diff options
Diffstat (limited to 'kernel/sched/ext.c')
-rw-r--r-- | kernel/sched/ext.c | 7173 |
1 files changed, 7173 insertions, 0 deletions
diff --git a/kernel/sched/ext.c b/kernel/sched/ext.c new file mode 100644 index 000000000000..9ee5a9a261cc --- /dev/null +++ b/kernel/sched/ext.c @@ -0,0 +1,7173 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo <tj@kernel.org> + * Copyright (c) 2022 David Vernet <dvernet@meta.com> + */ +#define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) + +enum scx_consts { + SCX_DSP_DFL_MAX_BATCH = 32, + SCX_DSP_MAX_LOOPS = 32, + SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, + + SCX_EXIT_BT_LEN = 64, + SCX_EXIT_MSG_LEN = 1024, + SCX_EXIT_DUMP_DFL_LEN = 32768, + + SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, +}; + +enum scx_exit_kind { + SCX_EXIT_NONE, + SCX_EXIT_DONE, + + SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ + SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ + SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ + SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ + + SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ + SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ + SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ +}; + +/* + * An exit code can be specified when exiting with scx_bpf_exit() or + * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN + * respectively. The codes are 64bit of the format: + * + * Bits: [63 .. 48 47 .. 32 31 .. 0] + * [ SYS ACT ] [ SYS RSN ] [ USR ] + * + * SYS ACT: System-defined exit actions + * SYS RSN: System-defined exit reasons + * USR : User-defined exit codes and reasons + * + * Using the above, users may communicate intention and context by ORing system + * actions and/or system reasons with a user-defined exit code. + */ +enum scx_exit_code { + /* Reasons */ + SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, + + /* Actions */ + SCX_ECODE_ACT_RESTART = 1LLU << 48, +}; + +/* + * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is + * being disabled. + */ +struct scx_exit_info { + /* %SCX_EXIT_* - broad category of the exit reason */ + enum scx_exit_kind kind; + + /* exit code if gracefully exiting */ + s64 exit_code; + + /* textual representation of the above */ + const char *reason; + + /* backtrace if exiting due to an error */ + unsigned long *bt; + u32 bt_len; + + /* informational message */ + char *msg; + + /* debug dump */ + char *dump; +}; + +/* sched_ext_ops.flags */ +enum scx_ops_flags { + /* + * Keep built-in idle tracking even if ops.update_idle() is implemented. + */ + SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, + + /* + * By default, if there are no other task to run on the CPU, ext core + * keeps running the current task even after its slice expires. If this + * flag is specified, such tasks are passed to ops.enqueue() with + * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. + */ + SCX_OPS_ENQ_LAST = 1LLU << 1, + + /* + * An exiting task may schedule after PF_EXITING is set. In such cases, + * bpf_task_from_pid() may not be able to find the task and if the BPF + * scheduler depends on pid lookup for dispatching, the task will be + * lost leading to various issues including RCU grace period stalls. + * + * To mask this problem, by default, unhashed tasks are automatically + * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't + * depend on pid lookups and wants to handle these tasks directly, the + * following flag can be used. + */ + SCX_OPS_ENQ_EXITING = 1LLU << 2, + + /* + * If set, only tasks with policy set to SCHED_EXT are attached to + * sched_ext. If clear, SCHED_NORMAL tasks are also included. + */ + SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, + + /* + * CPU cgroup support flags + */ + SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ + + SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | + SCX_OPS_ENQ_LAST | + SCX_OPS_ENQ_EXITING | + SCX_OPS_SWITCH_PARTIAL | + SCX_OPS_HAS_CGROUP_WEIGHT, +}; + +/* argument container for ops.init_task() */ +struct scx_init_task_args { + /* + * Set if ops.init_task() is being invoked on the fork path, as opposed + * to the scheduler transition path. + */ + bool fork; +#ifdef CONFIG_EXT_GROUP_SCHED + /* the cgroup the task is joining */ + struct cgroup *cgroup; +#endif +}; + +/* argument container for ops.exit_task() */ +struct scx_exit_task_args { + /* Whether the task exited before running on sched_ext. */ + bool cancelled; +}; + +/* argument container for ops->cgroup_init() */ +struct scx_cgroup_init_args { + /* the weight of the cgroup [1..10000] */ + u32 weight; +}; + +enum scx_cpu_preempt_reason { + /* next task is being scheduled by &sched_class_rt */ + SCX_CPU_PREEMPT_RT, + /* next task is being scheduled by &sched_class_dl */ + SCX_CPU_PREEMPT_DL, + /* next task is being scheduled by &sched_class_stop */ + SCX_CPU_PREEMPT_STOP, + /* unknown reason for SCX being preempted */ + SCX_CPU_PREEMPT_UNKNOWN, +}; + +/* + * Argument container for ops->cpu_acquire(). Currently empty, but may be + * expanded in the future. + */ +struct scx_cpu_acquire_args {}; + +/* argument container for ops->cpu_release() */ +struct scx_cpu_release_args { + /* the reason the CPU was preempted */ + enum scx_cpu_preempt_reason reason; + + /* the task that's going to be scheduled on the CPU */ + struct task_struct *task; +}; + +/* + * Informational context provided to dump operations. + */ +struct scx_dump_ctx { + enum scx_exit_kind kind; + s64 exit_code; + const char *reason; + u64 at_ns; + u64 at_jiffies; +}; + +/** + * struct sched_ext_ops - Operation table for BPF scheduler implementation + * + * Userland can implement an arbitrary scheduling policy by implementing and + * loading operations in this table. + */ +struct sched_ext_ops { + /** + * select_cpu - Pick the target CPU for a task which is being woken up + * @p: task being woken up + * @prev_cpu: the cpu @p was on before sleeping + * @wake_flags: SCX_WAKE_* + * + * Decision made here isn't final. @p may be moved to any CPU while it + * is getting dispatched for execution later. However, as @p is not on + * the rq at this point, getting the eventual execution CPU right here + * saves a small bit of overhead down the line. + * + * If an idle CPU is returned, the CPU is kicked and will try to + * dispatch. While an explicit custom mechanism can be added, + * select_cpu() serves as the default way to wake up idle CPUs. + * + * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p + * is dispatched, the ops.enqueue() callback will be skipped. Finally, + * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the + * local DSQ of whatever CPU is returned by this callback. + */ + s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); + + /** + * enqueue - Enqueue a task on the BPF scheduler + * @p: task being enqueued + * @enq_flags: %SCX_ENQ_* + * + * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() + * or enqueue on the BPF scheduler. If not directly dispatched, the bpf + * scheduler owns @p and if it fails to dispatch @p, the task will + * stall. + * + * If @p was dispatched from ops.select_cpu(), this callback is + * skipped. + */ + void (*enqueue)(struct task_struct *p, u64 enq_flags); + + /** + * dequeue - Remove a task from the BPF scheduler + * @p: task being dequeued + * @deq_flags: %SCX_DEQ_* + * + * Remove @p from the BPF scheduler. This is usually called to isolate + * the task while updating its scheduling properties (e.g. priority). + * + * The ext core keeps track of whether the BPF side owns a given task or + * not and can gracefully ignore spurious dispatches from BPF side, + * which makes it safe to not implement this method. However, depending + * on the scheduling logic, this can lead to confusing behaviors - e.g. + * scheduling position not being updated across a priority change. + */ + void (*dequeue)(struct task_struct *p, u64 deq_flags); + + /** + * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs + * @cpu: CPU to dispatch tasks for + * @prev: previous task being switched out + * + * Called when a CPU's local dsq is empty. The operation should dispatch + * one or more tasks from the BPF scheduler into the DSQs using + * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using + * scx_bpf_consume(). + * + * The maximum number of times scx_bpf_dispatch() can be called without + * an intervening scx_bpf_consume() is specified by + * ops.dispatch_max_batch. See the comments on top of the two functions + * for more details. + * + * When not %NULL, @prev is an SCX task with its slice depleted. If + * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in + * @prev->scx.flags, it is not enqueued yet and will be enqueued after + * ops.dispatch() returns. To keep executing @prev, return without + * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. + */ + void (*dispatch)(s32 cpu, struct task_struct *prev); + + /** + * tick - Periodic tick + * @p: task running currently + * + * This operation is called every 1/HZ seconds on CPUs which are + * executing an SCX task. Setting @p->scx.slice to 0 will trigger an + * immediate dispatch cycle on the CPU. + */ + void (*tick)(struct task_struct *p); + + /** + * runnable - A task is becoming runnable on its associated CPU + * @p: task becoming runnable + * @enq_flags: %SCX_ENQ_* + * + * This and the following three functions can be used to track a task's + * execution state transitions. A task becomes ->runnable() on a CPU, + * and then goes through one or more ->running() and ->stopping() pairs + * as it runs on the CPU, and eventually becomes ->quiescent() when it's + * done running on the CPU. + * + * @p is becoming runnable on the CPU because it's + * + * - waking up (%SCX_ENQ_WAKEUP) + * - being moved from another CPU + * - being restored after temporarily taken off the queue for an + * attribute change. + * + * This and ->enqueue() are related but not coupled. This operation + * notifies @p's state transition and may not be followed by ->enqueue() + * e.g. when @p is being dispatched to a remote CPU, or when @p is + * being enqueued on a CPU experiencing a hotplug event. Likewise, a + * task may be ->enqueue()'d without being preceded by this operation + * e.g. after exhausting its slice. + */ + void (*runnable)(struct task_struct *p, u64 enq_flags); + + /** + * running - A task is starting to run on its associated CPU + * @p: task starting to run + * + * See ->runnable() for explanation on the task state notifiers. + */ + void (*running)(struct task_struct *p); + + /** + * stopping - A task is stopping execution + * @p: task stopping to run + * @runnable: is task @p still runnable? + * + * See ->runnable() for explanation on the task state notifiers. If + * !@runnable, ->quiescent() will be invoked after this operation + * returns. + */ + void (*stopping)(struct task_struct *p, bool runnable); + + /** + * quiescent - A task is becoming not runnable on its associated CPU + * @p: task becoming not runnable + * @deq_flags: %SCX_DEQ_* + * + * See ->runnable() for explanation on the task state notifiers. + * + * @p is becoming quiescent on the CPU because it's + * + * - sleeping (%SCX_DEQ_SLEEP) + * - being moved to another CPU + * - being temporarily taken off the queue for an attribute change + * (%SCX_DEQ_SAVE) + * + * This and ->dequeue() are related but not coupled. This operation + * notifies @p's state transition and may not be preceded by ->dequeue() + * e.g. when @p is being dispatched to a remote CPU. + */ + void (*quiescent)(struct task_struct *p, u64 deq_flags); + + /** + * yield - Yield CPU + * @from: yielding task + * @to: optional yield target task + * + * If @to is NULL, @from is yielding the CPU to other runnable tasks. + * The BPF scheduler should ensure that other available tasks are + * dispatched before the yielding task. Return value is ignored in this + * case. + * + * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf + * scheduler can implement the request, return %true; otherwise, %false. + */ + bool (*yield)(struct task_struct *from, struct task_struct *to); + + /** + * core_sched_before - Task ordering for core-sched + * @a: task A + * @b: task B + * + * Used by core-sched to determine the ordering between two tasks. See + * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on + * core-sched. + * + * Both @a and @b are runnable and may or may not currently be queued on + * the BPF scheduler. Should return %true if @a should run before @b. + * %false if there's no required ordering or @b should run before @a. + * + * If not specified, the default is ordering them according to when they + * became runnable. + */ + bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); + + /** + * set_weight - Set task weight + * @p: task to set weight for + * @weight: new weight [1..10000] + * + * Update @p's weight to @weight. + */ + void (*set_weight)(struct task_struct *p, u32 weight); + + /** + * set_cpumask - Set CPU affinity + * @p: task to set CPU affinity for + * @cpumask: cpumask of cpus that @p can run on + * + * Update @p's CPU affinity to @cpumask. + */ + void (*set_cpumask)(struct task_struct *p, + const struct cpumask *cpumask); + + /** + * update_idle - Update the idle state of a CPU + * @cpu: CPU to udpate the idle state for + * @idle: whether entering or exiting the idle state + * + * This operation is called when @rq's CPU goes or leaves the idle + * state. By default, implementing this operation disables the built-in + * idle CPU tracking and the following helpers become unavailable: + * + * - scx_bpf_select_cpu_dfl() + * - scx_bpf_test_and_clear_cpu_idle() + * - scx_bpf_pick_idle_cpu() + * + * The user also must implement ops.select_cpu() as the default + * implementation relies on scx_bpf_select_cpu_dfl(). + * + * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle + * tracking. + */ + void (*update_idle)(s32 cpu, bool idle); + + /** + * cpu_acquire - A CPU is becoming available to the BPF scheduler + * @cpu: The CPU being acquired by the BPF scheduler. + * @args: Acquire arguments, see the struct definition. + * + * A CPU that was previously released from the BPF scheduler is now once + * again under its control. + */ + void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); + + /** + * cpu_release - A CPU is taken away from the BPF scheduler + * @cpu: The CPU being released by the BPF scheduler. + * @args: Release arguments, see the struct definition. + * + * The specified CPU is no longer under the control of the BPF + * scheduler. This could be because it was preempted by a higher + * priority sched_class, though there may be other reasons as well. The + * caller should consult @args->reason to determine the cause. + */ + void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); + + /** + * init_task - Initialize a task to run in a BPF scheduler + * @p: task to initialize for BPF scheduling + * @args: init arguments, see the struct definition + * + * Either we're loading a BPF scheduler or a new task is being forked. + * Initialize @p for BPF scheduling. This operation may block and can + * be used for allocations, and is called exactly once for a task. + * + * Return 0 for success, -errno for failure. An error return while + * loading will abort loading of the BPF scheduler. During a fork, it + * will abort that specific fork. + */ + s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); + + /** + * exit_task - Exit a previously-running task from the system + * @p: task to exit + * + * @p is exiting or the BPF scheduler is being unloaded. Perform any + * necessary cleanup for @p. + */ + void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); + + /** + * enable - Enable BPF scheduling for a task + * @p: task to enable BPF scheduling for + * + * Enable @p for BPF scheduling. enable() is called on @p any time it + * enters SCX, and is always paired with a matching disable(). + */ + void (*enable)(struct task_struct *p); + + /** + * disable - Disable BPF scheduling for a task + * @p: task to disable BPF scheduling for + * + * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. + * Disable BPF scheduling for @p. A disable() call is always matched + * with a prior enable() call. + */ + void (*disable)(struct task_struct *p); + + /** + * dump - Dump BPF scheduler state on error + * @ctx: debug dump context + * + * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. + */ + void (*dump)(struct scx_dump_ctx *ctx); + + /** + * dump_cpu - Dump BPF scheduler state for a CPU on error + * @ctx: debug dump context + * @cpu: CPU to generate debug dump for + * @idle: @cpu is currently idle without any runnable tasks + * + * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for + * @cpu. If @idle is %true and this operation doesn't produce any + * output, @cpu is skipped for dump. + */ + void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); + + /** + * dump_task - Dump BPF scheduler state for a runnable task on error + * @ctx: debug dump context + * @p: runnable task to generate debug dump for + * + * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for + * @p. + */ + void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); + +#ifdef CONFIG_EXT_GROUP_SCHED + /** + * cgroup_init - Initialize a cgroup + * @cgrp: cgroup being initialized + * @args: init arguments, see the struct definition + * + * Either the BPF scheduler is being loaded or @cgrp created, initialize + * @cgrp for sched_ext. This operation may block. + * + * Return 0 for success, -errno for failure. An error return while + * loading will abort loading of the BPF scheduler. During cgroup + * creation, it will abort the specific cgroup creation. + */ + s32 (*cgroup_init)(struct cgroup *cgrp, + struct scx_cgroup_init_args *args); + + /** + * cgroup_exit - Exit a cgroup + * @cgrp: cgroup being exited + * + * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit + * @cgrp for sched_ext. This operation my block. + */ + void (*cgroup_exit)(struct cgroup *cgrp); + + /** + * cgroup_prep_move - Prepare a task to be moved to a different cgroup + * @p: task being moved + * @from: cgroup @p is being moved from + * @to: cgroup @p is being moved to + * + * Prepare @p for move from cgroup @from to @to. This operation may + * block and can be used for allocations. + * + * Return 0 for success, -errno for failure. An error return aborts the + * migration. + */ + s32 (*cgroup_prep_move)(struct task_struct *p, + struct cgroup *from, struct cgroup *to); + + /** + * cgroup_move - Commit cgroup move + * @p: task being moved + * @from: cgroup @p is being moved from + * @to: cgroup @p is being moved to + * + * Commit the move. @p is dequeued during this operation. + */ + void (*cgroup_move)(struct task_struct *p, + struct cgroup *from, struct cgroup *to); + + /** + * cgroup_cancel_move - Cancel cgroup move + * @p: task whose cgroup move is being canceled + * @from: cgroup @p was being moved from + * @to: cgroup @p was being moved to + * + * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). + * Undo the preparation. + */ + void (*cgroup_cancel_move)(struct task_struct *p, + struct cgroup *from, struct cgroup *to); + + /** + * cgroup_set_weight - A cgroup's weight is being changed + * @cgrp: cgroup whose weight is being updated + * @weight: new weight [1..10000] + * + * Update @tg's weight to @weight. + */ + void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); +#endif /* CONFIG_CGROUPS */ + + /* + * All online ops must come before ops.cpu_online(). + */ + + /** + * cpu_online - A CPU became online + * @cpu: CPU which just came up + * + * @cpu just came online. @cpu will not call ops.enqueue() or + * ops.dispatch(), nor run tasks associated with other CPUs beforehand. + */ + void (*cpu_online)(s32 cpu); + + /** + * cpu_offline - A CPU is going offline + * @cpu: CPU which is going offline + * + * @cpu is going offline. @cpu will not call ops.enqueue() or + * ops.dispatch(), nor run tasks associated with other CPUs afterwards. + */ + void (*cpu_offline)(s32 cpu); + + /* + * All CPU hotplug ops must come before ops.init(). + */ + + /** + * init - Initialize the BPF scheduler + */ + s32 (*init)(void); + + /** + * exit - Clean up after the BPF scheduler + * @info: Exit info + */ + void (*exit)(struct scx_exit_info *info); + + /** + * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch + */ + u32 dispatch_max_batch; + + /** + * flags - %SCX_OPS_* flags + */ + u64 flags; + + /** + * timeout_ms - The maximum amount of time, in milliseconds, that a + * runnable task should be able to wait before being scheduled. The + * maximum timeout may not exceed the default timeout of 30 seconds. + * + * Defaults to the maximum allowed timeout value of 30 seconds. + */ + u32 timeout_ms; + + /** + * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default + * value of 32768 is used. + */ + u32 exit_dump_len; + + /** + * hotplug_seq - A sequence number that may be set by the scheduler to + * detect when a hotplug event has occurred during the loading process. + * If 0, no detection occurs. Otherwise, the scheduler will fail to + * load if the sequence number does not match @scx_hotplug_seq on the + * enable path. + */ + u64 hotplug_seq; + + /** + * name - BPF scheduler's name + * + * Must be a non-zero valid BPF object name including only isalnum(), + * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the + * BPF scheduler is enabled. + */ + char name[SCX_OPS_NAME_LEN]; +}; + +enum scx_opi { + SCX_OPI_BEGIN = 0, + SCX_OPI_NORMAL_BEGIN = 0, + SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), + SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), + SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), + SCX_OPI_END = SCX_OP_IDX(init), +}; + +enum scx_wake_flags { + /* expose select WF_* flags as enums */ + SCX_WAKE_FORK = WF_FORK, + SCX_WAKE_TTWU = WF_TTWU, + SCX_WAKE_SYNC = WF_SYNC, +}; + +enum scx_enq_flags { + /* expose select ENQUEUE_* flags as enums */ + SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, + SCX_ENQ_HEAD = ENQUEUE_HEAD, + + /* high 32bits are SCX specific */ + + /* + * Set the following to trigger preemption when calling + * scx_bpf_dispatch() with a local dsq as the target. The slice of the + * current task is cleared to zero and the CPU is kicked into the + * scheduling path. Implies %SCX_ENQ_HEAD. + */ + SCX_ENQ_PREEMPT = 1LLU << 32, + + /* + * The task being enqueued was previously enqueued on the current CPU's + * %SCX_DSQ_LOCAL, but was removed from it in a call to the + * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was + * invoked in a ->cpu_release() callback, and the task is again + * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the + * task will not be scheduled on the CPU until at least the next invocation + * of the ->cpu_acquire() callback. + */ + SCX_ENQ_REENQ = 1LLU << 40, + + /* + * The task being enqueued is the only task available for the cpu. By + * default, ext core keeps executing such tasks but when + * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the + * %SCX_ENQ_LAST flag set. + * + * The BPF scheduler is responsible for triggering a follow-up + * scheduling event. Otherwise, Execution may stall. + */ + SCX_ENQ_LAST = 1LLU << 41, + + /* high 8 bits are internal */ + __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, + + SCX_ENQ_CLEAR_OPSS = 1LLU << 56, + SCX_ENQ_DSQ_PRIQ = 1LLU << 57, +}; + +enum scx_deq_flags { + /* expose select DEQUEUE_* flags as enums */ + SCX_DEQ_SLEEP = DEQUEUE_SLEEP, + + /* high 32bits are SCX specific */ + + /* + * The generic core-sched layer decided to execute the task even though + * it hasn't been dispatched yet. Dequeue from the BPF side. + */ + SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, +}; + +enum scx_pick_idle_cpu_flags { + SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ +}; + +enum scx_kick_flags { + /* + * Kick the target CPU if idle. Guarantees that the target CPU goes + * through at least one full scheduling cycle before going idle. If the + * target CPU can be determined to be currently not idle and going to go + * through a scheduling cycle before going idle, noop. + */ + SCX_KICK_IDLE = 1LLU << 0, + + /* + * Preempt the current task and execute the dispatch path. If the + * current task of the target CPU is an SCX task, its ->scx.slice is + * cleared to zero before the scheduling path is invoked so that the + * task expires and the dispatch path is invoked. + */ + SCX_KICK_PREEMPT = 1LLU << 1, + + /* + * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will + * return after the target CPU finishes picking the next task. + */ + SCX_KICK_WAIT = 1LLU << 2, +}; + +enum scx_tg_flags { + SCX_TG_ONLINE = 1U << 0, + SCX_TG_INITED = 1U << 1, +}; + +enum scx_ops_enable_state { + SCX_OPS_PREPPING, + SCX_OPS_ENABLING, + SCX_OPS_ENABLED, + SCX_OPS_DISABLING, + SCX_OPS_DISABLED, +}; + +static const char *scx_ops_enable_state_str[] = { + [SCX_OPS_PREPPING] = "prepping", + [SCX_OPS_ENABLING] = "enabling", + [SCX_OPS_ENABLED] = "enabled", + [SCX_OPS_DISABLING] = "disabling", + [SCX_OPS_DISABLED] = "disabled", +}; + +/* + * sched_ext_entity->ops_state + * + * Used to track the task ownership between the SCX core and the BPF scheduler. + * State transitions look as follows: + * + * NONE -> QUEUEING -> QUEUED -> DISPATCHING + * ^ | | + * | v v + * \-------------------------------/ + * + * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call + * sites for explanations on the conditions being waited upon and why they are + * safe. Transitions out of them into NONE or QUEUED must store_release and the + * waiters should load_acquire. + * + * Tracking scx_ops_state enables sched_ext core to reliably determine whether + * any given task can be dispatched by the BPF scheduler at all times and thus + * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler + * to try to dispatch any task anytime regardless of its state as the SCX core + * can safely reject invalid dispatches. + */ +enum scx_ops_state { + SCX_OPSS_NONE, /* owned by the SCX core */ + SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ + SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ + SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ + + /* + * QSEQ brands each QUEUED instance so that, when dispatch races + * dequeue/requeue, the dispatcher can tell whether it still has a claim + * on the task being dispatched. + * + * As some 32bit archs can't do 64bit store_release/load_acquire, + * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on + * 32bit machines. The dispatch race window QSEQ protects is very narrow + * and runs with IRQ disabled. 30 bits should be sufficient. + */ + SCX_OPSS_QSEQ_SHIFT = 2, +}; + +/* Use macros to ensure that the type is unsigned long for the masks */ +#define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) +#define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) + +/* + * During exit, a task may schedule after losing its PIDs. When disabling the + * BPF scheduler, we need to be able to iterate tasks in every state to + * guarantee system safety. Maintain a dedicated task list which contains every + * task between its fork and eventual free. + */ +static DEFINE_SPINLOCK(scx_tasks_lock); +static LIST_HEAD(scx_tasks); + +/* ops enable/disable */ +static struct kthread_worker *scx_ops_helper; +static DEFINE_MUTEX(scx_ops_enable_mutex); +DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); +DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); +static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); +static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); +static bool scx_switching_all; +DEFINE_STATIC_KEY_FALSE(__scx_switched_all); + +static struct sched_ext_ops scx_ops; +static bool scx_warned_zero_slice; + +static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); +static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); +static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); +static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); + +static struct static_key_false scx_has_op[SCX_OPI_END] = + { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; + +static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); +static struct scx_exit_info *scx_exit_info; + +static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); +static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); + +/* + * The maximum amount of time in jiffies that a task may be runnable without + * being scheduled on a CPU. If this timeout is exceeded, it will trigger + * scx_ops_error(). + */ +static unsigned long scx_watchdog_timeout; + +/* + * The last time the delayed work was run. This delayed work relies on + * ksoftirqd being able to run to service timer interrupts, so it's possible + * that this work itself could get wedged. To account for this, we check that + * it's not stalled in the timer tick, and trigger an error if it is. + */ +static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; + +static struct delayed_work scx_watchdog_work; + +/* idle tracking */ +#ifdef CONFIG_SMP +#ifdef CONFIG_CPUMASK_OFFSTACK +#define CL_ALIGNED_IF_ONSTACK +#else +#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp +#endif + +static struct { + cpumask_var_t cpu; + cpumask_var_t smt; +} idle_masks CL_ALIGNED_IF_ONSTACK; + +#endif /* CONFIG_SMP */ + +/* for %SCX_KICK_WAIT */ +static unsigned long __percpu *scx_kick_cpus_pnt_seqs; + +/* + * Direct dispatch marker. + * + * Non-NULL values are used for direct dispatch from enqueue path. A valid + * pointer points to the task currently being enqueued. An ERR_PTR value is used + * to indicate that direct dispatch has already happened. + */ +static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); + +/* dispatch queues */ +static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global; + +static const struct rhashtable_params dsq_hash_params = { + .key_len = 8, + .key_offset = offsetof(struct scx_dispatch_q, id), + .head_offset = offsetof(struct scx_dispatch_q, hash_node), +}; + +static struct rhashtable dsq_hash; +static LLIST_HEAD(dsqs_to_free); + +/* dispatch buf */ +struct scx_dsp_buf_ent { + struct task_struct *task; + unsigned long qseq; + u64 dsq_id; + u64 enq_flags; +}; + +static u32 scx_dsp_max_batch; + +struct scx_dsp_ctx { + struct rq *rq; + u32 cursor; + u32 nr_tasks; + struct scx_dsp_buf_ent buf[]; +}; + +static struct scx_dsp_ctx __percpu *scx_dsp_ctx; + +/* string formatting from BPF */ +struct scx_bstr_buf { + u64 data[MAX_BPRINTF_VARARGS]; + char line[SCX_EXIT_MSG_LEN]; +}; + +static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); +static struct scx_bstr_buf scx_exit_bstr_buf; + +/* ops debug dump */ +struct scx_dump_data { + s32 cpu; + bool first; + s32 cursor; + struct seq_buf *s; + const char *prefix; + struct scx_bstr_buf buf; +}; + +static struct scx_dump_data scx_dump_data = { + .cpu = -1, +}; + +/* /sys/kernel/sched_ext interface */ +static struct kset *scx_kset; +static struct kobject *scx_root_kobj; + +#define CREATE_TRACE_POINTS +#include <trace/events/sched_ext.h> + +static void process_ddsp_deferred_locals(struct rq *rq); +static void scx_bpf_kick_cpu(s32 cpu, u64 flags); +static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, + s64 exit_code, + const char *fmt, ...); + +#define scx_ops_error_kind(err, fmt, args...) \ + scx_ops_exit_kind((err), 0, fmt, ##args) + +#define scx_ops_exit(code, fmt, args...) \ + scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) + +#define scx_ops_error(fmt, args...) \ + scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) + +#define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) + +static long jiffies_delta_msecs(unsigned long at, unsigned long now) +{ + if (time_after(at, now)) + return jiffies_to_msecs(at - now); + else + return -(long)jiffies_to_msecs(now - at); +} + +/* if the highest set bit is N, return a mask with bits [N+1, 31] set */ +static u32 higher_bits(u32 flags) +{ + return ~((1 << fls(flags)) - 1); +} + +/* return the mask with only the highest bit set */ +static u32 highest_bit(u32 flags) +{ + int bit = fls(flags); + return ((u64)1 << bit) >> 1; +} + +static bool u32_before(u32 a, u32 b) +{ + return (s32)(a - b) < 0; +} + +/* + * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX + * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate + * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check + * whether it's running from an allowed context. + * + * @mask is constant, always inline to cull the mask calculations. + */ +static __always_inline void scx_kf_allow(u32 mask) +{ + /* nesting is allowed only in increasing scx_kf_mask order */ + WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, + "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", + current->scx.kf_mask, mask); + current->scx.kf_mask |= mask; + barrier(); +} + +static void scx_kf_disallow(u32 mask) +{ + barrier(); + current->scx.kf_mask &= ~mask; +} + +#define SCX_CALL_OP(mask, op, args...) \ +do { \ + if (mask) { \ + scx_kf_allow(mask); \ + scx_ops.op(args); \ + scx_kf_disallow(mask); \ + } else { \ + scx_ops.op(args); \ + } \ +} while (0) + +#define SCX_CALL_OP_RET(mask, op, args...) \ +({ \ + __typeof__(scx_ops.op(args)) __ret; \ + if (mask) { \ + scx_kf_allow(mask); \ + __ret = scx_ops.op(args); \ + scx_kf_disallow(mask); \ + } else { \ + __ret = scx_ops.op(args); \ + } \ + __ret; \ +}) + +/* + * Some kfuncs are allowed only on the tasks that are subjects of the + * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such + * restrictions, the following SCX_CALL_OP_*() variants should be used when + * invoking scx_ops operations that take task arguments. These can only be used + * for non-nesting operations due to the way the tasks are tracked. + * + * kfuncs which can only operate on such tasks can in turn use + * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on + * the specific task. + */ +#define SCX_CALL_OP_TASK(mask, op, task, args...) \ +do { \ + BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ + current->scx.kf_tasks[0] = task; \ + SCX_CALL_OP(mask, op, task, ##args); \ + current->scx.kf_tasks[0] = NULL; \ +} while (0) + +#define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ +({ \ + __typeof__(scx_ops.op(task, ##args)) __ret; \ + BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ + current->scx.kf_tasks[0] = task; \ + __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ + current->scx.kf_tasks[0] = NULL; \ + __ret; \ +}) + +#define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ +({ \ + __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ + BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ + current->scx.kf_tasks[0] = task0; \ + current->scx.kf_tasks[1] = task1; \ + __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ + current->scx.kf_tasks[0] = NULL; \ + current->scx.kf_tasks[1] = NULL; \ + __ret; \ +}) + +/* @mask is constant, always inline to cull unnecessary branches */ +static __always_inline bool scx_kf_allowed(u32 mask) +{ + if (unlikely(!(current->scx.kf_mask & mask))) { + scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", + mask, current->scx.kf_mask); + return false; + } + + /* + * Enforce nesting boundaries. e.g. A kfunc which can be called from + * DISPATCH must not be called if we're running DEQUEUE which is nested + * inside ops.dispatch(). We don't need to check boundaries for any + * blocking kfuncs as the verifier ensures they're only called from + * sleepable progs. + */ + if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && + (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { + scx_ops_error("cpu_release kfunc called from a nested operation"); + return false; + } + + if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && + (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { + scx_ops_error("dispatch kfunc called from a nested operation"); + return false; + } + + return true; +} + +/* see SCX_CALL_OP_TASK() */ +static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, + struct task_struct *p) +{ + if (!scx_kf_allowed(mask)) + return false; + + if (unlikely((p != current->scx.kf_tasks[0] && + p != current->scx.kf_tasks[1]))) { + scx_ops_error("called on a task not being operated on"); + return false; + } + + return true; +} + +static bool scx_kf_allowed_if_unlocked(void) +{ + return !current->scx.kf_mask; +} + +/** + * nldsq_next_task - Iterate to the next task in a non-local DSQ + * @dsq: user dsq being interated + * @cur: current position, %NULL to start iteration + * @rev: walk backwards + * + * Returns %NULL when iteration is finished. + */ +static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, + struct task_struct *cur, bool rev) +{ + struct list_head *list_node; + struct scx_dsq_list_node *dsq_lnode; + + lockdep_assert_held(&dsq->lock); + + if (cur) + list_node = &cur->scx.dsq_list.node; + else + list_node = &dsq->list; + + /* find the next task, need to skip BPF iteration cursors */ + do { + if (rev) + list_node = list_node->prev; + else + list_node = list_node->next; + + if (list_node == &dsq->list) + return NULL; + + dsq_lnode = container_of(list_node, struct scx_dsq_list_node, + node); + } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); + + return container_of(dsq_lnode, struct task_struct, scx.dsq_list); +} + +#define nldsq_for_each_task(p, dsq) \ + for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ + (p) = nldsq_next_task((dsq), (p), false)) + + +/* + * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] + * dispatch order. BPF-visible iterator is opaque and larger to allow future + * changes without breaking backward compatibility. Can be used with + * bpf_for_each(). See bpf_iter_scx_dsq_*(). + */ +enum scx_dsq_iter_flags { + /* iterate in the reverse dispatch order */ + SCX_DSQ_ITER_REV = 1U << 16, + + __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, + __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, + + __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, + __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | + __SCX_DSQ_ITER_HAS_SLICE | + __SCX_DSQ_ITER_HAS_VTIME, +}; + +struct bpf_iter_scx_dsq_kern { + struct scx_dsq_list_node cursor; + struct scx_dispatch_q *dsq; + u64 slice; + u64 vtime; +} __attribute__((aligned(8))); + +struct bpf_iter_scx_dsq { + u64 __opaque[6]; +} __attribute__((aligned(8))); + + +/* + * SCX task iterator. + */ +struct scx_task_iter { + struct sched_ext_entity cursor; + struct task_struct *locked; + struct rq *rq; + struct rq_flags rf; +}; + +/** + * scx_task_iter_init - Initialize a task iterator + * @iter: iterator to init + * + * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, + * @iter must eventually be exited with scx_task_iter_exit(). + * + * scx_tasks_lock may be released between this and the first next() call or + * between any two next() calls. If scx_tasks_lock is released between two + * next() calls, the caller is responsible for ensuring that the task being + * iterated remains accessible either through RCU read lock or obtaining a + * reference count. + * + * All tasks which existed when the iteration started are guaranteed to be + * visited as long as they still exist. + */ +static void scx_task_iter_init(struct scx_task_iter *iter) +{ + lockdep_assert_held(&scx_tasks_lock); + + BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & + ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); + + iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; + list_add(&iter->cursor.tasks_node, &scx_tasks); + iter->locked = NULL; +} + +/** + * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator + * @iter: iterator to unlock rq for + * + * If @iter is in the middle of a locked iteration, it may be locking the rq of + * the task currently being visited. Unlock the rq if so. This function can be + * safely called anytime during an iteration. + * + * Returns %true if the rq @iter was locking is unlocked. %false if @iter was + * not locking an rq. + */ +static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) +{ + if (iter->locked) { + task_rq_unlock(iter->rq, iter->locked, &iter->rf); + iter->locked = NULL; + return true; + } else { + return false; + } +} + +/** + * scx_task_iter_exit - Exit a task iterator + * @iter: iterator to exit + * + * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. + * If the iterator holds a task's rq lock, that rq lock is released. See + * scx_task_iter_init() for details. + */ +static void scx_task_iter_exit(struct scx_task_iter *iter) +{ + lockdep_assert_held(&scx_tasks_lock); + + scx_task_iter_rq_unlock(iter); + list_del_init(&iter->cursor.tasks_node); +} + +/** + * scx_task_iter_next - Next task + * @iter: iterator to walk + * + * Visit the next task. See scx_task_iter_init() for details. + */ +static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) +{ + struct list_head *cursor = &iter->cursor.tasks_node; + struct sched_ext_entity *pos; + + lockdep_assert_held(&scx_tasks_lock); + + list_for_each_entry(pos, cursor, tasks_node) { + if (&pos->tasks_node == &scx_tasks) + return NULL; + if (!(pos->flags & SCX_TASK_CURSOR)) { + list_move(cursor, &pos->tasks_node); + return container_of(pos, struct task_struct, scx); + } + } + + /* can't happen, should always terminate at scx_tasks above */ + BUG(); +} + +/** + * scx_task_iter_next_locked - Next non-idle task with its rq locked + * @iter: iterator to walk + * @include_dead: Whether we should include dead tasks in the iteration + * + * Visit the non-idle task with its rq lock held. Allows callers to specify + * whether they would like to filter out dead tasks. See scx_task_iter_init() + * for details. + */ +static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) +{ + struct task_struct *p; + + scx_task_iter_rq_unlock(iter); + + while ((p = scx_task_iter_next(iter))) { + /* + * scx_task_iter is used to prepare and move tasks into SCX + * while loading the BPF scheduler and vice-versa while + * unloading. The init_tasks ("swappers") should be excluded + * from the iteration because: + * + * - It's unsafe to use __setschduler_prio() on an init_task to + * determine the sched_class to use as it won't preserve its + * idle_sched_class. + * + * - ops.init/exit_task() can easily be confused if called with + * init_tasks as they, e.g., share PID 0. + * + * As init_tasks are never scheduled through SCX, they can be + * skipped safely. Note that is_idle_task() which tests %PF_IDLE + * doesn't work here: + * + * - %PF_IDLE may not be set for an init_task whose CPU hasn't + * yet been onlined. + * + * - %PF_IDLE can be set on tasks that are not init_tasks. See + * play_idle_precise() used by CONFIG_IDLE_INJECT. + * + * Test for idle_sched_class as only init_tasks are on it. + */ + if (p->sched_class != &idle_sched_class) + break; + } + if (!p) + return NULL; + + iter->rq = task_rq_lock(p, &iter->rf); + iter->locked = p; + + return p; +} + +static enum scx_ops_enable_state scx_ops_enable_state(void) +{ + return atomic_read(&scx_ops_enable_state_var); +} + +static enum scx_ops_enable_state +scx_ops_set_enable_state(enum scx_ops_enable_state to) +{ + return atomic_xchg(&scx_ops_enable_state_var, to); +} + +static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, + enum scx_ops_enable_state from) +{ + int from_v = from; + + return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); +} + +static bool scx_rq_bypassing(struct rq *rq) +{ + return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); +} + +/** + * wait_ops_state - Busy-wait the specified ops state to end + * @p: target task + * @opss: state to wait the end of + * + * Busy-wait for @p to transition out of @opss. This can only be used when the + * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also + * has load_acquire semantics to ensure that the caller can see the updates made + * in the enqueueing and dispatching paths. + */ +static void wait_ops_state(struct task_struct *p, unsigned long opss) +{ + do { + cpu_relax(); + } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); +} + +/** + * ops_cpu_valid - Verify a cpu number + * @cpu: cpu number which came from a BPF ops + * @where: extra information reported on error + * + * @cpu is a cpu number which came from the BPF scheduler and can be any value. + * Verify that it is in range and one of the possible cpus. If invalid, trigger + * an ops error. + */ +static bool ops_cpu_valid(s32 cpu, const char *where) +{ + if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { + return true; + } else { + scx_ops_error("invalid CPU %d%s%s", cpu, + where ? " " : "", where ?: ""); + return false; + } +} + +/** + * ops_sanitize_err - Sanitize a -errno value + * @ops_name: operation to blame on failure + * @err: -errno value to sanitize + * + * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return + * -%EPROTO. This is necessary because returning a rogue -errno up the chain can + * cause misbehaviors. For an example, a large negative return from + * ops.init_task() triggers an oops when passed up the call chain because the + * value fails IS_ERR() test after being encoded with ERR_PTR() and then is + * handled as a pointer. + */ +static int ops_sanitize_err(const char *ops_name, s32 err) +{ + if (err < 0 && err >= -MAX_ERRNO) + return err; + + scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); + return -EPROTO; +} + +static void run_deferred(struct rq *rq) +{ + process_ddsp_deferred_locals(rq); +} + +#ifdef CONFIG_SMP +static void deferred_bal_cb_workfn(struct rq *rq) +{ + run_deferred(rq); +} +#endif + +static void deferred_irq_workfn(struct irq_work *irq_work) +{ + struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); + + raw_spin_rq_lock(rq); + run_deferred(rq); + raw_spin_rq_unlock(rq); +} + +/** + * schedule_deferred - Schedule execution of deferred actions on an rq + * @rq: target rq + * + * Schedule execution of deferred actions on @rq. Must be called with @rq + * locked. Deferred actions are executed with @rq locked but unpinned, and thus + * can unlock @rq to e.g. migrate tasks to other rqs. + */ +static void schedule_deferred(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + +#ifdef CONFIG_SMP + /* + * If in the middle of waking up a task, task_woken_scx() will be called + * afterwards which will then run the deferred actions, no need to + * schedule anything. + */ + if (rq->scx.flags & SCX_RQ_IN_WAKEUP) + return; + + /* + * If in balance, the balance callbacks will be called before rq lock is + * released. Schedule one. + */ + if (rq->scx.flags & SCX_RQ_IN_BALANCE) { + queue_balance_callback(rq, &rq->scx.deferred_bal_cb, + deferred_bal_cb_workfn); + return; + } +#endif + /* + * No scheduler hooks available. Queue an irq work. They are executed on + * IRQ re-enable which may take a bit longer than the scheduler hooks. + * The above WAKEUP and BALANCE paths should cover most of the cases and + * the time to IRQ re-enable shouldn't be long. + */ + irq_work_queue(&rq->scx.deferred_irq_work); +} + +/** + * touch_core_sched - Update timestamp used for core-sched task ordering + * @rq: rq to read clock from, must be locked + * @p: task to update the timestamp for + * + * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to + * implement global or local-DSQ FIFO ordering for core-sched. Should be called + * when a task becomes runnable and its turn on the CPU ends (e.g. slice + * exhaustion). + */ +static void touch_core_sched(struct rq *rq, struct task_struct *p) +{ + lockdep_assert_rq_held(rq); + +#ifdef CONFIG_SCHED_CORE + /* + * It's okay to update the timestamp spuriously. Use + * sched_core_disabled() which is cheaper than enabled(). + * + * As this is used to determine ordering between tasks of sibling CPUs, + * it may be better to use per-core dispatch sequence instead. + */ + if (!sched_core_disabled()) + p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); +#endif +} + +/** + * touch_core_sched_dispatch - Update core-sched timestamp on dispatch + * @rq: rq to read clock from, must be locked + * @p: task being dispatched + * + * If the BPF scheduler implements custom core-sched ordering via + * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO + * ordering within each local DSQ. This function is called from dispatch paths + * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. + */ +static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) +{ + lockdep_assert_rq_held(rq); + +#ifdef CONFIG_SCHED_CORE + if (SCX_HAS_OP(core_sched_before)) + touch_core_sched(rq, p); +#endif +} + +static void update_curr_scx(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + s64 delta_exec; + + delta_exec = update_curr_common(rq); + if (unlikely(delta_exec <= 0)) + return; + + if (curr->scx.slice != SCX_SLICE_INF) { + curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); + if (!curr->scx.slice) + touch_core_sched(rq, curr); + } +} + +static bool scx_dsq_priq_less(struct rb_node *node_a, + const struct rb_node *node_b) +{ + const struct task_struct *a = + container_of(node_a, struct task_struct, scx.dsq_priq); + const struct task_struct *b = + container_of(node_b, struct task_struct, scx.dsq_priq); + + return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); +} + +static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) +{ + /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ + WRITE_ONCE(dsq->nr, dsq->nr + delta); +} + +static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, + u64 enq_flags) +{ + bool is_local = dsq->id == SCX_DSQ_LOCAL; + + WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); + WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || + !RB_EMPTY_NODE(&p->scx.dsq_priq)); + + if (!is_local) { + raw_spin_lock(&dsq->lock); + if (unlikely(dsq->id == SCX_DSQ_INVALID)) { + scx_ops_error("attempting to dispatch to a destroyed dsq"); + /* fall back to the global dsq */ + raw_spin_unlock(&dsq->lock); + dsq = &scx_dsq_global; + raw_spin_lock(&dsq->lock); + } + } + + if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && + (enq_flags & SCX_ENQ_DSQ_PRIQ))) { + /* + * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from + * their FIFO queues. To avoid confusion and accidentally + * starving vtime-dispatched tasks by FIFO-dispatched tasks, we + * disallow any internal DSQ from doing vtime ordering of + * tasks. + */ + scx_ops_error("cannot use vtime ordering for built-in DSQs"); + enq_flags &= ~SCX_ENQ_DSQ_PRIQ; + } + + if (enq_flags & SCX_ENQ_DSQ_PRIQ) { + struct rb_node *rbp; + + /* + * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are + * linked to both the rbtree and list on PRIQs, this can only be + * tested easily when adding the first task. + */ + if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && + nldsq_next_task(dsq, NULL, false))) + scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", + dsq->id); + + p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; + rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); + + /* + * Find the previous task and insert after it on the list so + * that @dsq->list is vtime ordered. + */ + rbp = rb_prev(&p->scx.dsq_priq); + if (rbp) { + struct task_struct *prev = + container_of(rbp, struct task_struct, + scx.dsq_priq); + list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); + } else { + list_add(&p->scx.dsq_list.node, &dsq->list); + } + } else { + /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ + if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) + scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", + dsq->id); + + if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) + list_add(&p->scx.dsq_list.node, &dsq->list); + else + list_add_tail(&p->scx.dsq_list.node, &dsq->list); + } + + /* seq records the order tasks are queued, used by BPF DSQ iterator */ + dsq->seq++; + p->scx.dsq_seq = dsq->seq; + + dsq_mod_nr(dsq, 1); + p->scx.dsq = dsq; + + /* + * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the + * direct dispatch path, but we clear them here because the direct + * dispatch verdict may be overridden on the enqueue path during e.g. + * bypass. + */ + p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; + p->scx.ddsp_enq_flags = 0; + + /* + * We're transitioning out of QUEUEING or DISPATCHING. store_release to + * match waiters' load_acquire. + */ + if (enq_flags & SCX_ENQ_CLEAR_OPSS) + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); + + if (is_local) { + struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); + bool preempt = false; + + if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && + rq->curr->sched_class == &ext_sched_class) { + rq->curr->scx.slice = 0; + preempt = true; + } + + if (preempt || sched_class_above(&ext_sched_class, + rq->curr->sched_class)) + resched_curr(rq); + } else { + raw_spin_unlock(&dsq->lock); + } +} + +static void task_unlink_from_dsq(struct task_struct *p, + struct scx_dispatch_q *dsq) +{ + WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); + + if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { + rb_erase(&p->scx.dsq_priq, &dsq->priq); + RB_CLEAR_NODE(&p->scx.dsq_priq); + p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; + } + + list_del_init(&p->scx.dsq_list.node); + dsq_mod_nr(dsq, -1); +} + +static void dispatch_dequeue(struct rq *rq, struct task_struct *p) +{ + struct scx_dispatch_q *dsq = p->scx.dsq; + bool is_local = dsq == &rq->scx.local_dsq; + + if (!dsq) { + /* + * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. + * Unlinking is all that's needed to cancel. + */ + if (unlikely(!list_empty(&p->scx.dsq_list.node))) + list_del_init(&p->scx.dsq_list.node); + + /* + * When dispatching directly from the BPF scheduler to a local + * DSQ, the task isn't associated with any DSQ but + * @p->scx.holding_cpu may be set under the protection of + * %SCX_OPSS_DISPATCHING. + */ + if (p->scx.holding_cpu >= 0) + p->scx.holding_cpu = -1; + + return; + } + + if (!is_local) + raw_spin_lock(&dsq->lock); + + /* + * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't + * change underneath us. + */ + if (p->scx.holding_cpu < 0) { + /* @p must still be on @dsq, dequeue */ + task_unlink_from_dsq(p, dsq); + } else { + /* + * We're racing against dispatch_to_local_dsq() which already + * removed @p from @dsq and set @p->scx.holding_cpu. Clear the + * holding_cpu which tells dispatch_to_local_dsq() that it lost + * the race. + */ + WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); + p->scx.holding_cpu = -1; + } + p->scx.dsq = NULL; + + if (!is_local) + raw_spin_unlock(&dsq->lock); +} + +static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) +{ + return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); +} + +static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id) +{ + lockdep_assert(rcu_read_lock_any_held()); + + if (dsq_id == SCX_DSQ_GLOBAL) + return &scx_dsq_global; + else + return find_user_dsq(dsq_id); +} + +static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, + struct task_struct *p) +{ + struct scx_dispatch_q *dsq; + + if (dsq_id == SCX_DSQ_LOCAL) + return &rq->scx.local_dsq; + + if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { + s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; + + if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) + return &scx_dsq_global; + + return &cpu_rq(cpu)->scx.local_dsq; + } + + dsq = find_non_local_dsq(dsq_id); + if (unlikely(!dsq)) { + scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", + dsq_id, p->comm, p->pid); + return &scx_dsq_global; + } + + return dsq; +} + +static void mark_direct_dispatch(struct task_struct *ddsp_task, + struct task_struct *p, u64 dsq_id, + u64 enq_flags) +{ + /* + * Mark that dispatch already happened from ops.select_cpu() or + * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value + * which can never match a valid task pointer. + */ + __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); + + /* @p must match the task on the enqueue path */ + if (unlikely(p != ddsp_task)) { + if (IS_ERR(ddsp_task)) + scx_ops_error("%s[%d] already direct-dispatched", + p->comm, p->pid); + else + scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", + ddsp_task->comm, ddsp_task->pid, + p->comm, p->pid); + return; + } + + WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); + WARN_ON_ONCE(p->scx.ddsp_enq_flags); + + p->scx.ddsp_dsq_id = dsq_id; + p->scx.ddsp_enq_flags = enq_flags; +} + +static void direct_dispatch(struct task_struct *p, u64 enq_flags) +{ + struct rq *rq = task_rq(p); + struct scx_dispatch_q *dsq = + find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); + + touch_core_sched_dispatch(rq, p); + + p->scx.ddsp_enq_flags |= enq_flags; + + /* + * We are in the enqueue path with @rq locked and pinned, and thus can't + * double lock a remote rq and enqueue to its local DSQ. For + * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer + * the enqueue so that it's executed when @rq can be unlocked. + */ + if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { + unsigned long opss; + + opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; + + switch (opss & SCX_OPSS_STATE_MASK) { + case SCX_OPSS_NONE: + break; + case SCX_OPSS_QUEUEING: + /* + * As @p was never passed to the BPF side, _release is + * not strictly necessary. Still do it for consistency. + */ + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); + break; + default: + WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", + p->comm, p->pid, opss); + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); + break; + } + + WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); + list_add_tail(&p->scx.dsq_list.node, + &rq->scx.ddsp_deferred_locals); + schedule_deferred(rq); + return; + } + + dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); +} + +static bool scx_rq_online(struct rq *rq) +{ + /* + * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates + * the online state as seen from the BPF scheduler. cpu_active() test + * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will + * stay set until the current scheduling operation is complete even if + * we aren't locking @rq. + */ + return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); +} + +static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, + int sticky_cpu) +{ + struct task_struct **ddsp_taskp; + unsigned long qseq; + + WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); + + /* rq migration */ + if (sticky_cpu == cpu_of(rq)) + goto local_norefill; + + /* + * If !scx_rq_online(), we already told the BPF scheduler that the CPU + * is offline and are just running the hotplug path. Don't bother the + * BPF scheduler. + */ + if (!scx_rq_online(rq)) + goto local; + + if (scx_rq_bypassing(rq)) + goto global; + + if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) + goto direct; + + /* see %SCX_OPS_ENQ_EXITING */ + if (!static_branch_unlikely(&scx_ops_enq_exiting) && + unlikely(p->flags & PF_EXITING)) + goto local; + + if (!SCX_HAS_OP(enqueue)) + goto global; + + /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ + qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; + + WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); + atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); + + ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); + WARN_ON_ONCE(*ddsp_taskp); + *ddsp_taskp = p; + + SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); + + *ddsp_taskp = NULL; + if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) + goto direct; + + /* + * If not directly dispatched, QUEUEING isn't clear yet and dispatch or + * dequeue may be waiting. The store_release matches their load_acquire. + */ + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); + return; + +direct: + direct_dispatch(p, enq_flags); + return; + +local: + /* + * For task-ordering, slice refill must be treated as implying the end + * of the current slice. Otherwise, the longer @p stays on the CPU, the + * higher priority it becomes from scx_prio_less()'s POV. + */ + touch_core_sched(rq, p); + p->scx.slice = SCX_SLICE_DFL; +local_norefill: + dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); + return; + +global: + touch_core_sched(rq, p); /* see the comment in local: */ + p->scx.slice = SCX_SLICE_DFL; + dispatch_enqueue(&scx_dsq_global, p, enq_flags); +} + +static bool task_runnable(const struct task_struct *p) +{ + return !list_empty(&p->scx.runnable_node); +} + +static void set_task_runnable(struct rq *rq, struct task_struct *p) +{ + lockdep_assert_rq_held(rq); + + if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { + p->scx.runnable_at = jiffies; + p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; + } + + /* + * list_add_tail() must be used. scx_ops_bypass() depends on tasks being + * appened to the runnable_list. + */ + list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); +} + +static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) +{ + list_del_init(&p->scx.runnable_node); + if (reset_runnable_at) + p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; +} + +static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) +{ + int sticky_cpu = p->scx.sticky_cpu; + + if (enq_flags & ENQUEUE_WAKEUP) + rq->scx.flags |= SCX_RQ_IN_WAKEUP; + + enq_flags |= rq->scx.extra_enq_flags; + + if (sticky_cpu >= 0) + p->scx.sticky_cpu = -1; + + /* + * Restoring a running task will be immediately followed by + * set_next_task_scx() which expects the task to not be on the BPF + * scheduler as tasks can only start running through local DSQs. Force + * direct-dispatch into the local DSQ by setting the sticky_cpu. + */ + if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) + sticky_cpu = cpu_of(rq); + + if (p->scx.flags & SCX_TASK_QUEUED) { + WARN_ON_ONCE(!task_runnable(p)); + goto out; + } + + set_task_runnable(rq, p); + p->scx.flags |= SCX_TASK_QUEUED; + rq->scx.nr_running++; + add_nr_running(rq, 1); + + if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) + SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); + + if (enq_flags & SCX_ENQ_WAKEUP) + touch_core_sched(rq, p); + + do_enqueue_task(rq, p, enq_flags, sticky_cpu); +out: + rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; +} + +static void ops_dequeue(struct task_struct *p, u64 deq_flags) +{ + unsigned long opss; + + /* dequeue is always temporary, don't reset runnable_at */ + clr_task_runnable(p, false); + + /* acquire ensures that we see the preceding updates on QUEUED */ + opss = atomic_long_read_acquire(&p->scx.ops_state); + + switch (opss & SCX_OPSS_STATE_MASK) { + case SCX_OPSS_NONE: + break; + case SCX_OPSS_QUEUEING: + /* + * QUEUEING is started and finished while holding @p's rq lock. + * As we're holding the rq lock now, we shouldn't see QUEUEING. + */ + BUG(); + case SCX_OPSS_QUEUED: + if (SCX_HAS_OP(dequeue)) + SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); + + if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, + SCX_OPSS_NONE)) + break; + fallthrough; + case SCX_OPSS_DISPATCHING: + /* + * If @p is being dispatched from the BPF scheduler to a DSQ, + * wait for the transfer to complete so that @p doesn't get + * added to its DSQ after dequeueing is complete. + * + * As we're waiting on DISPATCHING with the rq locked, the + * dispatching side shouldn't try to lock the rq while + * DISPATCHING is set. See dispatch_to_local_dsq(). + * + * DISPATCHING shouldn't have qseq set and control can reach + * here with NONE @opss from the above QUEUED case block. + * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. + */ + wait_ops_state(p, SCX_OPSS_DISPATCHING); + BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); + break; + } +} + +static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) +{ + if (!(p->scx.flags & SCX_TASK_QUEUED)) { + WARN_ON_ONCE(task_runnable(p)); + return true; + } + + ops_dequeue(p, deq_flags); + + /* + * A currently running task which is going off @rq first gets dequeued + * and then stops running. As we want running <-> stopping transitions + * to be contained within runnable <-> quiescent transitions, trigger + * ->stopping() early here instead of in put_prev_task_scx(). + * + * @p may go through multiple stopping <-> running transitions between + * here and put_prev_task_scx() if task attribute changes occur while + * balance_scx() leaves @rq unlocked. However, they don't contain any + * information meaningful to the BPF scheduler and can be suppressed by + * skipping the callbacks if the task is !QUEUED. + */ + if (SCX_HAS_OP(stopping) && task_current(rq, p)) { + update_curr_scx(rq); + SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); + } + + if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) + SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); + + if (deq_flags & SCX_DEQ_SLEEP) + p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; + else + p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; + + p->scx.flags &= ~SCX_TASK_QUEUED; + rq->scx.nr_running--; + sub_nr_running(rq, 1); + + dispatch_dequeue(rq, p); + return true; +} + +static void yield_task_scx(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + if (SCX_HAS_OP(yield)) + SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); + else + p->scx.slice = 0; +} + +static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) +{ + struct task_struct *from = rq->curr; + + if (SCX_HAS_OP(yield)) + return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); + else + return false; +} + +static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, + struct scx_dispatch_q *src_dsq, + struct rq *dst_rq) +{ + struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; + + /* @dsq is locked and @p is on @dst_rq */ + lockdep_assert_held(&src_dsq->lock); + lockdep_assert_rq_held(dst_rq); + + WARN_ON_ONCE(p->scx.holding_cpu >= 0); + + if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) + list_add(&p->scx.dsq_list.node, &dst_dsq->list); + else + list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); + + dsq_mod_nr(dst_dsq, 1); + p->scx.dsq = dst_dsq; +} + +#ifdef CONFIG_SMP +/** + * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ + * @p: task to move + * @enq_flags: %SCX_ENQ_* + * @src_rq: rq to move the task from, locked on entry, released on return + * @dst_rq: rq to move the task into, locked on return + * + * Move @p which is currently on @src_rq to @dst_rq's local DSQ. + */ +static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, + struct rq *src_rq, struct rq *dst_rq) +{ + lockdep_assert_rq_held(src_rq); + + /* the following marks @p MIGRATING which excludes dequeue */ + deactivate_task(src_rq, p, 0); + set_task_cpu(p, cpu_of(dst_rq)); + p->scx.sticky_cpu = cpu_of(dst_rq); + + raw_spin_rq_unlock(src_rq); + raw_spin_rq_lock(dst_rq); + + /* + * We want to pass scx-specific enq_flags but activate_task() will + * truncate the upper 32 bit. As we own @rq, we can pass them through + * @rq->scx.extra_enq_flags instead. + */ + WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); + WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); + dst_rq->scx.extra_enq_flags = enq_flags; + activate_task(dst_rq, p, 0); + dst_rq->scx.extra_enq_flags = 0; +} + +/* + * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two + * differences: + * + * - is_cpu_allowed() asks "Can this task run on this CPU?" while + * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to + * this CPU?". + * + * While migration is disabled, is_cpu_allowed() has to say "yes" as the task + * must be allowed to finish on the CPU that it's currently on regardless of + * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the + * BPF scheduler shouldn't attempt to migrate a task which has migration + * disabled. + * + * - The BPF scheduler is bypassed while the rq is offline and we can always say + * no to the BPF scheduler initiated migrations while offline. + */ +static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, + bool trigger_error) +{ + int cpu = cpu_of(rq); + + /* + * We don't require the BPF scheduler to avoid dispatching to offline + * CPUs mostly for convenience but also because CPUs can go offline + * between scx_bpf_dispatch() calls and here. Trigger error iff the + * picked CPU is outside the allowed mask. + */ + if (!task_allowed_on_cpu(p, cpu)) { + if (trigger_error) + scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", + cpu_of(rq), p->comm, p->pid); + return false; + } + + if (unlikely(is_migration_disabled(p))) + return false; + + if (!scx_rq_online(rq)) + return false; + + return true; +} + +/** + * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq + * @p: target task + * @dsq: locked DSQ @p is currently on + * @src_rq: rq @p is currently on, stable with @dsq locked + * + * Called with @dsq locked but no rq's locked. We want to move @p to a different + * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is + * required when transferring into a local DSQ. Even when transferring into a + * non-local DSQ, it's better to use the same mechanism to protect against + * dequeues and maintain the invariant that @p->scx.dsq can only change while + * @src_rq is locked, which e.g. scx_dump_task() depends on. + * + * We want to grab @src_rq but that can deadlock if we try while locking @dsq, + * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As + * this may race with dequeue, which can't drop the rq lock or fail, do a little + * dancing from our side. + * + * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets + * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu + * would be cleared to -1. While other cpus may have updated it to different + * values afterwards, as this operation can't be preempted or recurse, the + * holding_cpu can never become this CPU again before we're done. Thus, we can + * tell whether we lost to dequeue by testing whether the holding_cpu still + * points to this CPU. See dispatch_dequeue() for the counterpart. + * + * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is + * still valid. %false if lost to dequeue. + */ +static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, + struct scx_dispatch_q *dsq, + struct rq *src_rq) +{ + s32 cpu = raw_smp_processor_id(); + + lockdep_assert_held(&dsq->lock); + + WARN_ON_ONCE(p->scx.holding_cpu >= 0); + task_unlink_from_dsq(p, dsq); + p->scx.holding_cpu = cpu; + + raw_spin_unlock(&dsq->lock); + raw_spin_rq_lock(src_rq); + + /* task_rq couldn't have changed if we're still the holding cpu */ + return likely(p->scx.holding_cpu == cpu) && + !WARN_ON_ONCE(src_rq != task_rq(p)); +} + +static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, + struct scx_dispatch_q *dsq, struct rq *src_rq) +{ + raw_spin_rq_unlock(this_rq); + + if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { + move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); + return true; + } else { + raw_spin_rq_unlock(src_rq); + raw_spin_rq_lock(this_rq); + return false; + } +} +#else /* CONFIG_SMP */ +static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } +static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } +#endif /* CONFIG_SMP */ + +static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) +{ + struct task_struct *p; +retry: + /* + * The caller can't expect to successfully consume a task if the task's + * addition to @dsq isn't guaranteed to be visible somehow. Test + * @dsq->list without locking and skip if it seems empty. + */ + if (list_empty(&dsq->list)) + return false; + + raw_spin_lock(&dsq->lock); + + nldsq_for_each_task(p, dsq) { + struct rq *task_rq = task_rq(p); + + if (rq == task_rq) { + task_unlink_from_dsq(p, dsq); + move_local_task_to_local_dsq(p, 0, dsq, rq); + raw_spin_unlock(&dsq->lock); + return true; + } + + if (task_can_run_on_remote_rq(p, rq, false)) { + if (likely(consume_remote_task(rq, p, dsq, task_rq))) + return true; + goto retry; + } + } + + raw_spin_unlock(&dsq->lock); + return false; +} + +/** + * dispatch_to_local_dsq - Dispatch a task to a local dsq + * @rq: current rq which is locked + * @dst_dsq: destination DSQ + * @p: task to dispatch + * @enq_flags: %SCX_ENQ_* + * + * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local + * DSQ. This function performs all the synchronization dancing needed because + * local DSQs are protected with rq locks. + * + * The caller must have exclusive ownership of @p (e.g. through + * %SCX_OPSS_DISPATCHING). + */ +static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, + struct task_struct *p, u64 enq_flags) +{ + struct rq *src_rq = task_rq(p); + struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); + + /* + * We're synchronized against dequeue through DISPATCHING. As @p can't + * be dequeued, its task_rq and cpus_allowed are stable too. + * + * If dispatching to @rq that @p is already on, no lock dancing needed. + */ + if (rq == src_rq && rq == dst_rq) { + dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); + return; + } + +#ifdef CONFIG_SMP + if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { + dispatch_enqueue(&scx_dsq_global, p, enq_flags | SCX_ENQ_CLEAR_OPSS); + return; + } + + /* + * @p is on a possibly remote @src_rq which we need to lock to move the + * task. If dequeue is in progress, it'd be locking @src_rq and waiting + * on DISPATCHING, so we can't grab @src_rq lock while holding + * DISPATCHING. + * + * As DISPATCHING guarantees that @p is wholly ours, we can pretend that + * we're moving from a DSQ and use the same mechanism - mark the task + * under transfer with holding_cpu, release DISPATCHING and then follow + * the same protocol. See unlink_dsq_and_lock_src_rq(). + */ + p->scx.holding_cpu = raw_smp_processor_id(); + + /* store_release ensures that dequeue sees the above */ + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); + + /* switch to @src_rq lock */ + if (rq != src_rq) { + raw_spin_rq_unlock(rq); + raw_spin_rq_lock(src_rq); + } + + /* task_rq couldn't have changed if we're still the holding cpu */ + if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && + !WARN_ON_ONCE(src_rq != task_rq(p))) { + /* + * If @p is staying on the same rq, there's no need to go + * through the full deactivate/activate cycle. Optimize by + * abbreviating move_remote_task_to_local_dsq(). + */ + if (src_rq == dst_rq) { + p->scx.holding_cpu = -1; + dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); + } else { + move_remote_task_to_local_dsq(p, enq_flags, + src_rq, dst_rq); + } + + /* if the destination CPU is idle, wake it up */ + if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) + resched_curr(dst_rq); + } + + /* switch back to @rq lock */ + if (rq != dst_rq) { + raw_spin_rq_unlock(dst_rq); + raw_spin_rq_lock(rq); + } +#else /* CONFIG_SMP */ + BUG(); /* control can not reach here on UP */ +#endif /* CONFIG_SMP */ +} + +/** + * finish_dispatch - Asynchronously finish dispatching a task + * @rq: current rq which is locked + * @p: task to finish dispatching + * @qseq_at_dispatch: qseq when @p started getting dispatched + * @dsq_id: destination DSQ ID + * @enq_flags: %SCX_ENQ_* + * + * Dispatching to local DSQs may need to wait for queueing to complete or + * require rq lock dancing. As we don't wanna do either while inside + * ops.dispatch() to avoid locking order inversion, we split dispatching into + * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the + * task and its qseq. Once ops.dispatch() returns, this function is called to + * finish up. + * + * There is no guarantee that @p is still valid for dispatching or even that it + * was valid in the first place. Make sure that the task is still owned by the + * BPF scheduler and claim the ownership before dispatching. + */ +static void finish_dispatch(struct rq *rq, struct task_struct *p, + unsigned long qseq_at_dispatch, + u64 dsq_id, u64 enq_flags) +{ + struct scx_dispatch_q *dsq; + unsigned long opss; + + touch_core_sched_dispatch(rq, p); +retry: + /* + * No need for _acquire here. @p is accessed only after a successful + * try_cmpxchg to DISPATCHING. + */ + opss = atomic_long_read(&p->scx.ops_state); + + switch (opss & SCX_OPSS_STATE_MASK) { + case SCX_OPSS_DISPATCHING: + case SCX_OPSS_NONE: + /* someone else already got to it */ + return; + case SCX_OPSS_QUEUED: + /* + * If qseq doesn't match, @p has gone through at least one + * dispatch/dequeue and re-enqueue cycle between + * scx_bpf_dispatch() and here and we have no claim on it. + */ + if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) + return; + + /* + * While we know @p is accessible, we don't yet have a claim on + * it - the BPF scheduler is allowed to dispatch tasks + * spuriously and there can be a racing dequeue attempt. Let's + * claim @p by atomically transitioning it from QUEUED to + * DISPATCHING. + */ + if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, + SCX_OPSS_DISPATCHING))) + break; + goto retry; + case SCX_OPSS_QUEUEING: + /* + * do_enqueue_task() is in the process of transferring the task + * to the BPF scheduler while holding @p's rq lock. As we aren't + * holding any kernel or BPF resource that the enqueue path may + * depend upon, it's safe to wait. + */ + wait_ops_state(p, opss); + goto retry; + } + + BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); + + dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); + + if (dsq->id == SCX_DSQ_LOCAL) + dispatch_to_local_dsq(rq, dsq, p, enq_flags); + else + dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); +} + +static void flush_dispatch_buf(struct rq *rq) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + u32 u; + + for (u = 0; u < dspc->cursor; u++) { + struct scx_dsp_buf_ent *ent = &dspc->buf[u]; + + finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, + ent->enq_flags); + } + + dspc->nr_tasks += dspc->cursor; + dspc->cursor = 0; +} + +static int balance_one(struct rq *rq, struct task_struct *prev) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + bool prev_on_scx = prev->sched_class == &ext_sched_class; + int nr_loops = SCX_DSP_MAX_LOOPS; + + lockdep_assert_rq_held(rq); + rq->scx.flags |= SCX_RQ_IN_BALANCE; + rq->scx.flags &= ~SCX_RQ_BAL_KEEP; + + if (static_branch_unlikely(&scx_ops_cpu_preempt) && + unlikely(rq->scx.cpu_released)) { + /* + * If the previous sched_class for the current CPU was not SCX, + * notify the BPF scheduler that it again has control of the + * core. This callback complements ->cpu_release(), which is + * emitted in scx_next_task_picked(). + */ + if (SCX_HAS_OP(cpu_acquire)) + SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); + rq->scx.cpu_released = false; + } + + if (prev_on_scx) { + update_curr_scx(rq); + + /* + * If @prev is runnable & has slice left, it has priority and + * fetching more just increases latency for the fetched tasks. + * Tell pick_task_scx() to keep running @prev. If the BPF + * scheduler wants to handle this explicitly, it should + * implement ->cpu_release(). + * + * See scx_ops_disable_workfn() for the explanation on the + * bypassing test. + */ + if ((prev->scx.flags & SCX_TASK_QUEUED) && + prev->scx.slice && !scx_rq_bypassing(rq)) { + rq->scx.flags |= SCX_RQ_BAL_KEEP; + goto has_tasks; + } + } + + /* if there already are tasks to run, nothing to do */ + if (rq->scx.local_dsq.nr) + goto has_tasks; + + if (consume_dispatch_q(rq, &scx_dsq_global)) + goto has_tasks; + + if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) + goto no_tasks; + + dspc->rq = rq; + + /* + * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, + * the local DSQ might still end up empty after a successful + * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() + * produced some tasks, retry. The BPF scheduler may depend on this + * looping behavior to simplify its implementation. + */ + do { + dspc->nr_tasks = 0; + + SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), + prev_on_scx ? prev : NULL); + + flush_dispatch_buf(rq); + + if (rq->scx.local_dsq.nr) + goto has_tasks; + if (consume_dispatch_q(rq, &scx_dsq_global)) + goto has_tasks; + + /* + * ops.dispatch() can trap us in this loop by repeatedly + * dispatching ineligible tasks. Break out once in a while to + * allow the watchdog to run. As IRQ can't be enabled in + * balance(), we want to complete this scheduling cycle and then + * start a new one. IOW, we want to call resched_curr() on the + * next, most likely idle, task, not the current one. Use + * scx_bpf_kick_cpu() for deferred kicking. + */ + if (unlikely(!--nr_loops)) { + scx_bpf_kick_cpu(cpu_of(rq), 0); + break; + } + } while (dspc->nr_tasks); + +no_tasks: + /* + * Didn't find another task to run. Keep running @prev unless + * %SCX_OPS_ENQ_LAST is in effect. + */ + if ((prev->scx.flags & SCX_TASK_QUEUED) && + (!static_branch_unlikely(&scx_ops_enq_last) || + scx_rq_bypassing(rq))) { + rq->scx.flags |= SCX_RQ_BAL_KEEP; + goto has_tasks; + } + rq->scx.flags &= ~SCX_RQ_IN_BALANCE; + return false; + +has_tasks: + rq->scx.flags &= ~SCX_RQ_IN_BALANCE; + return true; +} + +static int balance_scx(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf) +{ + int ret; + + rq_unpin_lock(rq, rf); + + ret = balance_one(rq, prev); + +#ifdef CONFIG_SCHED_SMT + /* + * When core-sched is enabled, this ops.balance() call will be followed + * by pick_task_scx() on this CPU and the SMT siblings. Balance the + * siblings too. + */ + if (sched_core_enabled(rq)) { + const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); + int scpu; + + for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { + struct rq *srq = cpu_rq(scpu); + struct task_struct *sprev = srq->curr; + + WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); + update_rq_clock(srq); + balance_one(srq, sprev); + } + } +#endif + rq_repin_lock(rq, rf); + + return ret; +} + +static void process_ddsp_deferred_locals(struct rq *rq) +{ + struct task_struct *p; + + lockdep_assert_rq_held(rq); + + /* + * Now that @rq can be unlocked, execute the deferred enqueueing of + * tasks directly dispatched to the local DSQs of other CPUs. See + * direct_dispatch(). Keep popping from the head instead of using + * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq + * temporarily. + */ + while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, + struct task_struct, scx.dsq_list.node))) { + struct scx_dispatch_q *dsq; + + list_del_init(&p->scx.dsq_list.node); + + dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); + if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) + dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); + } +} + +static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) +{ + if (p->scx.flags & SCX_TASK_QUEUED) { + /* + * Core-sched might decide to execute @p before it is + * dispatched. Call ops_dequeue() to notify the BPF scheduler. + */ + ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); + dispatch_dequeue(rq, p); + } + + p->se.exec_start = rq_clock_task(rq); + + /* see dequeue_task_scx() on why we skip when !QUEUED */ + if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) + SCX_CALL_OP_TASK(SCX_KF_REST, running, p); + + clr_task_runnable(p, true); + + /* + * @p is getting newly scheduled or got kicked after someone updated its + * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). + */ + if ((p->scx.slice == SCX_SLICE_INF) != + (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { + if (p->scx.slice == SCX_SLICE_INF) + rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; + else + rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; + + sched_update_tick_dependency(rq); + + /* + * For now, let's refresh the load_avgs just when transitioning + * in and out of nohz. In the future, we might want to add a + * mechanism which calls the following periodically on + * tick-stopped CPUs. + */ + update_other_load_avgs(rq); + } +} + +static enum scx_cpu_preempt_reason +preempt_reason_from_class(const struct sched_class *class) +{ +#ifdef CONFIG_SMP + if (class == &stop_sched_class) + return SCX_CPU_PREEMPT_STOP; +#endif + if (class == &dl_sched_class) + return SCX_CPU_PREEMPT_DL; + if (class == &rt_sched_class) + return SCX_CPU_PREEMPT_RT; + return SCX_CPU_PREEMPT_UNKNOWN; +} + +static void switch_class(struct rq *rq, struct task_struct *next) +{ + const struct sched_class *next_class = next->sched_class; + +#ifdef CONFIG_SMP + /* + * Pairs with the smp_load_acquire() issued by a CPU in + * kick_cpus_irq_workfn() who is waiting for this CPU to perform a + * resched. + */ + smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); +#endif + if (!static_branch_unlikely(&scx_ops_cpu_preempt)) + return; + + /* + * The callback is conceptually meant to convey that the CPU is no + * longer under the control of SCX. Therefore, don't invoke the callback + * if the next class is below SCX (in which case the BPF scheduler has + * actively decided not to schedule any tasks on the CPU). + */ + if (sched_class_above(&ext_sched_class, next_class)) + return; + + /* + * At this point we know that SCX was preempted by a higher priority + * sched_class, so invoke the ->cpu_release() callback if we have not + * done so already. We only send the callback once between SCX being + * preempted, and it regaining control of the CPU. + * + * ->cpu_release() complements ->cpu_acquire(), which is emitted the + * next time that balance_scx() is invoked. + */ + if (!rq->scx.cpu_released) { + if (SCX_HAS_OP(cpu_release)) { + struct scx_cpu_release_args args = { + .reason = preempt_reason_from_class(next_class), + .task = next, + }; + + SCX_CALL_OP(SCX_KF_CPU_RELEASE, + cpu_release, cpu_of(rq), &args); + } + rq->scx.cpu_released = true; + } +} + +static void put_prev_task_scx(struct rq *rq, struct task_struct *p, + struct task_struct *next) +{ + update_curr_scx(rq); + + /* see dequeue_task_scx() on why we skip when !QUEUED */ + if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) + SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); + + if (p->scx.flags & SCX_TASK_QUEUED) { + set_task_runnable(rq, p); + + /* + * If @p has slice left and is being put, @p is getting + * preempted by a higher priority scheduler class or core-sched + * forcing a different task. Leave it at the head of the local + * DSQ. + */ + if (p->scx.slice && !scx_rq_bypassing(rq)) { + dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); + return; + } + + /* + * If @p is runnable but we're about to enter a lower + * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell + * ops.enqueue() that @p is the only one available for this cpu, + * which should trigger an explicit follow-up scheduling event. + */ + if (sched_class_above(&ext_sched_class, next->sched_class)) { + WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); + do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); + } else { + do_enqueue_task(rq, p, 0, -1); + } + } + + if (next && next->sched_class != &ext_sched_class) + switch_class(rq, next); +} + +static struct task_struct *first_local_task(struct rq *rq) +{ + return list_first_entry_or_null(&rq->scx.local_dsq.list, + struct task_struct, scx.dsq_list.node); +} + +static struct task_struct *pick_task_scx(struct rq *rq) +{ + struct task_struct *prev = rq->curr; + struct task_struct *p; + + /* + * If balance_scx() is telling us to keep running @prev, replenish slice + * if necessary and keep running @prev. Otherwise, pop the first one + * from the local DSQ. + * + * WORKAROUND: + * + * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just + * have gone through balance_scx(). Unfortunately, there currently is a + * bug where fair could say yes on balance() but no on pick_task(), + * which then ends up calling pick_task_scx() without preceding + * balance_scx(). + * + * For now, ignore cases where $prev is not on SCX. This isn't great and + * can theoretically lead to stalls. However, for switch_all cases, this + * happens only while a BPF scheduler is being loaded or unloaded, and, + * for partial cases, fair will likely keep triggering this CPU. + * + * Once fair is fixed, restore WARN_ON_ONCE(). + */ + if ((rq->scx.flags & SCX_RQ_BAL_KEEP) && + prev->sched_class == &ext_sched_class) { + p = prev; + if (!p->scx.slice) + p->scx.slice = SCX_SLICE_DFL; + } else { + p = first_local_task(rq); + if (!p) + return NULL; + + if (unlikely(!p->scx.slice)) { + if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { + printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", + p->comm, p->pid); + scx_warned_zero_slice = true; + } + p->scx.slice = SCX_SLICE_DFL; + } + } + + return p; +} + +#ifdef CONFIG_SCHED_CORE +/** + * scx_prio_less - Task ordering for core-sched + * @a: task A + * @b: task B + * + * Core-sched is implemented as an additional scheduling layer on top of the + * usual sched_class'es and needs to find out the expected task ordering. For + * SCX, core-sched calls this function to interrogate the task ordering. + * + * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used + * to implement the default task ordering. The older the timestamp, the higher + * prority the task - the global FIFO ordering matching the default scheduling + * behavior. + * + * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to + * implement FIFO ordering within each local DSQ. See pick_task_scx(). + */ +bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, + bool in_fi) +{ + /* + * The const qualifiers are dropped from task_struct pointers when + * calling ops.core_sched_before(). Accesses are controlled by the + * verifier. + */ + if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) + return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, + (struct task_struct *)a, + (struct task_struct *)b); + else + return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); +} +#endif /* CONFIG_SCHED_CORE */ + +#ifdef CONFIG_SMP + +static bool test_and_clear_cpu_idle(int cpu) +{ +#ifdef CONFIG_SCHED_SMT + /* + * SMT mask should be cleared whether we can claim @cpu or not. The SMT + * cluster is not wholly idle either way. This also prevents + * scx_pick_idle_cpu() from getting caught in an infinite loop. + */ + if (sched_smt_active()) { + const struct cpumask *smt = cpu_smt_mask(cpu); + + /* + * If offline, @cpu is not its own sibling and + * scx_pick_idle_cpu() can get caught in an infinite loop as + * @cpu is never cleared from idle_masks.smt. Ensure that @cpu + * is eventually cleared. + */ + if (cpumask_intersects(smt, idle_masks.smt)) + cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); + else if (cpumask_test_cpu(cpu, idle_masks.smt)) + __cpumask_clear_cpu(cpu, idle_masks.smt); + } +#endif + return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); +} + +static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) +{ + int cpu; + +retry: + if (sched_smt_active()) { + cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); + if (cpu < nr_cpu_ids) + goto found; + + if (flags & SCX_PICK_IDLE_CORE) + return -EBUSY; + } + + cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); + if (cpu >= nr_cpu_ids) + return -EBUSY; + +found: + if (test_and_clear_cpu_idle(cpu)) + return cpu; + else + goto retry; +} + +static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, + u64 wake_flags, bool *found) +{ + s32 cpu; + + *found = false; + + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return prev_cpu; + } + + /* + * If WAKE_SYNC, the waker's local DSQ is empty, and the system is + * under utilized, wake up @p to the local DSQ of the waker. Checking + * only for an empty local DSQ is insufficient as it could give the + * wakee an unfair advantage when the system is oversaturated. + * Checking only for the presence of idle CPUs is also insufficient as + * the local DSQ of the waker could have tasks piled up on it even if + * there is an idle core elsewhere on the system. + */ + cpu = smp_processor_id(); + if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 && + !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && + cpu_rq(cpu)->scx.local_dsq.nr == 0) { + if (cpumask_test_cpu(cpu, p->cpus_ptr)) + goto cpu_found; + } + + if (p->nr_cpus_allowed == 1) { + if (test_and_clear_cpu_idle(prev_cpu)) { + cpu = prev_cpu; + goto cpu_found; + } else { + return prev_cpu; + } + } + + /* + * If CPU has SMT, any wholly idle CPU is likely a better pick than + * partially idle @prev_cpu. + */ + if (sched_smt_active()) { + if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && + test_and_clear_cpu_idle(prev_cpu)) { + cpu = prev_cpu; + goto cpu_found; + } + + cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); + if (cpu >= 0) + goto cpu_found; + } + + if (test_and_clear_cpu_idle(prev_cpu)) { + cpu = prev_cpu; + goto cpu_found; + } + + cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); + if (cpu >= 0) + goto cpu_found; + + return prev_cpu; + +cpu_found: + *found = true; + return cpu; +} + +static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) +{ + /* + * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it + * can be a good migration opportunity with low cache and memory + * footprint. Returning a CPU different than @prev_cpu triggers + * immediate rq migration. However, for SCX, as the current rq + * association doesn't dictate where the task is going to run, this + * doesn't fit well. If necessary, we can later add a dedicated method + * which can decide to preempt self to force it through the regular + * scheduling path. + */ + if (unlikely(wake_flags & WF_EXEC)) + return prev_cpu; + + if (SCX_HAS_OP(select_cpu)) { + s32 cpu; + struct task_struct **ddsp_taskp; + + ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); + WARN_ON_ONCE(*ddsp_taskp); + *ddsp_taskp = p; + + cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, + select_cpu, p, prev_cpu, wake_flags); + *ddsp_taskp = NULL; + if (ops_cpu_valid(cpu, "from ops.select_cpu()")) + return cpu; + else + return prev_cpu; + } else { + bool found; + s32 cpu; + + cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); + if (found) { + p->scx.slice = SCX_SLICE_DFL; + p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; + } + return cpu; + } +} + +static void task_woken_scx(struct rq *rq, struct task_struct *p) +{ + run_deferred(rq); +} + +static void set_cpus_allowed_scx(struct task_struct *p, + struct affinity_context *ac) +{ + set_cpus_allowed_common(p, ac); + + /* + * The effective cpumask is stored in @p->cpus_ptr which may temporarily + * differ from the configured one in @p->cpus_mask. Always tell the bpf + * scheduler the effective one. + * + * Fine-grained memory write control is enforced by BPF making the const + * designation pointless. Cast it away when calling the operation. + */ + if (SCX_HAS_OP(set_cpumask)) + SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, + (struct cpumask *)p->cpus_ptr); +} + +static void reset_idle_masks(void) +{ + /* + * Consider all online cpus idle. Should converge to the actual state + * quickly. + */ + cpumask_copy(idle_masks.cpu, cpu_online_mask); + cpumask_copy(idle_masks.smt, cpu_online_mask); +} + +void __scx_update_idle(struct rq *rq, bool idle) +{ + int cpu = cpu_of(rq); + + if (SCX_HAS_OP(update_idle)) { + SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); + if (!static_branch_unlikely(&scx_builtin_idle_enabled)) + return; + } + + if (idle) + cpumask_set_cpu(cpu, idle_masks.cpu); + else + cpumask_clear_cpu(cpu, idle_masks.cpu); + +#ifdef CONFIG_SCHED_SMT + if (sched_smt_active()) { + const struct cpumask *smt = cpu_smt_mask(cpu); + + if (idle) { + /* + * idle_masks.smt handling is racy but that's fine as + * it's only for optimization and self-correcting. + */ + for_each_cpu(cpu, smt) { + if (!cpumask_test_cpu(cpu, idle_masks.cpu)) + return; + } + cpumask_or(idle_masks.smt, idle_masks.smt, smt); + } else { + cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); + } + } +#endif +} + +static void handle_hotplug(struct rq *rq, bool online) +{ + int cpu = cpu_of(rq); + + atomic_long_inc(&scx_hotplug_seq); + + if (online && SCX_HAS_OP(cpu_online)) + SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); + else if (!online && SCX_HAS_OP(cpu_offline)) + SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); + else + scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, + "cpu %d going %s, exiting scheduler", cpu, + online ? "online" : "offline"); +} + +void scx_rq_activate(struct rq *rq) +{ + handle_hotplug(rq, true); +} + +void scx_rq_deactivate(struct rq *rq) +{ + handle_hotplug(rq, false); +} + +static void rq_online_scx(struct rq *rq) +{ + rq->scx.flags |= SCX_RQ_ONLINE; +} + +static void rq_offline_scx(struct rq *rq) +{ + rq->scx.flags &= ~SCX_RQ_ONLINE; +} + +#else /* CONFIG_SMP */ + +static bool test_and_clear_cpu_idle(int cpu) { return false; } +static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } +static void reset_idle_masks(void) {} + +#endif /* CONFIG_SMP */ + +static bool check_rq_for_timeouts(struct rq *rq) +{ + struct task_struct *p; + struct rq_flags rf; + bool timed_out = false; + + rq_lock_irqsave(rq, &rf); + list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { + unsigned long last_runnable = p->scx.runnable_at; + + if (unlikely(time_after(jiffies, + last_runnable + scx_watchdog_timeout))) { + u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); + + scx_ops_error_kind(SCX_EXIT_ERROR_STALL, + "%s[%d] failed to run for %u.%03us", + p->comm, p->pid, + dur_ms / 1000, dur_ms % 1000); + timed_out = true; + break; + } + } + rq_unlock_irqrestore(rq, &rf); + + return timed_out; +} + +static void scx_watchdog_workfn(struct work_struct *work) +{ + int cpu; + + WRITE_ONCE(scx_watchdog_timestamp, jiffies); + + for_each_online_cpu(cpu) { + if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) + break; + + cond_resched(); + } + queue_delayed_work(system_unbound_wq, to_delayed_work(work), + scx_watchdog_timeout / 2); +} + +void scx_tick(struct rq *rq) +{ + unsigned long last_check; + + if (!scx_enabled()) + return; + + last_check = READ_ONCE(scx_watchdog_timestamp); + if (unlikely(time_after(jiffies, + last_check + READ_ONCE(scx_watchdog_timeout)))) { + u32 dur_ms = jiffies_to_msecs(jiffies - last_check); + + scx_ops_error_kind(SCX_EXIT_ERROR_STALL, + "watchdog failed to check in for %u.%03us", + dur_ms / 1000, dur_ms % 1000); + } + + update_other_load_avgs(rq); +} + +static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) +{ + update_curr_scx(rq); + + /* + * While disabling, always resched and refresh core-sched timestamp as + * we can't trust the slice management or ops.core_sched_before(). + */ + if (scx_rq_bypassing(rq)) { + curr->scx.slice = 0; + touch_core_sched(rq, curr); + } else if (SCX_HAS_OP(tick)) { + SCX_CALL_OP(SCX_KF_REST, tick, curr); + } + + if (!curr->scx.slice) + resched_curr(rq); +} + +#ifdef CONFIG_EXT_GROUP_SCHED +static struct cgroup *tg_cgrp(struct task_group *tg) +{ + /* + * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, + * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the + * root cgroup. + */ + if (tg && tg->css.cgroup) + return tg->css.cgroup; + else + return &cgrp_dfl_root.cgrp; +} + +#define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), + +#else /* CONFIG_EXT_GROUP_SCHED */ + +#define SCX_INIT_TASK_ARGS_CGROUP(tg) + +#endif /* CONFIG_EXT_GROUP_SCHED */ + +static enum scx_task_state scx_get_task_state(const struct task_struct *p) +{ + return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; +} + +static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) +{ + enum scx_task_state prev_state = scx_get_task_state(p); + bool warn = false; + + BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); + + switch (state) { + case SCX_TASK_NONE: + break; + case SCX_TASK_INIT: + warn = prev_state != SCX_TASK_NONE; + break; + case SCX_TASK_READY: + warn = prev_state == SCX_TASK_NONE; + break; + case SCX_TASK_ENABLED: + warn = prev_state != SCX_TASK_READY; + break; + default: + warn = true; + return; + } + + WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", + prev_state, state, p->comm, p->pid); + + p->scx.flags &= ~SCX_TASK_STATE_MASK; + p->scx.flags |= state << SCX_TASK_STATE_SHIFT; +} + +static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) +{ + int ret; + + p->scx.disallow = false; + + if (SCX_HAS_OP(init_task)) { + struct scx_init_task_args args = { + SCX_INIT_TASK_ARGS_CGROUP(tg) + .fork = fork, + }; + + ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); + if (unlikely(ret)) { + ret = ops_sanitize_err("init_task", ret); + return ret; + } + } + + scx_set_task_state(p, SCX_TASK_INIT); + + if (p->scx.disallow) { + if (!fork) { + struct rq *rq; + struct rq_flags rf; + + rq = task_rq_lock(p, &rf); + + /* + * We're in the load path and @p->policy will be applied + * right after. Reverting @p->policy here and rejecting + * %SCHED_EXT transitions from scx_check_setscheduler() + * guarantees that if ops.init_task() sets @p->disallow, + * @p can never be in SCX. + */ + if (p->policy == SCHED_EXT) { + p->policy = SCHED_NORMAL; + atomic_long_inc(&scx_nr_rejected); + } + + task_rq_unlock(rq, p, &rf); + } else if (p->policy == SCHED_EXT) { + scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", + p->comm, p->pid); + } + } + + p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; + return 0; +} + +static void scx_ops_enable_task(struct task_struct *p) +{ + u32 weight; + + lockdep_assert_rq_held(task_rq(p)); + + /* + * Set the weight before calling ops.enable() so that the scheduler + * doesn't see a stale value if they inspect the task struct. + */ + if (task_has_idle_policy(p)) + weight = WEIGHT_IDLEPRIO; + else + weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; + + p->scx.weight = sched_weight_to_cgroup(weight); + + if (SCX_HAS_OP(enable)) + SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); + scx_set_task_state(p, SCX_TASK_ENABLED); + + if (SCX_HAS_OP(set_weight)) + SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); +} + +static void scx_ops_disable_task(struct task_struct *p) +{ + lockdep_assert_rq_held(task_rq(p)); + WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); + + if (SCX_HAS_OP(disable)) + SCX_CALL_OP(SCX_KF_REST, disable, p); + scx_set_task_state(p, SCX_TASK_READY); +} + +static void scx_ops_exit_task(struct task_struct *p) +{ + struct scx_exit_task_args args = { + .cancelled = false, + }; + + lockdep_assert_rq_held(task_rq(p)); + + switch (scx_get_task_state(p)) { + case SCX_TASK_NONE: + return; + case SCX_TASK_INIT: + args.cancelled = true; + break; + case SCX_TASK_READY: + break; + case SCX_TASK_ENABLED: + scx_ops_disable_task(p); + break; + default: + WARN_ON_ONCE(true); + return; + } + + if (SCX_HAS_OP(exit_task)) + SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); + scx_set_task_state(p, SCX_TASK_NONE); +} + +void init_scx_entity(struct sched_ext_entity *scx) +{ + /* + * init_idle() calls this function again after fork sequence is + * complete. Don't touch ->tasks_node as it's already linked. + */ + memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); + + INIT_LIST_HEAD(&scx->dsq_list.node); + RB_CLEAR_NODE(&scx->dsq_priq); + scx->sticky_cpu = -1; + scx->holding_cpu = -1; + INIT_LIST_HEAD(&scx->runnable_node); + scx->runnable_at = jiffies; + scx->ddsp_dsq_id = SCX_DSQ_INVALID; + scx->slice = SCX_SLICE_DFL; +} + +void scx_pre_fork(struct task_struct *p) +{ + /* + * BPF scheduler enable/disable paths want to be able to iterate and + * update all tasks which can become complex when racing forks. As + * enable/disable are very cold paths, let's use a percpu_rwsem to + * exclude forks. + */ + percpu_down_read(&scx_fork_rwsem); +} + +int scx_fork(struct task_struct *p) +{ + percpu_rwsem_assert_held(&scx_fork_rwsem); + + if (scx_enabled()) + return scx_ops_init_task(p, task_group(p), true); + else + return 0; +} + +void scx_post_fork(struct task_struct *p) +{ + if (scx_enabled()) { + scx_set_task_state(p, SCX_TASK_READY); + + /* + * Enable the task immediately if it's running on sched_ext. + * Otherwise, it'll be enabled in switching_to_scx() if and + * when it's ever configured to run with a SCHED_EXT policy. + */ + if (p->sched_class == &ext_sched_class) { + struct rq_flags rf; + struct rq *rq; + + rq = task_rq_lock(p, &rf); + scx_ops_enable_task(p); + task_rq_unlock(rq, p, &rf); + } + } + + spin_lock_irq(&scx_tasks_lock); + list_add_tail(&p->scx.tasks_node, &scx_tasks); + spin_unlock_irq(&scx_tasks_lock); + + percpu_up_read(&scx_fork_rwsem); +} + +void scx_cancel_fork(struct task_struct *p) +{ + if (scx_enabled()) { + struct rq *rq; + struct rq_flags rf; + + rq = task_rq_lock(p, &rf); + WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); + scx_ops_exit_task(p); + task_rq_unlock(rq, p, &rf); + } + + percpu_up_read(&scx_fork_rwsem); +} + +void sched_ext_free(struct task_struct *p) +{ + unsigned long flags; + + spin_lock_irqsave(&scx_tasks_lock, flags); + list_del_init(&p->scx.tasks_node); + spin_unlock_irqrestore(&scx_tasks_lock, flags); + + /* + * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> + * ENABLED transitions can't race us. Disable ops for @p. + */ + if (scx_get_task_state(p) != SCX_TASK_NONE) { + struct rq_flags rf; + struct rq *rq; + + rq = task_rq_lock(p, &rf); + scx_ops_exit_task(p); + task_rq_unlock(rq, p, &rf); + } +} + +static void reweight_task_scx(struct rq *rq, struct task_struct *p, + const struct load_weight *lw) +{ + lockdep_assert_rq_held(task_rq(p)); + + p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); + if (SCX_HAS_OP(set_weight)) + SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); +} + +static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) +{ +} + +static void switching_to_scx(struct rq *rq, struct task_struct *p) +{ + scx_ops_enable_task(p); + + /* + * set_cpus_allowed_scx() is not called while @p is associated with a + * different scheduler class. Keep the BPF scheduler up-to-date. + */ + if (SCX_HAS_OP(set_cpumask)) + SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, + (struct cpumask *)p->cpus_ptr); +} + +static void switched_from_scx(struct rq *rq, struct task_struct *p) +{ + scx_ops_disable_task(p); +} + +static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} +static void switched_to_scx(struct rq *rq, struct task_struct *p) {} + +int scx_check_setscheduler(struct task_struct *p, int policy) +{ + lockdep_assert_rq_held(task_rq(p)); + + /* if disallow, reject transitioning into SCX */ + if (scx_enabled() && READ_ONCE(p->scx.disallow) && + p->policy != policy && policy == SCHED_EXT) + return -EACCES; + + return 0; +} + +#ifdef CONFIG_NO_HZ_FULL +bool scx_can_stop_tick(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + if (scx_rq_bypassing(rq)) + return false; + + if (p->sched_class != &ext_sched_class) + return true; + + /* + * @rq can dispatch from different DSQs, so we can't tell whether it + * needs the tick or not by looking at nr_running. Allow stopping ticks + * iff the BPF scheduler indicated so. See set_next_task_scx(). + */ + return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; +} +#endif + +#ifdef CONFIG_EXT_GROUP_SCHED + +DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); +static bool cgroup_warned_missing_weight; +static bool cgroup_warned_missing_idle; + +static void scx_cgroup_warn_missing_weight(struct task_group *tg) +{ + if (scx_ops_enable_state() == SCX_OPS_DISABLED || + cgroup_warned_missing_weight) + return; + + if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) + return; + + pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", + scx_ops.name); + cgroup_warned_missing_weight = true; +} + +static void scx_cgroup_warn_missing_idle(struct task_group *tg) +{ + if (scx_ops_enable_state() == SCX_OPS_DISABLED || + cgroup_warned_missing_idle) + return; + + if (!tg->idle) + return; + + pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", + scx_ops.name); + cgroup_warned_missing_idle = true; +} + +int scx_tg_online(struct task_group *tg) +{ + int ret = 0; + + WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); + + percpu_down_read(&scx_cgroup_rwsem); + + scx_cgroup_warn_missing_weight(tg); + + if (SCX_HAS_OP(cgroup_init)) { + struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; + + ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, + tg->css.cgroup, &args); + if (!ret) + tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; + else + ret = ops_sanitize_err("cgroup_init", ret); + } else { + tg->scx_flags |= SCX_TG_ONLINE; + } + + percpu_up_read(&scx_cgroup_rwsem); + return ret; +} + +void scx_tg_offline(struct task_group *tg) +{ + WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); + + percpu_down_read(&scx_cgroup_rwsem); + + if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) + SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); + tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); + + percpu_up_read(&scx_cgroup_rwsem); +} + +int scx_cgroup_can_attach(struct cgroup_taskset *tset) +{ + struct cgroup_subsys_state *css; + struct task_struct *p; + int ret; + + /* released in scx_finish/cancel_attach() */ + percpu_down_read(&scx_cgroup_rwsem); + + if (!scx_enabled()) + return 0; + + cgroup_taskset_for_each(p, css, tset) { + struct cgroup *from = tg_cgrp(task_group(p)); + struct cgroup *to = tg_cgrp(css_tg(css)); + + WARN_ON_ONCE(p->scx.cgrp_moving_from); + + /* + * sched_move_task() omits identity migrations. Let's match the + * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() + * always match one-to-one. + */ + if (from == to) + continue; + + if (SCX_HAS_OP(cgroup_prep_move)) { + ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, + p, from, css->cgroup); + if (ret) + goto err; + } + + p->scx.cgrp_moving_from = from; + } + + return 0; + +err: + cgroup_taskset_for_each(p, css, tset) { + if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) + SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, + p->scx.cgrp_moving_from, css->cgroup); + p->scx.cgrp_moving_from = NULL; + } + + percpu_up_read(&scx_cgroup_rwsem); + return ops_sanitize_err("cgroup_prep_move", ret); +} + +void scx_move_task(struct task_struct *p) +{ + if (!scx_enabled()) + return; + + /* + * We're called from sched_move_task() which handles both cgroup and + * autogroup moves. Ignore the latter. + * + * Also ignore exiting tasks, because in the exit path tasks transition + * from the autogroup to the root group, so task_group_is_autogroup() + * alone isn't able to catch exiting autogroup tasks. This is safe for + * cgroup_move(), because cgroup migrations never happen for PF_EXITING + * tasks. + */ + if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) + return; + + /* + * @p must have ops.cgroup_prep_move() called on it and thus + * cgrp_moving_from set. + */ + if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) + SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, + p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); + p->scx.cgrp_moving_from = NULL; +} + +void scx_cgroup_finish_attach(void) +{ + percpu_up_read(&scx_cgroup_rwsem); +} + +void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) +{ + struct cgroup_subsys_state *css; + struct task_struct *p; + + if (!scx_enabled()) + goto out_unlock; + + cgroup_taskset_for_each(p, css, tset) { + if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) + SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, + p->scx.cgrp_moving_from, css->cgroup); + p->scx.cgrp_moving_from = NULL; + } +out_unlock: + percpu_up_read(&scx_cgroup_rwsem); +} + +void scx_group_set_weight(struct task_group *tg, unsigned long weight) +{ + percpu_down_read(&scx_cgroup_rwsem); + + if (tg->scx_weight != weight) { + if (SCX_HAS_OP(cgroup_set_weight)) + SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, + tg_cgrp(tg), weight); + tg->scx_weight = weight; + } + + percpu_up_read(&scx_cgroup_rwsem); +} + +void scx_group_set_idle(struct task_group *tg, bool idle) +{ + percpu_down_read(&scx_cgroup_rwsem); + scx_cgroup_warn_missing_idle(tg); + percpu_up_read(&scx_cgroup_rwsem); +} + +static void scx_cgroup_lock(void) +{ + percpu_down_write(&scx_cgroup_rwsem); +} + +static void scx_cgroup_unlock(void) +{ + percpu_up_write(&scx_cgroup_rwsem); +} + +#else /* CONFIG_EXT_GROUP_SCHED */ + +static inline void scx_cgroup_lock(void) {} +static inline void scx_cgroup_unlock(void) {} + +#endif /* CONFIG_EXT_GROUP_SCHED */ + +/* + * Omitted operations: + * + * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task + * isn't tied to the CPU at that point. Preemption is implemented by resetting + * the victim task's slice to 0 and triggering reschedule on the target CPU. + * + * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. + * + * - task_fork/dead: We need fork/dead notifications for all tasks regardless of + * their current sched_class. Call them directly from sched core instead. + */ +DEFINE_SCHED_CLASS(ext) = { + .enqueue_task = enqueue_task_scx, + .dequeue_task = dequeue_task_scx, + .yield_task = yield_task_scx, + .yield_to_task = yield_to_task_scx, + + .wakeup_preempt = wakeup_preempt_scx, + + .balance = balance_scx, + .pick_task = pick_task_scx, + + .put_prev_task = put_prev_task_scx, + .set_next_task = set_next_task_scx, + +#ifdef CONFIG_SMP + .select_task_rq = select_task_rq_scx, + .task_woken = task_woken_scx, + .set_cpus_allowed = set_cpus_allowed_scx, + + .rq_online = rq_online_scx, + .rq_offline = rq_offline_scx, +#endif + + .task_tick = task_tick_scx, + + .switching_to = switching_to_scx, + .switched_from = switched_from_scx, + .switched_to = switched_to_scx, + .reweight_task = reweight_task_scx, + .prio_changed = prio_changed_scx, + + .update_curr = update_curr_scx, + +#ifdef CONFIG_UCLAMP_TASK + .uclamp_enabled = 1, +#endif +}; + +static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) +{ + memset(dsq, 0, sizeof(*dsq)); + + raw_spin_lock_init(&dsq->lock); + INIT_LIST_HEAD(&dsq->list); + dsq->id = dsq_id; +} + +static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) +{ + struct scx_dispatch_q *dsq; + int ret; + + if (dsq_id & SCX_DSQ_FLAG_BUILTIN) + return ERR_PTR(-EINVAL); + + dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); + if (!dsq) + return ERR_PTR(-ENOMEM); + + init_dsq(dsq, dsq_id); + + ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, + dsq_hash_params); + if (ret) { + kfree(dsq); + return ERR_PTR(ret); + } + return dsq; +} + +static void free_dsq_irq_workfn(struct irq_work *irq_work) +{ + struct llist_node *to_free = llist_del_all(&dsqs_to_free); + struct scx_dispatch_q *dsq, *tmp_dsq; + + llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) + kfree_rcu(dsq, rcu); +} + +static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); + +static void destroy_dsq(u64 dsq_id) +{ + struct scx_dispatch_q *dsq; + unsigned long flags; + + rcu_read_lock(); + + dsq = find_user_dsq(dsq_id); + if (!dsq) + goto out_unlock_rcu; + + raw_spin_lock_irqsave(&dsq->lock, flags); + + if (dsq->nr) { + scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", + dsq->id, dsq->nr); + goto out_unlock_dsq; + } + + if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) + goto out_unlock_dsq; + + /* + * Mark dead by invalidating ->id to prevent dispatch_enqueue() from + * queueing more tasks. As this function can be called from anywhere, + * freeing is bounced through an irq work to avoid nesting RCU + * operations inside scheduler locks. + */ + dsq->id = SCX_DSQ_INVALID; + llist_add(&dsq->free_node, &dsqs_to_free); + irq_work_queue(&free_dsq_irq_work); + +out_unlock_dsq: + raw_spin_unlock_irqrestore(&dsq->lock, flags); +out_unlock_rcu: + rcu_read_unlock(); +} + +#ifdef CONFIG_EXT_GROUP_SCHED +static void scx_cgroup_exit(void) +{ + struct cgroup_subsys_state *css; + + percpu_rwsem_assert_held(&scx_cgroup_rwsem); + + /* + * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk + * cgroups and exit all the inited ones, all online cgroups are exited. + */ + rcu_read_lock(); + css_for_each_descendant_post(css, &root_task_group.css) { + struct task_group *tg = css_tg(css); + + if (!(tg->scx_flags & SCX_TG_INITED)) + continue; + tg->scx_flags &= ~SCX_TG_INITED; + + if (!scx_ops.cgroup_exit) + continue; + + if (WARN_ON_ONCE(!css_tryget(css))) + continue; + rcu_read_unlock(); + + SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); + + rcu_read_lock(); + css_put(css); + } + rcu_read_unlock(); +} + +static int scx_cgroup_init(void) +{ + struct cgroup_subsys_state *css; + int ret; + + percpu_rwsem_assert_held(&scx_cgroup_rwsem); + + cgroup_warned_missing_weight = false; + cgroup_warned_missing_idle = false; + + /* + * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk + * cgroups and init, all online cgroups are initialized. + */ + rcu_read_lock(); + css_for_each_descendant_pre(css, &root_task_group.css) { + struct task_group *tg = css_tg(css); + struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; + + scx_cgroup_warn_missing_weight(tg); + scx_cgroup_warn_missing_idle(tg); + + if ((tg->scx_flags & + (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) + continue; + + if (!scx_ops.cgroup_init) { + tg->scx_flags |= SCX_TG_INITED; + continue; + } + + if (WARN_ON_ONCE(!css_tryget(css))) + continue; + rcu_read_unlock(); + + ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, + css->cgroup, &args); + if (ret) { + css_put(css); + return ret; + } + tg->scx_flags |= SCX_TG_INITED; + + rcu_read_lock(); + css_put(css); + } + rcu_read_unlock(); + + return 0; +} + +#else +static void scx_cgroup_exit(void) {} +static int scx_cgroup_init(void) { return 0; } +#endif + + +/******************************************************************************** + * Sysfs interface and ops enable/disable. + */ + +#define SCX_ATTR(_name) \ + static struct kobj_attribute scx_attr_##_name = { \ + .attr = { .name = __stringify(_name), .mode = 0444 }, \ + .show = scx_attr_##_name##_show, \ + } + +static ssize_t scx_attr_state_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%s\n", + scx_ops_enable_state_str[scx_ops_enable_state()]); +} +SCX_ATTR(state); + +static ssize_t scx_attr_switch_all_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); +} +SCX_ATTR(switch_all); + +static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); +} +SCX_ATTR(nr_rejected); + +static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); +} +SCX_ATTR(hotplug_seq); + +static struct attribute *scx_global_attrs[] = { + &scx_attr_state.attr, + &scx_attr_switch_all.attr, + &scx_attr_nr_rejected.attr, + &scx_attr_hotplug_seq.attr, + NULL, +}; + +static const struct attribute_group scx_global_attr_group = { + .attrs = scx_global_attrs, +}; + +static void scx_kobj_release(struct kobject *kobj) +{ + kfree(kobj); +} + +static ssize_t scx_attr_ops_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%s\n", scx_ops.name); +} +SCX_ATTR(ops); + +static struct attribute *scx_sched_attrs[] = { + &scx_attr_ops.attr, + NULL, +}; +ATTRIBUTE_GROUPS(scx_sched); + +static const struct kobj_type scx_ktype = { + .release = scx_kobj_release, + .sysfs_ops = &kobj_sysfs_ops, + .default_groups = scx_sched_groups, +}; + +static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) +{ + return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); +} + +static const struct kset_uevent_ops scx_uevent_ops = { + .uevent = scx_uevent, +}; + +/* + * Used by sched_fork() and __setscheduler_prio() to pick the matching + * sched_class. dl/rt are already handled. + */ +bool task_should_scx(struct task_struct *p) +{ + if (!scx_enabled() || + unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) + return false; + if (READ_ONCE(scx_switching_all)) + return true; + return p->policy == SCHED_EXT; +} + +/** + * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress + * + * Bypassing guarantees that all runnable tasks make forward progress without + * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might + * be held by tasks that the BPF scheduler is forgetting to run, which + * unfortunately also excludes toggling the static branches. + * + * Let's work around by overriding a couple ops and modifying behaviors based on + * the DISABLING state and then cycling the queued tasks through dequeue/enqueue + * to force global FIFO scheduling. + * + * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. + * %SCX_OPS_ENQ_LAST is also ignored. + * + * b. ops.dispatch() is ignored. + * + * c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice + * can't be trusted. Whenever a tick triggers, the running task is rotated to + * the tail of the queue with core_sched_at touched. + * + * d. pick_next_task() suppresses zero slice warning. + * + * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM + * operations. + * + * f. scx_prio_less() reverts to the default core_sched_at order. + */ +static void scx_ops_bypass(bool bypass) +{ + int depth, cpu; + + if (bypass) { + depth = atomic_inc_return(&scx_ops_bypass_depth); + WARN_ON_ONCE(depth <= 0); + if (depth != 1) + return; + } else { + depth = atomic_dec_return(&scx_ops_bypass_depth); + WARN_ON_ONCE(depth < 0); + if (depth != 0) + return; + } + + /* + * No task property is changing. We just need to make sure all currently + * queued tasks are re-queued according to the new scx_rq_bypassing() + * state. As an optimization, walk each rq's runnable_list instead of + * the scx_tasks list. + * + * This function can't trust the scheduler and thus can't use + * cpus_read_lock(). Walk all possible CPUs instead of online. + */ + for_each_possible_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + struct task_struct *p, *n; + + rq_lock_irqsave(rq, &rf); + + if (bypass) { + WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); + rq->scx.flags |= SCX_RQ_BYPASSING; + } else { + WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); + rq->scx.flags &= ~SCX_RQ_BYPASSING; + } + + /* + * We need to guarantee that no tasks are on the BPF scheduler + * while bypassing. Either we see enabled or the enable path + * sees scx_rq_bypassing() before moving tasks to SCX. + */ + if (!scx_enabled()) { + rq_unlock_irqrestore(rq, &rf); + continue; + } + + /* + * The use of list_for_each_entry_safe_reverse() is required + * because each task is going to be removed from and added back + * to the runnable_list during iteration. Because they're added + * to the tail of the list, safe reverse iteration can still + * visit all nodes. + */ + list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, + scx.runnable_node) { + struct sched_enq_and_set_ctx ctx; + + /* cycling deq/enq is enough, see the function comment */ + sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); + sched_enq_and_set_task(&ctx); + } + + rq_unlock_irqrestore(rq, &rf); + + /* kick to restore ticks */ + resched_cpu(cpu); + } +} + +static void free_exit_info(struct scx_exit_info *ei) +{ + kfree(ei->dump); + kfree(ei->msg); + kfree(ei->bt); + kfree(ei); +} + +static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) +{ + struct scx_exit_info *ei; + + ei = kzalloc(sizeof(*ei), GFP_KERNEL); + if (!ei) + return NULL; + + ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); + ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); + ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); + + if (!ei->bt || !ei->msg || !ei->dump) { + free_exit_info(ei); + return NULL; + } + + return ei; +} + +static const char *scx_exit_reason(enum scx_exit_kind kind) +{ + switch (kind) { + case SCX_EXIT_UNREG: + return "unregistered from user space"; + case SCX_EXIT_UNREG_BPF: + return "unregistered from BPF"; + case SCX_EXIT_UNREG_KERN: + return "unregistered from the main kernel"; + case SCX_EXIT_SYSRQ: + return "disabled by sysrq-S"; + case SCX_EXIT_ERROR: + return "runtime error"; + case SCX_EXIT_ERROR_BPF: + return "scx_bpf_error"; + case SCX_EXIT_ERROR_STALL: + return "runnable task stall"; + default: + return "<UNKNOWN>"; + } +} + +static void scx_ops_disable_workfn(struct kthread_work *work) +{ + struct scx_exit_info *ei = scx_exit_info; + struct scx_task_iter sti; + struct task_struct *p; + struct rhashtable_iter rht_iter; + struct scx_dispatch_q *dsq; + int i, kind; + + kind = atomic_read(&scx_exit_kind); + while (true) { + /* + * NONE indicates that a new scx_ops has been registered since + * disable was scheduled - don't kill the new ops. DONE + * indicates that the ops has already been disabled. + */ + if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) + return; + if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) + break; + } + ei->kind = kind; + ei->reason = scx_exit_reason(ei->kind); + + /* guarantee forward progress by bypassing scx_ops */ + scx_ops_bypass(true); + + switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { + case SCX_OPS_DISABLING: + WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); + break; + case SCX_OPS_DISABLED: + pr_warn("sched_ext: ops error detected without ops (%s)\n", + scx_exit_info->msg); + WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != + SCX_OPS_DISABLING); + goto done; + default: + break; + } + + /* + * Here, every runnable task is guaranteed to make forward progress and + * we can safely use blocking synchronization constructs. Actually + * disable ops. + */ + mutex_lock(&scx_ops_enable_mutex); + + static_branch_disable(&__scx_switched_all); + WRITE_ONCE(scx_switching_all, false); + + /* + * Avoid racing against fork and cgroup changes. See scx_ops_enable() + * for explanation on the locking order. + */ + percpu_down_write(&scx_fork_rwsem); + cpus_read_lock(); + scx_cgroup_lock(); + + spin_lock_irq(&scx_tasks_lock); + scx_task_iter_init(&sti); + /* + * The BPF scheduler is going away. All tasks including %TASK_DEAD ones + * must be switched out and exited synchronously. + */ + while ((p = scx_task_iter_next_locked(&sti))) { + const struct sched_class *old_class = p->sched_class; + struct sched_enq_and_set_ctx ctx; + + sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); + + p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); + __setscheduler_prio(p, p->prio); + check_class_changing(task_rq(p), p, old_class); + + sched_enq_and_set_task(&ctx); + + check_class_changed(task_rq(p), p, old_class, p->prio); + scx_ops_exit_task(p); + } + scx_task_iter_exit(&sti); + spin_unlock_irq(&scx_tasks_lock); + + /* no task is on scx, turn off all the switches and flush in-progress calls */ + static_branch_disable_cpuslocked(&__scx_ops_enabled); + for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) + static_branch_disable_cpuslocked(&scx_has_op[i]); + static_branch_disable_cpuslocked(&scx_ops_enq_last); + static_branch_disable_cpuslocked(&scx_ops_enq_exiting); + static_branch_disable_cpuslocked(&scx_ops_cpu_preempt); + static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); + synchronize_rcu(); + + scx_cgroup_exit(); + + scx_cgroup_unlock(); + cpus_read_unlock(); + percpu_up_write(&scx_fork_rwsem); + + if (ei->kind >= SCX_EXIT_ERROR) { + pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", + scx_ops.name, ei->reason); + + if (ei->msg[0] != '\0') + pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); + + stack_trace_print(ei->bt, ei->bt_len, 2); + } else { + pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", + scx_ops.name, ei->reason); + } + + if (scx_ops.exit) + SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); + + cancel_delayed_work_sync(&scx_watchdog_work); + + /* + * Delete the kobject from the hierarchy eagerly in addition to just + * dropping a reference. Otherwise, if the object is deleted + * asynchronously, sysfs could observe an object of the same name still + * in the hierarchy when another scheduler is loaded. + */ + kobject_del(scx_root_kobj); + kobject_put(scx_root_kobj); + scx_root_kobj = NULL; + + memset(&scx_ops, 0, sizeof(scx_ops)); + + rhashtable_walk_enter(&dsq_hash, &rht_iter); + do { + rhashtable_walk_start(&rht_iter); + + while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) + destroy_dsq(dsq->id); + + rhashtable_walk_stop(&rht_iter); + } while (dsq == ERR_PTR(-EAGAIN)); + rhashtable_walk_exit(&rht_iter); + + free_percpu(scx_dsp_ctx); + scx_dsp_ctx = NULL; + scx_dsp_max_batch = 0; + + free_exit_info(scx_exit_info); + scx_exit_info = NULL; + + mutex_unlock(&scx_ops_enable_mutex); + + WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != + SCX_OPS_DISABLING); +done: + scx_ops_bypass(false); +} + +static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); + +static void schedule_scx_ops_disable_work(void) +{ + struct kthread_worker *helper = READ_ONCE(scx_ops_helper); + + /* + * We may be called spuriously before the first bpf_sched_ext_reg(). If + * scx_ops_helper isn't set up yet, there's nothing to do. + */ + if (helper) + kthread_queue_work(helper, &scx_ops_disable_work); +} + +static void scx_ops_disable(enum scx_exit_kind kind) +{ + int none = SCX_EXIT_NONE; + + if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) + kind = SCX_EXIT_ERROR; + + atomic_try_cmpxchg(&scx_exit_kind, &none, kind); + + schedule_scx_ops_disable_work(); +} + +static void dump_newline(struct seq_buf *s) +{ + trace_sched_ext_dump(""); + + /* @s may be zero sized and seq_buf triggers WARN if so */ + if (s->size) + seq_buf_putc(s, '\n'); +} + +static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) +{ + va_list args; + +#ifdef CONFIG_TRACEPOINTS + if (trace_sched_ext_dump_enabled()) { + /* protected by scx_dump_state()::dump_lock */ + static char line_buf[SCX_EXIT_MSG_LEN]; + + va_start(args, fmt); + vscnprintf(line_buf, sizeof(line_buf), fmt, args); + va_end(args); + + trace_sched_ext_dump(line_buf); + } +#endif + /* @s may be zero sized and seq_buf triggers WARN if so */ + if (s->size) { + va_start(args, fmt); + seq_buf_vprintf(s, fmt, args); + va_end(args); + + seq_buf_putc(s, '\n'); + } +} + +static void dump_stack_trace(struct seq_buf *s, const char *prefix, + const unsigned long *bt, unsigned int len) +{ + unsigned int i; + + for (i = 0; i < len; i++) + dump_line(s, "%s%pS", prefix, (void *)bt[i]); +} + +static void ops_dump_init(struct seq_buf *s, const char *prefix) +{ + struct scx_dump_data *dd = &scx_dump_data; + + lockdep_assert_irqs_disabled(); + + dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ + dd->first = true; + dd->cursor = 0; + dd->s = s; + dd->prefix = prefix; +} + +static void ops_dump_flush(void) +{ + struct scx_dump_data *dd = &scx_dump_data; + char *line = dd->buf.line; + + if (!dd->cursor) + return; + + /* + * There's something to flush and this is the first line. Insert a blank + * line to distinguish ops dump. + */ + if (dd->first) { + dump_newline(dd->s); + dd->first = false; + } + + /* + * There may be multiple lines in $line. Scan and emit each line + * separately. + */ + while (true) { + char *end = line; + char c; + + while (*end != '\n' && *end != '\0') + end++; + + /* + * If $line overflowed, it may not have newline at the end. + * Always emit with a newline. + */ + c = *end; + *end = '\0'; + dump_line(dd->s, "%s%s", dd->prefix, line); + if (c == '\0') + break; + + /* move to the next line */ + end++; + if (*end == '\0') + break; + line = end; + } + + dd->cursor = 0; +} + +static void ops_dump_exit(void) +{ + ops_dump_flush(); + scx_dump_data.cpu = -1; +} + +static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, + struct task_struct *p, char marker) +{ + static unsigned long bt[SCX_EXIT_BT_LEN]; + char dsq_id_buf[19] = "(n/a)"; + unsigned long ops_state = atomic_long_read(&p->scx.ops_state); + unsigned int bt_len = 0; + + if (p->scx.dsq) + scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", + (unsigned long long)p->scx.dsq->id); + + dump_newline(s); + dump_line(s, " %c%c %s[%d] %+ldms", + marker, task_state_to_char(p), p->comm, p->pid, + jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); + dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", + scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, + p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, + ops_state >> SCX_OPSS_QSEQ_SHIFT); + dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", + p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, + p->scx.dsq_vtime); + dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); + + if (SCX_HAS_OP(dump_task)) { + ops_dump_init(s, " "); + SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); + ops_dump_exit(); + } + +#ifdef CONFIG_STACKTRACE + bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); +#endif + if (bt_len) { + dump_newline(s); + dump_stack_trace(s, " ", bt, bt_len); + } +} + +static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) +{ + static DEFINE_SPINLOCK(dump_lock); + static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; + struct scx_dump_ctx dctx = { + .kind = ei->kind, + .exit_code = ei->exit_code, + .reason = ei->reason, + .at_ns = ktime_get_ns(), + .at_jiffies = jiffies, + }; + struct seq_buf s; + unsigned long flags; + char *buf; + int cpu; + + spin_lock_irqsave(&dump_lock, flags); + + seq_buf_init(&s, ei->dump, dump_len); + + if (ei->kind == SCX_EXIT_NONE) { + dump_line(&s, "Debug dump triggered by %s", ei->reason); + } else { + dump_line(&s, "%s[%d] triggered exit kind %d:", + current->comm, current->pid, ei->kind); + dump_line(&s, " %s (%s)", ei->reason, ei->msg); + dump_newline(&s); + dump_line(&s, "Backtrace:"); + dump_stack_trace(&s, " ", ei->bt, ei->bt_len); + } + + if (SCX_HAS_OP(dump)) { + ops_dump_init(&s, ""); + SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); + ops_dump_exit(); + } + + dump_newline(&s); + dump_line(&s, "CPU states"); + dump_line(&s, "----------"); + + for_each_possible_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + struct task_struct *p; + struct seq_buf ns; + size_t avail, used; + bool idle; + + rq_lock(rq, &rf); + + idle = list_empty(&rq->scx.runnable_list) && + rq->curr->sched_class == &idle_sched_class; + + if (idle && !SCX_HAS_OP(dump_cpu)) + goto next; + + /* + * We don't yet know whether ops.dump_cpu() will produce output + * and we may want to skip the default CPU dump if it doesn't. + * Use a nested seq_buf to generate the standard dump so that we + * can decide whether to commit later. + */ + avail = seq_buf_get_buf(&s, &buf); + seq_buf_init(&ns, buf, avail); + + dump_newline(&ns); + dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", + cpu, rq->scx.nr_running, rq->scx.flags, + rq->scx.cpu_released, rq->scx.ops_qseq, + rq->scx.pnt_seq); + dump_line(&ns, " curr=%s[%d] class=%ps", + rq->curr->comm, rq->curr->pid, + rq->curr->sched_class); + if (!cpumask_empty(rq->scx.cpus_to_kick)) + dump_line(&ns, " cpus_to_kick : %*pb", + cpumask_pr_args(rq->scx.cpus_to_kick)); + if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) + dump_line(&ns, " idle_to_kick : %*pb", + cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); + if (!cpumask_empty(rq->scx.cpus_to_preempt)) + dump_line(&ns, " cpus_to_preempt: %*pb", + cpumask_pr_args(rq->scx.cpus_to_preempt)); + if (!cpumask_empty(rq->scx.cpus_to_wait)) + dump_line(&ns, " cpus_to_wait : %*pb", + cpumask_pr_args(rq->scx.cpus_to_wait)); + + used = seq_buf_used(&ns); + if (SCX_HAS_OP(dump_cpu)) { + ops_dump_init(&ns, " "); + SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); + ops_dump_exit(); + } + + /* + * If idle && nothing generated by ops.dump_cpu(), there's + * nothing interesting. Skip. + */ + if (idle && used == seq_buf_used(&ns)) + goto next; + + /* + * $s may already have overflowed when $ns was created. If so, + * calling commit on it will trigger BUG. + */ + if (avail) { + seq_buf_commit(&s, seq_buf_used(&ns)); + if (seq_buf_has_overflowed(&ns)) + seq_buf_set_overflow(&s); + } + + if (rq->curr->sched_class == &ext_sched_class) + scx_dump_task(&s, &dctx, rq->curr, '*'); + + list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) + scx_dump_task(&s, &dctx, p, ' '); + next: + rq_unlock(rq, &rf); + } + + if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) + memcpy(ei->dump + dump_len - sizeof(trunc_marker), + trunc_marker, sizeof(trunc_marker)); + + spin_unlock_irqrestore(&dump_lock, flags); +} + +static void scx_ops_error_irq_workfn(struct irq_work *irq_work) +{ + struct scx_exit_info *ei = scx_exit_info; + + if (ei->kind >= SCX_EXIT_ERROR) + scx_dump_state(ei, scx_ops.exit_dump_len); + + schedule_scx_ops_disable_work(); +} + +static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); + +static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, + s64 exit_code, + const char *fmt, ...) +{ + struct scx_exit_info *ei = scx_exit_info; + int none = SCX_EXIT_NONE; + va_list args; + + if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) + return; + + ei->exit_code = exit_code; + + if (kind >= SCX_EXIT_ERROR) + ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); + + va_start(args, fmt); + vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); + va_end(args); + + /* + * Set ei->kind and ->reason for scx_dump_state(). They'll be set again + * in scx_ops_disable_workfn(). + */ + ei->kind = kind; + ei->reason = scx_exit_reason(ei->kind); + + irq_work_queue(&scx_ops_error_irq_work); +} + +static struct kthread_worker *scx_create_rt_helper(const char *name) +{ + struct kthread_worker *helper; + + helper = kthread_create_worker(0, name); + if (helper) + sched_set_fifo(helper->task); + return helper; +} + +static void check_hotplug_seq(const struct sched_ext_ops *ops) +{ + unsigned long long global_hotplug_seq; + + /* + * If a hotplug event has occurred between when a scheduler was + * initialized, and when we were able to attach, exit and notify user + * space about it. + */ + if (ops->hotplug_seq) { + global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); + if (ops->hotplug_seq != global_hotplug_seq) { + scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, + "expected hotplug seq %llu did not match actual %llu", + ops->hotplug_seq, global_hotplug_seq); + } + } +} + +static int validate_ops(const struct sched_ext_ops *ops) +{ + /* + * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the + * ops.enqueue() callback isn't implemented. + */ + if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { + scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); + return -EINVAL; + } + + return 0; +} + +static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) +{ + struct scx_task_iter sti; + struct task_struct *p; + unsigned long timeout; + int i, cpu, ret; + + if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), + cpu_possible_mask)) { + pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation"); + return -EINVAL; + } + + mutex_lock(&scx_ops_enable_mutex); + + if (!scx_ops_helper) { + WRITE_ONCE(scx_ops_helper, + scx_create_rt_helper("sched_ext_ops_helper")); + if (!scx_ops_helper) { + ret = -ENOMEM; + goto err_unlock; + } + } + + if (scx_ops_enable_state() != SCX_OPS_DISABLED) { + ret = -EBUSY; + goto err_unlock; + } + + scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); + if (!scx_root_kobj) { + ret = -ENOMEM; + goto err_unlock; + } + + scx_root_kobj->kset = scx_kset; + ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); + if (ret < 0) + goto err; + + scx_exit_info = alloc_exit_info(ops->exit_dump_len); + if (!scx_exit_info) { + ret = -ENOMEM; + goto err_del; + } + + /* + * Set scx_ops, transition to PREPPING and clear exit info to arm the + * disable path. Failure triggers full disabling from here on. + */ + scx_ops = *ops; + + WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) != + SCX_OPS_DISABLED); + + atomic_set(&scx_exit_kind, SCX_EXIT_NONE); + scx_warned_zero_slice = false; + + atomic_long_set(&scx_nr_rejected, 0); + + for_each_possible_cpu(cpu) + cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; + + /* + * Keep CPUs stable during enable so that the BPF scheduler can track + * online CPUs by watching ->on/offline_cpu() after ->init(). + */ + cpus_read_lock(); + + if (scx_ops.init) { + ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); + if (ret) { + ret = ops_sanitize_err("init", ret); + goto err_disable_unlock_cpus; + } + } + + for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) + if (((void (**)(void))ops)[i]) + static_branch_enable_cpuslocked(&scx_has_op[i]); + + cpus_read_unlock(); + + ret = validate_ops(ops); + if (ret) + goto err_disable; + + WARN_ON_ONCE(scx_dsp_ctx); + scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; + scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, + scx_dsp_max_batch), + __alignof__(struct scx_dsp_ctx)); + if (!scx_dsp_ctx) { + ret = -ENOMEM; + goto err_disable; + } + + if (ops->timeout_ms) + timeout = msecs_to_jiffies(ops->timeout_ms); + else + timeout = SCX_WATCHDOG_MAX_TIMEOUT; + + WRITE_ONCE(scx_watchdog_timeout, timeout); + WRITE_ONCE(scx_watchdog_timestamp, jiffies); + queue_delayed_work(system_unbound_wq, &scx_watchdog_work, + scx_watchdog_timeout / 2); + + /* + * Lock out forks, cgroup on/offlining and moves before opening the + * floodgate so that they don't wander into the operations prematurely. + * + * We don't need to keep the CPUs stable but static_branch_*() requires + * cpus_read_lock() and scx_cgroup_rwsem must nest inside + * cpu_hotplug_lock because of the following dependency chain: + * + * cpu_hotplug_lock --> cgroup_threadgroup_rwsem --> scx_cgroup_rwsem + * + * So, we need to do cpus_read_lock() before scx_cgroup_lock() and use + * static_branch_*_cpuslocked(). + * + * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the + * following dependency chain: + * + * scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock + */ + percpu_down_write(&scx_fork_rwsem); + cpus_read_lock(); + scx_cgroup_lock(); + + check_hotplug_seq(ops); + + for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) + if (((void (**)(void))ops)[i]) + static_branch_enable_cpuslocked(&scx_has_op[i]); + + if (ops->flags & SCX_OPS_ENQ_LAST) + static_branch_enable_cpuslocked(&scx_ops_enq_last); + + if (ops->flags & SCX_OPS_ENQ_EXITING) + static_branch_enable_cpuslocked(&scx_ops_enq_exiting); + if (scx_ops.cpu_acquire || scx_ops.cpu_release) + static_branch_enable_cpuslocked(&scx_ops_cpu_preempt); + + if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { + reset_idle_masks(); + static_branch_enable_cpuslocked(&scx_builtin_idle_enabled); + } else { + static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); + } + + /* + * All cgroups should be initialized before letting in tasks. cgroup + * on/offlining and task migrations are already locked out. + */ + ret = scx_cgroup_init(); + if (ret) + goto err_disable_unlock_all; + + static_branch_enable_cpuslocked(&__scx_ops_enabled); + + /* + * Enable ops for every task. Fork is excluded by scx_fork_rwsem + * preventing new tasks from being added. No need to exclude tasks + * leaving as sched_ext_free() can handle both prepped and enabled + * tasks. Prep all tasks first and then enable them with preemption + * disabled. + */ + spin_lock_irq(&scx_tasks_lock); + + scx_task_iter_init(&sti); + while ((p = scx_task_iter_next_locked(&sti))) { + /* + * @p may already be dead, have lost all its usages counts and + * be waiting for RCU grace period before being freed. @p can't + * be initialized for SCX in such cases and should be ignored. + */ + if (!tryget_task_struct(p)) + continue; + + scx_task_iter_rq_unlock(&sti); + spin_unlock_irq(&scx_tasks_lock); + + ret = scx_ops_init_task(p, task_group(p), false); + if (ret) { + put_task_struct(p); + spin_lock_irq(&scx_tasks_lock); + scx_task_iter_exit(&sti); + spin_unlock_irq(&scx_tasks_lock); + pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n", + ret, p->comm, p->pid); + goto err_disable_unlock_all; + } + + put_task_struct(p); + spin_lock_irq(&scx_tasks_lock); + } + scx_task_iter_exit(&sti); + + /* + * All tasks are prepped but are still ops-disabled. Ensure that + * %current can't be scheduled out and switch everyone. + * preempt_disable() is necessary because we can't guarantee that + * %current won't be starved if scheduled out while switching. + */ + preempt_disable(); + + /* + * From here on, the disable path must assume that tasks have ops + * enabled and need to be recovered. + * + * Transition to ENABLING fails iff the BPF scheduler has already + * triggered scx_bpf_error(). Returning an error code here would lose + * the recorded error information. Exit indicating success so that the + * error is notified through ops.exit() with all the details. + */ + if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) { + preempt_enable(); + spin_unlock_irq(&scx_tasks_lock); + WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); + ret = 0; + goto err_disable_unlock_all; + } + + /* + * We're fully committed and can't fail. The PREPPED -> ENABLED + * transitions here are synchronized against sched_ext_free() through + * scx_tasks_lock. + */ + WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); + + scx_task_iter_init(&sti); + while ((p = scx_task_iter_next_locked(&sti))) { + const struct sched_class *old_class = p->sched_class; + struct sched_enq_and_set_ctx ctx; + + sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); + + scx_set_task_state(p, SCX_TASK_READY); + __setscheduler_prio(p, p->prio); + check_class_changing(task_rq(p), p, old_class); + + sched_enq_and_set_task(&ctx); + + check_class_changed(task_rq(p), p, old_class, p->prio); + } + scx_task_iter_exit(&sti); + + spin_unlock_irq(&scx_tasks_lock); + preempt_enable(); + scx_cgroup_unlock(); + cpus_read_unlock(); + percpu_up_write(&scx_fork_rwsem); + + /* see above ENABLING transition for the explanation on exiting with 0 */ + if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { + WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); + ret = 0; + goto err_disable; + } + + if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) + static_branch_enable(&__scx_switched_all); + + pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", + scx_ops.name, scx_switched_all() ? "" : " (partial)"); + kobject_uevent(scx_root_kobj, KOBJ_ADD); + mutex_unlock(&scx_ops_enable_mutex); + + return 0; + +err_del: + kobject_del(scx_root_kobj); +err: + kobject_put(scx_root_kobj); + scx_root_kobj = NULL; + if (scx_exit_info) { + free_exit_info(scx_exit_info); + scx_exit_info = NULL; + } +err_unlock: + mutex_unlock(&scx_ops_enable_mutex); + return ret; + +err_disable_unlock_all: + scx_cgroup_unlock(); + percpu_up_write(&scx_fork_rwsem); +err_disable_unlock_cpus: + cpus_read_unlock(); +err_disable: + mutex_unlock(&scx_ops_enable_mutex); + /* must be fully disabled before returning */ + scx_ops_disable(SCX_EXIT_ERROR); + kthread_flush_work(&scx_ops_disable_work); + return ret; +} + + +/******************************************************************************** + * bpf_struct_ops plumbing. + */ +#include <linux/bpf_verifier.h> +#include <linux/bpf.h> +#include <linux/btf.h> + +extern struct btf *btf_vmlinux; +static const struct btf_type *task_struct_type; +static u32 task_struct_type_id; + +static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, + enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + struct btf *btf = bpf_get_btf_vmlinux(); + const struct bpf_struct_ops_desc *st_ops_desc; + const struct btf_member *member; + const struct btf_type *t; + u32 btf_id, member_idx; + const char *mname; + + /* struct_ops op args are all sequential, 64-bit numbers */ + if (off != arg_n * sizeof(__u64)) + return false; + + /* btf_id should be the type id of struct sched_ext_ops */ + btf_id = prog->aux->attach_btf_id; + st_ops_desc = bpf_struct_ops_find(btf, btf_id); + if (!st_ops_desc) + return false; + + /* BTF type of struct sched_ext_ops */ + t = st_ops_desc->type; + + member_idx = prog->expected_attach_type; + if (member_idx >= btf_type_vlen(t)) + return false; + + /* + * Get the member name of this struct_ops program, which corresponds to + * a field in struct sched_ext_ops. For example, the member name of the + * dispatch struct_ops program (callback) is "dispatch". + */ + member = &btf_type_member(t)[member_idx]; + mname = btf_name_by_offset(btf_vmlinux, member->name_off); + + if (!strcmp(mname, op)) { + /* + * The value is a pointer to a type (struct task_struct) given + * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), + * however, can be a NULL (PTR_MAYBE_NULL). The BPF program + * should check the pointer to make sure it is not NULL before + * using it, or the verifier will reject the program. + * + * Longer term, this is something that should be addressed by + * BTF, and be fully contained within the verifier. + */ + info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; + info->btf = btf_vmlinux; + info->btf_id = task_struct_type_id; + + return true; + } + + return false; +} + +static bool bpf_scx_is_valid_access(int off, int size, + enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + if (type != BPF_READ) + return false; + if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || + set_arg_maybe_null("yield", 1, off, size, type, prog, info)) + return true; + if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) + return false; + if (off % size != 0) + return false; + + return btf_ctx_access(off, size, type, prog, info); +} + +static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, + const struct bpf_reg_state *reg, int off, + int size) +{ + const struct btf_type *t; + + t = btf_type_by_id(reg->btf, reg->btf_id); + if (t == task_struct_type) { + if (off >= offsetof(struct task_struct, scx.slice) && + off + size <= offsetofend(struct task_struct, scx.slice)) + return SCALAR_VALUE; + if (off >= offsetof(struct task_struct, scx.dsq_vtime) && + off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) + return SCALAR_VALUE; + if (off >= offsetof(struct task_struct, scx.disallow) && + off + size <= offsetofend(struct task_struct, scx.disallow)) + return SCALAR_VALUE; + } + + return -EACCES; +} + +static const struct bpf_func_proto * +bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + switch (func_id) { + case BPF_FUNC_task_storage_get: + return &bpf_task_storage_get_proto; + case BPF_FUNC_task_storage_delete: + return &bpf_task_storage_delete_proto; + default: + return bpf_base_func_proto(func_id, prog); + } +} + +static const struct bpf_verifier_ops bpf_scx_verifier_ops = { + .get_func_proto = bpf_scx_get_func_proto, + .is_valid_access = bpf_scx_is_valid_access, + .btf_struct_access = bpf_scx_btf_struct_access, +}; + +static int bpf_scx_init_member(const struct btf_type *t, + const struct btf_member *member, + void *kdata, const void *udata) +{ + const struct sched_ext_ops *uops = udata; + struct sched_ext_ops *ops = kdata; + u32 moff = __btf_member_bit_offset(t, member) / 8; + int ret; + + switch (moff) { + case offsetof(struct sched_ext_ops, dispatch_max_batch): + if (*(u32 *)(udata + moff) > INT_MAX) + return -E2BIG; + ops->dispatch_max_batch = *(u32 *)(udata + moff); + return 1; + case offsetof(struct sched_ext_ops, flags): + if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) + return -EINVAL; + ops->flags = *(u64 *)(udata + moff); + return 1; + case offsetof(struct sched_ext_ops, name): + ret = bpf_obj_name_cpy(ops->name, uops->name, + sizeof(ops->name)); + if (ret < 0) + return ret; + if (ret == 0) + return -EINVAL; + return 1; + case offsetof(struct sched_ext_ops, timeout_ms): + if (msecs_to_jiffies(*(u32 *)(udata + moff)) > + SCX_WATCHDOG_MAX_TIMEOUT) + return -E2BIG; + ops->timeout_ms = *(u32 *)(udata + moff); + return 1; + case offsetof(struct sched_ext_ops, exit_dump_len): + ops->exit_dump_len = + *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; + return 1; + case offsetof(struct sched_ext_ops, hotplug_seq): + ops->hotplug_seq = *(u64 *)(udata + moff); + return 1; + } + + return 0; +} + +static int bpf_scx_check_member(const struct btf_type *t, + const struct btf_member *member, + const struct bpf_prog *prog) +{ + u32 moff = __btf_member_bit_offset(t, member) / 8; + + switch (moff) { + case offsetof(struct sched_ext_ops, init_task): +#ifdef CONFIG_EXT_GROUP_SCHED + case offsetof(struct sched_ext_ops, cgroup_init): + case offsetof(struct sched_ext_ops, cgroup_exit): + case offsetof(struct sched_ext_ops, cgroup_prep_move): +#endif + case offsetof(struct sched_ext_ops, cpu_online): + case offsetof(struct sched_ext_ops, cpu_offline): + case offsetof(struct sched_ext_ops, init): + case offsetof(struct sched_ext_ops, exit): + break; + default: + if (prog->sleepable) + return -EINVAL; + } + + return 0; +} + +static int bpf_scx_reg(void *kdata, struct bpf_link *link) +{ + return scx_ops_enable(kdata, link); +} + +static void bpf_scx_unreg(void *kdata, struct bpf_link *link) +{ + scx_ops_disable(SCX_EXIT_UNREG); + kthread_flush_work(&scx_ops_disable_work); +} + +static int bpf_scx_init(struct btf *btf) +{ + s32 type_id; + + type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); + if (type_id < 0) + return -EINVAL; + task_struct_type = btf_type_by_id(btf, type_id); + task_struct_type_id = type_id; + + return 0; +} + +static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) +{ + /* + * sched_ext does not support updating the actively-loaded BPF + * scheduler, as registering a BPF scheduler can always fail if the + * scheduler returns an error code for e.g. ops.init(), ops.init_task(), + * etc. Similarly, we can always race with unregistration happening + * elsewhere, such as with sysrq. + */ + return -EOPNOTSUPP; +} + +static int bpf_scx_validate(void *kdata) +{ + return 0; +} + +static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } +static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} +static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} +static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} +static void tick_stub(struct task_struct *p) {} +static void runnable_stub(struct task_struct *p, u64 enq_flags) {} +static void running_stub(struct task_struct *p) {} +static void stopping_stub(struct task_struct *p, bool runnable) {} +static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} +static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } +static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } +static void set_weight_stub(struct task_struct *p, u32 weight) {} +static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} +static void update_idle_stub(s32 cpu, bool idle) {} +static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} +static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} +static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } +static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} +static void enable_stub(struct task_struct *p) {} +static void disable_stub(struct task_struct *p) {} +#ifdef CONFIG_EXT_GROUP_SCHED +static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } +static void cgroup_exit_stub(struct cgroup *cgrp) {} +static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } +static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} +static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} +static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {} +#endif +static void cpu_online_stub(s32 cpu) {} +static void cpu_offline_stub(s32 cpu) {} +static s32 init_stub(void) { return -EINVAL; } +static void exit_stub(struct scx_exit_info *info) {} +static void dump_stub(struct scx_dump_ctx *ctx) {} +static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} +static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {} + +static struct sched_ext_ops __bpf_ops_sched_ext_ops = { + .select_cpu = select_cpu_stub, + .enqueue = enqueue_stub, + .dequeue = dequeue_stub, + .dispatch = dispatch_stub, + .tick = tick_stub, + .runnable = runnable_stub, + .running = running_stub, + .stopping = stopping_stub, + .quiescent = quiescent_stub, + .yield = yield_stub, + .core_sched_before = core_sched_before_stub, + .set_weight = set_weight_stub, + .set_cpumask = set_cpumask_stub, + .update_idle = update_idle_stub, + .cpu_acquire = cpu_acquire_stub, + .cpu_release = cpu_release_stub, + .init_task = init_task_stub, + .exit_task = exit_task_stub, + .enable = enable_stub, + .disable = disable_stub, +#ifdef CONFIG_EXT_GROUP_SCHED + .cgroup_init = cgroup_init_stub, + .cgroup_exit = cgroup_exit_stub, + .cgroup_prep_move = cgroup_prep_move_stub, + .cgroup_move = cgroup_move_stub, + .cgroup_cancel_move = cgroup_cancel_move_stub, + .cgroup_set_weight = cgroup_set_weight_stub, +#endif + .cpu_online = cpu_online_stub, + .cpu_offline = cpu_offline_stub, + .init = init_stub, + .exit = exit_stub, + .dump = dump_stub, + .dump_cpu = dump_cpu_stub, + .dump_task = dump_task_stub, +}; + +static struct bpf_struct_ops bpf_sched_ext_ops = { + .verifier_ops = &bpf_scx_verifier_ops, + .reg = bpf_scx_reg, + .unreg = bpf_scx_unreg, + .check_member = bpf_scx_check_member, + .init_member = bpf_scx_init_member, + .init = bpf_scx_init, + .update = bpf_scx_update, + .validate = bpf_scx_validate, + .name = "sched_ext_ops", + .owner = THIS_MODULE, + .cfi_stubs = &__bpf_ops_sched_ext_ops +}; + + +/******************************************************************************** + * System integration and init. + */ + +static void sysrq_handle_sched_ext_reset(u8 key) +{ + if (scx_ops_helper) + scx_ops_disable(SCX_EXIT_SYSRQ); + else + pr_info("sched_ext: BPF scheduler not yet used\n"); +} + +static const struct sysrq_key_op sysrq_sched_ext_reset_op = { + .handler = sysrq_handle_sched_ext_reset, + .help_msg = "reset-sched-ext(S)", + .action_msg = "Disable sched_ext and revert all tasks to CFS", + .enable_mask = SYSRQ_ENABLE_RTNICE, +}; + +static void sysrq_handle_sched_ext_dump(u8 key) +{ + struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; + + if (scx_enabled()) + scx_dump_state(&ei, 0); +} + +static const struct sysrq_key_op sysrq_sched_ext_dump_op = { + .handler = sysrq_handle_sched_ext_dump, + .help_msg = "dump-sched-ext(D)", + .action_msg = "Trigger sched_ext debug dump", + .enable_mask = SYSRQ_ENABLE_RTNICE, +}; + +static bool can_skip_idle_kick(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + + /* + * We can skip idle kicking if @rq is going to go through at least one + * full SCX scheduling cycle before going idle. Just checking whether + * curr is not idle is insufficient because we could be racing + * balance_one() trying to pull the next task from a remote rq, which + * may fail, and @rq may become idle afterwards. + * + * The race window is small and we don't and can't guarantee that @rq is + * only kicked while idle anyway. Skip only when sure. + */ + return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); +} + +static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) +{ + struct rq *rq = cpu_rq(cpu); + struct scx_rq *this_scx = &this_rq->scx; + bool should_wait = false; + unsigned long flags; + + raw_spin_rq_lock_irqsave(rq, flags); + + /* + * During CPU hotplug, a CPU may depend on kicking itself to make + * forward progress. Allow kicking self regardless of online state. + */ + if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { + if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { + if (rq->curr->sched_class == &ext_sched_class) + rq->curr->scx.slice = 0; + cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); + } + + if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { + pseqs[cpu] = rq->scx.pnt_seq; + should_wait = true; + } + + resched_curr(rq); + } else { + cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); + cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); + } + + raw_spin_rq_unlock_irqrestore(rq, flags); + + return should_wait; +} + +static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long flags; + + raw_spin_rq_lock_irqsave(rq, flags); + + if (!can_skip_idle_kick(rq) && + (cpu_online(cpu) || cpu == cpu_of(this_rq))) + resched_curr(rq); + + raw_spin_rq_unlock_irqrestore(rq, flags); +} + +static void kick_cpus_irq_workfn(struct irq_work *irq_work) +{ + struct rq *this_rq = this_rq(); + struct scx_rq *this_scx = &this_rq->scx; + unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); + bool should_wait = false; + s32 cpu; + + for_each_cpu(cpu, this_scx->cpus_to_kick) { + should_wait |= kick_one_cpu(cpu, this_rq, pseqs); + cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); + cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); + } + + for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { + kick_one_cpu_if_idle(cpu, this_rq); + cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); + } + + if (!should_wait) + return; + + for_each_cpu(cpu, this_scx->cpus_to_wait) { + unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; + + if (cpu != cpu_of(this_rq)) { + /* + * Pairs with smp_store_release() issued by this CPU in + * scx_next_task_picked() on the resched path. + * + * We busy-wait here to guarantee that no other task can + * be scheduled on our core before the target CPU has + * entered the resched path. + */ + while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) + cpu_relax(); + } + + cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); + } +} + +/** + * print_scx_info - print out sched_ext scheduler state + * @log_lvl: the log level to use when printing + * @p: target task + * + * If a sched_ext scheduler is enabled, print the name and state of the + * scheduler. If @p is on sched_ext, print further information about the task. + * + * This function can be safely called on any task as long as the task_struct + * itself is accessible. While safe, this function isn't synchronized and may + * print out mixups or garbages of limited length. + */ +void print_scx_info(const char *log_lvl, struct task_struct *p) +{ + enum scx_ops_enable_state state = scx_ops_enable_state(); + const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; + char runnable_at_buf[22] = "?"; + struct sched_class *class; + unsigned long runnable_at; + + if (state == SCX_OPS_DISABLED) + return; + + /* + * Carefully check if the task was running on sched_ext, and then + * carefully copy the time it's been runnable, and its state. + */ + if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || + class != &ext_sched_class) { + printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, + scx_ops_enable_state_str[state], all); + return; + } + + if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, + sizeof(runnable_at))) + scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", + jiffies_delta_msecs(runnable_at, jiffies)); + + /* print everything onto one line to conserve console space */ + printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", + log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, + runnable_at_buf); +} + +static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) +{ + /* + * SCX schedulers often have userspace components which are sometimes + * involved in critial scheduling paths. PM operations involve freezing + * userspace which can lead to scheduling misbehaviors including stalls. + * Let's bypass while PM operations are in progress. + */ + switch (event) { + case PM_HIBERNATION_PREPARE: + case PM_SUSPEND_PREPARE: + case PM_RESTORE_PREPARE: + scx_ops_bypass(true); + break; + case PM_POST_HIBERNATION: + case PM_POST_SUSPEND: + case PM_POST_RESTORE: + scx_ops_bypass(false); + break; + } + + return NOTIFY_OK; +} + +static struct notifier_block scx_pm_notifier = { + .notifier_call = scx_pm_handler, +}; + +void __init init_sched_ext_class(void) +{ + s32 cpu, v; + + /* + * The following is to prevent the compiler from optimizing out the enum + * definitions so that BPF scheduler implementations can use them + * through the generated vmlinux.h. + */ + WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | + SCX_TG_ONLINE); + + BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); + init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL); +#ifdef CONFIG_SMP + BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); + BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); +#endif + scx_kick_cpus_pnt_seqs = + __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, + __alignof__(scx_kick_cpus_pnt_seqs[0])); + BUG_ON(!scx_kick_cpus_pnt_seqs); + + for_each_possible_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + + init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); + INIT_LIST_HEAD(&rq->scx.runnable_list); + INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); + + BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); + init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); + init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); + + if (cpu_online(cpu)) + cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; + } + + register_sysrq_key('S', &sysrq_sched_ext_reset_op); + register_sysrq_key('D', &sysrq_sched_ext_dump_op); + INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); +} + + +/******************************************************************************** + * Helpers that can be called from the BPF scheduler. + */ +#include <linux/btf_ids.h> + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() + * @p: task_struct to select a CPU for + * @prev_cpu: CPU @p was on previously + * @wake_flags: %SCX_WAKE_* flags + * @is_idle: out parameter indicating whether the returned CPU is idle + * + * Can only be called from ops.select_cpu() if the built-in CPU selection is + * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. + * @p, @prev_cpu and @wake_flags match ops.select_cpu(). + * + * Returns the picked CPU with *@is_idle indicating whether the picked CPU is + * currently idle and thus a good candidate for direct dispatching. + */ +__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, + u64 wake_flags, bool *is_idle) +{ + if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { + *is_idle = false; + return prev_cpu; + } +#ifdef CONFIG_SMP + return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); +#else + *is_idle = false; + return prev_cpu; +#endif +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) +BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) +BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) + +static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_select_cpu, +}; + +static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) +{ + if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) + return false; + + lockdep_assert_irqs_disabled(); + + if (unlikely(!p)) { + scx_ops_error("called with NULL task"); + return false; + } + + if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { + scx_ops_error("invalid enq_flags 0x%llx", enq_flags); + return false; + } + + return true; +} + +static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + struct task_struct *ddsp_task; + + ddsp_task = __this_cpu_read(direct_dispatch_task); + if (ddsp_task) { + mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); + return; + } + + if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { + scx_ops_error("dispatch buffer overflow"); + return; + } + + dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ + .task = p, + .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, + .dsq_id = dsq_id, + .enq_flags = enq_flags, + }; +} + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ + * @p: task_struct to dispatch + * @dsq_id: DSQ to dispatch to + * @slice: duration @p can run for in nsecs, 0 to keep the current value + * @enq_flags: SCX_ENQ_* + * + * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe + * to call this function spuriously. Can be called from ops.enqueue(), + * ops.select_cpu(), and ops.dispatch(). + * + * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch + * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be + * used to target the local DSQ of a CPU other than the enqueueing one. Use + * ops.select_cpu() to be on the target CPU in the first place. + * + * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p + * will be directly dispatched to the corresponding dispatch queue after + * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be + * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). + * @enq_flags are OR'd with the enqueue flags on the enqueue path before the + * task is dispatched. + * + * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id + * and this function can be called upto ops.dispatch_max_batch times to dispatch + * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the + * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. + * + * This function doesn't have any locking restrictions and may be called under + * BPF locks (in the future when BPF introduces more flexible locking). + * + * @p is allowed to run for @slice. The scheduling path is triggered on slice + * exhaustion. If zero, the current residual slice is maintained. If + * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with + * scx_bpf_kick_cpu() to trigger scheduling. + */ +__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, + u64 enq_flags) +{ + if (!scx_dispatch_preamble(p, enq_flags)) + return; + + if (slice) + p->scx.slice = slice; + else + p->scx.slice = p->scx.slice ?: 1; + + scx_dispatch_commit(p, dsq_id, enq_flags); +} + +/** + * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ + * @p: task_struct to dispatch + * @dsq_id: DSQ to dispatch to + * @slice: duration @p can run for in nsecs, 0 to keep the current value + * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ + * @enq_flags: SCX_ENQ_* + * + * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. + * Tasks queued into the priority queue are ordered by @vtime and always + * consumed after the tasks in the FIFO queue. All other aspects are identical + * to scx_bpf_dispatch(). + * + * @vtime ordering is according to time_before64() which considers wrapping. A + * numerically larger vtime may indicate an earlier position in the ordering and + * vice-versa. + */ +__bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, + u64 slice, u64 vtime, u64 enq_flags) +{ + if (!scx_dispatch_preamble(p, enq_flags)) + return; + + if (slice) + p->scx.slice = slice; + else + p->scx.slice = p->scx.slice ?: 1; + + p->scx.dsq_vtime = vtime; + + scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) +BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) +BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) + +static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_enqueue_dispatch, +}; + +static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit, + struct task_struct *p, u64 dsq_id, + u64 enq_flags) +{ + struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; + struct rq *this_rq, *src_rq, *dst_rq, *locked_rq; + bool dispatched = false; + bool in_balance; + unsigned long flags; + + if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) + return false; + + /* + * Can be called from either ops.dispatch() locking this_rq() or any + * context where no rq lock is held. If latter, lock @p's task_rq which + * we'll likely need anyway. + */ + src_rq = task_rq(p); + + local_irq_save(flags); + this_rq = this_rq(); + in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; + + if (in_balance) { + if (this_rq != src_rq) { + raw_spin_rq_unlock(this_rq); + raw_spin_rq_lock(src_rq); + } + } else { + raw_spin_rq_lock(src_rq); + } + + locked_rq = src_rq; + raw_spin_lock(&src_dsq->lock); + + /* + * Did someone else get to it? @p could have already left $src_dsq, got + * re-enqueud, or be in the process of being consumed by someone else. + */ + if (unlikely(p->scx.dsq != src_dsq || + u32_before(kit->cursor.priv, p->scx.dsq_seq) || + p->scx.holding_cpu >= 0) || + WARN_ON_ONCE(src_rq != task_rq(p))) { + raw_spin_unlock(&src_dsq->lock); + goto out; + } + + /* @p is still on $src_dsq and stable, determine the destination */ + dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); + + if (dst_dsq->id == SCX_DSQ_LOCAL) { + dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); + if (!task_can_run_on_remote_rq(p, dst_rq, true)) { + dst_dsq = &scx_dsq_global; + dst_rq = src_rq; + } + } else { + /* no need to migrate if destination is a non-local DSQ */ + dst_rq = src_rq; + } + + /* + * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different + * CPU, @p will be migrated. + */ + if (dst_dsq->id == SCX_DSQ_LOCAL) { + /* @p is going from a non-local DSQ to a local DSQ */ + if (src_rq == dst_rq) { + task_unlink_from_dsq(p, src_dsq); + move_local_task_to_local_dsq(p, enq_flags, + src_dsq, dst_rq); + raw_spin_unlock(&src_dsq->lock); + } else { + raw_spin_unlock(&src_dsq->lock); + move_remote_task_to_local_dsq(p, enq_flags, + src_rq, dst_rq); + locked_rq = dst_rq; + } + } else { + /* + * @p is going from a non-local DSQ to a non-local DSQ. As + * $src_dsq is already locked, do an abbreviated dequeue. + */ + task_unlink_from_dsq(p, src_dsq); + p->scx.dsq = NULL; + raw_spin_unlock(&src_dsq->lock); + + if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) + p->scx.dsq_vtime = kit->vtime; + dispatch_enqueue(dst_dsq, p, enq_flags); + } + + if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) + p->scx.slice = kit->slice; + + dispatched = true; +out: + if (in_balance) { + if (this_rq != locked_rq) { + raw_spin_rq_unlock(locked_rq); + raw_spin_rq_lock(this_rq); + } + } else { + raw_spin_rq_unlock_irqrestore(locked_rq, flags); + } + + kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | + __SCX_DSQ_ITER_HAS_VTIME); + return dispatched; +} + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots + * + * Can only be called from ops.dispatch(). + */ +__bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) +{ + if (!scx_kf_allowed(SCX_KF_DISPATCH)) + return 0; + + return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); +} + +/** + * scx_bpf_dispatch_cancel - Cancel the latest dispatch + * + * Cancel the latest dispatch. Can be called multiple times to cancel further + * dispatches. Can only be called from ops.dispatch(). + */ +__bpf_kfunc void scx_bpf_dispatch_cancel(void) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + + if (!scx_kf_allowed(SCX_KF_DISPATCH)) + return; + + if (dspc->cursor > 0) + dspc->cursor--; + else + scx_ops_error("dispatch buffer underflow"); +} + +/** + * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ + * @dsq_id: DSQ to consume + * + * Consume a task from the non-local DSQ identified by @dsq_id and transfer it + * to the current CPU's local DSQ for execution. Can only be called from + * ops.dispatch(). + * + * This function flushes the in-flight dispatches from scx_bpf_dispatch() before + * trying to consume the specified DSQ. It may also grab rq locks and thus can't + * be called under any BPF locks. + * + * Returns %true if a task has been consumed, %false if there isn't any task to + * consume. + */ +__bpf_kfunc bool scx_bpf_consume(u64 dsq_id) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + struct scx_dispatch_q *dsq; + + if (!scx_kf_allowed(SCX_KF_DISPATCH)) + return false; + + flush_dispatch_buf(dspc->rq); + + dsq = find_non_local_dsq(dsq_id); + if (unlikely(!dsq)) { + scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); + return false; + } + + if (consume_dispatch_q(dspc->rq, dsq)) { + /* + * A successfully consumed task can be dequeued before it starts + * running while the CPU is trying to migrate other dispatched + * tasks. Bump nr_tasks to tell balance_scx() to retry on empty + * local DSQ. + */ + dspc->nr_tasks++; + return true; + } else { + return false; + } +} + +/** + * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ + * @it__iter: DSQ iterator in progress + * @slice: duration the dispatched task can run for in nsecs + * + * Override the slice of the next task that will be dispatched from @it__iter + * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called, + * the previous slice duration is kept. + */ +__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( + struct bpf_iter_scx_dsq *it__iter, u64 slice) +{ + struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; + + kit->slice = slice; + kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; +} + +/** + * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ + * @it__iter: DSQ iterator in progress + * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ + * + * Override the vtime of the next task that will be dispatched from @it__iter + * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the + * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to + * dispatch the next task, the override is ignored and cleared. + */ +__bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( + struct bpf_iter_scx_dsq *it__iter, u64 vtime) +{ + struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; + + kit->vtime = vtime; + kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; +} + +/** + * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ + * @it__iter: DSQ iterator in progress + * @p: task to transfer + * @dsq_id: DSQ to move @p to + * @enq_flags: SCX_ENQ_* + * + * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ + * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can + * be the destination. + * + * For the transfer to be successful, @p must still be on the DSQ and have been + * queued before the DSQ iteration started. This function doesn't care whether + * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have + * been queued before the iteration started. + * + * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to + * update. + * + * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq + * lock (e.g. BPF timers or SYSCALL programs). + * + * Returns %true if @p has been consumed, %false if @p had already been consumed + * or dequeued. + */ +__bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, + struct task_struct *p, u64 dsq_id, + u64 enq_flags) +{ + return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, + p, dsq_id, enq_flags); +} + +/** + * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ + * @it__iter: DSQ iterator in progress + * @p: task to transfer + * @dsq_id: DSQ to move @p to + * @enq_flags: SCX_ENQ_* + * + * Transfer @p which is on the DSQ currently iterated by @it__iter to the + * priority queue of the DSQ specified by @dsq_id. The destination must be a + * user DSQ as only user DSQs support priority queue. + * + * @p's slice and vtime are kept by default. Use + * scx_bpf_dispatch_from_dsq_set_slice() and + * scx_bpf_dispatch_from_dsq_set_vtime() to update. + * + * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See + * scx_bpf_dispatch_vtime() for more information on @vtime. + */ +__bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, + struct task_struct *p, u64 dsq_id, + u64 enq_flags) +{ + return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, + p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_dispatch) +BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) +BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) +BTF_ID_FLAGS(func, scx_bpf_consume) +BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) +BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) +BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) +BTF_KFUNCS_END(scx_kfunc_ids_dispatch) + +static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_dispatch, +}; + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ + * + * Iterate over all of the tasks currently enqueued on the local DSQ of the + * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of + * processed tasks. Can only be called from ops.cpu_release(). + */ +__bpf_kfunc u32 scx_bpf_reenqueue_local(void) +{ + LIST_HEAD(tasks); + u32 nr_enqueued = 0; + struct rq *rq; + struct task_struct *p, *n; + + if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) + return 0; + + rq = cpu_rq(smp_processor_id()); + lockdep_assert_rq_held(rq); + + /* + * The BPF scheduler may choose to dispatch tasks back to + * @rq->scx.local_dsq. Move all candidate tasks off to a private list + * first to avoid processing the same tasks repeatedly. + */ + list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, + scx.dsq_list.node) { + /* + * If @p is being migrated, @p's current CPU may not agree with + * its allowed CPUs and the migration_cpu_stop is about to + * deactivate and re-activate @p anyway. Skip re-enqueueing. + * + * While racing sched property changes may also dequeue and + * re-enqueue a migrating task while its current CPU and allowed + * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to + * the current local DSQ for running tasks and thus are not + * visible to the BPF scheduler. + */ + if (p->migration_pending) + continue; + + dispatch_dequeue(rq, p); + list_add_tail(&p->scx.dsq_list.node, &tasks); + } + + list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { + list_del_init(&p->scx.dsq_list.node); + do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); + nr_enqueued++; + } + + return nr_enqueued; +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) +BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) +BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) + +static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_cpu_release, +}; + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_create_dsq - Create a custom DSQ + * @dsq_id: DSQ to create + * @node: NUMA node to allocate from + * + * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable + * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. + */ +__bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) +{ + if (unlikely(node >= (int)nr_node_ids || + (node < 0 && node != NUMA_NO_NODE))) + return -EINVAL; + return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_unlocked) +BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) +BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) +BTF_KFUNCS_END(scx_kfunc_ids_unlocked) + +static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_unlocked, +}; + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_kick_cpu - Trigger reschedule on a CPU + * @cpu: cpu to kick + * @flags: %SCX_KICK_* flags + * + * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or + * trigger rescheduling on a busy CPU. This can be called from any online + * scx_ops operation and the actual kicking is performed asynchronously through + * an irq work. + */ +__bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) +{ + struct rq *this_rq; + unsigned long irq_flags; + + if (!ops_cpu_valid(cpu, NULL)) + return; + + local_irq_save(irq_flags); + + this_rq = this_rq(); + + /* + * While bypassing for PM ops, IRQ handling may not be online which can + * lead to irq_work_queue() malfunction such as infinite busy wait for + * IRQ status update. Suppress kicking. + */ + if (scx_rq_bypassing(this_rq)) + goto out; + + /* + * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting + * rq locks. We can probably be smarter and avoid bouncing if called + * from ops which don't hold a rq lock. + */ + if (flags & SCX_KICK_IDLE) { + struct rq *target_rq = cpu_rq(cpu); + + if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) + scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); + + if (raw_spin_rq_trylock(target_rq)) { + if (can_skip_idle_kick(target_rq)) { + raw_spin_rq_unlock(target_rq); + goto out; + } + raw_spin_rq_unlock(target_rq); + } + cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); + } else { + cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); + + if (flags & SCX_KICK_PREEMPT) + cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); + if (flags & SCX_KICK_WAIT) + cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); + } + + irq_work_queue(&this_rq->scx.kick_cpus_irq_work); +out: + local_irq_restore(irq_flags); +} + +/** + * scx_bpf_dsq_nr_queued - Return the number of queued tasks + * @dsq_id: id of the DSQ + * + * Return the number of tasks in the DSQ matching @dsq_id. If not found, + * -%ENOENT is returned. + */ +__bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) +{ + struct scx_dispatch_q *dsq; + s32 ret; + + preempt_disable(); + + if (dsq_id == SCX_DSQ_LOCAL) { + ret = READ_ONCE(this_rq()->scx.local_dsq.nr); + goto out; + } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { + s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; + + if (ops_cpu_valid(cpu, NULL)) { + ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); + goto out; + } + } else { + dsq = find_non_local_dsq(dsq_id); + if (dsq) { + ret = READ_ONCE(dsq->nr); + goto out; + } + } + ret = -ENOENT; +out: + preempt_enable(); + return ret; +} + +/** + * scx_bpf_destroy_dsq - Destroy a custom DSQ + * @dsq_id: DSQ to destroy + * + * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with + * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is + * empty and no further tasks are dispatched to it. Ignored if called on a DSQ + * which doesn't exist. Can be called from any online scx_ops operations. + */ +__bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) +{ + destroy_dsq(dsq_id); +} + +/** + * bpf_iter_scx_dsq_new - Create a DSQ iterator + * @it: iterator to initialize + * @dsq_id: DSQ to iterate + * @flags: %SCX_DSQ_ITER_* + * + * Initialize BPF iterator @it which can be used with bpf_for_each() to walk + * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes + * tasks which are already queued when this function is invoked. + */ +__bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, + u64 flags) +{ + struct bpf_iter_scx_dsq_kern *kit = (void *)it; + + BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > + sizeof(struct bpf_iter_scx_dsq)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != + __alignof__(struct bpf_iter_scx_dsq)); + + if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) + return -EINVAL; + + kit->dsq = find_non_local_dsq(dsq_id); + if (!kit->dsq) + return -ENOENT; + + INIT_LIST_HEAD(&kit->cursor.node); + kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags; + kit->cursor.priv = READ_ONCE(kit->dsq->seq); + + return 0; +} + +/** + * bpf_iter_scx_dsq_next - Progress a DSQ iterator + * @it: iterator to progress + * + * Return the next task. See bpf_iter_scx_dsq_new(). + */ +__bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) +{ + struct bpf_iter_scx_dsq_kern *kit = (void *)it; + bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; + struct task_struct *p; + unsigned long flags; + + if (!kit->dsq) + return NULL; + + raw_spin_lock_irqsave(&kit->dsq->lock, flags); + + if (list_empty(&kit->cursor.node)) + p = NULL; + else + p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); + + /* + * Only tasks which were queued before the iteration started are + * visible. This bounds BPF iterations and guarantees that vtime never + * jumps in the other direction while iterating. + */ + do { + p = nldsq_next_task(kit->dsq, p, rev); + } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); + + if (p) { + if (rev) + list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); + else + list_move(&kit->cursor.node, &p->scx.dsq_list.node); + } else { + list_del_init(&kit->cursor.node); + } + + raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); + + return p; +} + +/** + * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator + * @it: iterator to destroy + * + * Undo scx_iter_scx_dsq_new(). + */ +__bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) +{ + struct bpf_iter_scx_dsq_kern *kit = (void *)it; + + if (!kit->dsq) + return; + + if (!list_empty(&kit->cursor.node)) { + unsigned long flags; + + raw_spin_lock_irqsave(&kit->dsq->lock, flags); + list_del_init(&kit->cursor.node); + raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); + } + kit->dsq = NULL; +} + +__bpf_kfunc_end_defs(); + +static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, + char *fmt, unsigned long long *data, u32 data__sz) +{ + struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; + s32 ret; + + if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || + (data__sz && !data)) { + scx_ops_error("invalid data=%p and data__sz=%u", + (void *)data, data__sz); + return -EINVAL; + } + + ret = copy_from_kernel_nofault(data_buf, data, data__sz); + if (ret < 0) { + scx_ops_error("failed to read data fields (%d)", ret); + return ret; + } + + ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, + &bprintf_data); + if (ret < 0) { + scx_ops_error("format preparation failed (%d)", ret); + return ret; + } + + ret = bstr_printf(line_buf, line_size, fmt, + bprintf_data.bin_args); + bpf_bprintf_cleanup(&bprintf_data); + if (ret < 0) { + scx_ops_error("(\"%s\", %p, %u) failed to format", + fmt, data, data__sz); + return ret; + } + + return ret; +} + +static s32 bstr_format(struct scx_bstr_buf *buf, + char *fmt, unsigned long long *data, u32 data__sz) +{ + return __bstr_format(buf->data, buf->line, sizeof(buf->line), + fmt, data, data__sz); +} + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. + * @exit_code: Exit value to pass to user space via struct scx_exit_info. + * @fmt: error message format string + * @data: format string parameters packaged using ___bpf_fill() macro + * @data__sz: @data len, must end in '__sz' for the verifier + * + * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops + * disabling. + */ +__bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, + unsigned long long *data, u32 data__sz) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); + if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) + scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", + scx_exit_bstr_buf.line); + raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); +} + +/** + * scx_bpf_error_bstr - Indicate fatal error + * @fmt: error message format string + * @data: format string parameters packaged using ___bpf_fill() macro + * @data__sz: @data len, must end in '__sz' for the verifier + * + * Indicate that the BPF scheduler encountered a fatal error and initiate ops + * disabling. + */ +__bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, + u32 data__sz) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); + if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) + scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", + scx_exit_bstr_buf.line); + raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); +} + +/** + * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler + * @fmt: format string + * @data: format string parameters packaged using ___bpf_fill() macro + * @data__sz: @data len, must end in '__sz' for the verifier + * + * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and + * dump_task() to generate extra debug dump specific to the BPF scheduler. + * + * The extra dump may be multiple lines. A single line may be split over + * multiple calls. The last line is automatically terminated. + */ +__bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, + u32 data__sz) +{ + struct scx_dump_data *dd = &scx_dump_data; + struct scx_bstr_buf *buf = &dd->buf; + s32 ret; + + if (raw_smp_processor_id() != dd->cpu) { + scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); + return; + } + + /* append the formatted string to the line buf */ + ret = __bstr_format(buf->data, buf->line + dd->cursor, + sizeof(buf->line) - dd->cursor, fmt, data, data__sz); + if (ret < 0) { + dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", + dd->prefix, fmt, data, data__sz, ret); + return; + } + + dd->cursor += ret; + dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); + + if (!dd->cursor) + return; + + /* + * If the line buf overflowed or ends in a newline, flush it into the + * dump. This is to allow the caller to generate a single line over + * multiple calls. As ops_dump_flush() can also handle multiple lines in + * the line buf, the only case which can lead to an unexpected + * truncation is when the caller keeps generating newlines in the middle + * instead of the end consecutively. Don't do that. + */ + if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') + ops_dump_flush(); +} + +/** + * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU + * @cpu: CPU of interest + * + * Return the maximum relative capacity of @cpu in relation to the most + * performant CPU in the system. The return value is in the range [1, + * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). + */ +__bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) +{ + if (ops_cpu_valid(cpu, NULL)) + return arch_scale_cpu_capacity(cpu); + else + return SCX_CPUPERF_ONE; +} + +/** + * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU + * @cpu: CPU of interest + * + * Return the current relative performance of @cpu in relation to its maximum. + * The return value is in the range [1, %SCX_CPUPERF_ONE]. + * + * The current performance level of a CPU in relation to the maximum performance + * available in the system can be calculated as follows: + * + * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE + * + * The result is in the range [1, %SCX_CPUPERF_ONE]. + */ +__bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) +{ + if (ops_cpu_valid(cpu, NULL)) + return arch_scale_freq_capacity(cpu); + else + return SCX_CPUPERF_ONE; +} + +/** + * scx_bpf_cpuperf_set - Set the relative performance target of a CPU + * @cpu: CPU of interest + * @perf: target performance level [0, %SCX_CPUPERF_ONE] + * @flags: %SCX_CPUPERF_* flags + * + * Set the target performance level of @cpu to @perf. @perf is in linear + * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the + * schedutil cpufreq governor chooses the target frequency. + * + * The actual performance level chosen, CPU grouping, and the overhead and + * latency of the operations are dependent on the hardware and cpufreq driver in + * use. Consult hardware and cpufreq documentation for more information. The + * current performance level can be monitored using scx_bpf_cpuperf_cur(). + */ +__bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) +{ + if (unlikely(perf > SCX_CPUPERF_ONE)) { + scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); + return; + } + + if (ops_cpu_valid(cpu, NULL)) { + struct rq *rq = cpu_rq(cpu); + + rq->scx.cpuperf_target = perf; + + rcu_read_lock_sched_notrace(); + cpufreq_update_util(cpu_rq(cpu), 0); + rcu_read_unlock_sched_notrace(); + } +} + +/** + * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs + * + * All valid CPU IDs in the system are smaller than the returned value. + */ +__bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) +{ + return nr_cpu_ids; +} + +/** + * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) +{ + return cpu_possible_mask; +} + +/** + * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) +{ + return cpu_online_mask; +} + +/** + * scx_bpf_put_cpumask - Release a possible/online cpumask + * @cpumask: cpumask to release + */ +__bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) +{ + /* + * Empty function body because we aren't actually acquiring or releasing + * a reference to a global cpumask, which is read-only in the caller and + * is never released. The acquire / release semantics here are just used + * to make the cpumask is a trusted pointer in the caller. + */ +} + +/** + * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking + * per-CPU cpumask. + * + * Returns NULL if idle tracking is not enabled, or running on a UP kernel. + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) +{ + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return cpu_none_mask; + } + +#ifdef CONFIG_SMP + return idle_masks.cpu; +#else + return cpu_none_mask; +#endif +} + +/** + * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, + * per-physical-core cpumask. Can be used to determine if an entire physical + * core is free. + * + * Returns NULL if idle tracking is not enabled, or running on a UP kernel. + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) +{ + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return cpu_none_mask; + } + +#ifdef CONFIG_SMP + if (sched_smt_active()) + return idle_masks.smt; + else + return idle_masks.cpu; +#else + return cpu_none_mask; +#endif +} + +/** + * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to + * either the percpu, or SMT idle-tracking cpumask. + */ +__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) +{ + /* + * Empty function body because we aren't actually acquiring or releasing + * a reference to a global idle cpumask, which is read-only in the + * caller and is never released. The acquire / release semantics here + * are just used to make the cpumask a trusted pointer in the caller. + */ +} + +/** + * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state + * @cpu: cpu to test and clear idle for + * + * Returns %true if @cpu was idle and its idle state was successfully cleared. + * %false otherwise. + * + * Unavailable if ops.update_idle() is implemented and + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. + */ +__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) +{ + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return false; + } + + if (ops_cpu_valid(cpu, NULL)) + return test_and_clear_cpu_idle(cpu); + else + return false; +} + +/** + * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu + * @cpus_allowed: Allowed cpumask + * @flags: %SCX_PICK_IDLE_CPU_* flags + * + * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu + * number on success. -%EBUSY if no matching cpu was found. + * + * Idle CPU tracking may race against CPU scheduling state transitions. For + * example, this function may return -%EBUSY as CPUs are transitioning into the + * idle state. If the caller then assumes that there will be dispatch events on + * the CPUs as they were all busy, the scheduler may end up stalling with CPUs + * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and + * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch + * event in the near future. + * + * Unavailable if ops.update_idle() is implemented and + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. + */ +__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, + u64 flags) +{ + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return -EBUSY; + } + + return scx_pick_idle_cpu(cpus_allowed, flags); +} + +/** + * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU + * @cpus_allowed: Allowed cpumask + * @flags: %SCX_PICK_IDLE_CPU_* flags + * + * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any + * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu + * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is + * empty. + * + * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not + * set, this function can't tell which CPUs are idle and will always pick any + * CPU. + */ +__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, + u64 flags) +{ + s32 cpu; + + if (static_branch_likely(&scx_builtin_idle_enabled)) { + cpu = scx_pick_idle_cpu(cpus_allowed, flags); + if (cpu >= 0) + return cpu; + } + + cpu = cpumask_any_distribute(cpus_allowed); + if (cpu < nr_cpu_ids) + return cpu; + else + return -EBUSY; +} + +/** + * scx_bpf_task_running - Is task currently running? + * @p: task of interest + */ +__bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) +{ + return task_rq(p)->curr == p; +} + +/** + * scx_bpf_task_cpu - CPU a task is currently associated with + * @p: task of interest + */ +__bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) +{ + return task_cpu(p); +} + +/** + * scx_bpf_cpu_rq - Fetch the rq of a CPU + * @cpu: CPU of the rq + */ +__bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) +{ + if (!ops_cpu_valid(cpu, NULL)) + return NULL; + + return cpu_rq(cpu); +} + +/** + * scx_bpf_task_cgroup - Return the sched cgroup of a task + * @p: task of interest + * + * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with + * from the scheduler's POV. SCX operations should use this function to + * determine @p's current cgroup as, unlike following @p->cgroups, + * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all + * rq-locked operations. Can be called on the parameter tasks of rq-locked + * operations. The restriction guarantees that @p's rq is locked by the caller. + */ +#ifdef CONFIG_CGROUP_SCHED +__bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) +{ + struct task_group *tg = p->sched_task_group; + struct cgroup *cgrp = &cgrp_dfl_root.cgrp; + + if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) + goto out; + + /* + * A task_group may either be a cgroup or an autogroup. In the latter + * case, @tg->css.cgroup is %NULL. A task_group can't become the other + * kind once created. + */ + if (tg && tg->css.cgroup) + cgrp = tg->css.cgroup; + else + cgrp = &cgrp_dfl_root.cgrp; +out: + cgroup_get(cgrp); + return cgrp; +} +#endif + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_any) +BTF_ID_FLAGS(func, scx_bpf_kick_cpu) +BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) +BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) +BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) +BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) +BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) +BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) +BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) +BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) +BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_cpu_rq) +#ifdef CONFIG_CGROUP_SCHED +BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) +#endif +BTF_KFUNCS_END(scx_kfunc_ids_any) + +static const struct btf_kfunc_id_set scx_kfunc_set_any = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_any, +}; + +static int __init scx_init(void) +{ + int ret; + + /* + * kfunc registration can't be done from init_sched_ext_class() as + * register_btf_kfunc_id_set() needs most of the system to be up. + * + * Some kfuncs are context-sensitive and can only be called from + * specific SCX ops. They are grouped into BTF sets accordingly. + * Unfortunately, BPF currently doesn't have a way of enforcing such + * restrictions. Eventually, the verifier should be able to enforce + * them. For now, register them the same and make each kfunc explicitly + * check using scx_kf_allowed(). + */ + if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_select_cpu)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_enqueue_dispatch)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_dispatch)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_cpu_release)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_unlocked)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, + &scx_kfunc_set_unlocked)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_any)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, + &scx_kfunc_set_any)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, + &scx_kfunc_set_any))) { + pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); + return ret; + } + + ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); + if (ret) { + pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); + return ret; + } + + ret = register_pm_notifier(&scx_pm_notifier); + if (ret) { + pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); + return ret; + } + + scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); + if (!scx_kset) { + pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); + return -ENOMEM; + } + + ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); + if (ret < 0) { + pr_err("sched_ext: Failed to add global attributes\n"); + return ret; + } + + return 0; +} +__initcall(scx_init); |