
+static void propagate_entity_cfs_rq(struct sched_entity *se)
{
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 now = cfs_rq_clock_task(cfs_rq);
+ struct cfs_rq *cfs_rq;
- if (!vruntime_normalized(p)) {
- /*
- * Fix up our vruntime so that the current sleep doesn't
- * cause 'unlimited' sleep bonus.
- */
- place_entity(cfs_rq, se, 0);
- se->vruntime -= cfs_rq->min_vruntime;
+ /* Start to propagate at parent */
+ se = se->parent;
+
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+
+ if (cfs_rq_throttled(cfs_rq))
+ break;
+
+ update_load_avg(se, UPDATE_TG);
}
+}
+#else
+static void propagate_entity_cfs_rq(struct sched_entity *se) { }
+#endif
+
+static void detach_entity_cfs_rq(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
/* Catch up with the cfs_rq and remove our load when we leave */
- update_cfs_rq_load_avg(now, cfs_rq, false);
+ update_load_avg(se, 0);
detach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
+ propagate_entity_cfs_rq(se);
}
-static void attach_task_cfs_rq(struct task_struct *p)
+static void attach_entity_cfs_rq(struct sched_entity *se)
{
- struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 now = cfs_rq_clock_task(cfs_rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
@@ -8722,10 +9070,36 @@ static void attach_task_cfs_rq(struct task_struct *p)
se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
- /* Synchronize task with its cfs_rq */
- update_cfs_rq_load_avg(now, cfs_rq, false);
+ /* Synchronize entity with its cfs_rq */
+ update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
+ propagate_entity_cfs_rq(se);
+}
+
+static void detach_task_cfs_rq(struct task_struct *p)
+{
+ struct sched_entity *se = &p->se;
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ if (!vruntime_normalized(p)) {
+ /*
+ * Fix up our vruntime so that the current sleep doesn't
+ * cause 'unlimited' sleep bonus.
+ */
+ place_entity(cfs_rq, se, 0);
+ se->vruntime -= cfs_rq->min_vruntime;
+ }
+
+ detach_entity_cfs_rq(se);
+}
+
+static void attach_task_cfs_rq(struct task_struct *p)
+{
+ struct sched_entity *se = &p->se;
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ attach_entity_cfs_rq(se);
if (!vruntime_normalized(p))
se->vruntime += cfs_rq->min_vruntime;
@@ -8779,6 +9153,9 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ cfs_rq->propagate_avg = 0;
+#endif
atomic_long_set(&cfs_rq->removed_load_avg, 0);
atomic_long_set(&cfs_rq->removed_util_avg, 0);
#endif
@@ -8887,7 +9264,7 @@ void online_fair_sched_group(struct task_group *tg)
se = tg->se[i];
raw_spin_lock_irq(&rq->lock);
- post_init_entity_util_avg(se);
+ attach_entity_cfs_rq(se);
sync_throttle(tg, i);
raw_spin_unlock_irq(&rq->lock);
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 055f935d4421..7b34c7826ca5 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -404,6 +404,7 @@ struct cfs_rq {
unsigned long runnable_load_avg;
#ifdef CONFIG_FAIR_GROUP_SCHED
unsigned long tg_load_avg_contrib;
+ unsigned long propagate_avg;
#endif
atomic_long_t removed_load_avg, removed_util_avg;
#ifndef CONFIG_64BIT
@@ -539,6 +540,11 @@ struct dl_rq {
#ifdef CONFIG_SMP
+static inline bool sched_asym_prefer(int a, int b)
+{
+ return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
+}
+
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
@@ -623,6 +629,7 @@ struct rq {
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
+ struct list_head *tmp_alone_branch;
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
@@ -892,7 +899,8 @@ struct sched_group_capacity {
* CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
* for a single CPU.
*/
- unsigned int capacity;
+ unsigned long capacity;
+ unsigned long min_capacity; /* Min per-CPU capacity in group */
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
@@ -905,6 +913,7 @@ struct sched_group {
unsigned int group_weight;
struct sched_group_capacity *sgc;
+ int asym_prefer_cpu; /* cpu of highest priority in group */
/*
* The CPUs this group covers.
diff --git a/kernel/seccomp.c b/kernel/seccomp.c
index 0db7c8a2afe2..bff9c774987a 100644
--- a/kernel/seccomp.c
+++ b/kernel/seccomp.c
@@ -195,7 +195,7 @@ static u32 seccomp_run_filters(const struct seccomp_data *sd)
* value always takes priority (ignoring the DATA).
*/
for (; f; f = f->prev) {
- u32 cur_ret = BPF_PROG_RUN(f->prog, (void *)sd);
+ u32 cur_ret = BPF_PROG_RUN(f->prog, sd);
if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION))
ret = cur_ret;
diff --git a/kernel/smp.c b/kernel/smp.c
index bba3b201668d..77fcdb9f2775 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -3,6 +3,9 @@
*
* (C) Jens Axboe <jens.axboe@oracle.com> 2008
*/
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
#include <linux/irq_work.h>
#include <linux/rcupdate.h>
#include <linux/rculist.h>
@@ -543,19 +546,17 @@ void __init setup_nr_cpu_ids(void)
nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
}
-void __weak smp_announce(void)
-{
- printk(KERN_INFO "Brought up %d CPUs\n", num_online_cpus());
-}
-
/* Called by boot processor to activate the rest. */
void __init smp_init(void)
{
+ int num_nodes, num_cpus;
unsigned int cpu;
idle_threads_init();
cpuhp_threads_init();
+ pr_info("Bringing up secondary CPUs ...\n");
+
/* FIXME: This should be done in userspace --RR */
for_each_present_cpu(cpu) {
if (num_online_cpus() >= setup_max_cpus)
@@ -564,8 +565,13 @@ void __init smp_init(void)
cpu_up(cpu);
}
+ num_nodes = num_online_nodes();
+ num_cpus = num_online_cpus();
+ pr_info("Brought up %d node%s, %d CPU%s\n",
+ num_nodes, (num_nodes > 1 ? "s" : ""),
+ num_cpus, (num_cpus > 1 ? "s" : ""));
+
/* Any cleanup work */
- smp_announce();
smp_cpus_done(setup_max_cpus);
}
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c
index ec9ab2f01489..1eb82661ecdb 100644
--- a/kernel/stop_machine.c
+++ b/kernel/stop_machine.c
@@ -194,7 +194,7 @@ static int multi_cpu_stop(void *data)
/* Simple state machine */
do {
/* Chill out and ensure we re-read multi_stop_state. */
- cpu_relax();
+ cpu_relax_yield();
if (msdata->state != curstate) {
curstate = msdata->state;
switch (curstate) {
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 17a5a8253294..39b3368f6de6 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -347,13 +347,6 @@ static struct ctl_table kern_table[] = {
.mode = 0644,
.proc_handler = proc_dointvec,
},
- {
- .procname = "sched_shares_window_ns",
- .data = &sysctl_sched_shares_window,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = proc_dointvec,
- },
#ifdef CONFIG_SCHEDSTATS
{
.procname = "sched_schedstats",
diff --git a/kernel/taskstats.c b/kernel/taskstats.c
index b3f05ee20d18..8a5e44236f78 100644
--- a/kernel/taskstats.c
+++ b/kernel/taskstats.c
@@ -41,12 +41,7 @@ static DEFINE_PER_CPU(__u32, taskstats_seqnum);
static int family_registered;
struct kmem_cache *taskstats_cache;
-static struct genl_family family = {
- .id = GENL_ID_GENERATE,
- .name = TASKSTATS_GENL_NAME,
- .version = TASKSTATS_GENL_VERSION,
- .maxattr = TASKSTATS_CMD_ATTR_MAX,
-};
+static struct genl_family family;
static const struct nla_policy taskstats_cmd_get_policy[TASKSTATS_CMD_ATTR_MAX+1] = {
[TASKSTATS_CMD_ATTR_PID] = { .type = NLA_U32 },
@@ -54,7 +49,11 @@ static const struct nla_policy taskstats_cmd_get_policy[TASKSTATS_CMD_ATTR_MAX+1
[TASKSTATS_CMD_ATTR_REGISTER_CPUMASK] = { .type = NLA_STRING },
[TASKSTATS_CMD_ATTR_DEREGISTER_CPUMASK] = { .type = NLA_STRING },};
-static const struct nla_policy cgroupstats_cmd_get_policy[CGROUPSTATS_CMD_ATTR_MAX+1] = {
+/*
+ * We have to use TASKSTATS_CMD_ATTR_MAX here, it is the maxattr in the family.
+ * Make sure they are always aligned.
+ */
+static const struct nla_policy cgroupstats_cmd_get_policy[TASKSTATS_CMD_ATTR_MAX+1] = {
[CGROUPSTATS_CMD_ATTR_FD] = { .type = NLA_U32 },
};
@@ -651,6 +650,15 @@ static const struct genl_ops taskstats_ops[] = {
},
};
+static struct genl_family family __ro_after_init = {
+ .name = TASKSTATS_GENL_NAME,
+ .version = TASKSTATS_GENL_VERSION,
+ .maxattr = TASKSTATS_CMD_ATTR_MAX,
+ .module = THIS_MODULE,
+ .ops = taskstats_ops,
+ .n_ops = ARRAY_SIZE(taskstats_ops),
+};
+
/* Needed early in initialization */
void __init taskstats_init_early(void)
{
@@ -667,7 +675,7 @@ static int __init taskstats_init(void)
{
int rc;
- rc = genl_register_family_with_ops(&family, taskstats_ops);
+ rc = genl_register_family(&family);
if (rc)
return rc;
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 7e4fad75acaa..150242ccfcd2 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -89,6 +89,7 @@ clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
*mult = tmp;
*shift = sft;
}
+EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
/*[Clocksource internal variables]---------
* curr_clocksource:
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 39008d78927a..e887ffc8eef3 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -133,9 +133,9 @@ static inline unsigned long long prof_ticks(struct task_struct *p)
}
static inline unsigned long long virt_ticks(struct task_struct *p)
{
- cputime_t utime;
+ cputime_t utime, stime;
- task_cputime(p, &utime, NULL);
+ task_cputime(p, &utime, &stime);
return cputime_to_expires(utime);
}
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c
index 5dcb99281259..fa77311dadb2 100644
--- a/kernel/trace/bpf_trace.c
+++ b/kernel/trace/bpf_trace.c
@@ -422,6 +422,8 @@ static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
return bpf_get_trace_printk_proto();
case BPF_FUNC_get_smp_processor_id:
return &bpf_get_smp_processor_id_proto;
+ case BPF_FUNC_get_numa_node_id:
+ return &bpf_get_numa_node_id_proto;
case BPF_FUNC_perf_event_read:
return &bpf_perf_event_read_proto;
case BPF_FUNC_probe_write_user:
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index 2050a7652a86..da87b3cba5b3 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -1862,6 +1862,10 @@ static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
/* Update rec->flags */
do_for_each_ftrace_rec(pg, rec) {
+
+ if (rec->flags & FTRACE_FL_DISABLED)
+ continue;
+
/* We need to update only differences of filter_hash */
in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
@@ -1884,6 +1888,10 @@ rollback:
/* Roll back what we did above */
do_for_each_ftrace_rec(pg, rec) {
+
+ if (rec->flags & FTRACE_FL_DISABLED)
+ continue;
+
if (rec == end)
goto err_out;
@@ -2397,6 +2405,10 @@ void __weak ftrace_replace_code(int enable)
return;
do_for_each_ftrace_rec(pg, rec) {
+
+ if (rec->flags & FTRACE_FL_DISABLED)
+ continue;
+
failed = __ftrace_replace_code(rec, enable);
if (failed) {
ftrace_bug(failed, rec);
@@ -2763,7 +2775,7 @@ static int ftrace_shutdown(struct ftrace_ops *ops, int command)
struct dyn_ftrace *rec;
do_for_each_ftrace_rec(pg, rec) {
- if (FTRACE_WARN_ON_ONCE(rec->flags))
+ if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
pr_warn(" %pS flags:%lx\n",
(void *)rec->ip, rec->flags);
} while_for_each_ftrace_rec();
@@ -3598,6 +3610,10 @@ match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
goto out_unlock;
do_for_each_ftrace_rec(pg, rec) {
+
+ if (rec->flags & FTRACE_FL_DISABLED)
+ continue;
+
if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
ret = enter_record(hash, rec, clear_filter);
if (ret < 0) {
@@ -3793,6 +3809,9 @@ register_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
do_for_each_ftrace_rec(pg, rec) {
+ if (rec->flags & FTRACE_FL_DISABLED)
+ continue;
+
if (!ftrace_match_record(rec, &func_g, NULL, 0))
continue;
@@ -4685,6 +4704,9 @@ ftrace_set_func(unsigned long *array, int *idx, int size, char *buffer)
do_for_each_ftrace_rec(pg, rec) {
+ if (rec->flags & FTRACE_FL_DISABLED)
+ continue;
+
if (ftrace_match_record(rec, &func_g, NULL, 0)) {
/* if it is in the array */
exists = false;