summaryrefslogtreecommitdiff
path: root/include/linux/sched.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/sched.h')
-rw-r--r--include/linux/sched.h57
1 files changed, 33 insertions, 24 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h
index a4ab9daa387c..4effb1025fbb 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -599,33 +599,42 @@ struct task_cputime_atomic {
.sum_exec_runtime = ATOMIC64_INIT(0), \
}
-#ifdef CONFIG_PREEMPT_COUNT
-#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
-#else
-#define PREEMPT_DISABLED PREEMPT_ENABLED
-#endif
+#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
/*
- * Disable preemption until the scheduler is running.
- * Reset by start_kernel()->sched_init()->init_idle().
+ * Disable preemption until the scheduler is running -- use an unconditional
+ * value so that it also works on !PREEMPT_COUNT kernels.
*
- * We include PREEMPT_ACTIVE to avoid cond_resched() from working
- * before the scheduler is active -- see should_resched().
+ * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
*/
-#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
+#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
+
+/*
+ * Initial preempt_count value; reflects the preempt_count schedule invariant
+ * which states that during context switches:
+ *
+ * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
+ *
+ * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
+ * Note: See finish_task_switch().
+ */
+#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
/**
* struct thread_group_cputimer - thread group interval timer counts
* @cputime_atomic: atomic thread group interval timers.
- * @running: non-zero when there are timers running and
- * @cputime receives updates.
+ * @running: true when there are timers running and
+ * @cputime_atomic receives updates.
+ * @checking_timer: true when a thread in the group is in the
+ * process of checking for thread group timers.
*
* This structure contains the version of task_cputime, above, that is
* used for thread group CPU timer calculations.
*/
struct thread_group_cputimer {
struct task_cputime_atomic cputime_atomic;
- int running;
+ bool running;
+ bool checking_timer;
};
#include <linux/rwsem.h>
@@ -828,7 +837,7 @@ struct user_struct {
struct hlist_node uidhash_node;
kuid_t uid;
-#ifdef CONFIG_PERF_EVENTS
+#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
atomic_long_t locked_vm;
#endif
};
@@ -1127,8 +1136,6 @@ struct sched_domain_topology_level {
#endif
};
-extern struct sched_domain_topology_level *sched_domain_topology;
-
extern void set_sched_topology(struct sched_domain_topology_level *tl);
extern void wake_up_if_idle(int cpu);
@@ -1177,10 +1184,10 @@ struct load_weight {
/*
* The load_avg/util_avg accumulates an infinite geometric series.
- * 1) load_avg factors the amount of time that a sched_entity is
- * runnable on a rq into its weight. For cfs_rq, it is the aggregated
- * such weights of all runnable and blocked sched_entities.
- * 2) util_avg factors frequency scaling into the amount of time
+ * 1) load_avg factors frequency scaling into the amount of time that a
+ * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
+ * aggregated such weights of all runnable and blocked sched_entities.
+ * 2) util_avg factors frequency and cpu scaling into the amount of time
* that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
* For cfs_rq, it is the aggregated such times of all runnable and
* blocked sched_entities.
@@ -1330,10 +1337,12 @@ struct sched_dl_entity {
union rcu_special {
struct {
- bool blocked;
- bool need_qs;
- } b;
- short s;
+ u8 blocked;
+ u8 need_qs;
+ u8 exp_need_qs;
+ u8 pad; /* Otherwise the compiler can store garbage here. */
+ } b; /* Bits. */
+ u32 s; /* Set of bits. */
};
struct rcu_node;