summaryrefslogtreecommitdiff
path: root/drivers/fpga
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/fpga')
-rw-r--r--drivers/fpga/fpga-mgr.c236
-rw-r--r--drivers/fpga/zynq-fpga.c233
2 files changed, 386 insertions, 83 deletions
diff --git a/drivers/fpga/fpga-mgr.c b/drivers/fpga/fpga-mgr.c
index f0a69d3e60a5..86d2cb203533 100644
--- a/drivers/fpga/fpga-mgr.c
+++ b/drivers/fpga/fpga-mgr.c
@@ -25,16 +25,106 @@
#include <linux/of.h>
#include <linux/mutex.h>
#include <linux/slab.h>
+#include <linux/scatterlist.h>
+#include <linux/highmem.h>
static DEFINE_IDA(fpga_mgr_ida);
static struct class *fpga_mgr_class;
+/*
+ * Call the low level driver's write_init function. This will do the
+ * device-specific things to get the FPGA into the state where it is ready to
+ * receive an FPGA image. The low level driver only gets to see the first
+ * initial_header_size bytes in the buffer.
+ */
+static int fpga_mgr_write_init_buf(struct fpga_manager *mgr,
+ struct fpga_image_info *info,
+ const char *buf, size_t count)
+{
+ int ret;
+
+ mgr->state = FPGA_MGR_STATE_WRITE_INIT;
+ if (!mgr->mops->initial_header_size)
+ ret = mgr->mops->write_init(mgr, info, NULL, 0);
+ else
+ ret = mgr->mops->write_init(
+ mgr, info, buf, min(mgr->mops->initial_header_size, count));
+
+ if (ret) {
+ dev_err(&mgr->dev, "Error preparing FPGA for writing\n");
+ mgr->state = FPGA_MGR_STATE_WRITE_INIT_ERR;
+ return ret;
+ }
+
+ return 0;
+}
+
+static int fpga_mgr_write_init_sg(struct fpga_manager *mgr,
+ struct fpga_image_info *info,
+ struct sg_table *sgt)
+{
+ struct sg_mapping_iter miter;
+ size_t len;
+ char *buf;
+ int ret;
+
+ if (!mgr->mops->initial_header_size)
+ return fpga_mgr_write_init_buf(mgr, info, NULL, 0);
+
+ /*
+ * First try to use miter to map the first fragment to access the
+ * header, this is the typical path.
+ */
+ sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
+ if (sg_miter_next(&miter) &&
+ miter.length >= mgr->mops->initial_header_size) {
+ ret = fpga_mgr_write_init_buf(mgr, info, miter.addr,
+ miter.length);
+ sg_miter_stop(&miter);
+ return ret;
+ }
+ sg_miter_stop(&miter);
+
+ /* Otherwise copy the fragments into temporary memory. */
+ buf = kmalloc(mgr->mops->initial_header_size, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ len = sg_copy_to_buffer(sgt->sgl, sgt->nents, buf,
+ mgr->mops->initial_header_size);
+ ret = fpga_mgr_write_init_buf(mgr, info, buf, len);
+
+ kfree(buf);
+
+ return ret;
+}
+
+/*
+ * After all the FPGA image has been written, do the device specific steps to
+ * finish and set the FPGA into operating mode.
+ */
+static int fpga_mgr_write_complete(struct fpga_manager *mgr,
+ struct fpga_image_info *info)
+{
+ int ret;
+
+ mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE;
+ ret = mgr->mops->write_complete(mgr, info);
+ if (ret) {
+ dev_err(&mgr->dev, "Error after writing image data to FPGA\n");
+ mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE_ERR;
+ return ret;
+ }
+ mgr->state = FPGA_MGR_STATE_OPERATING;
+
+ return 0;
+}
+
/**
- * fpga_mgr_buf_load - load fpga from image in buffer
+ * fpga_mgr_buf_load_sg - load fpga from image in buffer from a scatter list
* @mgr: fpga manager
* @info: fpga image specific information
- * @buf: buffer contain fpga image
- * @count: byte count of buf
+ * @sgt: scatterlist table
*
* Step the low level fpga manager through the device-specific steps of getting
* an FPGA ready to be configured, writing the image to it, then doing whatever
@@ -42,54 +132,139 @@ static struct class *fpga_mgr_class;
* mgr pointer from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is
* not an error code.
*
+ * This is the preferred entry point for FPGA programming, it does not require
+ * any contiguous kernel memory.
+ *
* Return: 0 on success, negative error code otherwise.
*/
-int fpga_mgr_buf_load(struct fpga_manager *mgr, struct fpga_image_info *info,
- const char *buf, size_t count)
+int fpga_mgr_buf_load_sg(struct fpga_manager *mgr, struct fpga_image_info *info,
+ struct sg_table *sgt)
{
- struct device *dev = &mgr->dev;
int ret;
- /*
- * Call the low level driver's write_init function. This will do the
- * device-specific things to get the FPGA into the state where it is
- * ready to receive an FPGA image. The low level driver only gets to
- * see the first initial_header_size bytes in the buffer.
- */
- mgr->state = FPGA_MGR_STATE_WRITE_INIT;
- ret = mgr->mops->write_init(mgr, info, buf,
- min(mgr->mops->initial_header_size, count));
+ ret = fpga_mgr_write_init_sg(mgr, info, sgt);
+ if (ret)
+ return ret;
+
+ /* Write the FPGA image to the FPGA. */
+ mgr->state = FPGA_MGR_STATE_WRITE;
+ if (mgr->mops->write_sg) {
+ ret = mgr->mops->write_sg(mgr, sgt);
+ } else {
+ struct sg_mapping_iter miter;
+
+ sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
+ while (sg_miter_next(&miter)) {
+ ret = mgr->mops->write(mgr, miter.addr, miter.length);
+ if (ret)
+ break;
+ }
+ sg_miter_stop(&miter);
+ }
+
if (ret) {
- dev_err(dev, "Error preparing FPGA for writing\n");
- mgr->state = FPGA_MGR_STATE_WRITE_INIT_ERR;
+ dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
+ mgr->state = FPGA_MGR_STATE_WRITE_ERR;
return ret;
}
+ return fpga_mgr_write_complete(mgr, info);
+}
+EXPORT_SYMBOL_GPL(fpga_mgr_buf_load_sg);
+
+static int fpga_mgr_buf_load_mapped(struct fpga_manager *mgr,
+ struct fpga_image_info *info,
+ const char *buf, size_t count)
+{
+ int ret;
+
+ ret = fpga_mgr_write_init_buf(mgr, info, buf, count);
+ if (ret)
+ return ret;
+
/*
* Write the FPGA image to the FPGA.
*/
mgr->state = FPGA_MGR_STATE_WRITE;
ret = mgr->mops->write(mgr, buf, count);
if (ret) {
- dev_err(dev, "Error while writing image data to FPGA\n");
+ dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_ERR;
return ret;
}
+ return fpga_mgr_write_complete(mgr, info);
+}
+
+/**
+ * fpga_mgr_buf_load - load fpga from image in buffer
+ * @mgr: fpga manager
+ * @flags: flags setting fpga confuration modes
+ * @buf: buffer contain fpga image
+ * @count: byte count of buf
+ *
+ * Step the low level fpga manager through the device-specific steps of getting
+ * an FPGA ready to be configured, writing the image to it, then doing whatever
+ * post-configuration steps necessary. This code assumes the caller got the
+ * mgr pointer from of_fpga_mgr_get() and checked that it is not an error code.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int fpga_mgr_buf_load(struct fpga_manager *mgr, struct fpga_image_info *info,
+ const char *buf, size_t count)
+{
+ struct page **pages;
+ struct sg_table sgt;
+ const void *p;
+ int nr_pages;
+ int index;
+ int rc;
+
/*
- * After all the FPGA image has been written, do the device specific
- * steps to finish and set the FPGA into operating mode.
+ * This is just a fast path if the caller has already created a
+ * contiguous kernel buffer and the driver doesn't require SG, non-SG
+ * drivers will still work on the slow path.
*/
- mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE;
- ret = mgr->mops->write_complete(mgr, info);
- if (ret) {
- dev_err(dev, "Error after writing image data to FPGA\n");
- mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE_ERR;
- return ret;
+ if (mgr->mops->write)
+ return fpga_mgr_buf_load_mapped(mgr, info, buf, count);
+
+ /*
+ * Convert the linear kernel pointer into a sg_table of pages for use
+ * by the driver.
+ */
+ nr_pages = DIV_ROUND_UP((unsigned long)buf + count, PAGE_SIZE) -
+ (unsigned long)buf / PAGE_SIZE;
+ pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
+ if (!pages)
+ return -ENOMEM;
+
+ p = buf - offset_in_page(buf);
+ for (index = 0; index < nr_pages; index++) {
+ if (is_vmalloc_addr(p))
+ pages[index] = vmalloc_to_page(p);
+ else
+ pages[index] = kmap_to_page((void *)p);
+ if (!pages[index]) {
+ kfree(pages);
+ return -EFAULT;
+ }
+ p += PAGE_SIZE;
}
- mgr->state = FPGA_MGR_STATE_OPERATING;
- return 0;
+ /*
+ * The temporary pages list is used to code share the merging algorithm
+ * in sg_alloc_table_from_pages
+ */
+ rc = sg_alloc_table_from_pages(&sgt, pages, index, offset_in_page(buf),
+ count, GFP_KERNEL);
+ kfree(pages);
+ if (rc)
+ return rc;
+
+ rc = fpga_mgr_buf_load_sg(mgr, info, &sgt);
+ sg_free_table(&sgt);
+
+ return rc;
}
EXPORT_SYMBOL_GPL(fpga_mgr_buf_load);
@@ -291,8 +466,9 @@ int fpga_mgr_register(struct device *dev, const char *name,
struct fpga_manager *mgr;
int id, ret;
- if (!mops || !mops->write_init || !mops->write ||
- !mops->write_complete || !mops->state) {
+ if (!mops || !mops->write_complete || !mops->state ||
+ !mops->write_init || (!mops->write && !mops->write_sg) ||
+ (mops->write && mops->write_sg)) {
dev_err(dev, "Attempt to register without fpga_manager_ops\n");
return -EINVAL;
}
diff --git a/drivers/fpga/zynq-fpga.c b/drivers/fpga/zynq-fpga.c
index 1812bf7614e1..34cb98139442 100644
--- a/drivers/fpga/zynq-fpga.c
+++ b/drivers/fpga/zynq-fpga.c
@@ -30,6 +30,7 @@
#include <linux/pm.h>
#include <linux/regmap.h>
#include <linux/string.h>
+#include <linux/scatterlist.h>
/* Offsets into SLCR regmap */
@@ -80,6 +81,7 @@
/* FPGA init status */
#define STATUS_DMA_Q_F BIT(31)
+#define STATUS_DMA_Q_E BIT(30)
#define STATUS_PCFG_INIT_MASK BIT(4)
/* Interrupt Status/Mask Register Bit definitions */
@@ -89,7 +91,7 @@
#define IXR_D_P_DONE_MASK BIT(12)
/* FPGA programmed */
#define IXR_PCFG_DONE_MASK BIT(2)
-#define IXR_ERROR_FLAGS_MASK 0x00F0F860
+#define IXR_ERROR_FLAGS_MASK 0x00F0C860
#define IXR_ALL_MASK 0xF8F7F87F
/* Miscellaneous constant values */
@@ -98,12 +100,16 @@
#define DMA_INVALID_ADDRESS GENMASK(31, 0)
/* Used to unlock the dev */
#define UNLOCK_MASK 0x757bdf0d
-/* Timeout for DMA to complete */
-#define DMA_DONE_TIMEOUT msecs_to_jiffies(1000)
/* Timeout for polling reset bits */
#define INIT_POLL_TIMEOUT 2500000
/* Delay for polling reset bits */
#define INIT_POLL_DELAY 20
+/* Signal this is the last DMA transfer, wait for the AXI and PCAP before
+ * interrupting
+ */
+#define DMA_SRC_LAST_TRANSFER 1
+/* Timeout for DMA completion */
+#define DMA_TIMEOUT_MS 5000
/* Masks for controlling stuff in SLCR */
/* Disable all Level shifters */
@@ -124,6 +130,11 @@ struct zynq_fpga_priv {
void __iomem *io_base;
struct regmap *slcr;
+ spinlock_t dma_lock;
+ unsigned int dma_elm;
+ unsigned int dma_nelms;
+ struct scatterlist *cur_sg;
+
struct completion dma_done;
};
@@ -143,37 +154,104 @@ static inline u32 zynq_fpga_read(const struct zynq_fpga_priv *priv,
readl_poll_timeout(priv->io_base + addr, val, cond, sleep_us, \
timeout_us)
-static void zynq_fpga_mask_irqs(struct zynq_fpga_priv *priv)
+/* Cause the specified irq mask bits to generate IRQs */
+static inline void zynq_fpga_set_irq(struct zynq_fpga_priv *priv, u32 enable)
{
- u32 intr_mask;
-
- intr_mask = zynq_fpga_read(priv, INT_MASK_OFFSET);
- zynq_fpga_write(priv, INT_MASK_OFFSET,
- intr_mask | IXR_DMA_DONE_MASK | IXR_ERROR_FLAGS_MASK);
+ zynq_fpga_write(priv, INT_MASK_OFFSET, ~enable);
}
-static void zynq_fpga_unmask_irqs(struct zynq_fpga_priv *priv)
+/* Must be called with dma_lock held */
+static void zynq_step_dma(struct zynq_fpga_priv *priv)
{
- u32 intr_mask;
+ u32 addr;
+ u32 len;
+ bool first;
+
+ first = priv->dma_elm == 0;
+ while (priv->cur_sg) {
+ /* Feed the DMA queue until it is full. */
+ if (zynq_fpga_read(priv, STATUS_OFFSET) & STATUS_DMA_Q_F)
+ break;
+
+ addr = sg_dma_address(priv->cur_sg);
+ len = sg_dma_len(priv->cur_sg);
+ if (priv->dma_elm + 1 == priv->dma_nelms) {
+ /* The last transfer waits for the PCAP to finish too,
+ * notice this also changes the irq_mask to ignore
+ * IXR_DMA_DONE_MASK which ensures we do not trigger
+ * the completion too early.
+ */
+ addr |= DMA_SRC_LAST_TRANSFER;
+ priv->cur_sg = NULL;
+ } else {
+ priv->cur_sg = sg_next(priv->cur_sg);
+ priv->dma_elm++;
+ }
- intr_mask = zynq_fpga_read(priv, INT_MASK_OFFSET);
- zynq_fpga_write(priv, INT_MASK_OFFSET,
- intr_mask
- & ~(IXR_D_P_DONE_MASK | IXR_ERROR_FLAGS_MASK));
+ zynq_fpga_write(priv, DMA_SRC_ADDR_OFFSET, addr);
+ zynq_fpga_write(priv, DMA_DST_ADDR_OFFSET, DMA_INVALID_ADDRESS);
+ zynq_fpga_write(priv, DMA_SRC_LEN_OFFSET, len / 4);
+ zynq_fpga_write(priv, DMA_DEST_LEN_OFFSET, 0);
+ }
+
+ /* Once the first transfer is queued we can turn on the ISR, future
+ * calls to zynq_step_dma will happen from the ISR context. The
+ * dma_lock spinlock guarentees this handover is done coherently, the
+ * ISR enable is put at the end to avoid another CPU spinning in the
+ * ISR on this lock.
+ */
+ if (first && priv->cur_sg) {
+ zynq_fpga_set_irq(priv,
+ IXR_DMA_DONE_MASK | IXR_ERROR_FLAGS_MASK);
+ } else if (!priv->cur_sg) {
+ /* The last transfer changes to DMA & PCAP mode since we do
+ * not want to continue until everything has been flushed into
+ * the PCAP.
+ */
+ zynq_fpga_set_irq(priv,
+ IXR_D_P_DONE_MASK | IXR_ERROR_FLAGS_MASK);
+ }
}
static irqreturn_t zynq_fpga_isr(int irq, void *data)
{
struct zynq_fpga_priv *priv = data;
+ u32 intr_status;
- /* disable DMA and error IRQs */
- zynq_fpga_mask_irqs(priv);
+ /* If anything other than DMA completion is reported stop and hand
+ * control back to zynq_fpga_ops_write, something went wrong,
+ * otherwise progress the DMA.
+ */
+ spin_lock(&priv->dma_lock);
+ intr_status = zynq_fpga_read(priv, INT_STS_OFFSET);
+ if (!(intr_status & IXR_ERROR_FLAGS_MASK) &&
+ (intr_status & IXR_DMA_DONE_MASK) && priv->cur_sg) {
+ zynq_fpga_write(priv, INT_STS_OFFSET, IXR_DMA_DONE_MASK);
+ zynq_step_dma(priv);
+ spin_unlock(&priv->dma_lock);
+ return IRQ_HANDLED;
+ }
+ spin_unlock(&priv->dma_lock);
+ zynq_fpga_set_irq(priv, 0);
complete(&priv->dma_done);
return IRQ_HANDLED;
}
+/* Sanity check the proposed bitstream. It must start with the sync word in
+ * the correct byte order, and be dword aligned. The input is a Xilinx .bin
+ * file with every 32 bit quantity swapped.
+ */
+static bool zynq_fpga_has_sync(const u8 *buf, size_t count)
+{
+ for (; count >= 4; buf += 4, count -= 4)
+ if (buf[0] == 0x66 && buf[1] == 0x55 && buf[2] == 0x99 &&
+ buf[3] == 0xaa)
+ return true;
+ return false;
+}
+
static int zynq_fpga_ops_write_init(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
@@ -190,6 +268,13 @@ static int zynq_fpga_ops_write_init(struct fpga_manager *mgr,
/* don't globally reset PL if we're doing partial reconfig */
if (!(info->flags & FPGA_MGR_PARTIAL_RECONFIG)) {
+ if (!zynq_fpga_has_sync(buf, count)) {
+ dev_err(&mgr->dev,
+ "Invalid bitstream, could not find a sync word. Bitstream must be a byte swapped .bin file\n");
+ err = -EINVAL;
+ goto out_err;
+ }
+
/* assert AXI interface resets */
regmap_write(priv->slcr, SLCR_FPGA_RST_CTRL_OFFSET,
FPGA_RST_ALL_MASK);
@@ -259,10 +344,11 @@ static int zynq_fpga_ops_write_init(struct fpga_manager *mgr,
zynq_fpga_write(priv, CTRL_OFFSET,
(CTRL_PCAP_PR_MASK | CTRL_PCAP_MODE_MASK | ctrl));
- /* check that we have room in the command queue */
+ /* We expect that the command queue is empty right now. */
status = zynq_fpga_read(priv, STATUS_OFFSET);
- if (status & STATUS_DMA_Q_F) {
- dev_err(&mgr->dev, "DMA command queue full\n");
+ if ((status & STATUS_DMA_Q_F) ||
+ (status & STATUS_DMA_Q_E) != STATUS_DMA_Q_E) {
+ dev_err(&mgr->dev, "DMA command queue not right\n");
err = -EBUSY;
goto out_err;
}
@@ -281,26 +367,36 @@ out_err:
return err;
}
-static int zynq_fpga_ops_write(struct fpga_manager *mgr,
- const char *buf, size_t count)
+static int zynq_fpga_ops_write(struct fpga_manager *mgr, struct sg_table *sgt)
{
struct zynq_fpga_priv *priv;
+ const char *why;
int err;
- char *kbuf;
- size_t in_count;
- dma_addr_t dma_addr;
- u32 transfer_length;
u32 intr_status;
+ unsigned long timeout;
+ unsigned long flags;
+ struct scatterlist *sg;
+ int i;
- in_count = count;
priv = mgr->priv;
- kbuf =
- dma_alloc_coherent(mgr->dev.parent, count, &dma_addr, GFP_KERNEL);
- if (!kbuf)
- return -ENOMEM;
+ /* The hardware can only DMA multiples of 4 bytes, and it requires the
+ * starting addresses to be aligned to 64 bits (UG585 pg 212).
+ */
+ for_each_sg(sgt->sgl, sg, sgt->nents, i) {
+ if ((sg->offset % 8) || (sg->length % 4)) {
+ dev_err(&mgr->dev,
+ "Invalid bitstream, chunks must be aligned\n");
+ return -EINVAL;
+ }
+ }
- memcpy(kbuf, buf, count);
+ priv->dma_nelms =
+ dma_map_sg(mgr->dev.parent, sgt->sgl, sgt->nents, DMA_TO_DEVICE);
+ if (priv->dma_nelms == 0) {
+ dev_err(&mgr->dev, "Unable to DMA map (TO_DEVICE)\n");
+ return -ENOMEM;
+ }
/* enable clock */
err = clk_enable(priv->clk);
@@ -308,38 +404,67 @@ static int zynq_fpga_ops_write(struct fpga_manager *mgr,
goto out_free;
zynq_fpga_write(priv, INT_STS_OFFSET, IXR_ALL_MASK);
-
reinit_completion(&priv->dma_done);
- /* enable DMA and error IRQs */
- zynq_fpga_unmask_irqs(priv);
+ /* zynq_step_dma will turn on interrupts */
+ spin_lock_irqsave(&priv->dma_lock, flags);
+ priv->dma_elm = 0;
+ priv->cur_sg = sgt->sgl;
+ zynq_step_dma(priv);
+ spin_unlock_irqrestore(&priv->dma_lock, flags);
- /* the +1 in the src addr is used to hold off on DMA_DONE IRQ
- * until both AXI and PCAP are done ...
- */
- zynq_fpga_write(priv, DMA_SRC_ADDR_OFFSET, (u32)(dma_addr) + 1);
- zynq_fpga_write(priv, DMA_DST_ADDR_OFFSET, (u32)DMA_INVALID_ADDRESS);
+ timeout = wait_for_completion_timeout(&priv->dma_done,
+ msecs_to_jiffies(DMA_TIMEOUT_MS));
- /* convert #bytes to #words */
- transfer_length = (count + 3) / 4;
+ spin_lock_irqsave(&priv->dma_lock, flags);
+ zynq_fpga_set_irq(priv, 0);
+ priv->cur_sg = NULL;
+ spin_unlock_irqrestore(&priv->dma_lock, flags);
- zynq_fpga_write(priv, DMA_SRC_LEN_OFFSET, transfer_length);
- zynq_fpga_write(priv, DMA_DEST_LEN_OFFSET, 0);
+ intr_status = zynq_fpga_read(priv, INT_STS_OFFSET);
+ zynq_fpga_write(priv, INT_STS_OFFSET, IXR_ALL_MASK);
- wait_for_completion(&priv->dma_done);
+ /* There doesn't seem to be a way to force cancel any DMA, so if
+ * something went wrong we are relying on the hardware to have halted
+ * the DMA before we get here, if there was we could use
+ * wait_for_completion_interruptible too.
+ */
- intr_status = zynq_fpga_read(priv, INT_STS_OFFSET);
- zynq_fpga_write(priv, INT_STS_OFFSET, intr_status);
+ if (intr_status & IXR_ERROR_FLAGS_MASK) {
+ why = "DMA reported error";
+ err = -EIO;
+ goto out_report;
+ }
- if (!((intr_status & IXR_D_P_DONE_MASK) == IXR_D_P_DONE_MASK)) {
- dev_err(&mgr->dev, "Error configuring FPGA\n");
- err = -EFAULT;
+ if (priv->cur_sg ||
+ !((intr_status & IXR_D_P_DONE_MASK) == IXR_D_P_DONE_MASK)) {
+ if (timeout == 0)
+ why = "DMA timed out";
+ else
+ why = "DMA did not complete";
+ err = -EIO;
+ goto out_report;
}
+ err = 0;
+ goto out_clk;
+
+out_report:
+ dev_err(&mgr->dev,
+ "%s: INT_STS:0x%x CTRL:0x%x LOCK:0x%x INT_MASK:0x%x STATUS:0x%x MCTRL:0x%x\n",
+ why,
+ intr_status,
+ zynq_fpga_read(priv, CTRL_OFFSET),
+ zynq_fpga_read(priv, LOCK_OFFSET),
+ zynq_fpga_read(priv, INT_MASK_OFFSET),
+ zynq_fpga_read(priv, STATUS_OFFSET),
+ zynq_fpga_read(priv, MCTRL_OFFSET));
+
+out_clk:
clk_disable(priv->clk);
out_free:
- dma_free_coherent(mgr->dev.parent, count, kbuf, dma_addr);
+ dma_unmap_sg(mgr->dev.parent, sgt->sgl, sgt->nents, DMA_TO_DEVICE);
return err;
}
@@ -400,9 +525,10 @@ static enum fpga_mgr_states zynq_fpga_ops_state(struct fpga_manager *mgr)
}
static const struct fpga_manager_ops zynq_fpga_ops = {
+ .initial_header_size = 128,
.state = zynq_fpga_ops_state,
.write_init = zynq_fpga_ops_write_init,
- .write = zynq_fpga_ops_write,
+ .write_sg = zynq_fpga_ops_write,
.write_complete = zynq_fpga_ops_write_complete,
};
@@ -416,6 +542,7 @@ static int zynq_fpga_probe(struct platform_device *pdev)
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
+ spin_lock_init(&priv->dma_lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->io_base = devm_ioremap_resource(dev, res);
@@ -452,7 +579,7 @@ static int zynq_fpga_probe(struct platform_device *pdev)
/* unlock the device */
zynq_fpga_write(priv, UNLOCK_OFFSET, UNLOCK_MASK);
- zynq_fpga_write(priv, INT_MASK_OFFSET, 0xFFFFFFFF);
+ zynq_fpga_set_irq(priv, 0);
zynq_fpga_write(priv, INT_STS_OFFSET, IXR_ALL_MASK);
err = devm_request_irq(dev, priv->irq, zynq_fpga_isr, 0, dev_name(dev),
priv);