summaryrefslogtreecommitdiff
path: root/drivers/net/wimax/i2400m/fw.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wimax/i2400m/fw.c')
-rw-r--r--drivers/net/wimax/i2400m/fw.c1653
1 files changed, 0 insertions, 1653 deletions
diff --git a/drivers/net/wimax/i2400m/fw.c b/drivers/net/wimax/i2400m/fw.c
deleted file mode 100644
index 6c9a41bff2e0..000000000000
--- a/drivers/net/wimax/i2400m/fw.c
+++ /dev/null
@@ -1,1653 +0,0 @@
-/*
- * Intel Wireless WiMAX Connection 2400m
- * Firmware uploader
- *
- *
- * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- *
- * Intel Corporation <linux-wimax@intel.com>
- * Yanir Lubetkin <yanirx.lubetkin@intel.com>
- * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
- * - Initial implementation
- *
- *
- * THE PROCEDURE
- *
- * The 2400m and derived devices work in two modes: boot-mode or
- * normal mode. In boot mode we can execute only a handful of commands
- * targeted at uploading the firmware and launching it.
- *
- * The 2400m enters boot mode when it is first connected to the
- * system, when it crashes and when you ask it to reboot. There are
- * two submodes of the boot mode: signed and non-signed. Signed takes
- * firmwares signed with a certain private key, non-signed takes any
- * firmware. Normal hardware takes only signed firmware.
- *
- * On boot mode, in USB, we write to the device using the bulk out
- * endpoint and read from it in the notification endpoint.
- *
- * Upon entrance to boot mode, the device sends (preceded with a few
- * zero length packets (ZLPs) on the notification endpoint in USB) a
- * reboot barker (4 le32 words with the same value). We ack it by
- * sending the same barker to the device. The device acks with a
- * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
- * then is fully booted. At this point we can upload the firmware.
- *
- * Note that different iterations of the device and EEPROM
- * configurations will send different [re]boot barkers; these are
- * collected in i2400m_barker_db along with the firmware
- * characteristics they require.
- *
- * This process is accomplished by the i2400m_bootrom_init()
- * function. All the device interaction happens through the
- * i2400m_bm_cmd() [boot mode command]. Special return values will
- * indicate if the device did reset during the process.
- *
- * After this, we read the MAC address and then (if needed)
- * reinitialize the device. We need to read it ahead of time because
- * in the future, we might not upload the firmware until userspace
- * 'ifconfig up's the device.
- *
- * We can then upload the firmware file. The file is composed of a BCF
- * header (basic data, keys and signatures) and a list of write
- * commands and payloads. Optionally more BCF headers might follow the
- * main payload. We first upload the header [i2400m_dnload_init()] and
- * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
- * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
- * the new firmware [i2400m_dnload_finalize()].
- *
- * Once firmware is uploaded, we are good to go :)
- *
- * When we don't know in which mode we are, we first try by sending a
- * warm reset request that will take us to boot-mode. If we time out
- * waiting for a reboot barker, that means maybe we are already in
- * boot mode, so we send a reboot barker.
- *
- * COMMAND EXECUTION
- *
- * This code (and process) is single threaded; for executing commands,
- * we post a URB to the notification endpoint, post the command, wait
- * for data on the notification buffer. We don't need to worry about
- * others as we know we are the only ones in there.
- *
- * BACKEND IMPLEMENTATION
- *
- * This code is bus-generic; the bus-specific driver provides back end
- * implementations to send a boot mode command to the device and to
- * read an acknolwedgement from it (or an asynchronous notification)
- * from it.
- *
- * FIRMWARE LOADING
- *
- * Note that in some cases, we can't just load a firmware file (for
- * example, when resuming). For that, we might cache the firmware
- * file. Thus, when doing the bootstrap, if there is a cache firmware
- * file, it is used; if not, loading from disk is attempted.
- *
- * ROADMAP
- *
- * i2400m_barker_db_init Called by i2400m_driver_init()
- * i2400m_barker_db_add
- *
- * i2400m_barker_db_exit Called by i2400m_driver_exit()
- *
- * i2400m_dev_bootstrap Called by __i2400m_dev_start()
- * request_firmware
- * i2400m_fw_bootstrap
- * i2400m_fw_check
- * i2400m_fw_hdr_check
- * i2400m_fw_dnload
- * release_firmware
- *
- * i2400m_fw_dnload
- * i2400m_bootrom_init
- * i2400m_bm_cmd
- * i2400m_reset
- * i2400m_dnload_init
- * i2400m_dnload_init_signed
- * i2400m_dnload_init_nonsigned
- * i2400m_download_chunk
- * i2400m_bm_cmd
- * i2400m_dnload_bcf
- * i2400m_bm_cmd
- * i2400m_dnload_finalize
- * i2400m_bm_cmd
- *
- * i2400m_bm_cmd
- * i2400m->bus_bm_cmd_send()
- * i2400m->bus_bm_wait_for_ack
- * __i2400m_bm_ack_verify
- * i2400m_is_boot_barker
- *
- * i2400m_bm_cmd_prepare Used by bus-drivers to prep
- * commands before sending
- *
- * i2400m_pm_notifier Called on Power Management events
- * i2400m_fw_cache
- * i2400m_fw_uncache
- */
-#include <linux/firmware.h>
-#include <linux/sched.h>
-#include <linux/slab.h>
-#include <linux/usb.h>
-#include <linux/export.h>
-#include "i2400m.h"
-
-
-#define D_SUBMODULE fw
-#include "debug-levels.h"
-
-
-static const __le32 i2400m_ACK_BARKER[4] = {
- cpu_to_le32(I2400M_ACK_BARKER),
- cpu_to_le32(I2400M_ACK_BARKER),
- cpu_to_le32(I2400M_ACK_BARKER),
- cpu_to_le32(I2400M_ACK_BARKER)
-};
-
-
-/**
- * Prepare a boot-mode command for delivery
- *
- * @cmd: pointer to bootrom header to prepare
- *
- * Computes checksum if so needed. After calling this function, DO NOT
- * modify the command or header as the checksum won't work anymore.
- *
- * We do it from here because some times we cannot do it in the
- * original context the command was sent (it is a const), so when we
- * copy it to our staging buffer, we add the checksum there.
- */
-void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
-{
- if (i2400m_brh_get_use_checksum(cmd)) {
- int i;
- u32 checksum = 0;
- const u32 *checksum_ptr = (void *) cmd->payload;
- for (i = 0; i < cmd->data_size / 4; i++)
- checksum += cpu_to_le32(*checksum_ptr++);
- checksum += cmd->command + cmd->target_addr + cmd->data_size;
- cmd->block_checksum = cpu_to_le32(checksum);
- }
-}
-EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
-
-
-/*
- * Database of known barkers.
- *
- * A barker is what the device sends indicating he is ready to be
- * bootloaded. Different versions of the device will send different
- * barkers. Depending on the barker, it might mean the device wants
- * some kind of firmware or the other.
- */
-static struct i2400m_barker_db {
- __le32 data[4];
-} *i2400m_barker_db;
-static size_t i2400m_barker_db_used, i2400m_barker_db_size;
-
-
-static
-int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
- gfp_t gfp_flags)
-{
- size_t old_count = *_count,
- new_count = old_count ? 2 * old_count : 2,
- old_size = el_size * old_count,
- new_size = el_size * new_count;
- void *nptr = krealloc(*ptr, new_size, gfp_flags);
- if (nptr) {
- /* zero the other half or the whole thing if old_count
- * was zero */
- if (old_size == 0)
- memset(nptr, 0, new_size);
- else
- memset(nptr + old_size, 0, old_size);
- *_count = new_count;
- *ptr = nptr;
- return 0;
- } else
- return -ENOMEM;
-}
-
-
-/*
- * Add a barker to the database
- *
- * This cannot used outside of this module and only at at module_init
- * time. This is to avoid the need to do locking.
- */
-static
-int i2400m_barker_db_add(u32 barker_id)
-{
- int result;
-
- struct i2400m_barker_db *barker;
- if (i2400m_barker_db_used >= i2400m_barker_db_size) {
- result = i2400m_zrealloc_2x(
- (void **) &i2400m_barker_db, &i2400m_barker_db_size,
- sizeof(i2400m_barker_db[0]), GFP_KERNEL);
- if (result < 0)
- return result;
- }
- barker = i2400m_barker_db + i2400m_barker_db_used++;
- barker->data[0] = le32_to_cpu(barker_id);
- barker->data[1] = le32_to_cpu(barker_id);
- barker->data[2] = le32_to_cpu(barker_id);
- barker->data[3] = le32_to_cpu(barker_id);
- return 0;
-}
-
-
-void i2400m_barker_db_exit(void)
-{
- kfree(i2400m_barker_db);
- i2400m_barker_db = NULL;
- i2400m_barker_db_size = 0;
- i2400m_barker_db_used = 0;
-}
-
-
-/*
- * Helper function to add all the known stable barkers to the barker
- * database.
- */
-static
-int i2400m_barker_db_known_barkers(void)
-{
- int result;
-
- result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
- if (result < 0)
- goto error_add;
- result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
- if (result < 0)
- goto error_add;
- result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
- if (result < 0)
- goto error_add;
-error_add:
- return result;
-}
-
-
-/*
- * Initialize the barker database
- *
- * This can only be used from the module_init function for this
- * module; this is to avoid the need to do locking.
- *
- * @options: command line argument with extra barkers to
- * recognize. This is a comma-separated list of 32-bit hex
- * numbers. They are appended to the existing list. Setting 0
- * cleans the existing list and starts a new one.
- */
-int i2400m_barker_db_init(const char *_options)
-{
- int result;
- char *options = NULL, *options_orig, *token;
-
- i2400m_barker_db = NULL;
- i2400m_barker_db_size = 0;
- i2400m_barker_db_used = 0;
-
- result = i2400m_barker_db_known_barkers();
- if (result < 0)
- goto error_add;
- /* parse command line options from i2400m.barkers */
- if (_options != NULL) {
- unsigned barker;
-
- options_orig = kstrdup(_options, GFP_KERNEL);
- if (options_orig == NULL) {
- result = -ENOMEM;
- goto error_parse;
- }
- options = options_orig;
-
- while ((token = strsep(&options, ",")) != NULL) {
- if (*token == '\0') /* eat joint commas */
- continue;
- if (sscanf(token, "%x", &barker) != 1
- || barker > 0xffffffff) {
- printk(KERN_ERR "%s: can't recognize "
- "i2400m.barkers value '%s' as "
- "a 32-bit number\n",
- __func__, token);
- result = -EINVAL;
- goto error_parse;
- }
- if (barker == 0) {
- /* clean list and start new */
- i2400m_barker_db_exit();
- continue;
- }
- result = i2400m_barker_db_add(barker);
- if (result < 0)
- goto error_parse_add;
- }
- kfree(options_orig);
- }
- return 0;
-
-error_parse_add:
-error_parse:
- kfree(options_orig);
-error_add:
- kfree(i2400m_barker_db);
- return result;
-}
-
-
-/*
- * Recognize a boot barker
- *
- * @buf: buffer where the boot barker.
- * @buf_size: size of the buffer (has to be 16 bytes). It is passed
- * here so the function can check it for the caller.
- *
- * Note that as a side effect, upon identifying the obtained boot
- * barker, this function will set i2400m->barker to point to the right
- * barker database entry. Subsequent calls to the function will result
- * in verifying that the same type of boot barker is returned when the
- * device [re]boots (as long as the same device instance is used).
- *
- * Return: 0 if @buf matches a known boot barker. -ENOENT if the
- * buffer in @buf doesn't match any boot barker in the database or
- * -EILSEQ if the buffer doesn't have the right size.
- */
-int i2400m_is_boot_barker(struct i2400m *i2400m,
- const void *buf, size_t buf_size)
-{
- int result;
- struct device *dev = i2400m_dev(i2400m);
- struct i2400m_barker_db *barker;
- int i;
-
- result = -ENOENT;
- if (buf_size != sizeof(i2400m_barker_db[i].data))
- return result;
-
- /* Short circuit if we have already discovered the barker
- * associated with the device. */
- if (i2400m->barker &&
- !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data)))
- return 0;
-
- for (i = 0; i < i2400m_barker_db_used; i++) {
- barker = &i2400m_barker_db[i];
- BUILD_BUG_ON(sizeof(barker->data) != 16);
- if (memcmp(buf, barker->data, sizeof(barker->data)))
- continue;
-
- if (i2400m->barker == NULL) {
- i2400m->barker = barker;
- d_printf(1, dev, "boot barker set to #%u/%08x\n",
- i, le32_to_cpu(barker->data[0]));
- if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
- i2400m->sboot = 0;
- else
- i2400m->sboot = 1;
- } else if (i2400m->barker != barker) {
- dev_err(dev, "HW inconsistency: device "
- "reports a different boot barker "
- "than set (from %08x to %08x)\n",
- le32_to_cpu(i2400m->barker->data[0]),
- le32_to_cpu(barker->data[0]));
- result = -EIO;
- } else
- d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
- i, le32_to_cpu(barker->data[0]));
- result = 0;
- break;
- }
- return result;
-}
-EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
-
-
-/*
- * Verify the ack data received
- *
- * Given a reply to a boot mode command, chew it and verify everything
- * is ok.
- *
- * @opcode: opcode which generated this ack. For error messages.
- * @ack: pointer to ack data we received
- * @ack_size: size of that data buffer
- * @flags: I2400M_BM_CMD_* flags we called the command with.
- *
- * Way too long function -- maybe it should be further split
- */
-static
-ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
- struct i2400m_bootrom_header *ack,
- size_t ack_size, int flags)
-{
- ssize_t result = -ENOMEM;
- struct device *dev = i2400m_dev(i2400m);
-
- d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
- i2400m, opcode, ack, ack_size);
- if (ack_size < sizeof(*ack)) {
- result = -EIO;
- dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
- "return enough data (%zu bytes vs %zu expected)\n",
- opcode, ack_size, sizeof(*ack));
- goto error_ack_short;
- }
- result = i2400m_is_boot_barker(i2400m, ack, ack_size);
- if (result >= 0) {
- result = -ERESTARTSYS;
- d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
- goto error_reboot;
- }
- if (ack_size == sizeof(i2400m_ACK_BARKER)
- && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
- result = -EISCONN;
- d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
- opcode);
- goto error_reboot_ack;
- }
- result = 0;
- if (flags & I2400M_BM_CMD_RAW)
- goto out_raw;
- ack->data_size = le32_to_cpu(ack->data_size);
- ack->target_addr = le32_to_cpu(ack->target_addr);
- ack->block_checksum = le32_to_cpu(ack->block_checksum);
- d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
- "response %u csum %u rr %u da %u\n",
- opcode, i2400m_brh_get_opcode(ack),
- i2400m_brh_get_response(ack),
- i2400m_brh_get_use_checksum(ack),
- i2400m_brh_get_response_required(ack),
- i2400m_brh_get_direct_access(ack));
- result = -EIO;
- if (i2400m_brh_get_signature(ack) != 0xcbbc) {
- dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
- "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
- goto error_ack_signature;
- }
- if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
- dev_err(dev, "boot-mode cmd %d: HW BUG? "
- "received response for opcode %u, expected %u\n",
- opcode, i2400m_brh_get_opcode(ack), opcode);
- goto error_ack_opcode;
- }
- if (i2400m_brh_get_response(ack) != 0) { /* failed? */
- dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
- opcode, i2400m_brh_get_response(ack));
- goto error_ack_failed;
- }
- if (ack_size < ack->data_size + sizeof(*ack)) {
- dev_err(dev, "boot-mode cmd %d: SW BUG "
- "driver provided only %zu bytes for %zu bytes "
- "of data\n", opcode, ack_size,
- (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
- goto error_ack_short_buffer;
- }
- result = ack_size;
- /* Don't you love this stack of empty targets? Well, I don't
- * either, but it helps track exactly who comes in here and
- * why :) */
-error_ack_short_buffer:
-error_ack_failed:
-error_ack_opcode:
-error_ack_signature:
-out_raw:
-error_reboot_ack:
-error_reboot:
-error_ack_short:
- d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
- i2400m, opcode, ack, ack_size, (int) result);
- return result;
-}
-
-
-/**
- * i2400m_bm_cmd - Execute a boot mode command
- *
- * @cmd: buffer containing the command data (pointing at the header).
- * This data can be ANYWHERE (for USB, we will copy it to an
- * specific buffer). Make sure everything is in proper little
- * endian.
- *
- * A raw buffer can be also sent, just cast it and set flags to
- * I2400M_BM_CMD_RAW.
- *
- * This function will generate a checksum for you if the
- * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
- * is set).
- *
- * You can use the i2400m->bm_cmd_buf to stage your commands and
- * send them.
- *
- * If NULL, no command is sent (we just wait for an ack).
- *
- * @cmd_size: size of the command. Will be auto padded to the
- * bus-specific drivers padding requirements.
- *
- * @ack: buffer where to place the acknowledgement. If it is a regular
- * command response, all fields will be returned with the right,
- * native endianess.
- *
- * You *cannot* use i2400m->bm_ack_buf for this buffer.
- *
- * @ack_size: size of @ack, 16 aligned; you need to provide at least
- * sizeof(*ack) bytes and then enough to contain the return data
- * from the command
- *
- * @flags: see I2400M_BM_CMD_* above.
- *
- * @returns: bytes received by the notification; if < 0, an errno code
- * denoting an error or:
- *
- * -ERESTARTSYS The device has rebooted
- *
- * Executes a boot-mode command and waits for a response, doing basic
- * validation on it; if a zero length response is received, it retries
- * waiting for a response until a non-zero one is received (timing out
- * after %I2400M_BOOT_RETRIES retries).
- */
-static
-ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
- const struct i2400m_bootrom_header *cmd, size_t cmd_size,
- struct i2400m_bootrom_header *ack, size_t ack_size,
- int flags)
-{
- ssize_t result = -ENOMEM, rx_bytes;
- struct device *dev = i2400m_dev(i2400m);
- int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
-
- d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
- i2400m, cmd, cmd_size, ack, ack_size);
- BUG_ON(ack_size < sizeof(*ack));
- BUG_ON(i2400m->boot_mode == 0);
-
- if (cmd != NULL) { /* send the command */
- result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
- if (result < 0)
- goto error_cmd_send;
- if ((flags & I2400M_BM_CMD_RAW) == 0)
- d_printf(5, dev,
- "boot-mode cmd %d csum %u rr %u da %u: "
- "addr 0x%04x size %u block csum 0x%04x\n",
- opcode, i2400m_brh_get_use_checksum(cmd),
- i2400m_brh_get_response_required(cmd),
- i2400m_brh_get_direct_access(cmd),
- cmd->target_addr, cmd->data_size,
- cmd->block_checksum);
- }
- result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
- if (result < 0) {
- dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
- opcode, (int) result); /* bah, %zd doesn't work */
- goto error_wait_for_ack;
- }
- rx_bytes = result;
- /* verify the ack and read more if necessary [result is the
- * final amount of bytes we get in the ack] */
- result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
- if (result < 0)
- goto error_bad_ack;
- /* Don't you love this stack of empty targets? Well, I don't
- * either, but it helps track exactly who comes in here and
- * why :) */
- result = rx_bytes;
-error_bad_ack:
-error_wait_for_ack:
-error_cmd_send:
- d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
- i2400m, cmd, cmd_size, ack, ack_size, (int) result);
- return result;
-}
-
-
-/**
- * i2400m_download_chunk - write a single chunk of data to the device's memory
- *
- * @i2400m: device descriptor
- * @buf: the buffer to write
- * @buf_len: length of the buffer to write
- * @addr: address in the device memory space
- * @direct: bootrom write mode
- * @do_csum: should a checksum validation be performed
- */
-static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
- size_t __chunk_len, unsigned long addr,
- unsigned int direct, unsigned int do_csum)
-{
- int ret;
- size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
- struct device *dev = i2400m_dev(i2400m);
- struct {
- struct i2400m_bootrom_header cmd;
- u8 cmd_payload[];
- } __packed *buf;
- struct i2400m_bootrom_header ack;
-
- d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
- "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
- addr, direct, do_csum);
- buf = i2400m->bm_cmd_buf;
- memcpy(buf->cmd_payload, chunk, __chunk_len);
- memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
-
- buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
- __chunk_len & 0x3 ? 0 : do_csum,
- __chunk_len & 0xf ? 0 : direct);
- buf->cmd.target_addr = cpu_to_le32(addr);
- buf->cmd.data_size = cpu_to_le32(__chunk_len);
- ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
- &ack, sizeof(ack), 0);
- if (ret >= 0)
- ret = 0;
- d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
- "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
- addr, direct, do_csum, ret);
- return ret;
-}
-
-
-/*
- * Download a BCF file's sections to the device
- *
- * @i2400m: device descriptor
- * @bcf: pointer to firmware data (first header followed by the
- * payloads). Assumed verified and consistent.
- * @bcf_len: length (in bytes) of the @bcf buffer.
- *
- * Returns: < 0 errno code on error or the offset to the jump instruction.
- *
- * Given a BCF file, downloads each section (a command and a payload)
- * to the device's address space. Actually, it just executes each
- * command i the BCF file.
- *
- * The section size has to be aligned to 4 bytes AND the padding has
- * to be taken from the firmware file, as the signature takes it into
- * account.
- */
-static
-ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
- const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
-{
- ssize_t ret;
- struct device *dev = i2400m_dev(i2400m);
- size_t offset, /* iterator offset */
- data_size, /* Size of the data payload */
- section_size, /* Size of the whole section (cmd + payload) */
- section = 1;
- const struct i2400m_bootrom_header *bh;
- struct i2400m_bootrom_header ack;
-
- d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
- i2400m, bcf, bcf_len);
- /* Iterate over the command blocks in the BCF file that start
- * after the header */
- offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
- while (1) { /* start sending the file */
- bh = (void *) bcf + offset;
- data_size = le32_to_cpu(bh->data_size);
- section_size = ALIGN(sizeof(*bh) + data_size, 4);
- d_printf(7, dev,
- "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
- section, offset, sizeof(*bh) + data_size,
- le32_to_cpu(bh->target_addr));
- /*
- * We look for JUMP cmd from the bootmode header,
- * either I2400M_BRH_SIGNED_JUMP for secure boot
- * or I2400M_BRH_JUMP for unsecure boot, the last chunk
- * should be the bootmode header with JUMP cmd.
- */
- if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
- i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
- d_printf(5, dev, "jump found @%zu\n", offset);
- break;
- }
- if (offset + section_size > bcf_len) {
- dev_err(dev, "fw %s: bad section #%zu, "
- "end (@%zu) beyond EOF (@%zu)\n",
- i2400m->fw_name, section,
- offset + section_size, bcf_len);
- ret = -EINVAL;
- goto error_section_beyond_eof;
- }
- __i2400m_msleep(20);
- ret = i2400m_bm_cmd(i2400m, bh, section_size,
- &ack, sizeof(ack), I2400M_BM_CMD_RAW);
- if (ret < 0) {
- dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
- "failed %d\n", i2400m->fw_name, section,
- offset, sizeof(*bh) + data_size, (int) ret);
- goto error_send;
- }
- offset += section_size;
- section++;
- }
- ret = offset;
-error_section_beyond_eof:
-error_send:
- d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
- i2400m, bcf, bcf_len, (int) ret);
- return ret;
-}
-
-
-/*
- * Indicate if the device emitted a reboot barker that indicates
- * "signed boot"
- */
-static
-unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
-{
- return likely(i2400m->sboot);
-}
-
-
-/*
- * Do the final steps of uploading firmware
- *
- * @bcf_hdr: BCF header we are actually using
- * @bcf: pointer to the firmware image (which matches the first header
- * that is followed by the actual payloads).
- * @offset: [byte] offset into @bcf for the command we need to send.
- *
- * Depending on the boot mode (signed vs non-signed), different
- * actions need to be taken.
- */
-static
-int i2400m_dnload_finalize(struct i2400m *i2400m,
- const struct i2400m_bcf_hdr *bcf_hdr,
- const struct i2400m_bcf_hdr *bcf, size_t offset)
-{
- int ret = 0;
- struct device *dev = i2400m_dev(i2400m);
- struct i2400m_bootrom_header *cmd, ack;
- struct {
- struct i2400m_bootrom_header cmd;
- u8 cmd_pl[0];
- } __packed *cmd_buf;
- size_t signature_block_offset, signature_block_size;
-
- d_fnstart(3, dev, "offset %zu\n", offset);
- cmd = (void *) bcf + offset;
- if (i2400m_boot_is_signed(i2400m) == 0) {
- struct i2400m_bootrom_header jump_ack;
- d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
- le32_to_cpu(cmd->target_addr));
- cmd_buf = i2400m->bm_cmd_buf;
- memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
- cmd = &cmd_buf->cmd;
- /* now cmd points to the actual bootrom_header in cmd_buf */
- i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
- cmd->data_size = 0;
- ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
- &jump_ack, sizeof(jump_ack), 0);
- } else {
- d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
- le32_to_cpu(cmd->target_addr));
- cmd_buf = i2400m->bm_cmd_buf;
- memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
- signature_block_offset =
- sizeof(*bcf_hdr)
- + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
- + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
- signature_block_size =
- le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
- memcpy(cmd_buf->cmd_pl,
- (void *) bcf_hdr + signature_block_offset,
- signature_block_size);
- ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
- sizeof(cmd_buf->cmd) + signature_block_size,
- &ack, sizeof(ack), I2400M_BM_CMD_RAW);
- }
- d_fnend(3, dev, "returning %d\n", ret);
- return ret;
-}
-
-
-/**
- * i2400m_bootrom_init - Reboots a powered device into boot mode
- *
- * @i2400m: device descriptor
- * @flags:
- * I2400M_BRI_SOFT: a reboot barker has been seen
- * already, so don't wait for it.
- *
- * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
- * for a reboot barker notification. This is a one shot; if
- * the state machine needs to send a reboot command it will.
- *
- * Returns:
- *
- * < 0 errno code on error, 0 if ok.
- *
- * Description:
- *
- * Tries hard enough to put the device in boot-mode. There are two
- * main phases to this:
- *
- * a. (1) send a reboot command and (2) get a reboot barker
- *
- * b. (1) echo/ack the reboot sending the reboot barker back and (2)
- * getting an ack barker in return
- *
- * We want to skip (a) in some cases [soft]. The state machine is
- * horrible, but it is basically: on each phase, send what has to be
- * sent (if any), wait for the answer and act on the answer. We might
- * have to backtrack and retry, so we keep a max tries counter for
- * that.
- *
- * It sucks because we don't know ahead of time which is going to be
- * the reboot barker (the device might send different ones depending
- * on its EEPROM config) and once the device reboots and waits for the
- * echo/ack reboot barker being sent back, it doesn't understand
- * anything else. So we can be left at the point where we don't know
- * what to send to it -- cold reset and bus reset seem to have little
- * effect. So the function iterates (in this case) through all the
- * known barkers and tries them all until an ACK is
- * received. Otherwise, it gives up.
- *
- * If we get a timeout after sending a warm reset, we do it again.
- */
-int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
-{
- int result;
- struct device *dev = i2400m_dev(i2400m);
- struct i2400m_bootrom_header *cmd;
- struct i2400m_bootrom_header ack;
- int count = i2400m->bus_bm_retries;
- int ack_timeout_cnt = 1;
- unsigned i;
-
- BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
- BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
-
- d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
- result = -ENOMEM;
- cmd = i2400m->bm_cmd_buf;
- if (flags & I2400M_BRI_SOFT)
- goto do_reboot_ack;
-do_reboot:
- ack_timeout_cnt = 1;
- if (--count < 0)
- goto error_timeout;
- d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
- count);
- if ((flags & I2400M_BRI_NO_REBOOT) == 0)
- i2400m_reset(i2400m, I2400M_RT_WARM);
- result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
- I2400M_BM_CMD_RAW);
- flags &= ~I2400M_BRI_NO_REBOOT;
- switch (result) {
- case -ERESTARTSYS:
- /*
- * at this point, i2400m_bm_cmd(), through
- * __i2400m_bm_ack_process(), has updated
- * i2400m->barker and we are good to go.
- */
- d_printf(4, dev, "device reboot: got reboot barker\n");
- break;
- case -EISCONN: /* we don't know how it got here...but we follow it */
- d_printf(4, dev, "device reboot: got ack barker - whatever\n");
- goto do_reboot;
- case -ETIMEDOUT:
- /*
- * Device has timed out, we might be in boot mode
- * already and expecting an ack; if we don't know what
- * the barker is, we just send them all. Cold reset
- * and bus reset don't work. Beats me.
- */
- if (i2400m->barker != NULL) {
- dev_err(dev, "device boot: reboot barker timed out, "
- "trying (set) %08x echo/ack\n",
- le32_to_cpu(i2400m->barker->data[0]));
- goto do_reboot_ack;
- }
- for (i = 0; i < i2400m_barker_db_used; i++) {
- struct i2400m_barker_db *barker = &i2400m_barker_db[i];
- memcpy(cmd, barker->data, sizeof(barker->data));
- result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
- &ack, sizeof(ack),
- I2400M_BM_CMD_RAW);
- if (result == -EISCONN) {
- dev_warn(dev, "device boot: got ack barker "
- "after sending echo/ack barker "
- "#%d/%08x; rebooting j.i.c.\n",
- i, le32_to_cpu(barker->data[0]));
- flags &= ~I2400M_BRI_NO_REBOOT;
- goto do_reboot;
- }
- }
- dev_err(dev, "device boot: tried all the echo/acks, could "
- "not get device to respond; giving up");
- result = -ESHUTDOWN;
- case -EPROTO:
- case -ESHUTDOWN: /* dev is gone */
- case -EINTR: /* user cancelled */
- goto error_dev_gone;
- default:
- dev_err(dev, "device reboot: error %d while waiting "
- "for reboot barker - rebooting\n", result);
- d_dump(1, dev, &ack, result);
- goto do_reboot;
- }
- /* At this point we ack back with 4 REBOOT barkers and expect
- * 4 ACK barkers. This is ugly, as we send a raw command --
- * hence the cast. _bm_cmd() will catch the reboot ack
- * notification and report it as -EISCONN. */
-do_reboot_ack:
- d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
- memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
- result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
- &ack, sizeof(ack), I2400M_BM_CMD_RAW);
- switch (result) {
- case -ERESTARTSYS:
- d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
- if (--count < 0)
- goto error_timeout;
- goto do_reboot_ack;
- case -EISCONN:
- d_printf(4, dev, "reboot ack: got ack barker - good\n");
- break;
- case -ETIMEDOUT: /* no response, maybe it is the other type? */
- if (ack_timeout_cnt-- < 0) {
- d_printf(4, dev, "reboot ack timedout: retrying\n");
- goto do_reboot_ack;
- } else {
- dev_err(dev, "reboot ack timedout too long: "
- "trying reboot\n");
- goto do_reboot;
- }
- break;
- case -EPROTO:
- case -ESHUTDOWN: /* dev is gone */
- goto error_dev_gone;
- default:
- dev_err(dev, "device reboot ack: error %d while waiting for "
- "reboot ack barker - rebooting\n", result);
- goto do_reboot;
- }
- d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
- result = 0;
-exit_timeout:
-error_dev_gone:
- d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
- i2400m, flags, result);
- return result;
-
-error_timeout:
- dev_err(dev, "Timed out waiting for reboot ack\n");
- result = -ETIMEDOUT;
- goto exit_timeout;
-}
-
-
-/*
- * Read the MAC addr
- *
- * The position this function reads is fixed in device memory and
- * always available, even without firmware.
- *
- * Note we specify we want to read only six bytes, but provide space
- * for 16, as we always get it rounded up.
- */
-int i2400m_read_mac_addr(struct i2400m *i2400m)
-{
- int result;
- struct device *dev = i2400m_dev(i2400m);
- struct net_device *net_dev = i2400m->wimax_dev.net_dev;
- struct i2400m_bootrom_header *cmd;
- struct {
- struct i2400m_bootrom_header ack;
- u8 ack_pl[16];
- } __packed ack_buf;
-
- d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
- cmd = i2400m->bm_cmd_buf;
- cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
- cmd->target_addr = cpu_to_le32(0x00203fe8);
- cmd->data_size = cpu_to_le32(6);
- result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
- &ack_buf.ack, sizeof(ack_buf), 0);
- if (result < 0) {
- dev_err(dev, "BM: read mac addr failed: %d\n", result);
- goto error_read_mac;
- }
- d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
- if (i2400m->bus_bm_mac_addr_impaired == 1) {
- ack_buf.ack_pl[0] = 0x00;
- ack_buf.ack_pl[1] = 0x16;
- ack_buf.ack_pl[2] = 0xd3;
- get_random_bytes(&ack_buf.ack_pl[3], 3);
- dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
- "mac addr is %pM\n", ack_buf.ack_pl);
- result = 0;
- }
- net_dev->addr_len = ETH_ALEN;
- memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
-error_read_mac:
- d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
- return result;
-}
-
-
-/*
- * Initialize a non signed boot
- *
- * This implies sending some magic values to the device's memory. Note
- * we convert the values to little endian in the same array
- * declaration.
- */
-static
-int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
-{
- unsigned i = 0;
- int ret = 0;
- struct device *dev = i2400m_dev(i2400m);
- d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
- if (i2400m->bus_bm_pokes_table) {
- while (i2400m->bus_bm_pokes_table[i].address) {
- ret = i2400m_download_chunk(
- i2400m,
- &i2400m->bus_bm_pokes_table[i].data,
- sizeof(i2400m->bus_bm_pokes_table[i].data),
- i2400m->bus_bm_pokes_table[i].address, 1, 1);
- if (ret < 0)
- break;
- i++;
- }
- }
- d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
- return ret;
-}
-
-
-/*
- * Initialize the signed boot process
- *
- * @i2400m: device descriptor
- *
- * @bcf_hdr: pointer to the firmware header; assumes it is fully in
- * memory (it has gone through basic validation).
- *
- * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
- * rebooted.
- *
- * This writes the firmware BCF header to the device using the
- * HASH_PAYLOAD_ONLY command.
- */
-static
-int i2400m_dnload_init_signed(struct i2400m *i2400m,
- const struct i2400m_bcf_hdr *bcf_hdr)
-{
- int ret;
- struct device *dev = i2400m_dev(i2400m);
- struct {
- struct i2400m_bootrom_header cmd;
- struct i2400m_bcf_hdr cmd_pl;
- } __packed *cmd_buf;
- struct i2400m_bootrom_header ack;
-
- d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
- cmd_buf = i2400m->bm_cmd_buf;
- cmd_buf->cmd.command =
- i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
- cmd_buf->cmd.target_addr = 0;
- cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
- memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
- ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
- &ack, sizeof(ack), 0);
- if (ret >= 0)
- ret = 0;
- d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
- return ret;
-}
-
-
-/*
- * Initialize the firmware download at the device size
- *
- * Multiplex to the one that matters based on the device's mode
- * (signed or non-signed).
- */
-static
-int i2400m_dnload_init(struct i2400m *i2400m,
- const struct i2400m_bcf_hdr *bcf_hdr)
-{
- int result;
- struct device *dev = i2400m_dev(i2400m);
-
- if (i2400m_boot_is_signed(i2400m)) {
- d_printf(1, dev, "signed boot\n");
- result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
- if (result == -ERESTARTSYS)
- return result;
- if (result < 0)
- dev_err(dev, "firmware %s: signed boot download "
- "initialization failed: %d\n",
- i2400m->fw_name, result);
- } else {
- /* non-signed boot process without pokes */
- d_printf(1, dev, "non-signed boot\n");
- result = i2400m_dnload_init_nonsigned(i2400m);
- if (result == -ERESTARTSYS)
- return result;
- if (result < 0)
- dev_err(dev, "firmware %s: non-signed download "
- "initialization failed: %d\n",
- i2400m->fw_name, result);
- }
- return result;
-}
-
-
-/*
- * Run consistency tests on the firmware file and load up headers
- *
- * Check for the firmware being made for the i2400m device,
- * etc...These checks are mostly informative, as the device will make
- * them too; but the driver's response is more informative on what
- * went wrong.
- *
- * This will also look at all the headers present on the firmware
- * file, and update i2400m->fw_bcf_hdr to point to them.
- */
-static
-int i2400m_fw_hdr_check(struct i2400m *i2400m,
- const struct i2400m_bcf_hdr *bcf_hdr,
- size_t index, size_t offset)
-{
- struct device *dev = i2400m_dev(i2400m);
-
- unsigned module_type, header_len, major_version, minor_version,
- module_id, module_vendor, date, size;
-
- module_type = le32_to_cpu(bcf_hdr->module_type);
- header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
- major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
- >> 16;
- minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
- module_id = le32_to_cpu(bcf_hdr->module_id);
- module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
- date = le32_to_cpu(bcf_hdr->date);
- size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
-
- d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
- "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
- i2400m->fw_name, index, offset,
- module_type, module_vendor, module_id,
- major_version, minor_version, header_len, size, date);
-
- /* Hard errors */
- if (major_version != 1) {
- dev_err(dev, "firmware %s #%zd@%08zx: major header version "
- "v%u.%u not supported\n",
- i2400m->fw_name, index, offset,
- major_version, minor_version);
- return -EBADF;
- }
-
- if (module_type != 6) { /* built for the right hardware? */
- dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
- "type 0x%x; aborting\n",
- i2400m->fw_name, index, offset,
- module_type);
- return -EBADF;
- }
-
- if (module_vendor != 0x8086) {
- dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
- "vendor 0x%x; aborting\n",
- i2400m->fw_name, index, offset, module_vendor);
- return -EBADF;
- }
-
- if (date < 0x20080300)
- dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
- "too old; unsupported\n",
- i2400m->fw_name, index, offset, date);
- return 0;
-}
-
-
-/*
- * Run consistency tests on the firmware file and load up headers
- *
- * Check for the firmware being made for the i2400m device,
- * etc...These checks are mostly informative, as the device will make
- * them too; but the driver's response is more informative on what
- * went wrong.
- *
- * This will also look at all the headers present on the firmware
- * file, and update i2400m->fw_hdrs to point to them.
- */
-static
-int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
-{
- int result;
- struct device *dev = i2400m_dev(i2400m);
- size_t headers = 0;
- const struct i2400m_bcf_hdr *bcf_hdr;
- const void *itr, *next, *top;
- size_t slots = 0, used_slots = 0;
-
- for (itr = bcf, top = itr + bcf_size;
- itr < top;
- headers++, itr = next) {
- size_t leftover, offset, header_len, size;
-
- leftover = top - itr;
- offset = itr - bcf;
- if (leftover <= sizeof(*bcf_hdr)) {
- dev_err(dev, "firmware %s: %zu B left at @%zx, "
- "not enough for BCF header\n",
- i2400m->fw_name, leftover, offset);
- break;
- }
- bcf_hdr = itr;
- /* Only the first header is supposed to be followed by
- * payload */
- header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
- size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
- if (headers == 0)
- next = itr + size;
- else
- next = itr + header_len;
-
- result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
- if (result < 0)
- continue;
- if (used_slots + 1 >= slots) {
- /* +1 -> we need to account for the one we'll
- * occupy and at least an extra one for
- * always being NULL */
- result = i2400m_zrealloc_2x(
- (void **) &i2400m->fw_hdrs, &slots,
- sizeof(i2400m->fw_hdrs[0]),
- GFP_KERNEL);
- if (result < 0)
- goto error_zrealloc;
- }
- i2400m->fw_hdrs[used_slots] = bcf_hdr;
- used_slots++;
- }
- if (headers == 0) {
- dev_err(dev, "firmware %s: no usable headers found\n",
- i2400m->fw_name);
- result = -EBADF;
- } else
- result = 0;
-error_zrealloc:
- return result;
-}
-
-
-/*
- * Match a barker to a BCF header module ID
- *
- * The device sends a barker which tells the firmware loader which
- * header in the BCF file has to be used. This does the matching.
- */
-static
-unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
- const struct i2400m_bcf_hdr *bcf_hdr)
-{
- u32 barker = le32_to_cpu(i2400m->barker->data[0])
- & 0x7fffffff;
- u32 module_id = le32_to_cpu(bcf_hdr->module_id)
- & 0x7fffffff; /* high bit used for something else */
-
- /* special case for 5x50 */
- if (barker == I2400M_SBOOT_BARKER && module_id == 0)
- return 1;
- if (module_id == barker)
- return 1;
- return 0;
-}
-
-static
-const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
-{
- struct device *dev = i2400m_dev(i2400m);
- const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
- unsigned i = 0;
- u32 barker = le32_to_cpu(i2400m->barker->data[0]);
-
- d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
- if (barker == I2400M_NBOOT_BARKER) {
- bcf_hdr = i2400m->fw_hdrs[0];
- d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
- "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
- return bcf_hdr;
- }
- for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
- bcf_hdr = *bcf_itr;
- if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
- d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
- i, le32_to_cpu(bcf_hdr->module_id));
- return bcf_hdr;
- } else
- d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
- i, le32_to_cpu(bcf_hdr->module_id));
- }
- dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
- barker);
- return NULL;
-}
-
-
-/*
- * Download the firmware to the device
- *
- * @i2400m: device descriptor
- * @bcf: pointer to loaded (and minimally verified for consistency)
- * firmware
- * @bcf_size: size of the @bcf buffer (header plus payloads)
- *
- * The process for doing this is described in this file's header.
- *
- * Note we only reinitialize boot-mode if the flags say so. Some hw
- * iterations need it, some don't. In any case, if we loop, we always
- * need to reinitialize the boot room, hence the flags modification.
- */
-static
-int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
- size_t fw_size, enum i2400m_bri flags)
-{
- int ret = 0;
- struct device *dev = i2400m_dev(i2400m);
- int count = i2400m->bus_bm_retries;
- const struct i2400m_bcf_hdr *bcf_hdr;
- size_t bcf_size;
-
- d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
- i2400m, bcf, fw_size);
- i2400m->boot_mode = 1;
- wmb(); /* Make sure other readers see it */
-hw_reboot:
- if (count-- == 0) {
- ret = -ERESTARTSYS;
- dev_err(dev, "device rebooted too many times, aborting\n");
- goto error_too_many_reboots;
- }
- if (flags & I2400M_BRI_MAC_REINIT) {
- ret = i2400m_bootrom_init(i2400m, flags);
- if (ret < 0) {
- dev_err(dev, "bootrom init failed: %d\n", ret);
- goto error_bootrom_init;
- }
- }
- flags |= I2400M_BRI_MAC_REINIT;
-
- /*
- * Initialize the download, push the bytes to the device and
- * then jump to the new firmware. Note @ret is passed with the
- * offset of the jump instruction to _dnload_finalize()
- *
- * Note we need to use the BCF header in the firmware image
- * that matches the barker that the device sent when it
- * rebooted, so it has to be passed along.
- */
- ret = -EBADF;
- bcf_hdr = i2400m_bcf_hdr_find(i2400m);
- if (bcf_hdr == NULL)
- goto error_bcf_hdr_find;
-
- ret = i2400m_dnload_init(i2400m, bcf_hdr);
- if (ret == -ERESTARTSYS)
- goto error_dev_rebooted;
- if (ret < 0)
- goto error_dnload_init;
-
- /*
- * bcf_size refers to one header size plus the fw sections size
- * indicated by the header,ie. if there are other extended headers
- * at the tail, they are not counted
- */
- bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
- ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
- if (ret == -ERESTARTSYS)
- goto error_dev_rebooted;
- if (ret < 0) {
- dev_err(dev, "fw %s: download failed: %d\n",
- i2400m->fw_name, ret);
- goto error_dnload_bcf;
- }
-
- ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
- if (ret == -ERESTARTSYS)
- goto error_dev_rebooted;
- if (ret < 0) {
- dev_err(dev, "fw %s: "
- "download finalization failed: %d\n",
- i2400m->fw_name, ret);
- goto error_dnload_finalize;
- }
-
- d_printf(2, dev, "fw %s successfully uploaded\n",
- i2400m->fw_name);
- i2400m->boot_mode = 0;
- wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
-error_dnload_finalize:
-error_dnload_bcf:
-error_dnload_init:
-error_bcf_hdr_find:
-error_bootrom_init:
-error_too_many_reboots:
- d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
- i2400m, bcf, fw_size, ret);
- return ret;
-
-error_dev_rebooted:
- dev_err(dev, "device rebooted, %d tries left\n", count);
- /* we got the notification already, no need to wait for it again */
- flags |= I2400M_BRI_SOFT;
- goto hw_reboot;
-}
-
-static
-int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
- enum i2400m_bri flags)
-{
- int ret;
- struct device *dev = i2400m_dev(i2400m);
- const struct i2400m_bcf_hdr *bcf; /* Firmware data */
-
- d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
- bcf = (void *) fw->data;
- ret = i2400m_fw_check(i2400m, bcf, fw->size);
- if (ret >= 0)
- ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
- if (ret < 0)
- dev_err(dev, "%s: cannot use: %d, skipping\n",
- i2400m->fw_name, ret);
- kfree(i2400m->fw_hdrs);
- i2400m->fw_hdrs = NULL;
- d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
- return ret;
-}
-
-
-/* Refcounted container for firmware data */
-struct i2400m_fw {
- struct kref kref;
- const struct firmware *fw;
-};
-
-
-static
-void i2400m_fw_destroy(struct kref *kref)
-{
- struct i2400m_fw *i2400m_fw =
- container_of(kref, struct i2400m_fw, kref);
- release_firmware(i2400m_fw->fw);
- kfree(i2400m_fw);
-}
-
-
-static
-struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
-{
- if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
- kref_get(&i2400m_fw->kref);
- return i2400m_fw;
-}
-
-
-static
-void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
-{
- kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
-}
-
-
-/**
- * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
- *
- * @i2400m: device descriptor
- *
- * Returns: >= 0 if ok, < 0 errno code on error.
- *
- * This sets up the firmware upload environment, loads the firmware
- * file from disk, verifies and then calls the firmware upload process
- * per se.
- *
- * Can be called either from probe, or after a warm reset. Can not be
- * called from within an interrupt. All the flow in this code is
- * single-threade; all I/Os are synchronous.
- */
-int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
-{
- int ret, itr;
- struct device *dev = i2400m_dev(i2400m);
- struct i2400m_fw *i2400m_fw;
- const struct firmware *fw;
- const char *fw_name;
-
- d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
-
- ret = -ENODEV;
- spin_lock(&i2400m->rx_lock);
- i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
- spin_unlock(&i2400m->rx_lock);
- if (i2400m_fw == (void *) ~0) {
- dev_err(dev, "can't load firmware now!");
- goto out;
- } else if (i2400m_fw != NULL) {
- dev_info(dev, "firmware %s: loading from cache\n",
- i2400m->fw_name);
- ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
- i2400m_fw_put(i2400m_fw);
- goto out;
- }
-
- /* Load firmware files to memory. */
- for (itr = 0, ret = -ENOENT; ; itr++) {
- fw_name = i2400m->bus_fw_names[itr];
- if (fw_name == NULL) {
- dev_err(dev, "Could not find a usable firmware image\n");
- break;
- }
- d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
- ret = request_firmware(&fw, fw_name, dev);
- if (ret < 0) {
- dev_err(dev, "fw %s: cannot load file: %d\n",
- fw_name, ret);
- continue;
- }
- i2400m->fw_name = fw_name;
- ret = i2400m_fw_bootstrap(i2400m, fw, flags);
- release_firmware(fw);
- if (ret >= 0) /* firmware loaded successfully */
- break;
- i2400m->fw_name = NULL;
- }
-out:
- d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
- return ret;
-}
-EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
-
-
-void i2400m_fw_cache(struct i2400m *i2400m)
-{
- int result;
- struct i2400m_fw *i2400m_fw;
- struct device *dev = i2400m_dev(i2400m);
-
- /* if there is anything there, free it -- now, this'd be weird */
- spin_lock(&i2400m->rx_lock);
- i2400m_fw = i2400m->fw_cached;
- spin_unlock(&i2400m->rx_lock);
- if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
- i2400m_fw_put(i2400m_fw);
- WARN(1, "%s:%u: still cached fw still present?\n",
- __func__, __LINE__);
- }
-
- if (i2400m->fw_name == NULL) {
- dev_err(dev, "firmware n/a: can't cache\n");
- i2400m_fw = (void *) ~0;
- goto out;
- }
-
- i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
- if (i2400m_fw == NULL)
- goto out;
- kref_init(&i2400m_fw->kref);
- result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
- if (result < 0) {
- dev_err(dev, "firmware %s: failed to cache: %d\n",
- i2400m->fw_name, result);
- kfree(i2400m_fw);
- i2400m_fw = (void *) ~0;
- } else
- dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
-out:
- spin_lock(&i2400m->rx_lock);
- i2400m->fw_cached = i2400m_fw;
- spin_unlock(&i2400m->rx_lock);
-}
-
-
-void i2400m_fw_uncache(struct i2400m *i2400m)
-{
- struct i2400m_fw *i2400m_fw;
-
- spin_lock(&i2400m->rx_lock);
- i2400m_fw = i2400m->fw_cached;
- i2400m->fw_cached = NULL;
- spin_unlock(&i2400m->rx_lock);
-
- if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
- i2400m_fw_put(i2400m_fw);
-}
-