summaryrefslogtreecommitdiff
path: root/kernel/sched
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched')
-rw-r--r--kernel/sched/core.c287
-rw-r--r--kernel/sched/core_sched.c15
-rw-r--r--kernel/sched/cpufreq_schedutil.c5
-rw-r--r--kernel/sched/cputime.c15
-rw-r--r--kernel/sched/deadline.c11
-rw-r--r--kernel/sched/fair.c818
-rw-r--r--kernel/sched/features.h3
-rw-r--r--kernel/sched/idle.c10
-rw-r--r--kernel/sched/pelt.h40
-rw-r--r--kernel/sched/rt.c15
-rw-r--r--kernel/sched/sched.h69
-rw-r--r--kernel/sched/topology.c23
12 files changed, 873 insertions, 438 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index bfa7452ca92e..189999007f32 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -91,7 +91,7 @@
#include "stats.h"
#include "../workqueue_internal.h"
-#include "../../fs/io-wq.h"
+#include "../../io_uring/io-wq.h"
#include "../smpboot.h"
/*
@@ -873,15 +873,11 @@ static inline void hrtick_rq_init(struct rq *rq)
({ \
typeof(ptr) _ptr = (ptr); \
typeof(mask) _mask = (mask); \
- typeof(*_ptr) _old, _val = *_ptr; \
+ typeof(*_ptr) _val = *_ptr; \
\
- for (;;) { \
- _old = cmpxchg(_ptr, _val, _val | _mask); \
- if (_old == _val) \
- break; \
- _val = _old; \
- } \
- _old; \
+ do { \
+ } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
+ _val; \
})
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
@@ -890,7 +886,7 @@ static inline void hrtick_rq_init(struct rq *rq)
* this avoids any races wrt polling state changes and thereby avoids
* spurious IPIs.
*/
-static bool set_nr_and_not_polling(struct task_struct *p)
+static inline bool set_nr_and_not_polling(struct task_struct *p)
{
struct thread_info *ti = task_thread_info(p);
return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
@@ -905,30 +901,28 @@ static bool set_nr_and_not_polling(struct task_struct *p)
static bool set_nr_if_polling(struct task_struct *p)
{
struct thread_info *ti = task_thread_info(p);
- typeof(ti->flags) old, val = READ_ONCE(ti->flags);
+ typeof(ti->flags) val = READ_ONCE(ti->flags);
for (;;) {
if (!(val & _TIF_POLLING_NRFLAG))
return false;
if (val & _TIF_NEED_RESCHED)
return true;
- old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
- if (old == val)
+ if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
break;
- val = old;
}
return true;
}
#else
-static bool set_nr_and_not_polling(struct task_struct *p)
+static inline bool set_nr_and_not_polling(struct task_struct *p)
{
set_tsk_need_resched(p);
return true;
}
#ifdef CONFIG_SMP
-static bool set_nr_if_polling(struct task_struct *p)
+static inline bool set_nr_if_polling(struct task_struct *p)
{
return false;
}
@@ -3808,7 +3802,7 @@ bool cpus_share_cache(int this_cpu, int that_cpu)
return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
-static inline bool ttwu_queue_cond(int cpu, int wake_flags)
+static inline bool ttwu_queue_cond(int cpu)
{
/*
* Do not complicate things with the async wake_list while the CPU is
@@ -3824,13 +3818,21 @@ static inline bool ttwu_queue_cond(int cpu, int wake_flags)
if (!cpus_share_cache(smp_processor_id(), cpu))
return true;
+ if (cpu == smp_processor_id())
+ return false;
+
/*
- * If the task is descheduling and the only running task on the
- * CPU then use the wakelist to offload the task activation to
- * the soon-to-be-idle CPU as the current CPU is likely busy.
- * nr_running is checked to avoid unnecessary task stacking.
+ * If the wakee cpu is idle, or the task is descheduling and the
+ * only running task on the CPU, then use the wakelist to offload
+ * the task activation to the idle (or soon-to-be-idle) CPU as
+ * the current CPU is likely busy. nr_running is checked to
+ * avoid unnecessary task stacking.
+ *
+ * Note that we can only get here with (wakee) p->on_rq=0,
+ * p->on_cpu can be whatever, we've done the dequeue, so
+ * the wakee has been accounted out of ->nr_running.
*/
- if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
+ if (!cpu_rq(cpu)->nr_running)
return true;
return false;
@@ -3838,10 +3840,7 @@ static inline bool ttwu_queue_cond(int cpu, int wake_flags)
static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
{
- if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
- if (WARN_ON_ONCE(cpu == smp_processor_id()))
- return false;
-
+ if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu)) {
sched_clock_cpu(cpu); /* Sync clocks across CPUs */
__ttwu_queue_wakelist(p, cpu, wake_flags);
return true;
@@ -4163,7 +4162,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
* scheduling.
*/
if (smp_load_acquire(&p->on_cpu) &&
- ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
+ ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
goto unlock;
/*
@@ -4264,6 +4263,38 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg)
}
/**
+ * cpu_curr_snapshot - Return a snapshot of the currently running task
+ * @cpu: The CPU on which to snapshot the task.
+ *
+ * Returns the task_struct pointer of the task "currently" running on
+ * the specified CPU. If the same task is running on that CPU throughout,
+ * the return value will be a pointer to that task's task_struct structure.
+ * If the CPU did any context switches even vaguely concurrently with the
+ * execution of this function, the return value will be a pointer to the
+ * task_struct structure of a randomly chosen task that was running on
+ * that CPU somewhere around the time that this function was executing.
+ *
+ * If the specified CPU was offline, the return value is whatever it
+ * is, perhaps a pointer to the task_struct structure of that CPU's idle
+ * task, but there is no guarantee. Callers wishing a useful return
+ * value must take some action to ensure that the specified CPU remains
+ * online throughout.
+ *
+ * This function executes full memory barriers before and after fetching
+ * the pointer, which permits the caller to confine this function's fetch
+ * with respect to the caller's accesses to other shared variables.
+ */
+struct task_struct *cpu_curr_snapshot(int cpu)
+{
+ struct task_struct *t;
+
+ smp_mb(); /* Pairing determined by caller's synchronization design. */
+ t = rcu_dereference(cpu_curr(cpu));
+ smp_mb(); /* Pairing determined by caller's synchronization design. */
+ return t;
+}
+
+/**
* wake_up_process - Wake up a specific process
* @p: The process to be woken up.
*
@@ -4753,7 +4784,8 @@ static inline void prepare_task(struct task_struct *next)
* Claim the task as running, we do this before switching to it
* such that any running task will have this set.
*
- * See the ttwu() WF_ON_CPU case and its ordering comment.
+ * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
+ * its ordering comment.
*/
WRITE_ONCE(next->on_cpu, 1);
#endif
@@ -4798,25 +4830,55 @@ static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
static void balance_push(struct rq *rq);
+/*
+ * balance_push_callback is a right abuse of the callback interface and plays
+ * by significantly different rules.
+ *
+ * Where the normal balance_callback's purpose is to be ran in the same context
+ * that queued it (only later, when it's safe to drop rq->lock again),
+ * balance_push_callback is specifically targeted at __schedule().
+ *
+ * This abuse is tolerated because it places all the unlikely/odd cases behind
+ * a single test, namely: rq->balance_callback == NULL.
+ */
struct callback_head balance_push_callback = {
.next = NULL,
.func = (void (*)(struct callback_head *))balance_push,
};
-static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
+static inline struct callback_head *
+__splice_balance_callbacks(struct rq *rq, bool split)
{
struct callback_head *head = rq->balance_callback;
+ if (likely(!head))
+ return NULL;
+
lockdep_assert_rq_held(rq);
- if (head)
+ /*
+ * Must not take balance_push_callback off the list when
+ * splice_balance_callbacks() and balance_callbacks() are not
+ * in the same rq->lock section.
+ *
+ * In that case it would be possible for __schedule() to interleave
+ * and observe the list empty.
+ */
+ if (split && head == &balance_push_callback)
+ head = NULL;
+ else
rq->balance_callback = NULL;
return head;
}
+static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
+{
+ return __splice_balance_callbacks(rq, true);
+}
+
static void __balance_callbacks(struct rq *rq)
{
- do_balance_callbacks(rq, splice_balance_callbacks(rq));
+ do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
}
static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
@@ -6470,8 +6532,12 @@ static inline void sched_submit_work(struct task_struct *tsk)
io_wq_worker_sleeping(tsk);
}
- if (tsk_is_pi_blocked(tsk))
- return;
+ /*
+ * spinlock and rwlock must not flush block requests. This will
+ * deadlock if the callback attempts to acquire a lock which is
+ * already acquired.
+ */
+ SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
/*
* If we are going to sleep and we have plugged IO queued,
@@ -6529,7 +6595,7 @@ void __sched schedule_idle(void)
} while (need_resched());
}
-#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
+#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
asmlinkage __visible void __sched schedule_user(void)
{
/*
@@ -6968,17 +7034,29 @@ out_unlock:
EXPORT_SYMBOL(set_user_nice);
/*
- * can_nice - check if a task can reduce its nice value
+ * is_nice_reduction - check if nice value is an actual reduction
+ *
+ * Similar to can_nice() but does not perform a capability check.
+ *
* @p: task
* @nice: nice value
*/
-int can_nice(const struct task_struct *p, const int nice)
+static bool is_nice_reduction(const struct task_struct *p, const int nice)
{
/* Convert nice value [19,-20] to rlimit style value [1,40]: */
int nice_rlim = nice_to_rlimit(nice);
- return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
- capable(CAP_SYS_NICE));
+ return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
+}
+
+/*
+ * can_nice - check if a task can reduce its nice value
+ * @p: task
+ * @nice: nice value
+ */
+int can_nice(const struct task_struct *p, const int nice)
+{
+ return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
}
#ifdef __ARCH_WANT_SYS_NICE
@@ -7107,12 +7185,14 @@ struct task_struct *idle_task(int cpu)
* required to meet deadlines.
*/
unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
- unsigned long max, enum cpu_util_type type,
+ enum cpu_util_type type,
struct task_struct *p)
{
- unsigned long dl_util, util, irq;
+ unsigned long dl_util, util, irq, max;
struct rq *rq = cpu_rq(cpu);
+ max = arch_scale_cpu_capacity(cpu);
+
if (!uclamp_is_used() &&
type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
return max;
@@ -7192,10 +7272,9 @@ unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
return min(max, util);
}
-unsigned long sched_cpu_util(int cpu, unsigned long max)
+unsigned long sched_cpu_util(int cpu)
{
- return effective_cpu_util(cpu, cpu_util_cfs(cpu), max,
- ENERGY_UTIL, NULL);
+ return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
}
#endif /* CONFIG_SMP */
@@ -7257,6 +7336,69 @@ static bool check_same_owner(struct task_struct *p)
return match;
}
+/*
+ * Allow unprivileged RT tasks to decrease priority.
+ * Only issue a capable test if needed and only once to avoid an audit
+ * event on permitted non-privileged operations:
+ */
+static int user_check_sched_setscheduler(struct task_struct *p,
+ const struct sched_attr *attr,
+ int policy, int reset_on_fork)
+{
+ if (fair_policy(policy)) {
+ if (attr->sched_nice < task_nice(p) &&
+ !is_nice_reduction(p, attr->sched_nice))
+ goto req_priv;
+ }
+
+ if (rt_policy(policy)) {
+ unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
+
+ /* Can't set/change the rt policy: */
+ if (policy != p->policy && !rlim_rtprio)
+ goto req_priv;
+
+ /* Can't increase priority: */
+ if (attr->sched_priority > p->rt_priority &&
+ attr->sched_priority > rlim_rtprio)
+ goto req_priv;
+ }
+
+ /*
+ * Can't set/change SCHED_DEADLINE policy at all for now
+ * (safest behavior); in the future we would like to allow
+ * unprivileged DL tasks to increase their relative deadline
+ * or reduce their runtime (both ways reducing utilization)
+ */
+ if (dl_policy(policy))
+ goto req_priv;
+
+ /*
+ * Treat SCHED_IDLE as nice 20. Only allow a switch to
+ * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
+ */
+ if (task_has_idle_policy(p) && !idle_policy(policy)) {
+ if (!is_nice_reduction(p, task_nice(p)))
+ goto req_priv;
+ }
+
+ /* Can't change other user's priorities: */
+ if (!check_same_owner(p))
+ goto req_priv;
+
+ /* Normal users shall not reset the sched_reset_on_fork flag: */
+ if (p->sched_reset_on_fork && !reset_on_fork)
+ goto req_priv;
+
+ return 0;
+
+req_priv:
+ if (!capable(CAP_SYS_NICE))
+ return -EPERM;
+
+ return 0;
+}
+
static int __sched_setscheduler(struct task_struct *p,
const struct sched_attr *attr,
bool user, bool pi)
@@ -7298,58 +7440,11 @@ recheck:
(rt_policy(policy) != (attr->sched_priority != 0)))
return -EINVAL;
- /*
- * Allow unprivileged RT tasks to decrease priority:
- */
- if (user && !capable(CAP_SYS_NICE)) {
- if (fair_policy(policy)) {
- if (attr->sched_nice < task_nice(p) &&
- !can_nice(p, attr->sched_nice))
- return -EPERM;
- }
-
- if (rt_policy(policy)) {
- unsigned long rlim_rtprio =
- task_rlimit(p, RLIMIT_RTPRIO);
-
- /* Can't set/change the rt policy: */
- if (policy != p->policy && !rlim_rtprio)
- return -EPERM;
-
- /* Can't increase priority: */
- if (attr->sched_priority > p->rt_priority &&
- attr->sched_priority > rlim_rtprio)
- return -EPERM;
- }
-
- /*
- * Can't set/change SCHED_DEADLINE policy at all for now
- * (safest behavior); in the future we would like to allow
- * unprivileged DL tasks to increase their relative deadline
- * or reduce their runtime (both ways reducing utilization)
- */
- if (dl_policy(policy))
- return -EPERM;
-
- /*
- * Treat SCHED_IDLE as nice 20. Only allow a switch to
- * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
- */
- if (task_has_idle_policy(p) && !idle_policy(policy)) {
- if (!can_nice(p, task_nice(p)))
- return -EPERM;
- }
-
- /* Can't change other user's priorities: */
- if (!check_same_owner(p))
- return -EPERM;
-
- /* Normal users shall not reset the sched_reset_on_fork flag: */
- if (p->sched_reset_on_fork && !reset_on_fork)
- return -EPERM;
- }
-
if (user) {
+ retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
+ if (retval)
+ return retval;
+
if (attr->sched_flags & SCHED_FLAG_SUGOV)
return -EINVAL;
@@ -9501,7 +9596,7 @@ static struct kmem_cache *task_group_cache __read_mostly;
#endif
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
-DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
+DECLARE_PER_CPU(cpumask_var_t, select_rq_mask);
void __init sched_init(void)
{
@@ -9550,7 +9645,7 @@ void __init sched_init(void)
for_each_possible_cpu(i) {
per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
cpumask_size(), GFP_KERNEL, cpu_to_node(i));
- per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
+ per_cpu(select_rq_mask, i) = (cpumask_var_t)kzalloc_node(
cpumask_size(), GFP_KERNEL, cpu_to_node(i));
}
#endif /* CONFIG_CPUMASK_OFFSTACK */
diff --git a/kernel/sched/core_sched.c b/kernel/sched/core_sched.c
index 38a2cec21014..93878cb2a46d 100644
--- a/kernel/sched/core_sched.c
+++ b/kernel/sched/core_sched.c
@@ -56,7 +56,6 @@ static unsigned long sched_core_update_cookie(struct task_struct *p,
unsigned long old_cookie;
struct rq_flags rf;
struct rq *rq;
- bool enqueued;
rq = task_rq_lock(p, &rf);
@@ -68,14 +67,16 @@ static unsigned long sched_core_update_cookie(struct task_struct *p,
*/
SCHED_WARN_ON((p->core_cookie || cookie) && !sched_core_enabled(rq));
- enqueued = sched_core_enqueued(p);
- if (enqueued)
+ if (sched_core_enqueued(p))
sched_core_dequeue(rq, p, DEQUEUE_SAVE);
old_cookie = p->core_cookie;
p->core_cookie = cookie;
- if (enqueued)
+ /*
+ * Consider the cases: !prev_cookie and !cookie.
+ */
+ if (cookie && task_on_rq_queued(p))
sched_core_enqueue(rq, p);
/*
@@ -277,7 +278,11 @@ void __sched_core_account_forceidle(struct rq *rq)
if (p == rq_i->idle)
continue;
- __schedstat_add(p->stats.core_forceidle_sum, delta);
+ /*
+ * Note: this will account forceidle to the current cpu, even
+ * if it comes from our SMT sibling.
+ */
+ __account_forceidle_time(p, delta);
}
}
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index 3dbf351d12d5..1207c78f85c1 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -157,11 +157,10 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
static void sugov_get_util(struct sugov_cpu *sg_cpu)
{
struct rq *rq = cpu_rq(sg_cpu->cpu);
- unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
- sg_cpu->max = max;
+ sg_cpu->max = arch_scale_cpu_capacity(sg_cpu->cpu);
sg_cpu->bw_dl = cpu_bw_dl(rq);
- sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu), max,
+ sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu),
FREQUENCY_UTIL, NULL);
}
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 78a233d43757..95fc77853743 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -226,6 +226,21 @@ void account_idle_time(u64 cputime)
cpustat[CPUTIME_IDLE] += cputime;
}
+
+#ifdef CONFIG_SCHED_CORE
+/*
+ * Account for forceidle time due to core scheduling.
+ *
+ * REQUIRES: schedstat is enabled.
+ */
+void __account_forceidle_time(struct task_struct *p, u64 delta)
+{
+ __schedstat_add(p->stats.core_forceidle_sum, delta);
+
+ task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
+}
+#endif
+
/*
* When a guest is interrupted for a longer amount of time, missed clock
* ticks are not redelivered later. Due to that, this function may on
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index b5152961b743..0ab79d819a0d 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -30,14 +30,16 @@ static struct ctl_table sched_dl_sysctls[] = {
.data = &sysctl_sched_dl_period_max,
.maxlen = sizeof(unsigned int),
.mode = 0644,
- .proc_handler = proc_dointvec,
+ .proc_handler = proc_douintvec_minmax,
+ .extra1 = (void *)&sysctl_sched_dl_period_min,
},
{
.procname = "sched_deadline_period_min_us",
.data = &sysctl_sched_dl_period_min,
.maxlen = sizeof(unsigned int),
.mode = 0644,
- .proc_handler = proc_dointvec,
+ .proc_handler = proc_douintvec_minmax,
+ .extra2 = (void *)&sysctl_sched_dl_period_max,
},
{}
};
@@ -1701,7 +1703,10 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
* the throttle.
*/
p->dl.dl_throttled = 0;
- BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
+ if (!(flags & ENQUEUE_REPLENISH))
+ printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
+ task_pid_nr(p));
+
return;
}
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 77b2048a9326..914096c5b1ae 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -612,11 +612,8 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq)
}
/* ensure we never gain time by being placed backwards. */
- cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
-#ifndef CONFIG_64BIT
- smp_wmb();
- cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
-#endif
+ u64_u32_store(cfs_rq->min_vruntime,
+ max_vruntime(cfs_rq->min_vruntime, vruntime));
}
static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
@@ -1055,6 +1052,33 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
* Scheduling class queueing methods:
*/
+#ifdef CONFIG_NUMA
+#define NUMA_IMBALANCE_MIN 2
+
+static inline long
+adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
+{
+ /*
+ * Allow a NUMA imbalance if busy CPUs is less than the maximum
+ * threshold. Above this threshold, individual tasks may be contending
+ * for both memory bandwidth and any shared HT resources. This is an
+ * approximation as the number of running tasks may not be related to
+ * the number of busy CPUs due to sched_setaffinity.
+ */
+ if (dst_running > imb_numa_nr)
+ return imbalance;
+
+ /*
+ * Allow a small imbalance based on a simple pair of communicating
+ * tasks that remain local when the destination is lightly loaded.
+ */
+ if (imbalance <= NUMA_IMBALANCE_MIN)
+ return 0;
+
+ return imbalance;
+}
+#endif /* CONFIG_NUMA */
+
#ifdef CONFIG_NUMA_BALANCING
/*
* Approximate time to scan a full NUMA task in ms. The task scan period is
@@ -1548,8 +1572,6 @@ struct task_numa_env {
static unsigned long cpu_load(struct rq *rq);
static unsigned long cpu_runnable(struct rq *rq);
-static inline long adjust_numa_imbalance(int imbalance,
- int dst_running, int imb_numa_nr);
static inline enum
numa_type numa_classify(unsigned int imbalance_pct,
@@ -1790,6 +1812,15 @@ static bool task_numa_compare(struct task_numa_env *env,
*/
cur_ng = rcu_dereference(cur->numa_group);
if (cur_ng == p_ng) {
+ /*
+ * Do not swap within a group or between tasks that have
+ * no group if there is spare capacity. Swapping does
+ * not address the load imbalance and helps one task at
+ * the cost of punishing another.
+ */
+ if (env->dst_stats.node_type == node_has_spare)
+ goto unlock;
+
imp = taskimp + task_weight(cur, env->src_nid, dist) -
task_weight(cur, env->dst_nid, dist);
/*
@@ -2885,6 +2916,7 @@ void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
p->node_stamp = 0;
p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
p->numa_scan_period = sysctl_numa_balancing_scan_delay;
+ p->numa_migrate_retry = 0;
/* Protect against double add, see task_tick_numa and task_numa_work */
p->numa_work.next = &p->numa_work;
p->numa_faults = NULL;
@@ -3144,6 +3176,8 @@ void reweight_task(struct task_struct *p, int prio)
load->inv_weight = sched_prio_to_wmult[prio];
}
+static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
+
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_SMP
/*
@@ -3254,8 +3288,6 @@ static long calc_group_shares(struct cfs_rq *cfs_rq)
}
#endif /* CONFIG_SMP */
-static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
-
/*
* Recomputes the group entity based on the current state of its group
* runqueue.
@@ -3313,6 +3345,34 @@ static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
}
#ifdef CONFIG_SMP
+static inline bool load_avg_is_decayed(struct sched_avg *sa)
+{
+ if (sa->load_sum)
+ return false;
+
+ if (sa->util_sum)
+ return false;
+
+ if (sa->runnable_sum)
+ return false;
+
+ /*
+ * _avg must be null when _sum are null because _avg = _sum / divider
+ * Make sure that rounding and/or propagation of PELT values never
+ * break this.
+ */
+ SCHED_WARN_ON(sa->load_avg ||
+ sa->util_avg ||
+ sa->runnable_avg);
+
+ return true;
+}
+
+static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
+{
+ return u64_u32_load_copy(cfs_rq->avg.last_update_time,
+ cfs_rq->last_update_time_copy);
+}
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
@@ -3345,27 +3405,12 @@ static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
if (cfs_rq->load.weight)
return false;
- if (cfs_rq->avg.load_sum)
- return false;
-
- if (cfs_rq->avg.util_sum)
- return false;
-
- if (cfs_rq->avg.runnable_sum)
+ if (!load_avg_is_decayed(&cfs_rq->avg))
return false;
if (child_cfs_rq_on_list(cfs_rq))
return false;
- /*
- * _avg must be null when _sum are null because _avg = _sum / divider
- * Make sure that rounding and/or propagation of PELT values never
- * break this.
- */
- SCHED_WARN_ON(cfs_rq->avg.load_avg ||
- cfs_rq->avg.util_avg ||
- cfs_rq->avg.runnable_avg);
-
return true;
}
@@ -3423,27 +3468,9 @@ void set_task_rq_fair(struct sched_entity *se,
if (!(se->avg.last_update_time && prev))
return;
-#ifndef CONFIG_64BIT
- {
- u64 p_last_update_time_copy;
- u64 n_last_update_time_copy;
-
- do {
- p_last_update_time_copy = prev->load_last_update_time_copy;
- n_last_update_time_copy = next->load_last_update_time_copy;
-
- smp_rmb();
-
- p_last_update_time = prev->avg.last_update_time;
- n_last_update_time = next->avg.last_update_time;
+ p_last_update_time = cfs_rq_last_update_time(prev);
+ n_last_update_time = cfs_rq_last_update_time(next);
- } while (p_last_update_time != p_last_update_time_copy ||
- n_last_update_time != n_last_update_time_copy);
- }
-#else
- p_last_update_time = prev->avg.last_update_time;
- n_last_update_time = next->avg.last_update_time;
-#endif
__update_load_avg_blocked_se(p_last_update_time, se);
se->avg.last_update_time = n_last_update_time;
}
@@ -3722,6 +3749,89 @@ static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum
#endif /* CONFIG_FAIR_GROUP_SCHED */
+#ifdef CONFIG_NO_HZ_COMMON
+static inline void migrate_se_pelt_lag(struct sched_entity *se)
+{
+ u64 throttled = 0, now, lut;
+ struct cfs_rq *cfs_rq;
+ struct rq *rq;
+ bool is_idle;
+
+ if (load_avg_is_decayed(&se->avg))
+ return;
+
+ cfs_rq = cfs_rq_of(se);
+ rq = rq_of(cfs_rq);
+
+ rcu_read_lock();
+ is_idle = is_idle_task(rcu_dereference(rq->curr));
+ rcu_read_unlock();
+
+ /*
+ * The lag estimation comes with a cost we don't want to pay all the
+ * time. Hence, limiting to the case where the source CPU is idle and
+ * we know we are at the greatest risk to have an outdated clock.
+ */
+ if (!is_idle)
+ return;
+
+ /*
+ * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
+ *
+ * last_update_time (the cfs_rq's last_update_time)
+ * = cfs_rq_clock_pelt()@cfs_rq_idle
+ * = rq_clock_pelt()@cfs_rq_idle
+ * - cfs->throttled_clock_pelt_time@cfs_rq_idle
+ *
+ * cfs_idle_lag (delta between rq's update and cfs_rq's update)
+ * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
+ *
+ * rq_idle_lag (delta between now and rq's update)
+ * = sched_clock_cpu() - rq_clock()@rq_idle
+ *
+ * We can then write:
+ *
+ * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
+ * sched_clock_cpu() - rq_clock()@rq_idle
+ * Where:
+ * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
+ * rq_clock()@rq_idle is rq->clock_idle
+ * cfs->throttled_clock_pelt_time@cfs_rq_idle
+ * is cfs_rq->throttled_pelt_idle
+ */
+
+#ifdef CONFIG_CFS_BANDWIDTH
+ throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
+ /* The clock has been stopped for throttling */
+ if (throttled == U64_MAX)
+ return;
+#endif
+ now = u64_u32_load(rq->clock_pelt_idle);
+ /*
+ * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
+ * is observed the old clock_pelt_idle value and the new clock_idle,
+ * which lead to an underestimation. The opposite would lead to an
+ * overestimation.
+ */
+ smp_rmb();
+ lut = cfs_rq_last_update_time(cfs_rq);
+
+ now -= throttled;
+ if (now < lut)
+ /*
+ * cfs_rq->avg.last_update_time is more recent than our
+ * estimation, let's use it.
+ */
+ now = lut;
+ else
+ now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
+
+ __update_load_avg_blocked_se(now, se);
+}
+#else
+static void migrate_se_pelt_lag(struct sched_entity *se) {}
+#endif
+
/**
* update_cfs_rq_load_avg - update the cfs_rq's load/util averages
* @now: current time, as per cfs_rq_clock_pelt()
@@ -3796,12 +3906,9 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
}
decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
-
-#ifndef CONFIG_64BIT
- smp_wmb();
- cfs_rq->load_last_update_time_copy = sa->last_update_time;
-#endif
-
+ u64_u32_store_copy(sa->last_update_time,
+ cfs_rq->last_update_time_copy,
+ sa->last_update_time);
return decayed;
}
@@ -3933,27 +4040,6 @@ static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
}
}
-#ifndef CONFIG_64BIT
-static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
-{
- u64 last_update_time_copy;
- u64 last_update_time;
-
- do {
- last_update_time_copy = cfs_rq->load_last_update_time_copy;
- smp_rmb();
- last_update_time = cfs_rq->avg.last_update_time;
- } while (last_update_time != last_update_time_copy);
-
- return last_update_time;
-}
-#else
-static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
-{
- return cfs_rq->avg.last_update_time;
-}
-#endif
-
/*
* Synchronize entity load avg of dequeued entity without locking
* the previous rq.
@@ -4368,16 +4454,11 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
__enqueue_entity(cfs_rq, se);
se->on_rq = 1;
- /*
- * When bandwidth control is enabled, cfs might have been removed
- * because of a parent been throttled but cfs->nr_running > 1. Try to
- * add it unconditionally.
- */
- if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
- list_add_leaf_cfs_rq(cfs_rq);
-
- if (cfs_rq->nr_running == 1)
+ if (cfs_rq->nr_running == 1) {
check_enqueue_throttle(cfs_rq);
+ if (!throttled_hierarchy(cfs_rq))
+ list_add_leaf_cfs_rq(cfs_rq);
+ }
}
static void __clear_buddies_last(struct sched_entity *se)
@@ -4477,6 +4558,9 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
*/
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
+
+ if (cfs_rq->nr_running == 0)
+ update_idle_cfs_rq_clock_pelt(cfs_rq);
}
/*
@@ -4992,11 +5076,18 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
/* update hierarchical throttle state */
walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
- /* Nothing to run but something to decay (on_list)? Complete the branch */
if (!cfs_rq->load.weight) {
- if (cfs_rq->on_list)
- goto unthrottle_throttle;
- return;
+ if (!cfs_rq->on_list)
+ return;
+ /*
+ * Nothing to run but something to decay (on_list)?
+ * Complete the branch.
+ */
+ for_each_sched_entity(se) {
+ if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
+ break;
+ }
+ goto unthrottle_throttle;
}
task_delta = cfs_rq->h_nr_running;
@@ -5034,31 +5125,12 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(qcfs_rq))
goto unthrottle_throttle;
-
- /*
- * One parent has been throttled and cfs_rq removed from the
- * list. Add it back to not break the leaf list.
- */
- if (throttled_hierarchy(qcfs_rq))
- list_add_leaf_cfs_rq(qcfs_rq);
}
/* At this point se is NULL and we are at root level*/
add_nr_running(rq, task_delta);
unthrottle_throttle:
- /*
- * The cfs_rq_throttled() breaks in the above iteration can result in
- * incomplete leaf list maintenance, resulting in triggering the
- * assertion below.
- */
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
-
- if (list_add_leaf_cfs_rq(qcfs_rq))
- break;
- }
-
assert_list_leaf_cfs_rq(rq);
/* Determine whether we need to wake up potentially idle CPU: */
@@ -5713,13 +5785,6 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto enqueue_throttle;
-
- /*
- * One parent has been throttled and cfs_rq removed from the
- * list. Add it back to not break the leaf list.
- */
- if (throttled_hierarchy(cfs_rq))
- list_add_leaf_cfs_rq(cfs_rq);
}
/* At this point se is NULL and we are at root level*/
@@ -5743,21 +5808,6 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
update_overutilized_status(rq);
enqueue_throttle:
- if (cfs_bandwidth_used()) {
- /*
- * When bandwidth control is enabled; the cfs_rq_throttled()
- * breaks in the above iteration can result in incomplete
- * leaf list maintenance, resulting in triggering the assertion
- * below.
- */
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
-
- if (list_add_leaf_cfs_rq(cfs_rq))
- break;
- }
- }
-
assert_list_leaf_cfs_rq(rq);
hrtick_update(rq);
@@ -5844,7 +5894,7 @@ dequeue_throttle:
/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
-DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
+DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
#ifdef CONFIG_NO_HZ_COMMON
@@ -6334,8 +6384,9 @@ static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd
*/
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
{
- struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
+ struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
int i, cpu, idle_cpu = -1, nr = INT_MAX;
+ struct sched_domain_shared *sd_share;
struct rq *this_rq = this_rq();
int this = smp_processor_id();
struct sched_domain *this_sd;
@@ -6375,6 +6426,17 @@ static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool
time = cpu_clock(this);
}
+ if (sched_feat(SIS_UTIL)) {
+ sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
+ if (sd_share) {
+ /* because !--nr is the condition to stop scan */
+ nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
+ /* overloaded LLC is unlikely to have idle cpu/core */
+ if (nr == 1)
+ return -1;
+ }
+ }
+
for_each_cpu_wrap(cpu, cpus, target + 1) {
if (has_idle_core) {
i = select_idle_core(p, cpu, cpus, &idle_cpu);
@@ -6420,7 +6482,7 @@ select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
int cpu, best_cpu = -1;
struct cpumask *cpus;
- cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
+ cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
task_util = uclamp_task_util(p);
@@ -6470,7 +6532,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
}
/*
- * per-cpu select_idle_mask usage
+ * per-cpu select_rq_mask usage
*/
lockdep_assert_irqs_disabled();
@@ -6640,62 +6702,96 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p)
}
/*
- * compute_energy(): Estimates the energy that @pd would consume if @p was
- * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
- * landscape of @pd's CPUs after the task migration, and uses the Energy Model
- * to compute what would be the energy if we decided to actually migrate that
- * task.
+ * energy_env - Utilization landscape for energy estimation.
+ * @task_busy_time: Utilization contribution by the task for which we test the
+ * placement. Given by eenv_task_busy_time().
+ * @pd_busy_time: Utilization of the whole perf domain without the task
+ * contribution. Given by eenv_pd_busy_time().
+ * @cpu_cap: Maximum CPU capacity for the perf domain.
+ * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
+ */
+struct energy_env {
+ unsigned long task_busy_time;
+ unsigned long pd_busy_time;
+ unsigned long cpu_cap;
+ unsigned long pd_cap;
+};
+
+/*
+ * Compute the task busy time for compute_energy(). This time cannot be
+ * injected directly into effective_cpu_util() because of the IRQ scaling.
+ * The latter only makes sense with the most recent CPUs where the task has
+ * run.
+ */
+static inline void eenv_task_busy_time(struct energy_env *eenv,
+ struct task_struct *p, int prev_cpu)
+{
+ unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
+ unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
+
+ if (unlikely(irq >= max_cap))
+ busy_time = max_cap;
+ else
+ busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
+
+ eenv->task_busy_time = busy_time;
+}
+
+/*
+ * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
+ * utilization for each @pd_cpus, it however doesn't take into account
+ * clamping since the ratio (utilization / cpu_capacity) is already enough to
+ * scale the EM reported power consumption at the (eventually clamped)
+ * cpu_capacity.
+ *
+ * The contribution of the task @p for which we want to estimate the
+ * energy cost is removed (by cpu_util_next()) and must be calculated
+ * separately (see eenv_task_busy_time). This ensures:
+ *
+ * - A stable PD utilization, no matter which CPU of that PD we want to place
+ * the task on.
+ *
+ * - A fair comparison between CPUs as the task contribution (task_util())
+ * will always be the same no matter which CPU utilization we rely on
+ * (util_avg or util_est).
+ *
+ * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
+ * exceed @eenv->pd_cap.
*/
-static long
-compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
+static inline void eenv_pd_busy_time(struct energy_env *eenv,
+ struct cpumask *pd_cpus,
+ struct task_struct *p)
{
- struct cpumask *pd_mask = perf_domain_span(pd);
- unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
- unsigned long max_util = 0, sum_util = 0;
- unsigned long _cpu_cap = cpu_cap;
+ unsigned long busy_time = 0;
int cpu;
- _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
+ for_each_cpu(cpu, pd_cpus) {
+ unsigned long util = cpu_util_next(cpu, p, -1);
- /*
- * The capacity state of CPUs of the current rd can be driven by CPUs
- * of another rd if they belong to the same pd. So, account for the
- * utilization of these CPUs too by masking pd with cpu_online_mask
- * instead of the rd span.
- *
- * If an entire pd is outside of the current rd, it will not appear in
- * its pd list and will not be accounted by compute_energy().
- */
- for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
- unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
- unsigned long cpu_util, util_running = util_freq;
- struct task_struct *tsk = NULL;
+ busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
+ }
- /*
- * When @p is placed on @cpu:
- *
- * util_running = max(cpu_util, cpu_util_est) +
- * max(task_util, _task_util_est)
- *
- * while cpu_util_next is: max(cpu_util + task_util,
- * cpu_util_est + _task_util_est)
- */
- if (cpu == dst_cpu) {
- tsk = p;
- util_running =
- cpu_util_next(cpu, p, -1) + task_util_est(p);
- }
+ eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
+}
- /*
- * Busy time computation: utilization clamping is not
- * required since the ratio (sum_util / cpu_capacity)
- * is already enough to scale the EM reported power
- * consumption at the (eventually clamped) cpu_capacity.
- */
- cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
- ENERGY_UTIL, NULL);
+/*
+ * Compute the maximum utilization for compute_energy() when the task @p
+ * is placed on the cpu @dst_cpu.
+ *
+ * Returns the maximum utilization among @eenv->cpus. This utilization can't
+ * exceed @eenv->cpu_cap.
+ */
+static inline unsigned long
+eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
+ struct task_struct *p, int dst_cpu)
+{
+ unsigned long max_util = 0;
+ int cpu;
- sum_util += min(cpu_util, _cpu_cap);
+ for_each_cpu(cpu, pd_cpus) {
+ struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
+ unsigned long util = cpu_util_next(cpu, p, dst_cpu);
+ unsigned long cpu_util;
/*
* Performance domain frequency: utilization clamping
@@ -6704,12 +6800,29 @@ compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
* NOTE: in case RT tasks are running, by default the
* FREQUENCY_UTIL's utilization can be max OPP.
*/
- cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
- FREQUENCY_UTIL, tsk);
- max_util = max(max_util, min(cpu_util, _cpu_cap));
+ cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
+ max_util = max(max_util, cpu_util);
}
- return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
+ return min(max_util, eenv->cpu_cap);
+}
+
+/*
+ * compute_energy(): Use the Energy Model to estimate the energy that @pd would
+ * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
+ * contribution is ignored.
+ */
+static inline unsigned long
+compute_energy(struct energy_env *eenv, struct perf_domain *pd,
+ struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
+{
+ unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
+ unsigned long busy_time = eenv->pd_busy_time;
+
+ if (dst_cpu >= 0)
+ busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
+
+ return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
}
/*
@@ -6753,12 +6866,13 @@ compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
*/
static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
{
+ struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
- struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
- int cpu, best_energy_cpu = prev_cpu, target = -1;
- unsigned long cpu_cap, util, base_energy = 0;
+ struct root_domain *rd = this_rq()->rd;
+ int cpu, best_energy_cpu, target = -1;
struct sched_domain *sd;
struct perf_domain *pd;
+ struct energy_env eenv;
rcu_read_lock();
pd = rcu_dereference(rd->pd);
@@ -6781,20 +6895,39 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (!task_util_est(p))
goto unlock;
+ eenv_task_busy_time(&eenv, p, prev_cpu);
+
for (; pd; pd = pd->next) {
- unsigned long cur_delta, spare_cap, max_spare_cap = 0;
+ unsigned long cpu_cap, cpu_thermal_cap, util;
+ unsigned long cur_delta, max_spare_cap = 0;
bool compute_prev_delta = false;
- unsigned long base_energy_pd;
int max_spare_cap_cpu = -1;
+ unsigned long base_energy;
+
+ cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
+
+ if (cpumask_empty(cpus))
+ continue;
+
+ /* Account thermal pressure for the energy estimation */
+ cpu = cpumask_first(cpus);
+ cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
+ cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
+
+ eenv.cpu_cap = cpu_thermal_cap;
+ eenv.pd_cap = 0;
+
+ for_each_cpu(cpu, cpus) {
+ eenv.pd_cap += cpu_thermal_cap;
+
+ if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
+ continue;
- for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
if (!cpumask_test_cpu(cpu, p->cpus_ptr))
continue;
util = cpu_util_next(cpu, p, cpu);
cpu_cap = capacity_of(cpu);
- spare_cap = cpu_cap;
- lsub_positive(&spare_cap, util);
/*
* Skip CPUs that cannot satisfy the capacity request.
@@ -6807,15 +6940,17 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (!fits_capacity(util, cpu_cap))
continue;
+ lsub_positive(&cpu_cap, util);
+
if (cpu == prev_cpu) {
/* Always use prev_cpu as a candidate. */
compute_prev_delta = true;
- } else if (spare_cap > max_spare_cap) {
+ } else if (cpu_cap > max_spare_cap) {
/*
* Find the CPU with the maximum spare capacity
* in the performance domain.
*/
- max_spare_cap = spare_cap;
+ max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
}
}
@@ -6823,25 +6958,29 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (max_spare_cap_cpu < 0 && !compute_prev_delta)
continue;
+ eenv_pd_busy_time(&eenv, cpus, p);
/* Compute the 'base' energy of the pd, without @p */
- base_energy_pd = compute_energy(p, -1, pd);
- base_energy += base_energy_pd;
+ base_energy = compute_energy(&eenv, pd, cpus, p, -1);
/* Evaluate the energy impact of using prev_cpu. */
if (compute_prev_delta) {
- prev_delta = compute_energy(p, prev_cpu, pd);
- if (prev_delta < base_energy_pd)
+ prev_delta = compute_energy(&eenv, pd, cpus, p,
+ prev_cpu);
+ /* CPU utilization has changed */
+ if (prev_delta < base_energy)
goto unlock;
- prev_delta -= base_energy_pd;
+ prev_delta -= base_energy;
best_delta = min(best_delta, prev_delta);
}
/* Evaluate the energy impact of using max_spare_cap_cpu. */
if (max_spare_cap_cpu >= 0) {
- cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
- if (cur_delta < base_energy_pd)
+ cur_delta = compute_energy(&eenv, pd, cpus, p,
+ max_spare_cap_cpu);
+ /* CPU utilization has changed */
+ if (cur_delta < base_energy)
goto unlock;
- cur_delta -= base_energy_pd;
+ cur_delta -= base_energy;
if (cur_delta < best_delta) {
best_delta = cur_delta;
best_energy_cpu = max_spare_cap_cpu;
@@ -6850,12 +6989,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
}
rcu_read_unlock();
- /*
- * Pick the best CPU if prev_cpu cannot be used, or if it saves at
- * least 6% of the energy used by prev_cpu.
- */
- if ((prev_delta == ULONG_MAX) ||
- (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
+ if (best_delta < prev_delta)
target = best_energy_cpu;
return target;
@@ -6951,6 +7085,8 @@ static void detach_entity_cfs_rq(struct sched_entity *se);
*/
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
{
+ struct sched_entity *se = &p->se;
+
/*
* As blocked tasks retain absolute vruntime the migration needs to
* deal with this by subtracting the old and adding the new
@@ -6958,23 +7094,9 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
* the task on the new runqueue.
*/
if (READ_ONCE(p->__state) == TASK_WAKING) {
- struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 min_vruntime;
-
-#ifndef CONFIG_64BIT
- u64 min_vruntime_copy;
-
- do {
- min_vruntime_copy = cfs_rq->min_vruntime_copy;
- smp_rmb();
- min_vruntime = cfs_rq->min_vruntime;
- } while (min_vruntime != min_vruntime_copy);
-#else
- min_vruntime = cfs_rq->min_vruntime;
-#endif
- se->vruntime -= min_vruntime;
+ se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
}
if (p->on_rq == TASK_ON_RQ_MIGRATING) {
@@ -6983,25 +7105,29 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
* rq->lock and can modify state directly.
*/
lockdep_assert_rq_held(task_rq(p));
- detach_entity_cfs_rq(&p->se);
+ detach_entity_cfs_rq(se);
} else {
+ remove_entity_load_avg(se);
+
/*
- * We are supposed to update the task to "current" time, then
- * its up to date and ready to go to new CPU/cfs_rq. But we
- * have difficulty in getting what current time is, so simply
- * throw away the out-of-date time. This will result in the
- * wakee task is less decayed, but giving the wakee more load
- * sounds not bad.
+ * Here, the task's PELT values have been updated according to
+ * the current rq's clock. But if that clock hasn't been
+ * updated in a while, a substantial idle time will be missed,
+ * leading to an inflation after wake-up on the new rq.
+ *
+ * Estimate the missing time from the cfs_rq last_update_time
+ * and update sched_avg to improve the PELT continuity after
+ * migration.
*/
- remove_entity_load_avg(&p->se);
+ migrate_se_pelt_lag(se);
}
/* Tell new CPU we are migrated */
- p->se.avg.last_update_time = 0;
+ se->avg.last_update_time = 0;
/* We have migrated, no longer consider this task hot */
- p->se.exec_start = 0;
+ se->exec_start = 0;
update_scan_period(p, new_cpu);
}
@@ -7585,8 +7711,8 @@ enum group_type {
*/
group_fully_busy,
/*
- * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
- * and must be migrated to a more powerful CPU.
+ * One task doesn't fit with CPU's capacity and must be migrated to a
+ * more powerful CPU.
*/
group_misfit_task,
/*
@@ -8167,6 +8293,9 @@ static bool __update_blocked_fair(struct rq *rq, bool *done)
if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
update_tg_load_avg(cfs_rq);
+ if (cfs_rq->nr_running == 0)
+ update_idle_cfs_rq_clock_pelt(cfs_rq);
+
if (cfs_rq == &rq->cfs)
decayed = true;
}
@@ -8500,7 +8629,7 @@ static inline int sg_imbalanced(struct sched_group *group)
/*
* group_has_capacity returns true if the group has spare capacity that could
* be used by some tasks.
- * We consider that a group has spare capacity if the * number of task is
+ * We consider that a group has spare capacity if the number of task is
* smaller than the number of CPUs or if the utilization is lower than the
* available capacity for CFS tasks.
* For the latter, we use a threshold to stabilize the state, to take into
@@ -8669,6 +8798,19 @@ sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs
return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
}
+static inline bool
+sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
+{
+ /*
+ * When there is more than 1 task, the group_overloaded case already
+ * takes care of cpu with reduced capacity
+ */
+ if (rq->cfs.h_nr_running != 1)
+ return false;
+
+ return check_cpu_capacity(rq, sd);
+}
+
/**
* update_sg_lb_stats - Update sched_group's statistics for load balancing.
* @env: The load balancing environment.
@@ -8691,8 +8833,9 @@ static inline void update_sg_lb_stats(struct lb_env *env,
for_each_cpu_and(i, sched_group_span(group), env->cpus) {
struct rq *rq = cpu_rq(i);
+ unsigned long load = cpu_load(rq);
- sgs->group_load += cpu_load(rq);
+ sgs->group_load += load;
sgs->group_util += cpu_util_cfs(i);
sgs->group_runnable += cpu_runnable(rq);
sgs->sum_h_nr_running += rq->cfs.h_nr_running;
@@ -8722,11 +8865,17 @@ static inline void update_sg_lb_stats(struct lb_env *env,
if (local_group)
continue;
- /* Check for a misfit task on the cpu */
- if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
- sgs->group_misfit_task_load < rq->misfit_task_load) {
- sgs->group_misfit_task_load = rq->misfit_task_load;
- *sg_status |= SG_OVERLOAD;
+ if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
+ /* Check for a misfit task on the cpu */
+ if (sgs->group_misfit_task_load < rq->misfit_task_load) {
+ sgs->group_misfit_task_load = rq->misfit_task_load;
+ *sg_status |= SG_OVERLOAD;
+ }
+ } else if ((env->idle != CPU_NOT_IDLE) &&
+ sched_reduced_capacity(rq, env->sd)) {
+ /* Check for a task running on a CPU with reduced capacity */
+ if (sgs->group_misfit_task_load < load)
+ sgs->group_misfit_task_load = load;
}
}
@@ -8779,7 +8928,8 @@ static bool update_sd_pick_busiest(struct lb_env *env,
* CPUs in the group should either be possible to resolve
* internally or be covered by avg_load imbalance (eventually).
*/
- if (sgs->group_type == group_misfit_task &&
+ if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
+ (sgs->group_type == group_misfit_task) &&
(!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
sds->local_stat.group_type != group_has_spare))
return false;
@@ -9058,16 +9208,6 @@ static bool update_pick_idlest(struct sched_group *idlest,
}
/*
- * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
- * This is an approximation as the number of running tasks may not be
- * related to the number of busy CPUs due to sched_setaffinity.
- */
-static inline bool allow_numa_imbalance(int running, int imb_numa_nr)
-{
- return running <= imb_numa_nr;
-}
-
-/*
* find_idlest_group() finds and returns the least busy CPU group within the
* domain.
*
@@ -9183,7 +9323,9 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
break;
case group_has_spare:
+#ifdef CONFIG_NUMA
if (sd->flags & SD_NUMA) {
+ int imb_numa_nr = sd->imb_numa_nr;
#ifdef CONFIG_NUMA_BALANCING
int idlest_cpu;
/*
@@ -9196,17 +9338,31 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
idlest_cpu = cpumask_first(sched_group_span(idlest));
if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
return idlest;
-#endif
+#endif /* CONFIG_NUMA_BALANCING */
/*
* Otherwise, keep the task close to the wakeup source
* and improve locality if the number of running tasks
* would remain below threshold where an imbalance is
- * allowed. If there is a real need of migration,
- * periodic load balance will take care of it.
+ * allowed while accounting for the possibility the
+ * task is pinned to a subset of CPUs. If there is a
+ * real need of migration, periodic load balance will
+ * take care of it.
*/
- if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr))
+ if (p->nr_cpus_allowed != NR_CPUS) {
+ struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
+
+ cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
+ imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
+ }
+
+ imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
+ if (!adjust_numa_imbalance(imbalance,
+ local_sgs.sum_nr_running + 1,
+ imb_numa_nr)) {
return NULL;
+ }
}
+#endif /* CONFIG_NUMA */
/*
* Select group with highest number of idle CPUs. We could also
@@ -9222,6 +9378,77 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
return idlest;
}
+static void update_idle_cpu_scan(struct lb_env *env,
+ unsigned long sum_util)
+{
+ struct sched_domain_shared *sd_share;
+ int llc_weight, pct;
+ u64 x, y, tmp;
+ /*
+ * Update the number of CPUs to scan in LLC domain, which could
+ * be used as a hint in select_idle_cpu(). The update of sd_share
+ * could be expensive because it is within a shared cache line.
+ * So the write of this hint only occurs during periodic load
+ * balancing, rather than CPU_NEWLY_IDLE, because the latter
+ * can fire way more frequently than the former.
+ */
+ if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
+ return;
+
+ llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
+ if (env->sd->span_weight != llc_weight)
+ return;
+
+ sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
+ if (!sd_share)
+ return;
+
+ /*
+ * The number of CPUs to search drops as sum_util increases, when
+ * sum_util hits 85% or above, the scan stops.
+ * The reason to choose 85% as the threshold is because this is the
+ * imbalance_pct(117) when a LLC sched group is overloaded.
+ *
+ * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
+ * and y'= y / SCHED_CAPACITY_SCALE
+ *
+ * x is the ratio of sum_util compared to the CPU capacity:
+ * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
+ * y' is the ratio of CPUs to be scanned in the LLC domain,
+ * and the number of CPUs to scan is calculated by:
+ *
+ * nr_scan = llc_weight * y' [2]
+ *
+ * When x hits the threshold of overloaded, AKA, when
+ * x = 100 / pct, y drops to 0. According to [1],
+ * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
+ *
+ * Scale x by SCHED_CAPACITY_SCALE:
+ * x' = sum_util / llc_weight; [3]
+ *
+ * and finally [1] becomes:
+ * y = SCHED_CAPACITY_SCALE -
+ * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
+ *
+ */
+ /* equation [3] */
+ x = sum_util;
+ do_div(x, llc_weight);
+
+ /* equation [4] */
+ pct = env->sd->imbalance_pct;
+ tmp = x * x * pct * pct;
+ do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
+ tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
+ y = SCHED_CAPACITY_SCALE - tmp;
+
+ /* equation [2] */
+ y *= llc_weight;
+ do_div(y, SCHED_CAPACITY_SCALE);
+ if ((int)y != sd_share->nr_idle_scan)
+ WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
+}
+
/**
* update_sd_lb_stats - Update sched_domain's statistics for load balancing.
* @env: The load balancing environment.
@@ -9234,6 +9461,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
struct sched_group *sg = env->sd->groups;
struct sg_lb_stats *local = &sds->local_stat;
struct sg_lb_stats tmp_sgs;
+ unsigned long sum_util = 0;
int sg_status = 0;
do {
@@ -9266,6 +9494,7 @@ next_group:
sds->total_load += sgs->group_load;
sds->total_capacity += sgs->group_capacity;
+ sum_util += sgs->group_util;
sg = sg->next;
} while (sg != env->sd->groups);
@@ -9291,24 +9520,8 @@ next_group:
WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
}
-}
-
-#define NUMA_IMBALANCE_MIN 2
-
-static inline long adjust_numa_imbalance(int imbalance,
- int dst_running, int imb_numa_nr)
-{
- if (!allow_numa_imbalance(dst_running, imb_numa_nr))
- return imbalance;
- /*
- * Allow a small imbalance based on a simple pair of communicating
- * tasks that remain local when the destination is lightly loaded.
- */
- if (imbalance <= NUMA_IMBALANCE_MIN)
- return 0;
-
- return imbalance;
+ update_idle_cpu_scan(env, sum_util);
}
/**
@@ -9325,9 +9538,18 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
busiest = &sds->busiest_stat;
if (busiest->group_type == group_misfit_task) {
- /* Set imbalance to allow misfit tasks to be balanced. */
- env->migration_type = migrate_misfit;
- env->imbalance = 1;
+ if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
+ /* Set imbalance to allow misfit tasks to be balanced. */
+ env->migration_type = migrate_misfit;
+ env->imbalance = 1;
+ } else {
+ /*
+ * Set load imbalance to allow moving task from cpu
+ * with reduced capacity.
+ */
+ env->migration_type = migrate_load;
+ env->imbalance = busiest->group_misfit_task_load;
+ }
return;
}
@@ -9395,7 +9617,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
*/
env->migration_type = migrate_task;
lsub_positive(&nr_diff, local->sum_nr_running);
- env->imbalance = nr_diff >> 1;
+ env->imbalance = nr_diff;
} else {
/*
@@ -9403,15 +9625,21 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
* idle cpus.
*/
env->migration_type = migrate_task;
- env->imbalance = max_t(long, 0, (local->idle_cpus -
- busiest->idle_cpus) >> 1);
+ env->imbalance = max_t(long, 0,
+ (local->idle_cpus - busiest->idle_cpus));
}
+#ifdef CONFIG_NUMA
/* Consider allowing a small imbalance between NUMA groups */
if (env->sd->flags & SD_NUMA) {
env->imbalance = adjust_numa_imbalance(env->imbalance,
- local->sum_nr_running + 1, env->sd->imb_numa_nr);
+ local->sum_nr_running + 1,
+ env->sd->imb_numa_nr);
}
+#endif
+
+ /* Number of tasks to move to restore balance */
+ env->imbalance >>= 1;
return;
}
@@ -9834,9 +10062,15 @@ static int should_we_balance(struct lb_env *env)
/*
* In the newly idle case, we will allow all the CPUs
* to do the newly idle load balance.
+ *
+ * However, we bail out if we already have tasks or a wakeup pending,
+ * to optimize wakeup latency.
*/
- if (env->idle == CPU_NEWLY_IDLE)
+ if (env->idle == CPU_NEWLY_IDLE) {
+ if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
+ return 0;
return 1;
+ }
/* Try to find first idle CPU */
for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
@@ -11287,9 +11521,13 @@ static inline bool vruntime_normalized(struct task_struct *p)
*/
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
- struct cfs_rq *cfs_rq;
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
- list_add_leaf_cfs_rq(cfs_rq_of(se));
+ if (cfs_rq_throttled(cfs_rq))
+ return;
+
+ if (!throttled_hierarchy(cfs_rq))
+ list_add_leaf_cfs_rq(cfs_rq);
/* Start to propagate at parent */
se = se->parent;
@@ -11297,14 +11535,13 @@ static void propagate_entity_cfs_rq(struct sched_entity *se)
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
- if (!cfs_rq_throttled(cfs_rq)){
- update_load_avg(cfs_rq, se, UPDATE_TG);
- list_add_leaf_cfs_rq(cfs_rq);
- continue;
- }
+ update_load_avg(cfs_rq, se, UPDATE_TG);
- if (list_add_leaf_cfs_rq(cfs_rq))
+ if (cfs_rq_throttled(cfs_rq))
break;
+
+ if (!throttled_hierarchy(cfs_rq))
+ list_add_leaf_cfs_rq(cfs_rq);
}
}
#else
@@ -11422,10 +11659,7 @@ static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
cfs_rq->tasks_timeline = RB_ROOT_CACHED;
- cfs_rq->min_vruntime = (u64)(-(1LL << 20));
-#ifndef CONFIG_64BIT
- cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
-#endif
+ u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
#ifdef CONFIG_SMP
raw_spin_lock_init(&cfs_rq->removed.lock);
#endif
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index 1cf435bbcd9c..ee7f23c76bd3 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -60,7 +60,8 @@ SCHED_FEAT(TTWU_QUEUE, true)
/*
* When doing wakeups, attempt to limit superfluous scans of the LLC domain.
*/
-SCHED_FEAT(SIS_PROP, true)
+SCHED_FEAT(SIS_PROP, false)
+SCHED_FEAT(SIS_UTIL, true)
/*
* Issue a WARN when we do multiple update_rq_clock() calls
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 328cccbee444..f26ab2675f7d 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -53,14 +53,14 @@ static noinline int __cpuidle cpu_idle_poll(void)
{
trace_cpu_idle(0, smp_processor_id());
stop_critical_timings();
- rcu_idle_enter();
+ ct_idle_enter();
local_irq_enable();
while (!tif_need_resched() &&
(cpu_idle_force_poll || tick_check_broadcast_expired()))
cpu_relax();
- rcu_idle_exit();
+ ct_idle_exit();
start_critical_timings();
trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
@@ -98,12 +98,12 @@ void __cpuidle default_idle_call(void)
*
* Trace IRQs enable here, then switch off RCU, and have
* arch_cpu_idle() use raw_local_irq_enable(). Note that
- * rcu_idle_enter() relies on lockdep IRQ state, so switch that
+ * ct_idle_enter() relies on lockdep IRQ state, so switch that
* last -- this is very similar to the entry code.
*/
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
- rcu_idle_enter();
+ ct_idle_enter();
lockdep_hardirqs_on(_THIS_IP_);
arch_cpu_idle();
@@ -116,7 +116,7 @@ void __cpuidle default_idle_call(void)
*/
raw_local_irq_disable();
lockdep_hardirqs_off(_THIS_IP_);
- rcu_idle_exit();
+ ct_idle_exit();
lockdep_hardirqs_on(_THIS_IP_);
raw_local_irq_enable();
diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
index 4ff2ed4f8fa1..3a0e0dc28721 100644
--- a/kernel/sched/pelt.h
+++ b/kernel/sched/pelt.h
@@ -61,6 +61,25 @@ static inline void cfs_se_util_change(struct sched_avg *avg)
WRITE_ONCE(avg->util_est.enqueued, enqueued);
}
+static inline u64 rq_clock_pelt(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+ assert_clock_updated(rq);
+
+ return rq->clock_pelt - rq->lost_idle_time;
+}
+
+/* The rq is idle, we can sync to clock_task */
+static inline void _update_idle_rq_clock_pelt(struct rq *rq)
+{
+ rq->clock_pelt = rq_clock_task(rq);
+
+ u64_u32_store(rq->clock_idle, rq_clock(rq));
+ /* Paired with smp_rmb in migrate_se_pelt_lag() */
+ smp_wmb();
+ u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq));
+}
+
/*
* The clock_pelt scales the time to reflect the effective amount of
* computation done during the running delta time but then sync back to
@@ -76,8 +95,7 @@ static inline void cfs_se_util_change(struct sched_avg *avg)
static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
{
if (unlikely(is_idle_task(rq->curr))) {
- /* The rq is idle, we can sync to clock_task */
- rq->clock_pelt = rq_clock_task(rq);
+ _update_idle_rq_clock_pelt(rq);
return;
}
@@ -130,17 +148,23 @@ static inline void update_idle_rq_clock_pelt(struct rq *rq)
*/
if (util_sum >= divider)
rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
+
+ _update_idle_rq_clock_pelt(rq);
}
-static inline u64 rq_clock_pelt(struct rq *rq)
+#ifdef CONFIG_CFS_BANDWIDTH
+static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
- lockdep_assert_rq_held(rq);
- assert_clock_updated(rq);
+ u64 throttled;
- return rq->clock_pelt - rq->lost_idle_time;
+ if (unlikely(cfs_rq->throttle_count))
+ throttled = U64_MAX;
+ else
+ throttled = cfs_rq->throttled_clock_pelt_time;
+
+ u64_u32_store(cfs_rq->throttled_pelt_idle, throttled);
}
-#ifdef CONFIG_CFS_BANDWIDTH
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
@@ -150,6 +174,7 @@ static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
}
#else
+static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
{
return rq_clock_pelt(rq_of(cfs_rq));
@@ -204,6 +229,7 @@ update_rq_clock_pelt(struct rq *rq, s64 delta) { }
static inline void
update_idle_rq_clock_pelt(struct rq *rq) { }
+static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { }
#endif
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 8c9ed9664840..55f39c8f4203 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -480,7 +480,7 @@ static inline void rt_queue_push_tasks(struct rq *rq)
#endif /* CONFIG_SMP */
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
-static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
+static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
@@ -601,7 +601,7 @@ static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
rt_se = rt_rq->tg->rt_se[cpu];
if (!rt_se) {
- dequeue_top_rt_rq(rt_rq);
+ dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
}
@@ -687,7 +687,7 @@ static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
{
- dequeue_top_rt_rq(rt_rq);
+ dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
}
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
@@ -1089,7 +1089,7 @@ static void update_curr_rt(struct rq *rq)
}
static void
-dequeue_top_rt_rq(struct rt_rq *rt_rq)
+dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
@@ -1100,7 +1100,7 @@ dequeue_top_rt_rq(struct rt_rq *rt_rq)
BUG_ON(!rq->nr_running);
- sub_nr_running(rq, rt_rq->rt_nr_running);
+ sub_nr_running(rq, count);
rt_rq->rt_queued = 0;
}
@@ -1486,18 +1486,21 @@ static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flag
static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct sched_rt_entity *back = NULL;
+ unsigned int rt_nr_running;
for_each_sched_rt_entity(rt_se) {
rt_se->back = back;
back = rt_se;
}
- dequeue_top_rt_rq(rt_rq_of_se(back));
+ rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
for (rt_se = back; rt_se; rt_se = rt_se->back) {
if (on_rt_rq(rt_se))
__dequeue_rt_entity(rt_se, flags);
}
+
+ dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
}
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 01259611beb9..a6f071b2acac 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -27,6 +27,7 @@
#include <linux/capability.h>
#include <linux/cgroup_api.h>
#include <linux/cgroup.h>
+#include <linux/context_tracking.h>
#include <linux/cpufreq.h>
#include <linux/cpumask_api.h>
#include <linux/ctype.h>
@@ -520,6 +521,45 @@ struct cfs_bandwidth { };
#endif /* CONFIG_CGROUP_SCHED */
+/*
+ * u64_u32_load/u64_u32_store
+ *
+ * Use a copy of a u64 value to protect against data race. This is only
+ * applicable for 32-bits architectures.
+ */
+#ifdef CONFIG_64BIT
+# define u64_u32_load_copy(var, copy) var
+# define u64_u32_store_copy(var, copy, val) (var = val)
+#else
+# define u64_u32_load_copy(var, copy) \
+({ \
+ u64 __val, __val_copy; \
+ do { \
+ __val_copy = copy; \
+ /* \
+ * paired with u64_u32_store_copy(), ordering access \
+ * to var and copy. \
+ */ \
+ smp_rmb(); \
+ __val = var; \
+ } while (__val != __val_copy); \
+ __val; \
+})
+# define u64_u32_store_copy(var, copy, val) \
+do { \
+ typeof(val) __val = (val); \
+ var = __val; \
+ /* \
+ * paired with u64_u32_load_copy(), ordering access to var and \
+ * copy. \
+ */ \
+ smp_wmb(); \
+ copy = __val; \
+} while (0)
+#endif
+# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
+# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
+
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
@@ -560,7 +600,7 @@ struct cfs_rq {
*/
struct sched_avg avg;
#ifndef CONFIG_64BIT
- u64 load_last_update_time_copy;
+ u64 last_update_time_copy;
#endif
struct {
raw_spinlock_t lock ____cacheline_aligned;
@@ -609,6 +649,10 @@ struct cfs_rq {
int runtime_enabled;
s64 runtime_remaining;
+ u64 throttled_pelt_idle;
+#ifndef CONFIG_64BIT
+ u64 throttled_pelt_idle_copy;
+#endif
u64 throttled_clock;
u64 throttled_clock_pelt;
u64 throttled_clock_pelt_time;
@@ -981,6 +1025,12 @@ struct rq {
u64 clock_task ____cacheline_aligned;
u64 clock_pelt;
unsigned long lost_idle_time;
+ u64 clock_pelt_idle;
+ u64 clock_idle;
+#ifndef CONFIG_64BIT
+ u64 clock_pelt_idle_copy;
+ u64 clock_idle_copy;
+#endif
atomic_t nr_iowait;
@@ -1693,6 +1743,11 @@ queue_balance_callback(struct rq *rq,
{
lockdep_assert_rq_held(rq);
+ /*
+ * Don't (re)queue an already queued item; nor queue anything when
+ * balance_push() is active, see the comment with
+ * balance_push_callback.
+ */
if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
return;
@@ -1810,15 +1865,6 @@ static inline struct cpumask *group_balance_mask(struct sched_group *sg)
return to_cpumask(sg->sgc->cpumask);
}
-/**
- * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
- * @group: The group whose first CPU is to be returned.
- */
-static inline unsigned int group_first_cpu(struct sched_group *group)
-{
- return cpumask_first(sched_group_span(group));
-}
-
extern int group_balance_cpu(struct sched_group *sg);
#ifdef CONFIG_SCHED_DEBUG
@@ -2039,7 +2085,6 @@ static inline int task_on_rq_migrating(struct task_struct *p)
#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
-#define WF_ON_CPU 0x40 /* Wakee is on_cpu */
#ifdef CONFIG_SMP
static_assert(WF_EXEC == SD_BALANCE_EXEC);
@@ -2847,7 +2892,7 @@ enum cpu_util_type {
};
unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
- unsigned long max, enum cpu_util_type type,
+ enum cpu_util_type type,
struct task_struct *p);
static inline unsigned long cpu_bw_dl(struct rq *rq)
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 05b6c2ad90b9..8739c2a5a54e 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -2316,23 +2316,30 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
/*
* For a single LLC per node, allow an
- * imbalance up to 25% of the node. This is an
- * arbitrary cutoff based on SMT-2 to balance
- * between memory bandwidth and avoiding
- * premature sharing of HT resources and SMT-4
- * or SMT-8 *may* benefit from a different
- * cutoff.
+ * imbalance up to 12.5% of the node. This is
+ * arbitrary cutoff based two factors -- SMT and
+ * memory channels. For SMT-2, the intent is to
+ * avoid premature sharing of HT resources but
+ * SMT-4 or SMT-8 *may* benefit from a different
+ * cutoff. For memory channels, this is a very
+ * rough estimate of how many channels may be
+ * active and is based on recent CPUs with
+ * many cores.
*
* For multiple LLCs, allow an imbalance
* until multiple tasks would share an LLC
* on one node while LLCs on another node
- * remain idle.
+ * remain idle. This assumes that there are
+ * enough logical CPUs per LLC to avoid SMT
+ * factors and that there is a correlation
+ * between LLCs and memory channels.
*/
nr_llcs = sd->span_weight / child->span_weight;
if (nr_llcs == 1)
- imb = sd->span_weight >> 2;
+ imb = sd->span_weight >> 3;
else
imb = nr_llcs;
+ imb = max(1U, imb);
sd->imb_numa_nr = imb;
/* Set span based on the first NUMA domain. */