summaryrefslogtreecommitdiff
path: root/fs/smb/client/compress.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/smb/client/compress.c')
-rw-r--r--fs/smb/client/compress.c386
1 files changed, 386 insertions, 0 deletions
diff --git a/fs/smb/client/compress.c b/fs/smb/client/compress.c
new file mode 100644
index 000000000000..766b4de13da7
--- /dev/null
+++ b/fs/smb/client/compress.c
@@ -0,0 +1,386 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2024, SUSE LLC
+ *
+ * Authors: Enzo Matsumiya <ematsumiya@suse.de>
+ *
+ * This file implements I/O compression support for SMB2 messages (SMB 3.1.1 only).
+ * See compress/ for implementation details of each algorithm.
+ *
+ * References:
+ * MS-SMB2 "3.1.4.4 Compressing the Message"
+ * MS-SMB2 "3.1.5.3 Decompressing the Chained Message"
+ * MS-XCA - for details of the supported algorithms
+ */
+#include <linux/slab.h>
+#include <linux/kernel.h>
+#include <linux/uio.h>
+#include <linux/sort.h>
+
+#include "cifsglob.h"
+#include "../common/smb2pdu.h"
+#include "cifsproto.h"
+#include "smb2proto.h"
+
+#include "compress/lz77.h"
+#include "compress.h"
+
+/*
+ * The heuristic_*() functions below try to determine data compressibility.
+ *
+ * Derived from fs/btrfs/compression.c, changing coding style, some parameters, and removing
+ * unused parts.
+ *
+ * Read that file for better and more detailed explanation of the calculations.
+ *
+ * The algorithms are ran in a collected sample of the input (uncompressed) data.
+ * The sample is formed of 2K reads in PAGE_SIZE intervals, with a maximum size of 4M.
+ *
+ * Parsing the sample goes from "low-hanging fruits" (fastest algorithms, likely compressible)
+ * to "need more analysis" (likely uncompressible).
+ */
+
+struct bucket {
+ unsigned int count;
+};
+
+/**
+ * has_low_entropy() - Compute Shannon entropy of the sampled data.
+ * @bkt: Bytes counts of the sample.
+ * @slen: Size of the sample.
+ *
+ * Return: true if the level (percentage of number of bits that would be required to
+ * compress the data) is below the minimum threshold.
+ *
+ * Note:
+ * There _is_ an entropy level here that's > 65 (minimum threshold) that would indicate a
+ * possibility of compression, but compressing, or even further analysing, it would waste so much
+ * resources that it's simply not worth it.
+ *
+ * Also Shannon entropy is the last computed heuristic; if we got this far and ended up
+ * with uncertainty, just stay on the safe side and call it uncompressible.
+ */
+static bool has_low_entropy(struct bucket *bkt, size_t slen)
+{
+ const size_t threshold = 65, max_entropy = 8 * ilog2(16);
+ size_t i, p, p2, len, sum = 0;
+
+#define pow4(n) (n * n * n * n)
+ len = ilog2(pow4(slen));
+
+ for (i = 0; i < 256 && bkt[i].count > 0; i++) {
+ p = bkt[i].count;
+ p2 = ilog2(pow4(p));
+ sum += p * (len - p2);
+ }
+
+ sum /= slen;
+
+ return ((sum * 100 / max_entropy) <= threshold);
+}
+
+#define BYTE_DIST_BAD 0
+#define BYTE_DIST_GOOD 1
+#define BYTE_DIST_MAYBE 2
+/**
+ * calc_byte_distribution() - Compute byte distribution on the sampled data.
+ * @bkt: Byte counts of the sample.
+ * @slen: Size of the sample.
+ *
+ * Return:
+ * BYTE_DIST_BAD: A "hard no" for compression -- a computed uniform distribution of
+ * the bytes (e.g. random or encrypted data).
+ * BYTE_DIST_GOOD: High probability (normal (Gaussian) distribution) of the data being
+ * compressible.
+ * BYTE_DIST_MAYBE: When computed byte distribution resulted in "low > n < high"
+ * grounds. has_low_entropy() should be used for a final decision.
+ */
+static int calc_byte_distribution(struct bucket *bkt, size_t slen)
+{
+ const size_t low = 64, high = 200, threshold = slen * 90 / 100;
+ size_t sum = 0;
+ int i;
+
+ for (i = 0; i < low; i++)
+ sum += bkt[i].count;
+
+ if (sum > threshold)
+ return BYTE_DIST_BAD;
+
+ for (; i < high && bkt[i].count > 0; i++) {
+ sum += bkt[i].count;
+ if (sum > threshold)
+ break;
+ }
+
+ if (i <= low)
+ return BYTE_DIST_GOOD;
+
+ if (i >= high)
+ return BYTE_DIST_BAD;
+
+ return BYTE_DIST_MAYBE;
+}
+
+static bool is_mostly_ascii(const struct bucket *bkt)
+{
+ size_t count = 0;
+ int i;
+
+ for (i = 0; i < 256; i++)
+ if (bkt[i].count > 0)
+ /* Too many non-ASCII (0-63) bytes. */
+ if (++count > 64)
+ return false;
+
+ return true;
+}
+
+static bool has_repeated_data(const u8 *sample, size_t len)
+{
+ size_t s = len / 2;
+
+ return (!memcmp(&sample[0], &sample[s], s));
+}
+
+static int cmp_bkt(const void *_a, const void *_b)
+{
+ const struct bucket *a = _a, *b = _b;
+
+ /* Reverse sort. */
+ if (a->count > b->count)
+ return -1;
+
+ return 1;
+}
+
+/*
+ * TODO:
+ * Support other iter types, if required.
+ * Only ITER_XARRAY is supported for now.
+ */
+static int collect_sample(const struct iov_iter *iter, ssize_t max, u8 *sample)
+{
+ struct folio *folios[16], *folio;
+ unsigned int nr, i, j, npages;
+ loff_t start = iter->xarray_start + iter->iov_offset;
+ pgoff_t last, index = start / PAGE_SIZE;
+ size_t len, off, foff;
+ void *p;
+ int s = 0;
+
+ last = (start + max - 1) / PAGE_SIZE;
+ do {
+ nr = xa_extract(iter->xarray, (void **)folios, index, last, ARRAY_SIZE(folios),
+ XA_PRESENT);
+ if (nr == 0)
+ return -EIO;
+
+ for (i = 0; i < nr; i++) {
+ folio = folios[i];
+ npages = folio_nr_pages(folio);
+ foff = start - folio_pos(folio);
+ off = foff % PAGE_SIZE;
+
+ for (j = foff / PAGE_SIZE; j < npages; j++) {
+ size_t len2;
+
+ len = min_t(size_t, max, PAGE_SIZE - off);
+ len2 = min_t(size_t, len, SZ_2K);
+
+ p = kmap_local_page(folio_page(folio, j));
+ memcpy(&sample[s], p, len2);
+ kunmap_local(p);
+
+ s += len2;
+
+ if (len2 < SZ_2K || s >= max - SZ_2K)
+ return s;
+
+ max -= len;
+ if (max <= 0)
+ return s;
+
+ start += len;
+ off = 0;
+ index++;
+ }
+ }
+ } while (nr == ARRAY_SIZE(folios));
+
+ return s;
+}
+
+/**
+ * is_compressible() - Determines if a chunk of data is compressible.
+ * @data: Iterator containing uncompressed data.
+ *
+ * Return: true if @data is compressible, false otherwise.
+ *
+ * Tests shows that this function is quite reliable in predicting data compressibility,
+ * matching close to 1:1 with the behaviour of LZ77 compression success and failures.
+ */
+static bool is_compressible(const struct iov_iter *data)
+{
+ const size_t read_size = SZ_2K, bkt_size = 256, max = SZ_4M;
+ struct bucket *bkt = NULL;
+ size_t len;
+ u8 *sample;
+ bool ret = false;
+ int i;
+
+ /* Preventive double check -- already checked in should_compress(). */
+ len = iov_iter_count(data);
+ if (unlikely(len < read_size))
+ return ret;
+
+ if (len - read_size > max)
+ len = max;
+
+ sample = kvzalloc(len, GFP_KERNEL);
+ if (!sample) {
+ WARN_ON_ONCE(1);
+
+ return ret;
+ }
+
+ /* Sample 2K bytes per page of the uncompressed data. */
+ i = collect_sample(data, len, sample);
+ if (i <= 0) {
+ WARN_ON_ONCE(1);
+
+ goto out;
+ }
+
+ len = i;
+ ret = true;
+
+ if (has_repeated_data(sample, len))
+ goto out;
+
+ bkt = kcalloc(bkt_size, sizeof(*bkt), GFP_KERNEL);
+ if (!bkt) {
+ WARN_ON_ONCE(1);
+ ret = false;
+
+ goto out;
+ }
+
+ for (i = 0; i < len; i++)
+ bkt[sample[i]].count++;
+
+ if (is_mostly_ascii(bkt))
+ goto out;
+
+ /* Sort in descending order */
+ sort(bkt, bkt_size, sizeof(*bkt), cmp_bkt, NULL);
+
+ i = calc_byte_distribution(bkt, len);
+ if (i != BYTE_DIST_MAYBE) {
+ ret = !!i;
+
+ goto out;
+ }
+
+ ret = has_low_entropy(bkt, len);
+out:
+ kvfree(sample);
+ kfree(bkt);
+
+ return ret;
+}
+
+bool should_compress(const struct cifs_tcon *tcon, const struct smb_rqst *rq)
+{
+ const struct smb2_hdr *shdr = rq->rq_iov->iov_base;
+
+ if (unlikely(!tcon || !tcon->ses || !tcon->ses->server))
+ return false;
+
+ if (!tcon->ses->server->compression.enabled)
+ return false;
+
+ if (!(tcon->share_flags & SMB2_SHAREFLAG_COMPRESS_DATA))
+ return false;
+
+ if (shdr->Command == SMB2_WRITE) {
+ const struct smb2_write_req *wreq = rq->rq_iov->iov_base;
+
+ if (le32_to_cpu(wreq->Length) < SMB_COMPRESS_MIN_LEN)
+ return false;
+
+ return is_compressible(&rq->rq_iter);
+ }
+
+ return (shdr->Command == SMB2_READ);
+}
+
+int smb_compress(struct TCP_Server_Info *server, struct smb_rqst *rq, compress_send_fn send_fn)
+{
+ struct iov_iter iter;
+ u32 slen, dlen;
+ void *src, *dst = NULL;
+ int ret;
+
+ if (!server || !rq || !rq->rq_iov || !rq->rq_iov->iov_base)
+ return -EINVAL;
+
+ if (rq->rq_iov->iov_len != sizeof(struct smb2_write_req))
+ return -EINVAL;
+
+ slen = iov_iter_count(&rq->rq_iter);
+ src = kvzalloc(slen, GFP_KERNEL);
+ if (!src) {
+ ret = -ENOMEM;
+ goto err_free;
+ }
+
+ /* Keep the original iter intact. */
+ iter = rq->rq_iter;
+
+ if (!copy_from_iter_full(src, slen, &iter)) {
+ ret = -EIO;
+ goto err_free;
+ }
+
+ /*
+ * This is just overprovisioning, as the algorithm will error out if @dst reaches 7/8
+ * of @slen.
+ */
+ dlen = slen;
+ dst = kvzalloc(dlen, GFP_KERNEL);
+ if (!dst) {
+ ret = -ENOMEM;
+ goto err_free;
+ }
+
+ ret = lz77_compress(src, slen, dst, &dlen);
+ if (!ret) {
+ struct smb2_compression_hdr hdr = { 0 };
+ struct smb_rqst comp_rq = { .rq_nvec = 3, };
+ struct kvec iov[3];
+
+ hdr.ProtocolId = SMB2_COMPRESSION_TRANSFORM_ID;
+ hdr.OriginalCompressedSegmentSize = cpu_to_le32(slen);
+ hdr.CompressionAlgorithm = SMB3_COMPRESS_LZ77;
+ hdr.Flags = SMB2_COMPRESSION_FLAG_NONE;
+ hdr.Offset = cpu_to_le32(rq->rq_iov[0].iov_len);
+
+ iov[0].iov_base = &hdr;
+ iov[0].iov_len = sizeof(hdr);
+ iov[1] = rq->rq_iov[0];
+ iov[2].iov_base = dst;
+ iov[2].iov_len = dlen;
+
+ comp_rq.rq_iov = iov;
+
+ ret = send_fn(server, 1, &comp_rq);
+ } else if (ret == -EMSGSIZE || dlen >= slen) {
+ ret = send_fn(server, 1, rq);
+ }
+err_free:
+ kvfree(dst);
+ kvfree(src);
+
+ return ret;
+}