diff options
Diffstat (limited to 'include/linux/seqlock.h')
-rw-r--r-- | include/linux/seqlock.h | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/include/linux/seqlock.h b/include/linux/seqlock.h index f52c91be8939..f80d50cac199 100644 --- a/include/linux/seqlock.h +++ b/include/linux/seqlock.h @@ -48,7 +48,7 @@ * * As a consequence, we take the following best-effort approach for raw usage * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, - * pessimistically mark then next KCSAN_SEQLOCK_REGION_MAX memory accesses as + * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as * atomics; if there is a matching read_seqcount_retry() call, no following * memory operations are considered atomic. Usage of seqlocks via seqlock_t * interface is not affected. @@ -265,7 +265,7 @@ static inline void raw_write_seqcount_end(seqcount_t *s) * usual consistency guarantee. It is one wmb cheaper, because we can * collapse the two back-to-back wmb()s. * - * Note that, writes surrounding the barrier should be declared atomic (e.g. + * Note that writes surrounding the barrier should be declared atomic (e.g. * via WRITE_ONCE): a) to ensure the writes become visible to other threads * atomically, avoiding compiler optimizations; b) to document which writes are * meant to propagate to the reader critical section. This is necessary because @@ -465,7 +465,7 @@ static inline unsigned read_seqbegin(const seqlock_t *sl) { unsigned ret = read_seqcount_begin(&sl->seqcount); - kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry */ + kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ kcsan_flat_atomic_begin(); return ret; } @@ -473,7 +473,7 @@ static inline unsigned read_seqbegin(const seqlock_t *sl) static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { /* - * Assume not nested: read_seqretry may be called multiple times when + * Assume not nested: read_seqretry() may be called multiple times when * completing read critical section. */ kcsan_flat_atomic_end(); |