diff options
Diffstat (limited to 'include/linux/spinlock.h')
-rw-r--r-- | include/linux/spinlock.h | 70 |
1 files changed, 50 insertions, 20 deletions
diff --git a/include/linux/spinlock.h b/include/linux/spinlock.h index fd57888d4942..e089157dcf97 100644 --- a/include/linux/spinlock.h +++ b/include/linux/spinlock.h @@ -114,29 +114,48 @@ do { \ #endif /*arch_spin_is_contended*/ /* - * This barrier must provide two things: + * smp_mb__after_spinlock() provides the equivalent of a full memory barrier + * between program-order earlier lock acquisitions and program-order later + * memory accesses. * - * - it must guarantee a STORE before the spin_lock() is ordered against a - * LOAD after it, see the comments at its two usage sites. + * This guarantees that the following two properties hold: * - * - it must ensure the critical section is RCsc. + * 1) Given the snippet: * - * The latter is important for cases where we observe values written by other - * CPUs in spin-loops, without barriers, while being subject to scheduling. + * { X = 0; Y = 0; } * - * CPU0 CPU1 CPU2 + * CPU0 CPU1 * - * for (;;) { - * if (READ_ONCE(X)) - * break; - * } - * X=1 - * <sched-out> - * <sched-in> - * r = X; + * WRITE_ONCE(X, 1); WRITE_ONCE(Y, 1); + * spin_lock(S); smp_mb(); + * smp_mb__after_spinlock(); r1 = READ_ONCE(X); + * r0 = READ_ONCE(Y); + * spin_unlock(S); * - * without transitivity it could be that CPU1 observes X!=0 breaks the loop, - * we get migrated and CPU2 sees X==0. + * it is forbidden that CPU0 does not observe CPU1's store to Y (r0 = 0) + * and CPU1 does not observe CPU0's store to X (r1 = 0); see the comments + * preceding the call to smp_mb__after_spinlock() in __schedule() and in + * try_to_wake_up(). + * + * 2) Given the snippet: + * + * { X = 0; Y = 0; } + * + * CPU0 CPU1 CPU2 + * + * spin_lock(S); spin_lock(S); r1 = READ_ONCE(Y); + * WRITE_ONCE(X, 1); smp_mb__after_spinlock(); smp_rmb(); + * spin_unlock(S); r0 = READ_ONCE(X); r2 = READ_ONCE(X); + * WRITE_ONCE(Y, 1); + * spin_unlock(S); + * + * it is forbidden that CPU0's critical section executes before CPU1's + * critical section (r0 = 1), CPU2 observes CPU1's store to Y (r1 = 1) + * and CPU2 does not observe CPU0's store to X (r2 = 0); see the comments + * preceding the calls to smp_rmb() in try_to_wake_up() for similar + * snippets but "projected" onto two CPUs. + * + * Property (2) upgrades the lock to an RCsc lock. * * Since most load-store architectures implement ACQUIRE with an smp_mb() after * the LL/SC loop, they need no further barriers. Similarly all our TSO @@ -432,9 +451,20 @@ extern int _atomic_dec_and_lock_irqsave(atomic_t *atomic, spinlock_t *lock, #define atomic_dec_and_lock_irqsave(atomic, lock, flags) \ __cond_lock(lock, _atomic_dec_and_lock_irqsave(atomic, lock, &(flags))) -int alloc_bucket_spinlocks(spinlock_t **locks, unsigned int *lock_mask, - size_t max_size, unsigned int cpu_mult, - gfp_t gfp); +int __alloc_bucket_spinlocks(spinlock_t **locks, unsigned int *lock_mask, + size_t max_size, unsigned int cpu_mult, + gfp_t gfp, const char *name, + struct lock_class_key *key); + +#define alloc_bucket_spinlocks(locks, lock_mask, max_size, cpu_mult, gfp) \ + ({ \ + static struct lock_class_key key; \ + int ret; \ + \ + ret = __alloc_bucket_spinlocks(locks, lock_mask, max_size, \ + cpu_mult, gfp, #locks, &key); \ + ret; \ + }) void free_bucket_spinlocks(spinlock_t *locks); |