diff options
Diffstat (limited to 'include/linux/mmzone.h')
-rw-r--r-- | include/linux/mmzone.h | 76 |
1 files changed, 10 insertions, 66 deletions
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h index fb3bf696c05e..b593316bff3d 100644 --- a/include/linux/mmzone.h +++ b/include/linux/mmzone.h @@ -113,8 +113,7 @@ static inline bool free_area_empty(struct free_area *area, int migratetype) struct pglist_data; /* - * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. - * So add a wild amount of padding here to ensure that they fall into separate + * Add a wild amount of padding here to ensure datas fall into separate * cachelines. There are very few zone structures in the machine, so space * consumption is not a concern here. */ @@ -152,7 +151,6 @@ enum zone_stat_item { NR_ZONE_UNEVICTABLE, NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ NR_MLOCK, /* mlock()ed pages found and moved off LRU */ - NR_PAGETABLE, /* used for pagetables */ /* Second 128 byte cacheline */ NR_BOUNCE, #if IS_ENABLED(CONFIG_ZSMALLOC) @@ -207,6 +205,7 @@ enum node_stat_item { #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) NR_KERNEL_SCS_KB, /* measured in KiB */ #endif + NR_PAGETABLE, /* used for pagetables */ NR_VM_NODE_STAT_ITEMS }; @@ -276,6 +275,8 @@ enum lruvec_flags { struct lruvec { struct list_head lists[NR_LRU_LISTS]; + /* per lruvec lru_lock for memcg */ + spinlock_t lru_lock; /* * These track the cost of reclaiming one LRU - file or anon - * over the other. As the observed cost of reclaiming one LRU @@ -354,26 +355,6 @@ enum zone_type { * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit * platforms may need both zones as they support peripherals with * different DMA addressing limitations. - * - * Some examples: - * - * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the - * rest of the lower 4G. - * - * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on - * the specific device. - * - * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the - * lower 4G. - * - * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary - * depending on the specific device. - * - * - s390 uses ZONE_DMA fixed to the lower 2G. - * - * - ia64 and riscv only use ZONE_DMA32. - * - * - parisc uses neither. */ #ifdef CONFIG_ZONE_DMA ZONE_DMA, @@ -470,6 +451,12 @@ struct zone { #endif struct pglist_data *zone_pgdat; struct per_cpu_pageset __percpu *pageset; + /* + * the high and batch values are copied to individual pagesets for + * faster access + */ + int pageset_high; + int pageset_batch; #ifndef CONFIG_SPARSEMEM /* @@ -796,7 +783,6 @@ typedef struct pglist_data { /* Write-intensive fields used by page reclaim */ ZONE_PADDING(_pad1_) - spinlock_t lru_lock; #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT /* @@ -1429,17 +1415,6 @@ void sparse_init(void); #endif /* CONFIG_SPARSEMEM */ /* - * During memory init memblocks map pfns to nids. The search is expensive and - * this caches recent lookups. The implementation of __early_pfn_to_nid - * may treat start/end as pfns or sections. - */ -struct mminit_pfnnid_cache { - unsigned long last_start; - unsigned long last_end; - int last_nid; -}; - -/* * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we * need to check pfn validity within that MAX_ORDER_NR_PAGES block. * pfn_valid_within() should be used in this case; we optimise this away @@ -1451,37 +1426,6 @@ struct mminit_pfnnid_cache { #define pfn_valid_within(pfn) (1) #endif -#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL -/* - * pfn_valid() is meant to be able to tell if a given PFN has valid memmap - * associated with it or not. This means that a struct page exists for this - * pfn. The caller cannot assume the page is fully initialized in general. - * Hotplugable pages might not have been onlined yet. pfn_to_online_page() - * will ensure the struct page is fully online and initialized. Special pages - * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. - * - * In FLATMEM, it is expected that holes always have valid memmap as long as - * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed - * that a valid section has a memmap for the entire section. - * - * However, an ARM, and maybe other embedded architectures in the future - * free memmap backing holes to save memory on the assumption the memmap is - * never used. The page_zone linkages are then broken even though pfn_valid() - * returns true. A walker of the full memmap must then do this additional - * check to ensure the memmap they are looking at is sane by making sure - * the zone and PFN linkages are still valid. This is expensive, but walkers - * of the full memmap are extremely rare. - */ -bool memmap_valid_within(unsigned long pfn, - struct page *page, struct zone *zone); -#else -static inline bool memmap_valid_within(unsigned long pfn, - struct page *page, struct zone *zone) -{ - return true; -} -#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ - #endif /* !__GENERATING_BOUNDS.H */ #endif /* !__ASSEMBLY__ */ #endif /* _LINUX_MMZONE_H */ |