summaryrefslogtreecommitdiff
path: root/drivers/remoteproc
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/remoteproc')
-rw-r--r--drivers/remoteproc/Kconfig15
-rw-r--r--drivers/remoteproc/Makefile1
-rw-r--r--drivers/remoteproc/mtk_common.h32
-rw-r--r--drivers/remoteproc/mtk_scp.c199
-rw-r--r--drivers/remoteproc/mtk_scp_ipi.c9
-rw-r--r--drivers/remoteproc/qcom_q6v5_mss.c16
-rw-r--r--drivers/remoteproc/remoteproc_core.c25
-rw-r--r--drivers/remoteproc/remoteproc_coredump.c6
-rw-r--r--drivers/remoteproc/remoteproc_debugfs.c23
-rw-r--r--drivers/remoteproc/remoteproc_sysfs.c119
-rw-r--r--drivers/remoteproc/remoteproc_virtio.c2
-rw-r--r--drivers/remoteproc/stm32_rproc.c2
-rw-r--r--drivers/remoteproc/ti_k3_r5_remoteproc.c1395
13 files changed, 1783 insertions, 61 deletions
diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig
index c6659dfea7c7..d99548fb5dde 100644
--- a/drivers/remoteproc/Kconfig
+++ b/drivers/remoteproc/Kconfig
@@ -43,7 +43,7 @@ config INGENIC_VPU_RPROC
config MTK_SCP
tristate "Mediatek SCP support"
- depends on ARCH_MEDIATEK
+ depends on ARCH_MEDIATEK || COMPILE_TEST
select RPMSG_MTK_SCP
help
Say y here to support Mediatek's System Companion Processor (SCP) via
@@ -275,6 +275,19 @@ config TI_K3_DSP_REMOTEPROC
It's safe to say N here if you're not interested in utilizing
the DSP slave processors.
+config TI_K3_R5_REMOTEPROC
+ tristate "TI K3 R5 remoteproc support"
+ depends on ARCH_K3
+ select MAILBOX
+ select OMAP2PLUS_MBOX
+ help
+ Say m here to support TI's R5F remote processor subsystems
+ on various TI K3 family of SoCs through the remote processor
+ framework.
+
+ It's safe to say N here if you're not interested in utilizing
+ a slave processor.
+
endif # REMOTEPROC
endmenu
diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile
index 3dfa28e6c701..da2ace4ec86c 100644
--- a/drivers/remoteproc/Makefile
+++ b/drivers/remoteproc/Makefile
@@ -33,3 +33,4 @@ obj-$(CONFIG_ST_REMOTEPROC) += st_remoteproc.o
obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o
obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o
obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o
+obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o
diff --git a/drivers/remoteproc/mtk_common.h b/drivers/remoteproc/mtk_common.h
index 0066c83636d0..47b4561443a9 100644
--- a/drivers/remoteproc/mtk_common.h
+++ b/drivers/remoteproc/mtk_common.h
@@ -32,6 +32,23 @@
#define MT8183_SCP_CACHESIZE_8KB BIT(8)
#define MT8183_SCP_CACHE_CON_WAYEN BIT(10)
+#define MT8192_L2TCM_SRAM_PD_0 0x210C0
+#define MT8192_L2TCM_SRAM_PD_1 0x210C4
+#define MT8192_L2TCM_SRAM_PD_2 0x210C8
+#define MT8192_L1TCM_SRAM_PDN 0x2102C
+#define MT8192_CPU0_SRAM_PD 0x21080
+
+#define MT8192_SCP2APMCU_IPC_SET 0x24080
+#define MT8192_SCP2APMCU_IPC_CLR 0x24084
+#define MT8192_SCP_IPC_INT_BIT BIT(0)
+#define MT8192_SCP2SPM_IPC_CLR 0x24094
+#define MT8192_GIPC_IN_SET 0x24098
+#define MT8192_HOST_IPC_INT_BIT BIT(0)
+
+#define MT8192_CORE0_SW_RSTN_CLR 0x30000
+#define MT8192_CORE0_SW_RSTN_SET 0x30004
+#define MT8192_CORE0_WDT_CFG 0x30034
+
#define SCP_FW_VER_LEN 32
#define SCP_SHARE_BUFFER_SIZE 288
@@ -50,6 +67,19 @@ struct scp_ipi_desc {
void *priv;
};
+struct mtk_scp;
+
+struct mtk_scp_of_data {
+ int (*scp_before_load)(struct mtk_scp *scp);
+ void (*scp_irq_handler)(struct mtk_scp *scp);
+ void (*scp_reset_assert)(struct mtk_scp *scp);
+ void (*scp_reset_deassert)(struct mtk_scp *scp);
+ void (*scp_stop)(struct mtk_scp *scp);
+
+ u32 host_to_scp_reg;
+ u32 host_to_scp_int_bit;
+};
+
struct mtk_scp {
struct device *dev;
struct rproc *rproc;
@@ -58,6 +88,8 @@ struct mtk_scp {
void __iomem *sram_base;
size_t sram_size;
+ const struct mtk_scp_of_data *data;
+
struct mtk_share_obj __iomem *recv_buf;
struct mtk_share_obj __iomem *send_buf;
struct scp_run run;
diff --git a/drivers/remoteproc/mtk_scp.c b/drivers/remoteproc/mtk_scp.c
index ac13e7b046a6..577cbd5d421e 100644
--- a/drivers/remoteproc/mtk_scp.c
+++ b/drivers/remoteproc/mtk_scp.c
@@ -124,9 +124,6 @@ static int scp_ipi_init(struct mtk_scp *scp)
size_t send_offset = SCP_FW_END - sizeof(struct mtk_share_obj);
size_t recv_offset = send_offset - sizeof(struct mtk_share_obj);
- /* Disable SCP to host interrupt */
- writel(MT8183_SCP_IPC_INT_BIT, scp->reg_base + MT8183_SCP_TO_HOST);
-
/* shared buffer initialization */
scp->recv_buf =
(struct mtk_share_obj __iomem *)(scp->sram_base + recv_offset);
@@ -138,7 +135,7 @@ static int scp_ipi_init(struct mtk_scp *scp)
return 0;
}
-static void scp_reset_assert(const struct mtk_scp *scp)
+static void mt8183_scp_reset_assert(struct mtk_scp *scp)
{
u32 val;
@@ -147,7 +144,7 @@ static void scp_reset_assert(const struct mtk_scp *scp)
writel(val, scp->reg_base + MT8183_SW_RSTN);
}
-static void scp_reset_deassert(const struct mtk_scp *scp)
+static void mt8183_scp_reset_deassert(struct mtk_scp *scp)
{
u32 val;
@@ -156,17 +153,19 @@ static void scp_reset_deassert(const struct mtk_scp *scp)
writel(val, scp->reg_base + MT8183_SW_RSTN);
}
-static irqreturn_t scp_irq_handler(int irq, void *priv)
+static void mt8192_scp_reset_assert(struct mtk_scp *scp)
{
- struct mtk_scp *scp = priv;
- u32 scp_to_host;
- int ret;
+ writel(1, scp->reg_base + MT8192_CORE0_SW_RSTN_SET);
+}
- ret = clk_prepare_enable(scp->clk);
- if (ret) {
- dev_err(scp->dev, "failed to enable clocks\n");
- return IRQ_NONE;
- }
+static void mt8192_scp_reset_deassert(struct mtk_scp *scp)
+{
+ writel(1, scp->reg_base + MT8192_CORE0_SW_RSTN_CLR);
+}
+
+static void mt8183_scp_irq_handler(struct mtk_scp *scp)
+{
+ u32 scp_to_host;
scp_to_host = readl(scp->reg_base + MT8183_SCP_TO_HOST);
if (scp_to_host & MT8183_SCP_IPC_INT_BIT)
@@ -177,6 +176,40 @@ static irqreturn_t scp_irq_handler(int irq, void *priv)
/* SCP won't send another interrupt until we set SCP_TO_HOST to 0. */
writel(MT8183_SCP_IPC_INT_BIT | MT8183_SCP_WDT_INT_BIT,
scp->reg_base + MT8183_SCP_TO_HOST);
+}
+
+static void mt8192_scp_irq_handler(struct mtk_scp *scp)
+{
+ u32 scp_to_host;
+
+ scp_to_host = readl(scp->reg_base + MT8192_SCP2APMCU_IPC_SET);
+
+ if (scp_to_host & MT8192_SCP_IPC_INT_BIT)
+ scp_ipi_handler(scp);
+ else
+ scp_wdt_handler(scp, scp_to_host);
+
+ /*
+ * SCP won't send another interrupt until we clear
+ * MT8192_SCP2APMCU_IPC.
+ */
+ writel(MT8192_SCP_IPC_INT_BIT,
+ scp->reg_base + MT8192_SCP2APMCU_IPC_CLR);
+}
+
+static irqreturn_t scp_irq_handler(int irq, void *priv)
+{
+ struct mtk_scp *scp = priv;
+ int ret;
+
+ ret = clk_prepare_enable(scp->clk);
+ if (ret) {
+ dev_err(scp->dev, "failed to enable clocks\n");
+ return IRQ_NONE;
+ }
+
+ scp->data->scp_irq_handler(scp);
+
clk_disable_unprepare(scp->clk);
return IRQ_HANDLED;
@@ -238,20 +271,10 @@ static int scp_elf_load_segments(struct rproc *rproc, const struct firmware *fw)
return ret;
}
-static int scp_load(struct rproc *rproc, const struct firmware *fw)
+static int mt8183_scp_before_load(struct mtk_scp *scp)
{
- const struct mtk_scp *scp = rproc->priv;
- struct device *dev = scp->dev;
- int ret;
-
- ret = clk_prepare_enable(scp->clk);
- if (ret) {
- dev_err(dev, "failed to enable clocks\n");
- return ret;
- }
-
- /* Hold SCP in reset while loading FW. */
- scp_reset_assert(scp);
+ /* Clear SCP to host interrupt */
+ writel(MT8183_SCP_IPC_INT_BIT, scp->reg_base + MT8183_SCP_TO_HOST);
/* Reset clocks before loading FW */
writel(0x0, scp->reg_base + MT8183_SCP_CLK_SW_SEL);
@@ -272,6 +295,63 @@ static int scp_load(struct rproc *rproc, const struct firmware *fw)
scp->reg_base + MT8183_SCP_CACHE_CON);
writel(MT8183_SCP_CACHESIZE_8KB, scp->reg_base + MT8183_SCP_DCACHE_CON);
+ return 0;
+}
+
+static void mt8192_power_on_sram(void *addr)
+{
+ int i;
+
+ for (i = 31; i >= 0; i--)
+ writel(GENMASK(i, 0), addr);
+ writel(0, addr);
+}
+
+static void mt8192_power_off_sram(void *addr)
+{
+ int i;
+
+ writel(0, addr);
+ for (i = 0; i < 32; i++)
+ writel(GENMASK(i, 0), addr);
+}
+
+static int mt8192_scp_before_load(struct mtk_scp *scp)
+{
+ /* clear SPM interrupt, SCP2SPM_IPC_CLR */
+ writel(0xff, scp->reg_base + MT8192_SCP2SPM_IPC_CLR);
+
+ writel(1, scp->reg_base + MT8192_CORE0_SW_RSTN_SET);
+
+ /* enable SRAM clock */
+ mt8192_power_on_sram(scp->reg_base + MT8192_L2TCM_SRAM_PD_0);
+ mt8192_power_on_sram(scp->reg_base + MT8192_L2TCM_SRAM_PD_1);
+ mt8192_power_on_sram(scp->reg_base + MT8192_L2TCM_SRAM_PD_2);
+ mt8192_power_on_sram(scp->reg_base + MT8192_L1TCM_SRAM_PDN);
+ mt8192_power_on_sram(scp->reg_base + MT8192_CPU0_SRAM_PD);
+
+ return 0;
+}
+
+static int scp_load(struct rproc *rproc, const struct firmware *fw)
+{
+ struct mtk_scp *scp = rproc->priv;
+ struct device *dev = scp->dev;
+ int ret;
+
+ ret = clk_prepare_enable(scp->clk);
+ if (ret) {
+ dev_err(dev, "failed to enable clocks\n");
+ return ret;
+ }
+
+ /* Hold SCP in reset while loading FW. */
+ scp->data->scp_reset_assert(scp);
+
+ ret = scp->data->scp_before_load(scp);
+ if (ret < 0)
+ return ret;
+
ret = scp_elf_load_segments(rproc, fw);
clk_disable_unprepare(scp->clk);
@@ -293,7 +373,7 @@ static int scp_start(struct rproc *rproc)
run->signaled = false;
- scp_reset_deassert(scp);
+ scp->data->scp_reset_deassert(scp);
ret = wait_event_interruptible_timeout(
run->wq,
@@ -309,13 +389,14 @@ static int scp_start(struct rproc *rproc)
dev_err(dev, "wait SCP interrupted by a signal!\n");
goto stop;
}
+
clk_disable_unprepare(scp->clk);
dev_info(dev, "SCP is ready. FW version %s\n", run->fw_ver);
return 0;
stop:
- scp_reset_assert(scp);
+ scp->data->scp_reset_assert(scp);
clk_disable_unprepare(scp->clk);
return ret;
}
@@ -329,7 +410,7 @@ static void *scp_da_to_va(struct rproc *rproc, u64 da, size_t len)
offset = da;
if (offset >= 0 && (offset + len) < scp->sram_size)
return (void __force *)scp->sram_base + offset;
- } else {
+ } else if (scp->dram_size) {
offset = da - scp->dma_addr;
if (offset >= 0 && (offset + len) < scp->dram_size)
return (void __force *)scp->cpu_addr + offset;
@@ -338,6 +419,25 @@ static void *scp_da_to_va(struct rproc *rproc, u64 da, size_t len)
return NULL;
}
+static void mt8183_scp_stop(struct mtk_scp *scp)
+{
+ /* Disable SCP watchdog */
+ writel(0, scp->reg_base + MT8183_WDT_CFG);
+}
+
+static void mt8192_scp_stop(struct mtk_scp *scp)
+{
+ /* Disable SRAM clock */
+ mt8192_power_off_sram(scp->reg_base + MT8192_L2TCM_SRAM_PD_0);
+ mt8192_power_off_sram(scp->reg_base + MT8192_L2TCM_SRAM_PD_1);
+ mt8192_power_off_sram(scp->reg_base + MT8192_L2TCM_SRAM_PD_2);
+ mt8192_power_off_sram(scp->reg_base + MT8192_L1TCM_SRAM_PDN);
+ mt8192_power_off_sram(scp->reg_base + MT8192_CPU0_SRAM_PD);
+
+ /* Disable SCP watchdog */
+ writel(0, scp->reg_base + MT8192_CORE0_WDT_CFG);
+}
+
static int scp_stop(struct rproc *rproc)
{
struct mtk_scp *scp = (struct mtk_scp *)rproc->priv;
@@ -349,9 +449,8 @@ static int scp_stop(struct rproc *rproc)
return ret;
}
- scp_reset_assert(scp);
- /* Disable SCP watchdog */
- writel(0, scp->reg_base + MT8183_WDT_CFG);
+ scp->data->scp_reset_assert(scp);
+ scp->data->scp_stop(scp);
clk_disable_unprepare(scp->clk);
return 0;
@@ -443,6 +542,13 @@ static int scp_map_memory_region(struct mtk_scp *scp)
int ret;
ret = of_reserved_mem_device_init(scp->dev);
+
+ /* reserved memory is optional. */
+ if (ret == -ENODEV) {
+ dev_info(scp->dev, "skipping reserved memory initialization.");
+ return 0;
+ }
+
if (ret) {
dev_err(scp->dev, "failed to assign memory-region: %d\n", ret);
return -ENOMEM;
@@ -460,6 +566,9 @@ static int scp_map_memory_region(struct mtk_scp *scp)
static void scp_unmap_memory_region(struct mtk_scp *scp)
{
+ if (scp->dram_size == 0)
+ return;
+
dma_free_coherent(scp->dev, scp->dram_size, scp->cpu_addr,
scp->dma_addr);
of_reserved_mem_device_release(scp->dev);
@@ -536,6 +645,7 @@ static int scp_probe(struct platform_device *pdev)
scp = (struct mtk_scp *)rproc->priv;
scp->rproc = rproc;
scp->dev = dev;
+ scp->data = of_device_get_match_data(dev);
platform_set_drvdata(pdev, scp);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
@@ -642,8 +752,29 @@ static int scp_remove(struct platform_device *pdev)
return 0;
}
+static const struct mtk_scp_of_data mt8183_of_data = {
+ .scp_before_load = mt8183_scp_before_load,
+ .scp_irq_handler = mt8183_scp_irq_handler,
+ .scp_reset_assert = mt8183_scp_reset_assert,
+ .scp_reset_deassert = mt8183_scp_reset_deassert,
+ .scp_stop = mt8183_scp_stop,
+ .host_to_scp_reg = MT8183_HOST_TO_SCP,
+ .host_to_scp_int_bit = MT8183_HOST_IPC_INT_BIT,
+};
+
+static const struct mtk_scp_of_data mt8192_of_data = {
+ .scp_before_load = mt8192_scp_before_load,
+ .scp_irq_handler = mt8192_scp_irq_handler,
+ .scp_reset_assert = mt8192_scp_reset_assert,
+ .scp_reset_deassert = mt8192_scp_reset_deassert,
+ .scp_stop = mt8192_scp_stop,
+ .host_to_scp_reg = MT8192_GIPC_IN_SET,
+ .host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT,
+};
+
static const struct of_device_id mtk_scp_of_match[] = {
- { .compatible = "mediatek,mt8183-scp"},
+ { .compatible = "mediatek,mt8183-scp", .data = &mt8183_of_data },
+ { .compatible = "mediatek,mt8192-scp", .data = &mt8192_of_data },
{},
};
MODULE_DEVICE_TABLE(of, mtk_scp_of_match);
diff --git a/drivers/remoteproc/mtk_scp_ipi.c b/drivers/remoteproc/mtk_scp_ipi.c
index 3d3d87210ef2..6dc955ecab80 100644
--- a/drivers/remoteproc/mtk_scp_ipi.c
+++ b/drivers/remoteproc/mtk_scp_ipi.c
@@ -30,10 +30,8 @@ int scp_ipi_register(struct mtk_scp *scp,
scp_ipi_handler_t handler,
void *priv)
{
- if (!scp) {
- dev_err(scp->dev, "scp device is not ready\n");
+ if (!scp)
return -EPROBE_DEFER;
- }
if (WARN_ON(id >= SCP_IPI_MAX) || WARN_ON(handler == NULL))
return -EINVAL;
@@ -182,7 +180,7 @@ int scp_ipi_send(struct mtk_scp *scp, u32 id, void *buf, unsigned int len,
ret = -ETIMEDOUT;
goto clock_disable;
}
- } while (readl(scp->reg_base + MT8183_HOST_TO_SCP));
+ } while (readl(scp->reg_base + scp->data->host_to_scp_reg));
scp_memcpy_aligned(send_obj->share_buf, buf, len);
@@ -191,7 +189,8 @@ int scp_ipi_send(struct mtk_scp *scp, u32 id, void *buf, unsigned int len,
scp->ipi_id_ack[id] = false;
/* send the command to SCP */
- writel(MT8183_HOST_IPC_INT_BIT, scp->reg_base + MT8183_HOST_TO_SCP);
+ writel(scp->data->host_to_scp_int_bit,
+ scp->reg_base + scp->data->host_to_scp_reg);
if (wait) {
/* wait for SCP's ACK */
diff --git a/drivers/remoteproc/qcom_q6v5_mss.c b/drivers/remoteproc/qcom_q6v5_mss.c
index c401bcc263fa..eb3457a6c3b7 100644
--- a/drivers/remoteproc/qcom_q6v5_mss.c
+++ b/drivers/remoteproc/qcom_q6v5_mss.c
@@ -931,6 +931,17 @@ static int q6v5_mba_load(struct q6v5 *qproc)
goto assert_reset;
}
+ /*
+ * Some versions of the MBA firmware will upon boot wipe the MPSS region as well, so provide
+ * the Q6 access to this region.
+ */
+ ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true,
+ qproc->mpss_phys, qproc->mpss_size);
+ if (ret) {
+ dev_err(qproc->dev, "assigning Q6 access to mpss memory failed: %d\n", ret);
+ goto disable_active_clks;
+ }
+
/* Assign MBA image access in DDR to q6 */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, false, true,
qproc->mba_phys, qproc->mba_size);
@@ -1135,10 +1146,9 @@ static int q6v5_mpss_load(struct q6v5 *qproc)
max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K);
}
- /**
+ /*
* In case of a modem subsystem restart on secure devices, the modem
- * memory can be reclaimed only after MBA is loaded. For modem cold
- * boot this will be a nop
+ * memory can be reclaimed only after MBA is loaded.
*/
q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, false,
qproc->mpss_phys, qproc->mpss_size);
diff --git a/drivers/remoteproc/remoteproc_core.c b/drivers/remoteproc/remoteproc_core.c
index 7f90eeea67e2..dab2c0f5caf0 100644
--- a/drivers/remoteproc/remoteproc_core.c
+++ b/drivers/remoteproc/remoteproc_core.c
@@ -22,7 +22,9 @@
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
+#include <linux/dma-map-ops.h>
#include <linux/dma-mapping.h>
+#include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
@@ -458,6 +460,25 @@ static void rproc_rvdev_release(struct device *dev)
kfree(rvdev);
}
+static int copy_dma_range_map(struct device *to, struct device *from)
+{
+ const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
+ int num_ranges = 0;
+
+ if (!map)
+ return 0;
+
+ for (r = map; r->size; r++)
+ num_ranges++;
+
+ new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
+ GFP_KERNEL);
+ if (!new_map)
+ return -ENOMEM;
+ to->dma_range_map = new_map;
+ return 0;
+}
+
/**
* rproc_handle_vdev() - handle a vdev fw resource
* @rproc: the remote processor
@@ -529,7 +550,9 @@ static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
/* Initialise vdev subdevice */
snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
rvdev->dev.parent = &rproc->dev;
- rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
+ ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
+ if (ret)
+ return ret;
rvdev->dev.release = rproc_rvdev_release;
dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
dev_set_drvdata(&rvdev->dev, rvdev);
diff --git a/drivers/remoteproc/remoteproc_coredump.c b/drivers/remoteproc/remoteproc_coredump.c
index bb15a29038e8..34530dc20cb4 100644
--- a/drivers/remoteproc/remoteproc_coredump.c
+++ b/drivers/remoteproc/remoteproc_coredump.c
@@ -257,7 +257,7 @@ void rproc_coredump(struct rproc *rproc)
* directly read from device memory.
*/
data_size += elf_size_of_phdr(class);
- if (dump_conf == RPROC_COREDUMP_DEFAULT)
+ if (dump_conf == RPROC_COREDUMP_ENABLED)
data_size += segment->size;
phnum++;
@@ -297,14 +297,14 @@ void rproc_coredump(struct rproc *rproc)
elf_phdr_set_p_flags(class, phdr, PF_R | PF_W | PF_X);
elf_phdr_set_p_align(class, phdr, 0);
- if (dump_conf == RPROC_COREDUMP_DEFAULT)
+ if (dump_conf == RPROC_COREDUMP_ENABLED)
rproc_copy_segment(rproc, data + offset, segment, 0,
segment->size);
offset += elf_phdr_get_p_filesz(class, phdr);
phdr += elf_size_of_phdr(class);
}
- if (dump_conf == RPROC_COREDUMP_DEFAULT) {
+ if (dump_conf == RPROC_COREDUMP_ENABLED) {
dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
return;
}
diff --git a/drivers/remoteproc/remoteproc_debugfs.c b/drivers/remoteproc/remoteproc_debugfs.c
index 2e3b3e22e1d0..7e5845376e9f 100644
--- a/drivers/remoteproc/remoteproc_debugfs.c
+++ b/drivers/remoteproc/remoteproc_debugfs.c
@@ -33,9 +33,9 @@ static struct dentry *rproc_dbg;
* enum rproc_coredump_mechanism
*/
static const char * const rproc_coredump_str[] = {
- [RPROC_COREDUMP_DEFAULT] = "default",
- [RPROC_COREDUMP_INLINE] = "inline",
[RPROC_COREDUMP_DISABLED] = "disabled",
+ [RPROC_COREDUMP_ENABLED] = "enabled",
+ [RPROC_COREDUMP_INLINE] = "inline",
};
/* Expose the current coredump configuration via debugfs */
@@ -54,20 +54,19 @@ static ssize_t rproc_coredump_read(struct file *filp, char __user *userbuf,
/*
* By writing to the 'coredump' debugfs entry, we control the behavior of the
- * coredump mechanism dynamically. The default value of this entry is "default".
+ * coredump mechanism dynamically. The default value of this entry is "disabled".
*
* The 'coredump' debugfs entry supports these commands:
*
- * default: This is the default coredump mechanism. When the remoteproc
- * crashes the entire coredump will be copied to a separate buffer
- * and exposed to userspace.
+ * disabled: By default coredump collection is disabled. Recovery will
+ * proceed without collecting any dump.
+ *
+ * enabled: When the remoteproc crashes the entire coredump will be copied
+ * to a separate buffer and exposed to userspace.
*
* inline: The coredump will not be copied to a separate buffer and the
* recovery process will have to wait until data is read by
* userspace. But this avoid usage of extra memory.
- *
- * disabled: This will disable coredump. Recovery will proceed without
- * collecting any dump.
*/
static ssize_t rproc_coredump_write(struct file *filp,
const char __user *user_buf, size_t count,
@@ -94,12 +93,12 @@ static ssize_t rproc_coredump_write(struct file *filp,
goto out;
}
- if (!strncmp(buf, "disable", count)) {
+ if (!strncmp(buf, "disabled", count)) {
rproc->dump_conf = RPROC_COREDUMP_DISABLED;
+ } else if (!strncmp(buf, "enabled", count)) {
+ rproc->dump_conf = RPROC_COREDUMP_ENABLED;
} else if (!strncmp(buf, "inline", count)) {
rproc->dump_conf = RPROC_COREDUMP_INLINE;
- } else if (!strncmp(buf, "default", count)) {
- rproc->dump_conf = RPROC_COREDUMP_DEFAULT;
} else {
dev_err(&rproc->dev, "Invalid coredump configuration\n");
err = -EINVAL;
diff --git a/drivers/remoteproc/remoteproc_sysfs.c b/drivers/remoteproc/remoteproc_sysfs.c
index eea514cec50e..d1cf7bf277c4 100644
--- a/drivers/remoteproc/remoteproc_sysfs.c
+++ b/drivers/remoteproc/remoteproc_sysfs.c
@@ -10,6 +10,123 @@
#define to_rproc(d) container_of(d, struct rproc, dev)
+static ssize_t recovery_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct rproc *rproc = to_rproc(dev);
+
+ return sprintf(buf, "%s", rproc->recovery_disabled ? "disabled\n" : "enabled\n");
+}
+
+/*
+ * By writing to the 'recovery' sysfs entry, we control the behavior of the
+ * recovery mechanism dynamically. The default value of this entry is "enabled".
+ *
+ * The 'recovery' sysfs entry supports these commands:
+ *
+ * enabled: When enabled, the remote processor will be automatically
+ * recovered whenever it crashes. Moreover, if the remote
+ * processor crashes while recovery is disabled, it will
+ * be automatically recovered too as soon as recovery is enabled.
+ *
+ * disabled: When disabled, a remote processor will remain in a crashed
+ * state if it crashes. This is useful for debugging purposes;
+ * without it, debugging a crash is substantially harder.
+ *
+ * recover: This function will trigger an immediate recovery if the
+ * remote processor is in a crashed state, without changing
+ * or checking the recovery state (enabled/disabled).
+ * This is useful during debugging sessions, when one expects
+ * additional crashes to happen after enabling recovery. In this
+ * case, enabling recovery will make it hard to debug subsequent
+ * crashes, so it's recommended to keep recovery disabled, and
+ * instead use the "recover" command as needed.
+ */
+static ssize_t recovery_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct rproc *rproc = to_rproc(dev);
+
+ if (sysfs_streq(buf, "enabled")) {
+ /* change the flag and begin the recovery process if needed */
+ rproc->recovery_disabled = false;
+ rproc_trigger_recovery(rproc);
+ } else if (sysfs_streq(buf, "disabled")) {
+ rproc->recovery_disabled = true;
+ } else if (sysfs_streq(buf, "recover")) {
+ /* begin the recovery process without changing the flag */
+ rproc_trigger_recovery(rproc);
+ } else {
+ return -EINVAL;
+ }
+
+ return count;
+}
+static DEVICE_ATTR_RW(recovery);
+
+/*
+ * A coredump-configuration-to-string lookup table, for exposing a
+ * human readable configuration via sysfs. Always keep in sync with
+ * enum rproc_coredump_mechanism
+ */
+static const char * const rproc_coredump_str[] = {
+ [RPROC_COREDUMP_DISABLED] = "disabled",
+ [RPROC_COREDUMP_ENABLED] = "enabled",
+ [RPROC_COREDUMP_INLINE] = "inline",
+};
+
+/* Expose the current coredump configuration via debugfs */
+static ssize_t coredump_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct rproc *rproc = to_rproc(dev);
+
+ return sprintf(buf, "%s\n", rproc_coredump_str[rproc->dump_conf]);
+}
+
+/*
+ * By writing to the 'coredump' sysfs entry, we control the behavior of the
+ * coredump mechanism dynamically. The default value of this entry is "default".
+ *
+ * The 'coredump' sysfs entry supports these commands:
+ *
+ * disabled: This is the default coredump mechanism. Recovery will proceed
+ * without collecting any dump.
+ *
+ * default: When the remoteproc crashes the entire coredump will be
+ * copied to a separate buffer and exposed to userspace.
+ *
+ * inline: The coredump will not be copied to a separate buffer and the
+ * recovery process will have to wait until data is read by
+ * userspace. But this avoid usage of extra memory.
+ */
+static ssize_t coredump_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct rproc *rproc = to_rproc(dev);
+
+ if (rproc->state == RPROC_CRASHED) {
+ dev_err(&rproc->dev, "can't change coredump configuration\n");
+ return -EBUSY;
+ }
+
+ if (sysfs_streq(buf, "disabled")) {
+ rproc->dump_conf = RPROC_COREDUMP_DISABLED;
+ } else if (sysfs_streq(buf, "enabled")) {
+ rproc->dump_conf = RPROC_COREDUMP_ENABLED;
+ } else if (sysfs_streq(buf, "inline")) {
+ rproc->dump_conf = RPROC_COREDUMP_INLINE;
+ } else {
+ dev_err(&rproc->dev, "Invalid coredump configuration\n");
+ return -EINVAL;
+ }
+
+ return count;
+}
+static DEVICE_ATTR_RW(coredump);
+
/* Expose the loaded / running firmware name via sysfs */
static ssize_t firmware_show(struct device *dev, struct device_attribute *attr,
char *buf)
@@ -138,6 +255,8 @@ static ssize_t name_show(struct device *dev, struct device_attribute *attr,
static DEVICE_ATTR_RO(name);
static struct attribute *rproc_attrs[] = {
+ &dev_attr_coredump.attr,
+ &dev_attr_recovery.attr,
&dev_attr_firmware.attr,
&dev_attr_state.attr,
&dev_attr_name.attr,
diff --git a/drivers/remoteproc/remoteproc_virtio.c b/drivers/remoteproc/remoteproc_virtio.c
index dfd3808c34fd..0cc617f76068 100644
--- a/drivers/remoteproc/remoteproc_virtio.c
+++ b/drivers/remoteproc/remoteproc_virtio.c
@@ -9,7 +9,7 @@
* Brian Swetland <swetland@google.com>
*/
-#include <linux/dma-mapping.h>
+#include <linux/dma-map-ops.h>
#include <linux/export.h>
#include <linux/of_reserved_mem.h>
#include <linux/remoteproc.h>
diff --git a/drivers/remoteproc/stm32_rproc.c b/drivers/remoteproc/stm32_rproc.c
index f4da42fc0eeb..d2414cc1d90d 100644
--- a/drivers/remoteproc/stm32_rproc.c
+++ b/drivers/remoteproc/stm32_rproc.c
@@ -685,7 +685,7 @@ static int stm32_rproc_get_m4_status(struct stm32_rproc *ddata,
* We couldn't get the coprocessor's state, assume
* it is not running.
*/
- state = M4_STATE_OFF;
+ *state = M4_STATE_OFF;
return 0;
}
diff --git a/drivers/remoteproc/ti_k3_r5_remoteproc.c b/drivers/remoteproc/ti_k3_r5_remoteproc.c
new file mode 100644
index 000000000000..d9307935441d
--- /dev/null
+++ b/drivers/remoteproc/ti_k3_r5_remoteproc.c
@@ -0,0 +1,1395 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * TI K3 R5F (MCU) Remote Processor driver
+ *
+ * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/
+ * Suman Anna <s-anna@ti.com>
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/err.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/mailbox_client.h>
+#include <linux/module.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_reserved_mem.h>
+#include <linux/omap-mailbox.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/remoteproc.h>
+#include <linux/reset.h>
+#include <linux/slab.h>
+
+#include "omap_remoteproc.h"
+#include "remoteproc_internal.h"
+#include "ti_sci_proc.h"
+
+/* This address can either be for ATCM or BTCM with the other at address 0x0 */
+#define K3_R5_TCM_DEV_ADDR 0x41010000
+
+/* R5 TI-SCI Processor Configuration Flags */
+#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
+#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
+#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
+#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
+#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
+#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
+#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
+#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
+
+/* R5 TI-SCI Processor Control Flags */
+#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
+
+/* R5 TI-SCI Processor Status Flags */
+#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
+#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
+#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
+#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
+
+/**
+ * struct k3_r5_mem - internal memory structure
+ * @cpu_addr: MPU virtual address of the memory region
+ * @bus_addr: Bus address used to access the memory region
+ * @dev_addr: Device address from remoteproc view
+ * @size: Size of the memory region
+ */
+struct k3_r5_mem {
+ void __iomem *cpu_addr;
+ phys_addr_t bus_addr;
+ u32 dev_addr;
+ size_t size;
+};
+
+enum cluster_mode {
+ CLUSTER_MODE_SPLIT = 0,
+ CLUSTER_MODE_LOCKSTEP,
+};
+
+/**
+ * struct k3_r5_cluster - K3 R5F Cluster structure
+ * @dev: cached device pointer
+ * @mode: Mode to configure the Cluster - Split or LockStep
+ * @cores: list of R5 cores within the cluster
+ */
+struct k3_r5_cluster {
+ struct device *dev;
+ enum cluster_mode mode;
+ struct list_head cores;
+};
+
+/**
+ * struct k3_r5_core - K3 R5 core structure
+ * @elem: linked list item
+ * @dev: cached device pointer
+ * @rproc: rproc handle representing this core
+ * @mem: internal memory regions data
+ * @sram: on-chip SRAM memory regions data
+ * @num_mems: number of internal memory regions
+ * @num_sram: number of on-chip SRAM memory regions
+ * @reset: reset control handle
+ * @tsp: TI-SCI processor control handle
+ * @ti_sci: TI-SCI handle
+ * @ti_sci_id: TI-SCI device identifier
+ * @atcm_enable: flag to control ATCM enablement
+ * @btcm_enable: flag to control BTCM enablement
+ * @loczrama: flag to dictate which TCM is at device address 0x0
+ */
+struct k3_r5_core {
+ struct list_head elem;
+ struct device *dev;
+ struct rproc *rproc;
+ struct k3_r5_mem *mem;
+ struct k3_r5_mem *sram;
+ int num_mems;
+ int num_sram;
+ struct reset_control *reset;
+ struct ti_sci_proc *tsp;
+ const struct ti_sci_handle *ti_sci;
+ u32 ti_sci_id;
+ u32 atcm_enable;
+ u32 btcm_enable;
+ u32 loczrama;
+};
+
+/**
+ * struct k3_r5_rproc - K3 remote processor state
+ * @dev: cached device pointer
+ * @cluster: cached pointer to parent cluster structure
+ * @mbox: mailbox channel handle
+ * @client: mailbox client to request the mailbox channel
+ * @rproc: rproc handle
+ * @core: cached pointer to r5 core structure being used
+ * @rmem: reserved memory regions data
+ * @num_rmems: number of reserved memory regions
+ */
+struct k3_r5_rproc {
+ struct device *dev;
+ struct k3_r5_cluster *cluster;
+ struct mbox_chan *mbox;
+ struct mbox_client client;
+ struct rproc *rproc;
+ struct k3_r5_core *core;
+ struct k3_r5_mem *rmem;
+ int num_rmems;
+};
+
+/**
+ * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
+ * @client: mailbox client pointer used for requesting the mailbox channel
+ * @data: mailbox payload
+ *
+ * This handler is invoked by the OMAP mailbox driver whenever a mailbox
+ * message is received. Usually, the mailbox payload simply contains
+ * the index of the virtqueue that is kicked by the remote processor,
+ * and we let remoteproc core handle it.
+ *
+ * In addition to virtqueue indices, we also have some out-of-band values
+ * that indicate different events. Those values are deliberately very
+ * large so they don't coincide with virtqueue indices.
+ */
+static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
+{
+ struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
+ client);
+ struct device *dev = kproc->rproc->dev.parent;
+ const char *name = kproc->rproc->name;
+ u32 msg = omap_mbox_message(data);
+
+ dev_dbg(dev, "mbox msg: 0x%x\n", msg);
+
+ switch (msg) {
+ case RP_MBOX_CRASH:
+ /*
+ * remoteproc detected an exception, but error recovery is not
+ * supported. So, just log this for now
+ */
+ dev_err(dev, "K3 R5F rproc %s crashed\n", name);
+ break;
+ case RP_MBOX_ECHO_REPLY:
+ dev_info(dev, "received echo reply from %s\n", name);
+ break;
+ default:
+ /* silently handle all other valid messages */
+ if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
+ return;
+ if (msg > kproc->rproc->max_notifyid) {
+ dev_dbg(dev, "dropping unknown message 0x%x", msg);
+ return;
+ }
+ /* msg contains the index of the triggered vring */
+ if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
+ dev_dbg(dev, "no message was found in vqid %d\n", msg);
+ }
+}
+
+/* kick a virtqueue */
+static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct device *dev = rproc->dev.parent;
+ mbox_msg_t msg = (mbox_msg_t)vqid;
+ int ret;
+
+ /* send the index of the triggered virtqueue in the mailbox payload */
+ ret = mbox_send_message(kproc->mbox, (void *)msg);
+ if (ret < 0)
+ dev_err(dev, "failed to send mailbox message, status = %d\n",
+ ret);
+}
+
+static int k3_r5_split_reset(struct k3_r5_core *core)
+{
+ int ret;
+
+ ret = reset_control_assert(core->reset);
+ if (ret) {
+ dev_err(core->dev, "local-reset assert failed, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id);
+ if (ret) {
+ dev_err(core->dev, "module-reset assert failed, ret = %d\n",
+ ret);
+ if (reset_control_deassert(core->reset))
+ dev_warn(core->dev, "local-reset deassert back failed\n");
+ }
+
+ return ret;
+}
+
+static int k3_r5_split_release(struct k3_r5_core *core)
+{
+ int ret;
+
+ ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
+ core->ti_sci_id);
+ if (ret) {
+ dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = reset_control_deassert(core->reset);
+ if (ret) {
+ dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
+ ret);
+ if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id))
+ dev_warn(core->dev, "module-reset assert back failed\n");
+ }
+
+ return ret;
+}
+
+static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
+{
+ struct k3_r5_core *core;
+ int ret;
+
+ /* assert local reset on all applicable cores */
+ list_for_each_entry(core, &cluster->cores, elem) {
+ ret = reset_control_assert(core->reset);
+ if (ret) {
+ dev_err(core->dev, "local-reset assert failed, ret = %d\n",
+ ret);
+ core = list_prev_entry(core, elem);
+ goto unroll_local_reset;
+ }
+ }
+
+ /* disable PSC modules on all applicable cores */
+ list_for_each_entry(core, &cluster->cores, elem) {
+ ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id);
+ if (ret) {
+ dev_err(core->dev, "module-reset assert failed, ret = %d\n",
+ ret);
+ goto unroll_module_reset;
+ }
+ }
+
+ return 0;
+
+unroll_module_reset:
+ list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
+ if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id))
+ dev_warn(core->dev, "module-reset assert back failed\n");
+ }
+ core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
+unroll_local_reset:
+ list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
+ if (reset_control_deassert(core->reset))
+ dev_warn(core->dev, "local-reset deassert back failed\n");
+ }
+
+ return ret;
+}
+
+static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
+{
+ struct k3_r5_core *core;
+ int ret;
+
+ /* enable PSC modules on all applicable cores */
+ list_for_each_entry_reverse(core, &cluster->cores, elem) {
+ ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
+ core->ti_sci_id);
+ if (ret) {
+ dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
+ ret);
+ core = list_next_entry(core, elem);
+ goto unroll_module_reset;
+ }
+ }
+
+ /* deassert local reset on all applicable cores */
+ list_for_each_entry_reverse(core, &cluster->cores, elem) {
+ ret = reset_control_deassert(core->reset);
+ if (ret) {
+ dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
+ ret);
+ goto unroll_local_reset;
+ }
+ }
+
+ return 0;
+
+unroll_local_reset:
+ list_for_each_entry_continue(core, &cluster->cores, elem) {
+ if (reset_control_assert(core->reset))
+ dev_warn(core->dev, "local-reset assert back failed\n");
+ }
+ core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
+unroll_module_reset:
+ list_for_each_entry_from(core, &cluster->cores, elem) {
+ if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id))
+ dev_warn(core->dev, "module-reset assert back failed\n");
+ }
+
+ return ret;
+}
+
+static inline int k3_r5_core_halt(struct k3_r5_core *core)
+{
+ return ti_sci_proc_set_control(core->tsp,
+ PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
+}
+
+static inline int k3_r5_core_run(struct k3_r5_core *core)
+{
+ return ti_sci_proc_set_control(core->tsp,
+ 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
+}
+
+/*
+ * The R5F cores have controls for both a reset and a halt/run. The code
+ * execution from DDR requires the initial boot-strapping code to be run
+ * from the internal TCMs. This function is used to release the resets on
+ * applicable cores to allow loading into the TCMs. The .prepare() ops is
+ * invoked by remoteproc core before any firmware loading, and is followed
+ * by the .start() ops after loading to actually let the R5 cores run.
+ */
+static int k3_r5_rproc_prepare(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct k3_r5_core *core = kproc->core;
+ struct device *dev = kproc->dev;
+ int ret;
+
+ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
+ k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
+ if (ret) {
+ dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ /*
+ * Zero out both TCMs unconditionally (access from v8 Arm core is not
+ * affected by ATCM & BTCM enable configuration values) so that ECC
+ * can be effective on all TCM addresses.
+ */
+ dev_dbg(dev, "zeroing out ATCM memory\n");
+ memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
+
+ dev_dbg(dev, "zeroing out BTCM memory\n");
+ memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
+
+ return 0;
+}
+
+/*
+ * This function implements the .unprepare() ops and performs the complimentary
+ * operations to that of the .prepare() ops. The function is used to assert the
+ * resets on all applicable cores for the rproc device (depending on LockStep
+ * or Split mode). This completes the second portion of powering down the R5F
+ * cores. The cores themselves are only halted in the .stop() ops, and the
+ * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
+ * stopped.
+ */
+static int k3_r5_rproc_unprepare(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct k3_r5_core *core = kproc->core;
+ struct device *dev = kproc->dev;
+ int ret;
+
+ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
+ k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
+ if (ret)
+ dev_err(dev, "unable to disable cores, ret = %d\n", ret);
+
+ return ret;
+}
+
+/*
+ * The R5F start sequence includes two different operations
+ * 1. Configure the boot vector for R5F core(s)
+ * 2. Unhalt/Run the R5F core(s)
+ *
+ * The sequence is different between LockStep and Split modes. The LockStep
+ * mode requires the boot vector to be configured only for Core0, and then
+ * unhalt both the cores to start the execution - Core1 needs to be unhalted
+ * first followed by Core0. The Split-mode requires that Core0 to be maintained
+ * always in a higher power state that Core1 (implying Core1 needs to be started
+ * always only after Core0 is started).
+ */
+static int k3_r5_rproc_start(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct mbox_client *client = &kproc->client;
+ struct device *dev = kproc->dev;
+ struct k3_r5_core *core;
+ u32 boot_addr;
+ int ret;
+
+ client->dev = dev;
+ client->tx_done = NULL;
+ client->rx_callback = k3_r5_rproc_mbox_callback;
+ client->tx_block = false;
+ client->knows_txdone = false;
+
+ kproc->mbox = mbox_request_channel(client, 0);
+ if (IS_ERR(kproc->mbox)) {
+ ret = -EBUSY;
+ dev_err(dev, "mbox_request_channel failed: %ld\n",
+ PTR_ERR(kproc->mbox));
+ return ret;
+ }
+
+ /*
+ * Ping the remote processor, this is only for sanity-sake for now;
+ * there is no functional effect whatsoever.
+ *
+ * Note that the reply will _not_ arrive immediately: this message
+ * will wait in the mailbox fifo until the remote processor is booted.
+ */
+ ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
+ if (ret < 0) {
+ dev_err(dev, "mbox_send_message failed: %d\n", ret);
+ goto put_mbox;
+ }
+
+ boot_addr = rproc->bootaddr;
+ /* TODO: add boot_addr sanity checking */
+ dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
+
+ /* boot vector need not be programmed for Core1 in LockStep mode */
+ core = kproc->core;
+ ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
+ if (ret)
+ goto put_mbox;
+
+ /* unhalt/run all applicable cores */
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
+ list_for_each_entry_reverse(core, &cluster->cores, elem) {
+ ret = k3_r5_core_run(core);
+ if (ret)
+ goto unroll_core_run;
+ }
+ } else {
+ ret = k3_r5_core_run(core);
+ if (ret)
+ goto put_mbox;
+ }
+
+ return 0;
+
+unroll_core_run:
+ list_for_each_entry_continue(core, &cluster->cores, elem) {
+ if (k3_r5_core_halt(core))
+ dev_warn(core->dev, "core halt back failed\n");
+ }
+put_mbox:
+ mbox_free_channel(kproc->mbox);
+ return ret;
+}
+
+/*
+ * The R5F stop function includes the following operations
+ * 1. Halt R5F core(s)
+ *
+ * The sequence is different between LockStep and Split modes, and the order
+ * of cores the operations are performed are also in general reverse to that
+ * of the start function. The LockStep mode requires each operation to be
+ * performed first on Core0 followed by Core1. The Split-mode requires that
+ * Core0 to be maintained always in a higher power state that Core1 (implying
+ * Core1 needs to be stopped first before Core0).
+ *
+ * Note that the R5F halt operation in general is not effective when the R5F
+ * core is running, but is needed to make sure the core won't run after
+ * deasserting the reset the subsequent time. The asserting of reset can
+ * be done here, but is preferred to be done in the .unprepare() ops - this
+ * maintains the symmetric behavior between the .start(), .stop(), .prepare()
+ * and .unprepare() ops, and also balances them well between sysfs 'state'
+ * flow and device bind/unbind or module removal.
+ */
+static int k3_r5_rproc_stop(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct k3_r5_core *core = kproc->core;
+ int ret;
+
+ /* halt all applicable cores */
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
+ list_for_each_entry(core, &cluster->cores, elem) {
+ ret = k3_r5_core_halt(core);
+ if (ret) {
+ core = list_prev_entry(core, elem);
+ goto unroll_core_halt;
+ }
+ }
+ } else {
+ ret = k3_r5_core_halt(core);
+ if (ret)
+ goto out;
+ }
+
+ mbox_free_channel(kproc->mbox);
+
+ return 0;
+
+unroll_core_halt:
+ list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
+ if (k3_r5_core_run(core))
+ dev_warn(core->dev, "core run back failed\n");
+ }
+out:
+ return ret;
+}
+
+/*
+ * Internal Memory translation helper
+ *
+ * Custom function implementing the rproc .da_to_va ops to provide address
+ * translation (device address to kernel virtual address) for internal RAMs
+ * present in a DSP or IPU device). The translated addresses can be used
+ * either by the remoteproc core for loading, or by any rpmsg bus drivers.
+ */
+static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_core *core = kproc->core;
+ void __iomem *va = NULL;
+ phys_addr_t bus_addr;
+ u32 dev_addr, offset;
+ size_t size;
+ int i;
+
+ if (len == 0)
+ return NULL;
+
+ /* handle both R5 and SoC views of ATCM and BTCM */
+ for (i = 0; i < core->num_mems; i++) {
+ bus_addr = core->mem[i].bus_addr;
+ dev_addr = core->mem[i].dev_addr;
+ size = core->mem[i].size;
+
+ /* handle R5-view addresses of TCMs */
+ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
+ offset = da - dev_addr;
+ va = core->mem[i].cpu_addr + offset;
+ return (__force void *)va;
+ }
+
+ /* handle SoC-view addresses of TCMs */
+ if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
+ offset = da - bus_addr;
+ va = core->mem[i].cpu_addr + offset;
+ return (__force void *)va;
+ }
+ }
+
+ /* handle any SRAM regions using SoC-view addresses */
+ for (i = 0; i < core->num_sram; i++) {
+ dev_addr = core->sram[i].dev_addr;
+ size = core->sram[i].size;
+
+ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
+ offset = da - dev_addr;
+ va = core->sram[i].cpu_addr + offset;
+ return (__force void *)va;
+ }
+ }
+
+ /* handle static DDR reserved memory regions */
+ for (i = 0; i < kproc->num_rmems; i++) {
+ dev_addr = kproc->rmem[i].dev_addr;
+ size = kproc->rmem[i].size;
+
+ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
+ offset = da - dev_addr;
+ va = kproc->rmem[i].cpu_addr + offset;
+ return (__force void *)va;
+ }
+ }
+
+ return NULL;
+}
+
+static const struct rproc_ops k3_r5_rproc_ops = {
+ .prepare = k3_r5_rproc_prepare,
+ .unprepare = k3_r5_rproc_unprepare,
+ .start = k3_r5_rproc_start,
+ .stop = k3_r5_rproc_stop,
+ .kick = k3_r5_rproc_kick,
+ .da_to_va = k3_r5_rproc_da_to_va,
+};
+
+/*
+ * Internal R5F Core configuration
+ *
+ * Each R5FSS has a cluster-level setting for configuring the processor
+ * subsystem either in a safety/fault-tolerant LockStep mode or a performance
+ * oriented Split mode. Each R5F core has a number of settings to either
+ * enable/disable each of the TCMs, control which TCM appears at the R5F core's
+ * address 0x0. These settings need to be configured before the resets for the
+ * corresponding core are released. These settings are all protected and managed
+ * by the System Processor.
+ *
+ * This function is used to pre-configure these settings for each R5F core, and
+ * the configuration is all done through various ti_sci_proc functions that
+ * communicate with the System Processor. The function also ensures that both
+ * the cores are halted before the .prepare() step.
+ *
+ * The function is called from k3_r5_cluster_rproc_init() and is invoked either
+ * once (in LockStep mode) or twice (in Split mode). Support for LockStep-mode
+ * is dictated by an eFUSE register bit, and the config settings retrieved from
+ * DT are adjusted accordingly as per the permitted cluster mode. All cluster
+ * level settings like Cluster mode and TEINIT (exception handling state
+ * dictating ARM or Thumb mode) can only be set and retrieved using Core0.
+ *
+ * The function behavior is different based on the cluster mode. The R5F cores
+ * are configured independently as per their individual settings in Split mode.
+ * They are identically configured in LockStep mode using the primary Core0
+ * settings. However, some individual settings cannot be set in LockStep mode.
+ * This is overcome by switching to Split-mode initially and then programming
+ * both the cores with the same settings, before reconfiguing again for
+ * LockStep mode.
+ */
+static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
+{
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct device *dev = kproc->dev;
+ struct k3_r5_core *core0, *core, *temp;
+ u32 ctrl = 0, cfg = 0, stat = 0;
+ u32 set_cfg = 0, clr_cfg = 0;
+ u64 boot_vec = 0;
+ bool lockstep_en;
+ int ret;
+
+ core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
+ core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? core0 : kproc->core;
+
+ ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
+ &stat);
+ if (ret < 0)
+ return ret;
+
+ dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
+ boot_vec, cfg, ctrl, stat);
+
+ lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
+ if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
+ dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
+ cluster->mode = CLUSTER_MODE_SPLIT;
+ }
+
+ /* always enable ARM mode and set boot vector to 0 */
+ boot_vec = 0x0;
+ if (core == core0) {
+ clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
+ /*
+ * LockStep configuration bit is Read-only on Split-mode _only_
+ * devices and system firmware will NACK any requests with the
+ * bit configured, so program it only on permitted devices
+ */
+ if (lockstep_en)
+ clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
+ }
+
+ if (core->atcm_enable)
+ set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
+ else
+ clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
+
+ if (core->btcm_enable)
+ set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
+ else
+ clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
+
+ if (core->loczrama)
+ set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
+ else
+ clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
+
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
+ /*
+ * work around system firmware limitations to make sure both
+ * cores are programmed symmetrically in LockStep. LockStep
+ * and TEINIT config is only allowed with Core0.
+ */
+ list_for_each_entry(temp, &cluster->cores, elem) {
+ ret = k3_r5_core_halt(temp);
+ if (ret)
+ goto out;
+
+ if (temp != core) {
+ clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
+ clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
+ }
+ ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
+ set_cfg, clr_cfg);
+ if (ret)
+ goto out;
+ }
+
+ set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
+ clr_cfg = 0;
+ ret = ti_sci_proc_set_config(core->tsp, boot_vec,
+ set_cfg, clr_cfg);
+ } else {
+ ret = k3_r5_core_halt(core);
+ if (ret)
+ goto out;
+
+ ret = ti_sci_proc_set_config(core->tsp, boot_vec,
+ set_cfg, clr_cfg);
+ }
+
+out:
+ return ret;
+}
+
+static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
+{
+ struct device *dev = kproc->dev;
+ struct device_node *np = dev_of_node(dev);
+ struct device_node *rmem_np;
+ struct reserved_mem *rmem;
+ int num_rmems;
+ int ret, i;
+
+ num_rmems = of_property_count_elems_of_size(np, "memory-region",
+ sizeof(phandle));
+ if (num_rmems <= 0) {
+ dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
+ num_rmems);
+ return -EINVAL;
+ }
+ if (num_rmems < 2) {
+ dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
+ num_rmems);
+ return -EINVAL;
+ }
+
+ /* use reserved memory region 0 for vring DMA allocations */
+ ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
+ if (ret) {
+ dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ num_rmems--;
+ kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
+ if (!kproc->rmem) {
+ ret = -ENOMEM;
+ goto release_rmem;
+ }
+
+ /* use remaining reserved memory regions for static carveouts */
+ for (i = 0; i < num_rmems; i++) {
+ rmem_np = of_parse_phandle(np, "memory-region", i + 1);
+ if (!rmem_np) {
+ ret = -EINVAL;
+ goto unmap_rmem;
+ }
+
+ rmem = of_reserved_mem_lookup(rmem_np);
+ if (!rmem) {
+ of_node_put(rmem_np);
+ ret = -EINVAL;
+ goto unmap_rmem;
+ }
+ of_node_put(rmem_np);
+
+ kproc->rmem[i].bus_addr = rmem->base;
+ /*
+ * R5Fs do not have an MMU, but have a Region Address Translator
+ * (RAT) module that provides a fixed entry translation between
+ * the 32-bit processor addresses to 64-bit bus addresses. The
+ * RAT is programmable only by the R5F cores. Support for RAT
+ * is currently not supported, so 64-bit address regions are not
+ * supported. The absence of MMUs implies that the R5F device
+ * addresses/supported memory regions are restricted to 32-bit
+ * bus addresses, and are identical
+ */
+ kproc->rmem[i].dev_addr = (u32)rmem->base;
+ kproc->rmem[i].size = rmem->size;
+ kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
+ if (!kproc->rmem[i].cpu_addr) {
+ dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
+ i + 1, &rmem->base, &rmem->size);
+ ret = -ENOMEM;
+ goto unmap_rmem;
+ }
+
+ dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
+ i + 1, &kproc->rmem[i].bus_addr,
+ kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
+ kproc->rmem[i].dev_addr);
+ }
+ kproc->num_rmems = num_rmems;
+
+ return 0;
+
+unmap_rmem:
+ for (i--; i >= 0; i--)
+ iounmap(kproc->rmem[i].cpu_addr);
+ kfree(kproc->rmem);
+release_rmem:
+ of_reserved_mem_device_release(dev);
+ return ret;
+}
+
+static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
+{
+ int i;
+
+ for (i = 0; i < kproc->num_rmems; i++)
+ iounmap(kproc->rmem[i].cpu_addr);
+ kfree(kproc->rmem);
+
+ of_reserved_mem_device_release(kproc->dev);
+}
+
+static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
+{
+ struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
+ struct device *dev = &pdev->dev;
+ struct k3_r5_rproc *kproc;
+ struct k3_r5_core *core, *core1;
+ struct device *cdev;
+ const char *fw_name;
+ struct rproc *rproc;
+ int ret;
+
+ core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
+ list_for_each_entry(core, &cluster->cores, elem) {
+ cdev = core->dev;
+ ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
+ if (ret) {
+ dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
+ ret);
+ goto out;
+ }
+
+ rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
+ fw_name, sizeof(*kproc));
+ if (!rproc) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ /* K3 R5s have a Region Address Translator (RAT) but no MMU */
+ rproc->has_iommu = false;
+ /* error recovery is not supported at present */
+ rproc->recovery_disabled = true;
+
+ kproc = rproc->priv;
+ kproc->cluster = cluster;
+ kproc->core = core;
+ kproc->dev = cdev;
+ kproc->rproc = rproc;
+ core->rproc = rproc;
+
+ ret = k3_r5_rproc_configure(kproc);
+ if (ret) {
+ dev_err(dev, "initial configure failed, ret = %d\n",
+ ret);
+ goto err_config;
+ }
+
+ ret = k3_r5_reserved_mem_init(kproc);
+ if (ret) {
+ dev_err(dev, "reserved memory init failed, ret = %d\n",
+ ret);
+ goto err_config;
+ }
+
+ ret = rproc_add(rproc);
+ if (ret) {
+ dev_err(dev, "rproc_add failed, ret = %d\n", ret);
+ goto err_add;
+ }
+
+ /* create only one rproc in lockstep mode */
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP)
+ break;
+ }
+
+ return 0;
+
+err_split:
+ rproc_del(rproc);
+err_add:
+ k3_r5_reserved_mem_exit(kproc);
+err_config:
+ rproc_free(rproc);
+ core->rproc = NULL;
+out:
+ /* undo core0 upon any failures on core1 in split-mode */
+ if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
+ core = list_prev_entry(core, elem);
+ rproc = core->rproc;
+ kproc = rproc->priv;
+ goto err_split;
+ }
+ return ret;
+}
+
+static int k3_r5_cluster_rproc_exit(struct platform_device *pdev)
+{
+ struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
+ struct k3_r5_rproc *kproc;
+ struct k3_r5_core *core;
+ struct rproc *rproc;
+
+ /*
+ * lockstep mode has only one rproc associated with first core, whereas
+ * split-mode has two rprocs associated with each core, and requires
+ * that core1 be powered down first
+ */
+ core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ?
+ list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
+ list_last_entry(&cluster->cores, struct k3_r5_core, elem);
+
+ list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
+ rproc = core->rproc;
+ kproc = rproc->priv;
+
+ rproc_del(rproc);
+
+ k3_r5_reserved_mem_exit(kproc);
+
+ rproc_free(rproc);
+ core->rproc = NULL;
+ }
+
+ return 0;
+}
+
+static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
+ struct k3_r5_core *core)
+{
+ static const char * const mem_names[] = {"atcm", "btcm"};
+ struct device *dev = &pdev->dev;
+ struct resource *res;
+ int num_mems;
+ int i;
+
+ num_mems = ARRAY_SIZE(mem_names);
+ core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
+ if (!core->mem)
+ return -ENOMEM;
+
+ for (i = 0; i < num_mems; i++) {
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ mem_names[i]);
+ if (!res) {
+ dev_err(dev, "found no memory resource for %s\n",
+ mem_names[i]);
+ return -EINVAL;
+ }
+ if (!devm_request_mem_region(dev, res->start,
+ resource_size(res),
+ dev_name(dev))) {
+ dev_err(dev, "could not request %s region for resource\n",
+ mem_names[i]);
+ return -EBUSY;
+ }
+
+ /*
+ * TCMs are designed in general to support RAM-like backing
+ * memories. So, map these as Normal Non-Cached memories. This
+ * also avoids/fixes any potential alignment faults due to
+ * unaligned data accesses when using memcpy() or memset()
+ * functions (normally seen with device type memory).
+ */
+ core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
+ resource_size(res));
+ if (!core->mem[i].cpu_addr) {
+ dev_err(dev, "failed to map %s memory\n", mem_names[i]);
+ return -ENOMEM;
+ }
+ core->mem[i].bus_addr = res->start;
+
+ /*
+ * TODO:
+ * The R5F cores can place ATCM & BTCM anywhere in its address
+ * based on the corresponding Region Registers in the System
+ * Control coprocessor. For now, place ATCM and BTCM at
+ * addresses 0 and 0x41010000 (same as the bus address on AM65x
+ * SoCs) based on loczrama setting
+ */
+ if (!strcmp(mem_names[i], "atcm")) {
+ core->mem[i].dev_addr = core->loczrama ?
+ 0 : K3_R5_TCM_DEV_ADDR;
+ } else {
+ core->mem[i].dev_addr = core->loczrama ?
+ K3_R5_TCM_DEV_ADDR : 0;
+ }
+ core->mem[i].size = resource_size(res);
+
+ dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
+ mem_names[i], &core->mem[i].bus_addr,
+ core->mem[i].size, core->mem[i].cpu_addr,
+ core->mem[i].dev_addr);
+ }
+ core->num_mems = num_mems;
+
+ return 0;
+}
+
+static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
+ struct k3_r5_core *core)
+{
+ struct device_node *np = pdev->dev.of_node;
+ struct device *dev = &pdev->dev;
+ struct device_node *sram_np;
+ struct resource res;
+ int num_sram;
+ int i, ret;
+
+ num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
+ if (num_sram <= 0) {
+ dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
+ num_sram);
+ return 0;
+ }
+
+ core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
+ if (!core->sram)
+ return -ENOMEM;
+
+ for (i = 0; i < num_sram; i++) {
+ sram_np = of_parse_phandle(np, "sram", i);
+ if (!sram_np)
+ return -EINVAL;
+
+ if (!of_device_is_available(sram_np)) {
+ of_node_put(sram_np);
+ return -EINVAL;
+ }
+
+ ret = of_address_to_resource(sram_np, 0, &res);
+ of_node_put(sram_np);
+ if (ret)
+ return -EINVAL;
+
+ core->sram[i].bus_addr = res.start;
+ core->sram[i].dev_addr = res.start;
+ core->sram[i].size = resource_size(&res);
+ core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
+ resource_size(&res));
+ if (!core->sram[i].cpu_addr) {
+ dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
+ i, &res.start);
+ return -ENOMEM;
+ }
+
+ dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
+ i, &core->sram[i].bus_addr,
+ core->sram[i].size, core->sram[i].cpu_addr,
+ core->sram[i].dev_addr);
+ }
+ core->num_sram = num_sram;
+
+ return 0;
+}
+
+static
+struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
+ const struct ti_sci_handle *sci)
+{
+ struct ti_sci_proc *tsp;
+ u32 temp[2];
+ int ret;
+
+ ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
+ temp, 2);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
+ if (!tsp)
+ return ERR_PTR(-ENOMEM);
+
+ tsp->dev = dev;
+ tsp->sci = sci;
+ tsp->ops = &sci->ops.proc_ops;
+ tsp->proc_id = temp[0];
+ tsp->host_id = temp[1];
+
+ return tsp;
+}
+
+static int k3_r5_core_of_init(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev_of_node(dev);
+ struct k3_r5_core *core;
+ int ret;
+
+ if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
+ return -ENOMEM;
+
+ core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
+ if (!core) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ core->dev = dev;
+ /*
+ * Use SoC Power-on-Reset values as default if no DT properties are
+ * used to dictate the TCM configurations
+ */
+ core->atcm_enable = 0;
+ core->btcm_enable = 1;
+ core->loczrama = 1;
+
+ ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
+ if (ret < 0 && ret != -EINVAL) {
+ dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
+ ret);
+ goto err;
+ }
+
+ ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
+ if (ret < 0 && ret != -EINVAL) {
+ dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
+ ret);
+ goto err;
+ }
+
+ ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
+ if (ret < 0 && ret != -EINVAL) {
+ dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
+ goto err;
+ }
+
+ core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
+ if (IS_ERR(core->ti_sci)) {
+ ret = PTR_ERR(core->ti_sci);
+ if (ret != -EPROBE_DEFER) {
+ dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
+ ret);
+ }
+ core->ti_sci = NULL;
+ goto err;
+ }
+
+ ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
+ if (ret) {
+ dev_err(dev, "missing 'ti,sci-dev-id' property\n");
+ goto err;
+ }
+
+ core->reset = devm_reset_control_get_exclusive(dev, NULL);
+ if (IS_ERR_OR_NULL(core->reset)) {
+ ret = PTR_ERR_OR_ZERO(core->reset);
+ if (!ret)
+ ret = -ENODEV;
+ if (ret != -EPROBE_DEFER) {
+ dev_err(dev, "failed to get reset handle, ret = %d\n",
+ ret);
+ }
+ goto err;
+ }
+
+ core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
+ if (IS_ERR(core->tsp)) {
+ dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
+ ret);
+ ret = PTR_ERR(core->tsp);
+ goto err;
+ }
+
+ ret = k3_r5_core_of_get_internal_memories(pdev, core);
+ if (ret) {
+ dev_err(dev, "failed to get internal memories, ret = %d\n",
+ ret);
+ goto err;
+ }
+
+ ret = k3_r5_core_of_get_sram_memories(pdev, core);
+ if (ret) {
+ dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
+ goto err;
+ }
+
+ ret = ti_sci_proc_request(core->tsp);
+ if (ret < 0) {
+ dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
+ goto err;
+ }
+
+ platform_set_drvdata(pdev, core);
+ devres_close_group(dev, k3_r5_core_of_init);
+
+ return 0;
+
+err:
+ devres_release_group(dev, k3_r5_core_of_init);
+ return ret;
+}
+
+/*
+ * free the resources explicitly since driver model is not being used
+ * for the child R5F devices
+ */
+static void k3_r5_core_of_exit(struct platform_device *pdev)
+{
+ struct k3_r5_core *core = platform_get_drvdata(pdev);
+ struct device *dev = &pdev->dev;
+ int ret;
+
+ ret = ti_sci_proc_release(core->tsp);
+ if (ret)
+ dev_err(dev, "failed to release proc, ret = %d\n", ret);
+
+ platform_set_drvdata(pdev, NULL);
+ devres_release_group(dev, k3_r5_core_of_init);
+}
+
+static void k3_r5_cluster_of_exit(struct platform_device *pdev)
+{
+ struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
+ struct platform_device *cpdev;
+ struct k3_r5_core *core, *temp;
+
+ list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
+ list_del(&core->elem);
+ cpdev = to_platform_device(core->dev);
+ k3_r5_core_of_exit(cpdev);
+ }
+}
+
+static int k3_r5_cluster_of_init(struct platform_device *pdev)
+{
+ struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev_of_node(dev);
+ struct platform_device *cpdev;
+ struct device_node *child;
+ struct k3_r5_core *core;
+ int ret;
+
+ for_each_available_child_of_node(np, child) {
+ cpdev = of_find_device_by_node(child);
+ if (!cpdev) {
+ ret = -ENODEV;
+ dev_err(dev, "could not get R5 core platform device\n");
+ goto fail;
+ }
+
+ ret = k3_r5_core_of_init(cpdev);
+ if (ret) {
+ dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
+ ret);
+ put_device(&cpdev->dev);
+ goto fail;
+ }
+
+ core = platform_get_drvdata(cpdev);
+ put_device(&cpdev->dev);
+ list_add_tail(&core->elem, &cluster->cores);
+ }
+
+ return 0;
+
+fail:
+ k3_r5_cluster_of_exit(pdev);
+ return ret;
+}
+
+static int k3_r5_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev_of_node(dev);
+ struct k3_r5_cluster *cluster;
+ int ret;
+ int num_cores;
+
+ cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
+ if (!cluster)
+ return -ENOMEM;
+
+ cluster->dev = dev;
+ cluster->mode = CLUSTER_MODE_LOCKSTEP;
+ INIT_LIST_HEAD(&cluster->cores);
+
+ ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
+ if (ret < 0 && ret != -EINVAL) {
+ dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ num_cores = of_get_available_child_count(np);
+ if (num_cores != 2) {
+ dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
+ num_cores);
+ return -ENODEV;
+ }
+
+ platform_set_drvdata(pdev, cluster);
+
+ ret = devm_of_platform_populate(dev);
+ if (ret) {
+ dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = k3_r5_cluster_of_init(pdev);
+ if (ret) {
+ dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
+ return ret;
+ }
+
+ ret = devm_add_action_or_reset(dev,
+ (void(*)(void *))k3_r5_cluster_of_exit,
+ pdev);
+ if (ret)
+ return ret;
+
+ ret = k3_r5_cluster_rproc_init(pdev);
+ if (ret) {
+ dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = devm_add_action_or_reset(dev,
+ (void(*)(void *))k3_r5_cluster_rproc_exit,
+ pdev);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static const struct of_device_id k3_r5_of_match[] = {
+ { .compatible = "ti,am654-r5fss", },
+ { .compatible = "ti,j721e-r5fss", },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, k3_r5_of_match);
+
+static struct platform_driver k3_r5_rproc_driver = {
+ .probe = k3_r5_probe,
+ .driver = {
+ .name = "k3_r5_rproc",
+ .of_match_table = k3_r5_of_match,
+ },
+};
+
+module_platform_driver(k3_r5_rproc_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
+MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");