diff options
Diffstat (limited to 'arch/x86')
-rw-r--r-- | arch/x86/events/core.c | 2 | ||||
-rw-r--r-- | arch/x86/include/asm/mmu.h | 2 | ||||
-rw-r--r-- | arch/x86/include/asm/pgtable-3level.h | 8 | ||||
-rw-r--r-- | arch/x86/kernel/cpu/resctrl/pseudo_lock.c | 6 | ||||
-rw-r--r-- | arch/x86/kernel/cpu/resctrl/rdtgroup.c | 6 | ||||
-rw-r--r-- | arch/x86/kernel/ldt.c | 2 | ||||
-rw-r--r-- | arch/x86/mm/fault.c | 12 |
7 files changed, 19 insertions, 19 deletions
diff --git a/arch/x86/events/core.c b/arch/x86/events/core.c index 081cdfdf11f4..4103665c6e03 100644 --- a/arch/x86/events/core.c +++ b/arch/x86/events/core.c @@ -2178,7 +2178,7 @@ static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) * userspace with CR4.PCE clear while another task is still * doing on_each_cpu_mask() to propagate CR4.PCE. * - * For now, this can't happen because all callers hold mmap_sem + * For now, this can't happen because all callers hold mmap_lock * for write. If this changes, we'll need a different solution. */ mmap_assert_write_locked(mm); diff --git a/arch/x86/include/asm/mmu.h b/arch/x86/include/asm/mmu.h index bdeae9291e5c..0a301ad0b02f 100644 --- a/arch/x86/include/asm/mmu.h +++ b/arch/x86/include/asm/mmu.h @@ -45,7 +45,7 @@ typedef struct { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS /* * One bit per protection key says whether userspace can - * use it or not. protected by mmap_sem. + * use it or not. protected by mmap_lock. */ u16 pkey_allocation_map; s16 execute_only_pkey; diff --git a/arch/x86/include/asm/pgtable-3level.h b/arch/x86/include/asm/pgtable-3level.h index 5afb5e0fe903..e896ebef8c24 100644 --- a/arch/x86/include/asm/pgtable-3level.h +++ b/arch/x86/include/asm/pgtable-3level.h @@ -39,23 +39,23 @@ static inline void native_set_pte(pte_t *ptep, pte_t pte) * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with * a "*pmdp" dereference done by GCC. Problem is, in certain places * where pte_offset_map_lock() is called, concurrent page faults are - * allowed, if the mmap_sem is hold for reading. An example is mincore + * allowed, if the mmap_lock is hold for reading. An example is mincore * vs page faults vs MADV_DONTNEED. On the page fault side * pmd_populate() rightfully does a set_64bit(), but if we're reading the * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen * because GCC will not read the 64-bit value of the pmd atomically. * * To fix this all places running pte_offset_map_lock() while holding the - * mmap_sem in read mode, shall read the pmdp pointer using this + * mmap_lock in read mode, shall read the pmdp pointer using this * function to know if the pmd is null or not, and in turn to know if * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd * operations. * - * Without THP if the mmap_sem is held for reading, the pmd can only + * Without THP if the mmap_lock is held for reading, the pmd can only * transition from null to not null while pmd_read_atomic() runs. So * we can always return atomic pmd values with this function. * - * With THP if the mmap_sem is held for reading, the pmd can become + * With THP if the mmap_lock is held for reading, the pmd can become * trans_huge or none or point to a pte (and in turn become "stable") * at any time under pmd_read_atomic(). We could read it truly * atomically here with an atomic64_read() for the THP enabled case (and diff --git a/arch/x86/kernel/cpu/resctrl/pseudo_lock.c b/arch/x86/kernel/cpu/resctrl/pseudo_lock.c index 4bd28b388a1a..0daf2f1cf7a8 100644 --- a/arch/x86/kernel/cpu/resctrl/pseudo_lock.c +++ b/arch/x86/kernel/cpu/resctrl/pseudo_lock.c @@ -1326,9 +1326,9 @@ int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) * pseudo-locked region will still be here on return. * * The mutex has to be released temporarily to avoid a potential - * deadlock with the mm->mmap_sem semaphore which is obtained in - * the device_create() and debugfs_create_dir() callpath below - * as well as before the mmap() callback is called. + * deadlock with the mm->mmap_lock which is obtained in the + * device_create() and debugfs_create_dir() callpath below as well as + * before the mmap() callback is called. */ mutex_unlock(&rdtgroup_mutex); diff --git a/arch/x86/kernel/cpu/resctrl/rdtgroup.c b/arch/x86/kernel/cpu/resctrl/rdtgroup.c index d7cb5ab0d1f0..23b4b61319d3 100644 --- a/arch/x86/kernel/cpu/resctrl/rdtgroup.c +++ b/arch/x86/kernel/cpu/resctrl/rdtgroup.c @@ -3199,10 +3199,10 @@ int __init rdtgroup_init(void) * during the debugfs directory creation also &sb->s_type->i_mutex_key * (the lockdep class of inode->i_rwsem). Other filesystem * interactions (eg. SyS_getdents) have the lock ordering: - * &sb->s_type->i_mutex_key --> &mm->mmap_sem - * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex + * &sb->s_type->i_mutex_key --> &mm->mmap_lock + * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex * is taken, thus creating dependency: - * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause + * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause * issues considering the other two lock dependencies. * By creating the debugfs directory here we avoid a dependency * that may cause deadlock (even though file operations cannot diff --git a/arch/x86/kernel/ldt.c b/arch/x86/kernel/ldt.c index 84c3ba32f211..8748321c4486 100644 --- a/arch/x86/kernel/ldt.c +++ b/arch/x86/kernel/ldt.c @@ -8,7 +8,7 @@ * * Lock order: * contex.ldt_usr_sem - * mmap_sem + * mmap_lock * context.lock */ diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c index c23bcd027ae1..0b03ae8c39cd 100644 --- a/arch/x86/mm/fault.c +++ b/arch/x86/mm/fault.c @@ -865,7 +865,7 @@ bad_area_access_error(struct pt_regs *regs, unsigned long error_code, * 2. T1 : set PKRU to deny access to pkey=4, touches page * 3. T1 : faults... * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); - * 5. T1 : enters fault handler, takes mmap_sem, etc... + * 5. T1 : enters fault handler, takes mmap_lock, etc... * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really * faulted on a pte with its pkey=4. */ @@ -1231,12 +1231,12 @@ void do_user_addr_fault(struct pt_regs *regs, * Kernel-mode access to the user address space should only occur * on well-defined single instructions listed in the exception * tables. But, an erroneous kernel fault occurring outside one of - * those areas which also holds mmap_sem might deadlock attempting + * those areas which also holds mmap_lock might deadlock attempting * to validate the fault against the address space. * * Only do the expensive exception table search when we might be at * risk of a deadlock. This happens if we - * 1. Failed to acquire mmap_sem, and + * 1. Failed to acquire mmap_lock, and * 2. The access did not originate in userspace. */ if (unlikely(!mmap_read_trylock(mm))) { @@ -1289,9 +1289,9 @@ good_area: * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if - * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. + * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. * - * Note that handle_userfault() may also release and reacquire mmap_sem + * Note that handle_userfault() may also release and reacquire mmap_lock * (and not return with VM_FAULT_RETRY), when returning to userland to * repeat the page fault later with a VM_FAULT_NOPAGE retval * (potentially after handling any pending signal during the return to @@ -1310,7 +1310,7 @@ good_area: } /* - * If we need to retry the mmap_sem has already been released, + * If we need to retry the mmap_lock has already been released, * and if there is a fatal signal pending there is no guarantee * that we made any progress. Handle this case first. */ |