diff options
Diffstat (limited to 'arch/x86_64/mm/numa.c')
-rw-r--r-- | arch/x86_64/mm/numa.c | 202 |
1 files changed, 164 insertions, 38 deletions
diff --git a/arch/x86_64/mm/numa.c b/arch/x86_64/mm/numa.c index 2ee2e003606c..41b8fb069924 100644 --- a/arch/x86_64/mm/numa.c +++ b/arch/x86_64/mm/numa.c @@ -36,6 +36,8 @@ unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly; int numa_off __initdata; +unsigned long __initdata nodemap_addr; +unsigned long __initdata nodemap_size; /* @@ -52,34 +54,88 @@ populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift) int res = -1; unsigned long addr, end; - if (shift >= 64) - return -1; - memset(memnodemap, 0xff, sizeof(memnodemap)); + memset(memnodemap, 0xff, memnodemapsize); for (i = 0; i < numnodes; i++) { addr = nodes[i].start; end = nodes[i].end; if (addr >= end) continue; - if ((end >> shift) >= NODEMAPSIZE) + if ((end >> shift) >= memnodemapsize) return 0; do { if (memnodemap[addr >> shift] != 0xff) return -1; memnodemap[addr >> shift] = i; - addr += (1UL << shift); + addr += (1UL << shift); } while (addr < end); res = 1; } return res; } -int __init compute_hash_shift(struct bootnode *nodes, int numnodes) +static int __init allocate_cachealigned_memnodemap(void) { - int shift = 20; + unsigned long pad, pad_addr; + + memnodemap = memnode.embedded_map; + if (memnodemapsize <= 48) + return 0; + + pad = L1_CACHE_BYTES - 1; + pad_addr = 0x8000; + nodemap_size = pad + memnodemapsize; + nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT, + nodemap_size); + if (nodemap_addr == -1UL) { + printk(KERN_ERR + "NUMA: Unable to allocate Memory to Node hash map\n"); + nodemap_addr = nodemap_size = 0; + return -1; + } + pad_addr = (nodemap_addr + pad) & ~pad; + memnodemap = phys_to_virt(pad_addr); + + printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", + nodemap_addr, nodemap_addr + nodemap_size); + return 0; +} - while (populate_memnodemap(nodes, numnodes, shift + 1) >= 0) - shift++; +/* + * The LSB of all start and end addresses in the node map is the value of the + * maximum possible shift. + */ +static int __init +extract_lsb_from_nodes (const struct bootnode *nodes, int numnodes) +{ + int i, nodes_used = 0; + unsigned long start, end; + unsigned long bitfield = 0, memtop = 0; + + for (i = 0; i < numnodes; i++) { + start = nodes[i].start; + end = nodes[i].end; + if (start >= end) + continue; + bitfield |= start; + nodes_used++; + if (end > memtop) + memtop = end; + } + if (nodes_used <= 1) + i = 63; + else + i = find_first_bit(&bitfield, sizeof(unsigned long)*8); + memnodemapsize = (memtop >> i)+1; + return i; +} + +int __init compute_hash_shift(struct bootnode *nodes, int numnodes) +{ + int shift; + shift = extract_lsb_from_nodes(nodes, numnodes); + if (allocate_cachealigned_memnodemap()) + return -1; printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", shift); @@ -216,31 +272,113 @@ void __init numa_init_array(void) } #ifdef CONFIG_NUMA_EMU +/* Numa emulation */ int numa_fake __initdata = 0; -/* Numa emulation */ +/* + * This function is used to find out if the start and end correspond to + * different zones. + */ +int zone_cross_over(unsigned long start, unsigned long end) +{ + if ((start < (MAX_DMA32_PFN << PAGE_SHIFT)) && + (end >= (MAX_DMA32_PFN << PAGE_SHIFT))) + return 1; + return 0; +} + static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn) { - int i; + int i, big; struct bootnode nodes[MAX_NUMNODES]; - unsigned long sz = ((end_pfn - start_pfn)<<PAGE_SHIFT) / numa_fake; + unsigned long sz, old_sz; + unsigned long hole_size; + unsigned long start, end; + unsigned long max_addr = (end_pfn << PAGE_SHIFT); + + start = (start_pfn << PAGE_SHIFT); + hole_size = e820_hole_size(start, max_addr); + sz = (max_addr - start - hole_size) / numa_fake; /* Kludge needed for the hash function */ - if (hweight64(sz) > 1) { - unsigned long x = 1; - while ((x << 1) < sz) - x <<= 1; - if (x < sz/2) - printk(KERN_ERR "Numa emulation unbalanced. Complain to maintainer\n"); - sz = x; - } + old_sz = sz; + /* + * Round down to the nearest FAKE_NODE_MIN_SIZE. + */ + sz &= FAKE_NODE_MIN_HASH_MASK; + + /* + * We ensure that each node is at least 64MB big. Smaller than this + * size can cause VM hiccups. + */ + if (sz == 0) { + printk(KERN_INFO "Not enough memory for %d nodes. Reducing " + "the number of nodes\n", numa_fake); + numa_fake = (max_addr - start - hole_size) / FAKE_NODE_MIN_SIZE; + printk(KERN_INFO "Number of fake nodes will be = %d\n", + numa_fake); + sz = FAKE_NODE_MIN_SIZE; + } + /* + * Find out how many nodes can get an extra NODE_MIN_SIZE granule. + * This logic ensures the extra memory gets distributed among as many + * nodes as possible (as compared to one single node getting all that + * extra memory. + */ + big = ((old_sz - sz) * numa_fake) / FAKE_NODE_MIN_SIZE; + printk(KERN_INFO "Fake node Size: %luMB hole_size: %luMB big nodes: " + "%d\n", + (sz >> 20), (hole_size >> 20), big); memset(&nodes,0,sizeof(nodes)); + end = start; for (i = 0; i < numa_fake; i++) { - nodes[i].start = (start_pfn<<PAGE_SHIFT) + i*sz; + /* + * In case we are not able to allocate enough memory for all + * the nodes, we reduce the number of fake nodes. + */ + if (end >= max_addr) { + numa_fake = i - 1; + break; + } + start = nodes[i].start = end; + /* + * Final node can have all the remaining memory. + */ if (i == numa_fake-1) - sz = (end_pfn<<PAGE_SHIFT) - nodes[i].start; - nodes[i].end = nodes[i].start + sz; + sz = max_addr - start; + end = nodes[i].start + sz; + /* + * Fir "big" number of nodes get extra granule. + */ + if (i < big) + end += FAKE_NODE_MIN_SIZE; + /* + * Iterate over the range to ensure that this node gets at + * least sz amount of RAM (excluding holes) + */ + while ((end - start - e820_hole_size(start, end)) < sz) { + end += FAKE_NODE_MIN_SIZE; + if (end >= max_addr) + break; + } + /* + * Look at the next node to make sure there is some real memory + * to map. Bad things happen when the only memory present + * in a zone on a fake node is IO hole. + */ + while (e820_hole_size(end, end + FAKE_NODE_MIN_SIZE) > 0) { + if (zone_cross_over(start, end + sz)) { + end = (MAX_DMA32_PFN << PAGE_SHIFT); + break; + } + if (end >= max_addr) + break; + end += FAKE_NODE_MIN_SIZE; + } + if (end > max_addr) + end = max_addr; + nodes[i].end = end; printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", i, nodes[i].start, nodes[i].end, @@ -290,6 +428,7 @@ void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn) end_pfn << PAGE_SHIFT); /* setup dummy node covering all memory */ memnode_shift = 63; + memnodemap = memnode.embedded_map; memnodemap[0] = 0; nodes_clear(node_online_map); node_set_online(0); @@ -321,20 +460,6 @@ unsigned long __init numa_free_all_bootmem(void) return pages; } -#ifdef CONFIG_SPARSEMEM -static void __init arch_sparse_init(void) -{ - int i; - - for_each_online_node(i) - memory_present(i, node_start_pfn(i), node_end_pfn(i)); - - sparse_init(); -} -#else -#define arch_sparse_init() do {} while (0) -#endif - void __init paging_init(void) { int i; @@ -344,7 +469,8 @@ void __init paging_init(void) max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; max_zone_pfns[ZONE_NORMAL] = end_pfn; - arch_sparse_init(); + sparse_memory_present_with_active_regions(MAX_NUMNODES); + sparse_init(); for_each_online_node(i) { setup_node_zones(i); |