diff options
Diffstat (limited to 'fs/ext4/extents.c')
-rw-r--r-- | fs/ext4/extents.c | 595 |
1 files changed, 288 insertions, 307 deletions
diff --git a/fs/ext4/extents.c b/fs/ext4/extents.c index 72a361d5ef74..240b6dea5441 100644 --- a/fs/ext4/extents.c +++ b/fs/ext4/extents.c @@ -2351,8 +2351,8 @@ ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start, { struct extent_status es; - ext4_es_find_delayed_extent_range(inode, hole_start, - hole_start + hole_len - 1, &es); + ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start, + hole_start + hole_len - 1, &es); if (es.es_len) { /* There's delayed extent containing lblock? */ if (es.es_lblk <= hole_start) @@ -2490,106 +2490,157 @@ static inline int get_default_free_blocks_flags(struct inode *inode) return 0; } +/* + * ext4_rereserve_cluster - increment the reserved cluster count when + * freeing a cluster with a pending reservation + * + * @inode - file containing the cluster + * @lblk - logical block in cluster to be reserved + * + * Increments the reserved cluster count and adjusts quota in a bigalloc + * file system when freeing a partial cluster containing at least one + * delayed and unwritten block. A partial cluster meeting that + * requirement will have a pending reservation. If so, the + * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to + * defer reserved and allocated space accounting to a subsequent call + * to this function. + */ +static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk) +{ + struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); + struct ext4_inode_info *ei = EXT4_I(inode); + + dquot_reclaim_block(inode, EXT4_C2B(sbi, 1)); + + spin_lock(&ei->i_block_reservation_lock); + ei->i_reserved_data_blocks++; + percpu_counter_add(&sbi->s_dirtyclusters_counter, 1); + spin_unlock(&ei->i_block_reservation_lock); + + percpu_counter_add(&sbi->s_freeclusters_counter, 1); + ext4_remove_pending(inode, lblk); +} + static int ext4_remove_blocks(handle_t *handle, struct inode *inode, struct ext4_extent *ex, - long long *partial_cluster, + struct partial_cluster *partial, ext4_lblk_t from, ext4_lblk_t to) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); unsigned short ee_len = ext4_ext_get_actual_len(ex); - ext4_fsblk_t pblk; - int flags = get_default_free_blocks_flags(inode); + ext4_fsblk_t last_pblk, pblk; + ext4_lblk_t num; + int flags; + + /* only extent tail removal is allowed */ + if (from < le32_to_cpu(ex->ee_block) || + to != le32_to_cpu(ex->ee_block) + ee_len - 1) { + ext4_error(sbi->s_sb, + "strange request: removal(2) %u-%u from %u:%u", + from, to, le32_to_cpu(ex->ee_block), ee_len); + return 0; + } + +#ifdef EXTENTS_STATS + spin_lock(&sbi->s_ext_stats_lock); + sbi->s_ext_blocks += ee_len; + sbi->s_ext_extents++; + if (ee_len < sbi->s_ext_min) + sbi->s_ext_min = ee_len; + if (ee_len > sbi->s_ext_max) + sbi->s_ext_max = ee_len; + if (ext_depth(inode) > sbi->s_depth_max) + sbi->s_depth_max = ext_depth(inode); + spin_unlock(&sbi->s_ext_stats_lock); +#endif + + trace_ext4_remove_blocks(inode, ex, from, to, partial); /* - * For bigalloc file systems, we never free a partial cluster - * at the beginning of the extent. Instead, we make a note - * that we tried freeing the cluster, and check to see if we - * need to free it on a subsequent call to ext4_remove_blocks, - * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. + * if we have a partial cluster, and it's different from the + * cluster of the last block in the extent, we free it */ - flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; + last_pblk = ext4_ext_pblock(ex) + ee_len - 1; + + if (partial->state != initial && + partial->pclu != EXT4_B2C(sbi, last_pblk)) { + if (partial->state == tofree) { + flags = get_default_free_blocks_flags(inode); + if (ext4_is_pending(inode, partial->lblk)) + flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; + ext4_free_blocks(handle, inode, NULL, + EXT4_C2B(sbi, partial->pclu), + sbi->s_cluster_ratio, flags); + if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) + ext4_rereserve_cluster(inode, partial->lblk); + } + partial->state = initial; + } + + num = le32_to_cpu(ex->ee_block) + ee_len - from; + pblk = ext4_ext_pblock(ex) + ee_len - num; - trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); /* - * If we have a partial cluster, and it's different from the - * cluster of the last block, we need to explicitly free the - * partial cluster here. + * We free the partial cluster at the end of the extent (if any), + * unless the cluster is used by another extent (partial_cluster + * state is nofree). If a partial cluster exists here, it must be + * shared with the last block in the extent. */ - pblk = ext4_ext_pblock(ex) + ee_len - 1; - if (*partial_cluster > 0 && - *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { + flags = get_default_free_blocks_flags(inode); + + /* partial, left end cluster aligned, right end unaligned */ + if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) && + (EXT4_LBLK_CMASK(sbi, to) >= from) && + (partial->state != nofree)) { + if (ext4_is_pending(inode, to)) + flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; ext4_free_blocks(handle, inode, NULL, - EXT4_C2B(sbi, *partial_cluster), + EXT4_PBLK_CMASK(sbi, last_pblk), sbi->s_cluster_ratio, flags); - *partial_cluster = 0; + if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) + ext4_rereserve_cluster(inode, to); + partial->state = initial; + flags = get_default_free_blocks_flags(inode); } -#ifdef EXTENTS_STATS - { - struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); - spin_lock(&sbi->s_ext_stats_lock); - sbi->s_ext_blocks += ee_len; - sbi->s_ext_extents++; - if (ee_len < sbi->s_ext_min) - sbi->s_ext_min = ee_len; - if (ee_len > sbi->s_ext_max) - sbi->s_ext_max = ee_len; - if (ext_depth(inode) > sbi->s_depth_max) - sbi->s_depth_max = ext_depth(inode); - spin_unlock(&sbi->s_ext_stats_lock); - } -#endif - if (from >= le32_to_cpu(ex->ee_block) - && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { - /* tail removal */ - ext4_lblk_t num; - long long first_cluster; - - num = le32_to_cpu(ex->ee_block) + ee_len - from; - pblk = ext4_ext_pblock(ex) + ee_len - num; - /* - * Usually we want to free partial cluster at the end of the - * extent, except for the situation when the cluster is still - * used by any other extent (partial_cluster is negative). - */ - if (*partial_cluster < 0 && - *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1)) - flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; + flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER; - ext_debug("free last %u blocks starting %llu partial %lld\n", - num, pblk, *partial_cluster); - ext4_free_blocks(handle, inode, NULL, pblk, num, flags); - /* - * If the block range to be freed didn't start at the - * beginning of a cluster, and we removed the entire - * extent and the cluster is not used by any other extent, - * save the partial cluster here, since we might need to - * delete if we determine that the truncate or punch hole - * operation has removed all of the blocks in the cluster. - * If that cluster is used by another extent, preserve its - * negative value so it isn't freed later on. - * - * If the whole extent wasn't freed, we've reached the - * start of the truncated/punched region and have finished - * removing blocks. If there's a partial cluster here it's - * shared with the remainder of the extent and is no longer - * a candidate for removal. - */ - if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) { - first_cluster = (long long) EXT4_B2C(sbi, pblk); - if (first_cluster != -*partial_cluster) - *partial_cluster = first_cluster; - } else { - *partial_cluster = 0; + /* + * For bigalloc file systems, we never free a partial cluster + * at the beginning of the extent. Instead, we check to see if we + * need to free it on a subsequent call to ext4_remove_blocks, + * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space. + */ + flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; + ext4_free_blocks(handle, inode, NULL, pblk, num, flags); + + /* reset the partial cluster if we've freed past it */ + if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk)) + partial->state = initial; + + /* + * If we've freed the entire extent but the beginning is not left + * cluster aligned and is not marked as ineligible for freeing we + * record the partial cluster at the beginning of the extent. It + * wasn't freed by the preceding ext4_free_blocks() call, and we + * need to look farther to the left to determine if it's to be freed + * (not shared with another extent). Else, reset the partial + * cluster - we're either done freeing or the beginning of the + * extent is left cluster aligned. + */ + if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) { + if (partial->state == initial) { + partial->pclu = EXT4_B2C(sbi, pblk); + partial->lblk = from; + partial->state = tofree; } - } else - ext4_error(sbi->s_sb, "strange request: removal(2) " - "%u-%u from %u:%u", - from, to, le32_to_cpu(ex->ee_block), ee_len); + } else { + partial->state = initial; + } + return 0; } - /* * ext4_ext_rm_leaf() Removes the extents associated with the * blocks appearing between "start" and "end". Both "start" @@ -2608,7 +2659,7 @@ static int ext4_remove_blocks(handle_t *handle, struct inode *inode, static int ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, struct ext4_ext_path *path, - long long *partial_cluster, + struct partial_cluster *partial, ext4_lblk_t start, ext4_lblk_t end) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); @@ -2640,7 +2691,7 @@ ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, ex_ee_block = le32_to_cpu(ex->ee_block); ex_ee_len = ext4_ext_get_actual_len(ex); - trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); + trace_ext4_ext_rm_leaf(inode, start, ex, partial); while (ex >= EXT_FIRST_EXTENT(eh) && ex_ee_block + ex_ee_len > start) { @@ -2671,8 +2722,8 @@ ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, */ if (sbi->s_cluster_ratio > 1) { pblk = ext4_ext_pblock(ex); - *partial_cluster = - -(long long) EXT4_B2C(sbi, pblk); + partial->pclu = EXT4_B2C(sbi, pblk); + partial->state = nofree; } ex--; ex_ee_block = le32_to_cpu(ex->ee_block); @@ -2714,8 +2765,7 @@ ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, if (err) goto out; - err = ext4_remove_blocks(handle, inode, ex, partial_cluster, - a, b); + err = ext4_remove_blocks(handle, inode, ex, partial, a, b); if (err) goto out; @@ -2769,18 +2819,23 @@ ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, * If there's a partial cluster and at least one extent remains in * the leaf, free the partial cluster if it isn't shared with the * current extent. If it is shared with the current extent - * we zero partial_cluster because we've reached the start of the + * we reset the partial cluster because we've reached the start of the * truncated/punched region and we're done removing blocks. */ - if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) { + if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) { pblk = ext4_ext_pblock(ex) + ex_ee_len - 1; - if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) { + if (partial->pclu != EXT4_B2C(sbi, pblk)) { + int flags = get_default_free_blocks_flags(inode); + + if (ext4_is_pending(inode, partial->lblk)) + flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; ext4_free_blocks(handle, inode, NULL, - EXT4_C2B(sbi, *partial_cluster), - sbi->s_cluster_ratio, - get_default_free_blocks_flags(inode)); + EXT4_C2B(sbi, partial->pclu), + sbi->s_cluster_ratio, flags); + if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) + ext4_rereserve_cluster(inode, partial->lblk); } - *partial_cluster = 0; + partial->state = initial; } /* if this leaf is free, then we should @@ -2819,10 +2874,14 @@ int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); int depth = ext_depth(inode); struct ext4_ext_path *path = NULL; - long long partial_cluster = 0; + struct partial_cluster partial; handle_t *handle; int i = 0, err = 0; + partial.pclu = 0; + partial.lblk = 0; + partial.state = initial; + ext_debug("truncate since %u to %u\n", start, end); /* probably first extent we're gonna free will be last in block */ @@ -2882,8 +2941,8 @@ again: */ if (sbi->s_cluster_ratio > 1) { pblk = ext4_ext_pblock(ex) + end - ee_block + 2; - partial_cluster = - -(long long) EXT4_B2C(sbi, pblk); + partial.pclu = EXT4_B2C(sbi, pblk); + partial.state = nofree; } /* @@ -2911,9 +2970,10 @@ again: &ex); if (err) goto out; - if (pblk) - partial_cluster = - -(long long) EXT4_B2C(sbi, pblk); + if (pblk) { + partial.pclu = EXT4_B2C(sbi, pblk); + partial.state = nofree; + } } } /* @@ -2948,8 +3008,7 @@ again: if (i == depth) { /* this is leaf block */ err = ext4_ext_rm_leaf(handle, inode, path, - &partial_cluster, start, - end); + &partial, start, end); /* root level has p_bh == NULL, brelse() eats this */ brelse(path[i].p_bh); path[i].p_bh = NULL; @@ -3021,21 +3080,24 @@ again: } } - trace_ext4_ext_remove_space_done(inode, start, end, depth, - partial_cluster, path->p_hdr->eh_entries); + trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial, + path->p_hdr->eh_entries); /* - * If we still have something in the partial cluster and we have removed - * even the first extent, then we should free the blocks in the partial - * cluster as well. (This code will only run when there are no leaves - * to the immediate left of the truncated/punched region.) + * if there's a partial cluster and we have removed the first extent + * in the file, then we also free the partial cluster, if any */ - if (partial_cluster > 0 && err == 0) { - /* don't zero partial_cluster since it's not used afterwards */ + if (partial.state == tofree && err == 0) { + int flags = get_default_free_blocks_flags(inode); + + if (ext4_is_pending(inode, partial.lblk)) + flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER; ext4_free_blocks(handle, inode, NULL, - EXT4_C2B(sbi, partial_cluster), - sbi->s_cluster_ratio, - get_default_free_blocks_flags(inode)); + EXT4_C2B(sbi, partial.pclu), + sbi->s_cluster_ratio, flags); + if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER) + ext4_rereserve_cluster(inode, partial.lblk); + partial.state = initial; } /* TODO: flexible tree reduction should be here */ @@ -3819,114 +3881,6 @@ out: return ext4_mark_inode_dirty(handle, inode); } -/** - * ext4_find_delalloc_range: find delayed allocated block in the given range. - * - * Return 1 if there is a delalloc block in the range, otherwise 0. - */ -int ext4_find_delalloc_range(struct inode *inode, - ext4_lblk_t lblk_start, - ext4_lblk_t lblk_end) -{ - struct extent_status es; - - ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es); - if (es.es_len == 0) - return 0; /* there is no delay extent in this tree */ - else if (es.es_lblk <= lblk_start && - lblk_start < es.es_lblk + es.es_len) - return 1; - else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) - return 1; - else - return 0; -} - -int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) -{ - struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); - ext4_lblk_t lblk_start, lblk_end; - lblk_start = EXT4_LBLK_CMASK(sbi, lblk); - lblk_end = lblk_start + sbi->s_cluster_ratio - 1; - - return ext4_find_delalloc_range(inode, lblk_start, lblk_end); -} - -/** - * Determines how many complete clusters (out of those specified by the 'map') - * are under delalloc and were reserved quota for. - * This function is called when we are writing out the blocks that were - * originally written with their allocation delayed, but then the space was - * allocated using fallocate() before the delayed allocation could be resolved. - * The cases to look for are: - * ('=' indicated delayed allocated blocks - * '-' indicates non-delayed allocated blocks) - * (a) partial clusters towards beginning and/or end outside of allocated range - * are not delalloc'ed. - * Ex: - * |----c---=|====c====|====c====|===-c----| - * |++++++ allocated ++++++| - * ==> 4 complete clusters in above example - * - * (b) partial cluster (outside of allocated range) towards either end is - * marked for delayed allocation. In this case, we will exclude that - * cluster. - * Ex: - * |----====c========|========c========| - * |++++++ allocated ++++++| - * ==> 1 complete clusters in above example - * - * Ex: - * |================c================| - * |++++++ allocated ++++++| - * ==> 0 complete clusters in above example - * - * The ext4_da_update_reserve_space will be called only if we - * determine here that there were some "entire" clusters that span - * this 'allocated' range. - * In the non-bigalloc case, this function will just end up returning num_blks - * without ever calling ext4_find_delalloc_range. - */ -static unsigned int -get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, - unsigned int num_blks) -{ - struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); - ext4_lblk_t alloc_cluster_start, alloc_cluster_end; - ext4_lblk_t lblk_from, lblk_to, c_offset; - unsigned int allocated_clusters = 0; - - alloc_cluster_start = EXT4_B2C(sbi, lblk_start); - alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); - - /* max possible clusters for this allocation */ - allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; - - trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); - - /* Check towards left side */ - c_offset = EXT4_LBLK_COFF(sbi, lblk_start); - if (c_offset) { - lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start); - lblk_to = lblk_from + c_offset - 1; - - if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) - allocated_clusters--; - } - - /* Now check towards right. */ - c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks); - if (allocated_clusters && c_offset) { - lblk_from = lblk_start + num_blks; - lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; - - if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) - allocated_clusters--; - } - - return allocated_clusters; -} - static int convert_initialized_extent(handle_t *handle, struct inode *inode, struct ext4_map_blocks *map, @@ -4108,23 +4062,6 @@ out: } map->m_len = allocated; - /* - * If we have done fallocate with the offset that is already - * delayed allocated, we would have block reservation - * and quota reservation done in the delayed write path. - * But fallocate would have already updated quota and block - * count for this offset. So cancel these reservation - */ - if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { - unsigned int reserved_clusters; - reserved_clusters = get_reserved_cluster_alloc(inode, - map->m_lblk, map->m_len); - if (reserved_clusters) - ext4_da_update_reserve_space(inode, - reserved_clusters, - 0); - } - map_out: map->m_flags |= EXT4_MAP_MAPPED; if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { @@ -4513,77 +4450,39 @@ got_allocated_blocks: map->m_flags |= EXT4_MAP_NEW; /* - * Update reserved blocks/metadata blocks after successful - * block allocation which had been deferred till now. + * Reduce the reserved cluster count to reflect successful deferred + * allocation of delayed allocated clusters or direct allocation of + * clusters discovered to be delayed allocated. Once allocated, a + * cluster is not included in the reserved count. */ - if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { - unsigned int reserved_clusters; - /* - * Check how many clusters we had reserved this allocated range - */ - reserved_clusters = get_reserved_cluster_alloc(inode, - map->m_lblk, allocated); - if (!map_from_cluster) { - BUG_ON(allocated_clusters < reserved_clusters); - if (reserved_clusters < allocated_clusters) { - struct ext4_inode_info *ei = EXT4_I(inode); - int reservation = allocated_clusters - - reserved_clusters; - /* - * It seems we claimed few clusters outside of - * the range of this allocation. We should give - * it back to the reservation pool. This can - * happen in the following case: - * - * * Suppose s_cluster_ratio is 4 (i.e., each - * cluster has 4 blocks. Thus, the clusters - * are [0-3],[4-7],[8-11]... - * * First comes delayed allocation write for - * logical blocks 10 & 11. Since there were no - * previous delayed allocated blocks in the - * range [8-11], we would reserve 1 cluster - * for this write. - * * Next comes write for logical blocks 3 to 8. - * In this case, we will reserve 2 clusters - * (for [0-3] and [4-7]; and not for [8-11] as - * that range has a delayed allocated blocks. - * Thus total reserved clusters now becomes 3. - * * Now, during the delayed allocation writeout - * time, we will first write blocks [3-8] and - * allocate 3 clusters for writing these - * blocks. Also, we would claim all these - * three clusters above. - * * Now when we come here to writeout the - * blocks [10-11], we would expect to claim - * the reservation of 1 cluster we had made - * (and we would claim it since there are no - * more delayed allocated blocks in the range - * [8-11]. But our reserved cluster count had - * already gone to 0. - * - * Thus, at the step 4 above when we determine - * that there are still some unwritten delayed - * allocated blocks outside of our current - * block range, we should increment the - * reserved clusters count so that when the - * remaining blocks finally gets written, we - * could claim them. - */ - dquot_reserve_block(inode, - EXT4_C2B(sbi, reservation)); - spin_lock(&ei->i_block_reservation_lock); - ei->i_reserved_data_blocks += reservation; - spin_unlock(&ei->i_block_reservation_lock); - } + if (test_opt(inode->i_sb, DELALLOC) && !map_from_cluster) { + if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { /* - * We will claim quota for all newly allocated blocks. - * We're updating the reserved space *after* the - * correction above so we do not accidentally free - * all the metadata reservation because we might - * actually need it later on. + * When allocating delayed allocated clusters, simply + * reduce the reserved cluster count and claim quota */ ext4_da_update_reserve_space(inode, allocated_clusters, 1); + } else { + ext4_lblk_t lblk, len; + unsigned int n; + + /* + * When allocating non-delayed allocated clusters + * (from fallocate, filemap, DIO, or clusters + * allocated when delalloc has been disabled by + * ext4_nonda_switch), reduce the reserved cluster + * count by the number of allocated clusters that + * have previously been delayed allocated. Quota + * has been claimed by ext4_mb_new_blocks() above, + * so release the quota reservations made for any + * previously delayed allocated clusters. + */ + lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk); + len = allocated_clusters << sbi->s_cluster_bits; + n = ext4_es_delayed_clu(inode, lblk, len); + if (n > 0) + ext4_da_update_reserve_space(inode, (int) n, 0); } } @@ -5075,8 +4974,10 @@ static int ext4_find_delayed_extent(struct inode *inode, ext4_lblk_t block, next_del; if (newes->es_pblk == 0) { - ext4_es_find_delayed_extent_range(inode, newes->es_lblk, - newes->es_lblk + newes->es_len - 1, &es); + ext4_es_find_extent_range(inode, &ext4_es_is_delayed, + newes->es_lblk, + newes->es_lblk + newes->es_len - 1, + &es); /* * No extent in extent-tree contains block @newes->es_pblk, @@ -5097,7 +4998,8 @@ static int ext4_find_delayed_extent(struct inode *inode, } block = newes->es_lblk + newes->es_len; - ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es); + ext4_es_find_extent_range(inode, &ext4_es_is_delayed, block, + EXT_MAX_BLOCKS, &es); if (es.es_len == 0) next_del = EXT_MAX_BLOCKS; else @@ -5958,3 +5860,82 @@ ext4_swap_extents(handle_t *handle, struct inode *inode1, } return replaced_count; } + +/* + * ext4_clu_mapped - determine whether any block in a logical cluster has + * been mapped to a physical cluster + * + * @inode - file containing the logical cluster + * @lclu - logical cluster of interest + * + * Returns 1 if any block in the logical cluster is mapped, signifying + * that a physical cluster has been allocated for it. Otherwise, + * returns 0. Can also return negative error codes. Derived from + * ext4_ext_map_blocks(). + */ +int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu) +{ + struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); + struct ext4_ext_path *path; + int depth, mapped = 0, err = 0; + struct ext4_extent *extent; + ext4_lblk_t first_lblk, first_lclu, last_lclu; + + /* search for the extent closest to the first block in the cluster */ + path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0); + if (IS_ERR(path)) { + err = PTR_ERR(path); + path = NULL; + goto out; + } + + depth = ext_depth(inode); + + /* + * A consistent leaf must not be empty. This situation is possible, + * though, _during_ tree modification, and it's why an assert can't + * be put in ext4_find_extent(). + */ + if (unlikely(path[depth].p_ext == NULL && depth != 0)) { + EXT4_ERROR_INODE(inode, + "bad extent address - lblock: %lu, depth: %d, pblock: %lld", + (unsigned long) EXT4_C2B(sbi, lclu), + depth, path[depth].p_block); + err = -EFSCORRUPTED; + goto out; + } + + extent = path[depth].p_ext; + + /* can't be mapped if the extent tree is empty */ + if (extent == NULL) + goto out; + + first_lblk = le32_to_cpu(extent->ee_block); + first_lclu = EXT4_B2C(sbi, first_lblk); + + /* + * Three possible outcomes at this point - found extent spanning + * the target cluster, to the left of the target cluster, or to the + * right of the target cluster. The first two cases are handled here. + * The last case indicates the target cluster is not mapped. + */ + if (lclu >= first_lclu) { + last_lclu = EXT4_B2C(sbi, first_lblk + + ext4_ext_get_actual_len(extent) - 1); + if (lclu <= last_lclu) { + mapped = 1; + } else { + first_lblk = ext4_ext_next_allocated_block(path); + first_lclu = EXT4_B2C(sbi, first_lblk); + if (lclu == first_lclu) + mapped = 1; + } + } + +out: + ext4_ext_drop_refs(path); + kfree(path); + + return err ? err : mapped; +} |