diff options
Diffstat (limited to 'arch/x86')
240 files changed, 24195 insertions, 19774 deletions
diff --git a/arch/x86/Kbuild b/arch/x86/Kbuild index 0038a2d10a7a..c625f57472f7 100644 --- a/arch/x86/Kbuild +++ b/arch/x86/Kbuild @@ -7,6 +7,8 @@ obj-$(CONFIG_KVM) += kvm/ # Xen paravirtualization support obj-$(CONFIG_XEN) += xen/ +obj-$(CONFIG_PVH) += platform/pvh/ + # Hyper-V paravirtualization support obj-$(subst m,y,$(CONFIG_HYPERV)) += hyperv/ diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig index ba7e3464ee92..57552f2b37eb 100644 --- a/arch/x86/Kconfig +++ b/arch/x86/Kconfig @@ -66,7 +66,6 @@ config X86 select ARCH_HAS_UACCESS_FLUSHCACHE if X86_64 select ARCH_HAS_UACCESS_MCSAFE if X86_64 && X86_MCE select ARCH_HAS_SET_MEMORY - select ARCH_HAS_SG_CHAIN select ARCH_HAS_STRICT_KERNEL_RWX select ARCH_HAS_STRICT_MODULE_RWX select ARCH_HAS_SYNC_CORE_BEFORE_USERMODE @@ -90,7 +89,6 @@ config X86 select CLOCKSOURCE_VALIDATE_LAST_CYCLE select CLOCKSOURCE_WATCHDOG select DCACHE_WORD_ACCESS - select DMA_DIRECT_OPS select EDAC_ATOMIC_SCRUB select EDAC_SUPPORT select GENERIC_CLOCKEVENTS @@ -444,19 +442,23 @@ config RETPOLINE branches. Requires a compiler with -mindirect-branch=thunk-extern support for full protection. The kernel may run slower. - Without compiler support, at least indirect branches in assembler - code are eliminated. Since this includes the syscall entry path, - it is not entirely pointless. - -config INTEL_RDT - bool "Intel Resource Director Technology support" - depends on X86 && CPU_SUP_INTEL +config RESCTRL + bool "Resource Control support" + depends on X86 && (CPU_SUP_INTEL || CPU_SUP_AMD) select KERNFS help - Select to enable resource allocation and monitoring which are - sub-features of Intel Resource Director Technology(RDT). More - information about RDT can be found in the Intel x86 - Architecture Software Developer Manual. + Enable Resource Control support. + + Provide support for the allocation and monitoring of system resources + usage by the CPU. + + Intel calls this Intel Resource Director Technology + (Intel(R) RDT). More information about RDT can be found in the + Intel x86 Architecture Software Developer Manual. + + AMD calls this AMD Platform Quality of Service (AMD QoS). + More information about AMD QoS can be found in the AMD64 Technology + Platform Quality of Service Extensions manual. Say N if unsure. @@ -525,7 +527,6 @@ config X86_VSMP bool "ScaleMP vSMP" select HYPERVISOR_GUEST select PARAVIRT - select PARAVIRT_XXL depends on X86_64 && PCI depends on X86_EXTENDED_PLATFORM depends on SMP @@ -801,6 +802,12 @@ config KVM_GUEST underlying device model, the host provides the guest with timing infrastructure such as time of day, and system time +config PVH + bool "Support for running PVH guests" + ---help--- + This option enables the PVH entry point for guest virtual machines + as specified in the x86/HVM direct boot ABI. + config KVM_DEBUG_FS bool "Enable debug information for KVM Guests in debugfs" depends on KVM_GUEST && DEBUG_FS @@ -1005,13 +1012,7 @@ config NR_CPUS to the kernel image. config SCHED_SMT - bool "SMT (Hyperthreading) scheduler support" - depends on SMP - ---help--- - SMT scheduler support improves the CPU scheduler's decision making - when dealing with Intel Pentium 4 chips with HyperThreading at a - cost of slightly increased overhead in some places. If unsure say - N here. + def_bool y if SMP config SCHED_MC def_bool y diff --git a/arch/x86/Makefile b/arch/x86/Makefile index 5b562e464009..16c3145c0a5f 100644 --- a/arch/x86/Makefile +++ b/arch/x86/Makefile @@ -130,10 +130,6 @@ else KBUILD_CFLAGS += -mno-red-zone KBUILD_CFLAGS += -mcmodel=kernel - - # -funit-at-a-time shrinks the kernel .text considerably - # unfortunately it makes reading oopses harder. - KBUILD_CFLAGS += $(call cc-option,-funit-at-a-time) endif ifdef CONFIG_X86_X32 @@ -213,8 +209,6 @@ ifdef CONFIG_X86_64 KBUILD_LDFLAGS += $(call ld-option, -z max-page-size=0x200000) endif -# Speed up the build -KBUILD_CFLAGS += -pipe # Workaround for a gcc prelease that unfortunately was shipped in a suse release KBUILD_CFLAGS += -Wno-sign-compare # @@ -222,9 +216,7 @@ KBUILD_CFLAGS += -fno-asynchronous-unwind-tables # Avoid indirect branches in kernel to deal with Spectre ifdef CONFIG_RETPOLINE -ifneq ($(RETPOLINE_CFLAGS),) - KBUILD_CFLAGS += $(RETPOLINE_CFLAGS) -DRETPOLINE -endif + KBUILD_CFLAGS += $(RETPOLINE_CFLAGS) endif archscripts: scripts_basic @@ -236,13 +228,6 @@ archscripts: scripts_basic archheaders: $(Q)$(MAKE) $(build)=arch/x86/entry/syscalls all -archmacros: - $(Q)$(MAKE) $(build)=arch/x86/kernel arch/x86/kernel/macros.s - -ASM_MACRO_FLAGS = -Wa,arch/x86/kernel/macros.s -Wa,- -export ASM_MACRO_FLAGS -KBUILD_CFLAGS += $(ASM_MACRO_FLAGS) - ### # Kernel objects @@ -308,6 +293,13 @@ ifndef CC_HAVE_ASM_GOTO @echo Compiler lacks asm-goto support. @exit 1 endif +ifdef CONFIG_RETPOLINE +ifeq ($(RETPOLINE_CFLAGS),) + @echo "You are building kernel with non-retpoline compiler." >&2 + @echo "Please update your compiler." >&2 + @false +endif +endif archclean: $(Q)rm -rf $(objtree)/arch/i386 diff --git a/arch/x86/Makefile.um b/arch/x86/Makefile.um index 91085a08de6c..1db7913795f5 100644 --- a/arch/x86/Makefile.um +++ b/arch/x86/Makefile.um @@ -26,13 +26,6 @@ cflags-y += $(call cc-option,-mpreferred-stack-boundary=2) # an unresolved reference. cflags-y += -ffreestanding -# Disable unit-at-a-time mode on pre-gcc-4.0 compilers, it makes gcc use -# a lot more stack due to the lack of sharing of stacklots. Also, gcc -# 4.3.0 needs -funit-at-a-time for extern inline functions. -KBUILD_CFLAGS += $(shell if [ $(cc-version) -lt 0400 ] ; then \ - echo $(call cc-option,-fno-unit-at-a-time); \ - else echo $(call cc-option,-funit-at-a-time); fi ;) - KBUILD_CFLAGS += $(cflags-y) else @@ -54,6 +47,4 @@ ELF_FORMAT := elf64-x86-64 LINK-$(CONFIG_LD_SCRIPT_DYN) += -Wl,-rpath,/lib64 LINK-y += -m64 -# Do unit-at-a-time unconditionally on x86_64, following the host -KBUILD_CFLAGS += $(call cc-option,-funit-at-a-time) endif diff --git a/arch/x86/boot/boot.h b/arch/x86/boot/boot.h index ef5a9cc66fb8..32a09eb5c101 100644 --- a/arch/x86/boot/boot.h +++ b/arch/x86/boot/boot.h @@ -309,7 +309,7 @@ void query_edd(void); void __attribute__((noreturn)) die(void); /* memory.c */ -int detect_memory(void); +void detect_memory(void); /* pm.c */ void __attribute__((noreturn)) go_to_protected_mode(void); diff --git a/arch/x86/boot/compressed/eboot.c b/arch/x86/boot/compressed/eboot.c index 8b4c5e001157..544ac4fafd11 100644 --- a/arch/x86/boot/compressed/eboot.c +++ b/arch/x86/boot/compressed/eboot.c @@ -1,3 +1,4 @@ + /* ----------------------------------------------------------------------- * * Copyright 2011 Intel Corporation; author Matt Fleming @@ -634,37 +635,54 @@ static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext, return status; } +static efi_status_t allocate_e820(struct boot_params *params, + struct setup_data **e820ext, + u32 *e820ext_size) +{ + unsigned long map_size, desc_size, buff_size; + struct efi_boot_memmap boot_map; + efi_memory_desc_t *map; + efi_status_t status; + __u32 nr_desc; + + boot_map.map = ↦ + boot_map.map_size = &map_size; + boot_map.desc_size = &desc_size; + boot_map.desc_ver = NULL; + boot_map.key_ptr = NULL; + boot_map.buff_size = &buff_size; + + status = efi_get_memory_map(sys_table, &boot_map); + if (status != EFI_SUCCESS) + return status; + + nr_desc = buff_size / desc_size; + + if (nr_desc > ARRAY_SIZE(params->e820_table)) { + u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table); + + status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size); + if (status != EFI_SUCCESS) + return status; + } + + return EFI_SUCCESS; +} + struct exit_boot_struct { struct boot_params *boot_params; struct efi_info *efi; - struct setup_data *e820ext; - __u32 e820ext_size; }; static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg, struct efi_boot_memmap *map, void *priv) { - static bool first = true; const char *signature; __u32 nr_desc; efi_status_t status; struct exit_boot_struct *p = priv; - if (first) { - nr_desc = *map->buff_size / *map->desc_size; - if (nr_desc > ARRAY_SIZE(p->boot_params->e820_table)) { - u32 nr_e820ext = nr_desc - - ARRAY_SIZE(p->boot_params->e820_table); - - status = alloc_e820ext(nr_e820ext, &p->e820ext, - &p->e820ext_size); - if (status != EFI_SUCCESS) - return status; - } - first = false; - } - signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE : EFI32_LOADER_SIGNATURE; memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32)); @@ -687,8 +705,8 @@ static efi_status_t exit_boot(struct boot_params *boot_params, void *handle) { unsigned long map_sz, key, desc_size, buff_size; efi_memory_desc_t *mem_map; - struct setup_data *e820ext; - __u32 e820ext_size; + struct setup_data *e820ext = NULL; + __u32 e820ext_size = 0; efi_status_t status; __u32 desc_version; struct efi_boot_memmap map; @@ -702,8 +720,10 @@ static efi_status_t exit_boot(struct boot_params *boot_params, void *handle) map.buff_size = &buff_size; priv.boot_params = boot_params; priv.efi = &boot_params->efi_info; - priv.e820ext = NULL; - priv.e820ext_size = 0; + + status = allocate_e820(boot_params, &e820ext, &e820ext_size); + if (status != EFI_SUCCESS) + return status; /* Might as well exit boot services now */ status = efi_exit_boot_services(sys_table, handle, &map, &priv, @@ -711,9 +731,6 @@ static efi_status_t exit_boot(struct boot_params *boot_params, void *handle) if (status != EFI_SUCCESS) return status; - e820ext = priv.e820ext; - e820ext_size = priv.e820ext_size; - /* Historic? */ boot_params->alt_mem_k = 32 * 1024; diff --git a/arch/x86/boot/header.S b/arch/x86/boot/header.S index 4c881c850125..850b8762e889 100644 --- a/arch/x86/boot/header.S +++ b/arch/x86/boot/header.S @@ -300,7 +300,7 @@ _start: # Part 2 of the header, from the old setup.S .ascii "HdrS" # header signature - .word 0x020e # header version number (>= 0x0105) + .word 0x020d # header version number (>= 0x0105) # or else old loadlin-1.5 will fail) .globl realmode_swtch realmode_swtch: .word 0, 0 # default_switch, SETUPSEG @@ -558,10 +558,6 @@ pref_address: .quad LOAD_PHYSICAL_ADDR # preferred load addr init_size: .long INIT_SIZE # kernel initialization size handover_offset: .long 0 # Filled in by build.c -acpi_rsdp_addr: .quad 0 # 64-bit physical pointer to the - # ACPI RSDP table, added with - # version 2.14 - # End of setup header ##################################################### .section ".entrytext", "ax" diff --git a/arch/x86/boot/memory.c b/arch/x86/boot/memory.c index 7df2b28207be..f06c147b5140 100644 --- a/arch/x86/boot/memory.c +++ b/arch/x86/boot/memory.c @@ -17,7 +17,7 @@ #define SMAP 0x534d4150 /* ASCII "SMAP" */ -static int detect_memory_e820(void) +static void detect_memory_e820(void) { int count = 0; struct biosregs ireg, oreg; @@ -68,10 +68,10 @@ static int detect_memory_e820(void) count++; } while (ireg.ebx && count < ARRAY_SIZE(boot_params.e820_table)); - return boot_params.e820_entries = count; + boot_params.e820_entries = count; } -static int detect_memory_e801(void) +static void detect_memory_e801(void) { struct biosregs ireg, oreg; @@ -80,7 +80,7 @@ static int detect_memory_e801(void) intcall(0x15, &ireg, &oreg); if (oreg.eflags & X86_EFLAGS_CF) - return -1; + return; /* Do we really need to do this? */ if (oreg.cx || oreg.dx) { @@ -89,7 +89,7 @@ static int detect_memory_e801(void) } if (oreg.ax > 15*1024) { - return -1; /* Bogus! */ + return; /* Bogus! */ } else if (oreg.ax == 15*1024) { boot_params.alt_mem_k = (oreg.bx << 6) + oreg.ax; } else { @@ -102,11 +102,9 @@ static int detect_memory_e801(void) */ boot_params.alt_mem_k = oreg.ax; } - - return 0; } -static int detect_memory_88(void) +static void detect_memory_88(void) { struct biosregs ireg, oreg; @@ -115,22 +113,13 @@ static int detect_memory_88(void) intcall(0x15, &ireg, &oreg); boot_params.screen_info.ext_mem_k = oreg.ax; - - return -(oreg.eflags & X86_EFLAGS_CF); /* 0 or -1 */ } -int detect_memory(void) +void detect_memory(void) { - int err = -1; - - if (detect_memory_e820() > 0) - err = 0; - - if (!detect_memory_e801()) - err = 0; + detect_memory_e820(); - if (!detect_memory_88()) - err = 0; + detect_memory_e801(); - return err; + detect_memory_88(); } diff --git a/arch/x86/boot/tools/build.c b/arch/x86/boot/tools/build.c index bf0e82400358..a93d44e58f9c 100644 --- a/arch/x86/boot/tools/build.c +++ b/arch/x86/boot/tools/build.c @@ -132,6 +132,7 @@ static void die(const char * str, ...) va_list args; va_start(args, str); vfprintf(stderr, str, args); + va_end(args); fputc('\n', stderr); exit(1); } diff --git a/arch/x86/crypto/Makefile b/arch/x86/crypto/Makefile index a4b0007a54e1..45734e1cf967 100644 --- a/arch/x86/crypto/Makefile +++ b/arch/x86/crypto/Makefile @@ -8,6 +8,7 @@ OBJECT_FILES_NON_STANDARD := y avx_supported := $(call as-instr,vpxor %xmm0$(comma)%xmm0$(comma)%xmm0,yes,no) avx2_supported := $(call as-instr,vpgatherdd %ymm0$(comma)(%eax$(comma)%ymm1\ $(comma)4)$(comma)%ymm2,yes,no) +avx512_supported :=$(call as-instr,vpmovm2b %k1$(comma)%zmm5,yes,no) sha1_ni_supported :=$(call as-instr,sha1msg1 %xmm0$(comma)%xmm1,yes,no) sha256_ni_supported :=$(call as-instr,sha256msg1 %xmm0$(comma)%xmm1,yes,no) @@ -23,7 +24,7 @@ obj-$(CONFIG_CRYPTO_CAMELLIA_X86_64) += camellia-x86_64.o obj-$(CONFIG_CRYPTO_BLOWFISH_X86_64) += blowfish-x86_64.o obj-$(CONFIG_CRYPTO_TWOFISH_X86_64) += twofish-x86_64.o obj-$(CONFIG_CRYPTO_TWOFISH_X86_64_3WAY) += twofish-x86_64-3way.o -obj-$(CONFIG_CRYPTO_CHACHA20_X86_64) += chacha20-x86_64.o +obj-$(CONFIG_CRYPTO_CHACHA20_X86_64) += chacha-x86_64.o obj-$(CONFIG_CRYPTO_SERPENT_SSE2_X86_64) += serpent-sse2-x86_64.o obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o obj-$(CONFIG_CRYPTO_GHASH_CLMUL_NI_INTEL) += ghash-clmulni-intel.o @@ -46,6 +47,9 @@ obj-$(CONFIG_CRYPTO_MORUS1280_GLUE) += morus1280_glue.o obj-$(CONFIG_CRYPTO_MORUS640_SSE2) += morus640-sse2.o obj-$(CONFIG_CRYPTO_MORUS1280_SSE2) += morus1280-sse2.o +obj-$(CONFIG_CRYPTO_NHPOLY1305_SSE2) += nhpoly1305-sse2.o +obj-$(CONFIG_CRYPTO_NHPOLY1305_AVX2) += nhpoly1305-avx2.o + # These modules require assembler to support AVX. ifeq ($(avx_supported),yes) obj-$(CONFIG_CRYPTO_CAMELLIA_AESNI_AVX_X86_64) += \ @@ -74,7 +78,7 @@ camellia-x86_64-y := camellia-x86_64-asm_64.o camellia_glue.o blowfish-x86_64-y := blowfish-x86_64-asm_64.o blowfish_glue.o twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o twofish-x86_64-3way-y := twofish-x86_64-asm_64-3way.o twofish_glue_3way.o -chacha20-x86_64-y := chacha20-ssse3-x86_64.o chacha20_glue.o +chacha-x86_64-y := chacha-ssse3-x86_64.o chacha_glue.o serpent-sse2-x86_64-y := serpent-sse2-x86_64-asm_64.o serpent_sse2_glue.o aegis128-aesni-y := aegis128-aesni-asm.o aegis128-aesni-glue.o @@ -84,6 +88,8 @@ aegis256-aesni-y := aegis256-aesni-asm.o aegis256-aesni-glue.o morus640-sse2-y := morus640-sse2-asm.o morus640-sse2-glue.o morus1280-sse2-y := morus1280-sse2-asm.o morus1280-sse2-glue.o +nhpoly1305-sse2-y := nh-sse2-x86_64.o nhpoly1305-sse2-glue.o + ifeq ($(avx_supported),yes) camellia-aesni-avx-x86_64-y := camellia-aesni-avx-asm_64.o \ camellia_aesni_avx_glue.o @@ -97,10 +103,16 @@ endif ifeq ($(avx2_supported),yes) camellia-aesni-avx2-y := camellia-aesni-avx2-asm_64.o camellia_aesni_avx2_glue.o - chacha20-x86_64-y += chacha20-avx2-x86_64.o + chacha-x86_64-y += chacha-avx2-x86_64.o serpent-avx2-y := serpent-avx2-asm_64.o serpent_avx2_glue.o morus1280-avx2-y := morus1280-avx2-asm.o morus1280-avx2-glue.o + + nhpoly1305-avx2-y := nh-avx2-x86_64.o nhpoly1305-avx2-glue.o +endif + +ifeq ($(avx512_supported),yes) + chacha-x86_64-y += chacha-avx512vl-x86_64.o endif aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o diff --git a/arch/x86/crypto/aesni-intel_avx-x86_64.S b/arch/x86/crypto/aesni-intel_avx-x86_64.S index 1985ea0b551b..91c039ab5699 100644 --- a/arch/x86/crypto/aesni-intel_avx-x86_64.S +++ b/arch/x86/crypto/aesni-intel_avx-x86_64.S @@ -182,43 +182,30 @@ aad_shift_arr: .text -##define the fields of the gcm aes context -#{ -# u8 expanded_keys[16*11] store expanded keys -# u8 shifted_hkey_1[16] store HashKey <<1 mod poly here -# u8 shifted_hkey_2[16] store HashKey^2 <<1 mod poly here -# u8 shifted_hkey_3[16] store HashKey^3 <<1 mod poly here -# u8 shifted_hkey_4[16] store HashKey^4 <<1 mod poly here -# u8 shifted_hkey_5[16] store HashKey^5 <<1 mod poly here -# u8 shifted_hkey_6[16] store HashKey^6 <<1 mod poly here -# u8 shifted_hkey_7[16] store HashKey^7 <<1 mod poly here -# u8 shifted_hkey_8[16] store HashKey^8 <<1 mod poly here -# u8 shifted_hkey_1_k[16] store XOR HashKey <<1 mod poly here (for Karatsuba purposes) -# u8 shifted_hkey_2_k[16] store XOR HashKey^2 <<1 mod poly here (for Karatsuba purposes) -# u8 shifted_hkey_3_k[16] store XOR HashKey^3 <<1 mod poly here (for Karatsuba purposes) -# u8 shifted_hkey_4_k[16] store XOR HashKey^4 <<1 mod poly here (for Karatsuba purposes) -# u8 shifted_hkey_5_k[16] store XOR HashKey^5 <<1 mod poly here (for Karatsuba purposes) -# u8 shifted_hkey_6_k[16] store XOR HashKey^6 <<1 mod poly here (for Karatsuba purposes) -# u8 shifted_hkey_7_k[16] store XOR HashKey^7 <<1 mod poly here (for Karatsuba purposes) -# u8 shifted_hkey_8_k[16] store XOR HashKey^8 <<1 mod poly here (for Karatsuba purposes) -#} gcm_ctx# - -HashKey = 16*11 # store HashKey <<1 mod poly here -HashKey_2 = 16*12 # store HashKey^2 <<1 mod poly here -HashKey_3 = 16*13 # store HashKey^3 <<1 mod poly here -HashKey_4 = 16*14 # store HashKey^4 <<1 mod poly here -HashKey_5 = 16*15 # store HashKey^5 <<1 mod poly here -HashKey_6 = 16*16 # store HashKey^6 <<1 mod poly here -HashKey_7 = 16*17 # store HashKey^7 <<1 mod poly here -HashKey_8 = 16*18 # store HashKey^8 <<1 mod poly here -HashKey_k = 16*19 # store XOR of HashKey <<1 mod poly here (for Karatsuba purposes) -HashKey_2_k = 16*20 # store XOR of HashKey^2 <<1 mod poly here (for Karatsuba purposes) -HashKey_3_k = 16*21 # store XOR of HashKey^3 <<1 mod poly here (for Karatsuba purposes) -HashKey_4_k = 16*22 # store XOR of HashKey^4 <<1 mod poly here (for Karatsuba purposes) -HashKey_5_k = 16*23 # store XOR of HashKey^5 <<1 mod poly here (for Karatsuba purposes) -HashKey_6_k = 16*24 # store XOR of HashKey^6 <<1 mod poly here (for Karatsuba purposes) -HashKey_7_k = 16*25 # store XOR of HashKey^7 <<1 mod poly here (for Karatsuba purposes) -HashKey_8_k = 16*26 # store XOR of HashKey^8 <<1 mod poly here (for Karatsuba purposes) +#define AadHash 16*0 +#define AadLen 16*1 +#define InLen (16*1)+8 +#define PBlockEncKey 16*2 +#define OrigIV 16*3 +#define CurCount 16*4 +#define PBlockLen 16*5 + +HashKey = 16*6 # store HashKey <<1 mod poly here +HashKey_2 = 16*7 # store HashKey^2 <<1 mod poly here +HashKey_3 = 16*8 # store HashKey^3 <<1 mod poly here +HashKey_4 = 16*9 # store HashKey^4 <<1 mod poly here +HashKey_5 = 16*10 # store HashKey^5 <<1 mod poly here +HashKey_6 = 16*11 # store HashKey^6 <<1 mod poly here +HashKey_7 = 16*12 # store HashKey^7 <<1 mod poly here +HashKey_8 = 16*13 # store HashKey^8 <<1 mod poly here +HashKey_k = 16*14 # store XOR of HashKey <<1 mod poly here (for Karatsuba purposes) +HashKey_2_k = 16*15 # store XOR of HashKey^2 <<1 mod poly here (for Karatsuba purposes) +HashKey_3_k = 16*16 # store XOR of HashKey^3 <<1 mod poly here (for Karatsuba purposes) +HashKey_4_k = 16*17 # store XOR of HashKey^4 <<1 mod poly here (for Karatsuba purposes) +HashKey_5_k = 16*18 # store XOR of HashKey^5 <<1 mod poly here (for Karatsuba purposes) +HashKey_6_k = 16*19 # store XOR of HashKey^6 <<1 mod poly here (for Karatsuba purposes) +HashKey_7_k = 16*20 # store XOR of HashKey^7 <<1 mod poly here (for Karatsuba purposes) +HashKey_8_k = 16*21 # store XOR of HashKey^8 <<1 mod poly here (for Karatsuba purposes) #define arg1 %rdi #define arg2 %rsi @@ -229,6 +216,8 @@ HashKey_8_k = 16*26 # store XOR of HashKey^8 <<1 mod poly here (for Karatsu #define arg7 STACK_OFFSET+8*1(%r14) #define arg8 STACK_OFFSET+8*2(%r14) #define arg9 STACK_OFFSET+8*3(%r14) +#define arg10 STACK_OFFSET+8*4(%r14) +#define keysize 2*15*16(arg1) i = 0 j = 0 @@ -267,19 +256,636 @@ VARIABLE_OFFSET = 16*8 # Utility Macros ################################ +.macro FUNC_SAVE + #the number of pushes must equal STACK_OFFSET + push %r12 + push %r13 + push %r14 + push %r15 + + mov %rsp, %r14 + + + + sub $VARIABLE_OFFSET, %rsp + and $~63, %rsp # align rsp to 64 bytes +.endm + +.macro FUNC_RESTORE + mov %r14, %rsp + + pop %r15 + pop %r14 + pop %r13 + pop %r12 +.endm + # Encryption of a single block -.macro ENCRYPT_SINGLE_BLOCK XMM0 +.macro ENCRYPT_SINGLE_BLOCK REP XMM0 vpxor (arg1), \XMM0, \XMM0 - i = 1 - setreg -.rep 9 + i = 1 + setreg +.rep \REP vaesenc 16*i(arg1), \XMM0, \XMM0 - i = (i+1) - setreg + i = (i+1) + setreg .endr - vaesenclast 16*10(arg1), \XMM0, \XMM0 + vaesenclast 16*i(arg1), \XMM0, \XMM0 .endm +# combined for GCM encrypt and decrypt functions +# clobbering all xmm registers +# clobbering r10, r11, r12, r13, r14, r15 +.macro GCM_ENC_DEC INITIAL_BLOCKS GHASH_8_ENCRYPT_8_PARALLEL GHASH_LAST_8 GHASH_MUL ENC_DEC REP + vmovdqu AadHash(arg2), %xmm8 + vmovdqu HashKey(arg2), %xmm13 # xmm13 = HashKey + add arg5, InLen(arg2) + + # initialize the data pointer offset as zero + xor %r11d, %r11d + + PARTIAL_BLOCK \GHASH_MUL, arg3, arg4, arg5, %r11, %xmm8, \ENC_DEC + sub %r11, arg5 + + mov arg5, %r13 # save the number of bytes of plaintext/ciphertext + and $-16, %r13 # r13 = r13 - (r13 mod 16) + + mov %r13, %r12 + shr $4, %r12 + and $7, %r12 + jz _initial_num_blocks_is_0\@ + + cmp $7, %r12 + je _initial_num_blocks_is_7\@ + cmp $6, %r12 + je _initial_num_blocks_is_6\@ + cmp $5, %r12 + je _initial_num_blocks_is_5\@ + cmp $4, %r12 + je _initial_num_blocks_is_4\@ + cmp $3, %r12 + je _initial_num_blocks_is_3\@ + cmp $2, %r12 + je _initial_num_blocks_is_2\@ + + jmp _initial_num_blocks_is_1\@ + +_initial_num_blocks_is_7\@: + \INITIAL_BLOCKS \REP, 7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC + sub $16*7, %r13 + jmp _initial_blocks_encrypted\@ + +_initial_num_blocks_is_6\@: + \INITIAL_BLOCKS \REP, 6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC + sub $16*6, %r13 + jmp _initial_blocks_encrypted\@ + +_initial_num_blocks_is_5\@: + \INITIAL_BLOCKS \REP, 5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC + sub $16*5, %r13 + jmp _initial_blocks_encrypted\@ + +_initial_num_blocks_is_4\@: + \INITIAL_BLOCKS \REP, 4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC + sub $16*4, %r13 + jmp _initial_blocks_encrypted\@ + +_initial_num_blocks_is_3\@: + \INITIAL_BLOCKS \REP, 3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC + sub $16*3, %r13 + jmp _initial_blocks_encrypted\@ + +_initial_num_blocks_is_2\@: + \INITIAL_BLOCKS \REP, 2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC + sub $16*2, %r13 + jmp _initial_blocks_encrypted\@ + +_initial_num_blocks_is_1\@: + \INITIAL_BLOCKS \REP, 1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC + sub $16*1, %r13 + jmp _initial_blocks_encrypted\@ + +_initial_num_blocks_is_0\@: + \INITIAL_BLOCKS \REP, 0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC + + +_initial_blocks_encrypted\@: + cmp $0, %r13 + je _zero_cipher_left\@ + + sub $128, %r13 + je _eight_cipher_left\@ + + + + + vmovd %xmm9, %r15d + and $255, %r15d + vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 + + +_encrypt_by_8_new\@: + cmp $(255-8), %r15d + jg _encrypt_by_8\@ + + + + add $8, %r15b + \GHASH_8_ENCRYPT_8_PARALLEL \REP, %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC + add $128, %r11 + sub $128, %r13 + jne _encrypt_by_8_new\@ + + vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 + jmp _eight_cipher_left\@ + +_encrypt_by_8\@: + vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 + add $8, %r15b + \GHASH_8_ENCRYPT_8_PARALLEL \REP, %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC + vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 + add $128, %r11 + sub $128, %r13 + jne _encrypt_by_8_new\@ + + vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 + + + + +_eight_cipher_left\@: + \GHASH_LAST_8 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8 + + +_zero_cipher_left\@: + vmovdqu %xmm14, AadHash(arg2) + vmovdqu %xmm9, CurCount(arg2) + + # check for 0 length + mov arg5, %r13 + and $15, %r13 # r13 = (arg5 mod 16) + + je _multiple_of_16_bytes\@ + + # handle the last <16 Byte block separately + + mov %r13, PBlockLen(arg2) + + vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn + vmovdqu %xmm9, CurCount(arg2) + vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 + + ENCRYPT_SINGLE_BLOCK \REP, %xmm9 # E(K, Yn) + vmovdqu %xmm9, PBlockEncKey(arg2) + + cmp $16, arg5 + jge _large_enough_update\@ + + lea (arg4,%r11,1), %r10 + mov %r13, %r12 + + READ_PARTIAL_BLOCK %r10 %r12 %xmm1 + + lea SHIFT_MASK+16(%rip), %r12 + sub %r13, %r12 # adjust the shuffle mask pointer to be + # able to shift 16-r13 bytes (r13 is the + # number of bytes in plaintext mod 16) + + jmp _final_ghash_mul\@ + +_large_enough_update\@: + sub $16, %r11 + add %r13, %r11 + + # receive the last <16 Byte block + vmovdqu (arg4, %r11, 1), %xmm1 + + sub %r13, %r11 + add $16, %r11 + + lea SHIFT_MASK+16(%rip), %r12 + # adjust the shuffle mask pointer to be able to shift 16-r13 bytes + # (r13 is the number of bytes in plaintext mod 16) + sub %r13, %r12 + # get the appropriate shuffle mask + vmovdqu (%r12), %xmm2 + # shift right 16-r13 bytes + vpshufb %xmm2, %xmm1, %xmm1 + +_final_ghash_mul\@: + .if \ENC_DEC == DEC + vmovdqa %xmm1, %xmm2 + vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) + vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to + # mask out top 16-r13 bytes of xmm9 + vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 + vpand %xmm1, %xmm2, %xmm2 + vpshufb SHUF_MASK(%rip), %xmm2, %xmm2 + vpxor %xmm2, %xmm14, %xmm14 + + vmovdqu %xmm14, AadHash(arg2) + .else + vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) + vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to + # mask out top 16-r13 bytes of xmm9 + vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 + vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 + vpxor %xmm9, %xmm14, %xmm14 + + vmovdqu %xmm14, AadHash(arg2) + vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 # shuffle xmm9 back to output as ciphertext + .endif + + + ############################# + # output r13 Bytes + vmovq %xmm9, %rax + cmp $8, %r13 + jle _less_than_8_bytes_left\@ + + mov %rax, (arg3 , %r11) + add $8, %r11 + vpsrldq $8, %xmm9, %xmm9 + vmovq %xmm9, %rax + sub $8, %r13 + +_less_than_8_bytes_left\@: + movb %al, (arg3 , %r11) + add $1, %r11 + shr $8, %rax + sub $1, %r13 + jne _less_than_8_bytes_left\@ + ############################# + +_multiple_of_16_bytes\@: +.endm + + +# GCM_COMPLETE Finishes update of tag of last partial block +# Output: Authorization Tag (AUTH_TAG) +# Clobbers rax, r10-r12, and xmm0, xmm1, xmm5-xmm15 +.macro GCM_COMPLETE GHASH_MUL REP AUTH_TAG AUTH_TAG_LEN + vmovdqu AadHash(arg2), %xmm14 + vmovdqu HashKey(arg2), %xmm13 + + mov PBlockLen(arg2), %r12 + cmp $0, %r12 + je _partial_done\@ + + #GHASH computation for the last <16 Byte block + \GHASH_MUL %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 + +_partial_done\@: + mov AadLen(arg2), %r12 # r12 = aadLen (number of bytes) + shl $3, %r12 # convert into number of bits + vmovd %r12d, %xmm15 # len(A) in xmm15 + + mov InLen(arg2), %r12 + shl $3, %r12 # len(C) in bits (*128) + vmovq %r12, %xmm1 + vpslldq $8, %xmm15, %xmm15 # xmm15 = len(A)|| 0x0000000000000000 + vpxor %xmm1, %xmm15, %xmm15 # xmm15 = len(A)||len(C) + + vpxor %xmm15, %xmm14, %xmm14 + \GHASH_MUL %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 # final GHASH computation + vpshufb SHUF_MASK(%rip), %xmm14, %xmm14 # perform a 16Byte swap + + vmovdqu OrigIV(arg2), %xmm9 + + ENCRYPT_SINGLE_BLOCK \REP, %xmm9 # E(K, Y0) + + vpxor %xmm14, %xmm9, %xmm9 + + + +_return_T\@: + mov \AUTH_TAG, %r10 # r10 = authTag + mov \AUTH_TAG_LEN, %r11 # r11 = auth_tag_len + + cmp $16, %r11 + je _T_16\@ + + cmp $8, %r11 + jl _T_4\@ + +_T_8\@: + vmovq %xmm9, %rax + mov %rax, (%r10) + add $8, %r10 + sub $8, %r11 + vpsrldq $8, %xmm9, %xmm9 + cmp $0, %r11 + je _return_T_done\@ +_T_4\@: + vmovd %xmm9, %eax + mov %eax, (%r10) + add $4, %r10 + sub $4, %r11 + vpsrldq $4, %xmm9, %xmm9 + cmp $0, %r11 + je _return_T_done\@ +_T_123\@: + vmovd %xmm9, %eax + cmp $2, %r11 + jl _T_1\@ + mov %ax, (%r10) + cmp $2, %r11 + je _return_T_done\@ + add $2, %r10 + sar $16, %eax +_T_1\@: + mov %al, (%r10) + jmp _return_T_done\@ + +_T_16\@: + vmovdqu %xmm9, (%r10) + +_return_T_done\@: +.endm + +.macro CALC_AAD_HASH GHASH_MUL AAD AADLEN T1 T2 T3 T4 T5 T6 T7 T8 + + mov \AAD, %r10 # r10 = AAD + mov \AADLEN, %r12 # r12 = aadLen + + + mov %r12, %r11 + + vpxor \T8, \T8, \T8 + vpxor \T7, \T7, \T7 + cmp $16, %r11 + jl _get_AAD_rest8\@ +_get_AAD_blocks\@: + vmovdqu (%r10), \T7 + vpshufb SHUF_MASK(%rip), \T7, \T7 + vpxor \T7, \T8, \T8 + \GHASH_MUL \T8, \T2, \T1, \T3, \T4, \T5, \T6 + add $16, %r10 + sub $16, %r12 + sub $16, %r11 + cmp $16, %r11 + jge _get_AAD_blocks\@ + vmovdqu \T8, \T7 + cmp $0, %r11 + je _get_AAD_done\@ + + vpxor \T7, \T7, \T7 + + /* read the last <16B of AAD. since we have at least 4B of + data right after the AAD (the ICV, and maybe some CT), we can + read 4B/8B blocks safely, and then get rid of the extra stuff */ +_get_AAD_rest8\@: + cmp $4, %r11 + jle _get_AAD_rest4\@ + movq (%r10), \T1 + add $8, %r10 + sub $8, %r11 + vpslldq $8, \T1, \T1 + vpsrldq $8, \T7, \T7 + vpxor \T1, \T7, \T7 + jmp _get_AAD_rest8\@ +_get_AAD_rest4\@: + cmp $0, %r11 + jle _get_AAD_rest0\@ + mov (%r10), %eax + movq %rax, \T1 + add $4, %r10 + sub $4, %r11 + vpslldq $12, \T1, \T1 + vpsrldq $4, \T7, \T7 + vpxor \T1, \T7, \T7 +_get_AAD_rest0\@: + /* finalize: shift out the extra bytes we read, and align + left. since pslldq can only shift by an immediate, we use + vpshufb and an array of shuffle masks */ + movq %r12, %r11 + salq $4, %r11 + vmovdqu aad_shift_arr(%r11), \T1 + vpshufb \T1, \T7, \T7 +_get_AAD_rest_final\@: + vpshufb SHUF_MASK(%rip), \T7, \T7 + vpxor \T8, \T7, \T7 + \GHASH_MUL \T7, \T2, \T1, \T3, \T4, \T5, \T6 + +_get_AAD_done\@: + vmovdqu \T7, AadHash(arg2) +.endm + +.macro INIT GHASH_MUL PRECOMPUTE + mov arg6, %r11 + mov %r11, AadLen(arg2) # ctx_data.aad_length = aad_length + xor %r11d, %r11d + mov %r11, InLen(arg2) # ctx_data.in_length = 0 + + mov %r11, PBlockLen(arg2) # ctx_data.partial_block_length = 0 + mov %r11, PBlockEncKey(arg2) # ctx_data.partial_block_enc_key = 0 + mov arg3, %rax + movdqu (%rax), %xmm0 + movdqu %xmm0, OrigIV(arg2) # ctx_data.orig_IV = iv + + vpshufb SHUF_MASK(%rip), %xmm0, %xmm0 + movdqu %xmm0, CurCount(arg2) # ctx_data.current_counter = iv + + vmovdqu (arg4), %xmm6 # xmm6 = HashKey + + vpshufb SHUF_MASK(%rip), %xmm6, %xmm6 + ############### PRECOMPUTATION of HashKey<<1 mod poly from the HashKey + vmovdqa %xmm6, %xmm2 + vpsllq $1, %xmm6, %xmm6 + vpsrlq $63, %xmm2, %xmm2 + vmovdqa %xmm2, %xmm1 + vpslldq $8, %xmm2, %xmm2 + vpsrldq $8, %xmm1, %xmm1 + vpor %xmm2, %xmm6, %xmm6 + #reduction + vpshufd $0b00100100, %xmm1, %xmm2 + vpcmpeqd TWOONE(%rip), %xmm2, %xmm2 + vpand POLY(%rip), %xmm2, %xmm2 + vpxor %xmm2, %xmm6, %xmm6 # xmm6 holds the HashKey<<1 mod poly + ####################################################################### + vmovdqu %xmm6, HashKey(arg2) # store HashKey<<1 mod poly + + CALC_AAD_HASH \GHASH_MUL, arg5, arg6, %xmm2, %xmm6, %xmm3, %xmm4, %xmm5, %xmm7, %xmm1, %xmm0 + + \PRECOMPUTE %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5 +.endm + + +# Reads DLEN bytes starting at DPTR and stores in XMMDst +# where 0 < DLEN < 16 +# Clobbers %rax, DLEN +.macro READ_PARTIAL_BLOCK DPTR DLEN XMMDst + vpxor \XMMDst, \XMMDst, \XMMDst + + cmp $8, \DLEN + jl _read_lt8_\@ + mov (\DPTR), %rax + vpinsrq $0, %rax, \XMMDst, \XMMDst + sub $8, \DLEN + jz _done_read_partial_block_\@ + xor %eax, %eax +_read_next_byte_\@: + shl $8, %rax + mov 7(\DPTR, \DLEN, 1), %al + dec \DLEN + jnz _read_next_byte_\@ + vpinsrq $1, %rax, \XMMDst, \XMMDst + jmp _done_read_partial_block_\@ +_read_lt8_\@: + xor %eax, %eax +_read_next_byte_lt8_\@: + shl $8, %rax + mov -1(\DPTR, \DLEN, 1), %al + dec \DLEN + jnz _read_next_byte_lt8_\@ + vpinsrq $0, %rax, \XMMDst, \XMMDst +_done_read_partial_block_\@: +.endm + +# PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks +# between update calls. +# Requires the input data be at least 1 byte long due to READ_PARTIAL_BLOCK +# Outputs encrypted bytes, and updates hash and partial info in gcm_data_context +# Clobbers rax, r10, r12, r13, xmm0-6, xmm9-13 +.macro PARTIAL_BLOCK GHASH_MUL CYPH_PLAIN_OUT PLAIN_CYPH_IN PLAIN_CYPH_LEN DATA_OFFSET \ + AAD_HASH ENC_DEC + mov PBlockLen(arg2), %r13 + cmp $0, %r13 + je _partial_block_done_\@ # Leave Macro if no partial blocks + # Read in input data without over reading + cmp $16, \PLAIN_CYPH_LEN + jl _fewer_than_16_bytes_\@ + vmovdqu (\PLAIN_CYPH_IN), %xmm1 # If more than 16 bytes, just fill xmm + jmp _data_read_\@ + +_fewer_than_16_bytes_\@: + lea (\PLAIN_CYPH_IN, \DATA_OFFSET, 1), %r10 + mov \PLAIN_CYPH_LEN, %r12 + READ_PARTIAL_BLOCK %r10 %r12 %xmm1 + + mov PBlockLen(arg2), %r13 + +_data_read_\@: # Finished reading in data + + vmovdqu PBlockEncKey(arg2), %xmm9 + vmovdqu HashKey(arg2), %xmm13 + + lea SHIFT_MASK(%rip), %r12 + + # adjust the shuffle mask pointer to be able to shift r13 bytes + # r16-r13 is the number of bytes in plaintext mod 16) + add %r13, %r12 + vmovdqu (%r12), %xmm2 # get the appropriate shuffle mask + vpshufb %xmm2, %xmm9, %xmm9 # shift right r13 bytes + +.if \ENC_DEC == DEC + vmovdqa %xmm1, %xmm3 + pxor %xmm1, %xmm9 # Cyphertext XOR E(K, Yn) + + mov \PLAIN_CYPH_LEN, %r10 + add %r13, %r10 + # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling + sub $16, %r10 + # Determine if if partial block is not being filled and + # shift mask accordingly + jge _no_extra_mask_1_\@ + sub %r10, %r12 +_no_extra_mask_1_\@: + + vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 + # get the appropriate mask to mask out bottom r13 bytes of xmm9 + vpand %xmm1, %xmm9, %xmm9 # mask out bottom r13 bytes of xmm9 + + vpand %xmm1, %xmm3, %xmm3 + vmovdqa SHUF_MASK(%rip), %xmm10 + vpshufb %xmm10, %xmm3, %xmm3 + vpshufb %xmm2, %xmm3, %xmm3 + vpxor %xmm3, \AAD_HASH, \AAD_HASH + + cmp $0, %r10 + jl _partial_incomplete_1_\@ + + # GHASH computation for the last <16 Byte block + \GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 + xor %eax,%eax + + mov %rax, PBlockLen(arg2) + jmp _dec_done_\@ +_partial_incomplete_1_\@: + add \PLAIN_CYPH_LEN, PBlockLen(arg2) +_dec_done_\@: + vmovdqu \AAD_HASH, AadHash(arg2) +.else + vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) + + mov \PLAIN_CYPH_LEN, %r10 + add %r13, %r10 + # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling + sub $16, %r10 + # Determine if if partial block is not being filled and + # shift mask accordingly + jge _no_extra_mask_2_\@ + sub %r10, %r12 +_no_extra_mask_2_\@: + + vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 + # get the appropriate mask to mask out bottom r13 bytes of xmm9 + vpand %xmm1, %xmm9, %xmm9 + + vmovdqa SHUF_MASK(%rip), %xmm1 + vpshufb %xmm1, %xmm9, %xmm9 + vpshufb %xmm2, %xmm9, %xmm9 + vpxor %xmm9, \AAD_HASH, \AAD_HASH + + cmp $0, %r10 + jl _partial_incomplete_2_\@ + + # GHASH computation for the last <16 Byte block + \GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 + xor %eax,%eax + + mov %rax, PBlockLen(arg2) + jmp _encode_done_\@ +_partial_incomplete_2_\@: + add \PLAIN_CYPH_LEN, PBlockLen(arg2) +_encode_done_\@: + vmovdqu \AAD_HASH, AadHash(arg2) + + vmovdqa SHUF_MASK(%rip), %xmm10 + # shuffle xmm9 back to output as ciphertext + vpshufb %xmm10, %xmm9, %xmm9 + vpshufb %xmm2, %xmm9, %xmm9 +.endif + # output encrypted Bytes + cmp $0, %r10 + jl _partial_fill_\@ + mov %r13, %r12 + mov $16, %r13 + # Set r13 to be the number of bytes to write out + sub %r12, %r13 + jmp _count_set_\@ +_partial_fill_\@: + mov \PLAIN_CYPH_LEN, %r13 +_count_set_\@: + vmovdqa %xmm9, %xmm0 + vmovq %xmm0, %rax + cmp $8, %r13 + jle _less_than_8_bytes_left_\@ + + mov %rax, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1) + add $8, \DATA_OFFSET + psrldq $8, %xmm0 + vmovq %xmm0, %rax + sub $8, %r13 +_less_than_8_bytes_left_\@: + movb %al, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1) + add $1, \DATA_OFFSET + shr $8, %rax + sub $1, %r13 + jne _less_than_8_bytes_left_\@ +_partial_block_done_\@: +.endm # PARTIAL_BLOCK + #ifdef CONFIG_AS_AVX ############################################################################### # GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0) @@ -341,49 +947,49 @@ VARIABLE_OFFSET = 16*8 vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 - vmovdqa \T1, HashKey_k(arg1) + vmovdqu \T1, HashKey_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^2<<1 mod poly - vmovdqa \T5, HashKey_2(arg1) # [HashKey_2] = HashKey^2<<1 mod poly + vmovdqu \T5, HashKey_2(arg2) # [HashKey_2] = HashKey^2<<1 mod poly vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 - vmovdqa \T1, HashKey_2_k(arg1) + vmovdqu \T1, HashKey_2_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^3<<1 mod poly - vmovdqa \T5, HashKey_3(arg1) + vmovdqu \T5, HashKey_3(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 - vmovdqa \T1, HashKey_3_k(arg1) + vmovdqu \T1, HashKey_3_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^4<<1 mod poly - vmovdqa \T5, HashKey_4(arg1) + vmovdqu \T5, HashKey_4(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 - vmovdqa \T1, HashKey_4_k(arg1) + vmovdqu \T1, HashKey_4_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^5<<1 mod poly - vmovdqa \T5, HashKey_5(arg1) + vmovdqu \T5, HashKey_5(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 - vmovdqa \T1, HashKey_5_k(arg1) + vmovdqu \T1, HashKey_5_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^6<<1 mod poly - vmovdqa \T5, HashKey_6(arg1) + vmovdqu \T5, HashKey_6(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 - vmovdqa \T1, HashKey_6_k(arg1) + vmovdqu \T1, HashKey_6_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^7<<1 mod poly - vmovdqa \T5, HashKey_7(arg1) + vmovdqu \T5, HashKey_7(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 - vmovdqa \T1, HashKey_7_k(arg1) + vmovdqu \T1, HashKey_7_k(arg2) GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^8<<1 mod poly - vmovdqa \T5, HashKey_8(arg1) + vmovdqu \T5, HashKey_8(arg2) vpshufd $0b01001110, \T5, \T1 vpxor \T5, \T1, \T1 - vmovdqa \T1, HashKey_8_k(arg1) + vmovdqu \T1, HashKey_8_k(arg2) .endm @@ -392,84 +998,15 @@ VARIABLE_OFFSET = 16*8 ## num_initial_blocks = b mod 4# ## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext ## r10, r11, r12, rax are clobbered -## arg1, arg2, arg3, r14 are used as a pointer only, not modified +## arg1, arg3, arg4, r14 are used as a pointer only, not modified -.macro INITIAL_BLOCKS_AVX num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC +.macro INITIAL_BLOCKS_AVX REP num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC i = (8-\num_initial_blocks) - j = 0 setreg - - mov arg6, %r10 # r10 = AAD - mov arg7, %r12 # r12 = aadLen - - - mov %r12, %r11 - - vpxor reg_j, reg_j, reg_j - vpxor reg_i, reg_i, reg_i - cmp $16, %r11 - jl _get_AAD_rest8\@ -_get_AAD_blocks\@: - vmovdqu (%r10), reg_i - vpshufb SHUF_MASK(%rip), reg_i, reg_i - vpxor reg_i, reg_j, reg_j - GHASH_MUL_AVX reg_j, \T2, \T1, \T3, \T4, \T5, \T6 - add $16, %r10 - sub $16, %r12 - sub $16, %r11 - cmp $16, %r11 - jge _get_AAD_blocks\@ - vmovdqu reg_j, reg_i - cmp $0, %r11 - je _get_AAD_done\@ - - vpxor reg_i, reg_i, reg_i - - /* read the last <16B of AAD. since we have at least 4B of - data right after the AAD (the ICV, and maybe some CT), we can - read 4B/8B blocks safely, and then get rid of the extra stuff */ -_get_AAD_rest8\@: - cmp $4, %r11 - jle _get_AAD_rest4\@ - movq (%r10), \T1 - add $8, %r10 - sub $8, %r11 - vpslldq $8, \T1, \T1 - vpsrldq $8, reg_i, reg_i - vpxor \T1, reg_i, reg_i - jmp _get_AAD_rest8\@ -_get_AAD_rest4\@: - cmp $0, %r11 - jle _get_AAD_rest0\@ - mov (%r10), %eax - movq %rax, \T1 - add $4, %r10 - sub $4, %r11 - vpslldq $12, \T1, \T1 - vpsrldq $4, reg_i, reg_i - vpxor \T1, reg_i, reg_i -_get_AAD_rest0\@: - /* finalize: shift out the extra bytes we read, and align - left. since pslldq can only shift by an immediate, we use - vpshufb and an array of shuffle masks */ - movq %r12, %r11 - salq $4, %r11 - movdqu aad_shift_arr(%r11), \T1 - vpshufb \T1, reg_i, reg_i -_get_AAD_rest_final\@: - vpshufb SHUF_MASK(%rip), reg_i, reg_i - vpxor reg_j, reg_i, reg_i - GHASH_MUL_AVX reg_i, \T2, \T1, \T3, \T4, \T5, \T6 - -_get_AAD_done\@: - # initialize the data pointer offset as zero - xor %r11d, %r11d + vmovdqu AadHash(arg2), reg_i # start AES for num_initial_blocks blocks - mov arg5, %rax # rax = *Y0 - vmovdqu (%rax), \CTR # CTR = Y0 - vpshufb SHUF_MASK(%rip), \CTR, \CTR - + vmovdqu CurCount(arg2), \CTR i = (9-\num_initial_blocks) setreg @@ -490,10 +1027,10 @@ _get_AAD_done\@: setreg .endr - j = 1 - setreg -.rep 9 - vmovdqa 16*j(arg1), \T_key + j = 1 + setreg +.rep \REP + vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks @@ -502,12 +1039,11 @@ _get_AAD_done\@: setreg .endr - j = (j+1) - setreg + j = (j+1) + setreg .endr - - vmovdqa 16*10(arg1), \T_key + vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks @@ -519,9 +1055,9 @@ _get_AAD_done\@: i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks - vmovdqu (arg3, %r11), \T1 + vmovdqu (arg4, %r11), \T1 vpxor \T1, reg_i, reg_i - vmovdqu reg_i, (arg2 , %r11) # write back ciphertext for num_initial_blocks blocks + vmovdqu reg_i, (arg3 , %r11) # write back ciphertext for num_initial_blocks blocks add $16, %r11 .if \ENC_DEC == DEC vmovdqa \T1, reg_i @@ -595,9 +1131,9 @@ _get_AAD_done\@: vpxor \T_key, \XMM7, \XMM7 vpxor \T_key, \XMM8, \XMM8 - i = 1 - setreg -.rep 9 # do 9 rounds + i = 1 + setreg +.rep \REP # do REP rounds vmovdqa 16*i(arg1), \T_key vaesenc \T_key, \XMM1, \XMM1 vaesenc \T_key, \XMM2, \XMM2 @@ -607,11 +1143,10 @@ _get_AAD_done\@: vaesenc \T_key, \XMM6, \XMM6 vaesenc \T_key, \XMM7, \XMM7 vaesenc \T_key, \XMM8, \XMM8 - i = (i+1) - setreg + i = (i+1) + setreg .endr - vmovdqa 16*i(arg1), \T_key vaesenclast \T_key, \XMM1, \XMM1 vaesenclast \T_key, \XMM2, \XMM2 @@ -622,58 +1157,58 @@ _get_AAD_done\@: vaesenclast \T_key, \XMM7, \XMM7 vaesenclast \T_key, \XMM8, \XMM8 - vmovdqu (arg3, %r11), \T1 + vmovdqu (arg4, %r11), \T1 vpxor \T1, \XMM1, \XMM1 - vmovdqu \XMM1, (arg2 , %r11) + vmovdqu \XMM1, (arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM1 .endif - vmovdqu 16*1(arg3, %r11), \T1 + vmovdqu 16*1(arg4, %r11), \T1 vpxor \T1, \XMM2, \XMM2 - vmovdqu \XMM2, 16*1(arg2 , %r11) + vmovdqu \XMM2, 16*1(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM2 .endif - vmovdqu 16*2(arg3, %r11), \T1 + vmovdqu 16*2(arg4, %r11), \T1 vpxor \T1, \XMM3, \XMM3 - vmovdqu \XMM3, 16*2(arg2 , %r11) + vmovdqu \XMM3, 16*2(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM3 .endif - vmovdqu 16*3(arg3, %r11), \T1 + vmovdqu 16*3(arg4, %r11), \T1 vpxor \T1, \XMM4, \XMM4 - vmovdqu \XMM4, 16*3(arg2 , %r11) + vmovdqu \XMM4, 16*3(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM4 .endif - vmovdqu 16*4(arg3, %r11), \T1 + vmovdqu 16*4(arg4, %r11), \T1 vpxor \T1, \XMM5, \XMM5 - vmovdqu \XMM5, 16*4(arg2 , %r11) + vmovdqu \XMM5, 16*4(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM5 .endif - vmovdqu 16*5(arg3, %r11), \T1 + vmovdqu 16*5(arg4, %r11), \T1 vpxor \T1, \XMM6, \XMM6 - vmovdqu \XMM6, 16*5(arg2 , %r11) + vmovdqu \XMM6, 16*5(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM6 .endif - vmovdqu 16*6(arg3, %r11), \T1 + vmovdqu 16*6(arg4, %r11), \T1 vpxor \T1, \XMM7, \XMM7 - vmovdqu \XMM7, 16*6(arg2 , %r11) + vmovdqu \XMM7, 16*6(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM7 .endif - vmovdqu 16*7(arg3, %r11), \T1 + vmovdqu 16*7(arg4, %r11), \T1 vpxor \T1, \XMM8, \XMM8 - vmovdqu \XMM8, 16*7(arg2 , %r11) + vmovdqu \XMM8, 16*7(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM8 .endif @@ -698,9 +1233,9 @@ _initial_blocks_done\@: # encrypt 8 blocks at a time # ghash the 8 previously encrypted ciphertext blocks -# arg1, arg2, arg3 are used as pointers only, not modified +# arg1, arg3, arg4 are used as pointers only, not modified # r11 is the data offset value -.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC +.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX REP T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC vmovdqa \XMM1, \T2 vmovdqa \XMM2, TMP2(%rsp) @@ -784,14 +1319,14 @@ _initial_blocks_done\@: ####################################################################### - vmovdqa HashKey_8(arg1), \T5 + vmovdqu HashKey_8(arg2), \T5 vpclmulqdq $0x11, \T5, \T2, \T4 # T4 = a1*b1 vpclmulqdq $0x00, \T5, \T2, \T7 # T7 = a0*b0 vpshufd $0b01001110, \T2, \T6 vpxor \T2, \T6, \T6 - vmovdqa HashKey_8_k(arg1), \T5 + vmovdqu HashKey_8_k(arg2), \T5 vpclmulqdq $0x00, \T5, \T6, \T6 vmovdqu 16*3(arg1), \T1 @@ -805,7 +1340,7 @@ _initial_blocks_done\@: vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP2(%rsp), \T1 - vmovdqa HashKey_7(arg1), \T5 + vmovdqu HashKey_7(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 @@ -813,7 +1348,7 @@ _initial_blocks_done\@: vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 - vmovdqa HashKey_7_k(arg1), \T5 + vmovdqu HashKey_7_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 @@ -830,7 +1365,7 @@ _initial_blocks_done\@: ####################################################################### vmovdqa TMP3(%rsp), \T1 - vmovdqa HashKey_6(arg1), \T5 + vmovdqu HashKey_6(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 @@ -838,7 +1373,7 @@ _initial_blocks_done\@: vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 - vmovdqa HashKey_6_k(arg1), \T5 + vmovdqu HashKey_6_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 @@ -853,7 +1388,7 @@ _initial_blocks_done\@: vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP4(%rsp), \T1 - vmovdqa HashKey_5(arg1), \T5 + vmovdqu HashKey_5(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 @@ -861,7 +1396,7 @@ _initial_blocks_done\@: vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 - vmovdqa HashKey_5_k(arg1), \T5 + vmovdqu HashKey_5_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 @@ -877,7 +1412,7 @@ _initial_blocks_done\@: vmovdqa TMP5(%rsp), \T1 - vmovdqa HashKey_4(arg1), \T5 + vmovdqu HashKey_4(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 @@ -885,7 +1420,7 @@ _initial_blocks_done\@: vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 - vmovdqa HashKey_4_k(arg1), \T5 + vmovdqu HashKey_4_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 @@ -900,7 +1435,7 @@ _initial_blocks_done\@: vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP6(%rsp), \T1 - vmovdqa HashKey_3(arg1), \T5 + vmovdqu HashKey_3(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 @@ -908,7 +1443,7 @@ _initial_blocks_done\@: vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 - vmovdqa HashKey_3_k(arg1), \T5 + vmovdqu HashKey_3_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 @@ -924,7 +1459,7 @@ _initial_blocks_done\@: vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP7(%rsp), \T1 - vmovdqa HashKey_2(arg1), \T5 + vmovdqu HashKey_2(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 @@ -932,7 +1467,7 @@ _initial_blocks_done\@: vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 - vmovdqa HashKey_2_k(arg1), \T5 + vmovdqu HashKey_2_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 @@ -949,7 +1484,7 @@ _initial_blocks_done\@: vaesenc \T5, \XMM8, \XMM8 vmovdqa TMP8(%rsp), \T1 - vmovdqa HashKey(arg1), \T5 + vmovdqu HashKey(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 vpclmulqdq $0x00, \T5, \T1, \T3 @@ -957,7 +1492,7 @@ _initial_blocks_done\@: vpshufd $0b01001110, \T1, \T3 vpxor \T1, \T3, \T3 - vmovdqa HashKey_k(arg1), \T5 + vmovdqu HashKey_k(arg2), \T5 vpclmulqdq $0x10, \T5, \T3, \T3 vpxor \T3, \T6, \T6 @@ -966,17 +1501,35 @@ _initial_blocks_done\@: vmovdqu 16*10(arg1), \T5 + i = 11 + setreg +.rep (\REP-9) + + vaesenc \T5, \XMM1, \XMM1 + vaesenc \T5, \XMM2, \XMM2 + vaesenc \T5, \XMM3, \XMM3 + vaesenc \T5, \XMM4, \XMM4 + vaesenc \T5, \XMM5, \XMM5 + vaesenc \T5, \XMM6, \XMM6 + vaesenc \T5, \XMM7, \XMM7 + vaesenc \T5, \XMM8, \XMM8 + + vmovdqu 16*i(arg1), \T5 + i = i + 1 + setreg +.endr + i = 0 j = 1 setreg .rep 8 - vpxor 16*i(arg3, %r11), \T5, \T2 + vpxor 16*i(arg4, %r11), \T5, \T2 .if \ENC_DEC == ENC vaesenclast \T2, reg_j, reg_j .else vaesenclast \T2, reg_j, \T3 - vmovdqu 16*i(arg3, %r11), reg_j - vmovdqu \T3, 16*i(arg2, %r11) + vmovdqu 16*i(arg4, %r11), reg_j + vmovdqu \T3, 16*i(arg3, %r11) .endif i = (i+1) j = (j+1) @@ -1008,14 +1561,14 @@ _initial_blocks_done\@: vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### .if \ENC_DEC == ENC - vmovdqu \XMM1, 16*0(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM2, 16*1(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM3, 16*2(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM4, 16*3(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM5, 16*4(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM6, 16*5(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM7, 16*6(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM8, 16*7(arg2,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM1, 16*0(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM2, 16*1(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM3, 16*2(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM4, 16*3(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM5, 16*4(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM6, 16*5(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM7, 16*6(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM8, 16*7(arg3,%r11) # Write to the Ciphertext buffer .endif ####################################################################### @@ -1056,25 +1609,25 @@ _initial_blocks_done\@: vpshufd $0b01001110, \XMM1, \T2 vpxor \XMM1, \T2, \T2 - vmovdqa HashKey_8(arg1), \T5 + vmovdqu HashKey_8(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM1, \T6 vpclmulqdq $0x00, \T5, \XMM1, \T7 - vmovdqa HashKey_8_k(arg1), \T3 + vmovdqu HashKey_8_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \XMM1 ###################### vpshufd $0b01001110, \XMM2, \T2 vpxor \XMM2, \T2, \T2 - vmovdqa HashKey_7(arg1), \T5 + vmovdqu HashKey_7(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM2, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM2, \T4 vpxor \T4, \T7, \T7 - vmovdqa HashKey_7_k(arg1), \T3 + vmovdqu HashKey_7_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 @@ -1082,14 +1635,14 @@ _initial_blocks_done\@: vpshufd $0b01001110, \XMM3, \T2 vpxor \XMM3, \T2, \T2 - vmovdqa HashKey_6(arg1), \T5 + vmovdqu HashKey_6(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM3, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM3, \T4 vpxor \T4, \T7, \T7 - vmovdqa HashKey_6_k(arg1), \T3 + vmovdqu HashKey_6_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 @@ -1097,14 +1650,14 @@ _initial_blocks_done\@: vpshufd $0b01001110, \XMM4, \T2 vpxor \XMM4, \T2, \T2 - vmovdqa HashKey_5(arg1), \T5 + vmovdqu HashKey_5(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM4, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM4, \T4 vpxor \T4, \T7, \T7 - vmovdqa HashKey_5_k(arg1), \T3 + vmovdqu HashKey_5_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 @@ -1112,14 +1665,14 @@ _initial_blocks_done\@: vpshufd $0b01001110, \XMM5, \T2 vpxor \XMM5, \T2, \T2 - vmovdqa HashKey_4(arg1), \T5 + vmovdqu HashKey_4(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM5, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM5, \T4 vpxor \T4, \T7, \T7 - vmovdqa HashKey_4_k(arg1), \T3 + vmovdqu HashKey_4_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 @@ -1127,14 +1680,14 @@ _initial_blocks_done\@: vpshufd $0b01001110, \XMM6, \T2 vpxor \XMM6, \T2, \T2 - vmovdqa HashKey_3(arg1), \T5 + vmovdqu HashKey_3(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM6, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM6, \T4 vpxor \T4, \T7, \T7 - vmovdqa HashKey_3_k(arg1), \T3 + vmovdqu HashKey_3_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 @@ -1142,14 +1695,14 @@ _initial_blocks_done\@: vpshufd $0b01001110, \XMM7, \T2 vpxor \XMM7, \T2, \T2 - vmovdqa HashKey_2(arg1), \T5 + vmovdqu HashKey_2(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM7, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM7, \T4 vpxor \T4, \T7, \T7 - vmovdqa HashKey_2_k(arg1), \T3 + vmovdqu HashKey_2_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 @@ -1157,14 +1710,14 @@ _initial_blocks_done\@: vpshufd $0b01001110, \XMM8, \T2 vpxor \XMM8, \T2, \T2 - vmovdqa HashKey(arg1), \T5 + vmovdqu HashKey(arg2), \T5 vpclmulqdq $0x11, \T5, \XMM8, \T4 vpxor \T4, \T6, \T6 vpclmulqdq $0x00, \T5, \XMM8, \T4 vpxor \T4, \T7, \T7 - vmovdqa HashKey_k(arg1), \T3 + vmovdqu HashKey_k(arg2), \T3 vpclmulqdq $0x00, \T3, \T2, \T2 vpxor \T2, \XMM1, \XMM1 @@ -1210,413 +1763,112 @@ _initial_blocks_done\@: .endm - -# combined for GCM encrypt and decrypt functions -# clobbering all xmm registers -# clobbering r10, r11, r12, r13, r14, r15 -.macro GCM_ENC_DEC_AVX ENC_DEC - - #the number of pushes must equal STACK_OFFSET - push %r12 - push %r13 - push %r14 - push %r15 - - mov %rsp, %r14 - - - - - sub $VARIABLE_OFFSET, %rsp - and $~63, %rsp # align rsp to 64 bytes - - - vmovdqu HashKey(arg1), %xmm13 # xmm13 = HashKey - - mov arg4, %r13 # save the number of bytes of plaintext/ciphertext - and $-16, %r13 # r13 = r13 - (r13 mod 16) - - mov %r13, %r12 - shr $4, %r12 - and $7, %r12 - jz _initial_num_blocks_is_0\@ - - cmp $7, %r12 - je _initial_num_blocks_is_7\@ - cmp $6, %r12 - je _initial_num_blocks_is_6\@ - cmp $5, %r12 - je _initial_num_blocks_is_5\@ - cmp $4, %r12 - je _initial_num_blocks_is_4\@ - cmp $3, %r12 - je _initial_num_blocks_is_3\@ - cmp $2, %r12 - je _initial_num_blocks_is_2\@ - - jmp _initial_num_blocks_is_1\@ - -_initial_num_blocks_is_7\@: - INITIAL_BLOCKS_AVX 7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*7, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_6\@: - INITIAL_BLOCKS_AVX 6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*6, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_5\@: - INITIAL_BLOCKS_AVX 5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*5, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_4\@: - INITIAL_BLOCKS_AVX 4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*4, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_3\@: - INITIAL_BLOCKS_AVX 3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*3, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_2\@: - INITIAL_BLOCKS_AVX 2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*2, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_1\@: - INITIAL_BLOCKS_AVX 1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*1, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_0\@: - INITIAL_BLOCKS_AVX 0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - - -_initial_blocks_encrypted\@: - cmp $0, %r13 - je _zero_cipher_left\@ - - sub $128, %r13 - je _eight_cipher_left\@ - - - - - vmovd %xmm9, %r15d - and $255, %r15d - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - - -_encrypt_by_8_new\@: - cmp $(255-8), %r15d - jg _encrypt_by_8\@ - - - - add $8, %r15b - GHASH_8_ENCRYPT_8_PARALLEL_AVX %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC - add $128, %r11 - sub $128, %r13 - jne _encrypt_by_8_new\@ - - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - jmp _eight_cipher_left\@ - -_encrypt_by_8\@: - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - add $8, %r15b - GHASH_8_ENCRYPT_8_PARALLEL_AVX %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - add $128, %r11 - sub $128, %r13 - jne _encrypt_by_8_new\@ - - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - - - - -_eight_cipher_left\@: - GHASH_LAST_8_AVX %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8 - - -_zero_cipher_left\@: - cmp $16, arg4 - jl _only_less_than_16\@ - - mov arg4, %r13 - and $15, %r13 # r13 = (arg4 mod 16) - - je _multiple_of_16_bytes\@ - - # handle the last <16 Byte block seperately - - - vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Yn) - - sub $16, %r11 - add %r13, %r11 - vmovdqu (arg3, %r11), %xmm1 # receive the last <16 Byte block - - lea SHIFT_MASK+16(%rip), %r12 - sub %r13, %r12 # adjust the shuffle mask pointer to be - # able to shift 16-r13 bytes (r13 is the - # number of bytes in plaintext mod 16) - vmovdqu (%r12), %xmm2 # get the appropriate shuffle mask - vpshufb %xmm2, %xmm1, %xmm1 # shift right 16-r13 bytes - jmp _final_ghash_mul\@ - -_only_less_than_16\@: - # check for 0 length - mov arg4, %r13 - and $15, %r13 # r13 = (arg4 mod 16) - - je _multiple_of_16_bytes\@ - - # handle the last <16 Byte block seperately - - - vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Yn) - - - lea SHIFT_MASK+16(%rip), %r12 - sub %r13, %r12 # adjust the shuffle mask pointer to be - # able to shift 16-r13 bytes (r13 is the - # number of bytes in plaintext mod 16) - -_get_last_16_byte_loop\@: - movb (arg3, %r11), %al - movb %al, TMP1 (%rsp , %r11) - add $1, %r11 - cmp %r13, %r11 - jne _get_last_16_byte_loop\@ - - vmovdqu TMP1(%rsp), %xmm1 - - sub $16, %r11 - -_final_ghash_mul\@: - .if \ENC_DEC == DEC - vmovdqa %xmm1, %xmm2 - vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) - vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to - # mask out top 16-r13 bytes of xmm9 - vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 - vpand %xmm1, %xmm2, %xmm2 - vpshufb SHUF_MASK(%rip), %xmm2, %xmm2 - vpxor %xmm2, %xmm14, %xmm14 - #GHASH computation for the last <16 Byte block - GHASH_MUL_AVX %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 - sub %r13, %r11 - add $16, %r11 - .else - vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) - vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to - # mask out top 16-r13 bytes of xmm9 - vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - vpxor %xmm9, %xmm14, %xmm14 - #GHASH computation for the last <16 Byte block - GHASH_MUL_AVX %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 - sub %r13, %r11 - add $16, %r11 - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 # shuffle xmm9 back to output as ciphertext - .endif - - - ############################# - # output r13 Bytes - vmovq %xmm9, %rax - cmp $8, %r13 - jle _less_than_8_bytes_left\@ - - mov %rax, (arg2 , %r11) - add $8, %r11 - vpsrldq $8, %xmm9, %xmm9 - vmovq %xmm9, %rax - sub $8, %r13 - -_less_than_8_bytes_left\@: - movb %al, (arg2 , %r11) - add $1, %r11 - shr $8, %rax - sub $1, %r13 - jne _less_than_8_bytes_left\@ - ############################# - -_multiple_of_16_bytes\@: - mov arg7, %r12 # r12 = aadLen (number of bytes) - shl $3, %r12 # convert into number of bits - vmovd %r12d, %xmm15 # len(A) in xmm15 - - shl $3, arg4 # len(C) in bits (*128) - vmovq arg4, %xmm1 - vpslldq $8, %xmm15, %xmm15 # xmm15 = len(A)|| 0x0000000000000000 - vpxor %xmm1, %xmm15, %xmm15 # xmm15 = len(A)||len(C) - - vpxor %xmm15, %xmm14, %xmm14 - GHASH_MUL_AVX %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 # final GHASH computation - vpshufb SHUF_MASK(%rip), %xmm14, %xmm14 # perform a 16Byte swap - - mov arg5, %rax # rax = *Y0 - vmovdqu (%rax), %xmm9 # xmm9 = Y0 - - ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Y0) - - vpxor %xmm14, %xmm9, %xmm9 - - - -_return_T\@: - mov arg8, %r10 # r10 = authTag - mov arg9, %r11 # r11 = auth_tag_len - - cmp $16, %r11 - je _T_16\@ - - cmp $8, %r11 - jl _T_4\@ - -_T_8\@: - vmovq %xmm9, %rax - mov %rax, (%r10) - add $8, %r10 - sub $8, %r11 - vpsrldq $8, %xmm9, %xmm9 - cmp $0, %r11 - je _return_T_done\@ -_T_4\@: - vmovd %xmm9, %eax - mov %eax, (%r10) - add $4, %r10 - sub $4, %r11 - vpsrldq $4, %xmm9, %xmm9 - cmp $0, %r11 - je _return_T_done\@ -_T_123\@: - vmovd %xmm9, %eax - cmp $2, %r11 - jl _T_1\@ - mov %ax, (%r10) - cmp $2, %r11 - je _return_T_done\@ - add $2, %r10 - sar $16, %eax -_T_1\@: - mov %al, (%r10) - jmp _return_T_done\@ - -_T_16\@: - vmovdqu %xmm9, (%r10) - -_return_T_done\@: - mov %r14, %rsp - - pop %r15 - pop %r14 - pop %r13 - pop %r12 -.endm - - ############################################################# #void aesni_gcm_precomp_avx_gen2 # (gcm_data *my_ctx_data, -# u8 *hash_subkey)# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */ +# gcm_context_data *data, +# u8 *hash_subkey# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */ +# u8 *iv, /* Pre-counter block j0: 4 byte salt +# (from Security Association) concatenated with 8 byte +# Initialisation Vector (from IPSec ESP Payload) +# concatenated with 0x00000001. 16-byte aligned pointer. */ +# const u8 *aad, /* Additional Authentication Data (AAD)*/ +# u64 aad_len) /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ ############################################################# -ENTRY(aesni_gcm_precomp_avx_gen2) - #the number of pushes must equal STACK_OFFSET - push %r12 - push %r13 - push %r14 - push %r15 - - mov %rsp, %r14 - - - - sub $VARIABLE_OFFSET, %rsp - and $~63, %rsp # align rsp to 64 bytes - - vmovdqu (arg2), %xmm6 # xmm6 = HashKey - - vpshufb SHUF_MASK(%rip), %xmm6, %xmm6 - ############### PRECOMPUTATION of HashKey<<1 mod poly from the HashKey - vmovdqa %xmm6, %xmm2 - vpsllq $1, %xmm6, %xmm6 - vpsrlq $63, %xmm2, %xmm2 - vmovdqa %xmm2, %xmm1 - vpslldq $8, %xmm2, %xmm2 - vpsrldq $8, %xmm1, %xmm1 - vpor %xmm2, %xmm6, %xmm6 - #reduction - vpshufd $0b00100100, %xmm1, %xmm2 - vpcmpeqd TWOONE(%rip), %xmm2, %xmm2 - vpand POLY(%rip), %xmm2, %xmm2 - vpxor %xmm2, %xmm6, %xmm6 # xmm6 holds the HashKey<<1 mod poly - ####################################################################### - vmovdqa %xmm6, HashKey(arg1) # store HashKey<<1 mod poly - - - PRECOMPUTE_AVX %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5 - - mov %r14, %rsp - - pop %r15 - pop %r14 - pop %r13 - pop %r12 +ENTRY(aesni_gcm_init_avx_gen2) + FUNC_SAVE + INIT GHASH_MUL_AVX, PRECOMPUTE_AVX + FUNC_RESTORE ret -ENDPROC(aesni_gcm_precomp_avx_gen2) +ENDPROC(aesni_gcm_init_avx_gen2) ############################################################################### -#void aesni_gcm_enc_avx_gen2( +#void aesni_gcm_enc_update_avx_gen2( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ +# gcm_context_data *data, # u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */ # const u8 *in, /* Plaintext input */ -# u64 plaintext_len, /* Length of data in Bytes for encryption. */ -# u8 *iv, /* Pre-counter block j0: 4 byte salt -# (from Security Association) concatenated with 8 byte -# Initialisation Vector (from IPSec ESP Payload) -# concatenated with 0x00000001. 16-byte aligned pointer. */ -# const u8 *aad, /* Additional Authentication Data (AAD)*/ -# u64 aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ -# u8 *auth_tag, /* Authenticated Tag output. */ -# u64 auth_tag_len)# /* Authenticated Tag Length in bytes. -# Valid values are 16 (most likely), 12 or 8. */ +# u64 plaintext_len) /* Length of data in Bytes for encryption. */ ############################################################################### -ENTRY(aesni_gcm_enc_avx_gen2) - GCM_ENC_DEC_AVX ENC - ret -ENDPROC(aesni_gcm_enc_avx_gen2) +ENTRY(aesni_gcm_enc_update_avx_gen2) + FUNC_SAVE + mov keysize, %eax + cmp $32, %eax + je key_256_enc_update + cmp $16, %eax + je key_128_enc_update + # must be 192 + GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 11 + FUNC_RESTORE + ret +key_128_enc_update: + GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 9 + FUNC_RESTORE + ret +key_256_enc_update: + GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 13 + FUNC_RESTORE + ret +ENDPROC(aesni_gcm_enc_update_avx_gen2) ############################################################################### -#void aesni_gcm_dec_avx_gen2( +#void aesni_gcm_dec_update_avx_gen2( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ +# gcm_context_data *data, # u8 *out, /* Plaintext output. Decrypt in-place is allowed. */ # const u8 *in, /* Ciphertext input */ -# u64 plaintext_len, /* Length of data in Bytes for encryption. */ -# u8 *iv, /* Pre-counter block j0: 4 byte salt -# (from Security Association) concatenated with 8 byte -# Initialisation Vector (from IPSec ESP Payload) -# concatenated with 0x00000001. 16-byte aligned pointer. */ -# const u8 *aad, /* Additional Authentication Data (AAD)*/ -# u64 aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ +# u64 plaintext_len) /* Length of data in Bytes for encryption. */ +############################################################################### +ENTRY(aesni_gcm_dec_update_avx_gen2) + FUNC_SAVE + mov keysize,%eax + cmp $32, %eax + je key_256_dec_update + cmp $16, %eax + je key_128_dec_update + # must be 192 + GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 11 + FUNC_RESTORE + ret +key_128_dec_update: + GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 9 + FUNC_RESTORE + ret +key_256_dec_update: + GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 13 + FUNC_RESTORE + ret +ENDPROC(aesni_gcm_dec_update_avx_gen2) + +############################################################################### +#void aesni_gcm_finalize_avx_gen2( +# gcm_data *my_ctx_data, /* aligned to 16 Bytes */ +# gcm_context_data *data, # u8 *auth_tag, /* Authenticated Tag output. */ # u64 auth_tag_len)# /* Authenticated Tag Length in bytes. # Valid values are 16 (most likely), 12 or 8. */ ############################################################################### -ENTRY(aesni_gcm_dec_avx_gen2) - GCM_ENC_DEC_AVX DEC - ret -ENDPROC(aesni_gcm_dec_avx_gen2) +ENTRY(aesni_gcm_finalize_avx_gen2) + FUNC_SAVE + mov keysize,%eax + cmp $32, %eax + je key_256_finalize + cmp $16, %eax + je key_128_finalize + # must be 192 + GCM_COMPLETE GHASH_MUL_AVX, 11, arg3, arg4 + FUNC_RESTORE + ret +key_128_finalize: + GCM_COMPLETE GHASH_MUL_AVX, 9, arg3, arg4 + FUNC_RESTORE + ret +key_256_finalize: + GCM_COMPLETE GHASH_MUL_AVX, 13, arg3, arg4 + FUNC_RESTORE + ret +ENDPROC(aesni_gcm_finalize_avx_gen2) + #endif /* CONFIG_AS_AVX */ #ifdef CONFIG_AS_AVX2 @@ -1670,113 +1922,42 @@ ENDPROC(aesni_gcm_dec_avx_gen2) # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vmovdqa \HK, \T5 GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^2<<1 mod poly - vmovdqa \T5, HashKey_2(arg1) # [HashKey_2] = HashKey^2<<1 mod poly + vmovdqu \T5, HashKey_2(arg2) # [HashKey_2] = HashKey^2<<1 mod poly GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^3<<1 mod poly - vmovdqa \T5, HashKey_3(arg1) + vmovdqu \T5, HashKey_3(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^4<<1 mod poly - vmovdqa \T5, HashKey_4(arg1) + vmovdqu \T5, HashKey_4(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^5<<1 mod poly - vmovdqa \T5, HashKey_5(arg1) + vmovdqu \T5, HashKey_5(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^6<<1 mod poly - vmovdqa \T5, HashKey_6(arg1) + vmovdqu \T5, HashKey_6(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^7<<1 mod poly - vmovdqa \T5, HashKey_7(arg1) + vmovdqu \T5, HashKey_7(arg2) GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^8<<1 mod poly - vmovdqa \T5, HashKey_8(arg1) + vmovdqu \T5, HashKey_8(arg2) .endm - ## if a = number of total plaintext bytes ## b = floor(a/16) ## num_initial_blocks = b mod 4# ## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext ## r10, r11, r12, rax are clobbered -## arg1, arg2, arg3, r14 are used as a pointer only, not modified +## arg1, arg3, arg4, r14 are used as a pointer only, not modified -.macro INITIAL_BLOCKS_AVX2 num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC VER +.macro INITIAL_BLOCKS_AVX2 REP num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC VER i = (8-\num_initial_blocks) - j = 0 setreg - - mov arg6, %r10 # r10 = AAD - mov arg7, %r12 # r12 = aadLen - - - mov %r12, %r11 - - vpxor reg_j, reg_j, reg_j - vpxor reg_i, reg_i, reg_i - - cmp $16, %r11 - jl _get_AAD_rest8\@ -_get_AAD_blocks\@: - vmovdqu (%r10), reg_i - vpshufb SHUF_MASK(%rip), reg_i, reg_i - vpxor reg_i, reg_j, reg_j - GHASH_MUL_AVX2 reg_j, \T2, \T1, \T3, \T4, \T5, \T6 - add $16, %r10 - sub $16, %r12 - sub $16, %r11 - cmp $16, %r11 - jge _get_AAD_blocks\@ - vmovdqu reg_j, reg_i - cmp $0, %r11 - je _get_AAD_done\@ - - vpxor reg_i, reg_i, reg_i - - /* read the last <16B of AAD. since we have at least 4B of - data right after the AAD (the ICV, and maybe some CT), we can - read 4B/8B blocks safely, and then get rid of the extra stuff */ -_get_AAD_rest8\@: - cmp $4, %r11 - jle _get_AAD_rest4\@ - movq (%r10), \T1 - add $8, %r10 - sub $8, %r11 - vpslldq $8, \T1, \T1 - vpsrldq $8, reg_i, reg_i - vpxor \T1, reg_i, reg_i - jmp _get_AAD_rest8\@ -_get_AAD_rest4\@: - cmp $0, %r11 - jle _get_AAD_rest0\@ - mov (%r10), %eax - movq %rax, \T1 - add $4, %r10 - sub $4, %r11 - vpslldq $12, \T1, \T1 - vpsrldq $4, reg_i, reg_i - vpxor \T1, reg_i, reg_i -_get_AAD_rest0\@: - /* finalize: shift out the extra bytes we read, and align - left. since pslldq can only shift by an immediate, we use - vpshufb and an array of shuffle masks */ - movq %r12, %r11 - salq $4, %r11 - movdqu aad_shift_arr(%r11), \T1 - vpshufb \T1, reg_i, reg_i -_get_AAD_rest_final\@: - vpshufb SHUF_MASK(%rip), reg_i, reg_i - vpxor reg_j, reg_i, reg_i - GHASH_MUL_AVX2 reg_i, \T2, \T1, \T3, \T4, \T5, \T6 - -_get_AAD_done\@: - # initialize the data pointer offset as zero - xor %r11d, %r11d + vmovdqu AadHash(arg2), reg_i # start AES for num_initial_blocks blocks - mov arg5, %rax # rax = *Y0 - vmovdqu (%rax), \CTR # CTR = Y0 - vpshufb SHUF_MASK(%rip), \CTR, \CTR - + vmovdqu CurCount(arg2), \CTR i = (9-\num_initial_blocks) setreg @@ -1799,7 +1980,7 @@ _get_AAD_done\@: j = 1 setreg -.rep 9 +.rep \REP vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg @@ -1814,7 +1995,7 @@ _get_AAD_done\@: .endr - vmovdqa 16*10(arg1), \T_key + vmovdqa 16*j(arg1), \T_key i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks @@ -1826,9 +2007,9 @@ _get_AAD_done\@: i = (9-\num_initial_blocks) setreg .rep \num_initial_blocks - vmovdqu (arg3, %r11), \T1 + vmovdqu (arg4, %r11), \T1 vpxor \T1, reg_i, reg_i - vmovdqu reg_i, (arg2 , %r11) # write back ciphertext for + vmovdqu reg_i, (arg3 , %r11) # write back ciphertext for # num_initial_blocks blocks add $16, %r11 .if \ENC_DEC == DEC @@ -1905,7 +2086,7 @@ _get_AAD_done\@: i = 1 setreg -.rep 9 # do 9 rounds +.rep \REP # do REP rounds vmovdqa 16*i(arg1), \T_key vaesenc \T_key, \XMM1, \XMM1 vaesenc \T_key, \XMM2, \XMM2 @@ -1930,58 +2111,58 @@ _get_AAD_done\@: vaesenclast \T_key, \XMM7, \XMM7 vaesenclast \T_key, \XMM8, \XMM8 - vmovdqu (arg3, %r11), \T1 + vmovdqu (arg4, %r11), \T1 vpxor \T1, \XMM1, \XMM1 - vmovdqu \XMM1, (arg2 , %r11) + vmovdqu \XMM1, (arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM1 .endif - vmovdqu 16*1(arg3, %r11), \T1 + vmovdqu 16*1(arg4, %r11), \T1 vpxor \T1, \XMM2, \XMM2 - vmovdqu \XMM2, 16*1(arg2 , %r11) + vmovdqu \XMM2, 16*1(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM2 .endif - vmovdqu 16*2(arg3, %r11), \T1 + vmovdqu 16*2(arg4, %r11), \T1 vpxor \T1, \XMM3, \XMM3 - vmovdqu \XMM3, 16*2(arg2 , %r11) + vmovdqu \XMM3, 16*2(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM3 .endif - vmovdqu 16*3(arg3, %r11), \T1 + vmovdqu 16*3(arg4, %r11), \T1 vpxor \T1, \XMM4, \XMM4 - vmovdqu \XMM4, 16*3(arg2 , %r11) + vmovdqu \XMM4, 16*3(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM4 .endif - vmovdqu 16*4(arg3, %r11), \T1 + vmovdqu 16*4(arg4, %r11), \T1 vpxor \T1, \XMM5, \XMM5 - vmovdqu \XMM5, 16*4(arg2 , %r11) + vmovdqu \XMM5, 16*4(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM5 .endif - vmovdqu 16*5(arg3, %r11), \T1 + vmovdqu 16*5(arg4, %r11), \T1 vpxor \T1, \XMM6, \XMM6 - vmovdqu \XMM6, 16*5(arg2 , %r11) + vmovdqu \XMM6, 16*5(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM6 .endif - vmovdqu 16*6(arg3, %r11), \T1 + vmovdqu 16*6(arg4, %r11), \T1 vpxor \T1, \XMM7, \XMM7 - vmovdqu \XMM7, 16*6(arg2 , %r11) + vmovdqu \XMM7, 16*6(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM7 .endif - vmovdqu 16*7(arg3, %r11), \T1 + vmovdqu 16*7(arg4, %r11), \T1 vpxor \T1, \XMM8, \XMM8 - vmovdqu \XMM8, 16*7(arg2 , %r11) + vmovdqu \XMM8, 16*7(arg3 , %r11) .if \ENC_DEC == DEC vmovdqa \T1, \XMM8 .endif @@ -2010,9 +2191,9 @@ _initial_blocks_done\@: # encrypt 8 blocks at a time # ghash the 8 previously encrypted ciphertext blocks -# arg1, arg2, arg3 are used as pointers only, not modified +# arg1, arg3, arg4 are used as pointers only, not modified # r11 is the data offset value -.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX2 T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC +.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX2 REP T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC vmovdqa \XMM1, \T2 vmovdqa \XMM2, TMP2(%rsp) @@ -2096,7 +2277,7 @@ _initial_blocks_done\@: ####################################################################### - vmovdqa HashKey_8(arg1), \T5 + vmovdqu HashKey_8(arg2), \T5 vpclmulqdq $0x11, \T5, \T2, \T4 # T4 = a1*b1 vpclmulqdq $0x00, \T5, \T2, \T7 # T7 = a0*b0 vpclmulqdq $0x01, \T5, \T2, \T6 # T6 = a1*b0 @@ -2114,7 +2295,7 @@ _initial_blocks_done\@: vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP2(%rsp), \T1 - vmovdqa HashKey_7(arg1), \T5 + vmovdqu HashKey_7(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 @@ -2140,7 +2321,7 @@ _initial_blocks_done\@: ####################################################################### vmovdqa TMP3(%rsp), \T1 - vmovdqa HashKey_6(arg1), \T5 + vmovdqu HashKey_6(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 @@ -2164,7 +2345,7 @@ _initial_blocks_done\@: vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP4(%rsp), \T1 - vmovdqa HashKey_5(arg1), \T5 + vmovdqu HashKey_5(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 @@ -2189,7 +2370,7 @@ _initial_blocks_done\@: vmovdqa TMP5(%rsp), \T1 - vmovdqa HashKey_4(arg1), \T5 + vmovdqu HashKey_4(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 @@ -2213,7 +2394,7 @@ _initial_blocks_done\@: vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP6(%rsp), \T1 - vmovdqa HashKey_3(arg1), \T5 + vmovdqu HashKey_3(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 @@ -2237,7 +2418,7 @@ _initial_blocks_done\@: vaesenc \T1, \XMM8, \XMM8 vmovdqa TMP7(%rsp), \T1 - vmovdqa HashKey_2(arg1), \T5 + vmovdqu HashKey_2(arg2), \T5 vpclmulqdq $0x11, \T5, \T1, \T3 vpxor \T3, \T4, \T4 @@ -2264,7 +2445,7 @@ _initial_blocks_done\@: vaesenc \T5, \XMM8, \XMM8 vmovdqa TMP8(%rsp), \T1 - vmovdqa HashKey(arg1), \T5 + vmovdqu HashKey(arg2), \T5 vpclmulqdq $0x00, \T5, \T1, \T3 vpxor \T3, \T7, \T7 @@ -2281,17 +2462,34 @@ _initial_blocks_done\@: vmovdqu 16*10(arg1), \T5 + i = 11 + setreg +.rep (\REP-9) + vaesenc \T5, \XMM1, \XMM1 + vaesenc \T5, \XMM2, \XMM2 + vaesenc \T5, \XMM3, \XMM3 + vaesenc \T5, \XMM4, \XMM4 + vaesenc \T5, \XMM5, \XMM5 + vaesenc \T5, \XMM6, \XMM6 + vaesenc \T5, \XMM7, \XMM7 + vaesenc \T5, \XMM8, \XMM8 + + vmovdqu 16*i(arg1), \T5 + i = i + 1 + setreg +.endr + i = 0 j = 1 setreg .rep 8 - vpxor 16*i(arg3, %r11), \T5, \T2 + vpxor 16*i(arg4, %r11), \T5, \T2 .if \ENC_DEC == ENC vaesenclast \T2, reg_j, reg_j .else vaesenclast \T2, reg_j, \T3 - vmovdqu 16*i(arg3, %r11), reg_j - vmovdqu \T3, 16*i(arg2, %r11) + vmovdqu 16*i(arg4, %r11), reg_j + vmovdqu \T3, 16*i(arg3, %r11) .endif i = (i+1) j = (j+1) @@ -2317,14 +2515,14 @@ _initial_blocks_done\@: vpxor \T2, \T7, \T7 # first phase of the reduction complete ####################################################################### .if \ENC_DEC == ENC - vmovdqu \XMM1, 16*0(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM2, 16*1(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM3, 16*2(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM4, 16*3(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM5, 16*4(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM6, 16*5(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM7, 16*6(arg2,%r11) # Write to the Ciphertext buffer - vmovdqu \XMM8, 16*7(arg2,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM1, 16*0(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM2, 16*1(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM3, 16*2(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM4, 16*3(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM5, 16*4(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM6, 16*5(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM7, 16*6(arg3,%r11) # Write to the Ciphertext buffer + vmovdqu \XMM8, 16*7(arg3,%r11) # Write to the Ciphertext buffer .endif ####################################################################### @@ -2361,7 +2559,7 @@ _initial_blocks_done\@: ## Karatsuba Method - vmovdqa HashKey_8(arg1), \T5 + vmovdqu HashKey_8(arg2), \T5 vpshufd $0b01001110, \XMM1, \T2 vpshufd $0b01001110, \T5, \T3 @@ -2375,7 +2573,7 @@ _initial_blocks_done\@: ###################### - vmovdqa HashKey_7(arg1), \T5 + vmovdqu HashKey_7(arg2), \T5 vpshufd $0b01001110, \XMM2, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM2, \T2, \T2 @@ -2393,7 +2591,7 @@ _initial_blocks_done\@: ###################### - vmovdqa HashKey_6(arg1), \T5 + vmovdqu HashKey_6(arg2), \T5 vpshufd $0b01001110, \XMM3, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM3, \T2, \T2 @@ -2411,7 +2609,7 @@ _initial_blocks_done\@: ###################### - vmovdqa HashKey_5(arg1), \T5 + vmovdqu HashKey_5(arg2), \T5 vpshufd $0b01001110, \XMM4, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM4, \T2, \T2 @@ -2429,7 +2627,7 @@ _initial_blocks_done\@: ###################### - vmovdqa HashKey_4(arg1), \T5 + vmovdqu HashKey_4(arg2), \T5 vpshufd $0b01001110, \XMM5, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM5, \T2, \T2 @@ -2447,7 +2645,7 @@ _initial_blocks_done\@: ###################### - vmovdqa HashKey_3(arg1), \T5 + vmovdqu HashKey_3(arg2), \T5 vpshufd $0b01001110, \XMM6, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM6, \T2, \T2 @@ -2465,7 +2663,7 @@ _initial_blocks_done\@: ###################### - vmovdqa HashKey_2(arg1), \T5 + vmovdqu HashKey_2(arg2), \T5 vpshufd $0b01001110, \XMM7, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM7, \T2, \T2 @@ -2483,7 +2681,7 @@ _initial_blocks_done\@: ###################### - vmovdqa HashKey(arg1), \T5 + vmovdqu HashKey(arg2), \T5 vpshufd $0b01001110, \XMM8, \T2 vpshufd $0b01001110, \T5, \T3 vpxor \XMM8, \T2, \T2 @@ -2536,411 +2734,110 @@ _initial_blocks_done\@: -# combined for GCM encrypt and decrypt functions -# clobbering all xmm registers -# clobbering r10, r11, r12, r13, r14, r15 -.macro GCM_ENC_DEC_AVX2 ENC_DEC - - #the number of pushes must equal STACK_OFFSET - push %r12 - push %r13 - push %r14 - push %r15 - - mov %rsp, %r14 - - - - - sub $VARIABLE_OFFSET, %rsp - and $~63, %rsp # align rsp to 64 bytes - - - vmovdqu HashKey(arg1), %xmm13 # xmm13 = HashKey - - mov arg4, %r13 # save the number of bytes of plaintext/ciphertext - and $-16, %r13 # r13 = r13 - (r13 mod 16) - - mov %r13, %r12 - shr $4, %r12 - and $7, %r12 - jz _initial_num_blocks_is_0\@ - - cmp $7, %r12 - je _initial_num_blocks_is_7\@ - cmp $6, %r12 - je _initial_num_blocks_is_6\@ - cmp $5, %r12 - je _initial_num_blocks_is_5\@ - cmp $4, %r12 - je _initial_num_blocks_is_4\@ - cmp $3, %r12 - je _initial_num_blocks_is_3\@ - cmp $2, %r12 - je _initial_num_blocks_is_2\@ - - jmp _initial_num_blocks_is_1\@ - -_initial_num_blocks_is_7\@: - INITIAL_BLOCKS_AVX2 7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*7, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_6\@: - INITIAL_BLOCKS_AVX2 6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*6, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_5\@: - INITIAL_BLOCKS_AVX2 5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*5, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_4\@: - INITIAL_BLOCKS_AVX2 4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*4, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_3\@: - INITIAL_BLOCKS_AVX2 3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*3, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_2\@: - INITIAL_BLOCKS_AVX2 2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*2, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_1\@: - INITIAL_BLOCKS_AVX2 1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - sub $16*1, %r13 - jmp _initial_blocks_encrypted\@ - -_initial_num_blocks_is_0\@: - INITIAL_BLOCKS_AVX2 0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC - - -_initial_blocks_encrypted\@: - cmp $0, %r13 - je _zero_cipher_left\@ - - sub $128, %r13 - je _eight_cipher_left\@ - - - - - vmovd %xmm9, %r15d - and $255, %r15d - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - - -_encrypt_by_8_new\@: - cmp $(255-8), %r15d - jg _encrypt_by_8\@ - - - - add $8, %r15b - GHASH_8_ENCRYPT_8_PARALLEL_AVX2 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC - add $128, %r11 - sub $128, %r13 - jne _encrypt_by_8_new\@ - - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - jmp _eight_cipher_left\@ - -_encrypt_by_8\@: - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - add $8, %r15b - GHASH_8_ENCRYPT_8_PARALLEL_AVX2 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - add $128, %r11 - sub $128, %r13 - jne _encrypt_by_8_new\@ - - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - - - - -_eight_cipher_left\@: - GHASH_LAST_8_AVX2 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8 - - -_zero_cipher_left\@: - cmp $16, arg4 - jl _only_less_than_16\@ - - mov arg4, %r13 - and $15, %r13 # r13 = (arg4 mod 16) - - je _multiple_of_16_bytes\@ - - # handle the last <16 Byte block seperately - - - vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Yn) - - sub $16, %r11 - add %r13, %r11 - vmovdqu (arg3, %r11), %xmm1 # receive the last <16 Byte block - - lea SHIFT_MASK+16(%rip), %r12 - sub %r13, %r12 # adjust the shuffle mask pointer - # to be able to shift 16-r13 bytes - # (r13 is the number of bytes in plaintext mod 16) - vmovdqu (%r12), %xmm2 # get the appropriate shuffle mask - vpshufb %xmm2, %xmm1, %xmm1 # shift right 16-r13 bytes - jmp _final_ghash_mul\@ - -_only_less_than_16\@: - # check for 0 length - mov arg4, %r13 - and $15, %r13 # r13 = (arg4 mod 16) - - je _multiple_of_16_bytes\@ - - # handle the last <16 Byte block seperately - - - vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Yn) - - - lea SHIFT_MASK+16(%rip), %r12 - sub %r13, %r12 # adjust the shuffle mask pointer to be - # able to shift 16-r13 bytes (r13 is the - # number of bytes in plaintext mod 16) - -_get_last_16_byte_loop\@: - movb (arg3, %r11), %al - movb %al, TMP1 (%rsp , %r11) - add $1, %r11 - cmp %r13, %r11 - jne _get_last_16_byte_loop\@ - - vmovdqu TMP1(%rsp), %xmm1 - - sub $16, %r11 - -_final_ghash_mul\@: - .if \ENC_DEC == DEC - vmovdqa %xmm1, %xmm2 - vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) - vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to mask out top 16-r13 bytes of xmm9 - vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 - vpand %xmm1, %xmm2, %xmm2 - vpshufb SHUF_MASK(%rip), %xmm2, %xmm2 - vpxor %xmm2, %xmm14, %xmm14 - #GHASH computation for the last <16 Byte block - GHASH_MUL_AVX2 %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 - sub %r13, %r11 - add $16, %r11 - .else - vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn) - vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to mask out top 16-r13 bytes of xmm9 - vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9 - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 - vpxor %xmm9, %xmm14, %xmm14 - #GHASH computation for the last <16 Byte block - GHASH_MUL_AVX2 %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 - sub %r13, %r11 - add $16, %r11 - vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 # shuffle xmm9 back to output as ciphertext - .endif - - - ############################# - # output r13 Bytes - vmovq %xmm9, %rax - cmp $8, %r13 - jle _less_than_8_bytes_left\@ - - mov %rax, (arg2 , %r11) - add $8, %r11 - vpsrldq $8, %xmm9, %xmm9 - vmovq %xmm9, %rax - sub $8, %r13 - -_less_than_8_bytes_left\@: - movb %al, (arg2 , %r11) - add $1, %r11 - shr $8, %rax - sub $1, %r13 - jne _less_than_8_bytes_left\@ - ############################# - -_multiple_of_16_bytes\@: - mov arg7, %r12 # r12 = aadLen (number of bytes) - shl $3, %r12 # convert into number of bits - vmovd %r12d, %xmm15 # len(A) in xmm15 - - shl $3, arg4 # len(C) in bits (*128) - vmovq arg4, %xmm1 - vpslldq $8, %xmm15, %xmm15 # xmm15 = len(A)|| 0x0000000000000000 - vpxor %xmm1, %xmm15, %xmm15 # xmm15 = len(A)||len(C) - - vpxor %xmm15, %xmm14, %xmm14 - GHASH_MUL_AVX2 %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 # final GHASH computation - vpshufb SHUF_MASK(%rip), %xmm14, %xmm14 # perform a 16Byte swap - - mov arg5, %rax # rax = *Y0 - vmovdqu (%rax), %xmm9 # xmm9 = Y0 - - ENCRYPT_SINGLE_BLOCK %xmm9 # E(K, Y0) - - vpxor %xmm14, %xmm9, %xmm9 - - - -_return_T\@: - mov arg8, %r10 # r10 = authTag - mov arg9, %r11 # r11 = auth_tag_len - - cmp $16, %r11 - je _T_16\@ - - cmp $8, %r11 - jl _T_4\@ - -_T_8\@: - vmovq %xmm9, %rax - mov %rax, (%r10) - add $8, %r10 - sub $8, %r11 - vpsrldq $8, %xmm9, %xmm9 - cmp $0, %r11 - je _return_T_done\@ -_T_4\@: - vmovd %xmm9, %eax - mov %eax, (%r10) - add $4, %r10 - sub $4, %r11 - vpsrldq $4, %xmm9, %xmm9 - cmp $0, %r11 - je _return_T_done\@ -_T_123\@: - vmovd %xmm9, %eax - cmp $2, %r11 - jl _T_1\@ - mov %ax, (%r10) - cmp $2, %r11 - je _return_T_done\@ - add $2, %r10 - sar $16, %eax -_T_1\@: - mov %al, (%r10) - jmp _return_T_done\@ - -_T_16\@: - vmovdqu %xmm9, (%r10) - -_return_T_done\@: - mov %r14, %rsp - - pop %r15 - pop %r14 - pop %r13 - pop %r12 -.endm - - ############################################################# -#void aesni_gcm_precomp_avx_gen4 +#void aesni_gcm_init_avx_gen4 # (gcm_data *my_ctx_data, -# u8 *hash_subkey)# /* H, the Hash sub key input. -# Data starts on a 16-byte boundary. */ +# gcm_context_data *data, +# u8 *iv, /* Pre-counter block j0: 4 byte salt +# (from Security Association) concatenated with 8 byte +# Initialisation Vector (from IPSec ESP Payload) +# concatenated with 0x00000001. 16-byte aligned pointer. */ +# u8 *hash_subkey# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */ +# const u8 *aad, /* Additional Authentication Data (AAD)*/ +# u64 aad_len) /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ ############################################################# -ENTRY(aesni_gcm_precomp_avx_gen4) - #the number of pushes must equal STACK_OFFSET - push %r12 - push %r13 - push %r14 - push %r15 - - mov %rsp, %r14 - - - - sub $VARIABLE_OFFSET, %rsp - and $~63, %rsp # align rsp to 64 bytes - - vmovdqu (arg2), %xmm6 # xmm6 = HashKey - - vpshufb SHUF_MASK(%rip), %xmm6, %xmm6 - ############### PRECOMPUTATION of HashKey<<1 mod poly from the HashKey - vmovdqa %xmm6, %xmm2 - vpsllq $1, %xmm6, %xmm6 - vpsrlq $63, %xmm2, %xmm2 - vmovdqa %xmm2, %xmm1 - vpslldq $8, %xmm2, %xmm2 - vpsrldq $8, %xmm1, %xmm1 - vpor %xmm2, %xmm6, %xmm6 - #reduction - vpshufd $0b00100100, %xmm1, %xmm2 - vpcmpeqd TWOONE(%rip), %xmm2, %xmm2 - vpand POLY(%rip), %xmm2, %xmm2 - vpxor %xmm2, %xmm6, %xmm6 # xmm6 holds the HashKey<<1 mod poly - ####################################################################### - vmovdqa %xmm6, HashKey(arg1) # store HashKey<<1 mod poly - - - PRECOMPUTE_AVX2 %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5 - - mov %r14, %rsp - - pop %r15 - pop %r14 - pop %r13 - pop %r12 +ENTRY(aesni_gcm_init_avx_gen4) + FUNC_SAVE + INIT GHASH_MUL_AVX2, PRECOMPUTE_AVX2 + FUNC_RESTORE ret -ENDPROC(aesni_gcm_precomp_avx_gen4) - +ENDPROC(aesni_gcm_init_avx_gen4) ############################################################################### #void aesni_gcm_enc_avx_gen4( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ +# gcm_context_data *data, # u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */ # const u8 *in, /* Plaintext input */ -# u64 plaintext_len, /* Length of data in Bytes for encryption. */ -# u8 *iv, /* Pre-counter block j0: 4 byte salt -# (from Security Association) concatenated with 8 byte -# Initialisation Vector (from IPSec ESP Payload) -# concatenated with 0x00000001. 16-byte aligned pointer. */ -# const u8 *aad, /* Additional Authentication Data (AAD)*/ -# u64 aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ -# u8 *auth_tag, /* Authenticated Tag output. */ -# u64 auth_tag_len)# /* Authenticated Tag Length in bytes. -# Valid values are 16 (most likely), 12 or 8. */ +# u64 plaintext_len) /* Length of data in Bytes for encryption. */ ############################################################################### -ENTRY(aesni_gcm_enc_avx_gen4) - GCM_ENC_DEC_AVX2 ENC +ENTRY(aesni_gcm_enc_update_avx_gen4) + FUNC_SAVE + mov keysize,%eax + cmp $32, %eax + je key_256_enc_update4 + cmp $16, %eax + je key_128_enc_update4 + # must be 192 + GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 11 + FUNC_RESTORE + ret +key_128_enc_update4: + GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 9 + FUNC_RESTORE + ret +key_256_enc_update4: + GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 13 + FUNC_RESTORE ret -ENDPROC(aesni_gcm_enc_avx_gen4) +ENDPROC(aesni_gcm_enc_update_avx_gen4) ############################################################################### -#void aesni_gcm_dec_avx_gen4( +#void aesni_gcm_dec_update_avx_gen4( # gcm_data *my_ctx_data, /* aligned to 16 Bytes */ +# gcm_context_data *data, # u8 *out, /* Plaintext output. Decrypt in-place is allowed. */ # const u8 *in, /* Ciphertext input */ -# u64 plaintext_len, /* Length of data in Bytes for encryption. */ -# u8 *iv, /* Pre-counter block j0: 4 byte salt -# (from Security Association) concatenated with 8 byte -# Initialisation Vector (from IPSec ESP Payload) -# concatenated with 0x00000001. 16-byte aligned pointer. */ -# const u8 *aad, /* Additional Authentication Data (AAD)*/ -# u64 aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */ +# u64 plaintext_len) /* Length of data in Bytes for encryption. */ +############################################################################### +ENTRY(aesni_gcm_dec_update_avx_gen4) + FUNC_SAVE + mov keysize,%eax + cmp $32, %eax + je key_256_dec_update4 + cmp $16, %eax + je key_128_dec_update4 + # must be 192 + GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 11 + FUNC_RESTORE + ret +key_128_dec_update4: + GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 9 + FUNC_RESTORE + ret +key_256_dec_update4: + GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 13 + FUNC_RESTORE + ret +ENDPROC(aesni_gcm_dec_update_avx_gen4) + +############################################################################### +#void aesni_gcm_finalize_avx_gen4( +# gcm_data *my_ctx_data, /* aligned to 16 Bytes */ +# gcm_context_data *data, # u8 *auth_tag, /* Authenticated Tag output. */ # u64 auth_tag_len)# /* Authenticated Tag Length in bytes. -# Valid values are 16 (most likely), 12 or 8. */ +# Valid values are 16 (most likely), 12 or 8. */ ############################################################################### -ENTRY(aesni_gcm_dec_avx_gen4) - GCM_ENC_DEC_AVX2 DEC - ret -ENDPROC(aesni_gcm_dec_avx_gen4) +ENTRY(aesni_gcm_finalize_avx_gen4) + FUNC_SAVE + mov keysize,%eax + cmp $32, %eax + je key_256_finalize4 + cmp $16, %eax + je key_128_finalize4 + # must be 192 + GCM_COMPLETE GHASH_MUL_AVX2, 11, arg3, arg4 + FUNC_RESTORE + ret +key_128_finalize4: + GCM_COMPLETE GHASH_MUL_AVX2, 9, arg3, arg4 + FUNC_RESTORE + ret +key_256_finalize4: + GCM_COMPLETE GHASH_MUL_AVX2, 13, arg3, arg4 + FUNC_RESTORE + ret +ENDPROC(aesni_gcm_finalize_avx_gen4) #endif /* CONFIG_AS_AVX2 */ diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c index 661f7daf43da..1321700d6647 100644 --- a/arch/x86/crypto/aesni-intel_glue.c +++ b/arch/x86/crypto/aesni-intel_glue.c @@ -84,7 +84,7 @@ struct gcm_context_data { u8 current_counter[GCM_BLOCK_LEN]; u64 partial_block_len; u64 unused; - u8 hash_keys[GCM_BLOCK_LEN * 8]; + u8 hash_keys[GCM_BLOCK_LEN * 16]; }; asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key, @@ -175,6 +175,32 @@ asmlinkage void aesni_gcm_finalize(void *ctx, struct gcm_context_data *gdata, u8 *auth_tag, unsigned long auth_tag_len); +static struct aesni_gcm_tfm_s { +void (*init)(void *ctx, + struct gcm_context_data *gdata, + u8 *iv, + u8 *hash_subkey, const u8 *aad, + unsigned long aad_len); +void (*enc_update)(void *ctx, + struct gcm_context_data *gdata, u8 *out, + const u8 *in, + unsigned long plaintext_len); +void (*dec_update)(void *ctx, + struct gcm_context_data *gdata, u8 *out, + const u8 *in, + unsigned long ciphertext_len); +void (*finalize)(void *ctx, + struct gcm_context_data *gdata, + u8 *auth_tag, unsigned long auth_tag_len); +} *aesni_gcm_tfm; + +struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = { + .init = &aesni_gcm_init, + .enc_update = &aesni_gcm_enc_update, + .dec_update = &aesni_gcm_dec_update, + .finalize = &aesni_gcm_finalize, +}; + #ifdef CONFIG_AS_AVX asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv, void *keys, u8 *out, unsigned int num_bytes); @@ -183,136 +209,94 @@ asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv, asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv, void *keys, u8 *out, unsigned int num_bytes); /* - * asmlinkage void aesni_gcm_precomp_avx_gen2() + * asmlinkage void aesni_gcm_init_avx_gen2() * gcm_data *my_ctx_data, context data * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. */ -asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey); +asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data, + struct gcm_context_data *gdata, + u8 *iv, + u8 *hash_subkey, + const u8 *aad, + unsigned long aad_len); + +asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx, + struct gcm_context_data *gdata, u8 *out, + const u8 *in, unsigned long plaintext_len); +asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx, + struct gcm_context_data *gdata, u8 *out, + const u8 *in, + unsigned long ciphertext_len); +asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx, + struct gcm_context_data *gdata, + u8 *auth_tag, unsigned long auth_tag_len); -asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out, +asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, + struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long plaintext_len, u8 *iv, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); -asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out, +asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, + struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long ciphertext_len, u8 *iv, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); -static void aesni_gcm_enc_avx(void *ctx, - struct gcm_context_data *data, u8 *out, - const u8 *in, unsigned long plaintext_len, u8 *iv, - u8 *hash_subkey, const u8 *aad, unsigned long aad_len, - u8 *auth_tag, unsigned long auth_tag_len) -{ - struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx; - if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){ - aesni_gcm_enc(ctx, data, out, in, - plaintext_len, iv, hash_subkey, aad, - aad_len, auth_tag, auth_tag_len); - } else { - aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); - aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad, - aad_len, auth_tag, auth_tag_len); - } -} +struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = { + .init = &aesni_gcm_init_avx_gen2, + .enc_update = &aesni_gcm_enc_update_avx_gen2, + .dec_update = &aesni_gcm_dec_update_avx_gen2, + .finalize = &aesni_gcm_finalize_avx_gen2, +}; -static void aesni_gcm_dec_avx(void *ctx, - struct gcm_context_data *data, u8 *out, - const u8 *in, unsigned long ciphertext_len, u8 *iv, - u8 *hash_subkey, const u8 *aad, unsigned long aad_len, - u8 *auth_tag, unsigned long auth_tag_len) -{ - struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx; - if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) { - aesni_gcm_dec(ctx, data, out, in, - ciphertext_len, iv, hash_subkey, aad, - aad_len, auth_tag, auth_tag_len); - } else { - aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); - aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad, - aad_len, auth_tag, auth_tag_len); - } -} #endif #ifdef CONFIG_AS_AVX2 /* - * asmlinkage void aesni_gcm_precomp_avx_gen4() + * asmlinkage void aesni_gcm_init_avx_gen4() * gcm_data *my_ctx_data, context data * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. */ -asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey); +asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data, + struct gcm_context_data *gdata, + u8 *iv, + u8 *hash_subkey, + const u8 *aad, + unsigned long aad_len); + +asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx, + struct gcm_context_data *gdata, u8 *out, + const u8 *in, unsigned long plaintext_len); +asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx, + struct gcm_context_data *gdata, u8 *out, + const u8 *in, + unsigned long ciphertext_len); +asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx, + struct gcm_context_data *gdata, + u8 *auth_tag, unsigned long auth_tag_len); -asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out, +asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, + struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long plaintext_len, u8 *iv, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); -asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out, +asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, + struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long ciphertext_len, u8 *iv, const u8 *aad, unsigned long aad_len, u8 *auth_tag, unsigned long auth_tag_len); -static void aesni_gcm_enc_avx2(void *ctx, - struct gcm_context_data *data, u8 *out, - const u8 *in, unsigned long plaintext_len, u8 *iv, - u8 *hash_subkey, const u8 *aad, unsigned long aad_len, - u8 *auth_tag, unsigned long auth_tag_len) -{ - struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx; - if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) { - aesni_gcm_enc(ctx, data, out, in, - plaintext_len, iv, hash_subkey, aad, - aad_len, auth_tag, auth_tag_len); - } else if (plaintext_len < AVX_GEN4_OPTSIZE) { - aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); - aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad, - aad_len, auth_tag, auth_tag_len); - } else { - aesni_gcm_precomp_avx_gen4(ctx, hash_subkey); - aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad, - aad_len, auth_tag, auth_tag_len); - } -} +struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = { + .init = &aesni_gcm_init_avx_gen4, + .enc_update = &aesni_gcm_enc_update_avx_gen4, + .dec_update = &aesni_gcm_dec_update_avx_gen4, + .finalize = &aesni_gcm_finalize_avx_gen4, +}; -static void aesni_gcm_dec_avx2(void *ctx, - struct gcm_context_data *data, u8 *out, - const u8 *in, unsigned long ciphertext_len, u8 *iv, - u8 *hash_subkey, const u8 *aad, unsigned long aad_len, - u8 *auth_tag, unsigned long auth_tag_len) -{ - struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx; - if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) { - aesni_gcm_dec(ctx, data, out, in, - ciphertext_len, iv, hash_subkey, - aad, aad_len, auth_tag, auth_tag_len); - } else if (ciphertext_len < AVX_GEN4_OPTSIZE) { - aesni_gcm_precomp_avx_gen2(ctx, hash_subkey); - aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad, - aad_len, auth_tag, auth_tag_len); - } else { - aesni_gcm_precomp_avx_gen4(ctx, hash_subkey); - aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad, - aad_len, auth_tag, auth_tag_len); - } -} #endif -static void (*aesni_gcm_enc_tfm)(void *ctx, - struct gcm_context_data *data, u8 *out, - const u8 *in, unsigned long plaintext_len, - u8 *iv, u8 *hash_subkey, const u8 *aad, - unsigned long aad_len, u8 *auth_tag, - unsigned long auth_tag_len); - -static void (*aesni_gcm_dec_tfm)(void *ctx, - struct gcm_context_data *data, u8 *out, - const u8 *in, unsigned long ciphertext_len, - u8 *iv, u8 *hash_subkey, const u8 *aad, - unsigned long aad_len, u8 *auth_tag, - unsigned long auth_tag_len); - static inline struct aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm) { @@ -794,6 +778,7 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, { struct crypto_aead *tfm = crypto_aead_reqtfm(req); unsigned long auth_tag_len = crypto_aead_authsize(tfm); + struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm; struct gcm_context_data data AESNI_ALIGN_ATTR; struct scatter_walk dst_sg_walk = {}; unsigned long left = req->cryptlen; @@ -811,6 +796,15 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, if (!enc) left -= auth_tag_len; +#ifdef CONFIG_AS_AVX2 + if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4) + gcm_tfm = &aesni_gcm_tfm_avx_gen2; +#endif +#ifdef CONFIG_AS_AVX + if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2) + gcm_tfm = &aesni_gcm_tfm_sse; +#endif + /* Linearize assoc, if not already linear */ if (req->src->length >= assoclen && req->src->length && (!PageHighMem(sg_page(req->src)) || @@ -835,7 +829,7 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, } kernel_fpu_begin(); - aesni_gcm_init(aes_ctx, &data, iv, + gcm_tfm->init(aes_ctx, &data, iv, hash_subkey, assoc, assoclen); if (req->src != req->dst) { while (left) { @@ -846,10 +840,10 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, len = min(srclen, dstlen); if (len) { if (enc) - aesni_gcm_enc_update(aes_ctx, &data, + gcm_tfm->enc_update(aes_ctx, &data, dst, src, len); else - aesni_gcm_dec_update(aes_ctx, &data, + gcm_tfm->dec_update(aes_ctx, &data, dst, src, len); } left -= len; @@ -867,10 +861,10 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, len = scatterwalk_clamp(&src_sg_walk, left); if (len) { if (enc) - aesni_gcm_enc_update(aes_ctx, &data, + gcm_tfm->enc_update(aes_ctx, &data, src, src, len); else - aesni_gcm_dec_update(aes_ctx, &data, + gcm_tfm->dec_update(aes_ctx, &data, src, src, len); } left -= len; @@ -879,7 +873,7 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, scatterwalk_done(&src_sg_walk, 1, left); } } - aesni_gcm_finalize(aes_ctx, &data, authTag, auth_tag_len); + gcm_tfm->finalize(aes_ctx, &data, authTag, auth_tag_len); kernel_fpu_end(); if (!assocmem) @@ -912,147 +906,15 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen, u8 *hash_subkey, u8 *iv, void *aes_ctx) { - u8 one_entry_in_sg = 0; - u8 *src, *dst, *assoc; - struct crypto_aead *tfm = crypto_aead_reqtfm(req); - unsigned long auth_tag_len = crypto_aead_authsize(tfm); - struct scatter_walk src_sg_walk; - struct scatter_walk dst_sg_walk = {}; - struct gcm_context_data data AESNI_ALIGN_ATTR; - - if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 || - aesni_gcm_enc_tfm == aesni_gcm_enc || - req->cryptlen < AVX_GEN2_OPTSIZE) { - return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv, - aes_ctx); - } - if (sg_is_last(req->src) && - (!PageHighMem(sg_page(req->src)) || - req->src->offset + req->src->length <= PAGE_SIZE) && - sg_is_last(req->dst) && - (!PageHighMem(sg_page(req->dst)) || - req->dst->offset + req->dst->length <= PAGE_SIZE)) { - one_entry_in_sg = 1; - scatterwalk_start(&src_sg_walk, req->src); - assoc = scatterwalk_map(&src_sg_walk); - src = assoc + req->assoclen; - dst = src; - if (unlikely(req->src != req->dst)) { - scatterwalk_start(&dst_sg_walk, req->dst); - dst = scatterwalk_map(&dst_sg_walk) + req->assoclen; - } - } else { - /* Allocate memory for src, dst, assoc */ - assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen, - GFP_ATOMIC); - if (unlikely(!assoc)) - return -ENOMEM; - scatterwalk_map_and_copy(assoc, req->src, 0, - req->assoclen + req->cryptlen, 0); - src = assoc + req->assoclen; - dst = src; - } - - kernel_fpu_begin(); - aesni_gcm_enc_tfm(aes_ctx, &data, dst, src, req->cryptlen, iv, - hash_subkey, assoc, assoclen, - dst + req->cryptlen, auth_tag_len); - kernel_fpu_end(); - - /* The authTag (aka the Integrity Check Value) needs to be written - * back to the packet. */ - if (one_entry_in_sg) { - if (unlikely(req->src != req->dst)) { - scatterwalk_unmap(dst - req->assoclen); - scatterwalk_advance(&dst_sg_walk, req->dst->length); - scatterwalk_done(&dst_sg_walk, 1, 0); - } - scatterwalk_unmap(assoc); - scatterwalk_advance(&src_sg_walk, req->src->length); - scatterwalk_done(&src_sg_walk, req->src == req->dst, 0); - } else { - scatterwalk_map_and_copy(dst, req->dst, req->assoclen, - req->cryptlen + auth_tag_len, 1); - kfree(assoc); - } - return 0; + return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv, + aes_ctx); } static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen, u8 *hash_subkey, u8 *iv, void *aes_ctx) { - u8 one_entry_in_sg = 0; - u8 *src, *dst, *assoc; - unsigned long tempCipherLen = 0; - struct crypto_aead *tfm = crypto_aead_reqtfm(req); - unsigned long auth_tag_len = crypto_aead_authsize(tfm); - u8 authTag[16]; - struct scatter_walk src_sg_walk; - struct scatter_walk dst_sg_walk = {}; - struct gcm_context_data data AESNI_ALIGN_ATTR; - int retval = 0; - - if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 || - aesni_gcm_enc_tfm == aesni_gcm_enc || - req->cryptlen < AVX_GEN2_OPTSIZE) { - return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv, - aes_ctx); - } - tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len); - - if (sg_is_last(req->src) && - (!PageHighMem(sg_page(req->src)) || - req->src->offset + req->src->length <= PAGE_SIZE) && - sg_is_last(req->dst) && req->dst->length && - (!PageHighMem(sg_page(req->dst)) || - req->dst->offset + req->dst->length <= PAGE_SIZE)) { - one_entry_in_sg = 1; - scatterwalk_start(&src_sg_walk, req->src); - assoc = scatterwalk_map(&src_sg_walk); - src = assoc + req->assoclen; - dst = src; - if (unlikely(req->src != req->dst)) { - scatterwalk_start(&dst_sg_walk, req->dst); - dst = scatterwalk_map(&dst_sg_walk) + req->assoclen; - } - } else { - /* Allocate memory for src, dst, assoc */ - assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC); - if (!assoc) - return -ENOMEM; - scatterwalk_map_and_copy(assoc, req->src, 0, - req->assoclen + req->cryptlen, 0); - src = assoc + req->assoclen; - dst = src; - } - - - kernel_fpu_begin(); - aesni_gcm_dec_tfm(aes_ctx, &data, dst, src, tempCipherLen, iv, - hash_subkey, assoc, assoclen, - authTag, auth_tag_len); - kernel_fpu_end(); - - /* Compare generated tag with passed in tag. */ - retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ? - -EBADMSG : 0; - - if (one_entry_in_sg) { - if (unlikely(req->src != req->dst)) { - scatterwalk_unmap(dst - req->assoclen); - scatterwalk_advance(&dst_sg_walk, req->dst->length); - scatterwalk_done(&dst_sg_walk, 1, 0); - } - scatterwalk_unmap(assoc); - scatterwalk_advance(&src_sg_walk, req->src->length); - scatterwalk_done(&src_sg_walk, req->src == req->dst, 0); - } else { - scatterwalk_map_and_copy(dst, req->dst, req->assoclen, - tempCipherLen, 1); - kfree(assoc); - } - return retval; - + return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv, + aes_ctx); } static int helper_rfc4106_encrypt(struct aead_request *req) @@ -1420,21 +1282,18 @@ static int __init aesni_init(void) #ifdef CONFIG_AS_AVX2 if (boot_cpu_has(X86_FEATURE_AVX2)) { pr_info("AVX2 version of gcm_enc/dec engaged.\n"); - aesni_gcm_enc_tfm = aesni_gcm_enc_avx2; - aesni_gcm_dec_tfm = aesni_gcm_dec_avx2; + aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4; } else #endif #ifdef CONFIG_AS_AVX if (boot_cpu_has(X86_FEATURE_AVX)) { pr_info("AVX version of gcm_enc/dec engaged.\n"); - aesni_gcm_enc_tfm = aesni_gcm_enc_avx; - aesni_gcm_dec_tfm = aesni_gcm_dec_avx; + aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2; } else #endif { pr_info("SSE version of gcm_enc/dec engaged.\n"); - aesni_gcm_enc_tfm = aesni_gcm_enc; - aesni_gcm_dec_tfm = aesni_gcm_dec; + aesni_gcm_tfm = &aesni_gcm_tfm_sse; } aesni_ctr_enc_tfm = aesni_ctr_enc; #ifdef CONFIG_AS_AVX diff --git a/arch/x86/crypto/cast5_avx_glue.c b/arch/x86/crypto/cast5_avx_glue.c index 41034745d6a2..d1ce49119da8 100644 --- a/arch/x86/crypto/cast5_avx_glue.c +++ b/arch/x86/crypto/cast5_avx_glue.c @@ -1,5 +1,5 @@ /* - * Glue Code for the AVX assembler implemention of the Cast5 Cipher + * Glue Code for the AVX assembler implementation of the Cast5 Cipher * * Copyright (C) 2012 Johannes Goetzfried * <Johannes.Goetzfried@informatik.stud.uni-erlangen.de> diff --git a/arch/x86/crypto/cast6_avx_glue.c b/arch/x86/crypto/cast6_avx_glue.c index 9fb66b5e94b2..18965c39305e 100644 --- a/arch/x86/crypto/cast6_avx_glue.c +++ b/arch/x86/crypto/cast6_avx_glue.c @@ -1,5 +1,5 @@ /* - * Glue Code for the AVX assembler implemention of the Cast6 Cipher + * Glue Code for the AVX assembler implementation of the Cast6 Cipher * * Copyright (C) 2012 Johannes Goetzfried * <Johannes.Goetzfried@informatik.stud.uni-erlangen.de> diff --git a/arch/x86/crypto/chacha-avx2-x86_64.S b/arch/x86/crypto/chacha-avx2-x86_64.S new file mode 100644 index 000000000000..32903fd450af --- /dev/null +++ b/arch/x86/crypto/chacha-avx2-x86_64.S @@ -0,0 +1,1025 @@ +/* + * ChaCha 256-bit cipher algorithm, x64 AVX2 functions + * + * Copyright (C) 2015 Martin Willi + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ + +#include <linux/linkage.h> + +.section .rodata.cst32.ROT8, "aM", @progbits, 32 +.align 32 +ROT8: .octa 0x0e0d0c0f0a09080b0605040702010003 + .octa 0x0e0d0c0f0a09080b0605040702010003 + +.section .rodata.cst32.ROT16, "aM", @progbits, 32 +.align 32 +ROT16: .octa 0x0d0c0f0e09080b0a0504070601000302 + .octa 0x0d0c0f0e09080b0a0504070601000302 + +.section .rodata.cst32.CTRINC, "aM", @progbits, 32 +.align 32 +CTRINC: .octa 0x00000003000000020000000100000000 + .octa 0x00000007000000060000000500000004 + +.section .rodata.cst32.CTR2BL, "aM", @progbits, 32 +.align 32 +CTR2BL: .octa 0x00000000000000000000000000000000 + .octa 0x00000000000000000000000000000001 + +.section .rodata.cst32.CTR4BL, "aM", @progbits, 32 +.align 32 +CTR4BL: .octa 0x00000000000000000000000000000002 + .octa 0x00000000000000000000000000000003 + +.text + +ENTRY(chacha_2block_xor_avx2) + # %rdi: Input state matrix, s + # %rsi: up to 2 data blocks output, o + # %rdx: up to 2 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts two ChaCha blocks by loading the state + # matrix twice across four AVX registers. It performs matrix operations + # on four words in each matrix in parallel, but requires shuffling to + # rearrange the words after each round. + + vzeroupper + + # x0..3[0-2] = s0..3 + vbroadcasti128 0x00(%rdi),%ymm0 + vbroadcasti128 0x10(%rdi),%ymm1 + vbroadcasti128 0x20(%rdi),%ymm2 + vbroadcasti128 0x30(%rdi),%ymm3 + + vpaddd CTR2BL(%rip),%ymm3,%ymm3 + + vmovdqa %ymm0,%ymm8 + vmovdqa %ymm1,%ymm9 + vmovdqa %ymm2,%ymm10 + vmovdqa %ymm3,%ymm11 + + vmovdqa ROT8(%rip),%ymm4 + vmovdqa ROT16(%rip),%ymm5 + + mov %rcx,%rax + +.Ldoubleround: + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm5,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm6 + vpslld $12,%ymm6,%ymm6 + vpsrld $20,%ymm1,%ymm1 + vpor %ymm6,%ymm1,%ymm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm4,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm7 + vpslld $7,%ymm7,%ymm7 + vpsrld $25,%ymm1,%ymm1 + vpor %ymm7,%ymm1,%ymm1 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm1,%ymm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm3,%ymm3 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm5,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm6 + vpslld $12,%ymm6,%ymm6 + vpsrld $20,%ymm1,%ymm1 + vpor %ymm6,%ymm1,%ymm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm4,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm7 + vpslld $7,%ymm7,%ymm7 + vpsrld $25,%ymm1,%ymm1 + vpor %ymm7,%ymm1,%ymm1 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm1,%ymm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm3,%ymm3 + + sub $2,%r8d + jnz .Ldoubleround + + # o0 = i0 ^ (x0 + s0) + vpaddd %ymm8,%ymm0,%ymm7 + cmp $0x10,%rax + jl .Lxorpart2 + vpxor 0x00(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x00(%rsi) + vextracti128 $1,%ymm7,%xmm0 + # o1 = i1 ^ (x1 + s1) + vpaddd %ymm9,%ymm1,%ymm7 + cmp $0x20,%rax + jl .Lxorpart2 + vpxor 0x10(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x10(%rsi) + vextracti128 $1,%ymm7,%xmm1 + # o2 = i2 ^ (x2 + s2) + vpaddd %ymm10,%ymm2,%ymm7 + cmp $0x30,%rax + jl .Lxorpart2 + vpxor 0x20(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x20(%rsi) + vextracti128 $1,%ymm7,%xmm2 + # o3 = i3 ^ (x3 + s3) + vpaddd %ymm11,%ymm3,%ymm7 + cmp $0x40,%rax + jl .Lxorpart2 + vpxor 0x30(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x30(%rsi) + vextracti128 $1,%ymm7,%xmm3 + + # xor and write second block + vmovdqa %xmm0,%xmm7 + cmp $0x50,%rax + jl .Lxorpart2 + vpxor 0x40(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x40(%rsi) + + vmovdqa %xmm1,%xmm7 + cmp $0x60,%rax + jl .Lxorpart2 + vpxor 0x50(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x50(%rsi) + + vmovdqa %xmm2,%xmm7 + cmp $0x70,%rax + jl .Lxorpart2 + vpxor 0x60(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x60(%rsi) + + vmovdqa %xmm3,%xmm7 + cmp $0x80,%rax + jl .Lxorpart2 + vpxor 0x70(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x70(%rsi) + +.Ldone2: + vzeroupper + ret + +.Lxorpart2: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x0f,%r9 + jz .Ldone2 + and $~0x0f,%rax + + mov %rsi,%r11 + + lea 8(%rsp),%r10 + sub $0x10,%rsp + and $~31,%rsp + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + vpxor 0x00(%rsp),%xmm7,%xmm7 + vmovdqa %xmm7,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + lea -8(%r10),%rsp + jmp .Ldone2 + +ENDPROC(chacha_2block_xor_avx2) + +ENTRY(chacha_4block_xor_avx2) + # %rdi: Input state matrix, s + # %rsi: up to 4 data blocks output, o + # %rdx: up to 4 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts four ChaCha blocks by loading the state + # matrix four times across eight AVX registers. It performs matrix + # operations on four words in two matrices in parallel, sequentially + # to the operations on the four words of the other two matrices. The + # required word shuffling has a rather high latency, we can do the + # arithmetic on two matrix-pairs without much slowdown. + + vzeroupper + + # x0..3[0-4] = s0..3 + vbroadcasti128 0x00(%rdi),%ymm0 + vbroadcasti128 0x10(%rdi),%ymm1 + vbroadcasti128 0x20(%rdi),%ymm2 + vbroadcasti128 0x30(%rdi),%ymm3 + + vmovdqa %ymm0,%ymm4 + vmovdqa %ymm1,%ymm5 + vmovdqa %ymm2,%ymm6 + vmovdqa %ymm3,%ymm7 + + vpaddd CTR2BL(%rip),%ymm3,%ymm3 + vpaddd CTR4BL(%rip),%ymm7,%ymm7 + + vmovdqa %ymm0,%ymm11 + vmovdqa %ymm1,%ymm12 + vmovdqa %ymm2,%ymm13 + vmovdqa %ymm3,%ymm14 + vmovdqa %ymm7,%ymm15 + + vmovdqa ROT8(%rip),%ymm8 + vmovdqa ROT16(%rip),%ymm9 + + mov %rcx,%rax + +.Ldoubleround4: + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm9,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxor %ymm4,%ymm7,%ymm7 + vpshufb %ymm9,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm10 + vpslld $12,%ymm10,%ymm10 + vpsrld $20,%ymm1,%ymm1 + vpor %ymm10,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxor %ymm6,%ymm5,%ymm5 + vmovdqa %ymm5,%ymm10 + vpslld $12,%ymm10,%ymm10 + vpsrld $20,%ymm5,%ymm5 + vpor %ymm10,%ymm5,%ymm5 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm8,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxor %ymm4,%ymm7,%ymm7 + vpshufb %ymm8,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm10 + vpslld $7,%ymm10,%ymm10 + vpsrld $25,%ymm1,%ymm1 + vpor %ymm10,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxor %ymm6,%ymm5,%ymm5 + vmovdqa %ymm5,%ymm10 + vpslld $7,%ymm10,%ymm10 + vpsrld $25,%ymm5,%ymm5 + vpor %ymm10,%ymm5,%ymm5 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm1,%ymm1 + vpshufd $0x39,%ymm5,%ymm5 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + vpshufd $0x4e,%ymm6,%ymm6 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm3,%ymm3 + vpshufd $0x93,%ymm7,%ymm7 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm9,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxor %ymm4,%ymm7,%ymm7 + vpshufb %ymm9,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm10 + vpslld $12,%ymm10,%ymm10 + vpsrld $20,%ymm1,%ymm1 + vpor %ymm10,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxor %ymm6,%ymm5,%ymm5 + vmovdqa %ymm5,%ymm10 + vpslld $12,%ymm10,%ymm10 + vpsrld $20,%ymm5,%ymm5 + vpor %ymm10,%ymm5,%ymm5 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm8,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxor %ymm4,%ymm7,%ymm7 + vpshufb %ymm8,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm10 + vpslld $7,%ymm10,%ymm10 + vpsrld $25,%ymm1,%ymm1 + vpor %ymm10,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxor %ymm6,%ymm5,%ymm5 + vmovdqa %ymm5,%ymm10 + vpslld $7,%ymm10,%ymm10 + vpsrld $25,%ymm5,%ymm5 + vpor %ymm10,%ymm5,%ymm5 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm1,%ymm1 + vpshufd $0x93,%ymm5,%ymm5 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + vpshufd $0x4e,%ymm6,%ymm6 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm3,%ymm3 + vpshufd $0x39,%ymm7,%ymm7 + + sub $2,%r8d + jnz .Ldoubleround4 + + # o0 = i0 ^ (x0 + s0), first block + vpaddd %ymm11,%ymm0,%ymm10 + cmp $0x10,%rax + jl .Lxorpart4 + vpxor 0x00(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x00(%rsi) + vextracti128 $1,%ymm10,%xmm0 + # o1 = i1 ^ (x1 + s1), first block + vpaddd %ymm12,%ymm1,%ymm10 + cmp $0x20,%rax + jl .Lxorpart4 + vpxor 0x10(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x10(%rsi) + vextracti128 $1,%ymm10,%xmm1 + # o2 = i2 ^ (x2 + s2), first block + vpaddd %ymm13,%ymm2,%ymm10 + cmp $0x30,%rax + jl .Lxorpart4 + vpxor 0x20(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x20(%rsi) + vextracti128 $1,%ymm10,%xmm2 + # o3 = i3 ^ (x3 + s3), first block + vpaddd %ymm14,%ymm3,%ymm10 + cmp $0x40,%rax + jl .Lxorpart4 + vpxor 0x30(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x30(%rsi) + vextracti128 $1,%ymm10,%xmm3 + + # xor and write second block + vmovdqa %xmm0,%xmm10 + cmp $0x50,%rax + jl .Lxorpart4 + vpxor 0x40(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x40(%rsi) + + vmovdqa %xmm1,%xmm10 + cmp $0x60,%rax + jl .Lxorpart4 + vpxor 0x50(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x50(%rsi) + + vmovdqa %xmm2,%xmm10 + cmp $0x70,%rax + jl .Lxorpart4 + vpxor 0x60(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x60(%rsi) + + vmovdqa %xmm3,%xmm10 + cmp $0x80,%rax + jl .Lxorpart4 + vpxor 0x70(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x70(%rsi) + + # o0 = i0 ^ (x0 + s0), third block + vpaddd %ymm11,%ymm4,%ymm10 + cmp $0x90,%rax + jl .Lxorpart4 + vpxor 0x80(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x80(%rsi) + vextracti128 $1,%ymm10,%xmm4 + # o1 = i1 ^ (x1 + s1), third block + vpaddd %ymm12,%ymm5,%ymm10 + cmp $0xa0,%rax + jl .Lxorpart4 + vpxor 0x90(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x90(%rsi) + vextracti128 $1,%ymm10,%xmm5 + # o2 = i2 ^ (x2 + s2), third block + vpaddd %ymm13,%ymm6,%ymm10 + cmp $0xb0,%rax + jl .Lxorpart4 + vpxor 0xa0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xa0(%rsi) + vextracti128 $1,%ymm10,%xmm6 + # o3 = i3 ^ (x3 + s3), third block + vpaddd %ymm15,%ymm7,%ymm10 + cmp $0xc0,%rax + jl .Lxorpart4 + vpxor 0xb0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xb0(%rsi) + vextracti128 $1,%ymm10,%xmm7 + + # xor and write fourth block + vmovdqa %xmm4,%xmm10 + cmp $0xd0,%rax + jl .Lxorpart4 + vpxor 0xc0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xc0(%rsi) + + vmovdqa %xmm5,%xmm10 + cmp $0xe0,%rax + jl .Lxorpart4 + vpxor 0xd0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xd0(%rsi) + + vmovdqa %xmm6,%xmm10 + cmp $0xf0,%rax + jl .Lxorpart4 + vpxor 0xe0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xe0(%rsi) + + vmovdqa %xmm7,%xmm10 + cmp $0x100,%rax + jl .Lxorpart4 + vpxor 0xf0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xf0(%rsi) + +.Ldone4: + vzeroupper + ret + +.Lxorpart4: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x0f,%r9 + jz .Ldone4 + and $~0x0f,%rax + + mov %rsi,%r11 + + lea 8(%rsp),%r10 + sub $0x10,%rsp + and $~31,%rsp + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + vpxor 0x00(%rsp),%xmm10,%xmm10 + vmovdqa %xmm10,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + lea -8(%r10),%rsp + jmp .Ldone4 + +ENDPROC(chacha_4block_xor_avx2) + +ENTRY(chacha_8block_xor_avx2) + # %rdi: Input state matrix, s + # %rsi: up to 8 data blocks output, o + # %rdx: up to 8 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts eight consecutive ChaCha blocks by loading + # the state matrix in AVX registers eight times. As we need some + # scratch registers, we save the first four registers on the stack. The + # algorithm performs each operation on the corresponding word of each + # state matrix, hence requires no word shuffling. For final XORing step + # we transpose the matrix by interleaving 32-, 64- and then 128-bit + # words, which allows us to do XOR in AVX registers. 8/16-bit word + # rotation is done with the slightly better performing byte shuffling, + # 7/12-bit word rotation uses traditional shift+OR. + + vzeroupper + # 4 * 32 byte stack, 32-byte aligned + lea 8(%rsp),%r10 + and $~31, %rsp + sub $0x80, %rsp + mov %rcx,%rax + + # x0..15[0-7] = s[0..15] + vpbroadcastd 0x00(%rdi),%ymm0 + vpbroadcastd 0x04(%rdi),%ymm1 + vpbroadcastd 0x08(%rdi),%ymm2 + vpbroadcastd 0x0c(%rdi),%ymm3 + vpbroadcastd 0x10(%rdi),%ymm4 + vpbroadcastd 0x14(%rdi),%ymm5 + vpbroadcastd 0x18(%rdi),%ymm6 + vpbroadcastd 0x1c(%rdi),%ymm7 + vpbroadcastd 0x20(%rdi),%ymm8 + vpbroadcastd 0x24(%rdi),%ymm9 + vpbroadcastd 0x28(%rdi),%ymm10 + vpbroadcastd 0x2c(%rdi),%ymm11 + vpbroadcastd 0x30(%rdi),%ymm12 + vpbroadcastd 0x34(%rdi),%ymm13 + vpbroadcastd 0x38(%rdi),%ymm14 + vpbroadcastd 0x3c(%rdi),%ymm15 + # x0..3 on stack + vmovdqa %ymm0,0x00(%rsp) + vmovdqa %ymm1,0x20(%rsp) + vmovdqa %ymm2,0x40(%rsp) + vmovdqa %ymm3,0x60(%rsp) + + vmovdqa CTRINC(%rip),%ymm1 + vmovdqa ROT8(%rip),%ymm2 + vmovdqa ROT16(%rip),%ymm3 + + # x12 += counter values 0-3 + vpaddd %ymm1,%ymm12,%ymm12 + +.Ldoubleround8: + # x0 += x4, x12 = rotl32(x12 ^ x0, 16) + vpaddd 0x00(%rsp),%ymm4,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpxor %ymm0,%ymm12,%ymm12 + vpshufb %ymm3,%ymm12,%ymm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 16) + vpaddd 0x20(%rsp),%ymm5,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpxor %ymm0,%ymm13,%ymm13 + vpshufb %ymm3,%ymm13,%ymm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 16) + vpaddd 0x40(%rsp),%ymm6,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpxor %ymm0,%ymm14,%ymm14 + vpshufb %ymm3,%ymm14,%ymm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 16) + vpaddd 0x60(%rsp),%ymm7,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpxor %ymm0,%ymm15,%ymm15 + vpshufb %ymm3,%ymm15,%ymm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 12) + vpaddd %ymm12,%ymm8,%ymm8 + vpxor %ymm8,%ymm4,%ymm4 + vpslld $12,%ymm4,%ymm0 + vpsrld $20,%ymm4,%ymm4 + vpor %ymm0,%ymm4,%ymm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 12) + vpaddd %ymm13,%ymm9,%ymm9 + vpxor %ymm9,%ymm5,%ymm5 + vpslld $12,%ymm5,%ymm0 + vpsrld $20,%ymm5,%ymm5 + vpor %ymm0,%ymm5,%ymm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 12) + vpaddd %ymm14,%ymm10,%ymm10 + vpxor %ymm10,%ymm6,%ymm6 + vpslld $12,%ymm6,%ymm0 + vpsrld $20,%ymm6,%ymm6 + vpor %ymm0,%ymm6,%ymm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 12) + vpaddd %ymm15,%ymm11,%ymm11 + vpxor %ymm11,%ymm7,%ymm7 + vpslld $12,%ymm7,%ymm0 + vpsrld $20,%ymm7,%ymm7 + vpor %ymm0,%ymm7,%ymm7 + + # x0 += x4, x12 = rotl32(x12 ^ x0, 8) + vpaddd 0x00(%rsp),%ymm4,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpxor %ymm0,%ymm12,%ymm12 + vpshufb %ymm2,%ymm12,%ymm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 8) + vpaddd 0x20(%rsp),%ymm5,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpxor %ymm0,%ymm13,%ymm13 + vpshufb %ymm2,%ymm13,%ymm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 8) + vpaddd 0x40(%rsp),%ymm6,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpxor %ymm0,%ymm14,%ymm14 + vpshufb %ymm2,%ymm14,%ymm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 8) + vpaddd 0x60(%rsp),%ymm7,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpxor %ymm0,%ymm15,%ymm15 + vpshufb %ymm2,%ymm15,%ymm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 7) + vpaddd %ymm12,%ymm8,%ymm8 + vpxor %ymm8,%ymm4,%ymm4 + vpslld $7,%ymm4,%ymm0 + vpsrld $25,%ymm4,%ymm4 + vpor %ymm0,%ymm4,%ymm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 7) + vpaddd %ymm13,%ymm9,%ymm9 + vpxor %ymm9,%ymm5,%ymm5 + vpslld $7,%ymm5,%ymm0 + vpsrld $25,%ymm5,%ymm5 + vpor %ymm0,%ymm5,%ymm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 7) + vpaddd %ymm14,%ymm10,%ymm10 + vpxor %ymm10,%ymm6,%ymm6 + vpslld $7,%ymm6,%ymm0 + vpsrld $25,%ymm6,%ymm6 + vpor %ymm0,%ymm6,%ymm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 7) + vpaddd %ymm15,%ymm11,%ymm11 + vpxor %ymm11,%ymm7,%ymm7 + vpslld $7,%ymm7,%ymm0 + vpsrld $25,%ymm7,%ymm7 + vpor %ymm0,%ymm7,%ymm7 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 16) + vpaddd 0x00(%rsp),%ymm5,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpxor %ymm0,%ymm15,%ymm15 + vpshufb %ymm3,%ymm15,%ymm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 16)%ymm0 + vpaddd 0x20(%rsp),%ymm6,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpxor %ymm0,%ymm12,%ymm12 + vpshufb %ymm3,%ymm12,%ymm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 16) + vpaddd 0x40(%rsp),%ymm7,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpxor %ymm0,%ymm13,%ymm13 + vpshufb %ymm3,%ymm13,%ymm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 16) + vpaddd 0x60(%rsp),%ymm4,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpxor %ymm0,%ymm14,%ymm14 + vpshufb %ymm3,%ymm14,%ymm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 12) + vpaddd %ymm15,%ymm10,%ymm10 + vpxor %ymm10,%ymm5,%ymm5 + vpslld $12,%ymm5,%ymm0 + vpsrld $20,%ymm5,%ymm5 + vpor %ymm0,%ymm5,%ymm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 12) + vpaddd %ymm12,%ymm11,%ymm11 + vpxor %ymm11,%ymm6,%ymm6 + vpslld $12,%ymm6,%ymm0 + vpsrld $20,%ymm6,%ymm6 + vpor %ymm0,%ymm6,%ymm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 12) + vpaddd %ymm13,%ymm8,%ymm8 + vpxor %ymm8,%ymm7,%ymm7 + vpslld $12,%ymm7,%ymm0 + vpsrld $20,%ymm7,%ymm7 + vpor %ymm0,%ymm7,%ymm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 12) + vpaddd %ymm14,%ymm9,%ymm9 + vpxor %ymm9,%ymm4,%ymm4 + vpslld $12,%ymm4,%ymm0 + vpsrld $20,%ymm4,%ymm4 + vpor %ymm0,%ymm4,%ymm4 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 8) + vpaddd 0x00(%rsp),%ymm5,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpxor %ymm0,%ymm15,%ymm15 + vpshufb %ymm2,%ymm15,%ymm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 8) + vpaddd 0x20(%rsp),%ymm6,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpxor %ymm0,%ymm12,%ymm12 + vpshufb %ymm2,%ymm12,%ymm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 8) + vpaddd 0x40(%rsp),%ymm7,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpxor %ymm0,%ymm13,%ymm13 + vpshufb %ymm2,%ymm13,%ymm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 8) + vpaddd 0x60(%rsp),%ymm4,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpxor %ymm0,%ymm14,%ymm14 + vpshufb %ymm2,%ymm14,%ymm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 7) + vpaddd %ymm15,%ymm10,%ymm10 + vpxor %ymm10,%ymm5,%ymm5 + vpslld $7,%ymm5,%ymm0 + vpsrld $25,%ymm5,%ymm5 + vpor %ymm0,%ymm5,%ymm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 7) + vpaddd %ymm12,%ymm11,%ymm11 + vpxor %ymm11,%ymm6,%ymm6 + vpslld $7,%ymm6,%ymm0 + vpsrld $25,%ymm6,%ymm6 + vpor %ymm0,%ymm6,%ymm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 7) + vpaddd %ymm13,%ymm8,%ymm8 + vpxor %ymm8,%ymm7,%ymm7 + vpslld $7,%ymm7,%ymm0 + vpsrld $25,%ymm7,%ymm7 + vpor %ymm0,%ymm7,%ymm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 7) + vpaddd %ymm14,%ymm9,%ymm9 + vpxor %ymm9,%ymm4,%ymm4 + vpslld $7,%ymm4,%ymm0 + vpsrld $25,%ymm4,%ymm4 + vpor %ymm0,%ymm4,%ymm4 + + sub $2,%r8d + jnz .Ldoubleround8 + + # x0..15[0-3] += s[0..15] + vpbroadcastd 0x00(%rdi),%ymm0 + vpaddd 0x00(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpbroadcastd 0x04(%rdi),%ymm0 + vpaddd 0x20(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpbroadcastd 0x08(%rdi),%ymm0 + vpaddd 0x40(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpbroadcastd 0x0c(%rdi),%ymm0 + vpaddd 0x60(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpbroadcastd 0x10(%rdi),%ymm0 + vpaddd %ymm0,%ymm4,%ymm4 + vpbroadcastd 0x14(%rdi),%ymm0 + vpaddd %ymm0,%ymm5,%ymm5 + vpbroadcastd 0x18(%rdi),%ymm0 + vpaddd %ymm0,%ymm6,%ymm6 + vpbroadcastd 0x1c(%rdi),%ymm0 + vpaddd %ymm0,%ymm7,%ymm7 + vpbroadcastd 0x20(%rdi),%ymm0 + vpaddd %ymm0,%ymm8,%ymm8 + vpbroadcastd 0x24(%rdi),%ymm0 + vpaddd %ymm0,%ymm9,%ymm9 + vpbroadcastd 0x28(%rdi),%ymm0 + vpaddd %ymm0,%ymm10,%ymm10 + vpbroadcastd 0x2c(%rdi),%ymm0 + vpaddd %ymm0,%ymm11,%ymm11 + vpbroadcastd 0x30(%rdi),%ymm0 + vpaddd %ymm0,%ymm12,%ymm12 + vpbroadcastd 0x34(%rdi),%ymm0 + vpaddd %ymm0,%ymm13,%ymm13 + vpbroadcastd 0x38(%rdi),%ymm0 + vpaddd %ymm0,%ymm14,%ymm14 + vpbroadcastd 0x3c(%rdi),%ymm0 + vpaddd %ymm0,%ymm15,%ymm15 + + # x12 += counter values 0-3 + vpaddd %ymm1,%ymm12,%ymm12 + + # interleave 32-bit words in state n, n+1 + vmovdqa 0x00(%rsp),%ymm0 + vmovdqa 0x20(%rsp),%ymm1 + vpunpckldq %ymm1,%ymm0,%ymm2 + vpunpckhdq %ymm1,%ymm0,%ymm1 + vmovdqa %ymm2,0x00(%rsp) + vmovdqa %ymm1,0x20(%rsp) + vmovdqa 0x40(%rsp),%ymm0 + vmovdqa 0x60(%rsp),%ymm1 + vpunpckldq %ymm1,%ymm0,%ymm2 + vpunpckhdq %ymm1,%ymm0,%ymm1 + vmovdqa %ymm2,0x40(%rsp) + vmovdqa %ymm1,0x60(%rsp) + vmovdqa %ymm4,%ymm0 + vpunpckldq %ymm5,%ymm0,%ymm4 + vpunpckhdq %ymm5,%ymm0,%ymm5 + vmovdqa %ymm6,%ymm0 + vpunpckldq %ymm7,%ymm0,%ymm6 + vpunpckhdq %ymm7,%ymm0,%ymm7 + vmovdqa %ymm8,%ymm0 + vpunpckldq %ymm9,%ymm0,%ymm8 + vpunpckhdq %ymm9,%ymm0,%ymm9 + vmovdqa %ymm10,%ymm0 + vpunpckldq %ymm11,%ymm0,%ymm10 + vpunpckhdq %ymm11,%ymm0,%ymm11 + vmovdqa %ymm12,%ymm0 + vpunpckldq %ymm13,%ymm0,%ymm12 + vpunpckhdq %ymm13,%ymm0,%ymm13 + vmovdqa %ymm14,%ymm0 + vpunpckldq %ymm15,%ymm0,%ymm14 + vpunpckhdq %ymm15,%ymm0,%ymm15 + + # interleave 64-bit words in state n, n+2 + vmovdqa 0x00(%rsp),%ymm0 + vmovdqa 0x40(%rsp),%ymm2 + vpunpcklqdq %ymm2,%ymm0,%ymm1 + vpunpckhqdq %ymm2,%ymm0,%ymm2 + vmovdqa %ymm1,0x00(%rsp) + vmovdqa %ymm2,0x40(%rsp) + vmovdqa 0x20(%rsp),%ymm0 + vmovdqa 0x60(%rsp),%ymm2 + vpunpcklqdq %ymm2,%ymm0,%ymm1 + vpunpckhqdq %ymm2,%ymm0,%ymm2 + vmovdqa %ymm1,0x20(%rsp) + vmovdqa %ymm2,0x60(%rsp) + vmovdqa %ymm4,%ymm0 + vpunpcklqdq %ymm6,%ymm0,%ymm4 + vpunpckhqdq %ymm6,%ymm0,%ymm6 + vmovdqa %ymm5,%ymm0 + vpunpcklqdq %ymm7,%ymm0,%ymm5 + vpunpckhqdq %ymm7,%ymm0,%ymm7 + vmovdqa %ymm8,%ymm0 + vpunpcklqdq %ymm10,%ymm0,%ymm8 + vpunpckhqdq %ymm10,%ymm0,%ymm10 + vmovdqa %ymm9,%ymm0 + vpunpcklqdq %ymm11,%ymm0,%ymm9 + vpunpckhqdq %ymm11,%ymm0,%ymm11 + vmovdqa %ymm12,%ymm0 + vpunpcklqdq %ymm14,%ymm0,%ymm12 + vpunpckhqdq %ymm14,%ymm0,%ymm14 + vmovdqa %ymm13,%ymm0 + vpunpcklqdq %ymm15,%ymm0,%ymm13 + vpunpckhqdq %ymm15,%ymm0,%ymm15 + + # interleave 128-bit words in state n, n+4 + # xor/write first four blocks + vmovdqa 0x00(%rsp),%ymm1 + vperm2i128 $0x20,%ymm4,%ymm1,%ymm0 + cmp $0x0020,%rax + jl .Lxorpart8 + vpxor 0x0000(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0000(%rsi) + vperm2i128 $0x31,%ymm4,%ymm1,%ymm4 + + vperm2i128 $0x20,%ymm12,%ymm8,%ymm0 + cmp $0x0040,%rax + jl .Lxorpart8 + vpxor 0x0020(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0020(%rsi) + vperm2i128 $0x31,%ymm12,%ymm8,%ymm12 + + vmovdqa 0x40(%rsp),%ymm1 + vperm2i128 $0x20,%ymm6,%ymm1,%ymm0 + cmp $0x0060,%rax + jl .Lxorpart8 + vpxor 0x0040(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0040(%rsi) + vperm2i128 $0x31,%ymm6,%ymm1,%ymm6 + + vperm2i128 $0x20,%ymm14,%ymm10,%ymm0 + cmp $0x0080,%rax + jl .Lxorpart8 + vpxor 0x0060(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0060(%rsi) + vperm2i128 $0x31,%ymm14,%ymm10,%ymm14 + + vmovdqa 0x20(%rsp),%ymm1 + vperm2i128 $0x20,%ymm5,%ymm1,%ymm0 + cmp $0x00a0,%rax + jl .Lxorpart8 + vpxor 0x0080(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0080(%rsi) + vperm2i128 $0x31,%ymm5,%ymm1,%ymm5 + + vperm2i128 $0x20,%ymm13,%ymm9,%ymm0 + cmp $0x00c0,%rax + jl .Lxorpart8 + vpxor 0x00a0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x00a0(%rsi) + vperm2i128 $0x31,%ymm13,%ymm9,%ymm13 + + vmovdqa 0x60(%rsp),%ymm1 + vperm2i128 $0x20,%ymm7,%ymm1,%ymm0 + cmp $0x00e0,%rax + jl .Lxorpart8 + vpxor 0x00c0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x00c0(%rsi) + vperm2i128 $0x31,%ymm7,%ymm1,%ymm7 + + vperm2i128 $0x20,%ymm15,%ymm11,%ymm0 + cmp $0x0100,%rax + jl .Lxorpart8 + vpxor 0x00e0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x00e0(%rsi) + vperm2i128 $0x31,%ymm15,%ymm11,%ymm15 + + # xor remaining blocks, write to output + vmovdqa %ymm4,%ymm0 + cmp $0x0120,%rax + jl .Lxorpart8 + vpxor 0x0100(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0100(%rsi) + + vmovdqa %ymm12,%ymm0 + cmp $0x0140,%rax + jl .Lxorpart8 + vpxor 0x0120(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0120(%rsi) + + vmovdqa %ymm6,%ymm0 + cmp $0x0160,%rax + jl .Lxorpart8 + vpxor 0x0140(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0140(%rsi) + + vmovdqa %ymm14,%ymm0 + cmp $0x0180,%rax + jl .Lxorpart8 + vpxor 0x0160(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0160(%rsi) + + vmovdqa %ymm5,%ymm0 + cmp $0x01a0,%rax + jl .Lxorpart8 + vpxor 0x0180(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0180(%rsi) + + vmovdqa %ymm13,%ymm0 + cmp $0x01c0,%rax + jl .Lxorpart8 + vpxor 0x01a0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x01a0(%rsi) + + vmovdqa %ymm7,%ymm0 + cmp $0x01e0,%rax + jl .Lxorpart8 + vpxor 0x01c0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x01c0(%rsi) + + vmovdqa %ymm15,%ymm0 + cmp $0x0200,%rax + jl .Lxorpart8 + vpxor 0x01e0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x01e0(%rsi) + +.Ldone8: + vzeroupper + lea -8(%r10),%rsp + ret + +.Lxorpart8: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x1f,%r9 + jz .Ldone8 + and $~0x1f,%rax + + mov %rsi,%r11 + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + vpxor 0x00(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + jmp .Ldone8 + +ENDPROC(chacha_8block_xor_avx2) diff --git a/arch/x86/crypto/chacha-avx512vl-x86_64.S b/arch/x86/crypto/chacha-avx512vl-x86_64.S new file mode 100644 index 000000000000..848f9c75fd4f --- /dev/null +++ b/arch/x86/crypto/chacha-avx512vl-x86_64.S @@ -0,0 +1,836 @@ +/* SPDX-License-Identifier: GPL-2.0+ */ +/* + * ChaCha 256-bit cipher algorithm, x64 AVX-512VL functions + * + * Copyright (C) 2018 Martin Willi + */ + +#include <linux/linkage.h> + +.section .rodata.cst32.CTR2BL, "aM", @progbits, 32 +.align 32 +CTR2BL: .octa 0x00000000000000000000000000000000 + .octa 0x00000000000000000000000000000001 + +.section .rodata.cst32.CTR4BL, "aM", @progbits, 32 +.align 32 +CTR4BL: .octa 0x00000000000000000000000000000002 + .octa 0x00000000000000000000000000000003 + +.section .rodata.cst32.CTR8BL, "aM", @progbits, 32 +.align 32 +CTR8BL: .octa 0x00000003000000020000000100000000 + .octa 0x00000007000000060000000500000004 + +.text + +ENTRY(chacha_2block_xor_avx512vl) + # %rdi: Input state matrix, s + # %rsi: up to 2 data blocks output, o + # %rdx: up to 2 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts two ChaCha blocks by loading the state + # matrix twice across four AVX registers. It performs matrix operations + # on four words in each matrix in parallel, but requires shuffling to + # rearrange the words after each round. + + vzeroupper + + # x0..3[0-2] = s0..3 + vbroadcasti128 0x00(%rdi),%ymm0 + vbroadcasti128 0x10(%rdi),%ymm1 + vbroadcasti128 0x20(%rdi),%ymm2 + vbroadcasti128 0x30(%rdi),%ymm3 + + vpaddd CTR2BL(%rip),%ymm3,%ymm3 + + vmovdqa %ymm0,%ymm8 + vmovdqa %ymm1,%ymm9 + vmovdqa %ymm2,%ymm10 + vmovdqa %ymm3,%ymm11 + +.Ldoubleround: + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $16,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $12,%ymm1,%ymm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $8,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $7,%ymm1,%ymm1 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm1,%ymm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm3,%ymm3 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $16,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $12,%ymm1,%ymm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $8,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $7,%ymm1,%ymm1 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm1,%ymm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm3,%ymm3 + + sub $2,%r8d + jnz .Ldoubleround + + # o0 = i0 ^ (x0 + s0) + vpaddd %ymm8,%ymm0,%ymm7 + cmp $0x10,%rcx + jl .Lxorpart2 + vpxord 0x00(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x00(%rsi) + vextracti128 $1,%ymm7,%xmm0 + # o1 = i1 ^ (x1 + s1) + vpaddd %ymm9,%ymm1,%ymm7 + cmp $0x20,%rcx + jl .Lxorpart2 + vpxord 0x10(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x10(%rsi) + vextracti128 $1,%ymm7,%xmm1 + # o2 = i2 ^ (x2 + s2) + vpaddd %ymm10,%ymm2,%ymm7 + cmp $0x30,%rcx + jl .Lxorpart2 + vpxord 0x20(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x20(%rsi) + vextracti128 $1,%ymm7,%xmm2 + # o3 = i3 ^ (x3 + s3) + vpaddd %ymm11,%ymm3,%ymm7 + cmp $0x40,%rcx + jl .Lxorpart2 + vpxord 0x30(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x30(%rsi) + vextracti128 $1,%ymm7,%xmm3 + + # xor and write second block + vmovdqa %xmm0,%xmm7 + cmp $0x50,%rcx + jl .Lxorpart2 + vpxord 0x40(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x40(%rsi) + + vmovdqa %xmm1,%xmm7 + cmp $0x60,%rcx + jl .Lxorpart2 + vpxord 0x50(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x50(%rsi) + + vmovdqa %xmm2,%xmm7 + cmp $0x70,%rcx + jl .Lxorpart2 + vpxord 0x60(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x60(%rsi) + + vmovdqa %xmm3,%xmm7 + cmp $0x80,%rcx + jl .Lxorpart2 + vpxord 0x70(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x70(%rsi) + +.Ldone2: + vzeroupper + ret + +.Lxorpart2: + # xor remaining bytes from partial register into output + mov %rcx,%rax + and $0xf,%rcx + jz .Ldone8 + mov %rax,%r9 + and $~0xf,%r9 + + mov $1,%rax + shld %cl,%rax,%rax + sub $1,%rax + kmovq %rax,%k1 + + vmovdqu8 (%rdx,%r9),%xmm1{%k1}{z} + vpxord %xmm7,%xmm1,%xmm1 + vmovdqu8 %xmm1,(%rsi,%r9){%k1} + + jmp .Ldone2 + +ENDPROC(chacha_2block_xor_avx512vl) + +ENTRY(chacha_4block_xor_avx512vl) + # %rdi: Input state matrix, s + # %rsi: up to 4 data blocks output, o + # %rdx: up to 4 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts four ChaCha blocks by loading the state + # matrix four times across eight AVX registers. It performs matrix + # operations on four words in two matrices in parallel, sequentially + # to the operations on the four words of the other two matrices. The + # required word shuffling has a rather high latency, we can do the + # arithmetic on two matrix-pairs without much slowdown. + + vzeroupper + + # x0..3[0-4] = s0..3 + vbroadcasti128 0x00(%rdi),%ymm0 + vbroadcasti128 0x10(%rdi),%ymm1 + vbroadcasti128 0x20(%rdi),%ymm2 + vbroadcasti128 0x30(%rdi),%ymm3 + + vmovdqa %ymm0,%ymm4 + vmovdqa %ymm1,%ymm5 + vmovdqa %ymm2,%ymm6 + vmovdqa %ymm3,%ymm7 + + vpaddd CTR2BL(%rip),%ymm3,%ymm3 + vpaddd CTR4BL(%rip),%ymm7,%ymm7 + + vmovdqa %ymm0,%ymm11 + vmovdqa %ymm1,%ymm12 + vmovdqa %ymm2,%ymm13 + vmovdqa %ymm3,%ymm14 + vmovdqa %ymm7,%ymm15 + +.Ldoubleround4: + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $16,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxord %ymm4,%ymm7,%ymm7 + vprold $16,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $12,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxord %ymm6,%ymm5,%ymm5 + vprold $12,%ymm5,%ymm5 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $8,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxord %ymm4,%ymm7,%ymm7 + vprold $8,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $7,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxord %ymm6,%ymm5,%ymm5 + vprold $7,%ymm5,%ymm5 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm1,%ymm1 + vpshufd $0x39,%ymm5,%ymm5 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + vpshufd $0x4e,%ymm6,%ymm6 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm3,%ymm3 + vpshufd $0x93,%ymm7,%ymm7 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $16,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxord %ymm4,%ymm7,%ymm7 + vprold $16,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $12,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxord %ymm6,%ymm5,%ymm5 + vprold $12,%ymm5,%ymm5 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $8,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxord %ymm4,%ymm7,%ymm7 + vprold $8,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $7,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxord %ymm6,%ymm5,%ymm5 + vprold $7,%ymm5,%ymm5 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm1,%ymm1 + vpshufd $0x93,%ymm5,%ymm5 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + vpshufd $0x4e,%ymm6,%ymm6 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm3,%ymm3 + vpshufd $0x39,%ymm7,%ymm7 + + sub $2,%r8d + jnz .Ldoubleround4 + + # o0 = i0 ^ (x0 + s0), first block + vpaddd %ymm11,%ymm0,%ymm10 + cmp $0x10,%rcx + jl .Lxorpart4 + vpxord 0x00(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x00(%rsi) + vextracti128 $1,%ymm10,%xmm0 + # o1 = i1 ^ (x1 + s1), first block + vpaddd %ymm12,%ymm1,%ymm10 + cmp $0x20,%rcx + jl .Lxorpart4 + vpxord 0x10(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x10(%rsi) + vextracti128 $1,%ymm10,%xmm1 + # o2 = i2 ^ (x2 + s2), first block + vpaddd %ymm13,%ymm2,%ymm10 + cmp $0x30,%rcx + jl .Lxorpart4 + vpxord 0x20(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x20(%rsi) + vextracti128 $1,%ymm10,%xmm2 + # o3 = i3 ^ (x3 + s3), first block + vpaddd %ymm14,%ymm3,%ymm10 + cmp $0x40,%rcx + jl .Lxorpart4 + vpxord 0x30(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x30(%rsi) + vextracti128 $1,%ymm10,%xmm3 + + # xor and write second block + vmovdqa %xmm0,%xmm10 + cmp $0x50,%rcx + jl .Lxorpart4 + vpxord 0x40(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x40(%rsi) + + vmovdqa %xmm1,%xmm10 + cmp $0x60,%rcx + jl .Lxorpart4 + vpxord 0x50(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x50(%rsi) + + vmovdqa %xmm2,%xmm10 + cmp $0x70,%rcx + jl .Lxorpart4 + vpxord 0x60(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x60(%rsi) + + vmovdqa %xmm3,%xmm10 + cmp $0x80,%rcx + jl .Lxorpart4 + vpxord 0x70(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x70(%rsi) + + # o0 = i0 ^ (x0 + s0), third block + vpaddd %ymm11,%ymm4,%ymm10 + cmp $0x90,%rcx + jl .Lxorpart4 + vpxord 0x80(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x80(%rsi) + vextracti128 $1,%ymm10,%xmm4 + # o1 = i1 ^ (x1 + s1), third block + vpaddd %ymm12,%ymm5,%ymm10 + cmp $0xa0,%rcx + jl .Lxorpart4 + vpxord 0x90(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x90(%rsi) + vextracti128 $1,%ymm10,%xmm5 + # o2 = i2 ^ (x2 + s2), third block + vpaddd %ymm13,%ymm6,%ymm10 + cmp $0xb0,%rcx + jl .Lxorpart4 + vpxord 0xa0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xa0(%rsi) + vextracti128 $1,%ymm10,%xmm6 + # o3 = i3 ^ (x3 + s3), third block + vpaddd %ymm15,%ymm7,%ymm10 + cmp $0xc0,%rcx + jl .Lxorpart4 + vpxord 0xb0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xb0(%rsi) + vextracti128 $1,%ymm10,%xmm7 + + # xor and write fourth block + vmovdqa %xmm4,%xmm10 + cmp $0xd0,%rcx + jl .Lxorpart4 + vpxord 0xc0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xc0(%rsi) + + vmovdqa %xmm5,%xmm10 + cmp $0xe0,%rcx + jl .Lxorpart4 + vpxord 0xd0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xd0(%rsi) + + vmovdqa %xmm6,%xmm10 + cmp $0xf0,%rcx + jl .Lxorpart4 + vpxord 0xe0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xe0(%rsi) + + vmovdqa %xmm7,%xmm10 + cmp $0x100,%rcx + jl .Lxorpart4 + vpxord 0xf0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xf0(%rsi) + +.Ldone4: + vzeroupper + ret + +.Lxorpart4: + # xor remaining bytes from partial register into output + mov %rcx,%rax + and $0xf,%rcx + jz .Ldone8 + mov %rax,%r9 + and $~0xf,%r9 + + mov $1,%rax + shld %cl,%rax,%rax + sub $1,%rax + kmovq %rax,%k1 + + vmovdqu8 (%rdx,%r9),%xmm1{%k1}{z} + vpxord %xmm10,%xmm1,%xmm1 + vmovdqu8 %xmm1,(%rsi,%r9){%k1} + + jmp .Ldone4 + +ENDPROC(chacha_4block_xor_avx512vl) + +ENTRY(chacha_8block_xor_avx512vl) + # %rdi: Input state matrix, s + # %rsi: up to 8 data blocks output, o + # %rdx: up to 8 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts eight consecutive ChaCha blocks by loading + # the state matrix in AVX registers eight times. Compared to AVX2, this + # mostly benefits from the new rotate instructions in VL and the + # additional registers. + + vzeroupper + + # x0..15[0-7] = s[0..15] + vpbroadcastd 0x00(%rdi),%ymm0 + vpbroadcastd 0x04(%rdi),%ymm1 + vpbroadcastd 0x08(%rdi),%ymm2 + vpbroadcastd 0x0c(%rdi),%ymm3 + vpbroadcastd 0x10(%rdi),%ymm4 + vpbroadcastd 0x14(%rdi),%ymm5 + vpbroadcastd 0x18(%rdi),%ymm6 + vpbroadcastd 0x1c(%rdi),%ymm7 + vpbroadcastd 0x20(%rdi),%ymm8 + vpbroadcastd 0x24(%rdi),%ymm9 + vpbroadcastd 0x28(%rdi),%ymm10 + vpbroadcastd 0x2c(%rdi),%ymm11 + vpbroadcastd 0x30(%rdi),%ymm12 + vpbroadcastd 0x34(%rdi),%ymm13 + vpbroadcastd 0x38(%rdi),%ymm14 + vpbroadcastd 0x3c(%rdi),%ymm15 + + # x12 += counter values 0-3 + vpaddd CTR8BL(%rip),%ymm12,%ymm12 + + vmovdqa64 %ymm0,%ymm16 + vmovdqa64 %ymm1,%ymm17 + vmovdqa64 %ymm2,%ymm18 + vmovdqa64 %ymm3,%ymm19 + vmovdqa64 %ymm4,%ymm20 + vmovdqa64 %ymm5,%ymm21 + vmovdqa64 %ymm6,%ymm22 + vmovdqa64 %ymm7,%ymm23 + vmovdqa64 %ymm8,%ymm24 + vmovdqa64 %ymm9,%ymm25 + vmovdqa64 %ymm10,%ymm26 + vmovdqa64 %ymm11,%ymm27 + vmovdqa64 %ymm12,%ymm28 + vmovdqa64 %ymm13,%ymm29 + vmovdqa64 %ymm14,%ymm30 + vmovdqa64 %ymm15,%ymm31 + +.Ldoubleround8: + # x0 += x4, x12 = rotl32(x12 ^ x0, 16) + vpaddd %ymm0,%ymm4,%ymm0 + vpxord %ymm0,%ymm12,%ymm12 + vprold $16,%ymm12,%ymm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 16) + vpaddd %ymm1,%ymm5,%ymm1 + vpxord %ymm1,%ymm13,%ymm13 + vprold $16,%ymm13,%ymm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 16) + vpaddd %ymm2,%ymm6,%ymm2 + vpxord %ymm2,%ymm14,%ymm14 + vprold $16,%ymm14,%ymm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 16) + vpaddd %ymm3,%ymm7,%ymm3 + vpxord %ymm3,%ymm15,%ymm15 + vprold $16,%ymm15,%ymm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 12) + vpaddd %ymm12,%ymm8,%ymm8 + vpxord %ymm8,%ymm4,%ymm4 + vprold $12,%ymm4,%ymm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 12) + vpaddd %ymm13,%ymm9,%ymm9 + vpxord %ymm9,%ymm5,%ymm5 + vprold $12,%ymm5,%ymm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 12) + vpaddd %ymm14,%ymm10,%ymm10 + vpxord %ymm10,%ymm6,%ymm6 + vprold $12,%ymm6,%ymm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 12) + vpaddd %ymm15,%ymm11,%ymm11 + vpxord %ymm11,%ymm7,%ymm7 + vprold $12,%ymm7,%ymm7 + + # x0 += x4, x12 = rotl32(x12 ^ x0, 8) + vpaddd %ymm0,%ymm4,%ymm0 + vpxord %ymm0,%ymm12,%ymm12 + vprold $8,%ymm12,%ymm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 8) + vpaddd %ymm1,%ymm5,%ymm1 + vpxord %ymm1,%ymm13,%ymm13 + vprold $8,%ymm13,%ymm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 8) + vpaddd %ymm2,%ymm6,%ymm2 + vpxord %ymm2,%ymm14,%ymm14 + vprold $8,%ymm14,%ymm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 8) + vpaddd %ymm3,%ymm7,%ymm3 + vpxord %ymm3,%ymm15,%ymm15 + vprold $8,%ymm15,%ymm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 7) + vpaddd %ymm12,%ymm8,%ymm8 + vpxord %ymm8,%ymm4,%ymm4 + vprold $7,%ymm4,%ymm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 7) + vpaddd %ymm13,%ymm9,%ymm9 + vpxord %ymm9,%ymm5,%ymm5 + vprold $7,%ymm5,%ymm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 7) + vpaddd %ymm14,%ymm10,%ymm10 + vpxord %ymm10,%ymm6,%ymm6 + vprold $7,%ymm6,%ymm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 7) + vpaddd %ymm15,%ymm11,%ymm11 + vpxord %ymm11,%ymm7,%ymm7 + vprold $7,%ymm7,%ymm7 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 16) + vpaddd %ymm0,%ymm5,%ymm0 + vpxord %ymm0,%ymm15,%ymm15 + vprold $16,%ymm15,%ymm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 16) + vpaddd %ymm1,%ymm6,%ymm1 + vpxord %ymm1,%ymm12,%ymm12 + vprold $16,%ymm12,%ymm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 16) + vpaddd %ymm2,%ymm7,%ymm2 + vpxord %ymm2,%ymm13,%ymm13 + vprold $16,%ymm13,%ymm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 16) + vpaddd %ymm3,%ymm4,%ymm3 + vpxord %ymm3,%ymm14,%ymm14 + vprold $16,%ymm14,%ymm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 12) + vpaddd %ymm15,%ymm10,%ymm10 + vpxord %ymm10,%ymm5,%ymm5 + vprold $12,%ymm5,%ymm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 12) + vpaddd %ymm12,%ymm11,%ymm11 + vpxord %ymm11,%ymm6,%ymm6 + vprold $12,%ymm6,%ymm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 12) + vpaddd %ymm13,%ymm8,%ymm8 + vpxord %ymm8,%ymm7,%ymm7 + vprold $12,%ymm7,%ymm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 12) + vpaddd %ymm14,%ymm9,%ymm9 + vpxord %ymm9,%ymm4,%ymm4 + vprold $12,%ymm4,%ymm4 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 8) + vpaddd %ymm0,%ymm5,%ymm0 + vpxord %ymm0,%ymm15,%ymm15 + vprold $8,%ymm15,%ymm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 8) + vpaddd %ymm1,%ymm6,%ymm1 + vpxord %ymm1,%ymm12,%ymm12 + vprold $8,%ymm12,%ymm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 8) + vpaddd %ymm2,%ymm7,%ymm2 + vpxord %ymm2,%ymm13,%ymm13 + vprold $8,%ymm13,%ymm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 8) + vpaddd %ymm3,%ymm4,%ymm3 + vpxord %ymm3,%ymm14,%ymm14 + vprold $8,%ymm14,%ymm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 7) + vpaddd %ymm15,%ymm10,%ymm10 + vpxord %ymm10,%ymm5,%ymm5 + vprold $7,%ymm5,%ymm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 7) + vpaddd %ymm12,%ymm11,%ymm11 + vpxord %ymm11,%ymm6,%ymm6 + vprold $7,%ymm6,%ymm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 7) + vpaddd %ymm13,%ymm8,%ymm8 + vpxord %ymm8,%ymm7,%ymm7 + vprold $7,%ymm7,%ymm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 7) + vpaddd %ymm14,%ymm9,%ymm9 + vpxord %ymm9,%ymm4,%ymm4 + vprold $7,%ymm4,%ymm4 + + sub $2,%r8d + jnz .Ldoubleround8 + + # x0..15[0-3] += s[0..15] + vpaddd %ymm16,%ymm0,%ymm0 + vpaddd %ymm17,%ymm1,%ymm1 + vpaddd %ymm18,%ymm2,%ymm2 + vpaddd %ymm19,%ymm3,%ymm3 + vpaddd %ymm20,%ymm4,%ymm4 + vpaddd %ymm21,%ymm5,%ymm5 + vpaddd %ymm22,%ymm6,%ymm6 + vpaddd %ymm23,%ymm7,%ymm7 + vpaddd %ymm24,%ymm8,%ymm8 + vpaddd %ymm25,%ymm9,%ymm9 + vpaddd %ymm26,%ymm10,%ymm10 + vpaddd %ymm27,%ymm11,%ymm11 + vpaddd %ymm28,%ymm12,%ymm12 + vpaddd %ymm29,%ymm13,%ymm13 + vpaddd %ymm30,%ymm14,%ymm14 + vpaddd %ymm31,%ymm15,%ymm15 + + # interleave 32-bit words in state n, n+1 + vpunpckldq %ymm1,%ymm0,%ymm16 + vpunpckhdq %ymm1,%ymm0,%ymm17 + vpunpckldq %ymm3,%ymm2,%ymm18 + vpunpckhdq %ymm3,%ymm2,%ymm19 + vpunpckldq %ymm5,%ymm4,%ymm20 + vpunpckhdq %ymm5,%ymm4,%ymm21 + vpunpckldq %ymm7,%ymm6,%ymm22 + vpunpckhdq %ymm7,%ymm6,%ymm23 + vpunpckldq %ymm9,%ymm8,%ymm24 + vpunpckhdq %ymm9,%ymm8,%ymm25 + vpunpckldq %ymm11,%ymm10,%ymm26 + vpunpckhdq %ymm11,%ymm10,%ymm27 + vpunpckldq %ymm13,%ymm12,%ymm28 + vpunpckhdq %ymm13,%ymm12,%ymm29 + vpunpckldq %ymm15,%ymm14,%ymm30 + vpunpckhdq %ymm15,%ymm14,%ymm31 + + # interleave 64-bit words in state n, n+2 + vpunpcklqdq %ymm18,%ymm16,%ymm0 + vpunpcklqdq %ymm19,%ymm17,%ymm1 + vpunpckhqdq %ymm18,%ymm16,%ymm2 + vpunpckhqdq %ymm19,%ymm17,%ymm3 + vpunpcklqdq %ymm22,%ymm20,%ymm4 + vpunpcklqdq %ymm23,%ymm21,%ymm5 + vpunpckhqdq %ymm22,%ymm20,%ymm6 + vpunpckhqdq %ymm23,%ymm21,%ymm7 + vpunpcklqdq %ymm26,%ymm24,%ymm8 + vpunpcklqdq %ymm27,%ymm25,%ymm9 + vpunpckhqdq %ymm26,%ymm24,%ymm10 + vpunpckhqdq %ymm27,%ymm25,%ymm11 + vpunpcklqdq %ymm30,%ymm28,%ymm12 + vpunpcklqdq %ymm31,%ymm29,%ymm13 + vpunpckhqdq %ymm30,%ymm28,%ymm14 + vpunpckhqdq %ymm31,%ymm29,%ymm15 + + # interleave 128-bit words in state n, n+4 + # xor/write first four blocks + vmovdqa64 %ymm0,%ymm16 + vperm2i128 $0x20,%ymm4,%ymm0,%ymm0 + cmp $0x0020,%rcx + jl .Lxorpart8 + vpxord 0x0000(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0000(%rsi) + vmovdqa64 %ymm16,%ymm0 + vperm2i128 $0x31,%ymm4,%ymm0,%ymm4 + + vperm2i128 $0x20,%ymm12,%ymm8,%ymm0 + cmp $0x0040,%rcx + jl .Lxorpart8 + vpxord 0x0020(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0020(%rsi) + vperm2i128 $0x31,%ymm12,%ymm8,%ymm12 + + vperm2i128 $0x20,%ymm6,%ymm2,%ymm0 + cmp $0x0060,%rcx + jl .Lxorpart8 + vpxord 0x0040(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0040(%rsi) + vperm2i128 $0x31,%ymm6,%ymm2,%ymm6 + + vperm2i128 $0x20,%ymm14,%ymm10,%ymm0 + cmp $0x0080,%rcx + jl .Lxorpart8 + vpxord 0x0060(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0060(%rsi) + vperm2i128 $0x31,%ymm14,%ymm10,%ymm14 + + vperm2i128 $0x20,%ymm5,%ymm1,%ymm0 + cmp $0x00a0,%rcx + jl .Lxorpart8 + vpxord 0x0080(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0080(%rsi) + vperm2i128 $0x31,%ymm5,%ymm1,%ymm5 + + vperm2i128 $0x20,%ymm13,%ymm9,%ymm0 + cmp $0x00c0,%rcx + jl .Lxorpart8 + vpxord 0x00a0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x00a0(%rsi) + vperm2i128 $0x31,%ymm13,%ymm9,%ymm13 + + vperm2i128 $0x20,%ymm7,%ymm3,%ymm0 + cmp $0x00e0,%rcx + jl .Lxorpart8 + vpxord 0x00c0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x00c0(%rsi) + vperm2i128 $0x31,%ymm7,%ymm3,%ymm7 + + vperm2i128 $0x20,%ymm15,%ymm11,%ymm0 + cmp $0x0100,%rcx + jl .Lxorpart8 + vpxord 0x00e0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x00e0(%rsi) + vperm2i128 $0x31,%ymm15,%ymm11,%ymm15 + + # xor remaining blocks, write to output + vmovdqa64 %ymm4,%ymm0 + cmp $0x0120,%rcx + jl .Lxorpart8 + vpxord 0x0100(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0100(%rsi) + + vmovdqa64 %ymm12,%ymm0 + cmp $0x0140,%rcx + jl .Lxorpart8 + vpxord 0x0120(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0120(%rsi) + + vmovdqa64 %ymm6,%ymm0 + cmp $0x0160,%rcx + jl .Lxorpart8 + vpxord 0x0140(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0140(%rsi) + + vmovdqa64 %ymm14,%ymm0 + cmp $0x0180,%rcx + jl .Lxorpart8 + vpxord 0x0160(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0160(%rsi) + + vmovdqa64 %ymm5,%ymm0 + cmp $0x01a0,%rcx + jl .Lxorpart8 + vpxord 0x0180(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0180(%rsi) + + vmovdqa64 %ymm13,%ymm0 + cmp $0x01c0,%rcx + jl .Lxorpart8 + vpxord 0x01a0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x01a0(%rsi) + + vmovdqa64 %ymm7,%ymm0 + cmp $0x01e0,%rcx + jl .Lxorpart8 + vpxord 0x01c0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x01c0(%rsi) + + vmovdqa64 %ymm15,%ymm0 + cmp $0x0200,%rcx + jl .Lxorpart8 + vpxord 0x01e0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x01e0(%rsi) + +.Ldone8: + vzeroupper + ret + +.Lxorpart8: + # xor remaining bytes from partial register into output + mov %rcx,%rax + and $0x1f,%rcx + jz .Ldone8 + mov %rax,%r9 + and $~0x1f,%r9 + + mov $1,%rax + shld %cl,%rax,%rax + sub $1,%rax + kmovq %rax,%k1 + + vmovdqu8 (%rdx,%r9),%ymm1{%k1}{z} + vpxord %ymm0,%ymm1,%ymm1 + vmovdqu8 %ymm1,(%rsi,%r9){%k1} + + jmp .Ldone8 + +ENDPROC(chacha_8block_xor_avx512vl) diff --git a/arch/x86/crypto/chacha20-ssse3-x86_64.S b/arch/x86/crypto/chacha-ssse3-x86_64.S index 512a2b500fd1..c05a7a963dc3 100644 --- a/arch/x86/crypto/chacha20-ssse3-x86_64.S +++ b/arch/x86/crypto/chacha-ssse3-x86_64.S @@ -1,5 +1,5 @@ /* - * ChaCha20 256-bit cipher algorithm, RFC7539, x64 SSSE3 functions + * ChaCha 256-bit cipher algorithm, x64 SSSE3 functions * * Copyright (C) 2015 Martin Willi * @@ -10,6 +10,7 @@ */ #include <linux/linkage.h> +#include <asm/frame.h> .section .rodata.cst16.ROT8, "aM", @progbits, 16 .align 16 @@ -23,35 +24,25 @@ CTRINC: .octa 0x00000003000000020000000100000000 .text -ENTRY(chacha20_block_xor_ssse3) - # %rdi: Input state matrix, s - # %rsi: 1 data block output, o - # %rdx: 1 data block input, i - - # This function encrypts one ChaCha20 block by loading the state matrix - # in four SSE registers. It performs matrix operation on four words in - # parallel, but requireds shuffling to rearrange the words after each - # round. 8/16-bit word rotation is done with the slightly better - # performing SSSE3 byte shuffling, 7/12-bit word rotation uses - # traditional shift+OR. - - # x0..3 = s0..3 - movdqa 0x00(%rdi),%xmm0 - movdqa 0x10(%rdi),%xmm1 - movdqa 0x20(%rdi),%xmm2 - movdqa 0x30(%rdi),%xmm3 - movdqa %xmm0,%xmm8 - movdqa %xmm1,%xmm9 - movdqa %xmm2,%xmm10 - movdqa %xmm3,%xmm11 +/* + * chacha_permute - permute one block + * + * Permute one 64-byte block where the state matrix is in %xmm0-%xmm3. This + * function performs matrix operations on four words in parallel, but requires + * shuffling to rearrange the words after each round. 8/16-bit word rotation is + * done with the slightly better performing SSSE3 byte shuffling, 7/12-bit word + * rotation uses traditional shift+OR. + * + * The round count is given in %r8d. + * + * Clobbers: %r8d, %xmm4-%xmm7 + */ +chacha_permute: movdqa ROT8(%rip),%xmm4 movdqa ROT16(%rip),%xmm5 - mov $10,%ecx - .Ldoubleround: - # x0 += x1, x3 = rotl32(x3 ^ x0, 16) paddd %xmm1,%xmm0 pxor %xmm0,%xmm3 @@ -118,39 +109,129 @@ ENTRY(chacha20_block_xor_ssse3) # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) pshufd $0x39,%xmm3,%xmm3 - dec %ecx + sub $2,%r8d jnz .Ldoubleround + ret +ENDPROC(chacha_permute) + +ENTRY(chacha_block_xor_ssse3) + # %rdi: Input state matrix, s + # %rsi: up to 1 data block output, o + # %rdx: up to 1 data block input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + FRAME_BEGIN + + # x0..3 = s0..3 + movdqa 0x00(%rdi),%xmm0 + movdqa 0x10(%rdi),%xmm1 + movdqa 0x20(%rdi),%xmm2 + movdqa 0x30(%rdi),%xmm3 + movdqa %xmm0,%xmm8 + movdqa %xmm1,%xmm9 + movdqa %xmm2,%xmm10 + movdqa %xmm3,%xmm11 + + mov %rcx,%rax + call chacha_permute + # o0 = i0 ^ (x0 + s0) - movdqu 0x00(%rdx),%xmm4 paddd %xmm8,%xmm0 + cmp $0x10,%rax + jl .Lxorpart + movdqu 0x00(%rdx),%xmm4 pxor %xmm4,%xmm0 movdqu %xmm0,0x00(%rsi) # o1 = i1 ^ (x1 + s1) - movdqu 0x10(%rdx),%xmm5 paddd %xmm9,%xmm1 - pxor %xmm5,%xmm1 - movdqu %xmm1,0x10(%rsi) + movdqa %xmm1,%xmm0 + cmp $0x20,%rax + jl .Lxorpart + movdqu 0x10(%rdx),%xmm0 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x10(%rsi) # o2 = i2 ^ (x2 + s2) - movdqu 0x20(%rdx),%xmm6 paddd %xmm10,%xmm2 - pxor %xmm6,%xmm2 - movdqu %xmm2,0x20(%rsi) + movdqa %xmm2,%xmm0 + cmp $0x30,%rax + jl .Lxorpart + movdqu 0x20(%rdx),%xmm0 + pxor %xmm2,%xmm0 + movdqu %xmm0,0x20(%rsi) # o3 = i3 ^ (x3 + s3) - movdqu 0x30(%rdx),%xmm7 paddd %xmm11,%xmm3 - pxor %xmm7,%xmm3 - movdqu %xmm3,0x30(%rsi) + movdqa %xmm3,%xmm0 + cmp $0x40,%rax + jl .Lxorpart + movdqu 0x30(%rdx),%xmm0 + pxor %xmm3,%xmm0 + movdqu %xmm0,0x30(%rsi) + +.Ldone: + FRAME_END + ret + +.Lxorpart: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x0f,%r9 + jz .Ldone + and $~0x0f,%rax + + mov %rsi,%r11 + + lea 8(%rsp),%r10 + sub $0x10,%rsp + and $~31,%rsp + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + pxor 0x00(%rsp),%xmm0 + movdqa %xmm0,0x00(%rsp) + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + lea -8(%r10),%rsp + jmp .Ldone + +ENDPROC(chacha_block_xor_ssse3) + +ENTRY(hchacha_block_ssse3) + # %rdi: Input state matrix, s + # %rsi: output (8 32-bit words) + # %edx: nrounds + FRAME_BEGIN + + movdqa 0x00(%rdi),%xmm0 + movdqa 0x10(%rdi),%xmm1 + movdqa 0x20(%rdi),%xmm2 + movdqa 0x30(%rdi),%xmm3 + + mov %edx,%r8d + call chacha_permute + + movdqu %xmm0,0x00(%rsi) + movdqu %xmm3,0x10(%rsi) + + FRAME_END ret -ENDPROC(chacha20_block_xor_ssse3) +ENDPROC(hchacha_block_ssse3) -ENTRY(chacha20_4block_xor_ssse3) +ENTRY(chacha_4block_xor_ssse3) # %rdi: Input state matrix, s - # %rsi: 4 data blocks output, o - # %rdx: 4 data blocks input, i + # %rsi: up to 4 data blocks output, o + # %rdx: up to 4 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds - # This function encrypts four consecutive ChaCha20 blocks by loading the + # This function encrypts four consecutive ChaCha blocks by loading the # the state matrix in SSE registers four times. As we need some scratch # registers, we save the first four registers on the stack. The # algorithm performs each operation on the corresponding word of each @@ -163,6 +244,7 @@ ENTRY(chacha20_4block_xor_ssse3) lea 8(%rsp),%r10 sub $0x80,%rsp and $~63,%rsp + mov %rcx,%rax # x0..15[0-3] = s0..3[0..3] movq 0x00(%rdi),%xmm1 @@ -202,8 +284,6 @@ ENTRY(chacha20_4block_xor_ssse3) # x12 += counter values 0-3 paddd %xmm1,%xmm12 - mov $10,%ecx - .Ldoubleround4: # x0 += x4, x12 = rotl32(x12 ^ x0, 16) movdqa 0x00(%rsp),%xmm0 @@ -421,7 +501,7 @@ ENTRY(chacha20_4block_xor_ssse3) psrld $25,%xmm4 por %xmm0,%xmm4 - dec %ecx + sub $2,%r8d jnz .Ldoubleround4 # x0[0-3] += s0[0] @@ -573,58 +653,143 @@ ENTRY(chacha20_4block_xor_ssse3) # xor with corresponding input, write to output movdqa 0x00(%rsp),%xmm0 + cmp $0x10,%rax + jl .Lxorpart4 movdqu 0x00(%rdx),%xmm1 pxor %xmm1,%xmm0 movdqu %xmm0,0x00(%rsi) - movdqa 0x10(%rsp),%xmm0 - movdqu 0x80(%rdx),%xmm1 + + movdqu %xmm4,%xmm0 + cmp $0x20,%rax + jl .Lxorpart4 + movdqu 0x10(%rdx),%xmm1 pxor %xmm1,%xmm0 - movdqu %xmm0,0x80(%rsi) + movdqu %xmm0,0x10(%rsi) + + movdqu %xmm8,%xmm0 + cmp $0x30,%rax + jl .Lxorpart4 + movdqu 0x20(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x20(%rsi) + + movdqu %xmm12,%xmm0 + cmp $0x40,%rax + jl .Lxorpart4 + movdqu 0x30(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x30(%rsi) + movdqa 0x20(%rsp),%xmm0 + cmp $0x50,%rax + jl .Lxorpart4 movdqu 0x40(%rdx),%xmm1 pxor %xmm1,%xmm0 movdqu %xmm0,0x40(%rsi) + + movdqu %xmm6,%xmm0 + cmp $0x60,%rax + jl .Lxorpart4 + movdqu 0x50(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x50(%rsi) + + movdqu %xmm10,%xmm0 + cmp $0x70,%rax + jl .Lxorpart4 + movdqu 0x60(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x60(%rsi) + + movdqu %xmm14,%xmm0 + cmp $0x80,%rax + jl .Lxorpart4 + movdqu 0x70(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x70(%rsi) + + movdqa 0x10(%rsp),%xmm0 + cmp $0x90,%rax + jl .Lxorpart4 + movdqu 0x80(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x80(%rsi) + + movdqu %xmm5,%xmm0 + cmp $0xa0,%rax + jl .Lxorpart4 + movdqu 0x90(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x90(%rsi) + + movdqu %xmm9,%xmm0 + cmp $0xb0,%rax + jl .Lxorpart4 + movdqu 0xa0(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0xa0(%rsi) + + movdqu %xmm13,%xmm0 + cmp $0xc0,%rax + jl .Lxorpart4 + movdqu 0xb0(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0xb0(%rsi) + movdqa 0x30(%rsp),%xmm0 + cmp $0xd0,%rax + jl .Lxorpart4 movdqu 0xc0(%rdx),%xmm1 pxor %xmm1,%xmm0 movdqu %xmm0,0xc0(%rsi) - movdqu 0x10(%rdx),%xmm1 - pxor %xmm1,%xmm4 - movdqu %xmm4,0x10(%rsi) - movdqu 0x90(%rdx),%xmm1 - pxor %xmm1,%xmm5 - movdqu %xmm5,0x90(%rsi) - movdqu 0x50(%rdx),%xmm1 - pxor %xmm1,%xmm6 - movdqu %xmm6,0x50(%rsi) + + movdqu %xmm7,%xmm0 + cmp $0xe0,%rax + jl .Lxorpart4 movdqu 0xd0(%rdx),%xmm1 - pxor %xmm1,%xmm7 - movdqu %xmm7,0xd0(%rsi) - movdqu 0x20(%rdx),%xmm1 - pxor %xmm1,%xmm8 - movdqu %xmm8,0x20(%rsi) - movdqu 0xa0(%rdx),%xmm1 - pxor %xmm1,%xmm9 - movdqu %xmm9,0xa0(%rsi) - movdqu 0x60(%rdx),%xmm1 - pxor %xmm1,%xmm10 - movdqu %xmm10,0x60(%rsi) + pxor %xmm1,%xmm0 + movdqu %xmm0,0xd0(%rsi) + + movdqu %xmm11,%xmm0 + cmp $0xf0,%rax + jl .Lxorpart4 movdqu 0xe0(%rdx),%xmm1 - pxor %xmm1,%xmm11 - movdqu %xmm11,0xe0(%rsi) - movdqu 0x30(%rdx),%xmm1 - pxor %xmm1,%xmm12 - movdqu %xmm12,0x30(%rsi) - movdqu 0xb0(%rdx),%xmm1 - pxor %xmm1,%xmm13 - movdqu %xmm13,0xb0(%rsi) - movdqu 0x70(%rdx),%xmm1 - pxor %xmm1,%xmm14 - movdqu %xmm14,0x70(%rsi) + pxor %xmm1,%xmm0 + movdqu %xmm0,0xe0(%rsi) + + movdqu %xmm15,%xmm0 + cmp $0x100,%rax + jl .Lxorpart4 movdqu 0xf0(%rdx),%xmm1 - pxor %xmm1,%xmm15 - movdqu %xmm15,0xf0(%rsi) + pxor %xmm1,%xmm0 + movdqu %xmm0,0xf0(%rsi) +.Ldone4: lea -8(%r10),%rsp ret -ENDPROC(chacha20_4block_xor_ssse3) + +.Lxorpart4: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x0f,%r9 + jz .Ldone4 + and $~0x0f,%rax + + mov %rsi,%r11 + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + pxor 0x00(%rsp),%xmm0 + movdqa %xmm0,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + jmp .Ldone4 + +ENDPROC(chacha_4block_xor_ssse3) diff --git a/arch/x86/crypto/chacha20-avx2-x86_64.S b/arch/x86/crypto/chacha20-avx2-x86_64.S deleted file mode 100644 index f3cd26f48332..000000000000 --- a/arch/x86/crypto/chacha20-avx2-x86_64.S +++ /dev/null @@ -1,448 +0,0 @@ -/* - * ChaCha20 256-bit cipher algorithm, RFC7539, x64 AVX2 functions - * - * Copyright (C) 2015 Martin Willi - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - */ - -#include <linux/linkage.h> - -.section .rodata.cst32.ROT8, "aM", @progbits, 32 -.align 32 -ROT8: .octa 0x0e0d0c0f0a09080b0605040702010003 - .octa 0x0e0d0c0f0a09080b0605040702010003 - -.section .rodata.cst32.ROT16, "aM", @progbits, 32 -.align 32 -ROT16: .octa 0x0d0c0f0e09080b0a0504070601000302 - .octa 0x0d0c0f0e09080b0a0504070601000302 - -.section .rodata.cst32.CTRINC, "aM", @progbits, 32 -.align 32 -CTRINC: .octa 0x00000003000000020000000100000000 - .octa 0x00000007000000060000000500000004 - -.text - -ENTRY(chacha20_8block_xor_avx2) - # %rdi: Input state matrix, s - # %rsi: 8 data blocks output, o - # %rdx: 8 data blocks input, i - - # This function encrypts eight consecutive ChaCha20 blocks by loading - # the state matrix in AVX registers eight times. As we need some - # scratch registers, we save the first four registers on the stack. The - # algorithm performs each operation on the corresponding word of each - # state matrix, hence requires no word shuffling. For final XORing step - # we transpose the matrix by interleaving 32-, 64- and then 128-bit - # words, which allows us to do XOR in AVX registers. 8/16-bit word - # rotation is done with the slightly better performing byte shuffling, - # 7/12-bit word rotation uses traditional shift+OR. - - vzeroupper - # 4 * 32 byte stack, 32-byte aligned - lea 8(%rsp),%r10 - and $~31, %rsp - sub $0x80, %rsp - - # x0..15[0-7] = s[0..15] - vpbroadcastd 0x00(%rdi),%ymm0 - vpbroadcastd 0x04(%rdi),%ymm1 - vpbroadcastd 0x08(%rdi),%ymm2 - vpbroadcastd 0x0c(%rdi),%ymm3 - vpbroadcastd 0x10(%rdi),%ymm4 - vpbroadcastd 0x14(%rdi),%ymm5 - vpbroadcastd 0x18(%rdi),%ymm6 - vpbroadcastd 0x1c(%rdi),%ymm7 - vpbroadcastd 0x20(%rdi),%ymm8 - vpbroadcastd 0x24(%rdi),%ymm9 - vpbroadcastd 0x28(%rdi),%ymm10 - vpbroadcastd 0x2c(%rdi),%ymm11 - vpbroadcastd 0x30(%rdi),%ymm12 - vpbroadcastd 0x34(%rdi),%ymm13 - vpbroadcastd 0x38(%rdi),%ymm14 - vpbroadcastd 0x3c(%rdi),%ymm15 - # x0..3 on stack - vmovdqa %ymm0,0x00(%rsp) - vmovdqa %ymm1,0x20(%rsp) - vmovdqa %ymm2,0x40(%rsp) - vmovdqa %ymm3,0x60(%rsp) - - vmovdqa CTRINC(%rip),%ymm1 - vmovdqa ROT8(%rip),%ymm2 - vmovdqa ROT16(%rip),%ymm3 - - # x12 += counter values 0-3 - vpaddd %ymm1,%ymm12,%ymm12 - - mov $10,%ecx - -.Ldoubleround8: - # x0 += x4, x12 = rotl32(x12 ^ x0, 16) - vpaddd 0x00(%rsp),%ymm4,%ymm0 - vmovdqa %ymm0,0x00(%rsp) - vpxor %ymm0,%ymm12,%ymm12 - vpshufb %ymm3,%ymm12,%ymm12 - # x1 += x5, x13 = rotl32(x13 ^ x1, 16) - vpaddd 0x20(%rsp),%ymm5,%ymm0 - vmovdqa %ymm0,0x20(%rsp) - vpxor %ymm0,%ymm13,%ymm13 - vpshufb %ymm3,%ymm13,%ymm13 - # x2 += x6, x14 = rotl32(x14 ^ x2, 16) - vpaddd 0x40(%rsp),%ymm6,%ymm0 - vmovdqa %ymm0,0x40(%rsp) - vpxor %ymm0,%ymm14,%ymm14 - vpshufb %ymm3,%ymm14,%ymm14 - # x3 += x7, x15 = rotl32(x15 ^ x3, 16) - vpaddd 0x60(%rsp),%ymm7,%ymm0 - vmovdqa %ymm0,0x60(%rsp) - vpxor %ymm0,%ymm15,%ymm15 - vpshufb %ymm3,%ymm15,%ymm15 - - # x8 += x12, x4 = rotl32(x4 ^ x8, 12) - vpaddd %ymm12,%ymm8,%ymm8 - vpxor %ymm8,%ymm4,%ymm4 - vpslld $12,%ymm4,%ymm0 - vpsrld $20,%ymm4,%ymm4 - vpor %ymm0,%ymm4,%ymm4 - # x9 += x13, x5 = rotl32(x5 ^ x9, 12) - vpaddd %ymm13,%ymm9,%ymm9 - vpxor %ymm9,%ymm5,%ymm5 - vpslld $12,%ymm5,%ymm0 - vpsrld $20,%ymm5,%ymm5 - vpor %ymm0,%ymm5,%ymm5 - # x10 += x14, x6 = rotl32(x6 ^ x10, 12) - vpaddd %ymm14,%ymm10,%ymm10 - vpxor %ymm10,%ymm6,%ymm6 - vpslld $12,%ymm6,%ymm0 - vpsrld $20,%ymm6,%ymm6 - vpor %ymm0,%ymm6,%ymm6 - # x11 += x15, x7 = rotl32(x7 ^ x11, 12) - vpaddd %ymm15,%ymm11,%ymm11 - vpxor %ymm11,%ymm7,%ymm7 - vpslld $12,%ymm7,%ymm0 - vpsrld $20,%ymm7,%ymm7 - vpor %ymm0,%ymm7,%ymm7 - - # x0 += x4, x12 = rotl32(x12 ^ x0, 8) - vpaddd 0x00(%rsp),%ymm4,%ymm0 - vmovdqa %ymm0,0x00(%rsp) - vpxor %ymm0,%ymm12,%ymm12 - vpshufb %ymm2,%ymm12,%ymm12 - # x1 += x5, x13 = rotl32(x13 ^ x1, 8) - vpaddd 0x20(%rsp),%ymm5,%ymm0 - vmovdqa %ymm0,0x20(%rsp) - vpxor %ymm0,%ymm13,%ymm13 - vpshufb %ymm2,%ymm13,%ymm13 - # x2 += x6, x14 = rotl32(x14 ^ x2, 8) - vpaddd 0x40(%rsp),%ymm6,%ymm0 - vmovdqa %ymm0,0x40(%rsp) - vpxor %ymm0,%ymm14,%ymm14 - vpshufb %ymm2,%ymm14,%ymm14 - # x3 += x7, x15 = rotl32(x15 ^ x3, 8) - vpaddd 0x60(%rsp),%ymm7,%ymm0 - vmovdqa %ymm0,0x60(%rsp) - vpxor %ymm0,%ymm15,%ymm15 - vpshufb %ymm2,%ymm15,%ymm15 - - # x8 += x12, x4 = rotl32(x4 ^ x8, 7) - vpaddd %ymm12,%ymm8,%ymm8 - vpxor %ymm8,%ymm4,%ymm4 - vpslld $7,%ymm4,%ymm0 - vpsrld $25,%ymm4,%ymm4 - vpor %ymm0,%ymm4,%ymm4 - # x9 += x13, x5 = rotl32(x5 ^ x9, 7) - vpaddd %ymm13,%ymm9,%ymm9 - vpxor %ymm9,%ymm5,%ymm5 - vpslld $7,%ymm5,%ymm0 - vpsrld $25,%ymm5,%ymm5 - vpor %ymm0,%ymm5,%ymm5 - # x10 += x14, x6 = rotl32(x6 ^ x10, 7) - vpaddd %ymm14,%ymm10,%ymm10 - vpxor %ymm10,%ymm6,%ymm6 - vpslld $7,%ymm6,%ymm0 - vpsrld $25,%ymm6,%ymm6 - vpor %ymm0,%ymm6,%ymm6 - # x11 += x15, x7 = rotl32(x7 ^ x11, 7) - vpaddd %ymm15,%ymm11,%ymm11 - vpxor %ymm11,%ymm7,%ymm7 - vpslld $7,%ymm7,%ymm0 - vpsrld $25,%ymm7,%ymm7 - vpor %ymm0,%ymm7,%ymm7 - - # x0 += x5, x15 = rotl32(x15 ^ x0, 16) - vpaddd 0x00(%rsp),%ymm5,%ymm0 - vmovdqa %ymm0,0x00(%rsp) - vpxor %ymm0,%ymm15,%ymm15 - vpshufb %ymm3,%ymm15,%ymm15 - # x1 += x6, x12 = rotl32(x12 ^ x1, 16)%ymm0 - vpaddd 0x20(%rsp),%ymm6,%ymm0 - vmovdqa %ymm0,0x20(%rsp) - vpxor %ymm0,%ymm12,%ymm12 - vpshufb %ymm3,%ymm12,%ymm12 - # x2 += x7, x13 = rotl32(x13 ^ x2, 16) - vpaddd 0x40(%rsp),%ymm7,%ymm0 - vmovdqa %ymm0,0x40(%rsp) - vpxor %ymm0,%ymm13,%ymm13 - vpshufb %ymm3,%ymm13,%ymm13 - # x3 += x4, x14 = rotl32(x14 ^ x3, 16) - vpaddd 0x60(%rsp),%ymm4,%ymm0 - vmovdqa %ymm0,0x60(%rsp) - vpxor %ymm0,%ymm14,%ymm14 - vpshufb %ymm3,%ymm14,%ymm14 - - # x10 += x15, x5 = rotl32(x5 ^ x10, 12) - vpaddd %ymm15,%ymm10,%ymm10 - vpxor %ymm10,%ymm5,%ymm5 - vpslld $12,%ymm5,%ymm0 - vpsrld $20,%ymm5,%ymm5 - vpor %ymm0,%ymm5,%ymm5 - # x11 += x12, x6 = rotl32(x6 ^ x11, 12) - vpaddd %ymm12,%ymm11,%ymm11 - vpxor %ymm11,%ymm6,%ymm6 - vpslld $12,%ymm6,%ymm0 - vpsrld $20,%ymm6,%ymm6 - vpor %ymm0,%ymm6,%ymm6 - # x8 += x13, x7 = rotl32(x7 ^ x8, 12) - vpaddd %ymm13,%ymm8,%ymm8 - vpxor %ymm8,%ymm7,%ymm7 - vpslld $12,%ymm7,%ymm0 - vpsrld $20,%ymm7,%ymm7 - vpor %ymm0,%ymm7,%ymm7 - # x9 += x14, x4 = rotl32(x4 ^ x9, 12) - vpaddd %ymm14,%ymm9,%ymm9 - vpxor %ymm9,%ymm4,%ymm4 - vpslld $12,%ymm4,%ymm0 - vpsrld $20,%ymm4,%ymm4 - vpor %ymm0,%ymm4,%ymm4 - - # x0 += x5, x15 = rotl32(x15 ^ x0, 8) - vpaddd 0x00(%rsp),%ymm5,%ymm0 - vmovdqa %ymm0,0x00(%rsp) - vpxor %ymm0,%ymm15,%ymm15 - vpshufb %ymm2,%ymm15,%ymm15 - # x1 += x6, x12 = rotl32(x12 ^ x1, 8) - vpaddd 0x20(%rsp),%ymm6,%ymm0 - vmovdqa %ymm0,0x20(%rsp) - vpxor %ymm0,%ymm12,%ymm12 - vpshufb %ymm2,%ymm12,%ymm12 - # x2 += x7, x13 = rotl32(x13 ^ x2, 8) - vpaddd 0x40(%rsp),%ymm7,%ymm0 - vmovdqa %ymm0,0x40(%rsp) - vpxor %ymm0,%ymm13,%ymm13 - vpshufb %ymm2,%ymm13,%ymm13 - # x3 += x4, x14 = rotl32(x14 ^ x3, 8) - vpaddd 0x60(%rsp),%ymm4,%ymm0 - vmovdqa %ymm0,0x60(%rsp) - vpxor %ymm0,%ymm14,%ymm14 - vpshufb %ymm2,%ymm14,%ymm14 - - # x10 += x15, x5 = rotl32(x5 ^ x10, 7) - vpaddd %ymm15,%ymm10,%ymm10 - vpxor %ymm10,%ymm5,%ymm5 - vpslld $7,%ymm5,%ymm0 - vpsrld $25,%ymm5,%ymm5 - vpor %ymm0,%ymm5,%ymm5 - # x11 += x12, x6 = rotl32(x6 ^ x11, 7) - vpaddd %ymm12,%ymm11,%ymm11 - vpxor %ymm11,%ymm6,%ymm6 - vpslld $7,%ymm6,%ymm0 - vpsrld $25,%ymm6,%ymm6 - vpor %ymm0,%ymm6,%ymm6 - # x8 += x13, x7 = rotl32(x7 ^ x8, 7) - vpaddd %ymm13,%ymm8,%ymm8 - vpxor %ymm8,%ymm7,%ymm7 - vpslld $7,%ymm7,%ymm0 - vpsrld $25,%ymm7,%ymm7 - vpor %ymm0,%ymm7,%ymm7 - # x9 += x14, x4 = rotl32(x4 ^ x9, 7) - vpaddd %ymm14,%ymm9,%ymm9 - vpxor %ymm9,%ymm4,%ymm4 - vpslld $7,%ymm4,%ymm0 - vpsrld $25,%ymm4,%ymm4 - vpor %ymm0,%ymm4,%ymm4 - - dec %ecx - jnz .Ldoubleround8 - - # x0..15[0-3] += s[0..15] - vpbroadcastd 0x00(%rdi),%ymm0 - vpaddd 0x00(%rsp),%ymm0,%ymm0 - vmovdqa %ymm0,0x00(%rsp) - vpbroadcastd 0x04(%rdi),%ymm0 - vpaddd 0x20(%rsp),%ymm0,%ymm0 - vmovdqa %ymm0,0x20(%rsp) - vpbroadcastd 0x08(%rdi),%ymm0 - vpaddd 0x40(%rsp),%ymm0,%ymm0 - vmovdqa %ymm0,0x40(%rsp) - vpbroadcastd 0x0c(%rdi),%ymm0 - vpaddd 0x60(%rsp),%ymm0,%ymm0 - vmovdqa %ymm0,0x60(%rsp) - vpbroadcastd 0x10(%rdi),%ymm0 - vpaddd %ymm0,%ymm4,%ymm4 - vpbroadcastd 0x14(%rdi),%ymm0 - vpaddd %ymm0,%ymm5,%ymm5 - vpbroadcastd 0x18(%rdi),%ymm0 - vpaddd %ymm0,%ymm6,%ymm6 - vpbroadcastd 0x1c(%rdi),%ymm0 - vpaddd %ymm0,%ymm7,%ymm7 - vpbroadcastd 0x20(%rdi),%ymm0 - vpaddd %ymm0,%ymm8,%ymm8 - vpbroadcastd 0x24(%rdi),%ymm0 - vpaddd %ymm0,%ymm9,%ymm9 - vpbroadcastd 0x28(%rdi),%ymm0 - vpaddd %ymm0,%ymm10,%ymm10 - vpbroadcastd 0x2c(%rdi),%ymm0 - vpaddd %ymm0,%ymm11,%ymm11 - vpbroadcastd 0x30(%rdi),%ymm0 - vpaddd %ymm0,%ymm12,%ymm12 - vpbroadcastd 0x34(%rdi),%ymm0 - vpaddd %ymm0,%ymm13,%ymm13 - vpbroadcastd 0x38(%rdi),%ymm0 - vpaddd %ymm0,%ymm14,%ymm14 - vpbroadcastd 0x3c(%rdi),%ymm0 - vpaddd %ymm0,%ymm15,%ymm15 - - # x12 += counter values 0-3 - vpaddd %ymm1,%ymm12,%ymm12 - - # interleave 32-bit words in state n, n+1 - vmovdqa 0x00(%rsp),%ymm0 - vmovdqa 0x20(%rsp),%ymm1 - vpunpckldq %ymm1,%ymm0,%ymm2 - vpunpckhdq %ymm1,%ymm0,%ymm1 - vmovdqa %ymm2,0x00(%rsp) - vmovdqa %ymm1,0x20(%rsp) - vmovdqa 0x40(%rsp),%ymm0 - vmovdqa 0x60(%rsp),%ymm1 - vpunpckldq %ymm1,%ymm0,%ymm2 - vpunpckhdq %ymm1,%ymm0,%ymm1 - vmovdqa %ymm2,0x40(%rsp) - vmovdqa %ymm1,0x60(%rsp) - vmovdqa %ymm4,%ymm0 - vpunpckldq %ymm5,%ymm0,%ymm4 - vpunpckhdq %ymm5,%ymm0,%ymm5 - vmovdqa %ymm6,%ymm0 - vpunpckldq %ymm7,%ymm0,%ymm6 - vpunpckhdq %ymm7,%ymm0,%ymm7 - vmovdqa %ymm8,%ymm0 - vpunpckldq %ymm9,%ymm0,%ymm8 - vpunpckhdq %ymm9,%ymm0,%ymm9 - vmovdqa %ymm10,%ymm0 - vpunpckldq %ymm11,%ymm0,%ymm10 - vpunpckhdq %ymm11,%ymm0,%ymm11 - vmovdqa %ymm12,%ymm0 - vpunpckldq %ymm13,%ymm0,%ymm12 - vpunpckhdq %ymm13,%ymm0,%ymm13 - vmovdqa %ymm14,%ymm0 - vpunpckldq %ymm15,%ymm0,%ymm14 - vpunpckhdq %ymm15,%ymm0,%ymm15 - - # interleave 64-bit words in state n, n+2 - vmovdqa 0x00(%rsp),%ymm0 - vmovdqa 0x40(%rsp),%ymm2 - vpunpcklqdq %ymm2,%ymm0,%ymm1 - vpunpckhqdq %ymm2,%ymm0,%ymm2 - vmovdqa %ymm1,0x00(%rsp) - vmovdqa %ymm2,0x40(%rsp) - vmovdqa 0x20(%rsp),%ymm0 - vmovdqa 0x60(%rsp),%ymm2 - vpunpcklqdq %ymm2,%ymm0,%ymm1 - vpunpckhqdq %ymm2,%ymm0,%ymm2 - vmovdqa %ymm1,0x20(%rsp) - vmovdqa %ymm2,0x60(%rsp) - vmovdqa %ymm4,%ymm0 - vpunpcklqdq %ymm6,%ymm0,%ymm4 - vpunpckhqdq %ymm6,%ymm0,%ymm6 - vmovdqa %ymm5,%ymm0 - vpunpcklqdq %ymm7,%ymm0,%ymm5 - vpunpckhqdq %ymm7,%ymm0,%ymm7 - vmovdqa %ymm8,%ymm0 - vpunpcklqdq %ymm10,%ymm0,%ymm8 - vpunpckhqdq %ymm10,%ymm0,%ymm10 - vmovdqa %ymm9,%ymm0 - vpunpcklqdq %ymm11,%ymm0,%ymm9 - vpunpckhqdq %ymm11,%ymm0,%ymm11 - vmovdqa %ymm12,%ymm0 - vpunpcklqdq %ymm14,%ymm0,%ymm12 - vpunpckhqdq %ymm14,%ymm0,%ymm14 - vmovdqa %ymm13,%ymm0 - vpunpcklqdq %ymm15,%ymm0,%ymm13 - vpunpckhqdq %ymm15,%ymm0,%ymm15 - - # interleave 128-bit words in state n, n+4 - vmovdqa 0x00(%rsp),%ymm0 - vperm2i128 $0x20,%ymm4,%ymm0,%ymm1 - vperm2i128 $0x31,%ymm4,%ymm0,%ymm4 - vmovdqa %ymm1,0x00(%rsp) - vmovdqa 0x20(%rsp),%ymm0 - vperm2i128 $0x20,%ymm5,%ymm0,%ymm1 - vperm2i128 $0x31,%ymm5,%ymm0,%ymm5 - vmovdqa %ymm1,0x20(%rsp) - vmovdqa 0x40(%rsp),%ymm0 - vperm2i128 $0x20,%ymm6,%ymm0,%ymm1 - vperm2i128 $0x31,%ymm6,%ymm0,%ymm6 - vmovdqa %ymm1,0x40(%rsp) - vmovdqa 0x60(%rsp),%ymm0 - vperm2i128 $0x20,%ymm7,%ymm0,%ymm1 - vperm2i128 $0x31,%ymm7,%ymm0,%ymm7 - vmovdqa %ymm1,0x60(%rsp) - vperm2i128 $0x20,%ymm12,%ymm8,%ymm0 - vperm2i128 $0x31,%ymm12,%ymm8,%ymm12 - vmovdqa %ymm0,%ymm8 - vperm2i128 $0x20,%ymm13,%ymm9,%ymm0 - vperm2i128 $0x31,%ymm13,%ymm9,%ymm13 - vmovdqa %ymm0,%ymm9 - vperm2i128 $0x20,%ymm14,%ymm10,%ymm0 - vperm2i128 $0x31,%ymm14,%ymm10,%ymm14 - vmovdqa %ymm0,%ymm10 - vperm2i128 $0x20,%ymm15,%ymm11,%ymm0 - vperm2i128 $0x31,%ymm15,%ymm11,%ymm15 - vmovdqa %ymm0,%ymm11 - - # xor with corresponding input, write to output - vmovdqa 0x00(%rsp),%ymm0 - vpxor 0x0000(%rdx),%ymm0,%ymm0 - vmovdqu %ymm0,0x0000(%rsi) - vmovdqa 0x20(%rsp),%ymm0 - vpxor 0x0080(%rdx),%ymm0,%ymm0 - vmovdqu %ymm0,0x0080(%rsi) - vmovdqa 0x40(%rsp),%ymm0 - vpxor 0x0040(%rdx),%ymm0,%ymm0 - vmovdqu %ymm0,0x0040(%rsi) - vmovdqa 0x60(%rsp),%ymm0 - vpxor 0x00c0(%rdx),%ymm0,%ymm0 - vmovdqu %ymm0,0x00c0(%rsi) - vpxor 0x0100(%rdx),%ymm4,%ymm4 - vmovdqu %ymm4,0x0100(%rsi) - vpxor 0x0180(%rdx),%ymm5,%ymm5 - vmovdqu %ymm5,0x00180(%rsi) - vpxor 0x0140(%rdx),%ymm6,%ymm6 - vmovdqu %ymm6,0x0140(%rsi) - vpxor 0x01c0(%rdx),%ymm7,%ymm7 - vmovdqu %ymm7,0x01c0(%rsi) - vpxor 0x0020(%rdx),%ymm8,%ymm8 - vmovdqu %ymm8,0x0020(%rsi) - vpxor 0x00a0(%rdx),%ymm9,%ymm9 - vmovdqu %ymm9,0x00a0(%rsi) - vpxor 0x0060(%rdx),%ymm10,%ymm10 - vmovdqu %ymm10,0x0060(%rsi) - vpxor 0x00e0(%rdx),%ymm11,%ymm11 - vmovdqu %ymm11,0x00e0(%rsi) - vpxor 0x0120(%rdx),%ymm12,%ymm12 - vmovdqu %ymm12,0x0120(%rsi) - vpxor 0x01a0(%rdx),%ymm13,%ymm13 - vmovdqu %ymm13,0x01a0(%rsi) - vpxor 0x0160(%rdx),%ymm14,%ymm14 - vmovdqu %ymm14,0x0160(%rsi) - vpxor 0x01e0(%rdx),%ymm15,%ymm15 - vmovdqu %ymm15,0x01e0(%rsi) - - vzeroupper - lea -8(%r10),%rsp - ret -ENDPROC(chacha20_8block_xor_avx2) diff --git a/arch/x86/crypto/chacha20_glue.c b/arch/x86/crypto/chacha20_glue.c deleted file mode 100644 index dce7c5d39c2f..000000000000 --- a/arch/x86/crypto/chacha20_glue.c +++ /dev/null @@ -1,146 +0,0 @@ -/* - * ChaCha20 256-bit cipher algorithm, RFC7539, SIMD glue code - * - * Copyright (C) 2015 Martin Willi - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - */ - -#include <crypto/algapi.h> -#include <crypto/chacha20.h> -#include <crypto/internal/skcipher.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/fpu/api.h> -#include <asm/simd.h> - -#define CHACHA20_STATE_ALIGN 16 - -asmlinkage void chacha20_block_xor_ssse3(u32 *state, u8 *dst, const u8 *src); -asmlinkage void chacha20_4block_xor_ssse3(u32 *state, u8 *dst, const u8 *src); -#ifdef CONFIG_AS_AVX2 -asmlinkage void chacha20_8block_xor_avx2(u32 *state, u8 *dst, const u8 *src); -static bool chacha20_use_avx2; -#endif - -static void chacha20_dosimd(u32 *state, u8 *dst, const u8 *src, - unsigned int bytes) -{ - u8 buf[CHACHA20_BLOCK_SIZE]; - -#ifdef CONFIG_AS_AVX2 - if (chacha20_use_avx2) { - while (bytes >= CHACHA20_BLOCK_SIZE * 8) { - chacha20_8block_xor_avx2(state, dst, src); - bytes -= CHACHA20_BLOCK_SIZE * 8; - src += CHACHA20_BLOCK_SIZE * 8; - dst += CHACHA20_BLOCK_SIZE * 8; - state[12] += 8; - } - } -#endif - while (bytes >= CHACHA20_BLOCK_SIZE * 4) { - chacha20_4block_xor_ssse3(state, dst, src); - bytes -= CHACHA20_BLOCK_SIZE * 4; - src += CHACHA20_BLOCK_SIZE * 4; - dst += CHACHA20_BLOCK_SIZE * 4; - state[12] += 4; - } - while (bytes >= CHACHA20_BLOCK_SIZE) { - chacha20_block_xor_ssse3(state, dst, src); - bytes -= CHACHA20_BLOCK_SIZE; - src += CHACHA20_BLOCK_SIZE; - dst += CHACHA20_BLOCK_SIZE; - state[12]++; - } - if (bytes) { - memcpy(buf, src, bytes); - chacha20_block_xor_ssse3(state, buf, buf); - memcpy(dst, buf, bytes); - } -} - -static int chacha20_simd(struct skcipher_request *req) -{ - struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); - struct chacha20_ctx *ctx = crypto_skcipher_ctx(tfm); - u32 *state, state_buf[16 + 2] __aligned(8); - struct skcipher_walk walk; - int err; - - BUILD_BUG_ON(CHACHA20_STATE_ALIGN != 16); - state = PTR_ALIGN(state_buf + 0, CHACHA20_STATE_ALIGN); - - if (req->cryptlen <= CHACHA20_BLOCK_SIZE || !may_use_simd()) - return crypto_chacha20_crypt(req); - - err = skcipher_walk_virt(&walk, req, true); - - crypto_chacha20_init(state, ctx, walk.iv); - - kernel_fpu_begin(); - - while (walk.nbytes >= CHACHA20_BLOCK_SIZE) { - chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr, - rounddown(walk.nbytes, CHACHA20_BLOCK_SIZE)); - err = skcipher_walk_done(&walk, - walk.nbytes % CHACHA20_BLOCK_SIZE); - } - - if (walk.nbytes) { - chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr, - walk.nbytes); - err = skcipher_walk_done(&walk, 0); - } - - kernel_fpu_end(); - - return err; -} - -static struct skcipher_alg alg = { - .base.cra_name = "chacha20", - .base.cra_driver_name = "chacha20-simd", - .base.cra_priority = 300, - .base.cra_blocksize = 1, - .base.cra_ctxsize = sizeof(struct chacha20_ctx), - .base.cra_module = THIS_MODULE, - - .min_keysize = CHACHA20_KEY_SIZE, - .max_keysize = CHACHA20_KEY_SIZE, - .ivsize = CHACHA20_IV_SIZE, - .chunksize = CHACHA20_BLOCK_SIZE, - .setkey = crypto_chacha20_setkey, - .encrypt = chacha20_simd, - .decrypt = chacha20_simd, -}; - -static int __init chacha20_simd_mod_init(void) -{ - if (!boot_cpu_has(X86_FEATURE_SSSE3)) - return -ENODEV; - -#ifdef CONFIG_AS_AVX2 - chacha20_use_avx2 = boot_cpu_has(X86_FEATURE_AVX) && - boot_cpu_has(X86_FEATURE_AVX2) && - cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL); -#endif - return crypto_register_skcipher(&alg); -} - -static void __exit chacha20_simd_mod_fini(void) -{ - crypto_unregister_skcipher(&alg); -} - -module_init(chacha20_simd_mod_init); -module_exit(chacha20_simd_mod_fini); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Martin Willi <martin@strongswan.org>"); -MODULE_DESCRIPTION("chacha20 cipher algorithm, SIMD accelerated"); -MODULE_ALIAS_CRYPTO("chacha20"); -MODULE_ALIAS_CRYPTO("chacha20-simd"); diff --git a/arch/x86/crypto/chacha_glue.c b/arch/x86/crypto/chacha_glue.c new file mode 100644 index 000000000000..45c1c4143176 --- /dev/null +++ b/arch/x86/crypto/chacha_glue.c @@ -0,0 +1,304 @@ +/* + * x64 SIMD accelerated ChaCha and XChaCha stream ciphers, + * including ChaCha20 (RFC7539) + * + * Copyright (C) 2015 Martin Willi + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ + +#include <crypto/algapi.h> +#include <crypto/chacha.h> +#include <crypto/internal/skcipher.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <asm/fpu/api.h> +#include <asm/simd.h> + +#define CHACHA_STATE_ALIGN 16 + +asmlinkage void chacha_block_xor_ssse3(u32 *state, u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_4block_xor_ssse3(u32 *state, u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void hchacha_block_ssse3(const u32 *state, u32 *out, int nrounds); +#ifdef CONFIG_AS_AVX2 +asmlinkage void chacha_2block_xor_avx2(u32 *state, u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_4block_xor_avx2(u32 *state, u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_8block_xor_avx2(u32 *state, u8 *dst, const u8 *src, + unsigned int len, int nrounds); +static bool chacha_use_avx2; +#ifdef CONFIG_AS_AVX512 +asmlinkage void chacha_2block_xor_avx512vl(u32 *state, u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_4block_xor_avx512vl(u32 *state, u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_8block_xor_avx512vl(u32 *state, u8 *dst, const u8 *src, + unsigned int len, int nrounds); +static bool chacha_use_avx512vl; +#endif +#endif + +static unsigned int chacha_advance(unsigned int len, unsigned int maxblocks) +{ + len = min(len, maxblocks * CHACHA_BLOCK_SIZE); + return round_up(len, CHACHA_BLOCK_SIZE) / CHACHA_BLOCK_SIZE; +} + +static void chacha_dosimd(u32 *state, u8 *dst, const u8 *src, + unsigned int bytes, int nrounds) +{ +#ifdef CONFIG_AS_AVX2 +#ifdef CONFIG_AS_AVX512 + if (chacha_use_avx512vl) { + while (bytes >= CHACHA_BLOCK_SIZE * 8) { + chacha_8block_xor_avx512vl(state, dst, src, bytes, + nrounds); + bytes -= CHACHA_BLOCK_SIZE * 8; + src += CHACHA_BLOCK_SIZE * 8; + dst += CHACHA_BLOCK_SIZE * 8; + state[12] += 8; + } + if (bytes > CHACHA_BLOCK_SIZE * 4) { + chacha_8block_xor_avx512vl(state, dst, src, bytes, + nrounds); + state[12] += chacha_advance(bytes, 8); + return; + } + if (bytes > CHACHA_BLOCK_SIZE * 2) { + chacha_4block_xor_avx512vl(state, dst, src, bytes, + nrounds); + state[12] += chacha_advance(bytes, 4); + return; + } + if (bytes) { + chacha_2block_xor_avx512vl(state, dst, src, bytes, + nrounds); + state[12] += chacha_advance(bytes, 2); + return; + } + } +#endif + if (chacha_use_avx2) { + while (bytes >= CHACHA_BLOCK_SIZE * 8) { + chacha_8block_xor_avx2(state, dst, src, bytes, nrounds); + bytes -= CHACHA_BLOCK_SIZE * 8; + src += CHACHA_BLOCK_SIZE * 8; + dst += CHACHA_BLOCK_SIZE * 8; + state[12] += 8; + } + if (bytes > CHACHA_BLOCK_SIZE * 4) { + chacha_8block_xor_avx2(state, dst, src, bytes, nrounds); + state[12] += chacha_advance(bytes, 8); + return; + } + if (bytes > CHACHA_BLOCK_SIZE * 2) { + chacha_4block_xor_avx2(state, dst, src, bytes, nrounds); + state[12] += chacha_advance(bytes, 4); + return; + } + if (bytes > CHACHA_BLOCK_SIZE) { + chacha_2block_xor_avx2(state, dst, src, bytes, nrounds); + state[12] += chacha_advance(bytes, 2); + return; + } + } +#endif + while (bytes >= CHACHA_BLOCK_SIZE * 4) { + chacha_4block_xor_ssse3(state, dst, src, bytes, nrounds); + bytes -= CHACHA_BLOCK_SIZE * 4; + src += CHACHA_BLOCK_SIZE * 4; + dst += CHACHA_BLOCK_SIZE * 4; + state[12] += 4; + } + if (bytes > CHACHA_BLOCK_SIZE) { + chacha_4block_xor_ssse3(state, dst, src, bytes, nrounds); + state[12] += chacha_advance(bytes, 4); + return; + } + if (bytes) { + chacha_block_xor_ssse3(state, dst, src, bytes, nrounds); + state[12]++; + } +} + +static int chacha_simd_stream_xor(struct skcipher_walk *walk, + struct chacha_ctx *ctx, u8 *iv) +{ + u32 *state, state_buf[16 + 2] __aligned(8); + int next_yield = 4096; /* bytes until next FPU yield */ + int err = 0; + + BUILD_BUG_ON(CHACHA_STATE_ALIGN != 16); + state = PTR_ALIGN(state_buf + 0, CHACHA_STATE_ALIGN); + + crypto_chacha_init(state, ctx, iv); + + while (walk->nbytes > 0) { + unsigned int nbytes = walk->nbytes; + + if (nbytes < walk->total) { + nbytes = round_down(nbytes, walk->stride); + next_yield -= nbytes; + } + + chacha_dosimd(state, walk->dst.virt.addr, walk->src.virt.addr, + nbytes, ctx->nrounds); + + if (next_yield <= 0) { + /* temporarily allow preemption */ + kernel_fpu_end(); + kernel_fpu_begin(); + next_yield = 4096; + } + + err = skcipher_walk_done(walk, walk->nbytes - nbytes); + } + + return err; +} + +static int chacha_simd(struct skcipher_request *req) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); + struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); + struct skcipher_walk walk; + int err; + + if (req->cryptlen <= CHACHA_BLOCK_SIZE || !irq_fpu_usable()) + return crypto_chacha_crypt(req); + + err = skcipher_walk_virt(&walk, req, true); + if (err) + return err; + + kernel_fpu_begin(); + err = chacha_simd_stream_xor(&walk, ctx, req->iv); + kernel_fpu_end(); + return err; +} + +static int xchacha_simd(struct skcipher_request *req) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); + struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); + struct skcipher_walk walk; + struct chacha_ctx subctx; + u32 *state, state_buf[16 + 2] __aligned(8); + u8 real_iv[16]; + int err; + + if (req->cryptlen <= CHACHA_BLOCK_SIZE || !irq_fpu_usable()) + return crypto_xchacha_crypt(req); + + err = skcipher_walk_virt(&walk, req, true); + if (err) + return err; + + BUILD_BUG_ON(CHACHA_STATE_ALIGN != 16); + state = PTR_ALIGN(state_buf + 0, CHACHA_STATE_ALIGN); + crypto_chacha_init(state, ctx, req->iv); + + kernel_fpu_begin(); + + hchacha_block_ssse3(state, subctx.key, ctx->nrounds); + subctx.nrounds = ctx->nrounds; + + memcpy(&real_iv[0], req->iv + 24, 8); + memcpy(&real_iv[8], req->iv + 16, 8); + err = chacha_simd_stream_xor(&walk, &subctx, real_iv); + + kernel_fpu_end(); + + return err; +} + +static struct skcipher_alg algs[] = { + { + .base.cra_name = "chacha20", + .base.cra_driver_name = "chacha20-simd", + .base.cra_priority = 300, + .base.cra_blocksize = 1, + .base.cra_ctxsize = sizeof(struct chacha_ctx), + .base.cra_module = THIS_MODULE, + + .min_keysize = CHACHA_KEY_SIZE, + .max_keysize = CHACHA_KEY_SIZE, + .ivsize = CHACHA_IV_SIZE, + .chunksize = CHACHA_BLOCK_SIZE, + .setkey = crypto_chacha20_setkey, + .encrypt = chacha_simd, + .decrypt = chacha_simd, + }, { + .base.cra_name = "xchacha20", + .base.cra_driver_name = "xchacha20-simd", + .base.cra_priority = 300, + .base.cra_blocksize = 1, + .base.cra_ctxsize = sizeof(struct chacha_ctx), + .base.cra_module = THIS_MODULE, + + .min_keysize = CHACHA_KEY_SIZE, + .max_keysize = CHACHA_KEY_SIZE, + .ivsize = XCHACHA_IV_SIZE, + .chunksize = CHACHA_BLOCK_SIZE, + .setkey = crypto_chacha20_setkey, + .encrypt = xchacha_simd, + .decrypt = xchacha_simd, + }, { + .base.cra_name = "xchacha12", + .base.cra_driver_name = "xchacha12-simd", + .base.cra_priority = 300, + .base.cra_blocksize = 1, + .base.cra_ctxsize = sizeof(struct chacha_ctx), + .base.cra_module = THIS_MODULE, + + .min_keysize = CHACHA_KEY_SIZE, + .max_keysize = CHACHA_KEY_SIZE, + .ivsize = XCHACHA_IV_SIZE, + .chunksize = CHACHA_BLOCK_SIZE, + .setkey = crypto_chacha12_setkey, + .encrypt = xchacha_simd, + .decrypt = xchacha_simd, + }, +}; + +static int __init chacha_simd_mod_init(void) +{ + if (!boot_cpu_has(X86_FEATURE_SSSE3)) + return -ENODEV; + +#ifdef CONFIG_AS_AVX2 + chacha_use_avx2 = boot_cpu_has(X86_FEATURE_AVX) && + boot_cpu_has(X86_FEATURE_AVX2) && + cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL); +#ifdef CONFIG_AS_AVX512 + chacha_use_avx512vl = chacha_use_avx2 && + boot_cpu_has(X86_FEATURE_AVX512VL) && + boot_cpu_has(X86_FEATURE_AVX512BW); /* kmovq */ +#endif +#endif + return crypto_register_skciphers(algs, ARRAY_SIZE(algs)); +} + +static void __exit chacha_simd_mod_fini(void) +{ + crypto_unregister_skciphers(algs, ARRAY_SIZE(algs)); +} + +module_init(chacha_simd_mod_init); +module_exit(chacha_simd_mod_fini); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Martin Willi <martin@strongswan.org>"); +MODULE_DESCRIPTION("ChaCha and XChaCha stream ciphers (x64 SIMD accelerated)"); +MODULE_ALIAS_CRYPTO("chacha20"); +MODULE_ALIAS_CRYPTO("chacha20-simd"); +MODULE_ALIAS_CRYPTO("xchacha20"); +MODULE_ALIAS_CRYPTO("xchacha20-simd"); +MODULE_ALIAS_CRYPTO("xchacha12"); +MODULE_ALIAS_CRYPTO("xchacha12-simd"); diff --git a/arch/x86/crypto/nh-avx2-x86_64.S b/arch/x86/crypto/nh-avx2-x86_64.S new file mode 100644 index 000000000000..f7946ea1b704 --- /dev/null +++ b/arch/x86/crypto/nh-avx2-x86_64.S @@ -0,0 +1,157 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * NH - ε-almost-universal hash function, x86_64 AVX2 accelerated + * + * Copyright 2018 Google LLC + * + * Author: Eric Biggers <ebiggers@google.com> + */ + +#include <linux/linkage.h> + +#define PASS0_SUMS %ymm0 +#define PASS1_SUMS %ymm1 +#define PASS2_SUMS %ymm2 +#define PASS3_SUMS %ymm3 +#define K0 %ymm4 +#define K0_XMM %xmm4 +#define K1 %ymm5 +#define K1_XMM %xmm5 +#define K2 %ymm6 +#define K2_XMM %xmm6 +#define K3 %ymm7 +#define K3_XMM %xmm7 +#define T0 %ymm8 +#define T1 %ymm9 +#define T2 %ymm10 +#define T2_XMM %xmm10 +#define T3 %ymm11 +#define T3_XMM %xmm11 +#define T4 %ymm12 +#define T5 %ymm13 +#define T6 %ymm14 +#define T7 %ymm15 +#define KEY %rdi +#define MESSAGE %rsi +#define MESSAGE_LEN %rdx +#define HASH %rcx + +.macro _nh_2xstride k0, k1, k2, k3 + + // Add message words to key words + vpaddd \k0, T3, T0 + vpaddd \k1, T3, T1 + vpaddd \k2, T3, T2 + vpaddd \k3, T3, T3 + + // Multiply 32x32 => 64 and accumulate + vpshufd $0x10, T0, T4 + vpshufd $0x32, T0, T0 + vpshufd $0x10, T1, T5 + vpshufd $0x32, T1, T1 + vpshufd $0x10, T2, T6 + vpshufd $0x32, T2, T2 + vpshufd $0x10, T3, T7 + vpshufd $0x32, T3, T3 + vpmuludq T4, T0, T0 + vpmuludq T5, T1, T1 + vpmuludq T6, T2, T2 + vpmuludq T7, T3, T3 + vpaddq T0, PASS0_SUMS, PASS0_SUMS + vpaddq T1, PASS1_SUMS, PASS1_SUMS + vpaddq T2, PASS2_SUMS, PASS2_SUMS + vpaddq T3, PASS3_SUMS, PASS3_SUMS +.endm + +/* + * void nh_avx2(const u32 *key, const u8 *message, size_t message_len, + * u8 hash[NH_HASH_BYTES]) + * + * It's guaranteed that message_len % 16 == 0. + */ +ENTRY(nh_avx2) + + vmovdqu 0x00(KEY), K0 + vmovdqu 0x10(KEY), K1 + add $0x20, KEY + vpxor PASS0_SUMS, PASS0_SUMS, PASS0_SUMS + vpxor PASS1_SUMS, PASS1_SUMS, PASS1_SUMS + vpxor PASS2_SUMS, PASS2_SUMS, PASS2_SUMS + vpxor PASS3_SUMS, PASS3_SUMS, PASS3_SUMS + + sub $0x40, MESSAGE_LEN + jl .Lloop4_done +.Lloop4: + vmovdqu (MESSAGE), T3 + vmovdqu 0x00(KEY), K2 + vmovdqu 0x10(KEY), K3 + _nh_2xstride K0, K1, K2, K3 + + vmovdqu 0x20(MESSAGE), T3 + vmovdqu 0x20(KEY), K0 + vmovdqu 0x30(KEY), K1 + _nh_2xstride K2, K3, K0, K1 + + add $0x40, MESSAGE + add $0x40, KEY + sub $0x40, MESSAGE_LEN + jge .Lloop4 + +.Lloop4_done: + and $0x3f, MESSAGE_LEN + jz .Ldone + + cmp $0x20, MESSAGE_LEN + jl .Llast + + // 2 or 3 strides remain; do 2 more. + vmovdqu (MESSAGE), T3 + vmovdqu 0x00(KEY), K2 + vmovdqu 0x10(KEY), K3 + _nh_2xstride K0, K1, K2, K3 + add $0x20, MESSAGE + add $0x20, KEY + sub $0x20, MESSAGE_LEN + jz .Ldone + vmovdqa K2, K0 + vmovdqa K3, K1 +.Llast: + // Last stride. Zero the high 128 bits of the message and keys so they + // don't affect the result when processing them like 2 strides. + vmovdqu (MESSAGE), T3_XMM + vmovdqa K0_XMM, K0_XMM + vmovdqa K1_XMM, K1_XMM + vmovdqu 0x00(KEY), K2_XMM + vmovdqu 0x10(KEY), K3_XMM + _nh_2xstride K0, K1, K2, K3 + +.Ldone: + // Sum the accumulators for each pass, then store the sums to 'hash' + + // PASS0_SUMS is (0A 0B 0C 0D) + // PASS1_SUMS is (1A 1B 1C 1D) + // PASS2_SUMS is (2A 2B 2C 2D) + // PASS3_SUMS is (3A 3B 3C 3D) + // We need the horizontal sums: + // (0A + 0B + 0C + 0D, + // 1A + 1B + 1C + 1D, + // 2A + 2B + 2C + 2D, + // 3A + 3B + 3C + 3D) + // + + vpunpcklqdq PASS1_SUMS, PASS0_SUMS, T0 // T0 = (0A 1A 0C 1C) + vpunpckhqdq PASS1_SUMS, PASS0_SUMS, T1 // T1 = (0B 1B 0D 1D) + vpunpcklqdq PASS3_SUMS, PASS2_SUMS, T2 // T2 = (2A 3A 2C 3C) + vpunpckhqdq PASS3_SUMS, PASS2_SUMS, T3 // T3 = (2B 3B 2D 3D) + + vinserti128 $0x1, T2_XMM, T0, T4 // T4 = (0A 1A 2A 3A) + vinserti128 $0x1, T3_XMM, T1, T5 // T5 = (0B 1B 2B 3B) + vperm2i128 $0x31, T2, T0, T0 // T0 = (0C 1C 2C 3C) + vperm2i128 $0x31, T3, T1, T1 // T1 = (0D 1D 2D 3D) + + vpaddq T5, T4, T4 + vpaddq T1, T0, T0 + vpaddq T4, T0, T0 + vmovdqu T0, (HASH) + ret +ENDPROC(nh_avx2) diff --git a/arch/x86/crypto/nh-sse2-x86_64.S b/arch/x86/crypto/nh-sse2-x86_64.S new file mode 100644 index 000000000000..51f52d4ab4bb --- /dev/null +++ b/arch/x86/crypto/nh-sse2-x86_64.S @@ -0,0 +1,123 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * NH - ε-almost-universal hash function, x86_64 SSE2 accelerated + * + * Copyright 2018 Google LLC + * + * Author: Eric Biggers <ebiggers@google.com> + */ + +#include <linux/linkage.h> + +#define PASS0_SUMS %xmm0 +#define PASS1_SUMS %xmm1 +#define PASS2_SUMS %xmm2 +#define PASS3_SUMS %xmm3 +#define K0 %xmm4 +#define K1 %xmm5 +#define K2 %xmm6 +#define K3 %xmm7 +#define T0 %xmm8 +#define T1 %xmm9 +#define T2 %xmm10 +#define T3 %xmm11 +#define T4 %xmm12 +#define T5 %xmm13 +#define T6 %xmm14 +#define T7 %xmm15 +#define KEY %rdi +#define MESSAGE %rsi +#define MESSAGE_LEN %rdx +#define HASH %rcx + +.macro _nh_stride k0, k1, k2, k3, offset + + // Load next message stride + movdqu \offset(MESSAGE), T1 + + // Load next key stride + movdqu \offset(KEY), \k3 + + // Add message words to key words + movdqa T1, T2 + movdqa T1, T3 + paddd T1, \k0 // reuse k0 to avoid a move + paddd \k1, T1 + paddd \k2, T2 + paddd \k3, T3 + + // Multiply 32x32 => 64 and accumulate + pshufd $0x10, \k0, T4 + pshufd $0x32, \k0, \k0 + pshufd $0x10, T1, T5 + pshufd $0x32, T1, T1 + pshufd $0x10, T2, T6 + pshufd $0x32, T2, T2 + pshufd $0x10, T3, T7 + pshufd $0x32, T3, T3 + pmuludq T4, \k0 + pmuludq T5, T1 + pmuludq T6, T2 + pmuludq T7, T3 + paddq \k0, PASS0_SUMS + paddq T1, PASS1_SUMS + paddq T2, PASS2_SUMS + paddq T3, PASS3_SUMS +.endm + +/* + * void nh_sse2(const u32 *key, const u8 *message, size_t message_len, + * u8 hash[NH_HASH_BYTES]) + * + * It's guaranteed that message_len % 16 == 0. + */ +ENTRY(nh_sse2) + + movdqu 0x00(KEY), K0 + movdqu 0x10(KEY), K1 + movdqu 0x20(KEY), K2 + add $0x30, KEY + pxor PASS0_SUMS, PASS0_SUMS + pxor PASS1_SUMS, PASS1_SUMS + pxor PASS2_SUMS, PASS2_SUMS + pxor PASS3_SUMS, PASS3_SUMS + + sub $0x40, MESSAGE_LEN + jl .Lloop4_done +.Lloop4: + _nh_stride K0, K1, K2, K3, 0x00 + _nh_stride K1, K2, K3, K0, 0x10 + _nh_stride K2, K3, K0, K1, 0x20 + _nh_stride K3, K0, K1, K2, 0x30 + add $0x40, KEY + add $0x40, MESSAGE + sub $0x40, MESSAGE_LEN + jge .Lloop4 + +.Lloop4_done: + and $0x3f, MESSAGE_LEN + jz .Ldone + _nh_stride K0, K1, K2, K3, 0x00 + + sub $0x10, MESSAGE_LEN + jz .Ldone + _nh_stride K1, K2, K3, K0, 0x10 + + sub $0x10, MESSAGE_LEN + jz .Ldone + _nh_stride K2, K3, K0, K1, 0x20 + +.Ldone: + // Sum the accumulators for each pass, then store the sums to 'hash' + movdqa PASS0_SUMS, T0 + movdqa PASS2_SUMS, T1 + punpcklqdq PASS1_SUMS, T0 // => (PASS0_SUM_A PASS1_SUM_A) + punpcklqdq PASS3_SUMS, T1 // => (PASS2_SUM_A PASS3_SUM_A) + punpckhqdq PASS1_SUMS, PASS0_SUMS // => (PASS0_SUM_B PASS1_SUM_B) + punpckhqdq PASS3_SUMS, PASS2_SUMS // => (PASS2_SUM_B PASS3_SUM_B) + paddq PASS0_SUMS, T0 + paddq PASS2_SUMS, T1 + movdqu T0, 0x00(HASH) + movdqu T1, 0x10(HASH) + ret +ENDPROC(nh_sse2) diff --git a/arch/x86/crypto/nhpoly1305-avx2-glue.c b/arch/x86/crypto/nhpoly1305-avx2-glue.c new file mode 100644 index 000000000000..20d815ea4b6a --- /dev/null +++ b/arch/x86/crypto/nhpoly1305-avx2-glue.c @@ -0,0 +1,77 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NHPoly1305 - ε-almost-∆-universal hash function for Adiantum + * (AVX2 accelerated version) + * + * Copyright 2018 Google LLC + */ + +#include <crypto/internal/hash.h> +#include <crypto/nhpoly1305.h> +#include <linux/module.h> +#include <asm/fpu/api.h> + +asmlinkage void nh_avx2(const u32 *key, const u8 *message, size_t message_len, + u8 hash[NH_HASH_BYTES]); + +/* wrapper to avoid indirect call to assembly, which doesn't work with CFI */ +static void _nh_avx2(const u32 *key, const u8 *message, size_t message_len, + __le64 hash[NH_NUM_PASSES]) +{ + nh_avx2(key, message, message_len, (u8 *)hash); +} + +static int nhpoly1305_avx2_update(struct shash_desc *desc, + const u8 *src, unsigned int srclen) +{ + if (srclen < 64 || !irq_fpu_usable()) + return crypto_nhpoly1305_update(desc, src, srclen); + + do { + unsigned int n = min_t(unsigned int, srclen, PAGE_SIZE); + + kernel_fpu_begin(); + crypto_nhpoly1305_update_helper(desc, src, n, _nh_avx2); + kernel_fpu_end(); + src += n; + srclen -= n; + } while (srclen); + return 0; +} + +static struct shash_alg nhpoly1305_alg = { + .base.cra_name = "nhpoly1305", + .base.cra_driver_name = "nhpoly1305-avx2", + .base.cra_priority = 300, + .base.cra_ctxsize = sizeof(struct nhpoly1305_key), + .base.cra_module = THIS_MODULE, + .digestsize = POLY1305_DIGEST_SIZE, + .init = crypto_nhpoly1305_init, + .update = nhpoly1305_avx2_update, + .final = crypto_nhpoly1305_final, + .setkey = crypto_nhpoly1305_setkey, + .descsize = sizeof(struct nhpoly1305_state), +}; + +static int __init nhpoly1305_mod_init(void) +{ + if (!boot_cpu_has(X86_FEATURE_AVX2) || + !boot_cpu_has(X86_FEATURE_OSXSAVE)) + return -ENODEV; + + return crypto_register_shash(&nhpoly1305_alg); +} + +static void __exit nhpoly1305_mod_exit(void) +{ + crypto_unregister_shash(&nhpoly1305_alg); +} + +module_init(nhpoly1305_mod_init); +module_exit(nhpoly1305_mod_exit); + +MODULE_DESCRIPTION("NHPoly1305 ε-almost-∆-universal hash function (AVX2-accelerated)"); +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); +MODULE_ALIAS_CRYPTO("nhpoly1305"); +MODULE_ALIAS_CRYPTO("nhpoly1305-avx2"); diff --git a/arch/x86/crypto/nhpoly1305-sse2-glue.c b/arch/x86/crypto/nhpoly1305-sse2-glue.c new file mode 100644 index 000000000000..ed68d164ce14 --- /dev/null +++ b/arch/x86/crypto/nhpoly1305-sse2-glue.c @@ -0,0 +1,76 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NHPoly1305 - ε-almost-∆-universal hash function for Adiantum + * (SSE2 accelerated version) + * + * Copyright 2018 Google LLC + */ + +#include <crypto/internal/hash.h> +#include <crypto/nhpoly1305.h> +#include <linux/module.h> +#include <asm/fpu/api.h> + +asmlinkage void nh_sse2(const u32 *key, const u8 *message, size_t message_len, + u8 hash[NH_HASH_BYTES]); + +/* wrapper to avoid indirect call to assembly, which doesn't work with CFI */ +static void _nh_sse2(const u32 *key, const u8 *message, size_t message_len, + __le64 hash[NH_NUM_PASSES]) +{ + nh_sse2(key, message, message_len, (u8 *)hash); +} + +static int nhpoly1305_sse2_update(struct shash_desc *desc, + const u8 *src, unsigned int srclen) +{ + if (srclen < 64 || !irq_fpu_usable()) + return crypto_nhpoly1305_update(desc, src, srclen); + + do { + unsigned int n = min_t(unsigned int, srclen, PAGE_SIZE); + + kernel_fpu_begin(); + crypto_nhpoly1305_update_helper(desc, src, n, _nh_sse2); + kernel_fpu_end(); + src += n; + srclen -= n; + } while (srclen); + return 0; +} + +static struct shash_alg nhpoly1305_alg = { + .base.cra_name = "nhpoly1305", + .base.cra_driver_name = "nhpoly1305-sse2", + .base.cra_priority = 200, + .base.cra_ctxsize = sizeof(struct nhpoly1305_key), + .base.cra_module = THIS_MODULE, + .digestsize = POLY1305_DIGEST_SIZE, + .init = crypto_nhpoly1305_init, + .update = nhpoly1305_sse2_update, + .final = crypto_nhpoly1305_final, + .setkey = crypto_nhpoly1305_setkey, + .descsize = sizeof(struct nhpoly1305_state), +}; + +static int __init nhpoly1305_mod_init(void) +{ + if (!boot_cpu_has(X86_FEATURE_XMM2)) + return -ENODEV; + + return crypto_register_shash(&nhpoly1305_alg); +} + +static void __exit nhpoly1305_mod_exit(void) +{ + crypto_unregister_shash(&nhpoly1305_alg); +} + +module_init(nhpoly1305_mod_init); +module_exit(nhpoly1305_mod_exit); + +MODULE_DESCRIPTION("NHPoly1305 ε-almost-∆-universal hash function (SSE2-accelerated)"); +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); +MODULE_ALIAS_CRYPTO("nhpoly1305"); +MODULE_ALIAS_CRYPTO("nhpoly1305-sse2"); diff --git a/arch/x86/crypto/poly1305_glue.c b/arch/x86/crypto/poly1305_glue.c index f012b7e28ad1..88cc01506c84 100644 --- a/arch/x86/crypto/poly1305_glue.c +++ b/arch/x86/crypto/poly1305_glue.c @@ -83,35 +83,37 @@ static unsigned int poly1305_simd_blocks(struct poly1305_desc_ctx *dctx, if (poly1305_use_avx2 && srclen >= POLY1305_BLOCK_SIZE * 4) { if (unlikely(!sctx->wset)) { if (!sctx->uset) { - memcpy(sctx->u, dctx->r, sizeof(sctx->u)); - poly1305_simd_mult(sctx->u, dctx->r); + memcpy(sctx->u, dctx->r.r, sizeof(sctx->u)); + poly1305_simd_mult(sctx->u, dctx->r.r); sctx->uset = true; } memcpy(sctx->u + 5, sctx->u, sizeof(sctx->u)); - poly1305_simd_mult(sctx->u + 5, dctx->r); + poly1305_simd_mult(sctx->u + 5, dctx->r.r); memcpy(sctx->u + 10, sctx->u + 5, sizeof(sctx->u)); - poly1305_simd_mult(sctx->u + 10, dctx->r); + poly1305_simd_mult(sctx->u + 10, dctx->r.r); sctx->wset = true; } blocks = srclen / (POLY1305_BLOCK_SIZE * 4); - poly1305_4block_avx2(dctx->h, src, dctx->r, blocks, sctx->u); + poly1305_4block_avx2(dctx->h.h, src, dctx->r.r, blocks, + sctx->u); src += POLY1305_BLOCK_SIZE * 4 * blocks; srclen -= POLY1305_BLOCK_SIZE * 4 * blocks; } #endif if (likely(srclen >= POLY1305_BLOCK_SIZE * 2)) { if (unlikely(!sctx->uset)) { - memcpy(sctx->u, dctx->r, sizeof(sctx->u)); - poly1305_simd_mult(sctx->u, dctx->r); + memcpy(sctx->u, dctx->r.r, sizeof(sctx->u)); + poly1305_simd_mult(sctx->u, dctx->r.r); sctx->uset = true; } blocks = srclen / (POLY1305_BLOCK_SIZE * 2); - poly1305_2block_sse2(dctx->h, src, dctx->r, blocks, sctx->u); + poly1305_2block_sse2(dctx->h.h, src, dctx->r.r, blocks, + sctx->u); src += POLY1305_BLOCK_SIZE * 2 * blocks; srclen -= POLY1305_BLOCK_SIZE * 2 * blocks; } if (srclen >= POLY1305_BLOCK_SIZE) { - poly1305_block_sse2(dctx->h, src, dctx->r, 1); + poly1305_block_sse2(dctx->h.h, src, dctx->r.r, 1); srclen -= POLY1305_BLOCK_SIZE; } return srclen; diff --git a/arch/x86/entry/calling.h b/arch/x86/entry/calling.h index 25e5a6bda8c3..20d0885b00fb 100644 --- a/arch/x86/entry/calling.h +++ b/arch/x86/entry/calling.h @@ -352,7 +352,7 @@ For 32-bit we have the following conventions - kernel is built with .macro CALL_enter_from_user_mode #ifdef CONFIG_CONTEXT_TRACKING #ifdef HAVE_JUMP_LABEL - STATIC_BRANCH_JMP l_yes=.Lafter_call_\@, key=context_tracking_enabled, branch=1 + STATIC_JUMP_IF_FALSE .Lafter_call_\@, context_tracking_enabled, def=0 #endif call enter_from_user_mode .Lafter_call_\@: diff --git a/arch/x86/entry/common.c b/arch/x86/entry/common.c index 3b2490b81918..7bc105f47d21 100644 --- a/arch/x86/entry/common.c +++ b/arch/x86/entry/common.c @@ -140,7 +140,7 @@ static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags) /* * In order to return to user mode, we need to have IRQs off with * none of EXIT_TO_USERMODE_LOOP_FLAGS set. Several of these flags - * can be set at any time on preemptable kernels if we have IRQs on, + * can be set at any time on preemptible kernels if we have IRQs on, * so we need to loop. Disabling preemption wouldn't help: doing the * work to clear some of the flags can sleep. */ diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S index ce25d84023c0..1f0efdb7b629 100644 --- a/arch/x86/entry/entry_64.S +++ b/arch/x86/entry/entry_64.S @@ -566,6 +566,7 @@ ENTRY(interrupt_entry) ret END(interrupt_entry) +_ASM_NOKPROBE(interrupt_entry) /* Interrupt entry/exit. */ @@ -766,6 +767,7 @@ native_irq_return_ldt: jmp native_irq_return_iret #endif END(common_interrupt) +_ASM_NOKPROBE(common_interrupt) /* * APIC interrupts. @@ -780,6 +782,7 @@ ENTRY(\sym) call \do_sym /* rdi points to pt_regs */ jmp ret_from_intr END(\sym) +_ASM_NOKPROBE(\sym) .endm /* Make sure APIC interrupt handlers end up in the irqentry section: */ @@ -960,6 +963,7 @@ ENTRY(\sym) jmp error_exit .endif +_ASM_NOKPROBE(\sym) END(\sym) .endm diff --git a/arch/x86/entry/vdso/Makefile b/arch/x86/entry/vdso/Makefile index 141d415a8c80..5bfe2243a08f 100644 --- a/arch/x86/entry/vdso/Makefile +++ b/arch/x86/entry/vdso/Makefile @@ -47,7 +47,7 @@ targets += $(vdso_img_sodbg) $(vdso_img-y:%=vdso%.so) CPPFLAGS_vdso.lds += -P -C VDSO_LDFLAGS_vdso.lds = -m elf_x86_64 -soname linux-vdso.so.1 --no-undefined \ - -z max-page-size=4096 -z common-page-size=4096 + -z max-page-size=4096 $(obj)/vdso64.so.dbg: $(obj)/vdso.lds $(vobjs) FORCE $(call if_changed,vdso) @@ -98,7 +98,7 @@ CFLAGS_REMOVE_vvar.o = -pg CPPFLAGS_vdsox32.lds = $(CPPFLAGS_vdso.lds) VDSO_LDFLAGS_vdsox32.lds = -m elf32_x86_64 -soname linux-vdso.so.1 \ - -z max-page-size=4096 -z common-page-size=4096 + -z max-page-size=4096 # x32-rebranded versions vobjx32s-y := $(vobjs-y:.o=-x32.o) @@ -171,7 +171,8 @@ quiet_cmd_vdso = VDSO $@ sh $(srctree)/$(src)/checkundef.sh '$(NM)' '$@' VDSO_LDFLAGS = -shared $(call ld-option, --hash-style=both) \ - $(call ld-option, --build-id) -Bsymbolic + $(call ld-option, --build-id) $(call ld-option, --eh-frame-hdr) \ + -Bsymbolic GCOV_PROFILE := n # diff --git a/arch/x86/entry/vdso/vdso-layout.lds.S b/arch/x86/entry/vdso/vdso-layout.lds.S index acfd5ba7d943..93c6dc7812d0 100644 --- a/arch/x86/entry/vdso/vdso-layout.lds.S +++ b/arch/x86/entry/vdso/vdso-layout.lds.S @@ -7,16 +7,6 @@ * This script controls its layout. */ -#if defined(BUILD_VDSO64) -# define SHDR_SIZE 64 -#elif defined(BUILD_VDSO32) || defined(BUILD_VDSOX32) -# define SHDR_SIZE 40 -#else -# error unknown VDSO target -#endif - -#define NUM_FAKE_SHDRS 13 - SECTIONS { /* @@ -60,20 +50,8 @@ SECTIONS *(.bss*) *(.dynbss*) *(.gnu.linkonce.b.*) - - /* - * Ideally this would live in a C file, but that won't - * work cleanly for x32 until we start building the x32 - * C code using an x32 toolchain. - */ - VDSO_FAKE_SECTION_TABLE_START = .; - . = . + NUM_FAKE_SHDRS * SHDR_SIZE; - VDSO_FAKE_SECTION_TABLE_END = .; } :text - .fake_shstrtab : { *(.fake_shstrtab) } :text - - .note : { *(.note.*) } :text :note .eh_frame_hdr : { *(.eh_frame_hdr) } :text :eh_frame_hdr @@ -87,11 +65,6 @@ SECTIONS .text : { *(.text*) } :text =0x90909090, - /* - * At the end so that eu-elflint stays happy when vdso2c strips - * these. A better implementation would avoid allocating space - * for these. - */ .altinstructions : { *(.altinstructions) } :text .altinstr_replacement : { *(.altinstr_replacement) } :text diff --git a/arch/x86/entry/vdso/vdso2c.c b/arch/x86/entry/vdso/vdso2c.c index 4674f58581a1..8e470b018512 100644 --- a/arch/x86/entry/vdso/vdso2c.c +++ b/arch/x86/entry/vdso/vdso2c.c @@ -76,8 +76,6 @@ enum { sym_hpet_page, sym_pvclock_page, sym_hvclock_page, - sym_VDSO_FAKE_SECTION_TABLE_START, - sym_VDSO_FAKE_SECTION_TABLE_END, }; const int special_pages[] = { @@ -98,12 +96,6 @@ struct vdso_sym required_syms[] = { [sym_hpet_page] = {"hpet_page", true}, [sym_pvclock_page] = {"pvclock_page", true}, [sym_hvclock_page] = {"hvclock_page", true}, - [sym_VDSO_FAKE_SECTION_TABLE_START] = { - "VDSO_FAKE_SECTION_TABLE_START", false - }, - [sym_VDSO_FAKE_SECTION_TABLE_END] = { - "VDSO_FAKE_SECTION_TABLE_END", false - }, {"VDSO32_NOTE_MASK", true}, {"__kernel_vsyscall", true}, {"__kernel_sigreturn", true}, diff --git a/arch/x86/entry/vdso/vma.c b/arch/x86/entry/vdso/vma.c index 7eb878561910..babc4e7a519c 100644 --- a/arch/x86/entry/vdso/vma.c +++ b/arch/x86/entry/vdso/vma.c @@ -261,7 +261,7 @@ int map_vdso_once(const struct vdso_image *image, unsigned long addr) * abusing from userspace install_speciall_mapping, which may * not do accounting and rlimit right. * We could search vma near context.vdso, but it's a slowpath, - * so let's explicitely check all VMAs to be completely sure. + * so let's explicitly check all VMAs to be completely sure. */ for (vma = mm->mmap; vma; vma = vma->vm_next) { if (vma_is_special_mapping(vma, &vdso_mapping) || diff --git a/arch/x86/entry/vsyscall/vsyscall_64.c b/arch/x86/entry/vsyscall/vsyscall_64.c index 85fd85d52ffd..d78bcc03e60e 100644 --- a/arch/x86/entry/vsyscall/vsyscall_64.c +++ b/arch/x86/entry/vsyscall/vsyscall_64.c @@ -102,7 +102,7 @@ static bool write_ok_or_segv(unsigned long ptr, size_t size) if (!access_ok(VERIFY_WRITE, (void __user *)ptr, size)) { struct thread_struct *thread = ¤t->thread; - thread->error_code = 6; /* user fault, no page, write */ + thread->error_code = X86_PF_USER | X86_PF_WRITE; thread->cr2 = ptr; thread->trap_nr = X86_TRAP_PF; diff --git a/arch/x86/events/core.c b/arch/x86/events/core.c index 106911b603bd..374a19712e20 100644 --- a/arch/x86/events/core.c +++ b/arch/x86/events/core.c @@ -438,26 +438,6 @@ int x86_setup_perfctr(struct perf_event *event) if (config == -1LL) return -EINVAL; - /* - * Branch tracing: - */ - if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS && - !attr->freq && hwc->sample_period == 1) { - /* BTS is not supported by this architecture. */ - if (!x86_pmu.bts_active) - return -EOPNOTSUPP; - - /* BTS is currently only allowed for user-mode. */ - if (!attr->exclude_kernel) - return -EOPNOTSUPP; - - /* disallow bts if conflicting events are present */ - if (x86_add_exclusive(x86_lbr_exclusive_lbr)) - return -EBUSY; - - event->destroy = hw_perf_lbr_event_destroy; - } - hwc->config |= config; return 0; diff --git a/arch/x86/events/intel/bts.c b/arch/x86/events/intel/bts.c index 24ffa1e88cf9..a01ef1b0f883 100644 --- a/arch/x86/events/intel/bts.c +++ b/arch/x86/events/intel/bts.c @@ -589,7 +589,7 @@ static __init int bts_init(void) * the AUX buffer. * * However, since this driver supports per-CPU and per-task inherit - * we cannot use the user mapping since it will not be availble + * we cannot use the user mapping since it will not be available * if we're not running the owning process. * * With PTI we can't use the kernal map either, because its not diff --git a/arch/x86/events/intel/core.c b/arch/x86/events/intel/core.c index 273c62e81546..40e12cfc87f6 100644 --- a/arch/x86/events/intel/core.c +++ b/arch/x86/events/intel/core.c @@ -1930,7 +1930,7 @@ static void intel_pmu_enable_all(int added) * in sequence on the same PMC or on different PMCs. * * In practise it appears some of these events do in fact count, and - * we need to programm all 4 events. + * we need to program all 4 events. */ static void intel_pmu_nhm_workaround(void) { @@ -2306,14 +2306,18 @@ static int handle_pmi_common(struct pt_regs *regs, u64 status) return handled; } -static bool disable_counter_freezing; +static bool disable_counter_freezing = true; static int __init intel_perf_counter_freezing_setup(char *s) { - disable_counter_freezing = true; - pr_info("Intel PMU Counter freezing feature disabled\n"); + bool res; + + if (kstrtobool(s, &res)) + return -EINVAL; + + disable_counter_freezing = !res; return 1; } -__setup("disable_counter_freezing", intel_perf_counter_freezing_setup); +__setup("perf_v4_pmi=", intel_perf_counter_freezing_setup); /* * Simplified handler for Arch Perfmon v4: @@ -2470,16 +2474,7 @@ done: static struct event_constraint * intel_bts_constraints(struct perf_event *event) { - struct hw_perf_event *hwc = &event->hw; - unsigned int hw_event, bts_event; - - if (event->attr.freq) - return NULL; - - hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; - bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); - - if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) + if (unlikely(intel_pmu_has_bts(event))) return &bts_constraint; return NULL; @@ -3098,6 +3093,43 @@ static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) return flags; } +static int intel_pmu_bts_config(struct perf_event *event) +{ + struct perf_event_attr *attr = &event->attr; + + if (unlikely(intel_pmu_has_bts(event))) { + /* BTS is not supported by this architecture. */ + if (!x86_pmu.bts_active) + return -EOPNOTSUPP; + + /* BTS is currently only allowed for user-mode. */ + if (!attr->exclude_kernel) + return -EOPNOTSUPP; + + /* BTS is not allowed for precise events. */ + if (attr->precise_ip) + return -EOPNOTSUPP; + + /* disallow bts if conflicting events are present */ + if (x86_add_exclusive(x86_lbr_exclusive_lbr)) + return -EBUSY; + + event->destroy = hw_perf_lbr_event_destroy; + } + + return 0; +} + +static int core_pmu_hw_config(struct perf_event *event) +{ + int ret = x86_pmu_hw_config(event); + + if (ret) + return ret; + + return intel_pmu_bts_config(event); +} + static int intel_pmu_hw_config(struct perf_event *event) { int ret = x86_pmu_hw_config(event); @@ -3105,6 +3137,10 @@ static int intel_pmu_hw_config(struct perf_event *event) if (ret) return ret; + ret = intel_pmu_bts_config(event); + if (ret) + return ret; + if (event->attr.precise_ip) { if (!event->attr.freq) { event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; @@ -3127,7 +3163,7 @@ static int intel_pmu_hw_config(struct perf_event *event) /* * BTS is set up earlier in this path, so don't account twice */ - if (!intel_pmu_has_bts(event)) { + if (!unlikely(intel_pmu_has_bts(event))) { /* disallow lbr if conflicting events are present */ if (x86_add_exclusive(x86_lbr_exclusive_lbr)) return -EBUSY; @@ -3596,7 +3632,7 @@ static __initconst const struct x86_pmu core_pmu = { .enable_all = core_pmu_enable_all, .enable = core_pmu_enable_event, .disable = x86_pmu_disable_event, - .hw_config = x86_pmu_hw_config, + .hw_config = core_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, diff --git a/arch/x86/events/intel/ds.c b/arch/x86/events/intel/ds.c index b7b01d762d32..e9acf1d2e7b2 100644 --- a/arch/x86/events/intel/ds.c +++ b/arch/x86/events/intel/ds.c @@ -1199,7 +1199,7 @@ static void setup_pebs_sample_data(struct perf_event *event, /* * We must however always use iregs for the unwinder to stay sane; the * record BP,SP,IP can point into thin air when the record is from a - * previous PMI context or an (I)RET happend between the record and + * previous PMI context or an (I)RET happened between the record and * PMI. */ if (sample_type & PERF_SAMPLE_CALLCHAIN) diff --git a/arch/x86/events/intel/p4.c b/arch/x86/events/intel/p4.c index d32c0eed38ca..dee579efb2b2 100644 --- a/arch/x86/events/intel/p4.c +++ b/arch/x86/events/intel/p4.c @@ -1259,7 +1259,7 @@ again: } /* * Perf does test runs to see if a whole group can be assigned - * together succesfully. There can be multiple rounds of this. + * together successfully. There can be multiple rounds of this. * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config * bits, such that the next round of group assignments will * cause the above p4_should_swap_ts to pass instead of fail. diff --git a/arch/x86/events/intel/pt.c b/arch/x86/events/intel/pt.c index 3a0aa83cbd07..9494ca68fd9d 100644 --- a/arch/x86/events/intel/pt.c +++ b/arch/x86/events/intel/pt.c @@ -68,6 +68,7 @@ static struct pt_cap_desc { PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)), PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)), PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)), + PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)), PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)), PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x3), PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000), @@ -75,14 +76,21 @@ static struct pt_cap_desc { PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000), }; -static u32 pt_cap_get(enum pt_capabilities cap) +u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) { - struct pt_cap_desc *cd = &pt_caps[cap]; - u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; + struct pt_cap_desc *cd = &pt_caps[capability]; + u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; unsigned int shift = __ffs(cd->mask); return (c & cd->mask) >> shift; } +EXPORT_SYMBOL_GPL(intel_pt_validate_cap); + +u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) +{ + return intel_pt_validate_cap(pt_pmu.caps, cap); +} +EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap); static ssize_t pt_cap_show(struct device *cdev, struct device_attribute *attr, @@ -92,7 +100,7 @@ static ssize_t pt_cap_show(struct device *cdev, container_of(attr, struct dev_ext_attribute, attr); enum pt_capabilities cap = (long)ea->var; - return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap)); + return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap)); } static struct attribute_group pt_cap_group __ro_after_init = { @@ -310,16 +318,16 @@ static bool pt_event_valid(struct perf_event *event) return false; if (config & RTIT_CTL_CYC_PSB) { - if (!pt_cap_get(PT_CAP_psb_cyc)) + if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc)) return false; - allowed = pt_cap_get(PT_CAP_psb_periods); + allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods); requested = (config & RTIT_CTL_PSB_FREQ) >> RTIT_CTL_PSB_FREQ_OFFSET; if (requested && (!(allowed & BIT(requested)))) return false; - allowed = pt_cap_get(PT_CAP_cycle_thresholds); + allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds); requested = (config & RTIT_CTL_CYC_THRESH) >> RTIT_CTL_CYC_THRESH_OFFSET; if (requested && (!(allowed & BIT(requested)))) @@ -334,10 +342,10 @@ static bool pt_event_valid(struct perf_event *event) * Spec says that setting mtc period bits while mtc bit in * CPUID is 0 will #GP, so better safe than sorry. */ - if (!pt_cap_get(PT_CAP_mtc)) + if (!intel_pt_validate_hw_cap(PT_CAP_mtc)) return false; - allowed = pt_cap_get(PT_CAP_mtc_periods); + allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods); if (!allowed) return false; @@ -349,11 +357,11 @@ static bool pt_event_valid(struct perf_event *event) } if (config & RTIT_CTL_PWR_EVT_EN && - !pt_cap_get(PT_CAP_power_event_trace)) + !intel_pt_validate_hw_cap(PT_CAP_power_event_trace)) return false; if (config & RTIT_CTL_PTW) { - if (!pt_cap_get(PT_CAP_ptwrite)) + if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite)) return false; /* FUPonPTW without PTW doesn't make sense */ @@ -598,7 +606,7 @@ static struct topa *topa_alloc(int cpu, gfp_t gfp) * In case of singe-entry ToPA, always put the self-referencing END * link as the 2nd entry in the table */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) { + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT; TOPA_ENTRY(topa, 1)->end = 1; } @@ -638,7 +646,7 @@ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) topa->offset = last->offset + last->size; buf->last = topa; - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return; BUG_ON(last->last != TENTS_PER_PAGE - 1); @@ -654,7 +662,7 @@ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) static bool topa_table_full(struct topa *topa) { /* single-entry ToPA is a special case */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return !!topa->last; return topa->last == TENTS_PER_PAGE - 1; @@ -690,7 +698,8 @@ static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp) TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT; TOPA_ENTRY(topa, -1)->size = order; - if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) { + if (!buf->snapshot && + !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(topa, -1)->intr = 1; TOPA_ENTRY(topa, -1)->stop = 1; } @@ -725,7 +734,7 @@ static void pt_topa_dump(struct pt_buffer *buf) topa->table[i].intr ? 'I' : ' ', topa->table[i].stop ? 'S' : ' ', *(u64 *)&topa->table[i]); - if ((pt_cap_get(PT_CAP_topa_multiple_entries) && + if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && topa->table[i].stop) || topa->table[i].end) break; @@ -828,7 +837,7 @@ static void pt_handle_status(struct pt *pt) * means we are already losing data; need to let the decoder * know. */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries) || + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) || buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) { perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_TRUNCATED); @@ -840,7 +849,8 @@ static void pt_handle_status(struct pt *pt) * Also on single-entry ToPA implementations, interrupt will come * before the output reaches its output region's boundary. */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot && + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && + !buf->snapshot && pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) { void *head = pt_buffer_region(buf); @@ -931,7 +941,7 @@ static int pt_buffer_reset_markers(struct pt_buffer *buf, /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return 0; /* clear STOP and INT from current entry */ @@ -1082,7 +1092,7 @@ static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages, pt_buffer_setup_topa_index(buf); /* link last table to the first one, unless we're double buffering */ - if (pt_cap_get(PT_CAP_topa_multiple_entries)) { + if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT; TOPA_ENTRY(buf->last, -1)->end = 1; } @@ -1153,7 +1163,7 @@ static int pt_addr_filters_init(struct perf_event *event) struct pt_filters *filters; int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); - if (!pt_cap_get(PT_CAP_num_address_ranges)) + if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) return 0; filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node); @@ -1202,7 +1212,7 @@ static int pt_event_addr_filters_validate(struct list_head *filters) return -EINVAL; } - if (++range > pt_cap_get(PT_CAP_num_address_ranges)) + if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) return -EOPNOTSUPP; } @@ -1507,12 +1517,12 @@ static __init int pt_init(void) if (ret) return ret; - if (!pt_cap_get(PT_CAP_topa_output)) { + if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) { pr_warn("ToPA output is not supported on this CPU\n"); return -ENODEV; } - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF; @@ -1530,7 +1540,7 @@ static __init int pt_init(void) pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync; pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate; pt_pmu.pmu.nr_addr_filters = - pt_cap_get(PT_CAP_num_address_ranges); + intel_pt_validate_hw_cap(PT_CAP_num_address_ranges); ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1); diff --git a/arch/x86/events/intel/pt.h b/arch/x86/events/intel/pt.h index 0eb41d07b79a..269e15a9086c 100644 --- a/arch/x86/events/intel/pt.h +++ b/arch/x86/events/intel/pt.h @@ -20,43 +20,6 @@ #define __INTEL_PT_H__ /* - * PT MSR bit definitions - */ -#define RTIT_CTL_TRACEEN BIT(0) -#define RTIT_CTL_CYCLEACC BIT(1) -#define RTIT_CTL_OS BIT(2) -#define RTIT_CTL_USR BIT(3) -#define RTIT_CTL_PWR_EVT_EN BIT(4) -#define RTIT_CTL_FUP_ON_PTW BIT(5) -#define RTIT_CTL_CR3EN BIT(7) -#define RTIT_CTL_TOPA BIT(8) -#define RTIT_CTL_MTC_EN BIT(9) -#define RTIT_CTL_TSC_EN BIT(10) -#define RTIT_CTL_DISRETC BIT(11) -#define RTIT_CTL_PTW_EN BIT(12) -#define RTIT_CTL_BRANCH_EN BIT(13) -#define RTIT_CTL_MTC_RANGE_OFFSET 14 -#define RTIT_CTL_MTC_RANGE (0x0full << RTIT_CTL_MTC_RANGE_OFFSET) -#define RTIT_CTL_CYC_THRESH_OFFSET 19 -#define RTIT_CTL_CYC_THRESH (0x0full << RTIT_CTL_CYC_THRESH_OFFSET) -#define RTIT_CTL_PSB_FREQ_OFFSET 24 -#define RTIT_CTL_PSB_FREQ (0x0full << RTIT_CTL_PSB_FREQ_OFFSET) -#define RTIT_CTL_ADDR0_OFFSET 32 -#define RTIT_CTL_ADDR0 (0x0full << RTIT_CTL_ADDR0_OFFSET) -#define RTIT_CTL_ADDR1_OFFSET 36 -#define RTIT_CTL_ADDR1 (0x0full << RTIT_CTL_ADDR1_OFFSET) -#define RTIT_CTL_ADDR2_OFFSET 40 -#define RTIT_CTL_ADDR2 (0x0full << RTIT_CTL_ADDR2_OFFSET) -#define RTIT_CTL_ADDR3_OFFSET 44 -#define RTIT_CTL_ADDR3 (0x0full << RTIT_CTL_ADDR3_OFFSET) -#define RTIT_STATUS_FILTEREN BIT(0) -#define RTIT_STATUS_CONTEXTEN BIT(1) -#define RTIT_STATUS_TRIGGEREN BIT(2) -#define RTIT_STATUS_BUFFOVF BIT(3) -#define RTIT_STATUS_ERROR BIT(4) -#define RTIT_STATUS_STOPPED BIT(5) - -/* * Single-entry ToPA: when this close to region boundary, switch * buffers to avoid losing data. */ @@ -82,30 +45,9 @@ struct topa_entry { u64 rsvd4 : 16; }; -#define PT_CPUID_LEAVES 2 -#define PT_CPUID_REGS_NUM 4 /* number of regsters (eax, ebx, ecx, edx) */ - /* TSC to Core Crystal Clock Ratio */ #define CPUID_TSC_LEAF 0x15 -enum pt_capabilities { - PT_CAP_max_subleaf = 0, - PT_CAP_cr3_filtering, - PT_CAP_psb_cyc, - PT_CAP_ip_filtering, - PT_CAP_mtc, - PT_CAP_ptwrite, - PT_CAP_power_event_trace, - PT_CAP_topa_output, - PT_CAP_topa_multiple_entries, - PT_CAP_single_range_output, - PT_CAP_payloads_lip, - PT_CAP_num_address_ranges, - PT_CAP_mtc_periods, - PT_CAP_cycle_thresholds, - PT_CAP_psb_periods, -}; - struct pt_pmu { struct pmu pmu; u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; diff --git a/arch/x86/events/intel/uncore.h b/arch/x86/events/intel/uncore.h index e17ab885b1e9..cb46d602a6b8 100644 --- a/arch/x86/events/intel/uncore.h +++ b/arch/x86/events/intel/uncore.h @@ -129,8 +129,15 @@ struct intel_uncore_box { struct intel_uncore_extra_reg shared_regs[0]; }; -#define UNCORE_BOX_FLAG_INITIATED 0 -#define UNCORE_BOX_FLAG_CTL_OFFS8 1 /* event config registers are 8-byte apart */ +/* CFL uncore 8th cbox MSRs */ +#define CFL_UNC_CBO_7_PERFEVTSEL0 0xf70 +#define CFL_UNC_CBO_7_PER_CTR0 0xf76 + +#define UNCORE_BOX_FLAG_INITIATED 0 +/* event config registers are 8-byte apart */ +#define UNCORE_BOX_FLAG_CTL_OFFS8 1 +/* CFL 8th CBOX has different MSR space */ +#define UNCORE_BOX_FLAG_CFL8_CBOX_MSR_OFFS 2 struct uncore_event_desc { struct kobj_attribute attr; @@ -297,17 +304,27 @@ unsigned int uncore_freerunning_counter(struct intel_uncore_box *box, static inline unsigned uncore_msr_event_ctl(struct intel_uncore_box *box, int idx) { - return box->pmu->type->event_ctl + - (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx) + - uncore_msr_box_offset(box); + if (test_bit(UNCORE_BOX_FLAG_CFL8_CBOX_MSR_OFFS, &box->flags)) { + return CFL_UNC_CBO_7_PERFEVTSEL0 + + (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx); + } else { + return box->pmu->type->event_ctl + + (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx) + + uncore_msr_box_offset(box); + } } static inline unsigned uncore_msr_perf_ctr(struct intel_uncore_box *box, int idx) { - return box->pmu->type->perf_ctr + - (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx) + - uncore_msr_box_offset(box); + if (test_bit(UNCORE_BOX_FLAG_CFL8_CBOX_MSR_OFFS, &box->flags)) { + return CFL_UNC_CBO_7_PER_CTR0 + + (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx); + } else { + return box->pmu->type->perf_ctr + + (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx) + + uncore_msr_box_offset(box); + } } static inline diff --git a/arch/x86/events/intel/uncore_snb.c b/arch/x86/events/intel/uncore_snb.c index 8527c3e1038b..2593b0d7aeee 100644 --- a/arch/x86/events/intel/uncore_snb.c +++ b/arch/x86/events/intel/uncore_snb.c @@ -15,6 +15,25 @@ #define PCI_DEVICE_ID_INTEL_SKL_HQ_IMC 0x1910 #define PCI_DEVICE_ID_INTEL_SKL_SD_IMC 0x190f #define PCI_DEVICE_ID_INTEL_SKL_SQ_IMC 0x191f +#define PCI_DEVICE_ID_INTEL_KBL_Y_IMC 0x590c +#define PCI_DEVICE_ID_INTEL_KBL_U_IMC 0x5904 +#define PCI_DEVICE_ID_INTEL_KBL_UQ_IMC 0x5914 +#define PCI_DEVICE_ID_INTEL_KBL_SD_IMC 0x590f +#define PCI_DEVICE_ID_INTEL_KBL_SQ_IMC 0x591f +#define PCI_DEVICE_ID_INTEL_CFL_2U_IMC 0x3ecc +#define PCI_DEVICE_ID_INTEL_CFL_4U_IMC 0x3ed0 +#define PCI_DEVICE_ID_INTEL_CFL_4H_IMC 0x3e10 +#define PCI_DEVICE_ID_INTEL_CFL_6H_IMC 0x3ec4 +#define PCI_DEVICE_ID_INTEL_CFL_2S_D_IMC 0x3e0f +#define PCI_DEVICE_ID_INTEL_CFL_4S_D_IMC 0x3e1f +#define PCI_DEVICE_ID_INTEL_CFL_6S_D_IMC 0x3ec2 +#define PCI_DEVICE_ID_INTEL_CFL_8S_D_IMC 0x3e30 +#define PCI_DEVICE_ID_INTEL_CFL_4S_W_IMC 0x3e18 +#define PCI_DEVICE_ID_INTEL_CFL_6S_W_IMC 0x3ec6 +#define PCI_DEVICE_ID_INTEL_CFL_8S_W_IMC 0x3e31 +#define PCI_DEVICE_ID_INTEL_CFL_4S_S_IMC 0x3e33 +#define PCI_DEVICE_ID_INTEL_CFL_6S_S_IMC 0x3eca +#define PCI_DEVICE_ID_INTEL_CFL_8S_S_IMC 0x3e32 /* SNB event control */ #define SNB_UNC_CTL_EV_SEL_MASK 0x000000ff @@ -202,6 +221,10 @@ static void skl_uncore_msr_init_box(struct intel_uncore_box *box) wrmsrl(SKL_UNC_PERF_GLOBAL_CTL, SNB_UNC_GLOBAL_CTL_EN | SKL_UNC_GLOBAL_CTL_CORE_ALL); } + + /* The 8th CBOX has different MSR space */ + if (box->pmu->pmu_idx == 7) + __set_bit(UNCORE_BOX_FLAG_CFL8_CBOX_MSR_OFFS, &box->flags); } static void skl_uncore_msr_enable_box(struct intel_uncore_box *box) @@ -228,7 +251,7 @@ static struct intel_uncore_ops skl_uncore_msr_ops = { static struct intel_uncore_type skl_uncore_cbox = { .name = "cbox", .num_counters = 4, - .num_boxes = 5, + .num_boxes = 8, .perf_ctr_bits = 44, .fixed_ctr_bits = 48, .perf_ctr = SNB_UNC_CBO_0_PER_CTR0, @@ -569,7 +592,82 @@ static const struct pci_device_id skl_uncore_pci_ids[] = { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SKL_SQ_IMC), .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), }, - + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_Y_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_U_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_UQ_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_SD_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_SQ_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_2U_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4U_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4H_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_6H_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_2S_D_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4S_D_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_6S_D_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_8S_D_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4S_W_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_6S_W_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_8S_W_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4S_S_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_6S_S_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, + { /* IMC */ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_8S_S_IMC), + .driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0), + }, { /* end: all zeroes */ }, }; @@ -618,6 +716,25 @@ static const struct imc_uncore_pci_dev desktop_imc_pci_ids[] = { IMC_DEV(SKL_HQ_IMC, &skl_uncore_pci_driver), /* 6th Gen Core H Quad Core */ IMC_DEV(SKL_SD_IMC, &skl_uncore_pci_driver), /* 6th Gen Core S Dual Core */ IMC_DEV(SKL_SQ_IMC, &skl_uncore_pci_driver), /* 6th Gen Core S Quad Core */ + IMC_DEV(KBL_Y_IMC, &skl_uncore_pci_driver), /* 7th Gen Core Y */ + IMC_DEV(KBL_U_IMC, &skl_uncore_pci_driver), /* 7th Gen Core U */ + IMC_DEV(KBL_UQ_IMC, &skl_uncore_pci_driver), /* 7th Gen Core U Quad Core */ + IMC_DEV(KBL_SD_IMC, &skl_uncore_pci_driver), /* 7th Gen Core S Dual Core */ + IMC_DEV(KBL_SQ_IMC, &skl_uncore_pci_driver), /* 7th Gen Core S Quad Core */ + IMC_DEV(CFL_2U_IMC, &skl_uncore_pci_driver), /* 8th Gen Core U 2 Cores */ + IMC_DEV(CFL_4U_IMC, &skl_uncore_pci_driver), /* 8th Gen Core U 4 Cores */ + IMC_DEV(CFL_4H_IMC, &skl_uncore_pci_driver), /* 8th Gen Core H 4 Cores */ + IMC_DEV(CFL_6H_IMC, &skl_uncore_pci_driver), /* 8th Gen Core H 6 Cores */ + IMC_DEV(CFL_2S_D_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 2 Cores Desktop */ + IMC_DEV(CFL_4S_D_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 4 Cores Desktop */ + IMC_DEV(CFL_6S_D_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 6 Cores Desktop */ + IMC_DEV(CFL_8S_D_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 8 Cores Desktop */ + IMC_DEV(CFL_4S_W_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 4 Cores Work Station */ + IMC_DEV(CFL_6S_W_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 6 Cores Work Station */ + IMC_DEV(CFL_8S_W_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 8 Cores Work Station */ + IMC_DEV(CFL_4S_S_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 4 Cores Server */ + IMC_DEV(CFL_6S_S_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 6 Cores Server */ + IMC_DEV(CFL_8S_S_IMC, &skl_uncore_pci_driver), /* 8th Gen Core S 8 Cores Server */ { /* end marker */ } }; diff --git a/arch/x86/events/perf_event.h b/arch/x86/events/perf_event.h index adae087cecdd..78d7b7031bfc 100644 --- a/arch/x86/events/perf_event.h +++ b/arch/x86/events/perf_event.h @@ -859,11 +859,16 @@ static inline int amd_pmu_init(void) static inline bool intel_pmu_has_bts(struct perf_event *event) { - if (event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS && - !event->attr.freq && event->hw.sample_period == 1) - return true; + struct hw_perf_event *hwc = &event->hw; + unsigned int hw_event, bts_event; + + if (event->attr.freq) + return false; + + hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; + bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); - return false; + return hw_event == bts_event && hwc->sample_period == 1; } int intel_pmu_save_and_restart(struct perf_event *event); diff --git a/arch/x86/hyperv/nested.c b/arch/x86/hyperv/nested.c index b8e60cc50461..dd0a843f766d 100644 --- a/arch/x86/hyperv/nested.c +++ b/arch/x86/hyperv/nested.c @@ -7,6 +7,7 @@ * * Author : Lan Tianyu <Tianyu.Lan@microsoft.com> */ +#define pr_fmt(fmt) "Hyper-V: " fmt #include <linux/types.h> @@ -54,3 +55,82 @@ fault: return ret; } EXPORT_SYMBOL_GPL(hyperv_flush_guest_mapping); + +int hyperv_fill_flush_guest_mapping_list( + struct hv_guest_mapping_flush_list *flush, + u64 start_gfn, u64 pages) +{ + u64 cur = start_gfn; + u64 additional_pages; + int gpa_n = 0; + + do { + /* + * If flush requests exceed max flush count, go back to + * flush tlbs without range. + */ + if (gpa_n >= HV_MAX_FLUSH_REP_COUNT) + return -ENOSPC; + + additional_pages = min_t(u64, pages, HV_MAX_FLUSH_PAGES) - 1; + + flush->gpa_list[gpa_n].page.additional_pages = additional_pages; + flush->gpa_list[gpa_n].page.largepage = false; + flush->gpa_list[gpa_n].page.basepfn = cur; + + pages -= additional_pages + 1; + cur += additional_pages + 1; + gpa_n++; + } while (pages > 0); + + return gpa_n; +} +EXPORT_SYMBOL_GPL(hyperv_fill_flush_guest_mapping_list); + +int hyperv_flush_guest_mapping_range(u64 as, + hyperv_fill_flush_list_func fill_flush_list_func, void *data) +{ + struct hv_guest_mapping_flush_list **flush_pcpu; + struct hv_guest_mapping_flush_list *flush; + u64 status = 0; + unsigned long flags; + int ret = -ENOTSUPP; + int gpa_n = 0; + + if (!hv_hypercall_pg || !fill_flush_list_func) + goto fault; + + local_irq_save(flags); + + flush_pcpu = (struct hv_guest_mapping_flush_list **) + this_cpu_ptr(hyperv_pcpu_input_arg); + + flush = *flush_pcpu; + if (unlikely(!flush)) { + local_irq_restore(flags); + goto fault; + } + + flush->address_space = as; + flush->flags = 0; + + gpa_n = fill_flush_list_func(flush, data); + if (gpa_n < 0) { + local_irq_restore(flags); + goto fault; + } + + status = hv_do_rep_hypercall(HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST, + gpa_n, 0, flush, NULL); + + local_irq_restore(flags); + + if (!(status & HV_HYPERCALL_RESULT_MASK)) + ret = 0; + else + ret = status; +fault: + trace_hyperv_nested_flush_guest_mapping_range(as, ret); + return ret; +} +EXPORT_SYMBOL_GPL(hyperv_flush_guest_mapping_range); diff --git a/arch/x86/include/asm/alternative-asm.h b/arch/x86/include/asm/alternative-asm.h index 8e4ea39e55d0..31b627b43a8e 100644 --- a/arch/x86/include/asm/alternative-asm.h +++ b/arch/x86/include/asm/alternative-asm.h @@ -7,24 +7,16 @@ #include <asm/asm.h> #ifdef CONFIG_SMP -.macro LOCK_PREFIX_HERE + .macro LOCK_PREFIX +672: lock .pushsection .smp_locks,"a" .balign 4 - .long 671f - . # offset + .long 672b - . .popsection -671: -.endm - -.macro LOCK_PREFIX insn:vararg - LOCK_PREFIX_HERE - lock \insn -.endm + .endm #else -.macro LOCK_PREFIX_HERE -.endm - -.macro LOCK_PREFIX insn:vararg -.endm + .macro LOCK_PREFIX + .endm #endif /* diff --git a/arch/x86/include/asm/alternative.h b/arch/x86/include/asm/alternative.h index d7faa16622d8..0660e14690c8 100644 --- a/arch/x86/include/asm/alternative.h +++ b/arch/x86/include/asm/alternative.h @@ -31,8 +31,15 @@ */ #ifdef CONFIG_SMP -#define LOCK_PREFIX_HERE "LOCK_PREFIX_HERE\n\t" -#define LOCK_PREFIX "LOCK_PREFIX " +#define LOCK_PREFIX_HERE \ + ".pushsection .smp_locks,\"a\"\n" \ + ".balign 4\n" \ + ".long 671f - .\n" /* offset */ \ + ".popsection\n" \ + "671:" + +#define LOCK_PREFIX LOCK_PREFIX_HERE "\n\tlock; " + #else /* ! CONFIG_SMP */ #define LOCK_PREFIX_HERE "" #define LOCK_PREFIX "" @@ -167,7 +174,7 @@ static inline int alternatives_text_reserved(void *start, void *end) /* * Alternative inline assembly with input. * - * Pecularities: + * Peculiarities: * No memory clobber here. * Argument numbers start with 1. * Best is to use constraints that are fixed size (like (%1) ... "r") diff --git a/arch/x86/include/asm/arch_hweight.h b/arch/x86/include/asm/arch_hweight.h index 34a10b2d5b73..fc0693569f7a 100644 --- a/arch/x86/include/asm/arch_hweight.h +++ b/arch/x86/include/asm/arch_hweight.h @@ -5,15 +5,9 @@ #include <asm/cpufeatures.h> #ifdef CONFIG_64BIT -/* popcnt %edi, %eax */ -#define POPCNT32 ".byte 0xf3,0x0f,0xb8,0xc7" -/* popcnt %rdi, %rax */ -#define POPCNT64 ".byte 0xf3,0x48,0x0f,0xb8,0xc7" #define REG_IN "D" #define REG_OUT "a" #else -/* popcnt %eax, %eax */ -#define POPCNT32 ".byte 0xf3,0x0f,0xb8,0xc0" #define REG_IN "a" #define REG_OUT "a" #endif @@ -24,7 +18,7 @@ static __always_inline unsigned int __arch_hweight32(unsigned int w) { unsigned int res; - asm (ALTERNATIVE("call __sw_hweight32", POPCNT32, X86_FEATURE_POPCNT) + asm (ALTERNATIVE("call __sw_hweight32", "popcntl %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); @@ -52,7 +46,7 @@ static __always_inline unsigned long __arch_hweight64(__u64 w) { unsigned long res; - asm (ALTERNATIVE("call __sw_hweight64", POPCNT64, X86_FEATURE_POPCNT) + asm (ALTERNATIVE("call __sw_hweight64", "popcntq %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); diff --git a/arch/x86/include/asm/asm.h b/arch/x86/include/asm/asm.h index 21b086786404..6467757bb39f 100644 --- a/arch/x86/include/asm/asm.h +++ b/arch/x86/include/asm/asm.h @@ -120,25 +120,12 @@ /* Exception table entry */ #ifdef __ASSEMBLY__ # define _ASM_EXTABLE_HANDLE(from, to, handler) \ - ASM_EXTABLE_HANDLE from to handler - -.macro ASM_EXTABLE_HANDLE from:req to:req handler:req - .pushsection "__ex_table","a" - .balign 4 - .long (\from) - . - .long (\to) - . - .long (\handler) - . + .pushsection "__ex_table","a" ; \ + .balign 4 ; \ + .long (from) - . ; \ + .long (to) - . ; \ + .long (handler) - . ; \ .popsection -.endm -#else /* __ASSEMBLY__ */ - -# define _ASM_EXTABLE_HANDLE(from, to, handler) \ - "ASM_EXTABLE_HANDLE from=" #from " to=" #to \ - " handler=\"" #handler "\"\n\t" - -/* For C file, we already have NOKPROBE_SYMBOL macro */ - -#endif /* __ASSEMBLY__ */ # define _ASM_EXTABLE(from, to) \ _ASM_EXTABLE_HANDLE(from, to, ex_handler_default) @@ -161,7 +148,6 @@ _ASM_PTR (entry); \ .popsection -#ifdef __ASSEMBLY__ .macro ALIGN_DESTINATION /* check for bad alignment of destination */ movl %edi,%ecx @@ -185,7 +171,34 @@ _ASM_EXTABLE_UA(100b, 103b) _ASM_EXTABLE_UA(101b, 103b) .endm -#endif /* __ASSEMBLY__ */ + +#else +# define _EXPAND_EXTABLE_HANDLE(x) #x +# define _ASM_EXTABLE_HANDLE(from, to, handler) \ + " .pushsection \"__ex_table\",\"a\"\n" \ + " .balign 4\n" \ + " .long (" #from ") - .\n" \ + " .long (" #to ") - .\n" \ + " .long (" _EXPAND_EXTABLE_HANDLE(handler) ") - .\n" \ + " .popsection\n" + +# define _ASM_EXTABLE(from, to) \ + _ASM_EXTABLE_HANDLE(from, to, ex_handler_default) + +# define _ASM_EXTABLE_UA(from, to) \ + _ASM_EXTABLE_HANDLE(from, to, ex_handler_uaccess) + +# define _ASM_EXTABLE_FAULT(from, to) \ + _ASM_EXTABLE_HANDLE(from, to, ex_handler_fault) + +# define _ASM_EXTABLE_EX(from, to) \ + _ASM_EXTABLE_HANDLE(from, to, ex_handler_ext) + +# define _ASM_EXTABLE_REFCOUNT(from, to) \ + _ASM_EXTABLE_HANDLE(from, to, ex_handler_refcount) + +/* For C file, we already have NOKPROBE_SYMBOL macro */ +#endif #ifndef __ASSEMBLY__ /* diff --git a/arch/x86/include/asm/bootparam_utils.h b/arch/x86/include/asm/bootparam_utils.h index a07ffd23e4dd..f6f6ef436599 100644 --- a/arch/x86/include/asm/bootparam_utils.h +++ b/arch/x86/include/asm/bootparam_utils.h @@ -36,6 +36,7 @@ static void sanitize_boot_params(struct boot_params *boot_params) */ if (boot_params->sentinel) { /* fields in boot_params are left uninitialized, clear them */ + boot_params->acpi_rsdp_addr = 0; memset(&boot_params->ext_ramdisk_image, 0, (char *)&boot_params->efi_info - (char *)&boot_params->ext_ramdisk_image); diff --git a/arch/x86/include/asm/bug.h b/arch/x86/include/asm/bug.h index 5090035e6d16..6804d6642767 100644 --- a/arch/x86/include/asm/bug.h +++ b/arch/x86/include/asm/bug.h @@ -4,8 +4,6 @@ #include <linux/stringify.h> -#ifndef __ASSEMBLY__ - /* * Despite that some emulators terminate on UD2, we use it for WARN(). * @@ -22,15 +20,53 @@ #define LEN_UD2 2 +#ifdef CONFIG_GENERIC_BUG + +#ifdef CONFIG_X86_32 +# define __BUG_REL(val) ".long " __stringify(val) +#else +# define __BUG_REL(val) ".long " __stringify(val) " - 2b" +#endif + +#ifdef CONFIG_DEBUG_BUGVERBOSE + +#define _BUG_FLAGS(ins, flags) \ +do { \ + asm volatile("1:\t" ins "\n" \ + ".pushsection __bug_table,\"aw\"\n" \ + "2:\t" __BUG_REL(1b) "\t# bug_entry::bug_addr\n" \ + "\t" __BUG_REL(%c0) "\t# bug_entry::file\n" \ + "\t.word %c1" "\t# bug_entry::line\n" \ + "\t.word %c2" "\t# bug_entry::flags\n" \ + "\t.org 2b+%c3\n" \ + ".popsection" \ + : : "i" (__FILE__), "i" (__LINE__), \ + "i" (flags), \ + "i" (sizeof(struct bug_entry))); \ +} while (0) + +#else /* !CONFIG_DEBUG_BUGVERBOSE */ + #define _BUG_FLAGS(ins, flags) \ do { \ - asm volatile("ASM_BUG ins=\"" ins "\" file=%c0 line=%c1 " \ - "flags=%c2 size=%c3" \ - : : "i" (__FILE__), "i" (__LINE__), \ - "i" (flags), \ + asm volatile("1:\t" ins "\n" \ + ".pushsection __bug_table,\"aw\"\n" \ + "2:\t" __BUG_REL(1b) "\t# bug_entry::bug_addr\n" \ + "\t.word %c0" "\t# bug_entry::flags\n" \ + "\t.org 2b+%c1\n" \ + ".popsection" \ + : : "i" (flags), \ "i" (sizeof(struct bug_entry))); \ } while (0) +#endif /* CONFIG_DEBUG_BUGVERBOSE */ + +#else + +#define _BUG_FLAGS(ins, flags) asm volatile(ins) + +#endif /* CONFIG_GENERIC_BUG */ + #define HAVE_ARCH_BUG #define BUG() \ do { \ @@ -46,54 +82,4 @@ do { \ #include <asm-generic/bug.h> -#else /* __ASSEMBLY__ */ - -#ifdef CONFIG_GENERIC_BUG - -#ifdef CONFIG_X86_32 -.macro __BUG_REL val:req - .long \val -.endm -#else -.macro __BUG_REL val:req - .long \val - 2b -.endm -#endif - -#ifdef CONFIG_DEBUG_BUGVERBOSE - -.macro ASM_BUG ins:req file:req line:req flags:req size:req -1: \ins - .pushsection __bug_table,"aw" -2: __BUG_REL val=1b # bug_entry::bug_addr - __BUG_REL val=\file # bug_entry::file - .word \line # bug_entry::line - .word \flags # bug_entry::flags - .org 2b+\size - .popsection -.endm - -#else /* !CONFIG_DEBUG_BUGVERBOSE */ - -.macro ASM_BUG ins:req file:req line:req flags:req size:req -1: \ins - .pushsection __bug_table,"aw" -2: __BUG_REL val=1b # bug_entry::bug_addr - .word \flags # bug_entry::flags - .org 2b+\size - .popsection -.endm - -#endif /* CONFIG_DEBUG_BUGVERBOSE */ - -#else /* CONFIG_GENERIC_BUG */ - -.macro ASM_BUG ins:req file:req line:req flags:req size:req - \ins -.endm - -#endif /* CONFIG_GENERIC_BUG */ - -#endif /* __ASSEMBLY__ */ - #endif /* _ASM_X86_BUG_H */ diff --git a/arch/x86/include/asm/cmpxchg.h b/arch/x86/include/asm/cmpxchg.h index bfb85e5844ab..a8bfac131256 100644 --- a/arch/x86/include/asm/cmpxchg.h +++ b/arch/x86/include/asm/cmpxchg.h @@ -7,7 +7,7 @@ #include <asm/alternative.h> /* Provides LOCK_PREFIX */ /* - * Non-existant functions to indicate usage errors at link time + * Non-existent functions to indicate usage errors at link time * (or compile-time if the compiler implements __compiletime_error(). */ extern void __xchg_wrong_size(void) diff --git a/arch/x86/include/asm/cpufeature.h b/arch/x86/include/asm/cpufeature.h index 7d442722ef24..aced6c9290d6 100644 --- a/arch/x86/include/asm/cpufeature.h +++ b/arch/x86/include/asm/cpufeature.h @@ -2,10 +2,10 @@ #ifndef _ASM_X86_CPUFEATURE_H #define _ASM_X86_CPUFEATURE_H -#ifdef __KERNEL__ -#ifndef __ASSEMBLY__ - #include <asm/processor.h> + +#if defined(__KERNEL__) && !defined(__ASSEMBLY__) + #include <asm/asm.h> #include <linux/bitops.h> @@ -161,10 +161,37 @@ extern void clear_cpu_cap(struct cpuinfo_x86 *c, unsigned int bit); */ static __always_inline __pure bool _static_cpu_has(u16 bit) { - asm_volatile_goto("STATIC_CPU_HAS bitnum=%[bitnum] " - "cap_byte=\"%[cap_byte]\" " - "feature=%P[feature] t_yes=%l[t_yes] " - "t_no=%l[t_no] always=%P[always]" + asm_volatile_goto("1: jmp 6f\n" + "2:\n" + ".skip -(((5f-4f) - (2b-1b)) > 0) * " + "((5f-4f) - (2b-1b)),0x90\n" + "3:\n" + ".section .altinstructions,\"a\"\n" + " .long 1b - .\n" /* src offset */ + " .long 4f - .\n" /* repl offset */ + " .word %P[always]\n" /* always replace */ + " .byte 3b - 1b\n" /* src len */ + " .byte 5f - 4f\n" /* repl len */ + " .byte 3b - 2b\n" /* pad len */ + ".previous\n" + ".section .altinstr_replacement,\"ax\"\n" + "4: jmp %l[t_no]\n" + "5:\n" + ".previous\n" + ".section .altinstructions,\"a\"\n" + " .long 1b - .\n" /* src offset */ + " .long 0\n" /* no replacement */ + " .word %P[feature]\n" /* feature bit */ + " .byte 3b - 1b\n" /* src len */ + " .byte 0\n" /* repl len */ + " .byte 0\n" /* pad len */ + ".previous\n" + ".section .altinstr_aux,\"ax\"\n" + "6:\n" + " testb %[bitnum],%[cap_byte]\n" + " jnz %l[t_yes]\n" + " jmp %l[t_no]\n" + ".previous\n" : : [feature] "i" (bit), [always] "i" (X86_FEATURE_ALWAYS), [bitnum] "i" (1 << (bit & 7)), @@ -199,44 +226,5 @@ t_no: #define CPU_FEATURE_TYPEVAL boot_cpu_data.x86_vendor, boot_cpu_data.x86, \ boot_cpu_data.x86_model -#else /* __ASSEMBLY__ */ - -.macro STATIC_CPU_HAS bitnum:req cap_byte:req feature:req t_yes:req t_no:req always:req -1: - jmp 6f -2: - .skip -(((5f-4f) - (2b-1b)) > 0) * ((5f-4f) - (2b-1b)),0x90 -3: - .section .altinstructions,"a" - .long 1b - . /* src offset */ - .long 4f - . /* repl offset */ - .word \always /* always replace */ - .byte 3b - 1b /* src len */ - .byte 5f - 4f /* repl len */ - .byte 3b - 2b /* pad len */ - .previous - .section .altinstr_replacement,"ax" -4: - jmp \t_no -5: - .previous - .section .altinstructions,"a" - .long 1b - . /* src offset */ - .long 0 /* no replacement */ - .word \feature /* feature bit */ - .byte 3b - 1b /* src len */ - .byte 0 /* repl len */ - .byte 0 /* pad len */ - .previous - .section .altinstr_aux,"ax" -6: - testb \bitnum,\cap_byte - jnz \t_yes - jmp \t_no - .previous -.endm - -#endif /* __ASSEMBLY__ */ - -#endif /* __KERNEL__ */ +#endif /* defined(__KERNEL__) && !defined(__ASSEMBLY__) */ #endif /* _ASM_X86_CPUFEATURE_H */ diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h index 28c4a502b419..6d6122524711 100644 --- a/arch/x86/include/asm/cpufeatures.h +++ b/arch/x86/include/asm/cpufeatures.h @@ -281,9 +281,11 @@ #define X86_FEATURE_CLZERO (13*32+ 0) /* CLZERO instruction */ #define X86_FEATURE_IRPERF (13*32+ 1) /* Instructions Retired Count */ #define X86_FEATURE_XSAVEERPTR (13*32+ 2) /* Always save/restore FP error pointers */ +#define X86_FEATURE_WBNOINVD (13*32+ 9) /* WBNOINVD instruction */ #define X86_FEATURE_AMD_IBPB (13*32+12) /* "" Indirect Branch Prediction Barrier */ #define X86_FEATURE_AMD_IBRS (13*32+14) /* "" Indirect Branch Restricted Speculation */ #define X86_FEATURE_AMD_STIBP (13*32+15) /* "" Single Thread Indirect Branch Predictors */ +#define X86_FEATURE_AMD_STIBP_ALWAYS_ON (13*32+17) /* "" Single Thread Indirect Branch Predictors always-on preferred */ #define X86_FEATURE_AMD_SSBD (13*32+24) /* "" Speculative Store Bypass Disable */ #define X86_FEATURE_VIRT_SSBD (13*32+25) /* Virtualized Speculative Store Bypass Disable */ #define X86_FEATURE_AMD_SSB_NO (13*32+26) /* "" Speculative Store Bypass is fixed in hardware. */ diff --git a/arch/x86/include/asm/crash.h b/arch/x86/include/asm/crash.h index a7adb2bfbf0b..0acf5ee45a21 100644 --- a/arch/x86/include/asm/crash.h +++ b/arch/x86/include/asm/crash.h @@ -6,5 +6,6 @@ int crash_load_segments(struct kimage *image); int crash_copy_backup_region(struct kimage *image); int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params); +void crash_smp_send_stop(void); #endif /* _ASM_X86_CRASH_H */ diff --git a/arch/x86/include/asm/disabled-features.h b/arch/x86/include/asm/disabled-features.h index 33833d1909af..a5ea841cc6d2 100644 --- a/arch/x86/include/asm/disabled-features.h +++ b/arch/x86/include/asm/disabled-features.h @@ -16,6 +16,12 @@ # define DISABLE_MPX (1<<(X86_FEATURE_MPX & 31)) #endif +#ifdef CONFIG_X86_SMAP +# define DISABLE_SMAP 0 +#else +# define DISABLE_SMAP (1<<(X86_FEATURE_SMAP & 31)) +#endif + #ifdef CONFIG_X86_INTEL_UMIP # define DISABLE_UMIP 0 #else @@ -68,7 +74,7 @@ #define DISABLED_MASK6 0 #define DISABLED_MASK7 (DISABLE_PTI) #define DISABLED_MASK8 0 -#define DISABLED_MASK9 (DISABLE_MPX) +#define DISABLED_MASK9 (DISABLE_MPX|DISABLE_SMAP) #define DISABLED_MASK10 0 #define DISABLED_MASK11 0 #define DISABLED_MASK12 0 diff --git a/arch/x86/include/asm/efi.h b/arch/x86/include/asm/efi.h index eea40d52ca78..107283b1eb1e 100644 --- a/arch/x86/include/asm/efi.h +++ b/arch/x86/include/asm/efi.h @@ -19,7 +19,7 @@ * This is the main reason why we're doing stable VA mappings for RT * services. * - * This flag is used in conjuction with a chicken bit called + * This flag is used in conjunction with a chicken bit called * "efi=old_map" which can be used as a fallback to the old runtime * services mapping method in case there's some b0rkage with a * particular EFI implementation (haha, it is hard to hold up the @@ -82,8 +82,7 @@ struct efi_scratch { #define arch_efi_call_virt_setup() \ ({ \ efi_sync_low_kernel_mappings(); \ - preempt_disable(); \ - __kernel_fpu_begin(); \ + kernel_fpu_begin(); \ firmware_restrict_branch_speculation_start(); \ \ if (!efi_enabled(EFI_OLD_MEMMAP)) \ @@ -99,8 +98,7 @@ struct efi_scratch { efi_switch_mm(efi_scratch.prev_mm); \ \ firmware_restrict_branch_speculation_end(); \ - __kernel_fpu_end(); \ - preempt_enable(); \ + kernel_fpu_end(); \ }) extern void __iomem *__init efi_ioremap(unsigned long addr, unsigned long size, @@ -141,6 +139,8 @@ extern int __init efi_reuse_config(u64 tables, int nr_tables); extern void efi_delete_dummy_variable(void); extern void efi_switch_mm(struct mm_struct *mm); extern void efi_recover_from_page_fault(unsigned long phys_addr); +extern void efi_free_boot_services(void); +extern void efi_reserve_boot_services(void); struct efi_setup_data { u64 fw_vendor; diff --git a/arch/x86/include/asm/fpu/api.h b/arch/x86/include/asm/fpu/api.h index a9caac9d4a72..b56d504af654 100644 --- a/arch/x86/include/asm/fpu/api.h +++ b/arch/x86/include/asm/fpu/api.h @@ -12,17 +12,12 @@ #define _ASM_X86_FPU_API_H /* - * Careful: __kernel_fpu_begin/end() must be called with preempt disabled - * and they don't touch the preempt state on their own. - * If you enable preemption after __kernel_fpu_begin(), preempt notifier - * should call the __kernel_fpu_end() to prevent the kernel/user FPU - * state from getting corrupted. KVM for example uses this model. - * - * All other cases use kernel_fpu_begin/end() which disable preemption - * during kernel FPU usage. + * Use kernel_fpu_begin/end() if you intend to use FPU in kernel context. It + * disables preemption so be careful if you intend to use it for long periods + * of time. + * If you intend to use the FPU in softirq you need to check first with + * irq_fpu_usable() if it is possible. */ -extern void __kernel_fpu_begin(void); -extern void __kernel_fpu_end(void); extern void kernel_fpu_begin(void); extern void kernel_fpu_end(void); extern bool irq_fpu_usable(void); diff --git a/arch/x86/include/asm/fpu/internal.h b/arch/x86/include/asm/fpu/internal.h index 5f7290e6e954..fa2c93cb42a2 100644 --- a/arch/x86/include/asm/fpu/internal.h +++ b/arch/x86/include/asm/fpu/internal.h @@ -106,6 +106,9 @@ extern void fpstate_sanitize_xstate(struct fpu *fpu); #define user_insn(insn, output, input...) \ ({ \ int err; \ + \ + might_fault(); \ + \ asm volatile(ASM_STAC "\n" \ "1:" #insn "\n\t" \ "2: " ASM_CLAC "\n" \ @@ -226,7 +229,7 @@ static inline void copy_fxregs_to_kernel(struct fpu *fpu) "3: movl $-2,%[err]\n\t" \ "jmp 2b\n\t" \ ".popsection\n\t" \ - _ASM_EXTABLE_UA(1b, 3b) \ + _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") diff --git a/arch/x86/include/asm/fsgsbase.h b/arch/x86/include/asm/fsgsbase.h index eb377b6e9eed..bca4c743de77 100644 --- a/arch/x86/include/asm/fsgsbase.h +++ b/arch/x86/include/asm/fsgsbase.h @@ -16,8 +16,8 @@ */ extern unsigned long x86_fsbase_read_task(struct task_struct *task); extern unsigned long x86_gsbase_read_task(struct task_struct *task); -extern int x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase); -extern int x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase); +extern void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase); +extern void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase); /* Helper functions for reading/writing FS/GS base */ @@ -39,8 +39,15 @@ static inline unsigned long x86_gsbase_read_cpu_inactive(void) return gsbase; } -extern void x86_fsbase_write_cpu(unsigned long fsbase); -extern void x86_gsbase_write_cpu_inactive(unsigned long gsbase); +static inline void x86_fsbase_write_cpu(unsigned long fsbase) +{ + wrmsrl(MSR_FS_BASE, fsbase); +} + +static inline void x86_gsbase_write_cpu_inactive(unsigned long gsbase) +{ + wrmsrl(MSR_KERNEL_GS_BASE, gsbase); +} #endif /* CONFIG_X86_64 */ diff --git a/arch/x86/include/asm/hyperv-tlfs.h b/arch/x86/include/asm/hyperv-tlfs.h index 4139f7650fe5..705dafc2d11a 100644 --- a/arch/x86/include/asm/hyperv-tlfs.h +++ b/arch/x86/include/asm/hyperv-tlfs.h @@ -10,6 +10,7 @@ #define _ASM_X86_HYPERV_TLFS_H #include <linux/types.h> +#include <asm/page.h> /* * The below CPUID leaves are present if VersionAndFeatures.HypervisorPresent @@ -30,158 +31,150 @@ /* * Feature identification. EAX indicates which features are available * to the partition based upon the current partition privileges. + * These are HYPERV_CPUID_FEATURES.EAX bits. */ /* VP Runtime (HV_X64_MSR_VP_RUNTIME) available */ -#define HV_X64_MSR_VP_RUNTIME_AVAILABLE (1 << 0) +#define HV_X64_MSR_VP_RUNTIME_AVAILABLE BIT(0) /* Partition Reference Counter (HV_X64_MSR_TIME_REF_COUNT) available*/ -#define HV_MSR_TIME_REF_COUNT_AVAILABLE (1 << 1) -/* Partition reference TSC MSR is available */ -#define HV_MSR_REFERENCE_TSC_AVAILABLE (1 << 9) -/* Partition Guest IDLE MSR is available */ -#define HV_X64_MSR_GUEST_IDLE_AVAILABLE (1 << 10) - -/* A partition's reference time stamp counter (TSC) page */ -#define HV_X64_MSR_REFERENCE_TSC 0x40000021 - -/* - * There is a single feature flag that signifies if the partition has access - * to MSRs with local APIC and TSC frequencies. - */ -#define HV_X64_ACCESS_FREQUENCY_MSRS (1 << 11) - -/* AccessReenlightenmentControls privilege */ -#define HV_X64_ACCESS_REENLIGHTENMENT BIT(13) - +#define HV_MSR_TIME_REF_COUNT_AVAILABLE BIT(1) /* * Basic SynIC MSRs (HV_X64_MSR_SCONTROL through HV_X64_MSR_EOM * and HV_X64_MSR_SINT0 through HV_X64_MSR_SINT15) available */ -#define HV_X64_MSR_SYNIC_AVAILABLE (1 << 2) +#define HV_X64_MSR_SYNIC_AVAILABLE BIT(2) /* * Synthetic Timer MSRs (HV_X64_MSR_STIMER0_CONFIG through * HV_X64_MSR_STIMER3_COUNT) available */ -#define HV_MSR_SYNTIMER_AVAILABLE (1 << 3) +#define HV_MSR_SYNTIMER_AVAILABLE BIT(3) /* * APIC access MSRs (HV_X64_MSR_EOI, HV_X64_MSR_ICR and HV_X64_MSR_TPR) * are available */ -#define HV_X64_MSR_APIC_ACCESS_AVAILABLE (1 << 4) +#define HV_X64_MSR_APIC_ACCESS_AVAILABLE BIT(4) /* Hypercall MSRs (HV_X64_MSR_GUEST_OS_ID and HV_X64_MSR_HYPERCALL) available*/ -#define HV_X64_MSR_HYPERCALL_AVAILABLE (1 << 5) +#define HV_X64_MSR_HYPERCALL_AVAILABLE BIT(5) /* Access virtual processor index MSR (HV_X64_MSR_VP_INDEX) available*/ -#define HV_X64_MSR_VP_INDEX_AVAILABLE (1 << 6) +#define HV_X64_MSR_VP_INDEX_AVAILABLE BIT(6) /* Virtual system reset MSR (HV_X64_MSR_RESET) is available*/ -#define HV_X64_MSR_RESET_AVAILABLE (1 << 7) - /* - * Access statistics pages MSRs (HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE, - * HV_X64_MSR_STATS_PARTITION_INTERNAL_PAGE, HV_X64_MSR_STATS_VP_RETAIL_PAGE, - * HV_X64_MSR_STATS_VP_INTERNAL_PAGE) available - */ -#define HV_X64_MSR_STAT_PAGES_AVAILABLE (1 << 8) - -/* Frequency MSRs available */ -#define HV_FEATURE_FREQUENCY_MSRS_AVAILABLE (1 << 8) - -/* Crash MSR available */ -#define HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE (1 << 10) - -/* stimer Direct Mode is available */ -#define HV_STIMER_DIRECT_MODE_AVAILABLE (1 << 19) +#define HV_X64_MSR_RESET_AVAILABLE BIT(7) +/* + * Access statistics pages MSRs (HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE, + * HV_X64_MSR_STATS_PARTITION_INTERNAL_PAGE, HV_X64_MSR_STATS_VP_RETAIL_PAGE, + * HV_X64_MSR_STATS_VP_INTERNAL_PAGE) available + */ +#define HV_X64_MSR_STAT_PAGES_AVAILABLE BIT(8) +/* Partition reference TSC MSR is available */ +#define HV_MSR_REFERENCE_TSC_AVAILABLE BIT(9) +/* Partition Guest IDLE MSR is available */ +#define HV_X64_MSR_GUEST_IDLE_AVAILABLE BIT(10) +/* + * There is a single feature flag that signifies if the partition has access + * to MSRs with local APIC and TSC frequencies. + */ +#define HV_X64_ACCESS_FREQUENCY_MSRS BIT(11) +/* AccessReenlightenmentControls privilege */ +#define HV_X64_ACCESS_REENLIGHTENMENT BIT(13) /* - * Feature identification: EBX indicates which flags were specified at - * partition creation. The format is the same as the partition creation - * flag structure defined in section Partition Creation Flags. + * Feature identification: indicates which flags were specified at partition + * creation. The format is the same as the partition creation flag structure + * defined in section Partition Creation Flags. + * These are HYPERV_CPUID_FEATURES.EBX bits. */ -#define HV_X64_CREATE_PARTITIONS (1 << 0) -#define HV_X64_ACCESS_PARTITION_ID (1 << 1) -#define HV_X64_ACCESS_MEMORY_POOL (1 << 2) -#define HV_X64_ADJUST_MESSAGE_BUFFERS (1 << 3) -#define HV_X64_POST_MESSAGES (1 << 4) -#define HV_X64_SIGNAL_EVENTS (1 << 5) -#define HV_X64_CREATE_PORT (1 << 6) -#define HV_X64_CONNECT_PORT (1 << 7) -#define HV_X64_ACCESS_STATS (1 << 8) -#define HV_X64_DEBUGGING (1 << 11) -#define HV_X64_CPU_POWER_MANAGEMENT (1 << 12) -#define HV_X64_CONFIGURE_PROFILER (1 << 13) +#define HV_X64_CREATE_PARTITIONS BIT(0) +#define HV_X64_ACCESS_PARTITION_ID BIT(1) +#define HV_X64_ACCESS_MEMORY_POOL BIT(2) +#define HV_X64_ADJUST_MESSAGE_BUFFERS BIT(3) +#define HV_X64_POST_MESSAGES BIT(4) +#define HV_X64_SIGNAL_EVENTS BIT(5) +#define HV_X64_CREATE_PORT BIT(6) +#define HV_X64_CONNECT_PORT BIT(7) +#define HV_X64_ACCESS_STATS BIT(8) +#define HV_X64_DEBUGGING BIT(11) +#define HV_X64_CPU_POWER_MANAGEMENT BIT(12) /* * Feature identification. EDX indicates which miscellaneous features * are available to the partition. + * These are HYPERV_CPUID_FEATURES.EDX bits. */ /* The MWAIT instruction is available (per section MONITOR / MWAIT) */ -#define HV_X64_MWAIT_AVAILABLE (1 << 0) +#define HV_X64_MWAIT_AVAILABLE BIT(0) /* Guest debugging support is available */ -#define HV_X64_GUEST_DEBUGGING_AVAILABLE (1 << 1) +#define HV_X64_GUEST_DEBUGGING_AVAILABLE BIT(1) /* Performance Monitor support is available*/ -#define HV_X64_PERF_MONITOR_AVAILABLE (1 << 2) +#define HV_X64_PERF_MONITOR_AVAILABLE BIT(2) /* Support for physical CPU dynamic partitioning events is available*/ -#define HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE (1 << 3) +#define HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE BIT(3) /* * Support for passing hypercall input parameter block via XMM * registers is available */ -#define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE (1 << 4) +#define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE BIT(4) /* Support for a virtual guest idle state is available */ -#define HV_X64_GUEST_IDLE_STATE_AVAILABLE (1 << 5) -/* Guest crash data handler available */ -#define HV_X64_GUEST_CRASH_MSR_AVAILABLE (1 << 10) +#define HV_X64_GUEST_IDLE_STATE_AVAILABLE BIT(5) +/* Frequency MSRs available */ +#define HV_FEATURE_FREQUENCY_MSRS_AVAILABLE BIT(8) +/* Crash MSR available */ +#define HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE BIT(10) +/* stimer Direct Mode is available */ +#define HV_STIMER_DIRECT_MODE_AVAILABLE BIT(19) /* * Implementation recommendations. Indicates which behaviors the hypervisor * recommends the OS implement for optimal performance. + * These are HYPERV_CPUID_ENLIGHTMENT_INFO.EAX bits. + */ +/* + * Recommend using hypercall for address space switches rather + * than MOV to CR3 instruction */ - /* - * Recommend using hypercall for address space switches rather - * than MOV to CR3 instruction - */ -#define HV_X64_AS_SWITCH_RECOMMENDED (1 << 0) +#define HV_X64_AS_SWITCH_RECOMMENDED BIT(0) /* Recommend using hypercall for local TLB flushes rather * than INVLPG or MOV to CR3 instructions */ -#define HV_X64_LOCAL_TLB_FLUSH_RECOMMENDED (1 << 1) +#define HV_X64_LOCAL_TLB_FLUSH_RECOMMENDED BIT(1) /* * Recommend using hypercall for remote TLB flushes rather * than inter-processor interrupts */ -#define HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED (1 << 2) +#define HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED BIT(2) /* * Recommend using MSRs for accessing APIC registers * EOI, ICR and TPR rather than their memory-mapped counterparts */ -#define HV_X64_APIC_ACCESS_RECOMMENDED (1 << 3) +#define HV_X64_APIC_ACCESS_RECOMMENDED BIT(3) /* Recommend using the hypervisor-provided MSR to initiate a system RESET */ -#define HV_X64_SYSTEM_RESET_RECOMMENDED (1 << 4) +#define HV_X64_SYSTEM_RESET_RECOMMENDED BIT(4) /* * Recommend using relaxed timing for this partition. If used, * the VM should disable any watchdog timeouts that rely on the * timely delivery of external interrupts */ -#define HV_X64_RELAXED_TIMING_RECOMMENDED (1 << 5) +#define HV_X64_RELAXED_TIMING_RECOMMENDED BIT(5) /* * Recommend not using Auto End-Of-Interrupt feature */ -#define HV_DEPRECATING_AEOI_RECOMMENDED (1 << 9) +#define HV_DEPRECATING_AEOI_RECOMMENDED BIT(9) /* * Recommend using cluster IPI hypercalls. */ -#define HV_X64_CLUSTER_IPI_RECOMMENDED (1 << 10) +#define HV_X64_CLUSTER_IPI_RECOMMENDED BIT(10) /* Recommend using the newer ExProcessorMasks interface */ -#define HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED (1 << 11) +#define HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED BIT(11) /* Recommend using enlightened VMCS */ -#define HV_X64_ENLIGHTENED_VMCS_RECOMMENDED (1 << 14) +#define HV_X64_ENLIGHTENED_VMCS_RECOMMENDED BIT(14) -/* - * Crash notification flags. - */ -#define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62) -#define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63) +/* Nested features. These are HYPERV_CPUID_NESTED_FEATURES.EAX bits. */ +#define HV_X64_NESTED_GUEST_MAPPING_FLUSH BIT(18) +#define HV_X64_NESTED_MSR_BITMAP BIT(19) + +/* Hyper-V specific model specific registers (MSRs) */ /* MSR used to identify the guest OS. */ #define HV_X64_MSR_GUEST_OS_ID 0x40000000 @@ -201,6 +194,9 @@ /* MSR used to read the per-partition time reference counter */ #define HV_X64_MSR_TIME_REF_COUNT 0x40000020 +/* A partition's reference time stamp counter (TSC) page */ +#define HV_X64_MSR_REFERENCE_TSC 0x40000021 + /* MSR used to retrieve the TSC frequency */ #define HV_X64_MSR_TSC_FREQUENCY 0x40000022 @@ -258,9 +254,11 @@ #define HV_X64_MSR_CRASH_P3 0x40000103 #define HV_X64_MSR_CRASH_P4 0x40000104 #define HV_X64_MSR_CRASH_CTL 0x40000105 -#define HV_X64_MSR_CRASH_CTL_NOTIFY (1ULL << 63) -#define HV_X64_MSR_CRASH_PARAMS \ - (1 + (HV_X64_MSR_CRASH_P4 - HV_X64_MSR_CRASH_P0)) + +/* TSC emulation after migration */ +#define HV_X64_MSR_REENLIGHTENMENT_CONTROL 0x40000106 +#define HV_X64_MSR_TSC_EMULATION_CONTROL 0x40000107 +#define HV_X64_MSR_TSC_EMULATION_STATUS 0x40000108 /* * Declare the MSR used to setup pages used to communicate with the hypervisor. @@ -271,7 +269,7 @@ union hv_x64_msr_hypercall_contents { u64 enable:1; u64 reserved:11; u64 guest_physical_address:52; - }; + } __packed; }; /* @@ -283,7 +281,7 @@ struct ms_hyperv_tsc_page { volatile u64 tsc_scale; volatile s64 tsc_offset; u64 reserved2[509]; -}; +} __packed; /* * The guest OS needs to register the guest ID with the hypervisor. @@ -311,39 +309,37 @@ struct ms_hyperv_tsc_page { #define HV_LINUX_VENDOR_ID 0x8100 -/* TSC emulation after migration */ -#define HV_X64_MSR_REENLIGHTENMENT_CONTROL 0x40000106 - -/* Nested features (CPUID 0x4000000A) EAX */ -#define HV_X64_NESTED_GUEST_MAPPING_FLUSH BIT(18) -#define HV_X64_NESTED_MSR_BITMAP BIT(19) - struct hv_reenlightenment_control { __u64 vector:8; __u64 reserved1:8; __u64 enabled:1; __u64 reserved2:15; __u64 target_vp:32; -}; - -#define HV_X64_MSR_TSC_EMULATION_CONTROL 0x40000107 -#define HV_X64_MSR_TSC_EMULATION_STATUS 0x40000108 +} __packed; struct hv_tsc_emulation_control { __u64 enabled:1; __u64 reserved:63; -}; +} __packed; struct hv_tsc_emulation_status { __u64 inprogress:1; __u64 reserved:63; -}; +} __packed; #define HV_X64_MSR_HYPERCALL_ENABLE 0x00000001 #define HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT 12 #define HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK \ (~((1ull << HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT) - 1)) +/* + * Crash notification (HV_X64_MSR_CRASH_CTL) flags. + */ +#define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62) +#define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63) +#define HV_X64_MSR_CRASH_PARAMS \ + (1 + (HV_X64_MSR_CRASH_P4 - HV_X64_MSR_CRASH_P0)) + #define HV_IPI_LOW_VECTOR 0x10 #define HV_IPI_HIGH_VECTOR 0xff @@ -358,6 +354,7 @@ struct hv_tsc_emulation_status { #define HVCALL_POST_MESSAGE 0x005c #define HVCALL_SIGNAL_EVENT 0x005d #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af +#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0 #define HV_X64_MSR_VP_ASSIST_PAGE_ENABLE 0x00000001 #define HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT 12 @@ -409,7 +406,7 @@ typedef struct _HV_REFERENCE_TSC_PAGE { __u32 res1; __u64 tsc_scale; __s64 tsc_offset; -} HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE; +} __packed HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE; /* Define the number of synthetic interrupt sources. */ #define HV_SYNIC_SINT_COUNT (16) @@ -466,7 +463,7 @@ union hv_message_flags { struct { __u8 msg_pending:1; __u8 reserved:7; - }; + } __packed; }; /* Define port identifier type. */ @@ -475,7 +472,7 @@ union hv_port_id { struct { __u32 id:24; __u32 reserved:8; - } u; + } __packed u; }; /* Define synthetic interrupt controller message header. */ @@ -488,7 +485,7 @@ struct hv_message_header { __u64 sender; union hv_port_id port; }; -}; +} __packed; /* Define synthetic interrupt controller message format. */ struct hv_message { @@ -496,12 +493,12 @@ struct hv_message { union { __u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT]; } u; -}; +} __packed; /* Define the synthetic interrupt message page layout. */ struct hv_message_page { struct hv_message sint_message[HV_SYNIC_SINT_COUNT]; -}; +} __packed; /* Define timer message payload structure. */ struct hv_timer_message_payload { @@ -509,7 +506,7 @@ struct hv_timer_message_payload { __u32 reserved; __u64 expiration_time; /* When the timer expired */ __u64 delivery_time; /* When the message was delivered */ -}; +} __packed; /* Define virtual processor assist page structure. */ struct hv_vp_assist_page { @@ -518,8 +515,9 @@ struct hv_vp_assist_page { __u64 vtl_control[2]; __u64 nested_enlightenments_control[2]; __u32 enlighten_vmentry; + __u32 padding; __u64 current_nested_vmcs; -}; +} __packed; struct hv_enlightened_vmcs { u32 revision_id; @@ -533,6 +531,8 @@ struct hv_enlightened_vmcs { u16 host_gs_selector; u16 host_tr_selector; + u16 padding16_1; + u64 host_ia32_pat; u64 host_ia32_efer; @@ -651,7 +651,7 @@ struct hv_enlightened_vmcs { u64 ept_pointer; u16 virtual_processor_id; - u16 padding16[3]; + u16 padding16_2[3]; u64 padding64_2[5]; u64 guest_physical_address; @@ -693,7 +693,7 @@ struct hv_enlightened_vmcs { u32 nested_flush_hypercall:1; u32 msr_bitmap:1; u32 reserved:30; - } hv_enlightenments_control; + } __packed hv_enlightenments_control; u32 hv_vp_id; u64 hv_vm_id; @@ -703,7 +703,7 @@ struct hv_enlightened_vmcs { u64 padding64_5[7]; u64 xss_exit_bitmap; u64 padding64_6[7]; -}; +} __packed; #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE 0 #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP BIT(0) @@ -725,36 +725,129 @@ struct hv_enlightened_vmcs { #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL 0xFFFF -#define HV_STIMER_ENABLE (1ULL << 0) -#define HV_STIMER_PERIODIC (1ULL << 1) -#define HV_STIMER_LAZY (1ULL << 2) -#define HV_STIMER_AUTOENABLE (1ULL << 3) -#define HV_STIMER_SINT(config) (__u8)(((config) >> 16) & 0x0F) +/* Define synthetic interrupt controller flag constants. */ +#define HV_EVENT_FLAGS_COUNT (256 * 8) +#define HV_EVENT_FLAGS_LONG_COUNT (256 / sizeof(unsigned long)) + +/* + * Synthetic timer configuration. + */ +union hv_stimer_config { + u64 as_uint64; + struct { + u64 enable:1; + u64 periodic:1; + u64 lazy:1; + u64 auto_enable:1; + u64 apic_vector:8; + u64 direct_mode:1; + u64 reserved_z0:3; + u64 sintx:4; + u64 reserved_z1:44; + } __packed; +}; + + +/* Define the synthetic interrupt controller event flags format. */ +union hv_synic_event_flags { + unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT]; +}; + +/* Define SynIC control register. */ +union hv_synic_scontrol { + u64 as_uint64; + struct { + u64 enable:1; + u64 reserved:63; + } __packed; +}; + +/* Define synthetic interrupt source. */ +union hv_synic_sint { + u64 as_uint64; + struct { + u64 vector:8; + u64 reserved1:8; + u64 masked:1; + u64 auto_eoi:1; + u64 reserved2:46; + } __packed; +}; + +/* Define the format of the SIMP register */ +union hv_synic_simp { + u64 as_uint64; + struct { + u64 simp_enabled:1; + u64 preserved:11; + u64 base_simp_gpa:52; + } __packed; +}; + +/* Define the format of the SIEFP register */ +union hv_synic_siefp { + u64 as_uint64; + struct { + u64 siefp_enabled:1; + u64 preserved:11; + u64 base_siefp_gpa:52; + } __packed; +}; struct hv_vpset { u64 format; u64 valid_bank_mask; u64 bank_contents[]; -}; +} __packed; /* HvCallSendSyntheticClusterIpi hypercall */ struct hv_send_ipi { u32 vector; u32 reserved; u64 cpu_mask; -}; +} __packed; /* HvCallSendSyntheticClusterIpiEx hypercall */ struct hv_send_ipi_ex { u32 vector; u32 reserved; struct hv_vpset vp_set; -}; +} __packed; /* HvFlushGuestPhysicalAddressSpace hypercalls */ struct hv_guest_mapping_flush { u64 address_space; u64 flags; +} __packed; + +/* + * HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited + * by the bitwidth of "additional_pages" in union hv_gpa_page_range. + */ +#define HV_MAX_FLUSH_PAGES (2048) + +/* HvFlushGuestPhysicalAddressList hypercall */ +union hv_gpa_page_range { + u64 address_space; + struct { + u64 additional_pages:11; + u64 largepage:1; + u64 basepfn:52; + } page; +}; + +/* + * All input flush parameters should be in single page. The max flush + * count is equal with how many entries of union hv_gpa_page_range can + * be populated into the input parameter page. + */ +#define HV_MAX_FLUSH_REP_COUNT (PAGE_SIZE - 2 * sizeof(u64) / \ + sizeof(union hv_gpa_page_range)) + +struct hv_guest_mapping_flush_list { + u64 address_space; + u64 flags; + union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT]; }; /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ @@ -763,7 +856,7 @@ struct hv_tlb_flush { u64 flags; u64 processor_mask; u64 gva_list[]; -}; +} __packed; /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ struct hv_tlb_flush_ex { @@ -771,6 +864,6 @@ struct hv_tlb_flush_ex { u64 flags; struct hv_vpset hv_vp_set; u64 gva_list[]; -}; +} __packed; #endif diff --git a/arch/x86/include/asm/intel_pt.h b/arch/x86/include/asm/intel_pt.h index b523f51c5400..634f99b1dc22 100644 --- a/arch/x86/include/asm/intel_pt.h +++ b/arch/x86/include/asm/intel_pt.h @@ -2,10 +2,36 @@ #ifndef _ASM_X86_INTEL_PT_H #define _ASM_X86_INTEL_PT_H +#define PT_CPUID_LEAVES 2 +#define PT_CPUID_REGS_NUM 4 /* number of regsters (eax, ebx, ecx, edx) */ + +enum pt_capabilities { + PT_CAP_max_subleaf = 0, + PT_CAP_cr3_filtering, + PT_CAP_psb_cyc, + PT_CAP_ip_filtering, + PT_CAP_mtc, + PT_CAP_ptwrite, + PT_CAP_power_event_trace, + PT_CAP_topa_output, + PT_CAP_topa_multiple_entries, + PT_CAP_single_range_output, + PT_CAP_output_subsys, + PT_CAP_payloads_lip, + PT_CAP_num_address_ranges, + PT_CAP_mtc_periods, + PT_CAP_cycle_thresholds, + PT_CAP_psb_periods, +}; + #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) void cpu_emergency_stop_pt(void); +extern u32 intel_pt_validate_hw_cap(enum pt_capabilities cap); +extern u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities cap); #else static inline void cpu_emergency_stop_pt(void) {} +static inline u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) { return 0; } +static inline u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) { return 0; } #endif #endif /* _ASM_X86_INTEL_PT_H */ diff --git a/arch/x86/include/asm/irq.h b/arch/x86/include/asm/irq.h index 2395bb794c7b..fbb16e6b6c18 100644 --- a/arch/x86/include/asm/irq.h +++ b/arch/x86/include/asm/irq.h @@ -30,6 +30,9 @@ extern void fixup_irqs(void); #ifdef CONFIG_HAVE_KVM extern void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)); +extern __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs); +extern __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs); +extern __visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs); #endif extern void (*x86_platform_ipi_callback)(void); @@ -41,9 +44,13 @@ extern __visible unsigned int do_IRQ(struct pt_regs *regs); extern void init_ISA_irqs(void); +extern void __init init_IRQ(void); + #ifdef CONFIG_X86_LOCAL_APIC void arch_trigger_cpumask_backtrace(const struct cpumask *mask, bool exclude_self); + +extern __visible void smp_x86_platform_ipi(struct pt_regs *regs); #define arch_trigger_cpumask_backtrace arch_trigger_cpumask_backtrace #endif diff --git a/arch/x86/include/asm/irq_work.h b/arch/x86/include/asm/irq_work.h index 800ffce0db29..80b35e3adf03 100644 --- a/arch/x86/include/asm/irq_work.h +++ b/arch/x86/include/asm/irq_work.h @@ -10,6 +10,7 @@ static inline bool arch_irq_work_has_interrupt(void) return boot_cpu_has(X86_FEATURE_APIC); } extern void arch_irq_work_raise(void); +extern __visible void smp_irq_work_interrupt(struct pt_regs *regs); #else static inline bool arch_irq_work_has_interrupt(void) { diff --git a/arch/x86/include/asm/jump_label.h b/arch/x86/include/asm/jump_label.h index a5fb34fe56a4..21efc9d07ed9 100644 --- a/arch/x86/include/asm/jump_label.h +++ b/arch/x86/include/asm/jump_label.h @@ -2,6 +2,19 @@ #ifndef _ASM_X86_JUMP_LABEL_H #define _ASM_X86_JUMP_LABEL_H +#ifndef HAVE_JUMP_LABEL +/* + * For better or for worse, if jump labels (the gcc extension) are missing, + * then the entire static branch patching infrastructure is compiled out. + * If that happens, the code in here will malfunction. Raise a compiler + * error instead. + * + * In theory, jump labels and the static branch patching infrastructure + * could be decoupled to fix this. + */ +#error asm/jump_label.h included on a non-jump-label kernel +#endif + #define JUMP_LABEL_NOP_SIZE 5 #ifdef CONFIG_X86_64 @@ -20,9 +33,15 @@ static __always_inline bool arch_static_branch(struct static_key *key, bool branch) { - asm_volatile_goto("STATIC_BRANCH_NOP l_yes=\"%l[l_yes]\" key=\"%c0\" " - "branch=\"%c1\"" - : : "i" (key), "i" (branch) : : l_yes); + asm_volatile_goto("1:" + ".byte " __stringify(STATIC_KEY_INIT_NOP) "\n\t" + ".pushsection __jump_table, \"aw\" \n\t" + _ASM_ALIGN "\n\t" + ".long 1b - ., %l[l_yes] - . \n\t" + _ASM_PTR "%c0 + %c1 - .\n\t" + ".popsection \n\t" + : : "i" (key), "i" (branch) : : l_yes); + return false; l_yes: return true; @@ -30,8 +49,14 @@ l_yes: static __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch) { - asm_volatile_goto("STATIC_BRANCH_JMP l_yes=\"%l[l_yes]\" key=\"%c0\" " - "branch=\"%c1\"" + asm_volatile_goto("1:" + ".byte 0xe9\n\t .long %l[l_yes] - 2f\n\t" + "2:\n\t" + ".pushsection __jump_table, \"aw\" \n\t" + _ASM_ALIGN "\n\t" + ".long 1b - ., %l[l_yes] - . \n\t" + _ASM_PTR "%c0 + %c1 - .\n\t" + ".popsection \n\t" : : "i" (key), "i" (branch) : : l_yes); return false; @@ -41,26 +66,37 @@ l_yes: #else /* __ASSEMBLY__ */ -.macro STATIC_BRANCH_NOP l_yes:req key:req branch:req -.Lstatic_branch_nop_\@: - .byte STATIC_KEY_INIT_NOP -.Lstatic_branch_no_after_\@: +.macro STATIC_JUMP_IF_TRUE target, key, def +.Lstatic_jump_\@: + .if \def + /* Equivalent to "jmp.d32 \target" */ + .byte 0xe9 + .long \target - .Lstatic_jump_after_\@ +.Lstatic_jump_after_\@: + .else + .byte STATIC_KEY_INIT_NOP + .endif .pushsection __jump_table, "aw" _ASM_ALIGN - .long .Lstatic_branch_nop_\@ - ., \l_yes - . - _ASM_PTR \key + \branch - . + .long .Lstatic_jump_\@ - ., \target - . + _ASM_PTR \key - . .popsection .endm -.macro STATIC_BRANCH_JMP l_yes:req key:req branch:req -.Lstatic_branch_jmp_\@: - .byte 0xe9 - .long \l_yes - .Lstatic_branch_jmp_after_\@ -.Lstatic_branch_jmp_after_\@: +.macro STATIC_JUMP_IF_FALSE target, key, def +.Lstatic_jump_\@: + .if \def + .byte STATIC_KEY_INIT_NOP + .else + /* Equivalent to "jmp.d32 \target" */ + .byte 0xe9 + .long \target - .Lstatic_jump_after_\@ +.Lstatic_jump_after_\@: + .endif .pushsection __jump_table, "aw" _ASM_ALIGN - .long .Lstatic_branch_jmp_\@ - ., \l_yes - . - _ASM_PTR \key + \branch - . + .long .Lstatic_jump_\@ - ., \target - . + _ASM_PTR \key + 1 - . .popsection .endm diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h index 55e51ff7e421..4660ce90de7f 100644 --- a/arch/x86/include/asm/kvm_host.h +++ b/arch/x86/include/asm/kvm_host.h @@ -439,6 +439,11 @@ struct kvm_mmu { u64 pdptrs[4]; /* pae */ }; +struct kvm_tlb_range { + u64 start_gfn; + u64 pages; +}; + enum pmc_type { KVM_PMC_GP = 0, KVM_PMC_FIXED, @@ -497,7 +502,7 @@ struct kvm_mtrr { struct kvm_vcpu_hv_stimer { struct hrtimer timer; int index; - u64 config; + union hv_stimer_config config; u64 count; u64 exp_time; struct hv_message msg; @@ -601,17 +606,16 @@ struct kvm_vcpu_arch { /* * QEMU userspace and the guest each have their own FPU state. - * In vcpu_run, we switch between the user and guest FPU contexts. - * While running a VCPU, the VCPU thread will have the guest FPU - * context. + * In vcpu_run, we switch between the user, maintained in the + * task_struct struct, and guest FPU contexts. While running a VCPU, + * the VCPU thread will have the guest FPU context. * * Note that while the PKRU state lives inside the fpu registers, * it is switched out separately at VMENTER and VMEXIT time. The * "guest_fpu" state here contains the guest FPU context, with the * host PRKU bits. */ - struct fpu user_fpu; - struct fpu guest_fpu; + struct fpu *guest_fpu; u64 xcr0; u64 guest_supported_xcr0; @@ -1042,6 +1046,8 @@ struct kvm_x86_ops { void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa); int (*tlb_remote_flush)(struct kvm *kvm); + int (*tlb_remote_flush_with_range)(struct kvm *kvm, + struct kvm_tlb_range *range); /* * Flush any TLB entries associated with the given GVA. @@ -1094,7 +1100,8 @@ struct kvm_x86_ops { bool (*has_wbinvd_exit)(void); u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu); - void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); + /* Returns actual tsc_offset set in active VMCS */ + u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2); @@ -1105,6 +1112,7 @@ struct kvm_x86_ops { bool (*mpx_supported)(void); bool (*xsaves_supported)(void); bool (*umip_emulated)(void); + bool (*pt_supported)(void); int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr); void (*request_immediate_exit)(struct kvm_vcpu *vcpu); @@ -1185,6 +1193,7 @@ struct kvm_x86_ops { int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu, uint16_t *vmcs_version); + uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu); }; struct kvm_arch_async_pf { @@ -1195,6 +1204,7 @@ struct kvm_arch_async_pf { }; extern struct kvm_x86_ops *kvm_x86_ops; +extern struct kmem_cache *x86_fpu_cache; #define __KVM_HAVE_ARCH_VM_ALLOC static inline struct kvm *kvm_arch_alloc_vm(void) @@ -1491,7 +1501,7 @@ asmlinkage void kvm_spurious_fault(void); "cmpb $0, kvm_rebooting \n\t" \ "jne 668b \n\t" \ __ASM_SIZE(push) " $666b \n\t" \ - "call kvm_spurious_fault \n\t" \ + "jmp kvm_spurious_fault \n\t" \ ".popsection \n\t" \ _ASM_EXTABLE(666b, 667b) @@ -1502,7 +1512,7 @@ asmlinkage void kvm_spurious_fault(void); int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); diff --git a/arch/x86/include/asm/kvm_para.h b/arch/x86/include/asm/kvm_para.h index 4c723632c036..5ed3cf1c3934 100644 --- a/arch/x86/include/asm/kvm_para.h +++ b/arch/x86/include/asm/kvm_para.h @@ -92,6 +92,7 @@ void kvm_async_pf_task_wait(u32 token, int interrupt_kernel); void kvm_async_pf_task_wake(u32 token); u32 kvm_read_and_reset_pf_reason(void); extern void kvm_disable_steal_time(void); +void do_async_page_fault(struct pt_regs *regs, unsigned long error_code); #ifdef CONFIG_PARAVIRT_SPINLOCKS void __init kvm_spinlock_init(void); diff --git a/arch/x86/include/asm/mce.h b/arch/x86/include/asm/mce.h index 4da9b1c58d28..c1a812bd5a27 100644 --- a/arch/x86/include/asm/mce.h +++ b/arch/x86/include/asm/mce.h @@ -221,6 +221,8 @@ static inline void mce_hygon_feature_init(struct cpuinfo_x86 *c) { return mce_am int mce_available(struct cpuinfo_x86 *c); bool mce_is_memory_error(struct mce *m); +bool mce_is_correctable(struct mce *m); +int mce_usable_address(struct mce *m); DECLARE_PER_CPU(unsigned, mce_exception_count); DECLARE_PER_CPU(unsigned, mce_poll_count); diff --git a/arch/x86/include/asm/mshyperv.h b/arch/x86/include/asm/mshyperv.h index 0d6271cce198..cc60e617931c 100644 --- a/arch/x86/include/asm/mshyperv.h +++ b/arch/x86/include/asm/mshyperv.h @@ -22,6 +22,11 @@ struct ms_hyperv_info { extern struct ms_hyperv_info ms_hyperv; + +typedef int (*hyperv_fill_flush_list_func)( + struct hv_guest_mapping_flush_list *flush, + void *data); + /* * Generate the guest ID. */ @@ -232,7 +237,7 @@ static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2) : "cc"); } #endif - return hv_status; + return hv_status; } /* @@ -348,6 +353,11 @@ void set_hv_tscchange_cb(void (*cb)(void)); void clear_hv_tscchange_cb(void); void hyperv_stop_tsc_emulation(void); int hyperv_flush_guest_mapping(u64 as); +int hyperv_flush_guest_mapping_range(u64 as, + hyperv_fill_flush_list_func fill_func, void *data); +int hyperv_fill_flush_guest_mapping_list( + struct hv_guest_mapping_flush_list *flush, + u64 start_gfn, u64 end_gfn); #ifdef CONFIG_X86_64 void hv_apic_init(void); @@ -370,6 +380,11 @@ static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) return NULL; } static inline int hyperv_flush_guest_mapping(u64 as) { return -1; } +static inline int hyperv_flush_guest_mapping_range(u64 as, + hyperv_fill_flush_list_func fill_func, void *data) +{ + return -1; +} #endif /* CONFIG_HYPERV */ #ifdef CONFIG_HYPERV_TSCPAGE diff --git a/arch/x86/include/asm/msr-index.h b/arch/x86/include/asm/msr-index.h index 80f4a4f38c79..8e40c2446fd1 100644 --- a/arch/x86/include/asm/msr-index.h +++ b/arch/x86/include/asm/msr-index.h @@ -41,9 +41,10 @@ #define MSR_IA32_SPEC_CTRL 0x00000048 /* Speculation Control */ #define SPEC_CTRL_IBRS (1 << 0) /* Indirect Branch Restricted Speculation */ -#define SPEC_CTRL_STIBP (1 << 1) /* Single Thread Indirect Branch Predictors */ +#define SPEC_CTRL_STIBP_SHIFT 1 /* Single Thread Indirect Branch Predictor (STIBP) bit */ +#define SPEC_CTRL_STIBP (1 << SPEC_CTRL_STIBP_SHIFT) /* STIBP mask */ #define SPEC_CTRL_SSBD_SHIFT 2 /* Speculative Store Bypass Disable bit */ -#define SPEC_CTRL_SSBD (1 << SPEC_CTRL_SSBD_SHIFT) /* Speculative Store Bypass Disable */ +#define SPEC_CTRL_SSBD (1 << SPEC_CTRL_SSBD_SHIFT) /* Speculative Store Bypass Disable */ #define MSR_IA32_PRED_CMD 0x00000049 /* Prediction Command */ #define PRED_CMD_IBPB (1 << 0) /* Indirect Branch Prediction Barrier */ @@ -120,7 +121,43 @@ #define MSR_PEBS_LD_LAT_THRESHOLD 0x000003f6 #define MSR_IA32_RTIT_CTL 0x00000570 +#define RTIT_CTL_TRACEEN BIT(0) +#define RTIT_CTL_CYCLEACC BIT(1) +#define RTIT_CTL_OS BIT(2) +#define RTIT_CTL_USR BIT(3) +#define RTIT_CTL_PWR_EVT_EN BIT(4) +#define RTIT_CTL_FUP_ON_PTW BIT(5) +#define RTIT_CTL_FABRIC_EN BIT(6) +#define RTIT_CTL_CR3EN BIT(7) +#define RTIT_CTL_TOPA BIT(8) +#define RTIT_CTL_MTC_EN BIT(9) +#define RTIT_CTL_TSC_EN BIT(10) +#define RTIT_CTL_DISRETC BIT(11) +#define RTIT_CTL_PTW_EN BIT(12) +#define RTIT_CTL_BRANCH_EN BIT(13) +#define RTIT_CTL_MTC_RANGE_OFFSET 14 +#define RTIT_CTL_MTC_RANGE (0x0full << RTIT_CTL_MTC_RANGE_OFFSET) +#define RTIT_CTL_CYC_THRESH_OFFSET 19 +#define RTIT_CTL_CYC_THRESH (0x0full << RTIT_CTL_CYC_THRESH_OFFSET) +#define RTIT_CTL_PSB_FREQ_OFFSET 24 +#define RTIT_CTL_PSB_FREQ (0x0full << RTIT_CTL_PSB_FREQ_OFFSET) +#define RTIT_CTL_ADDR0_OFFSET 32 +#define RTIT_CTL_ADDR0 (0x0full << RTIT_CTL_ADDR0_OFFSET) +#define RTIT_CTL_ADDR1_OFFSET 36 +#define RTIT_CTL_ADDR1 (0x0full << RTIT_CTL_ADDR1_OFFSET) +#define RTIT_CTL_ADDR2_OFFSET 40 +#define RTIT_CTL_ADDR2 (0x0full << RTIT_CTL_ADDR2_OFFSET) +#define RTIT_CTL_ADDR3_OFFSET 44 +#define RTIT_CTL_ADDR3 (0x0full << RTIT_CTL_ADDR3_OFFSET) #define MSR_IA32_RTIT_STATUS 0x00000571 +#define RTIT_STATUS_FILTEREN BIT(0) +#define RTIT_STATUS_CONTEXTEN BIT(1) +#define RTIT_STATUS_TRIGGEREN BIT(2) +#define RTIT_STATUS_BUFFOVF BIT(3) +#define RTIT_STATUS_ERROR BIT(4) +#define RTIT_STATUS_STOPPED BIT(5) +#define RTIT_STATUS_BYTECNT_OFFSET 32 +#define RTIT_STATUS_BYTECNT (0x1ffffull << RTIT_STATUS_BYTECNT_OFFSET) #define MSR_IA32_RTIT_ADDR0_A 0x00000580 #define MSR_IA32_RTIT_ADDR0_B 0x00000581 #define MSR_IA32_RTIT_ADDR1_A 0x00000582 @@ -389,6 +426,7 @@ #define MSR_F15H_NB_PERF_CTR 0xc0010241 #define MSR_F15H_PTSC 0xc0010280 #define MSR_F15H_IC_CFG 0xc0011021 +#define MSR_F15H_EX_CFG 0xc001102c /* Fam 10h MSRs */ #define MSR_FAM10H_MMIO_CONF_BASE 0xc0010058 @@ -770,6 +808,7 @@ #define VMX_BASIC_INOUT 0x0040000000000000LLU /* MSR_IA32_VMX_MISC bits */ +#define MSR_IA32_VMX_MISC_INTEL_PT (1ULL << 14) #define MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS (1ULL << 29) #define MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE 0x1F /* AMD-V MSRs */ diff --git a/arch/x86/include/asm/nospec-branch.h b/arch/x86/include/asm/nospec-branch.h index 80dc14422495..dad12b767ba0 100644 --- a/arch/x86/include/asm/nospec-branch.h +++ b/arch/x86/include/asm/nospec-branch.h @@ -3,6 +3,8 @@ #ifndef _ASM_X86_NOSPEC_BRANCH_H_ #define _ASM_X86_NOSPEC_BRANCH_H_ +#include <linux/static_key.h> + #include <asm/alternative.h> #include <asm/alternative-asm.h> #include <asm/cpufeatures.h> @@ -162,11 +164,12 @@ _ASM_PTR " 999b\n\t" \ ".popsection\n\t" -#if defined(CONFIG_X86_64) && defined(RETPOLINE) +#ifdef CONFIG_RETPOLINE +#ifdef CONFIG_X86_64 /* - * Since the inline asm uses the %V modifier which is only in newer GCC, - * the 64-bit one is dependent on RETPOLINE not CONFIG_RETPOLINE. + * Inline asm uses the %V modifier which is only in newer GCC + * which is ensured when CONFIG_RETPOLINE is defined. */ # define CALL_NOSPEC \ ANNOTATE_NOSPEC_ALTERNATIVE \ @@ -181,7 +184,7 @@ X86_FEATURE_RETPOLINE_AMD) # define THUNK_TARGET(addr) [thunk_target] "r" (addr) -#elif defined(CONFIG_X86_32) && defined(CONFIG_RETPOLINE) +#else /* CONFIG_X86_32 */ /* * For i386 we use the original ret-equivalent retpoline, because * otherwise we'll run out of registers. We don't care about CET @@ -211,6 +214,7 @@ X86_FEATURE_RETPOLINE_AMD) # define THUNK_TARGET(addr) [thunk_target] "rm" (addr) +#endif #else /* No retpoline for C / inline asm */ # define CALL_NOSPEC "call *%[thunk_target]\n" # define THUNK_TARGET(addr) [thunk_target] "rm" (addr) @@ -219,13 +223,20 @@ /* The Spectre V2 mitigation variants */ enum spectre_v2_mitigation { SPECTRE_V2_NONE, - SPECTRE_V2_RETPOLINE_MINIMAL, - SPECTRE_V2_RETPOLINE_MINIMAL_AMD, SPECTRE_V2_RETPOLINE_GENERIC, SPECTRE_V2_RETPOLINE_AMD, SPECTRE_V2_IBRS_ENHANCED, }; +/* The indirect branch speculation control variants */ +enum spectre_v2_user_mitigation { + SPECTRE_V2_USER_NONE, + SPECTRE_V2_USER_STRICT, + SPECTRE_V2_USER_STRICT_PREFERRED, + SPECTRE_V2_USER_PRCTL, + SPECTRE_V2_USER_SECCOMP, +}; + /* The Speculative Store Bypass disable variants */ enum ssb_mitigation { SPEC_STORE_BYPASS_NONE, @@ -303,6 +314,10 @@ do { \ preempt_enable(); \ } while (0) +DECLARE_STATIC_KEY_FALSE(switch_to_cond_stibp); +DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); +DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb); + #endif /* __ASSEMBLY__ */ /* diff --git a/arch/x86/include/asm/page_64_types.h b/arch/x86/include/asm/page_64_types.h index cd0cf1c568b4..8f657286d599 100644 --- a/arch/x86/include/asm/page_64_types.h +++ b/arch/x86/include/asm/page_64_types.h @@ -33,12 +33,14 @@ /* * Set __PAGE_OFFSET to the most negative possible address + - * PGDIR_SIZE*16 (pgd slot 272). The gap is to allow a space for a - * hypervisor to fit. Choosing 16 slots here is arbitrary, but it's - * what Xen requires. + * PGDIR_SIZE*17 (pgd slot 273). + * + * The gap is to allow a space for LDT remap for PTI (1 pgd slot) and space for + * a hypervisor (16 slots). Choosing 16 slots for a hypervisor is arbitrary, + * but it's what Xen requires. */ -#define __PAGE_OFFSET_BASE_L5 _AC(0xff10000000000000, UL) -#define __PAGE_OFFSET_BASE_L4 _AC(0xffff880000000000, UL) +#define __PAGE_OFFSET_BASE_L5 _AC(0xff11000000000000, UL) +#define __PAGE_OFFSET_BASE_L4 _AC(0xffff888000000000, UL) #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT #define __PAGE_OFFSET page_offset_base diff --git a/arch/x86/include/asm/paravirt.h b/arch/x86/include/asm/paravirt.h index 4bf42f9e4eea..a97f28d914d5 100644 --- a/arch/x86/include/asm/paravirt.h +++ b/arch/x86/include/asm/paravirt.h @@ -26,6 +26,11 @@ struct static_key; extern struct static_key paravirt_steal_enabled; extern struct static_key paravirt_steal_rq_enabled; +__visible void __native_queued_spin_unlock(struct qspinlock *lock); +bool pv_is_native_spin_unlock(void); +__visible bool __native_vcpu_is_preempted(long cpu); +bool pv_is_native_vcpu_is_preempted(void); + static inline u64 paravirt_steal_clock(int cpu) { return PVOP_CALL1(u64, time.steal_clock, cpu); diff --git a/arch/x86/include/asm/paravirt_types.h b/arch/x86/include/asm/paravirt_types.h index 26942ad63830..488c59686a73 100644 --- a/arch/x86/include/asm/paravirt_types.h +++ b/arch/x86/include/asm/paravirt_types.h @@ -348,11 +348,23 @@ extern struct paravirt_patch_template pv_ops; #define paravirt_clobber(clobber) \ [paravirt_clobber] "i" (clobber) +/* + * Generate some code, and mark it as patchable by the + * apply_paravirt() alternate instruction patcher. + */ +#define _paravirt_alt(insn_string, type, clobber) \ + "771:\n\t" insn_string "\n" "772:\n" \ + ".pushsection .parainstructions,\"a\"\n" \ + _ASM_ALIGN "\n" \ + _ASM_PTR " 771b\n" \ + " .byte " type "\n" \ + " .byte 772b-771b\n" \ + " .short " clobber "\n" \ + ".popsection\n" + /* Generate patchable code, with the default asm parameters. */ -#define paravirt_call \ - "PARAVIRT_CALL type=\"%c[paravirt_typenum]\"" \ - " clobber=\"%c[paravirt_clobber]\"" \ - " pv_opptr=\"%c[paravirt_opptr]\";" +#define paravirt_alt(insn_string) \ + _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]") /* Simple instruction patching code. */ #define NATIVE_LABEL(a,x,b) "\n\t.globl " a #x "_" #b "\n" a #x "_" #b ":\n\t" @@ -373,6 +385,16 @@ unsigned native_patch(u8 type, void *ibuf, unsigned long addr, unsigned len); int paravirt_disable_iospace(void); /* + * This generates an indirect call based on the operation type number. + * The type number, computed in PARAVIRT_PATCH, is derived from the + * offset into the paravirt_patch_template structure, and can therefore be + * freely converted back into a structure offset. + */ +#define PARAVIRT_CALL \ + ANNOTATE_RETPOLINE_SAFE \ + "call *%c[paravirt_opptr];" + +/* * These macros are intended to wrap calls through one of the paravirt * ops structs, so that they can be later identified and patched at * runtime. @@ -509,7 +531,7 @@ int paravirt_disable_iospace(void); /* since this condition will never hold */ \ if (sizeof(rettype) > sizeof(unsigned long)) { \ asm volatile(pre \ - paravirt_call \ + paravirt_alt(PARAVIRT_CALL) \ post \ : call_clbr, ASM_CALL_CONSTRAINT \ : paravirt_type(op), \ @@ -519,7 +541,7 @@ int paravirt_disable_iospace(void); __ret = (rettype)((((u64)__edx) << 32) | __eax); \ } else { \ asm volatile(pre \ - paravirt_call \ + paravirt_alt(PARAVIRT_CALL) \ post \ : call_clbr, ASM_CALL_CONSTRAINT \ : paravirt_type(op), \ @@ -546,7 +568,7 @@ int paravirt_disable_iospace(void); PVOP_VCALL_ARGS; \ PVOP_TEST_NULL(op); \ asm volatile(pre \ - paravirt_call \ + paravirt_alt(PARAVIRT_CALL) \ post \ : call_clbr, ASM_CALL_CONSTRAINT \ : paravirt_type(op), \ @@ -664,26 +686,6 @@ struct paravirt_patch_site { extern struct paravirt_patch_site __parainstructions[], __parainstructions_end[]; -#else /* __ASSEMBLY__ */ - -/* - * This generates an indirect call based on the operation type number. - * The type number, computed in PARAVIRT_PATCH, is derived from the - * offset into the paravirt_patch_template structure, and can therefore be - * freely converted back into a structure offset. - */ -.macro PARAVIRT_CALL type:req clobber:req pv_opptr:req -771: ANNOTATE_RETPOLINE_SAFE - call *\pv_opptr -772: .pushsection .parainstructions,"a" - _ASM_ALIGN - _ASM_PTR 771b - .byte \type - .byte 772b-771b - .short \clobber - .popsection -.endm - #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PARAVIRT_TYPES_H */ diff --git a/arch/x86/include/asm/pci_x86.h b/arch/x86/include/asm/pci_x86.h index 959d618dbb17..73bb404f4d2a 100644 --- a/arch/x86/include/asm/pci_x86.h +++ b/arch/x86/include/asm/pci_x86.h @@ -121,7 +121,14 @@ extern void __init dmi_check_pciprobe(void); extern void __init dmi_check_skip_isa_align(void); /* some common used subsys_initcalls */ +#ifdef CONFIG_PCI extern int __init pci_acpi_init(void); +#else +static inline int __init pci_acpi_init(void) +{ + return -EINVAL; +} +#endif extern void __init pcibios_irq_init(void); extern int __init pcibios_init(void); extern int pci_legacy_init(void); diff --git a/arch/x86/include/asm/pgalloc.h b/arch/x86/include/asm/pgalloc.h index ec7f43327033..1ea41aaef68b 100644 --- a/arch/x86/include/asm/pgalloc.h +++ b/arch/x86/include/asm/pgalloc.h @@ -80,6 +80,13 @@ static inline void pmd_populate_kernel(struct mm_struct *mm, set_pmd(pmd, __pmd(__pa(pte) | _PAGE_TABLE)); } +static inline void pmd_populate_kernel_safe(struct mm_struct *mm, + pmd_t *pmd, pte_t *pte) +{ + paravirt_alloc_pte(mm, __pa(pte) >> PAGE_SHIFT); + set_pmd_safe(pmd, __pmd(__pa(pte) | _PAGE_TABLE)); +} + static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, struct page *pte) { @@ -132,6 +139,12 @@ static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); set_pud(pud, __pud(_PAGE_TABLE | __pa(pmd))); } + +static inline void pud_populate_safe(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) +{ + paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); + set_pud_safe(pud, __pud(_PAGE_TABLE | __pa(pmd))); +} #endif /* CONFIG_X86_PAE */ #if CONFIG_PGTABLE_LEVELS > 3 @@ -141,6 +154,12 @@ static inline void p4d_populate(struct mm_struct *mm, p4d_t *p4d, pud_t *pud) set_p4d(p4d, __p4d(_PAGE_TABLE | __pa(pud))); } +static inline void p4d_populate_safe(struct mm_struct *mm, p4d_t *p4d, pud_t *pud) +{ + paravirt_alloc_pud(mm, __pa(pud) >> PAGE_SHIFT); + set_p4d_safe(p4d, __p4d(_PAGE_TABLE | __pa(pud))); +} + static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_KERNEL_ACCOUNT; @@ -173,6 +192,14 @@ static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d) set_pgd(pgd, __pgd(_PAGE_TABLE | __pa(p4d))); } +static inline void pgd_populate_safe(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d) +{ + if (!pgtable_l5_enabled()) + return; + paravirt_alloc_p4d(mm, __pa(p4d) >> PAGE_SHIFT); + set_pgd_safe(pgd, __pgd(_PAGE_TABLE | __pa(p4d))); +} + static inline p4d_t *p4d_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_KERNEL_ACCOUNT; diff --git a/arch/x86/include/asm/pgtable_64_types.h b/arch/x86/include/asm/pgtable_64_types.h index 04edd2d58211..88bca456da99 100644 --- a/arch/x86/include/asm/pgtable_64_types.h +++ b/arch/x86/include/asm/pgtable_64_types.h @@ -111,9 +111,12 @@ extern unsigned int ptrs_per_p4d; */ #define MAXMEM (1UL << MAX_PHYSMEM_BITS) -#define LDT_PGD_ENTRY_L4 -3UL -#define LDT_PGD_ENTRY_L5 -112UL -#define LDT_PGD_ENTRY (pgtable_l5_enabled() ? LDT_PGD_ENTRY_L5 : LDT_PGD_ENTRY_L4) +#define GUARD_HOLE_PGD_ENTRY -256UL +#define GUARD_HOLE_SIZE (16UL << PGDIR_SHIFT) +#define GUARD_HOLE_BASE_ADDR (GUARD_HOLE_PGD_ENTRY << PGDIR_SHIFT) +#define GUARD_HOLE_END_ADDR (GUARD_HOLE_BASE_ADDR + GUARD_HOLE_SIZE) + +#define LDT_PGD_ENTRY -240UL #define LDT_BASE_ADDR (LDT_PGD_ENTRY << PGDIR_SHIFT) #define LDT_END_ADDR (LDT_BASE_ADDR + PGDIR_SIZE) diff --git a/arch/x86/include/asm/pgtable_types.h b/arch/x86/include/asm/pgtable_types.h index 106b7d0e2dae..d6ff0bbdb394 100644 --- a/arch/x86/include/asm/pgtable_types.h +++ b/arch/x86/include/asm/pgtable_types.h @@ -564,8 +564,12 @@ extern pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, unsigned int *level); extern pmd_t *lookup_pmd_address(unsigned long address); extern phys_addr_t slow_virt_to_phys(void *__address); -extern int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, - unsigned numpages, unsigned long page_flags); +extern int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, + unsigned long address, + unsigned numpages, + unsigned long page_flags); +extern int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, + unsigned long numpages); #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_DEFS_H */ diff --git a/arch/x86/include/asm/preempt.h b/arch/x86/include/asm/preempt.h index 90cb2f36c042..99a7fa9ab0a3 100644 --- a/arch/x86/include/asm/preempt.h +++ b/arch/x86/include/asm/preempt.h @@ -8,6 +8,9 @@ DECLARE_PER_CPU(int, __preempt_count); +/* We use the MSB mostly because its available */ +#define PREEMPT_NEED_RESCHED 0x80000000 + /* * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such * that a decrement hitting 0 means we can and should reschedule. diff --git a/arch/x86/include/asm/qspinlock.h b/arch/x86/include/asm/qspinlock.h index 87623c6b13db..bd5ac6cc37db 100644 --- a/arch/x86/include/asm/qspinlock.h +++ b/arch/x86/include/asm/qspinlock.h @@ -13,12 +13,15 @@ #define queued_fetch_set_pending_acquire queued_fetch_set_pending_acquire static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock) { - u32 val = 0; - - if (GEN_BINARY_RMWcc(LOCK_PREFIX "btsl", lock->val.counter, c, - "I", _Q_PENDING_OFFSET)) - val |= _Q_PENDING_VAL; + u32 val; + /* + * We can't use GEN_BINARY_RMWcc() inside an if() stmt because asm goto + * and CONFIG_PROFILE_ALL_BRANCHES=y results in a label inside a + * statement expression, which GCC doesn't like. + */ + val = GEN_BINARY_RMWcc(LOCK_PREFIX "btsl", lock->val.counter, c, + "I", _Q_PENDING_OFFSET) * _Q_PENDING_VAL; val |= atomic_read(&lock->val) & ~_Q_PENDING_MASK; return val; diff --git a/arch/x86/include/asm/reboot.h b/arch/x86/include/asm/reboot.h index a671a1145906..04c17be9b5fd 100644 --- a/arch/x86/include/asm/reboot.h +++ b/arch/x86/include/asm/reboot.h @@ -26,6 +26,7 @@ void __noreturn machine_real_restart(unsigned int type); #define MRR_APM 1 typedef void (*nmi_shootdown_cb)(int, struct pt_regs*); +void nmi_panic_self_stop(struct pt_regs *regs); void nmi_shootdown_cpus(nmi_shootdown_cb callback); void run_crash_ipi_callback(struct pt_regs *regs); diff --git a/arch/x86/include/asm/refcount.h b/arch/x86/include/asm/refcount.h index a8b5e1e13319..dbaed55c1c24 100644 --- a/arch/x86/include/asm/refcount.h +++ b/arch/x86/include/asm/refcount.h @@ -4,41 +4,6 @@ * x86-specific implementation of refcount_t. Based on PAX_REFCOUNT from * PaX/grsecurity. */ - -#ifdef __ASSEMBLY__ - -#include <asm/asm.h> -#include <asm/bug.h> - -.macro REFCOUNT_EXCEPTION counter:req - .pushsection .text..refcount -111: lea \counter, %_ASM_CX -112: ud2 - ASM_UNREACHABLE - .popsection -113: _ASM_EXTABLE_REFCOUNT(112b, 113b) -.endm - -/* Trigger refcount exception if refcount result is negative. */ -.macro REFCOUNT_CHECK_LT_ZERO counter:req - js 111f - REFCOUNT_EXCEPTION counter="\counter" -.endm - -/* Trigger refcount exception if refcount result is zero or negative. */ -.macro REFCOUNT_CHECK_LE_ZERO counter:req - jz 111f - REFCOUNT_CHECK_LT_ZERO counter="\counter" -.endm - -/* Trigger refcount exception unconditionally. */ -.macro REFCOUNT_ERROR counter:req - jmp 111f - REFCOUNT_EXCEPTION counter="\counter" -.endm - -#else /* __ASSEMBLY__ */ - #include <linux/refcount.h> #include <asm/bug.h> @@ -50,12 +15,35 @@ * central refcount exception. The fixup address for the exception points * back to the regular execution flow in .text. */ +#define _REFCOUNT_EXCEPTION \ + ".pushsection .text..refcount\n" \ + "111:\tlea %[var], %%" _ASM_CX "\n" \ + "112:\t" ASM_UD2 "\n" \ + ASM_UNREACHABLE \ + ".popsection\n" \ + "113:\n" \ + _ASM_EXTABLE_REFCOUNT(112b, 113b) + +/* Trigger refcount exception if refcount result is negative. */ +#define REFCOUNT_CHECK_LT_ZERO \ + "js 111f\n\t" \ + _REFCOUNT_EXCEPTION + +/* Trigger refcount exception if refcount result is zero or negative. */ +#define REFCOUNT_CHECK_LE_ZERO \ + "jz 111f\n\t" \ + REFCOUNT_CHECK_LT_ZERO + +/* Trigger refcount exception unconditionally. */ +#define REFCOUNT_ERROR \ + "jmp 111f\n\t" \ + _REFCOUNT_EXCEPTION static __always_inline void refcount_add(unsigned int i, refcount_t *r) { asm volatile(LOCK_PREFIX "addl %1,%0\n\t" - "REFCOUNT_CHECK_LT_ZERO counter=\"%[counter]\"" - : [counter] "+m" (r->refs.counter) + REFCOUNT_CHECK_LT_ZERO + : [var] "+m" (r->refs.counter) : "ir" (i) : "cc", "cx"); } @@ -63,32 +51,31 @@ static __always_inline void refcount_add(unsigned int i, refcount_t *r) static __always_inline void refcount_inc(refcount_t *r) { asm volatile(LOCK_PREFIX "incl %0\n\t" - "REFCOUNT_CHECK_LT_ZERO counter=\"%[counter]\"" - : [counter] "+m" (r->refs.counter) + REFCOUNT_CHECK_LT_ZERO + : [var] "+m" (r->refs.counter) : : "cc", "cx"); } static __always_inline void refcount_dec(refcount_t *r) { asm volatile(LOCK_PREFIX "decl %0\n\t" - "REFCOUNT_CHECK_LE_ZERO counter=\"%[counter]\"" - : [counter] "+m" (r->refs.counter) + REFCOUNT_CHECK_LE_ZERO + : [var] "+m" (r->refs.counter) : : "cc", "cx"); } static __always_inline __must_check bool refcount_sub_and_test(unsigned int i, refcount_t *r) { - return GEN_BINARY_SUFFIXED_RMWcc(LOCK_PREFIX "subl", - "REFCOUNT_CHECK_LT_ZERO counter=\"%[var]\"", + REFCOUNT_CHECK_LT_ZERO, r->refs.counter, e, "er", i, "cx"); } static __always_inline __must_check bool refcount_dec_and_test(refcount_t *r) { return GEN_UNARY_SUFFIXED_RMWcc(LOCK_PREFIX "decl", - "REFCOUNT_CHECK_LT_ZERO counter=\"%[var]\"", + REFCOUNT_CHECK_LT_ZERO, r->refs.counter, e, "cx"); } @@ -106,8 +93,8 @@ bool refcount_add_not_zero(unsigned int i, refcount_t *r) /* Did we try to increment from/to an undesirable state? */ if (unlikely(c < 0 || c == INT_MAX || result < c)) { - asm volatile("REFCOUNT_ERROR counter=\"%[counter]\"" - : : [counter] "m" (r->refs.counter) + asm volatile(REFCOUNT_ERROR + : : [var] "m" (r->refs.counter) : "cc", "cx"); break; } @@ -122,6 +109,4 @@ static __always_inline __must_check bool refcount_inc_not_zero(refcount_t *r) return refcount_add_not_zero(1, r); } -#endif /* __ASSEMBLY__ */ - #endif diff --git a/arch/x86/include/asm/intel_rdt_sched.h b/arch/x86/include/asm/resctrl_sched.h index 9acb06b6f81e..54990fe2a3ae 100644 --- a/arch/x86/include/asm/intel_rdt_sched.h +++ b/arch/x86/include/asm/resctrl_sched.h @@ -1,8 +1,8 @@ /* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_X86_INTEL_RDT_SCHED_H -#define _ASM_X86_INTEL_RDT_SCHED_H +#ifndef _ASM_X86_RESCTRL_SCHED_H +#define _ASM_X86_RESCTRL_SCHED_H -#ifdef CONFIG_INTEL_RDT +#ifdef CONFIG_RESCTRL #include <linux/sched.h> #include <linux/jump_label.h> @@ -10,7 +10,7 @@ #define IA32_PQR_ASSOC 0x0c8f /** - * struct intel_pqr_state - State cache for the PQR MSR + * struct resctrl_pqr_state - State cache for the PQR MSR * @cur_rmid: The cached Resource Monitoring ID * @cur_closid: The cached Class Of Service ID * @default_rmid: The user assigned Resource Monitoring ID @@ -24,21 +24,21 @@ * The cache also helps to avoid pointless updates if the value does * not change. */ -struct intel_pqr_state { +struct resctrl_pqr_state { u32 cur_rmid; u32 cur_closid; u32 default_rmid; u32 default_closid; }; -DECLARE_PER_CPU(struct intel_pqr_state, pqr_state); +DECLARE_PER_CPU(struct resctrl_pqr_state, pqr_state); DECLARE_STATIC_KEY_FALSE(rdt_enable_key); DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key); DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key); /* - * __intel_rdt_sched_in() - Writes the task's CLOSid/RMID to IA32_PQR_MSR + * __resctrl_sched_in() - Writes the task's CLOSid/RMID to IA32_PQR_MSR * * Following considerations are made so that this has minimal impact * on scheduler hot path: @@ -51,9 +51,9 @@ DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key); * simple as possible. * Must be called with preemption disabled. */ -static void __intel_rdt_sched_in(void) +static void __resctrl_sched_in(void) { - struct intel_pqr_state *state = this_cpu_ptr(&pqr_state); + struct resctrl_pqr_state *state = this_cpu_ptr(&pqr_state); u32 closid = state->default_closid; u32 rmid = state->default_rmid; @@ -78,16 +78,16 @@ static void __intel_rdt_sched_in(void) } } -static inline void intel_rdt_sched_in(void) +static inline void resctrl_sched_in(void) { if (static_branch_likely(&rdt_enable_key)) - __intel_rdt_sched_in(); + __resctrl_sched_in(); } #else -static inline void intel_rdt_sched_in(void) {} +static inline void resctrl_sched_in(void) {} -#endif /* CONFIG_INTEL_RDT */ +#endif /* CONFIG_RESCTRL */ -#endif /* _ASM_X86_INTEL_RDT_SCHED_H */ +#endif /* _ASM_X86_RESCTRL_SCHED_H */ diff --git a/arch/x86/include/asm/setup.h b/arch/x86/include/asm/setup.h index ae13bc974416..ed8ec011a9fd 100644 --- a/arch/x86/include/asm/setup.h +++ b/arch/x86/include/asm/setup.h @@ -46,6 +46,9 @@ extern unsigned long saved_video_mode; extern void reserve_standard_io_resources(void); extern void i386_reserve_resources(void); +extern unsigned long __startup_64(unsigned long physaddr, struct boot_params *bp); +extern unsigned long __startup_secondary_64(void); +extern int early_make_pgtable(unsigned long address); #ifdef CONFIG_X86_INTEL_MID extern void x86_intel_mid_early_setup(void); diff --git a/arch/x86/include/asm/sighandling.h b/arch/x86/include/asm/sighandling.h index bd26834724e5..2fcbd6f33ef7 100644 --- a/arch/x86/include/asm/sighandling.h +++ b/arch/x86/include/asm/sighandling.h @@ -17,4 +17,9 @@ void signal_fault(struct pt_regs *regs, void __user *frame, char *where); int setup_sigcontext(struct sigcontext __user *sc, void __user *fpstate, struct pt_regs *regs, unsigned long mask); + +#ifdef CONFIG_X86_X32_ABI +asmlinkage long sys32_x32_rt_sigreturn(void); +#endif + #endif /* _ASM_X86_SIGHANDLING_H */ diff --git a/arch/x86/include/asm/smp.h b/arch/x86/include/asm/smp.h index 547c4fe50711..2e95b6c1bca3 100644 --- a/arch/x86/include/asm/smp.h +++ b/arch/x86/include/asm/smp.h @@ -148,6 +148,12 @@ void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); + +asmlinkage __visible void smp_reboot_interrupt(void); +__visible void smp_reschedule_interrupt(struct pt_regs *regs); +__visible void smp_call_function_interrupt(struct pt_regs *regs); +__visible void smp_call_function_single_interrupt(struct pt_regs *r); + #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) diff --git a/arch/x86/include/asm/spec-ctrl.h b/arch/x86/include/asm/spec-ctrl.h index ae7c2c5cd7f0..5393babc0598 100644 --- a/arch/x86/include/asm/spec-ctrl.h +++ b/arch/x86/include/asm/spec-ctrl.h @@ -53,12 +53,24 @@ static inline u64 ssbd_tif_to_spec_ctrl(u64 tifn) return (tifn & _TIF_SSBD) >> (TIF_SSBD - SPEC_CTRL_SSBD_SHIFT); } +static inline u64 stibp_tif_to_spec_ctrl(u64 tifn) +{ + BUILD_BUG_ON(TIF_SPEC_IB < SPEC_CTRL_STIBP_SHIFT); + return (tifn & _TIF_SPEC_IB) >> (TIF_SPEC_IB - SPEC_CTRL_STIBP_SHIFT); +} + static inline unsigned long ssbd_spec_ctrl_to_tif(u64 spec_ctrl) { BUILD_BUG_ON(TIF_SSBD < SPEC_CTRL_SSBD_SHIFT); return (spec_ctrl & SPEC_CTRL_SSBD) << (TIF_SSBD - SPEC_CTRL_SSBD_SHIFT); } +static inline unsigned long stibp_spec_ctrl_to_tif(u64 spec_ctrl) +{ + BUILD_BUG_ON(TIF_SPEC_IB < SPEC_CTRL_STIBP_SHIFT); + return (spec_ctrl & SPEC_CTRL_STIBP) << (TIF_SPEC_IB - SPEC_CTRL_STIBP_SHIFT); +} + static inline u64 ssbd_tif_to_amd_ls_cfg(u64 tifn) { return (tifn & _TIF_SSBD) ? x86_amd_ls_cfg_ssbd_mask : 0ULL; @@ -70,11 +82,7 @@ extern void speculative_store_bypass_ht_init(void); static inline void speculative_store_bypass_ht_init(void) { } #endif -extern void speculative_store_bypass_update(unsigned long tif); - -static inline void speculative_store_bypass_update_current(void) -{ - speculative_store_bypass_update(current_thread_info()->flags); -} +extern void speculation_ctrl_update(unsigned long tif); +extern void speculation_ctrl_update_current(void); #endif diff --git a/arch/x86/include/asm/svm.h b/arch/x86/include/asm/svm.h index 93b462e48067..dec9c1e84c78 100644 --- a/arch/x86/include/asm/svm.h +++ b/arch/x86/include/asm/svm.h @@ -290,11 +290,4 @@ struct __attribute__ ((__packed__)) vmcb { #define SVM_CR0_SELECTIVE_MASK (X86_CR0_TS | X86_CR0_MP) -#define SVM_VMLOAD ".byte 0x0f, 0x01, 0xda" -#define SVM_VMRUN ".byte 0x0f, 0x01, 0xd8" -#define SVM_VMSAVE ".byte 0x0f, 0x01, 0xdb" -#define SVM_CLGI ".byte 0x0f, 0x01, 0xdd" -#define SVM_STGI ".byte 0x0f, 0x01, 0xdc" -#define SVM_INVLPGA ".byte 0x0f, 0x01, 0xdf" - #endif diff --git a/arch/x86/include/asm/switch_to.h b/arch/x86/include/asm/switch_to.h index 36bd243843d6..7cf1a270d891 100644 --- a/arch/x86/include/asm/switch_to.h +++ b/arch/x86/include/asm/switch_to.h @@ -11,9 +11,6 @@ struct task_struct *__switch_to_asm(struct task_struct *prev, __visible struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next); -struct tss_struct; -void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, - struct tss_struct *tss); /* This runs runs on the previous thread's stack. */ static inline void prepare_switch_to(struct task_struct *next) diff --git a/arch/x86/include/asm/thread_info.h b/arch/x86/include/asm/thread_info.h index 2ff2a30a264f..e0eccbcb8447 100644 --- a/arch/x86/include/asm/thread_info.h +++ b/arch/x86/include/asm/thread_info.h @@ -79,10 +79,12 @@ struct thread_info { #define TIF_SIGPENDING 2 /* signal pending */ #define TIF_NEED_RESCHED 3 /* rescheduling necessary */ #define TIF_SINGLESTEP 4 /* reenable singlestep on user return*/ -#define TIF_SSBD 5 /* Reduced data speculation */ +#define TIF_SSBD 5 /* Speculative store bypass disable */ #define TIF_SYSCALL_EMU 6 /* syscall emulation active */ #define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */ #define TIF_SECCOMP 8 /* secure computing */ +#define TIF_SPEC_IB 9 /* Indirect branch speculation mitigation */ +#define TIF_SPEC_FORCE_UPDATE 10 /* Force speculation MSR update in context switch */ #define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */ #define TIF_UPROBE 12 /* breakpointed or singlestepping */ #define TIF_PATCH_PENDING 13 /* pending live patching update */ @@ -110,6 +112,8 @@ struct thread_info { #define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU) #define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT) #define _TIF_SECCOMP (1 << TIF_SECCOMP) +#define _TIF_SPEC_IB (1 << TIF_SPEC_IB) +#define _TIF_SPEC_FORCE_UPDATE (1 << TIF_SPEC_FORCE_UPDATE) #define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY) #define _TIF_UPROBE (1 << TIF_UPROBE) #define _TIF_PATCH_PENDING (1 << TIF_PATCH_PENDING) @@ -136,17 +140,19 @@ struct thread_info { _TIF_SECCOMP | _TIF_SYSCALL_TRACEPOINT | \ _TIF_NOHZ) -/* work to do on any return to user space */ -#define _TIF_ALLWORK_MASK \ - (_TIF_SYSCALL_TRACE | _TIF_NOTIFY_RESUME | _TIF_SIGPENDING | \ - _TIF_NEED_RESCHED | _TIF_SINGLESTEP | _TIF_SYSCALL_EMU | \ - _TIF_SYSCALL_AUDIT | _TIF_USER_RETURN_NOTIFY | _TIF_UPROBE | \ - _TIF_PATCH_PENDING | _TIF_NOHZ | _TIF_SYSCALL_TRACEPOINT | \ - _TIF_FSCHECK) - /* flags to check in __switch_to() */ -#define _TIF_WORK_CTXSW \ - (_TIF_IO_BITMAP|_TIF_NOCPUID|_TIF_NOTSC|_TIF_BLOCKSTEP|_TIF_SSBD) +#define _TIF_WORK_CTXSW_BASE \ + (_TIF_IO_BITMAP|_TIF_NOCPUID|_TIF_NOTSC|_TIF_BLOCKSTEP| \ + _TIF_SSBD | _TIF_SPEC_FORCE_UPDATE) + +/* + * Avoid calls to __switch_to_xtra() on UP as STIBP is not evaluated. + */ +#ifdef CONFIG_SMP +# define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE | _TIF_SPEC_IB) +#else +# define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE) +#endif #define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW|_TIF_USER_RETURN_NOTIFY) #define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW) diff --git a/arch/x86/include/asm/tlbflush.h b/arch/x86/include/asm/tlbflush.h index d760611cfc35..f4204bf377fc 100644 --- a/arch/x86/include/asm/tlbflush.h +++ b/arch/x86/include/asm/tlbflush.h @@ -169,10 +169,14 @@ struct tlb_state { #define LOADED_MM_SWITCHING ((struct mm_struct *)1) + /* Last user mm for optimizing IBPB */ + union { + struct mm_struct *last_user_mm; + unsigned long last_user_mm_ibpb; + }; + u16 loaded_mm_asid; u16 next_asid; - /* last user mm's ctx id */ - u64 last_ctx_id; /* * We can be in one of several states: diff --git a/arch/x86/include/asm/trace/exceptions.h b/arch/x86/include/asm/trace/exceptions.h index 69615e387973..e0e6d7f21399 100644 --- a/arch/x86/include/asm/trace/exceptions.h +++ b/arch/x86/include/asm/trace/exceptions.h @@ -45,6 +45,7 @@ DEFINE_PAGE_FAULT_EVENT(page_fault_user); DEFINE_PAGE_FAULT_EVENT(page_fault_kernel); #undef TRACE_INCLUDE_PATH +#undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE exceptions #endif /* _TRACE_PAGE_FAULT_H */ diff --git a/arch/x86/include/asm/trace/hyperv.h b/arch/x86/include/asm/trace/hyperv.h index 2e6245a023ef..ace464f09681 100644 --- a/arch/x86/include/asm/trace/hyperv.h +++ b/arch/x86/include/asm/trace/hyperv.h @@ -42,6 +42,20 @@ TRACE_EVENT(hyperv_nested_flush_guest_mapping, TP_printk("address space %llx ret %d", __entry->as, __entry->ret) ); +TRACE_EVENT(hyperv_nested_flush_guest_mapping_range, + TP_PROTO(u64 as, int ret), + TP_ARGS(as, ret), + + TP_STRUCT__entry( + __field(u64, as) + __field(int, ret) + ), + TP_fast_assign(__entry->as = as; + __entry->ret = ret; + ), + TP_printk("address space %llx ret %d", __entry->as, __entry->ret) + ); + TRACE_EVENT(hyperv_send_ipi_mask, TP_PROTO(const struct cpumask *cpus, int vector), diff --git a/arch/x86/include/asm/trace/irq_vectors.h b/arch/x86/include/asm/trace/irq_vectors.h index 0af81b590a0c..33b9d0f0aafe 100644 --- a/arch/x86/include/asm/trace/irq_vectors.h +++ b/arch/x86/include/asm/trace/irq_vectors.h @@ -389,6 +389,7 @@ TRACE_EVENT(vector_free_moved, #endif /* CONFIG_X86_LOCAL_APIC */ #undef TRACE_INCLUDE_PATH +#undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE irq_vectors #endif /* _TRACE_IRQ_VECTORS_H */ diff --git a/arch/x86/include/asm/traps.h b/arch/x86/include/asm/traps.h index 3de69330e6c5..7d6f3f3fad78 100644 --- a/arch/x86/include/asm/traps.h +++ b/arch/x86/include/asm/traps.h @@ -61,34 +61,38 @@ asmlinkage void xen_machine_check(void); asmlinkage void xen_simd_coprocessor_error(void); #endif -dotraplinkage void do_divide_error(struct pt_regs *, long); -dotraplinkage void do_debug(struct pt_regs *, long); -dotraplinkage void do_nmi(struct pt_regs *, long); -dotraplinkage void do_int3(struct pt_regs *, long); -dotraplinkage void do_overflow(struct pt_regs *, long); -dotraplinkage void do_bounds(struct pt_regs *, long); -dotraplinkage void do_invalid_op(struct pt_regs *, long); -dotraplinkage void do_device_not_available(struct pt_regs *, long); -dotraplinkage void do_coprocessor_segment_overrun(struct pt_regs *, long); -dotraplinkage void do_invalid_TSS(struct pt_regs *, long); -dotraplinkage void do_segment_not_present(struct pt_regs *, long); -dotraplinkage void do_stack_segment(struct pt_regs *, long); +dotraplinkage void do_divide_error(struct pt_regs *regs, long error_code); +dotraplinkage void do_debug(struct pt_regs *regs, long error_code); +dotraplinkage void do_nmi(struct pt_regs *regs, long error_code); +dotraplinkage void do_int3(struct pt_regs *regs, long error_code); +dotraplinkage void do_overflow(struct pt_regs *regs, long error_code); +dotraplinkage void do_bounds(struct pt_regs *regs, long error_code); +dotraplinkage void do_invalid_op(struct pt_regs *regs, long error_code); +dotraplinkage void do_device_not_available(struct pt_regs *regs, long error_code); +dotraplinkage void do_coprocessor_segment_overrun(struct pt_regs *regs, long error_code); +dotraplinkage void do_invalid_TSS(struct pt_regs *regs, long error_code); +dotraplinkage void do_segment_not_present(struct pt_regs *regs, long error_code); +dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code); #ifdef CONFIG_X86_64 -dotraplinkage void do_double_fault(struct pt_regs *, long); +dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code); +asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs); +asmlinkage __visible notrace +struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s); +void __init trap_init(void); #endif -dotraplinkage void do_general_protection(struct pt_regs *, long); -dotraplinkage void do_page_fault(struct pt_regs *, unsigned long); -dotraplinkage void do_spurious_interrupt_bug(struct pt_regs *, long); -dotraplinkage void do_coprocessor_error(struct pt_regs *, long); -dotraplinkage void do_alignment_check(struct pt_regs *, long); +dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code); +dotraplinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code); +dotraplinkage void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code); +dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code); +dotraplinkage void do_alignment_check(struct pt_regs *regs, long error_code); #ifdef CONFIG_X86_MCE -dotraplinkage void do_machine_check(struct pt_regs *, long); +dotraplinkage void do_machine_check(struct pt_regs *regs, long error_code); #endif -dotraplinkage void do_simd_coprocessor_error(struct pt_regs *, long); +dotraplinkage void do_simd_coprocessor_error(struct pt_regs *regs, long error_code); #ifdef CONFIG_X86_32 -dotraplinkage void do_iret_error(struct pt_regs *, long); +dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code); #endif -dotraplinkage void do_mce(struct pt_regs *, long); +dotraplinkage void do_mce(struct pt_regs *regs, long error_code); static inline int get_si_code(unsigned long condition) { @@ -104,11 +108,16 @@ extern int panic_on_unrecovered_nmi; void math_emulate(struct math_emu_info *); #ifndef CONFIG_X86_32 -asmlinkage void smp_thermal_interrupt(void); -asmlinkage void smp_threshold_interrupt(void); -asmlinkage void smp_deferred_error_interrupt(void); +asmlinkage void smp_thermal_interrupt(struct pt_regs *regs); +asmlinkage void smp_threshold_interrupt(struct pt_regs *regs); +asmlinkage void smp_deferred_error_interrupt(struct pt_regs *regs); #endif +void smp_apic_timer_interrupt(struct pt_regs *regs); +void smp_spurious_interrupt(struct pt_regs *regs); +void smp_error_interrupt(struct pt_regs *regs); +asmlinkage void smp_irq_move_cleanup_interrupt(void); + extern void ist_enter(struct pt_regs *regs); extern void ist_exit(struct pt_regs *regs); extern void ist_begin_non_atomic(struct pt_regs *regs); diff --git a/arch/x86/include/asm/tsc.h b/arch/x86/include/asm/tsc.h index eb5bbfeccb66..8a0c25c6bf09 100644 --- a/arch/x86/include/asm/tsc.h +++ b/arch/x86/include/asm/tsc.h @@ -35,6 +35,7 @@ extern struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns); extern void tsc_early_init(void); extern void tsc_init(void); +extern unsigned long calibrate_delay_is_known(void); extern void mark_tsc_unstable(char *reason); extern int unsynchronized_tsc(void); extern int check_tsc_unstable(void); diff --git a/arch/x86/include/asm/vmx.h b/arch/x86/include/asm/vmx.h index ade0f153947d..4e4133e86484 100644 --- a/arch/x86/include/asm/vmx.h +++ b/arch/x86/include/asm/vmx.h @@ -77,7 +77,10 @@ #define SECONDARY_EXEC_ENCLS_EXITING 0x00008000 #define SECONDARY_EXEC_RDSEED_EXITING 0x00010000 #define SECONDARY_EXEC_ENABLE_PML 0x00020000 +#define SECONDARY_EXEC_PT_CONCEAL_VMX 0x00080000 #define SECONDARY_EXEC_XSAVES 0x00100000 +#define SECONDARY_EXEC_PT_USE_GPA 0x01000000 +#define SECONDARY_EXEC_MODE_BASED_EPT_EXEC 0x00400000 #define SECONDARY_EXEC_TSC_SCALING 0x02000000 #define PIN_BASED_EXT_INTR_MASK 0x00000001 @@ -98,6 +101,8 @@ #define VM_EXIT_LOAD_IA32_EFER 0x00200000 #define VM_EXIT_SAVE_VMX_PREEMPTION_TIMER 0x00400000 #define VM_EXIT_CLEAR_BNDCFGS 0x00800000 +#define VM_EXIT_PT_CONCEAL_PIP 0x01000000 +#define VM_EXIT_CLEAR_IA32_RTIT_CTL 0x02000000 #define VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR 0x00036dff @@ -109,6 +114,8 @@ #define VM_ENTRY_LOAD_IA32_PAT 0x00004000 #define VM_ENTRY_LOAD_IA32_EFER 0x00008000 #define VM_ENTRY_LOAD_BNDCFGS 0x00010000 +#define VM_ENTRY_PT_CONCEAL_PIP 0x00020000 +#define VM_ENTRY_LOAD_IA32_RTIT_CTL 0x00040000 #define VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR 0x000011ff @@ -240,6 +247,8 @@ enum vmcs_field { GUEST_PDPTR3_HIGH = 0x00002811, GUEST_BNDCFGS = 0x00002812, GUEST_BNDCFGS_HIGH = 0x00002813, + GUEST_IA32_RTIT_CTL = 0x00002814, + GUEST_IA32_RTIT_CTL_HIGH = 0x00002815, HOST_IA32_PAT = 0x00002c00, HOST_IA32_PAT_HIGH = 0x00002c01, HOST_IA32_EFER = 0x00002c02, diff --git a/arch/x86/include/asm/x86_init.h b/arch/x86/include/asm/x86_init.h index 0f842104862c..b85a7c54c6a1 100644 --- a/arch/x86/include/asm/x86_init.h +++ b/arch/x86/include/asm/x86_init.h @@ -303,6 +303,4 @@ extern void x86_init_noop(void); extern void x86_init_uint_noop(unsigned int unused); extern bool x86_pnpbios_disabled(void); -void x86_verify_bootdata_version(void); - #endif diff --git a/arch/x86/include/asm/xen/page.h b/arch/x86/include/asm/xen/page.h index 123e669bf363..790ce08e41f2 100644 --- a/arch/x86/include/asm/xen/page.h +++ b/arch/x86/include/asm/xen/page.h @@ -9,7 +9,7 @@ #include <linux/mm.h> #include <linux/device.h> -#include <linux/uaccess.h> +#include <asm/extable.h> #include <asm/page.h> #include <asm/pgtable.h> @@ -93,12 +93,39 @@ clear_foreign_p2m_mapping(struct gnttab_unmap_grant_ref *unmap_ops, */ static inline int xen_safe_write_ulong(unsigned long *addr, unsigned long val) { - return __put_user(val, (unsigned long __user *)addr); + int ret = 0; + + asm volatile("1: mov %[val], %[ptr]\n" + "2:\n" + ".section .fixup, \"ax\"\n" + "3: sub $1, %[ret]\n" + " jmp 2b\n" + ".previous\n" + _ASM_EXTABLE(1b, 3b) + : [ret] "+r" (ret), [ptr] "=m" (*addr) + : [val] "r" (val)); + + return ret; } -static inline int xen_safe_read_ulong(unsigned long *addr, unsigned long *val) +static inline int xen_safe_read_ulong(const unsigned long *addr, + unsigned long *val) { - return __get_user(*val, (unsigned long __user *)addr); + int ret = 0; + unsigned long rval = ~0ul; + + asm volatile("1: mov %[ptr], %[rval]\n" + "2:\n" + ".section .fixup, \"ax\"\n" + "3: sub $1, %[ret]\n" + " jmp 2b\n" + ".previous\n" + _ASM_EXTABLE(1b, 3b) + : [ret] "+r" (ret), [rval] "+r" (rval) + : [ptr] "m" (*addr)); + *val = rval; + + return ret; } #ifdef CONFIG_XEN_PV diff --git a/arch/x86/include/uapi/asm/bootparam.h b/arch/x86/include/uapi/asm/bootparam.h index 22f89d040ddd..60733f137e9a 100644 --- a/arch/x86/include/uapi/asm/bootparam.h +++ b/arch/x86/include/uapi/asm/bootparam.h @@ -16,9 +16,6 @@ #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 -/* version flags */ -#define VERSION_WRITTEN 0x8000 - /* loadflags */ #define LOADED_HIGH (1<<0) #define KASLR_FLAG (1<<1) @@ -89,7 +86,6 @@ struct setup_header { __u64 pref_address; __u32 init_size; __u32 handover_offset; - __u64 acpi_rsdp_addr; } __attribute__((packed)); struct sys_desc_table { @@ -159,7 +155,8 @@ struct boot_params { __u8 _pad2[4]; /* 0x054 */ __u64 tboot_addr; /* 0x058 */ struct ist_info ist_info; /* 0x060 */ - __u8 _pad3[16]; /* 0x070 */ + __u64 acpi_rsdp_addr; /* 0x070 */ + __u8 _pad3[8]; /* 0x078 */ __u8 hd0_info[16]; /* obsolete! */ /* 0x080 */ __u8 hd1_info[16]; /* obsolete! */ /* 0x090 */ struct sys_desc_table sys_desc_table; /* obsolete! */ /* 0x0a0 */ diff --git a/arch/x86/kernel/acpi/boot.c b/arch/x86/kernel/acpi/boot.c index 92c76bf97ad8..2624de16cd7a 100644 --- a/arch/x86/kernel/acpi/boot.c +++ b/arch/x86/kernel/acpi/boot.c @@ -848,7 +848,7 @@ EXPORT_SYMBOL(acpi_unregister_ioapic); /** * acpi_ioapic_registered - Check whether IOAPIC assoicatied with @gsi_base * has been registered - * @handle: ACPI handle of the IOAPIC deivce + * @handle: ACPI handle of the IOAPIC device * @gsi_base: GSI base associated with the IOAPIC * * Assume caller holds some type of lock to serialize acpi_ioapic_registered() @@ -1776,5 +1776,5 @@ void __init arch_reserve_mem_area(acpi_physical_address addr, size_t size) u64 x86_default_get_root_pointer(void) { - return boot_params.hdr.acpi_rsdp_addr; + return boot_params.acpi_rsdp_addr; } diff --git a/arch/x86/kernel/amd_gart_64.c b/arch/x86/kernel/amd_gart_64.c index 3f9d1b4019bb..e0ff3ac8c127 100644 --- a/arch/x86/kernel/amd_gart_64.c +++ b/arch/x86/kernel/amd_gart_64.c @@ -50,8 +50,6 @@ static unsigned long iommu_pages; /* .. and in pages */ static u32 *iommu_gatt_base; /* Remapping table */ -static dma_addr_t bad_dma_addr; - /* * If this is disabled the IOMMU will use an optimized flushing strategy * of only flushing when an mapping is reused. With it true the GART is @@ -74,8 +72,6 @@ static u32 gart_unmapped_entry; (((x) & 0xfffff000) | (((x) >> 32) << 4) | GPTE_VALID | GPTE_COHERENT) #define GPTE_DECODE(x) (((x) & 0xfffff000) | (((u64)(x) & 0xff0) << 28)) -#define EMERGENCY_PAGES 32 /* = 128KB */ - #ifdef CONFIG_AGP #define AGPEXTERN extern #else @@ -155,9 +151,6 @@ static void flush_gart(void) #ifdef CONFIG_IOMMU_LEAK /* Debugging aid for drivers that don't free their IOMMU tables */ -static int leak_trace; -static int iommu_leak_pages = 20; - static void dump_leak(void) { static int dump; @@ -184,14 +177,6 @@ static void iommu_full(struct device *dev, size_t size, int dir) */ dev_err(dev, "PCI-DMA: Out of IOMMU space for %lu bytes\n", size); - - if (size > PAGE_SIZE*EMERGENCY_PAGES) { - if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL) - panic("PCI-DMA: Memory would be corrupted\n"); - if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL) - panic(KERN_ERR - "PCI-DMA: Random memory would be DMAed\n"); - } #ifdef CONFIG_IOMMU_LEAK dump_leak(); #endif @@ -220,7 +205,7 @@ static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem, int i; if (unlikely(phys_mem + size > GART_MAX_PHYS_ADDR)) - return bad_dma_addr; + return DMA_MAPPING_ERROR; iommu_page = alloc_iommu(dev, npages, align_mask); if (iommu_page == -1) { @@ -229,7 +214,7 @@ static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem, if (panic_on_overflow) panic("dma_map_area overflow %lu bytes\n", size); iommu_full(dev, size, dir); - return bad_dma_addr; + return DMA_MAPPING_ERROR; } for (i = 0; i < npages; i++) { @@ -271,7 +256,7 @@ static void gart_unmap_page(struct device *dev, dma_addr_t dma_addr, int npages; int i; - if (dma_addr < iommu_bus_base + EMERGENCY_PAGES*PAGE_SIZE || + if (dma_addr == DMA_MAPPING_ERROR || dma_addr >= iommu_bus_base + iommu_size) return; @@ -315,7 +300,7 @@ static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg, if (nonforced_iommu(dev, addr, s->length)) { addr = dma_map_area(dev, addr, s->length, dir, 0); - if (addr == bad_dma_addr) { + if (addr == DMA_MAPPING_ERROR) { if (i > 0) gart_unmap_sg(dev, sg, i, dir, 0); nents = 0; @@ -471,7 +456,7 @@ error: iommu_full(dev, pages << PAGE_SHIFT, dir); for_each_sg(sg, s, nents, i) - s->dma_address = bad_dma_addr; + s->dma_address = DMA_MAPPING_ERROR; return 0; } @@ -490,7 +475,7 @@ gart_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr, *dma_addr = dma_map_area(dev, virt_to_phys(vaddr), size, DMA_BIDIRECTIONAL, (1UL << get_order(size)) - 1); flush_gart(); - if (unlikely(*dma_addr == bad_dma_addr)) + if (unlikely(*dma_addr == DMA_MAPPING_ERROR)) goto out_free; return vaddr; out_free: @@ -507,11 +492,6 @@ gart_free_coherent(struct device *dev, size_t size, void *vaddr, dma_direct_free_pages(dev, size, vaddr, dma_addr, attrs); } -static int gart_mapping_error(struct device *dev, dma_addr_t dma_addr) -{ - return (dma_addr == bad_dma_addr); -} - static int no_agp; static __init unsigned long check_iommu_size(unsigned long aper, u64 aper_size) @@ -695,7 +675,6 @@ static const struct dma_map_ops gart_dma_ops = { .unmap_page = gart_unmap_page, .alloc = gart_alloc_coherent, .free = gart_free_coherent, - .mapping_error = gart_mapping_error, .dma_supported = dma_direct_supported, }; @@ -730,7 +709,6 @@ int __init gart_iommu_init(void) unsigned long aper_base, aper_size; unsigned long start_pfn, end_pfn; unsigned long scratch; - long i; if (!amd_nb_has_feature(AMD_NB_GART)) return 0; @@ -774,29 +752,12 @@ int __init gart_iommu_init(void) if (!iommu_gart_bitmap) panic("Cannot allocate iommu bitmap\n"); -#ifdef CONFIG_IOMMU_LEAK - if (leak_trace) { - int ret; - - ret = dma_debug_resize_entries(iommu_pages); - if (ret) - pr_debug("PCI-DMA: Cannot trace all the entries\n"); - } -#endif - - /* - * Out of IOMMU space handling. - * Reserve some invalid pages at the beginning of the GART. - */ - bitmap_set(iommu_gart_bitmap, 0, EMERGENCY_PAGES); - pr_info("PCI-DMA: Reserving %luMB of IOMMU area in the AGP aperture\n", iommu_size >> 20); agp_memory_reserved = iommu_size; iommu_start = aper_size - iommu_size; iommu_bus_base = info.aper_base + iommu_start; - bad_dma_addr = iommu_bus_base; iommu_gatt_base = agp_gatt_table + (iommu_start>>PAGE_SHIFT); /* @@ -838,8 +799,6 @@ int __init gart_iommu_init(void) if (!scratch) panic("Cannot allocate iommu scratch page"); gart_unmapped_entry = GPTE_ENCODE(__pa(scratch)); - for (i = EMERGENCY_PAGES; i < iommu_pages; i++) - iommu_gatt_base[i] = gart_unmapped_entry; flush_gart(); dma_ops = &gart_dma_ops; @@ -853,16 +812,6 @@ void __init gart_parse_options(char *p) { int arg; -#ifdef CONFIG_IOMMU_LEAK - if (!strncmp(p, "leak", 4)) { - leak_trace = 1; - p += 4; - if (*p == '=') - ++p; - if (isdigit(*p) && get_option(&p, &arg)) - iommu_leak_pages = arg; - } -#endif if (isdigit(*p) && get_option(&p, &arg)) iommu_size = arg; if (!strncmp(p, "fullflush", 9)) diff --git a/arch/x86/kernel/amd_nb.c b/arch/x86/kernel/amd_nb.c index a6eca647bc76..cc51275c8759 100644 --- a/arch/x86/kernel/amd_nb.c +++ b/arch/x86/kernel/amd_nb.c @@ -11,14 +11,15 @@ #include <linux/errno.h> #include <linux/export.h> #include <linux/spinlock.h> +#include <linux/pci_ids.h> #include <asm/amd_nb.h> #define PCI_DEVICE_ID_AMD_17H_ROOT 0x1450 #define PCI_DEVICE_ID_AMD_17H_M10H_ROOT 0x15d0 -#define PCI_DEVICE_ID_AMD_17H_DF_F3 0x1463 +#define PCI_DEVICE_ID_AMD_17H_M30H_ROOT 0x1480 #define PCI_DEVICE_ID_AMD_17H_DF_F4 0x1464 -#define PCI_DEVICE_ID_AMD_17H_M10H_DF_F3 0x15eb #define PCI_DEVICE_ID_AMD_17H_M10H_DF_F4 0x15ec +#define PCI_DEVICE_ID_AMD_17H_M30H_DF_F4 0x1494 /* Protect the PCI config register pairs used for SMN and DF indirect access. */ static DEFINE_MUTEX(smn_mutex); @@ -28,9 +29,11 @@ static u32 *flush_words; static const struct pci_device_id amd_root_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_ROOT) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_ROOT) }, + { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_ROOT) }, {} }; + #define PCI_DEVICE_ID_AMD_CNB17H_F4 0x1704 const struct pci_device_id amd_nb_misc_ids[] = { @@ -44,6 +47,7 @@ const struct pci_device_id amd_nb_misc_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_DF_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F3) }, + { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CNB17H_F3) }, {} }; @@ -57,6 +61,7 @@ static const struct pci_device_id amd_nb_link_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_DF_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F4) }, + { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CNB17H_F4) }, {} }; @@ -214,7 +219,10 @@ int amd_cache_northbridges(void) const struct pci_device_id *root_ids = amd_root_ids; struct pci_dev *root, *misc, *link; struct amd_northbridge *nb; - u16 i = 0; + u16 roots_per_misc = 0; + u16 misc_count = 0; + u16 root_count = 0; + u16 i, j; if (amd_northbridges.num) return 0; @@ -227,26 +235,55 @@ int amd_cache_northbridges(void) misc = NULL; while ((misc = next_northbridge(misc, misc_ids)) != NULL) - i++; + misc_count++; - if (!i) + if (!misc_count) return -ENODEV; - nb = kcalloc(i, sizeof(struct amd_northbridge), GFP_KERNEL); + root = NULL; + while ((root = next_northbridge(root, root_ids)) != NULL) + root_count++; + + if (root_count) { + roots_per_misc = root_count / misc_count; + + /* + * There should be _exactly_ N roots for each DF/SMN + * interface. + */ + if (!roots_per_misc || (root_count % roots_per_misc)) { + pr_info("Unsupported AMD DF/PCI configuration found\n"); + return -ENODEV; + } + } + + nb = kcalloc(misc_count, sizeof(struct amd_northbridge), GFP_KERNEL); if (!nb) return -ENOMEM; amd_northbridges.nb = nb; - amd_northbridges.num = i; + amd_northbridges.num = misc_count; link = misc = root = NULL; - for (i = 0; i != amd_northbridges.num; i++) { + for (i = 0; i < amd_northbridges.num; i++) { node_to_amd_nb(i)->root = root = next_northbridge(root, root_ids); node_to_amd_nb(i)->misc = misc = next_northbridge(misc, misc_ids); node_to_amd_nb(i)->link = link = next_northbridge(link, link_ids); + + /* + * If there are more PCI root devices than data fabric/ + * system management network interfaces, then the (N) + * PCI roots per DF/SMN interface are functionally the + * same (for DF/SMN access) and N-1 are redundant. N-1 + * PCI roots should be skipped per DF/SMN interface so + * the following DF/SMN interfaces get mapped to + * correct PCI roots. + */ + for (j = 1; j < roots_per_misc; j++) + root = next_northbridge(root, root_ids); } if (amd_gart_present()) diff --git a/arch/x86/kernel/aperture_64.c b/arch/x86/kernel/aperture_64.c index 2c4d5ece7456..58176b56354e 100644 --- a/arch/x86/kernel/aperture_64.c +++ b/arch/x86/kernel/aperture_64.c @@ -264,18 +264,23 @@ static int __init parse_gart_mem(char *p) } early_param("gart_fix_e820", parse_gart_mem); +/* + * With kexec/kdump, if the first kernel doesn't shut down the GART and the + * second kernel allocates a different GART region, there might be two + * overlapping GART regions present: + * + * - the first still used by the GART initialized in the first kernel. + * - (sub-)set of it used as normal RAM by the second kernel. + * + * which leads to memory corruptions and a kernel panic eventually. + * + * This can also happen if the BIOS has forgotten to mark the GART region + * as reserved. + * + * Try to update the e820 map to mark that new region as reserved. + */ void __init early_gart_iommu_check(void) { - /* - * in case it is enabled before, esp for kexec/kdump, - * previous kernel already enable that. memset called - * by allocate_aperture/__alloc_bootmem_nopanic cause restart. - * or second kernel have different position for GART hole. and new - * kernel could use hole as RAM that is still used by GART set by - * first kernel - * or BIOS forget to put that in reserved. - * try to update e820 to make that region as reserved. - */ u32 agp_aper_order = 0; int i, fix, slot, valid_agp = 0; u32 ctl; diff --git a/arch/x86/kernel/apic/apic.c b/arch/x86/kernel/apic/apic.c index 32b2b7a41ef5..b7bcdd781651 100644 --- a/arch/x86/kernel/apic/apic.c +++ b/arch/x86/kernel/apic/apic.c @@ -44,6 +44,7 @@ #include <asm/mpspec.h> #include <asm/i8259.h> #include <asm/proto.h> +#include <asm/traps.h> #include <asm/apic.h> #include <asm/io_apic.h> #include <asm/desc.h> diff --git a/arch/x86/kernel/apic/apic_flat_64.c b/arch/x86/kernel/apic/apic_flat_64.c index e84c9eb4e5b4..0005c284a5c5 100644 --- a/arch/x86/kernel/apic/apic_flat_64.c +++ b/arch/x86/kernel/apic/apic_flat_64.c @@ -8,6 +8,7 @@ * Martin Bligh, Andi Kleen, James Bottomley, John Stultz, and * James Cleverdon. */ +#include <linux/acpi.h> #include <linux/errno.h> #include <linux/threads.h> #include <linux/cpumask.h> @@ -16,13 +17,13 @@ #include <linux/ctype.h> #include <linux/hardirq.h> #include <linux/export.h> + #include <asm/smp.h> -#include <asm/apic.h> #include <asm/ipi.h> +#include <asm/apic.h> +#include <asm/apic_flat_64.h> #include <asm/jailhouse_para.h> -#include <linux/acpi.h> - static struct apic apic_physflat; static struct apic apic_flat; diff --git a/arch/x86/kernel/apic/vector.c b/arch/x86/kernel/apic/vector.c index 652e7ffa9b9d..3173e07d3791 100644 --- a/arch/x86/kernel/apic/vector.c +++ b/arch/x86/kernel/apic/vector.c @@ -18,6 +18,7 @@ #include <linux/slab.h> #include <asm/irqdomain.h> #include <asm/hw_irq.h> +#include <asm/traps.h> #include <asm/apic.h> #include <asm/i8259.h> #include <asm/desc.h> diff --git a/arch/x86/kernel/apic/x2apic_uv_x.c b/arch/x86/kernel/apic/x2apic_uv_x.c index 391f358ebb4c..a555da094157 100644 --- a/arch/x86/kernel/apic/x2apic_uv_x.c +++ b/arch/x86/kernel/apic/x2apic_uv_x.c @@ -1079,7 +1079,7 @@ late_initcall(uv_init_heartbeat); #endif /* !CONFIG_HOTPLUG_CPU */ /* Direct Legacy VGA I/O traffic to designated IOH */ -int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags) +static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags) { int domain, bus, rc; @@ -1148,7 +1148,7 @@ static void get_mn(struct mn *mnp) mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0; } -void __init uv_init_hub_info(struct uv_hub_info_s *hi) +static void __init uv_init_hub_info(struct uv_hub_info_s *hi) { union uvh_node_id_u node_id; struct mn mn; diff --git a/arch/x86/kernel/asm-offsets.c b/arch/x86/kernel/asm-offsets.c index 72adf6c335dc..168543d077d7 100644 --- a/arch/x86/kernel/asm-offsets.c +++ b/arch/x86/kernel/asm-offsets.c @@ -29,7 +29,8 @@ # include "asm-offsets_64.c" #endif -void common(void) { +static void __used common(void) +{ BLANK(); OFFSET(TASK_threadsp, task_struct, thread.sp); #ifdef CONFIG_STACKPROTECTOR diff --git a/arch/x86/kernel/check.c b/arch/x86/kernel/check.c index 1979a76bfadd..5136e6818da8 100644 --- a/arch/x86/kernel/check.c +++ b/arch/x86/kernel/check.c @@ -9,6 +9,7 @@ #include <linux/memblock.h> #include <asm/proto.h> +#include <asm/setup.h> /* * Some BIOSes seem to corrupt the low 64k of memory during events @@ -136,7 +137,7 @@ void __init setup_bios_corruption_check(void) } -void check_for_bios_corruption(void) +static void check_for_bios_corruption(void) { int i; int corruption = 0; diff --git a/arch/x86/kernel/cpu/Makefile b/arch/x86/kernel/cpu/Makefile index 1f5d2291c31e..ac78f90aea56 100644 --- a/arch/x86/kernel/cpu/Makefile +++ b/arch/x86/kernel/cpu/Makefile @@ -36,13 +36,10 @@ obj-$(CONFIG_CPU_SUP_CENTAUR) += centaur.o obj-$(CONFIG_CPU_SUP_TRANSMETA_32) += transmeta.o obj-$(CONFIG_CPU_SUP_UMC_32) += umc.o -obj-$(CONFIG_INTEL_RDT) += intel_rdt.o intel_rdt_rdtgroup.o intel_rdt_monitor.o -obj-$(CONFIG_INTEL_RDT) += intel_rdt_ctrlmondata.o intel_rdt_pseudo_lock.o -CFLAGS_intel_rdt_pseudo_lock.o = -I$(src) - -obj-$(CONFIG_X86_MCE) += mcheck/ +obj-$(CONFIG_X86_MCE) += mce/ obj-$(CONFIG_MTRR) += mtrr/ obj-$(CONFIG_MICROCODE) += microcode/ +obj-$(CONFIG_RESCTRL) += resctrl/ obj-$(CONFIG_X86_LOCAL_APIC) += perfctr-watchdog.o diff --git a/arch/x86/kernel/cpu/amd.c b/arch/x86/kernel/cpu/amd.c index eeea634bee0a..69f6bbb41be0 100644 --- a/arch/x86/kernel/cpu/amd.c +++ b/arch/x86/kernel/cpu/amd.c @@ -15,6 +15,7 @@ #include <asm/smp.h> #include <asm/pci-direct.h> #include <asm/delay.h> +#include <asm/debugreg.h> #ifdef CONFIG_X86_64 # include <asm/mmconfig.h> diff --git a/arch/x86/kernel/cpu/aperfmperf.c b/arch/x86/kernel/cpu/aperfmperf.c index 7eba34df54c3..804c49493938 100644 --- a/arch/x86/kernel/cpu/aperfmperf.c +++ b/arch/x86/kernel/cpu/aperfmperf.c @@ -12,6 +12,7 @@ #include <linux/ktime.h> #include <linux/math64.h> #include <linux/percpu.h> +#include <linux/cpufreq.h> #include <linux/smp.h> #include "cpu.h" diff --git a/arch/x86/kernel/cpu/bugs.c b/arch/x86/kernel/cpu/bugs.c index c37e66e493bf..8654b8b0c848 100644 --- a/arch/x86/kernel/cpu/bugs.c +++ b/arch/x86/kernel/cpu/bugs.c @@ -14,6 +14,7 @@ #include <linux/module.h> #include <linux/nospec.h> #include <linux/prctl.h> +#include <linux/sched/smt.h> #include <asm/spec-ctrl.h> #include <asm/cmdline.h> @@ -31,6 +32,8 @@ #include <asm/e820/api.h> #include <asm/hypervisor.h> +#include "cpu.h" + static void __init spectre_v2_select_mitigation(void); static void __init ssb_select_mitigation(void); static void __init l1tf_select_mitigation(void); @@ -53,6 +56,13 @@ static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS; u64 __ro_after_init x86_amd_ls_cfg_base; u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; +/* Control conditional STIBP in switch_to() */ +DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); +/* Control conditional IBPB in switch_mm() */ +DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); +/* Control unconditional IBPB in switch_mm() */ +DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); + void __init check_bugs(void) { identify_boot_cpu(); @@ -123,31 +133,6 @@ void __init check_bugs(void) #endif } -/* The kernel command line selection */ -enum spectre_v2_mitigation_cmd { - SPECTRE_V2_CMD_NONE, - SPECTRE_V2_CMD_AUTO, - SPECTRE_V2_CMD_FORCE, - SPECTRE_V2_CMD_RETPOLINE, - SPECTRE_V2_CMD_RETPOLINE_GENERIC, - SPECTRE_V2_CMD_RETPOLINE_AMD, -}; - -static const char *spectre_v2_strings[] = { - [SPECTRE_V2_NONE] = "Vulnerable", - [SPECTRE_V2_RETPOLINE_MINIMAL] = "Vulnerable: Minimal generic ASM retpoline", - [SPECTRE_V2_RETPOLINE_MINIMAL_AMD] = "Vulnerable: Minimal AMD ASM retpoline", - [SPECTRE_V2_RETPOLINE_GENERIC] = "Mitigation: Full generic retpoline", - [SPECTRE_V2_RETPOLINE_AMD] = "Mitigation: Full AMD retpoline", - [SPECTRE_V2_IBRS_ENHANCED] = "Mitigation: Enhanced IBRS", -}; - -#undef pr_fmt -#define pr_fmt(fmt) "Spectre V2 : " fmt - -static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = - SPECTRE_V2_NONE; - void x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest) { @@ -169,6 +154,10 @@ x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest) static_cpu_has(X86_FEATURE_AMD_SSBD)) hostval |= ssbd_tif_to_spec_ctrl(ti->flags); + /* Conditional STIBP enabled? */ + if (static_branch_unlikely(&switch_to_cond_stibp)) + hostval |= stibp_tif_to_spec_ctrl(ti->flags); + if (hostval != guestval) { msrval = setguest ? guestval : hostval; wrmsrl(MSR_IA32_SPEC_CTRL, msrval); @@ -202,7 +191,7 @@ x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest) tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : ssbd_spec_ctrl_to_tif(hostval); - speculative_store_bypass_update(tif); + speculation_ctrl_update(tif); } } EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl); @@ -217,6 +206,15 @@ static void x86_amd_ssb_disable(void) wrmsrl(MSR_AMD64_LS_CFG, msrval); } +#undef pr_fmt +#define pr_fmt(fmt) "Spectre V2 : " fmt + +static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = + SPECTRE_V2_NONE; + +static enum spectre_v2_user_mitigation spectre_v2_user __ro_after_init = + SPECTRE_V2_USER_NONE; + #ifdef RETPOLINE static bool spectre_v2_bad_module; @@ -238,67 +236,227 @@ static inline const char *spectre_v2_module_string(void) static inline const char *spectre_v2_module_string(void) { return ""; } #endif -static void __init spec2_print_if_insecure(const char *reason) +static inline bool match_option(const char *arg, int arglen, const char *opt) { - if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) - pr_info("%s selected on command line.\n", reason); + int len = strlen(opt); + + return len == arglen && !strncmp(arg, opt, len); } -static void __init spec2_print_if_secure(const char *reason) +/* The kernel command line selection for spectre v2 */ +enum spectre_v2_mitigation_cmd { + SPECTRE_V2_CMD_NONE, + SPECTRE_V2_CMD_AUTO, + SPECTRE_V2_CMD_FORCE, + SPECTRE_V2_CMD_RETPOLINE, + SPECTRE_V2_CMD_RETPOLINE_GENERIC, + SPECTRE_V2_CMD_RETPOLINE_AMD, +}; + +enum spectre_v2_user_cmd { + SPECTRE_V2_USER_CMD_NONE, + SPECTRE_V2_USER_CMD_AUTO, + SPECTRE_V2_USER_CMD_FORCE, + SPECTRE_V2_USER_CMD_PRCTL, + SPECTRE_V2_USER_CMD_PRCTL_IBPB, + SPECTRE_V2_USER_CMD_SECCOMP, + SPECTRE_V2_USER_CMD_SECCOMP_IBPB, +}; + +static const char * const spectre_v2_user_strings[] = { + [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", + [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", + [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", + [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", + [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", +}; + +static const struct { + const char *option; + enum spectre_v2_user_cmd cmd; + bool secure; +} v2_user_options[] __initdata = { + { "auto", SPECTRE_V2_USER_CMD_AUTO, false }, + { "off", SPECTRE_V2_USER_CMD_NONE, false }, + { "on", SPECTRE_V2_USER_CMD_FORCE, true }, + { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false }, + { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false }, + { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false }, + { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false }, +}; + +static void __init spec_v2_user_print_cond(const char *reason, bool secure) { - if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) - pr_info("%s selected on command line.\n", reason); + if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) + pr_info("spectre_v2_user=%s forced on command line.\n", reason); } -static inline bool retp_compiler(void) +static enum spectre_v2_user_cmd __init +spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd) { - return __is_defined(RETPOLINE); + char arg[20]; + int ret, i; + + switch (v2_cmd) { + case SPECTRE_V2_CMD_NONE: + return SPECTRE_V2_USER_CMD_NONE; + case SPECTRE_V2_CMD_FORCE: + return SPECTRE_V2_USER_CMD_FORCE; + default: + break; + } + + ret = cmdline_find_option(boot_command_line, "spectre_v2_user", + arg, sizeof(arg)); + if (ret < 0) + return SPECTRE_V2_USER_CMD_AUTO; + + for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) { + if (match_option(arg, ret, v2_user_options[i].option)) { + spec_v2_user_print_cond(v2_user_options[i].option, + v2_user_options[i].secure); + return v2_user_options[i].cmd; + } + } + + pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg); + return SPECTRE_V2_USER_CMD_AUTO; } -static inline bool match_option(const char *arg, int arglen, const char *opt) +static void __init +spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd) { - int len = strlen(opt); + enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE; + bool smt_possible = IS_ENABLED(CONFIG_SMP); + enum spectre_v2_user_cmd cmd; - return len == arglen && !strncmp(arg, opt, len); + if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) + return; + + if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || + cpu_smt_control == CPU_SMT_NOT_SUPPORTED) + smt_possible = false; + + cmd = spectre_v2_parse_user_cmdline(v2_cmd); + switch (cmd) { + case SPECTRE_V2_USER_CMD_NONE: + goto set_mode; + case SPECTRE_V2_USER_CMD_FORCE: + mode = SPECTRE_V2_USER_STRICT; + break; + case SPECTRE_V2_USER_CMD_PRCTL: + case SPECTRE_V2_USER_CMD_PRCTL_IBPB: + mode = SPECTRE_V2_USER_PRCTL; + break; + case SPECTRE_V2_USER_CMD_AUTO: + case SPECTRE_V2_USER_CMD_SECCOMP: + case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: + if (IS_ENABLED(CONFIG_SECCOMP)) + mode = SPECTRE_V2_USER_SECCOMP; + else + mode = SPECTRE_V2_USER_PRCTL; + break; + } + + /* + * At this point, an STIBP mode other than "off" has been set. + * If STIBP support is not being forced, check if STIBP always-on + * is preferred. + */ + if (mode != SPECTRE_V2_USER_STRICT && + boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) + mode = SPECTRE_V2_USER_STRICT_PREFERRED; + + /* Initialize Indirect Branch Prediction Barrier */ + if (boot_cpu_has(X86_FEATURE_IBPB)) { + setup_force_cpu_cap(X86_FEATURE_USE_IBPB); + + switch (cmd) { + case SPECTRE_V2_USER_CMD_FORCE: + case SPECTRE_V2_USER_CMD_PRCTL_IBPB: + case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: + static_branch_enable(&switch_mm_always_ibpb); + break; + case SPECTRE_V2_USER_CMD_PRCTL: + case SPECTRE_V2_USER_CMD_AUTO: + case SPECTRE_V2_USER_CMD_SECCOMP: + static_branch_enable(&switch_mm_cond_ibpb); + break; + default: + break; + } + + pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", + static_key_enabled(&switch_mm_always_ibpb) ? + "always-on" : "conditional"); + } + + /* If enhanced IBRS is enabled no STIBP required */ + if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED) + return; + + /* + * If SMT is not possible or STIBP is not available clear the STIBP + * mode. + */ + if (!smt_possible || !boot_cpu_has(X86_FEATURE_STIBP)) + mode = SPECTRE_V2_USER_NONE; +set_mode: + spectre_v2_user = mode; + /* Only print the STIBP mode when SMT possible */ + if (smt_possible) + pr_info("%s\n", spectre_v2_user_strings[mode]); } +static const char * const spectre_v2_strings[] = { + [SPECTRE_V2_NONE] = "Vulnerable", + [SPECTRE_V2_RETPOLINE_GENERIC] = "Mitigation: Full generic retpoline", + [SPECTRE_V2_RETPOLINE_AMD] = "Mitigation: Full AMD retpoline", + [SPECTRE_V2_IBRS_ENHANCED] = "Mitigation: Enhanced IBRS", +}; + static const struct { const char *option; enum spectre_v2_mitigation_cmd cmd; bool secure; -} mitigation_options[] = { - { "off", SPECTRE_V2_CMD_NONE, false }, - { "on", SPECTRE_V2_CMD_FORCE, true }, - { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, - { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_AMD, false }, - { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, - { "auto", SPECTRE_V2_CMD_AUTO, false }, +} mitigation_options[] __initdata = { + { "off", SPECTRE_V2_CMD_NONE, false }, + { "on", SPECTRE_V2_CMD_FORCE, true }, + { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, + { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_AMD, false }, + { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, + { "auto", SPECTRE_V2_CMD_AUTO, false }, }; +static void __init spec_v2_print_cond(const char *reason, bool secure) +{ + if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) + pr_info("%s selected on command line.\n", reason); +} + static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) { + enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO; char arg[20]; int ret, i; - enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO; if (cmdline_find_option_bool(boot_command_line, "nospectre_v2")) return SPECTRE_V2_CMD_NONE; - else { - ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); - if (ret < 0) - return SPECTRE_V2_CMD_AUTO; - for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { - if (!match_option(arg, ret, mitigation_options[i].option)) - continue; - cmd = mitigation_options[i].cmd; - break; - } + ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); + if (ret < 0) + return SPECTRE_V2_CMD_AUTO; - if (i >= ARRAY_SIZE(mitigation_options)) { - pr_err("unknown option (%s). Switching to AUTO select\n", arg); - return SPECTRE_V2_CMD_AUTO; - } + for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { + if (!match_option(arg, ret, mitigation_options[i].option)) + continue; + cmd = mitigation_options[i].cmd; + break; + } + + if (i >= ARRAY_SIZE(mitigation_options)) { + pr_err("unknown option (%s). Switching to AUTO select\n", arg); + return SPECTRE_V2_CMD_AUTO; } if ((cmd == SPECTRE_V2_CMD_RETPOLINE || @@ -316,54 +474,11 @@ static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) return SPECTRE_V2_CMD_AUTO; } - if (mitigation_options[i].secure) - spec2_print_if_secure(mitigation_options[i].option); - else - spec2_print_if_insecure(mitigation_options[i].option); - + spec_v2_print_cond(mitigation_options[i].option, + mitigation_options[i].secure); return cmd; } -static bool stibp_needed(void) -{ - if (spectre_v2_enabled == SPECTRE_V2_NONE) - return false; - - if (!boot_cpu_has(X86_FEATURE_STIBP)) - return false; - - return true; -} - -static void update_stibp_msr(void *info) -{ - wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); -} - -void arch_smt_update(void) -{ - u64 mask; - - if (!stibp_needed()) - return; - - mutex_lock(&spec_ctrl_mutex); - mask = x86_spec_ctrl_base; - if (cpu_smt_control == CPU_SMT_ENABLED) - mask |= SPEC_CTRL_STIBP; - else - mask &= ~SPEC_CTRL_STIBP; - - if (mask != x86_spec_ctrl_base) { - pr_info("Spectre v2 cross-process SMT mitigation: %s STIBP\n", - cpu_smt_control == CPU_SMT_ENABLED ? - "Enabling" : "Disabling"); - x86_spec_ctrl_base = mask; - on_each_cpu(update_stibp_msr, NULL, 1); - } - mutex_unlock(&spec_ctrl_mutex); -} - static void __init spectre_v2_select_mitigation(void) { enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline(); @@ -417,14 +532,12 @@ retpoline_auto: pr_err("Spectre mitigation: LFENCE not serializing, switching to generic retpoline\n"); goto retpoline_generic; } - mode = retp_compiler() ? SPECTRE_V2_RETPOLINE_AMD : - SPECTRE_V2_RETPOLINE_MINIMAL_AMD; + mode = SPECTRE_V2_RETPOLINE_AMD; setup_force_cpu_cap(X86_FEATURE_RETPOLINE_AMD); setup_force_cpu_cap(X86_FEATURE_RETPOLINE); } else { retpoline_generic: - mode = retp_compiler() ? SPECTRE_V2_RETPOLINE_GENERIC : - SPECTRE_V2_RETPOLINE_MINIMAL; + mode = SPECTRE_V2_RETPOLINE_GENERIC; setup_force_cpu_cap(X86_FEATURE_RETPOLINE); } @@ -443,12 +556,6 @@ specv2_set_mode: setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n"); - /* Initialize Indirect Branch Prediction Barrier if supported */ - if (boot_cpu_has(X86_FEATURE_IBPB)) { - setup_force_cpu_cap(X86_FEATURE_USE_IBPB); - pr_info("Spectre v2 mitigation: Enabling Indirect Branch Prediction Barrier\n"); - } - /* * Retpoline means the kernel is safe because it has no indirect * branches. Enhanced IBRS protects firmware too, so, enable restricted @@ -465,10 +572,68 @@ specv2_set_mode: pr_info("Enabling Restricted Speculation for firmware calls\n"); } + /* Set up IBPB and STIBP depending on the general spectre V2 command */ + spectre_v2_user_select_mitigation(cmd); + /* Enable STIBP if appropriate */ arch_smt_update(); } +static void update_stibp_msr(void * __unused) +{ + wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); +} + +/* Update x86_spec_ctrl_base in case SMT state changed. */ +static void update_stibp_strict(void) +{ + u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; + + if (sched_smt_active()) + mask |= SPEC_CTRL_STIBP; + + if (mask == x86_spec_ctrl_base) + return; + + pr_info("Update user space SMT mitigation: STIBP %s\n", + mask & SPEC_CTRL_STIBP ? "always-on" : "off"); + x86_spec_ctrl_base = mask; + on_each_cpu(update_stibp_msr, NULL, 1); +} + +/* Update the static key controlling the evaluation of TIF_SPEC_IB */ +static void update_indir_branch_cond(void) +{ + if (sched_smt_active()) + static_branch_enable(&switch_to_cond_stibp); + else + static_branch_disable(&switch_to_cond_stibp); +} + +void arch_smt_update(void) +{ + /* Enhanced IBRS implies STIBP. No update required. */ + if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED) + return; + + mutex_lock(&spec_ctrl_mutex); + + switch (spectre_v2_user) { + case SPECTRE_V2_USER_NONE: + break; + case SPECTRE_V2_USER_STRICT: + case SPECTRE_V2_USER_STRICT_PREFERRED: + update_stibp_strict(); + break; + case SPECTRE_V2_USER_PRCTL: + case SPECTRE_V2_USER_SECCOMP: + update_indir_branch_cond(); + break; + } + + mutex_unlock(&spec_ctrl_mutex); +} + #undef pr_fmt #define pr_fmt(fmt) "Speculative Store Bypass: " fmt @@ -483,7 +648,7 @@ enum ssb_mitigation_cmd { SPEC_STORE_BYPASS_CMD_SECCOMP, }; -static const char *ssb_strings[] = { +static const char * const ssb_strings[] = { [SPEC_STORE_BYPASS_NONE] = "Vulnerable", [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", @@ -493,7 +658,7 @@ static const char *ssb_strings[] = { static const struct { const char *option; enum ssb_mitigation_cmd cmd; -} ssb_mitigation_options[] = { +} ssb_mitigation_options[] __initdata = { { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */ { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */ { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */ @@ -604,10 +769,25 @@ static void ssb_select_mitigation(void) #undef pr_fmt #define pr_fmt(fmt) "Speculation prctl: " fmt -static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) +static void task_update_spec_tif(struct task_struct *tsk) { - bool update; + /* Force the update of the real TIF bits */ + set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); + /* + * Immediately update the speculation control MSRs for the current + * task, but for a non-current task delay setting the CPU + * mitigation until it is scheduled next. + * + * This can only happen for SECCOMP mitigation. For PRCTL it's + * always the current task. + */ + if (tsk == current) + speculation_ctrl_update_current(); +} + +static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) +{ if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && ssb_mode != SPEC_STORE_BYPASS_SECCOMP) return -ENXIO; @@ -618,28 +798,58 @@ static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) if (task_spec_ssb_force_disable(task)) return -EPERM; task_clear_spec_ssb_disable(task); - update = test_and_clear_tsk_thread_flag(task, TIF_SSBD); + task_update_spec_tif(task); break; case PR_SPEC_DISABLE: task_set_spec_ssb_disable(task); - update = !test_and_set_tsk_thread_flag(task, TIF_SSBD); + task_update_spec_tif(task); break; case PR_SPEC_FORCE_DISABLE: task_set_spec_ssb_disable(task); task_set_spec_ssb_force_disable(task); - update = !test_and_set_tsk_thread_flag(task, TIF_SSBD); + task_update_spec_tif(task); break; default: return -ERANGE; } + return 0; +} - /* - * If being set on non-current task, delay setting the CPU - * mitigation until it is next scheduled. - */ - if (task == current && update) - speculative_store_bypass_update_current(); - +static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) +{ + switch (ctrl) { + case PR_SPEC_ENABLE: + if (spectre_v2_user == SPECTRE_V2_USER_NONE) + return 0; + /* + * Indirect branch speculation is always disabled in strict + * mode. + */ + if (spectre_v2_user == SPECTRE_V2_USER_STRICT || + spectre_v2_user == SPECTRE_V2_USER_STRICT_PREFERRED) + return -EPERM; + task_clear_spec_ib_disable(task); + task_update_spec_tif(task); + break; + case PR_SPEC_DISABLE: + case PR_SPEC_FORCE_DISABLE: + /* + * Indirect branch speculation is always allowed when + * mitigation is force disabled. + */ + if (spectre_v2_user == SPECTRE_V2_USER_NONE) + return -EPERM; + if (spectre_v2_user == SPECTRE_V2_USER_STRICT || + spectre_v2_user == SPECTRE_V2_USER_STRICT_PREFERRED) + return 0; + task_set_spec_ib_disable(task); + if (ctrl == PR_SPEC_FORCE_DISABLE) + task_set_spec_ib_force_disable(task); + task_update_spec_tif(task); + break; + default: + return -ERANGE; + } return 0; } @@ -649,6 +859,8 @@ int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, switch (which) { case PR_SPEC_STORE_BYPASS: return ssb_prctl_set(task, ctrl); + case PR_SPEC_INDIRECT_BRANCH: + return ib_prctl_set(task, ctrl); default: return -ENODEV; } @@ -659,6 +871,8 @@ void arch_seccomp_spec_mitigate(struct task_struct *task) { if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); + if (spectre_v2_user == SPECTRE_V2_USER_SECCOMP) + ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); } #endif @@ -681,11 +895,36 @@ static int ssb_prctl_get(struct task_struct *task) } } +static int ib_prctl_get(struct task_struct *task) +{ + if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) + return PR_SPEC_NOT_AFFECTED; + + switch (spectre_v2_user) { + case SPECTRE_V2_USER_NONE: + return PR_SPEC_ENABLE; + case SPECTRE_V2_USER_PRCTL: + case SPECTRE_V2_USER_SECCOMP: + if (task_spec_ib_force_disable(task)) + return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; + if (task_spec_ib_disable(task)) + return PR_SPEC_PRCTL | PR_SPEC_DISABLE; + return PR_SPEC_PRCTL | PR_SPEC_ENABLE; + case SPECTRE_V2_USER_STRICT: + case SPECTRE_V2_USER_STRICT_PREFERRED: + return PR_SPEC_DISABLE; + default: + return PR_SPEC_NOT_AFFECTED; + } +} + int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) { switch (which) { case PR_SPEC_STORE_BYPASS: return ssb_prctl_get(task); + case PR_SPEC_INDIRECT_BRANCH: + return ib_prctl_get(task); default: return -ENODEV; } @@ -779,7 +1018,8 @@ static void __init l1tf_select_mitigation(void) #endif half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; - if (e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { + if (l1tf_mitigation != L1TF_MITIGATION_OFF && + e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", half_pa); @@ -823,7 +1063,7 @@ early_param("l1tf", l1tf_cmdline); #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" #if IS_ENABLED(CONFIG_KVM_INTEL) -static const char *l1tf_vmx_states[] = { +static const char * const l1tf_vmx_states[] = { [VMENTER_L1D_FLUSH_AUTO] = "auto", [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", @@ -839,13 +1079,14 @@ static ssize_t l1tf_show_state(char *buf) if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && - cpu_smt_control == CPU_SMT_ENABLED)) + sched_smt_active())) { return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, l1tf_vmx_states[l1tf_vmx_mitigation]); + } return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, l1tf_vmx_states[l1tf_vmx_mitigation], - cpu_smt_control == CPU_SMT_ENABLED ? "vulnerable" : "disabled"); + sched_smt_active() ? "vulnerable" : "disabled"); } #else static ssize_t l1tf_show_state(char *buf) @@ -854,11 +1095,41 @@ static ssize_t l1tf_show_state(char *buf) } #endif +static char *stibp_state(void) +{ + if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED) + return ""; + + switch (spectre_v2_user) { + case SPECTRE_V2_USER_NONE: + return ", STIBP: disabled"; + case SPECTRE_V2_USER_STRICT: + return ", STIBP: forced"; + case SPECTRE_V2_USER_STRICT_PREFERRED: + return ", STIBP: always-on"; + case SPECTRE_V2_USER_PRCTL: + case SPECTRE_V2_USER_SECCOMP: + if (static_key_enabled(&switch_to_cond_stibp)) + return ", STIBP: conditional"; + } + return ""; +} + +static char *ibpb_state(void) +{ + if (boot_cpu_has(X86_FEATURE_IBPB)) { + if (static_key_enabled(&switch_mm_always_ibpb)) + return ", IBPB: always-on"; + if (static_key_enabled(&switch_mm_cond_ibpb)) + return ", IBPB: conditional"; + return ", IBPB: disabled"; + } + return ""; +} + static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, char *buf, unsigned int bug) { - int ret; - if (!boot_cpu_has_bug(bug)) return sprintf(buf, "Not affected\n"); @@ -876,13 +1147,12 @@ static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr return sprintf(buf, "Mitigation: __user pointer sanitization\n"); case X86_BUG_SPECTRE_V2: - ret = sprintf(buf, "%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled], - boot_cpu_has(X86_FEATURE_USE_IBPB) ? ", IBPB" : "", + return sprintf(buf, "%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled], + ibpb_state(), boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "", - (x86_spec_ctrl_base & SPEC_CTRL_STIBP) ? ", STIBP" : "", + stibp_state(), boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "", spectre_v2_module_string()); - return ret; case X86_BUG_SPEC_STORE_BYPASS: return sprintf(buf, "%s\n", ssb_strings[ssb_mode]); diff --git a/arch/x86/kernel/cpu/cacheinfo.c b/arch/x86/kernel/cpu/cacheinfo.c index dc1b9342e9c4..c4d1023fb0ab 100644 --- a/arch/x86/kernel/cpu/cacheinfo.c +++ b/arch/x86/kernel/cpu/cacheinfo.c @@ -17,6 +17,7 @@ #include <linux/pci.h> #include <asm/cpufeature.h> +#include <asm/cacheinfo.h> #include <asm/amd_nb.h> #include <asm/smp.h> diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c index ffb181f959d2..cb28e98a0659 100644 --- a/arch/x86/kernel/cpu/common.c +++ b/arch/x86/kernel/cpu/common.c @@ -353,7 +353,7 @@ static __always_inline void setup_umip(struct cpuinfo_x86 *c) cr4_set_bits(X86_CR4_UMIP); - pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n"); + pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n"); return; diff --git a/arch/x86/kernel/cpu/cpu.h b/arch/x86/kernel/cpu/cpu.h index da5446acc241..5eb946b9a9f3 100644 --- a/arch/x86/kernel/cpu/cpu.h +++ b/arch/x86/kernel/cpu/cpu.h @@ -49,9 +49,6 @@ extern void get_cpu_cap(struct cpuinfo_x86 *c); extern void get_cpu_address_sizes(struct cpuinfo_x86 *c); extern void cpu_detect_cache_sizes(struct cpuinfo_x86 *c); extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); -extern u32 get_scattered_cpuid_leaf(unsigned int level, - unsigned int sub_leaf, - enum cpuid_regs_idx reg); extern void init_intel_cacheinfo(struct cpuinfo_x86 *c); extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); extern void init_hygon_cacheinfo(struct cpuinfo_x86 *c); diff --git a/arch/x86/kernel/cpu/mcheck/Makefile b/arch/x86/kernel/cpu/mce/Makefile index bcc7c54c7041..9f020c994154 100644 --- a/arch/x86/kernel/cpu/mcheck/Makefile +++ b/arch/x86/kernel/cpu/mce/Makefile @@ -1,14 +1,16 @@ # SPDX-License-Identifier: GPL-2.0 -obj-y = mce.o mce-severity.o mce-genpool.o +obj-y = core.o severity.o genpool.o obj-$(CONFIG_X86_ANCIENT_MCE) += winchip.o p5.o -obj-$(CONFIG_X86_MCE_INTEL) += mce_intel.o -obj-$(CONFIG_X86_MCE_AMD) += mce_amd.o +obj-$(CONFIG_X86_MCE_INTEL) += intel.o +obj-$(CONFIG_X86_MCE_AMD) += amd.o obj-$(CONFIG_X86_MCE_THRESHOLD) += threshold.o + +mce-inject-y := inject.o obj-$(CONFIG_X86_MCE_INJECT) += mce-inject.o obj-$(CONFIG_X86_THERMAL_VECTOR) += therm_throt.o -obj-$(CONFIG_ACPI_APEI) += mce-apei.o +obj-$(CONFIG_ACPI_APEI) += apei.o obj-$(CONFIG_X86_MCELOG_LEGACY) += dev-mcelog.o diff --git a/arch/x86/kernel/cpu/mcheck/mce_amd.c b/arch/x86/kernel/cpu/mce/amd.c index dd33c357548f..89298c83de53 100644 --- a/arch/x86/kernel/cpu/mcheck/mce_amd.c +++ b/arch/x86/kernel/cpu/mce/amd.c @@ -23,12 +23,13 @@ #include <linux/string.h> #include <asm/amd_nb.h> +#include <asm/traps.h> #include <asm/apic.h> #include <asm/mce.h> #include <asm/msr.h> #include <asm/trace/irq_vectors.h> -#include "mce-internal.h" +#include "internal.h" #define NR_BLOCKS 5 #define THRESHOLD_MAX 0xFFF @@ -56,7 +57,7 @@ /* Threshold LVT offset is at MSR0xC0000410[15:12] */ #define SMCA_THR_LVT_OFF 0xF000 -static bool thresholding_en; +static bool thresholding_irq_en; static const char * const th_names[] = { "load_store", @@ -99,7 +100,7 @@ static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init = [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 } }; -const char *smca_get_name(enum smca_bank_types t) +static const char *smca_get_name(enum smca_bank_types t) { if (t >= N_SMCA_BANK_TYPES) return NULL; @@ -534,9 +535,8 @@ prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr, set_offset: offset = setup_APIC_mce_threshold(offset, new); - - if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt)) - mce_threshold_vector = amd_threshold_interrupt; + if (offset == new) + thresholding_irq_en = true; done: mce_threshold_block_init(&b, offset); @@ -825,7 +825,7 @@ static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc) mce_log(&m); } -asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(void) +asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs) { entering_irq(); trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR); @@ -1357,9 +1357,6 @@ int mce_threshold_remove_device(unsigned int cpu) { unsigned int bank; - if (!thresholding_en) - return 0; - for (bank = 0; bank < mca_cfg.banks; ++bank) { if (!(per_cpu(bank_map, cpu) & (1 << bank))) continue; @@ -1377,9 +1374,6 @@ int mce_threshold_create_device(unsigned int cpu) struct threshold_bank **bp; int err = 0; - if (!thresholding_en) - return 0; - bp = per_cpu(threshold_banks, cpu); if (bp) return 0; @@ -1408,9 +1402,6 @@ static __init int threshold_init_device(void) { unsigned lcpu = 0; - if (mce_threshold_vector == amd_threshold_interrupt) - thresholding_en = true; - /* to hit CPUs online before the notifier is up */ for_each_online_cpu(lcpu) { int err = mce_threshold_create_device(lcpu); @@ -1419,6 +1410,9 @@ static __init int threshold_init_device(void) return err; } + if (thresholding_irq_en) + mce_threshold_vector = amd_threshold_interrupt; + return 0; } /* diff --git a/arch/x86/kernel/cpu/mcheck/mce-apei.c b/arch/x86/kernel/cpu/mce/apei.c index 2eee85379689..1d9b3ce662a0 100644 --- a/arch/x86/kernel/cpu/mcheck/mce-apei.c +++ b/arch/x86/kernel/cpu/mce/apei.c @@ -36,7 +36,7 @@ #include <acpi/ghes.h> #include <asm/mce.h> -#include "mce-internal.h" +#include "internal.h" void apei_mce_report_mem_error(int severity, struct cper_sec_mem_err *mem_err) { diff --git a/arch/x86/kernel/cpu/mcheck/mce.c b/arch/x86/kernel/cpu/mce/core.c index 8c66d2fc8f81..672c7225cb1b 100644 --- a/arch/x86/kernel/cpu/mcheck/mce.c +++ b/arch/x86/kernel/cpu/mce/core.c @@ -8,8 +8,6 @@ * Author: Andi Kleen */ -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - #include <linux/thread_info.h> #include <linux/capability.h> #include <linux/miscdevice.h> @@ -52,7 +50,7 @@ #include <asm/msr.h> #include <asm/reboot.h> -#include "mce-internal.h" +#include "internal.h" static DEFINE_MUTEX(mce_log_mutex); @@ -485,7 +483,7 @@ static void mce_report_event(struct pt_regs *regs) * be somewhat complicated (e.g. segment offset would require an instruction * parser). So only support physical addresses up to page granuality for now. */ -static int mce_usable_address(struct mce *m) +int mce_usable_address(struct mce *m) { if (!(m->status & MCI_STATUS_ADDRV)) return 0; @@ -505,6 +503,7 @@ static int mce_usable_address(struct mce *m) return 1; } +EXPORT_SYMBOL_GPL(mce_usable_address); bool mce_is_memory_error(struct mce *m) { @@ -534,7 +533,7 @@ bool mce_is_memory_error(struct mce *m) } EXPORT_SYMBOL_GPL(mce_is_memory_error); -static bool mce_is_correctable(struct mce *m) +bool mce_is_correctable(struct mce *m) { if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) return false; @@ -547,6 +546,7 @@ static bool mce_is_correctable(struct mce *m) return true; } +EXPORT_SYMBOL_GPL(mce_is_correctable); static bool cec_add_mce(struct mce *m) { @@ -684,7 +684,7 @@ DEFINE_PER_CPU(unsigned, mce_poll_count); * errors here. However this would be quite problematic -- * we would need to reimplement the Monarch handling and * it would mess up the exclusion between exception handler - * and poll hander -- * so we skip this for now. + * and poll handler -- * so we skip this for now. * These cases should not happen anyways, or only when the CPU * is already totally * confused. In this case it's likely it will * not fully execute the machine check handler either. diff --git a/arch/x86/kernel/cpu/mcheck/dev-mcelog.c b/arch/x86/kernel/cpu/mce/dev-mcelog.c index 27f394ac983f..9690ec5c8051 100644 --- a/arch/x86/kernel/cpu/mcheck/dev-mcelog.c +++ b/arch/x86/kernel/cpu/mce/dev-mcelog.c @@ -8,14 +8,12 @@ * Author: Andi Kleen */ -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - #include <linux/miscdevice.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/poll.h> -#include "mce-internal.h" +#include "internal.h" static BLOCKING_NOTIFIER_HEAD(mce_injector_chain); diff --git a/arch/x86/kernel/cpu/mcheck/mce-genpool.c b/arch/x86/kernel/cpu/mce/genpool.c index 217cd4449bc9..3395549c51d3 100644 --- a/arch/x86/kernel/cpu/mcheck/mce-genpool.c +++ b/arch/x86/kernel/cpu/mce/genpool.c @@ -10,7 +10,7 @@ #include <linux/mm.h> #include <linux/genalloc.h> #include <linux/llist.h> -#include "mce-internal.h" +#include "internal.h" /* * printk() is not safe in MCE context. This is a lock-less memory allocator diff --git a/arch/x86/kernel/cpu/mcheck/mce-inject.c b/arch/x86/kernel/cpu/mce/inject.c index 1fc424c40a31..8492ef7d9015 100644 --- a/arch/x86/kernel/cpu/mcheck/mce-inject.c +++ b/arch/x86/kernel/cpu/mce/inject.c @@ -38,7 +38,7 @@ #include <asm/nmi.h> #include <asm/smp.h> -#include "mce-internal.h" +#include "internal.h" /* * Collect all the MCi_XXX settings diff --git a/arch/x86/kernel/cpu/mcheck/mce_intel.c b/arch/x86/kernel/cpu/mce/intel.c index d05be307d081..e43eb6732630 100644 --- a/arch/x86/kernel/cpu/mcheck/mce_intel.c +++ b/arch/x86/kernel/cpu/mce/intel.c @@ -18,7 +18,7 @@ #include <asm/msr.h> #include <asm/mce.h> -#include "mce-internal.h" +#include "internal.h" /* * Support for Intel Correct Machine Check Interrupts. This allows diff --git a/arch/x86/kernel/cpu/mcheck/mce-internal.h b/arch/x86/kernel/cpu/mce/internal.h index ceb67cd5918f..af5eab1e65e2 100644 --- a/arch/x86/kernel/cpu/mcheck/mce-internal.h +++ b/arch/x86/kernel/cpu/mce/internal.h @@ -2,6 +2,9 @@ #ifndef __X86_MCE_INTERNAL_H__ #define __X86_MCE_INTERNAL_H__ +#undef pr_fmt +#define pr_fmt(fmt) "mce: " fmt + #include <linux/device.h> #include <asm/mce.h> diff --git a/arch/x86/kernel/cpu/mcheck/p5.c b/arch/x86/kernel/cpu/mce/p5.c index 5cddf831720f..4ae6df556526 100644 --- a/arch/x86/kernel/cpu/mcheck/p5.c +++ b/arch/x86/kernel/cpu/mce/p5.c @@ -14,6 +14,8 @@ #include <asm/mce.h> #include <asm/msr.h> +#include "internal.h" + /* By default disabled */ int mce_p5_enabled __read_mostly; diff --git a/arch/x86/kernel/cpu/mcheck/mce-severity.c b/arch/x86/kernel/cpu/mce/severity.c index 44396d521987..dc3e26e905a3 100644 --- a/arch/x86/kernel/cpu/mcheck/mce-severity.c +++ b/arch/x86/kernel/cpu/mce/severity.c @@ -16,7 +16,7 @@ #include <asm/mce.h> #include <linux/uaccess.h> -#include "mce-internal.h" +#include "internal.h" /* * Grade an mce by severity. In general the most severe ones are processed diff --git a/arch/x86/kernel/cpu/mcheck/therm_throt.c b/arch/x86/kernel/cpu/mce/therm_throt.c index 2da67b70ba98..10a3b0599300 100644 --- a/arch/x86/kernel/cpu/mcheck/therm_throt.c +++ b/arch/x86/kernel/cpu/mce/therm_throt.c @@ -25,11 +25,14 @@ #include <linux/cpu.h> #include <asm/processor.h> +#include <asm/traps.h> #include <asm/apic.h> #include <asm/mce.h> #include <asm/msr.h> #include <asm/trace/irq_vectors.h> +#include "internal.h" + /* How long to wait between reporting thermal events */ #define CHECK_INTERVAL (300 * HZ) @@ -390,7 +393,7 @@ static void unexpected_thermal_interrupt(void) static void (*smp_thermal_vector)(void) = unexpected_thermal_interrupt; -asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *r) +asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *regs) { entering_irq(); trace_thermal_apic_entry(THERMAL_APIC_VECTOR); diff --git a/arch/x86/kernel/cpu/mcheck/threshold.c b/arch/x86/kernel/cpu/mce/threshold.c index 2b584b319eff..28812cc15300 100644 --- a/arch/x86/kernel/cpu/mcheck/threshold.c +++ b/arch/x86/kernel/cpu/mce/threshold.c @@ -6,10 +6,13 @@ #include <linux/kernel.h> #include <asm/irq_vectors.h> +#include <asm/traps.h> #include <asm/apic.h> #include <asm/mce.h> #include <asm/trace/irq_vectors.h> +#include "internal.h" + static void default_threshold_interrupt(void) { pr_err("Unexpected threshold interrupt at vector %x\n", @@ -18,7 +21,7 @@ static void default_threshold_interrupt(void) void (*mce_threshold_vector)(void) = default_threshold_interrupt; -asmlinkage __visible void __irq_entry smp_threshold_interrupt(void) +asmlinkage __visible void __irq_entry smp_threshold_interrupt(struct pt_regs *regs) { entering_irq(); trace_threshold_apic_entry(THRESHOLD_APIC_VECTOR); diff --git a/arch/x86/kernel/cpu/mcheck/winchip.c b/arch/x86/kernel/cpu/mce/winchip.c index 3b45b270a865..a30ea13cccc2 100644 --- a/arch/x86/kernel/cpu/mcheck/winchip.c +++ b/arch/x86/kernel/cpu/mce/winchip.c @@ -13,6 +13,8 @@ #include <asm/mce.h> #include <asm/msr.h> +#include "internal.h" + /* Machine check handler for WinChip C6: */ static void winchip_machine_check(struct pt_regs *regs, long error_code) { diff --git a/arch/x86/kernel/cpu/microcode/amd.c b/arch/x86/kernel/cpu/microcode/amd.c index 07b5fc00b188..51adde0a0f1a 100644 --- a/arch/x86/kernel/cpu/microcode/amd.c +++ b/arch/x86/kernel/cpu/microcode/amd.c @@ -5,7 +5,7 @@ * CPUs and later. * * Copyright (C) 2008-2011 Advanced Micro Devices Inc. - * 2013-2016 Borislav Petkov <bp@alien8.de> + * 2013-2018 Borislav Petkov <bp@alien8.de> * * Author: Peter Oruba <peter.oruba@amd.com> * @@ -38,7 +38,10 @@ #include <asm/cpu.h> #include <asm/msr.h> -static struct equiv_cpu_entry *equiv_cpu_table; +static struct equiv_cpu_table { + unsigned int num_entries; + struct equiv_cpu_entry *entry; +} equiv_table; /* * This points to the current valid container of microcode patches which we will @@ -63,13 +66,225 @@ static u8 amd_ucode_patch[PATCH_MAX_SIZE]; static const char ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; -static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig) +static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) { - for (; equiv_table && equiv_table->installed_cpu; equiv_table++) { - if (sig == equiv_table->installed_cpu) - return equiv_table->equiv_cpu; + unsigned int i; + + if (!et || !et->num_entries) + return 0; + + for (i = 0; i < et->num_entries; i++) { + struct equiv_cpu_entry *e = &et->entry[i]; + + if (sig == e->installed_cpu) + return e->equiv_cpu; + + e++; + } + return 0; +} + +/* + * Check whether there is a valid microcode container file at the beginning + * of @buf of size @buf_size. Set @early to use this function in the early path. + */ +static bool verify_container(const u8 *buf, size_t buf_size, bool early) +{ + u32 cont_magic; + + if (buf_size <= CONTAINER_HDR_SZ) { + if (!early) + pr_debug("Truncated microcode container header.\n"); + + return false; + } + + cont_magic = *(const u32 *)buf; + if (cont_magic != UCODE_MAGIC) { + if (!early) + pr_debug("Invalid magic value (0x%08x).\n", cont_magic); + + return false; + } + + return true; +} + +/* + * Check whether there is a valid, non-truncated CPU equivalence table at the + * beginning of @buf of size @buf_size. Set @early to use this function in the + * early path. + */ +static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early) +{ + const u32 *hdr = (const u32 *)buf; + u32 cont_type, equiv_tbl_len; + + if (!verify_container(buf, buf_size, early)) + return false; + + cont_type = hdr[1]; + if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { + if (!early) + pr_debug("Wrong microcode container equivalence table type: %u.\n", + cont_type); + + return false; + } + + buf_size -= CONTAINER_HDR_SZ; + + equiv_tbl_len = hdr[2]; + if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || + buf_size < equiv_tbl_len) { + if (!early) + pr_debug("Truncated equivalence table.\n"); + + return false; + } + + return true; +} + +/* + * Check whether there is a valid, non-truncated microcode patch section at the + * beginning of @buf of size @buf_size. Set @early to use this function in the + * early path. + * + * On success, @sh_psize returns the patch size according to the section header, + * to the caller. + */ +static bool +__verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early) +{ + u32 p_type, p_size; + const u32 *hdr; + + if (buf_size < SECTION_HDR_SIZE) { + if (!early) + pr_debug("Truncated patch section.\n"); + + return false; + } + + hdr = (const u32 *)buf; + p_type = hdr[0]; + p_size = hdr[1]; + + if (p_type != UCODE_UCODE_TYPE) { + if (!early) + pr_debug("Invalid type field (0x%x) in container file section header.\n", + p_type); + + return false; + } + + if (p_size < sizeof(struct microcode_header_amd)) { + if (!early) + pr_debug("Patch of size %u too short.\n", p_size); + + return false; + } + + *sh_psize = p_size; + + return true; +} + +/* + * Check whether the passed remaining file @buf_size is large enough to contain + * a patch of the indicated @sh_psize (and also whether this size does not + * exceed the per-family maximum). @sh_psize is the size read from the section + * header. + */ +static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size) +{ + u32 max_size; + + if (family >= 0x15) + return min_t(u32, sh_psize, buf_size); + +#define F1XH_MPB_MAX_SIZE 2048 +#define F14H_MPB_MAX_SIZE 1824 + + switch (family) { + case 0x10 ... 0x12: + max_size = F1XH_MPB_MAX_SIZE; + break; + case 0x14: + max_size = F14H_MPB_MAX_SIZE; + break; + default: + WARN(1, "%s: WTF family: 0x%x\n", __func__, family); + return 0; + break; + } + + if (sh_psize > min_t(u32, buf_size, max_size)) + return 0; + + return sh_psize; +} + +/* + * Verify the patch in @buf. + * + * Returns: + * negative: on error + * positive: patch is not for this family, skip it + * 0: success + */ +static int +verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early) +{ + struct microcode_header_amd *mc_hdr; + unsigned int ret; + u32 sh_psize; + u16 proc_id; + u8 patch_fam; + + if (!__verify_patch_section(buf, buf_size, &sh_psize, early)) + return -1; + + /* + * The section header length is not included in this indicated size + * but is present in the leftover file length so we need to subtract + * it before passing this value to the function below. + */ + buf_size -= SECTION_HDR_SIZE; + + /* + * Check if the remaining buffer is big enough to contain a patch of + * size sh_psize, as the section claims. + */ + if (buf_size < sh_psize) { + if (!early) + pr_debug("Patch of size %u truncated.\n", sh_psize); + + return -1; + } + + ret = __verify_patch_size(family, sh_psize, buf_size); + if (!ret) { + if (!early) + pr_debug("Per-family patch size mismatch.\n"); + return -1; + } + + *patch_size = sh_psize; + + mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); + if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { + if (!early) + pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); + return -1; } + proc_id = mc_hdr->processor_rev_id; + patch_fam = 0xf + (proc_id >> 12); + if (patch_fam != family) + return 1; + return 0; } @@ -80,26 +295,28 @@ static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig) * Returns the amount of bytes consumed while scanning. @desc contains all the * data we're going to use in later stages of the application. */ -static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc) +static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) { - struct equiv_cpu_entry *eq; - ssize_t orig_size = size; + struct equiv_cpu_table table; + size_t orig_size = size; u32 *hdr = (u32 *)ucode; u16 eq_id; u8 *buf; - /* Am I looking at an equivalence table header? */ - if (hdr[0] != UCODE_MAGIC || - hdr[1] != UCODE_EQUIV_CPU_TABLE_TYPE || - hdr[2] == 0) - return CONTAINER_HDR_SZ; + if (!verify_equivalence_table(ucode, size, true)) + return 0; buf = ucode; - eq = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); + table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); + table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); - /* Find the equivalence ID of our CPU in this table: */ - eq_id = find_equiv_id(eq, desc->cpuid_1_eax); + /* + * Find the equivalence ID of our CPU in this table. Even if this table + * doesn't contain a patch for the CPU, scan through the whole container + * so that it can be skipped in case there are other containers appended. + */ + eq_id = find_equiv_id(&table, desc->cpuid_1_eax); buf += hdr[2] + CONTAINER_HDR_SZ; size -= hdr[2] + CONTAINER_HDR_SZ; @@ -111,29 +328,29 @@ static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc) while (size > 0) { struct microcode_amd *mc; u32 patch_size; + int ret; + + ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true); + if (ret < 0) { + /* + * Patch verification failed, skip to the next + * container, if there's one: + */ + goto out; + } else if (ret > 0) { + goto skip; + } - hdr = (u32 *)buf; - - if (hdr[0] != UCODE_UCODE_TYPE) - break; - - /* Sanity-check patch size. */ - patch_size = hdr[1]; - if (patch_size > PATCH_MAX_SIZE) - break; - - /* Skip patch section header: */ - buf += SECTION_HDR_SIZE; - size -= SECTION_HDR_SIZE; - - mc = (struct microcode_amd *)buf; + mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); if (eq_id == mc->hdr.processor_rev_id) { desc->psize = patch_size; desc->mc = mc; } - buf += patch_size; - size -= patch_size; +skip: + /* Skip patch section header too: */ + buf += patch_size + SECTION_HDR_SIZE; + size -= patch_size + SECTION_HDR_SIZE; } /* @@ -150,6 +367,7 @@ static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc) return 0; } +out: return orig_size - size; } @@ -159,15 +377,18 @@ static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc) */ static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) { - ssize_t rem = size; - - while (rem >= 0) { - ssize_t s = parse_container(ucode, rem, desc); + while (size) { + size_t s = parse_container(ucode, size, desc); if (!s) return; - ucode += s; - rem -= s; + /* catch wraparound */ + if (size >= s) { + ucode += s; + size -= s; + } else { + return; + } } } @@ -364,21 +585,7 @@ void reload_ucode_amd(void) static u16 __find_equiv_id(unsigned int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; - return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig); -} - -static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu) -{ - int i = 0; - - BUG_ON(!equiv_cpu_table); - - while (equiv_cpu_table[i].equiv_cpu != 0) { - if (equiv_cpu == equiv_cpu_table[i].equiv_cpu) - return equiv_cpu_table[i].installed_cpu; - i++; - } - return 0; + return find_equiv_id(&equiv_table, uci->cpu_sig.sig); } /* @@ -461,43 +668,6 @@ static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) return 0; } -static unsigned int verify_patch_size(u8 family, u32 patch_size, - unsigned int size) -{ - u32 max_size; - -#define F1XH_MPB_MAX_SIZE 2048 -#define F14H_MPB_MAX_SIZE 1824 -#define F15H_MPB_MAX_SIZE 4096 -#define F16H_MPB_MAX_SIZE 3458 -#define F17H_MPB_MAX_SIZE 3200 - - switch (family) { - case 0x14: - max_size = F14H_MPB_MAX_SIZE; - break; - case 0x15: - max_size = F15H_MPB_MAX_SIZE; - break; - case 0x16: - max_size = F16H_MPB_MAX_SIZE; - break; - case 0x17: - max_size = F17H_MPB_MAX_SIZE; - break; - default: - max_size = F1XH_MPB_MAX_SIZE; - break; - } - - if (patch_size > min_t(u32, size, max_size)) { - pr_err("patch size mismatch\n"); - return 0; - } - - return patch_size; -} - static enum ucode_state apply_microcode_amd(int cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); @@ -548,34 +718,34 @@ out: return ret; } -static int install_equiv_cpu_table(const u8 *buf) +static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) { - unsigned int *ibuf = (unsigned int *)buf; - unsigned int type = ibuf[1]; - unsigned int size = ibuf[2]; + u32 equiv_tbl_len; + const u32 *hdr; - if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) { - pr_err("empty section/" - "invalid type field in container file section header\n"); - return -EINVAL; - } + if (!verify_equivalence_table(buf, buf_size, false)) + return 0; + + hdr = (const u32 *)buf; + equiv_tbl_len = hdr[2]; - equiv_cpu_table = vmalloc(size); - if (!equiv_cpu_table) { + equiv_table.entry = vmalloc(equiv_tbl_len); + if (!equiv_table.entry) { pr_err("failed to allocate equivalent CPU table\n"); - return -ENOMEM; + return 0; } - memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size); + memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); + equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); /* add header length */ - return size + CONTAINER_HDR_SZ; + return equiv_tbl_len + CONTAINER_HDR_SZ; } static void free_equiv_cpu_table(void) { - vfree(equiv_cpu_table); - equiv_cpu_table = NULL; + vfree(equiv_table.entry); + memset(&equiv_table, 0, sizeof(equiv_table)); } static void cleanup(void) @@ -585,47 +755,23 @@ static void cleanup(void) } /* - * We return the current size even if some of the checks failed so that + * Return a non-negative value even if some of the checks failed so that * we can skip over the next patch. If we return a negative value, we * signal a grave error like a memory allocation has failed and the * driver cannot continue functioning normally. In such cases, we tear * down everything we've used up so far and exit. */ -static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover) +static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, + unsigned int *patch_size) { struct microcode_header_amd *mc_hdr; struct ucode_patch *patch; - unsigned int patch_size, crnt_size, ret; - u32 proc_fam; u16 proc_id; + int ret; - patch_size = *(u32 *)(fw + 4); - crnt_size = patch_size + SECTION_HDR_SIZE; - mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); - proc_id = mc_hdr->processor_rev_id; - - proc_fam = find_cpu_family_by_equiv_cpu(proc_id); - if (!proc_fam) { - pr_err("No patch family for equiv ID: 0x%04x\n", proc_id); - return crnt_size; - } - - /* check if patch is for the current family */ - proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff); - if (proc_fam != family) - return crnt_size; - - if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { - pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", - mc_hdr->patch_id); - return crnt_size; - } - - ret = verify_patch_size(family, patch_size, leftover); - if (!ret) { - pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id); - return crnt_size; - } + ret = verify_patch(family, fw, leftover, patch_size, false); + if (ret) + return ret; patch = kzalloc(sizeof(*patch), GFP_KERNEL); if (!patch) { @@ -633,13 +779,16 @@ static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover) return -EINVAL; } - patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL); + patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); if (!patch->data) { pr_err("Patch data allocation failure.\n"); kfree(patch); return -EINVAL; } + mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); + proc_id = mc_hdr->processor_rev_id; + INIT_LIST_HEAD(&patch->plist); patch->patch_id = mc_hdr->patch_id; patch->equiv_cpu = proc_id; @@ -650,39 +799,38 @@ static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover) /* ... and add to cache. */ update_cache(patch); - return crnt_size; + return 0; } static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) { - enum ucode_state ret = UCODE_ERROR; - unsigned int leftover; u8 *fw = (u8 *)data; - int crnt_size = 0; - int offset; + size_t offset; - offset = install_equiv_cpu_table(data); - if (offset < 0) { - pr_err("failed to create equivalent cpu table\n"); - return ret; - } - fw += offset; - leftover = size - offset; + offset = install_equiv_cpu_table(data, size); + if (!offset) + return UCODE_ERROR; + + fw += offset; + size -= offset; if (*(u32 *)fw != UCODE_UCODE_TYPE) { pr_err("invalid type field in container file section header\n"); free_equiv_cpu_table(); - return ret; + return UCODE_ERROR; } - while (leftover) { - crnt_size = verify_and_add_patch(family, fw, leftover); - if (crnt_size < 0) - return ret; + while (size > 0) { + unsigned int crnt_size = 0; + int ret; - fw += crnt_size; - leftover -= crnt_size; + ret = verify_and_add_patch(family, fw, size, &crnt_size); + if (ret < 0) + return UCODE_ERROR; + + fw += crnt_size + SECTION_HDR_SIZE; + size -= (crnt_size + SECTION_HDR_SIZE); } return UCODE_OK; @@ -761,10 +909,8 @@ static enum ucode_state request_microcode_amd(int cpu, struct device *device, } ret = UCODE_ERROR; - if (*(u32 *)fw->data != UCODE_MAGIC) { - pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data); + if (!verify_container(fw->data, fw->size, false)) goto fw_release; - } ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size); diff --git a/arch/x86/kernel/cpu/mshyperv.c b/arch/x86/kernel/cpu/mshyperv.c index 1c72f3819eb1..e81a2db42df7 100644 --- a/arch/x86/kernel/cpu/mshyperv.c +++ b/arch/x86/kernel/cpu/mshyperv.c @@ -20,6 +20,7 @@ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kexec.h> +#include <linux/i8253.h> #include <asm/processor.h> #include <asm/hypervisor.h> #include <asm/hyperv-tlfs.h> @@ -295,6 +296,16 @@ static void __init ms_hyperv_init_platform(void) if (efi_enabled(EFI_BOOT)) x86_platform.get_nmi_reason = hv_get_nmi_reason; + /* + * Hyper-V VMs have a PIT emulation quirk such that zeroing the + * counter register during PIT shutdown restarts the PIT. So it + * continues to interrupt @18.2 HZ. Setting i8253_clear_counter + * to false tells pit_shutdown() not to zero the counter so that + * the PIT really is shutdown. Generation 2 VMs don't have a PIT, + * and setting this value has no effect. + */ + i8253_clear_counter_on_shutdown = false; + #if IS_ENABLED(CONFIG_HYPERV) /* * Setup the hook to get control post apic initialization. diff --git a/arch/x86/kernel/cpu/mtrr/if.c b/arch/x86/kernel/cpu/mtrr/if.c index 2e173d47b450..4d36dcc1cf87 100644 --- a/arch/x86/kernel/cpu/mtrr/if.c +++ b/arch/x86/kernel/cpu/mtrr/if.c @@ -165,6 +165,8 @@ mtrr_ioctl(struct file *file, unsigned int cmd, unsigned long __arg) struct mtrr_gentry gentry; void __user *arg = (void __user *) __arg; + memset(&gentry, 0, sizeof(gentry)); + switch (cmd) { case MTRRIOC_ADD_ENTRY: case MTRRIOC_SET_ENTRY: diff --git a/arch/x86/kernel/cpu/resctrl/Makefile b/arch/x86/kernel/cpu/resctrl/Makefile new file mode 100644 index 000000000000..6895049ceef7 --- /dev/null +++ b/arch/x86/kernel/cpu/resctrl/Makefile @@ -0,0 +1,4 @@ +# SPDX-License-Identifier: GPL-2.0 +obj-$(CONFIG_RESCTRL) += core.o rdtgroup.o monitor.o +obj-$(CONFIG_RESCTRL) += ctrlmondata.o pseudo_lock.o +CFLAGS_pseudo_lock.o = -I$(src) diff --git a/arch/x86/kernel/cpu/intel_rdt.c b/arch/x86/kernel/cpu/resctrl/core.c index 44272b7107ad..c3a9dc63edf2 100644 --- a/arch/x86/kernel/cpu/intel_rdt.c +++ b/arch/x86/kernel/cpu/resctrl/core.c @@ -22,7 +22,7 @@ * Software Developer Manual June 2016, volume 3, section 17.17. */ -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#define pr_fmt(fmt) "resctrl: " fmt #include <linux/slab.h> #include <linux/err.h> @@ -30,22 +30,19 @@ #include <linux/cpuhotplug.h> #include <asm/intel-family.h> -#include <asm/intel_rdt_sched.h> -#include "intel_rdt.h" - -#define MBA_IS_LINEAR 0x4 -#define MBA_MAX_MBPS U32_MAX +#include <asm/resctrl_sched.h> +#include "internal.h" /* Mutex to protect rdtgroup access. */ DEFINE_MUTEX(rdtgroup_mutex); /* - * The cached intel_pqr_state is strictly per CPU and can never be + * The cached resctrl_pqr_state is strictly per CPU and can never be * updated from a remote CPU. Functions which modify the state * are called with interrupts disabled and no preemption, which * is sufficient for the protection. */ -DEFINE_PER_CPU(struct intel_pqr_state, pqr_state); +DEFINE_PER_CPU(struct resctrl_pqr_state, pqr_state); /* * Used to store the max resource name width and max resource data width @@ -60,9 +57,13 @@ int max_name_width, max_data_width; bool rdt_alloc_capable; static void -mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r); +mba_wrmsr_intel(struct rdt_domain *d, struct msr_param *m, + struct rdt_resource *r); static void cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r); +static void +mba_wrmsr_amd(struct rdt_domain *d, struct msr_param *m, + struct rdt_resource *r); #define domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].domains) @@ -72,7 +73,7 @@ struct rdt_resource rdt_resources_all[] = { .rid = RDT_RESOURCE_L3, .name = "L3", .domains = domain_init(RDT_RESOURCE_L3), - .msr_base = IA32_L3_CBM_BASE, + .msr_base = MSR_IA32_L3_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 3, .cache = { @@ -89,7 +90,7 @@ struct rdt_resource rdt_resources_all[] = { .rid = RDT_RESOURCE_L3DATA, .name = "L3DATA", .domains = domain_init(RDT_RESOURCE_L3DATA), - .msr_base = IA32_L3_CBM_BASE, + .msr_base = MSR_IA32_L3_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 3, .cache = { @@ -106,7 +107,7 @@ struct rdt_resource rdt_resources_all[] = { .rid = RDT_RESOURCE_L3CODE, .name = "L3CODE", .domains = domain_init(RDT_RESOURCE_L3CODE), - .msr_base = IA32_L3_CBM_BASE, + .msr_base = MSR_IA32_L3_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 3, .cache = { @@ -123,7 +124,7 @@ struct rdt_resource rdt_resources_all[] = { .rid = RDT_RESOURCE_L2, .name = "L2", .domains = domain_init(RDT_RESOURCE_L2), - .msr_base = IA32_L2_CBM_BASE, + .msr_base = MSR_IA32_L2_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 2, .cache = { @@ -140,7 +141,7 @@ struct rdt_resource rdt_resources_all[] = { .rid = RDT_RESOURCE_L2DATA, .name = "L2DATA", .domains = domain_init(RDT_RESOURCE_L2DATA), - .msr_base = IA32_L2_CBM_BASE, + .msr_base = MSR_IA32_L2_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 2, .cache = { @@ -157,7 +158,7 @@ struct rdt_resource rdt_resources_all[] = { .rid = RDT_RESOURCE_L2CODE, .name = "L2CODE", .domains = domain_init(RDT_RESOURCE_L2CODE), - .msr_base = IA32_L2_CBM_BASE, + .msr_base = MSR_IA32_L2_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 2, .cache = { @@ -174,10 +175,7 @@ struct rdt_resource rdt_resources_all[] = { .rid = RDT_RESOURCE_MBA, .name = "MB", .domains = domain_init(RDT_RESOURCE_MBA), - .msr_base = IA32_MBA_THRTL_BASE, - .msr_update = mba_wrmsr, .cache_level = 3, - .parse_ctrlval = parse_bw, .format_str = "%d=%*u", .fflags = RFTYPE_RES_MB, }, @@ -211,9 +209,10 @@ static inline void cache_alloc_hsw_probe(void) struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3]; u32 l, h, max_cbm = BIT_MASK(20) - 1; - if (wrmsr_safe(IA32_L3_CBM_BASE, max_cbm, 0)) + if (wrmsr_safe(MSR_IA32_L3_CBM_BASE, max_cbm, 0)) return; - rdmsr(IA32_L3_CBM_BASE, l, h); + + rdmsr(MSR_IA32_L3_CBM_BASE, l, h); /* If all the bits were set in MSR, return success */ if (l != max_cbm) @@ -259,7 +258,7 @@ static inline bool rdt_get_mb_table(struct rdt_resource *r) return false; } -static bool rdt_get_mem_config(struct rdt_resource *r) +static bool __get_mem_config_intel(struct rdt_resource *r) { union cpuid_0x10_3_eax eax; union cpuid_0x10_x_edx edx; @@ -285,6 +284,30 @@ static bool rdt_get_mem_config(struct rdt_resource *r) return true; } +static bool __rdt_get_mem_config_amd(struct rdt_resource *r) +{ + union cpuid_0x10_3_eax eax; + union cpuid_0x10_x_edx edx; + u32 ebx, ecx; + + cpuid_count(0x80000020, 1, &eax.full, &ebx, &ecx, &edx.full); + r->num_closid = edx.split.cos_max + 1; + r->default_ctrl = MAX_MBA_BW_AMD; + + /* AMD does not use delay */ + r->membw.delay_linear = false; + + r->membw.min_bw = 0; + r->membw.bw_gran = 1; + /* Max value is 2048, Data width should be 4 in decimal */ + r->data_width = 4; + + r->alloc_capable = true; + r->alloc_enabled = true; + + return true; +} + static void rdt_get_cache_alloc_cfg(int idx, struct rdt_resource *r) { union cpuid_0x10_1_eax eax; @@ -344,6 +367,15 @@ static int get_cache_id(int cpu, int level) return -1; } +static void +mba_wrmsr_amd(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r) +{ + unsigned int i; + + for (i = m->low; i < m->high; i++) + wrmsrl(r->msr_base + i, d->ctrl_val[i]); +} + /* * Map the memory b/w percentage value to delay values * that can be written to QOS_MSRs. @@ -359,7 +391,8 @@ u32 delay_bw_map(unsigned long bw, struct rdt_resource *r) } static void -mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r) +mba_wrmsr_intel(struct rdt_domain *d, struct msr_param *m, + struct rdt_resource *r) { unsigned int i; @@ -421,7 +454,7 @@ struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id, struct list_head *l; if (id < 0) - return ERR_PTR(id); + return ERR_PTR(-ENODEV); list_for_each(l, &r->domains) { d = list_entry(l, struct rdt_domain, list); @@ -639,7 +672,7 @@ static void domain_remove_cpu(int cpu, struct rdt_resource *r) static void clear_closid_rmid(int cpu) { - struct intel_pqr_state *state = this_cpu_ptr(&pqr_state); + struct resctrl_pqr_state *state = this_cpu_ptr(&pqr_state); state->default_closid = 0; state->default_rmid = 0; @@ -648,7 +681,7 @@ static void clear_closid_rmid(int cpu) wrmsr(IA32_PQR_ASSOC, 0, 0); } -static int intel_rdt_online_cpu(unsigned int cpu) +static int resctrl_online_cpu(unsigned int cpu) { struct rdt_resource *r; @@ -674,7 +707,7 @@ static void clear_childcpus(struct rdtgroup *r, unsigned int cpu) } } -static int intel_rdt_offline_cpu(unsigned int cpu) +static int resctrl_offline_cpu(unsigned int cpu) { struct rdtgroup *rdtgrp; struct rdt_resource *r; @@ -794,6 +827,19 @@ static bool __init rdt_cpu_has(int flag) return ret; } +static __init bool get_mem_config(void) +{ + if (!rdt_cpu_has(X86_FEATURE_MBA)) + return false; + + if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) + return __get_mem_config_intel(&rdt_resources_all[RDT_RESOURCE_MBA]); + else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) + return __rdt_get_mem_config_amd(&rdt_resources_all[RDT_RESOURCE_MBA]); + + return false; +} + static __init bool get_rdt_alloc_resources(void) { bool ret = false; @@ -818,10 +864,9 @@ static __init bool get_rdt_alloc_resources(void) ret = true; } - if (rdt_cpu_has(X86_FEATURE_MBA)) { - if (rdt_get_mem_config(&rdt_resources_all[RDT_RESOURCE_MBA])) - ret = true; - } + if (get_mem_config()) + ret = true; + return ret; } @@ -840,7 +885,7 @@ static __init bool get_rdt_mon_resources(void) return !rdt_get_mon_l3_config(&rdt_resources_all[RDT_RESOURCE_L3]); } -static __init void rdt_quirks(void) +static __init void __check_quirks_intel(void) { switch (boot_cpu_data.x86_model) { case INTEL_FAM6_HASWELL_X: @@ -855,30 +900,91 @@ static __init void rdt_quirks(void) } } +static __init void check_quirks(void) +{ + if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) + __check_quirks_intel(); +} + static __init bool get_rdt_resources(void) { - rdt_quirks(); rdt_alloc_capable = get_rdt_alloc_resources(); rdt_mon_capable = get_rdt_mon_resources(); return (rdt_mon_capable || rdt_alloc_capable); } +static __init void rdt_init_res_defs_intel(void) +{ + struct rdt_resource *r; + + for_each_rdt_resource(r) { + if (r->rid == RDT_RESOURCE_L3 || + r->rid == RDT_RESOURCE_L3DATA || + r->rid == RDT_RESOURCE_L3CODE || + r->rid == RDT_RESOURCE_L2 || + r->rid == RDT_RESOURCE_L2DATA || + r->rid == RDT_RESOURCE_L2CODE) + r->cbm_validate = cbm_validate_intel; + else if (r->rid == RDT_RESOURCE_MBA) { + r->msr_base = MSR_IA32_MBA_THRTL_BASE; + r->msr_update = mba_wrmsr_intel; + r->parse_ctrlval = parse_bw_intel; + } + } +} + +static __init void rdt_init_res_defs_amd(void) +{ + struct rdt_resource *r; + + for_each_rdt_resource(r) { + if (r->rid == RDT_RESOURCE_L3 || + r->rid == RDT_RESOURCE_L3DATA || + r->rid == RDT_RESOURCE_L3CODE || + r->rid == RDT_RESOURCE_L2 || + r->rid == RDT_RESOURCE_L2DATA || + r->rid == RDT_RESOURCE_L2CODE) + r->cbm_validate = cbm_validate_amd; + else if (r->rid == RDT_RESOURCE_MBA) { + r->msr_base = MSR_IA32_MBA_BW_BASE; + r->msr_update = mba_wrmsr_amd; + r->parse_ctrlval = parse_bw_amd; + } + } +} + +static __init void rdt_init_res_defs(void) +{ + if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) + rdt_init_res_defs_intel(); + else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) + rdt_init_res_defs_amd(); +} + static enum cpuhp_state rdt_online; -static int __init intel_rdt_late_init(void) +static int __init resctrl_late_init(void) { struct rdt_resource *r; int state, ret; + /* + * Initialize functions(or definitions) that are different + * between vendors here. + */ + rdt_init_res_defs(); + + check_quirks(); + if (!get_rdt_resources()) return -ENODEV; rdt_init_padding(); state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, - "x86/rdt/cat:online:", - intel_rdt_online_cpu, intel_rdt_offline_cpu); + "x86/resctrl/cat:online:", + resctrl_online_cpu, resctrl_offline_cpu); if (state < 0) return state; @@ -890,20 +996,20 @@ static int __init intel_rdt_late_init(void) rdt_online = state; for_each_alloc_capable_rdt_resource(r) - pr_info("Intel RDT %s allocation detected\n", r->name); + pr_info("%s allocation detected\n", r->name); for_each_mon_capable_rdt_resource(r) - pr_info("Intel RDT %s monitoring detected\n", r->name); + pr_info("%s monitoring detected\n", r->name); return 0; } -late_initcall(intel_rdt_late_init); +late_initcall(resctrl_late_init); -static void __exit intel_rdt_exit(void) +static void __exit resctrl_exit(void) { cpuhp_remove_state(rdt_online); rdtgroup_exit(); } -__exitcall(intel_rdt_exit); +__exitcall(resctrl_exit); diff --git a/arch/x86/kernel/cpu/intel_rdt_ctrlmondata.c b/arch/x86/kernel/cpu/resctrl/ctrlmondata.c index 27937458c231..2dbd990a2eb7 100644 --- a/arch/x86/kernel/cpu/intel_rdt_ctrlmondata.c +++ b/arch/x86/kernel/cpu/resctrl/ctrlmondata.c @@ -23,10 +23,58 @@ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#include <linux/cpu.h> #include <linux/kernfs.h> #include <linux/seq_file.h> #include <linux/slab.h> -#include "intel_rdt.h" +#include "internal.h" + +/* + * Check whether MBA bandwidth percentage value is correct. The value is + * checked against the minimum and maximum bandwidth values specified by + * the hardware. The allocated bandwidth percentage is rounded to the next + * control step available on the hardware. + */ +static bool bw_validate_amd(char *buf, unsigned long *data, + struct rdt_resource *r) +{ + unsigned long bw; + int ret; + + ret = kstrtoul(buf, 10, &bw); + if (ret) { + rdt_last_cmd_printf("Non-decimal digit in MB value %s\n", buf); + return false; + } + + if (bw < r->membw.min_bw || bw > r->default_ctrl) { + rdt_last_cmd_printf("MB value %ld out of range [%d,%d]\n", bw, + r->membw.min_bw, r->default_ctrl); + return false; + } + + *data = roundup(bw, (unsigned long)r->membw.bw_gran); + return true; +} + +int parse_bw_amd(struct rdt_parse_data *data, struct rdt_resource *r, + struct rdt_domain *d) +{ + unsigned long bw_val; + + if (d->have_new_ctrl) { + rdt_last_cmd_printf("Duplicate domain %d\n", d->id); + return -EINVAL; + } + + if (!bw_validate_amd(data->buf, &bw_val, r)) + return -EINVAL; + + d->new_ctrl = bw_val; + d->have_new_ctrl = true; + + return 0; +} /* * Check whether MBA bandwidth percentage value is correct. The value is @@ -64,13 +112,13 @@ static bool bw_validate(char *buf, unsigned long *data, struct rdt_resource *r) return true; } -int parse_bw(struct rdt_parse_data *data, struct rdt_resource *r, - struct rdt_domain *d) +int parse_bw_intel(struct rdt_parse_data *data, struct rdt_resource *r, + struct rdt_domain *d) { unsigned long bw_val; if (d->have_new_ctrl) { - rdt_last_cmd_printf("duplicate domain %d\n", d->id); + rdt_last_cmd_printf("Duplicate domain %d\n", d->id); return -EINVAL; } @@ -88,7 +136,7 @@ int parse_bw(struct rdt_parse_data *data, struct rdt_resource *r, * are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). * Additionally Haswell requires at least two bits set. */ -static bool cbm_validate(char *buf, u32 *data, struct rdt_resource *r) +bool cbm_validate_intel(char *buf, u32 *data, struct rdt_resource *r) { unsigned long first_bit, zero_bit, val; unsigned int cbm_len = r->cache.cbm_len; @@ -96,12 +144,12 @@ static bool cbm_validate(char *buf, u32 *data, struct rdt_resource *r) ret = kstrtoul(buf, 16, &val); if (ret) { - rdt_last_cmd_printf("non-hex character in mask %s\n", buf); + rdt_last_cmd_printf("Non-hex character in the mask %s\n", buf); return false; } if (val == 0 || val > r->default_ctrl) { - rdt_last_cmd_puts("mask out of range\n"); + rdt_last_cmd_puts("Mask out of range\n"); return false; } @@ -109,12 +157,12 @@ static bool cbm_validate(char *buf, u32 *data, struct rdt_resource *r) zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); if (find_next_bit(&val, cbm_len, zero_bit) < cbm_len) { - rdt_last_cmd_printf("mask %lx has non-consecutive 1-bits\n", val); + rdt_last_cmd_printf("The mask %lx has non-consecutive 1-bits\n", val); return false; } if ((zero_bit - first_bit) < r->cache.min_cbm_bits) { - rdt_last_cmd_printf("Need at least %d bits in mask\n", + rdt_last_cmd_printf("Need at least %d bits in the mask\n", r->cache.min_cbm_bits); return false; } @@ -124,6 +172,30 @@ static bool cbm_validate(char *buf, u32 *data, struct rdt_resource *r) } /* + * Check whether a cache bit mask is valid. AMD allows non-contiguous + * bitmasks + */ +bool cbm_validate_amd(char *buf, u32 *data, struct rdt_resource *r) +{ + unsigned long val; + int ret; + + ret = kstrtoul(buf, 16, &val); + if (ret) { + rdt_last_cmd_printf("Non-hex character in the mask %s\n", buf); + return false; + } + + if (val > r->default_ctrl) { + rdt_last_cmd_puts("Mask out of range\n"); + return false; + } + + *data = val; + return true; +} + +/* * Read one cache bit mask (hex). Check that it is valid for the current * resource type. */ @@ -134,7 +206,7 @@ int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r, u32 cbm_val; if (d->have_new_ctrl) { - rdt_last_cmd_printf("duplicate domain %d\n", d->id); + rdt_last_cmd_printf("Duplicate domain %d\n", d->id); return -EINVAL; } @@ -144,17 +216,17 @@ int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r, */ if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP && rdtgroup_pseudo_locked_in_hierarchy(d)) { - rdt_last_cmd_printf("pseudo-locked region in hierarchy\n"); + rdt_last_cmd_puts("Pseudo-locked region in hierarchy\n"); return -EINVAL; } - if (!cbm_validate(data->buf, &cbm_val, r)) + if (!r->cbm_validate(data->buf, &cbm_val, r)) return -EINVAL; if ((rdtgrp->mode == RDT_MODE_EXCLUSIVE || rdtgrp->mode == RDT_MODE_SHAREABLE) && rdtgroup_cbm_overlaps_pseudo_locked(d, cbm_val)) { - rdt_last_cmd_printf("CBM overlaps with pseudo-locked region\n"); + rdt_last_cmd_puts("CBM overlaps with pseudo-locked region\n"); return -EINVAL; } @@ -163,14 +235,14 @@ int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r, * either is exclusive. */ if (rdtgroup_cbm_overlaps(r, d, cbm_val, rdtgrp->closid, true)) { - rdt_last_cmd_printf("overlaps with exclusive group\n"); + rdt_last_cmd_puts("Overlaps with exclusive group\n"); return -EINVAL; } if (rdtgroup_cbm_overlaps(r, d, cbm_val, rdtgrp->closid, false)) { if (rdtgrp->mode == RDT_MODE_EXCLUSIVE || rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { - rdt_last_cmd_printf("overlaps with other group\n"); + rdt_last_cmd_puts("Overlaps with other group\n"); return -EINVAL; } } @@ -292,7 +364,7 @@ static int rdtgroup_parse_resource(char *resname, char *tok, if (!strcmp(resname, r->name) && rdtgrp->closid < r->num_closid) return parse_line(tok, r, rdtgrp); } - rdt_last_cmd_printf("unknown/unsupported resource name '%s'\n", resname); + rdt_last_cmd_printf("Unknown or unsupported resource name '%s'\n", resname); return -EINVAL; } @@ -310,9 +382,11 @@ ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of, return -EINVAL; buf[nbytes - 1] = '\0'; + cpus_read_lock(); rdtgrp = rdtgroup_kn_lock_live(of->kn); if (!rdtgrp) { rdtgroup_kn_unlock(of->kn); + cpus_read_unlock(); return -ENOENT; } rdt_last_cmd_clear(); @@ -323,7 +397,7 @@ ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of, */ if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { ret = -EINVAL; - rdt_last_cmd_puts("resource group is pseudo-locked\n"); + rdt_last_cmd_puts("Resource group is pseudo-locked\n"); goto out; } @@ -367,6 +441,7 @@ ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of, out: rdtgroup_kn_unlock(of->kn); + cpus_read_unlock(); return ret ?: nbytes; } @@ -463,7 +538,7 @@ int rdtgroup_mondata_show(struct seq_file *m, void *arg) r = &rdt_resources_all[resid]; d = rdt_find_domain(r, domid, NULL); - if (!d) { + if (IS_ERR_OR_NULL(d)) { ret = -ENOENT; goto out; } diff --git a/arch/x86/kernel/cpu/intel_rdt.h b/arch/x86/kernel/cpu/resctrl/internal.h index 3736f6dc9545..822b7db634ee 100644 --- a/arch/x86/kernel/cpu/intel_rdt.h +++ b/arch/x86/kernel/cpu/resctrl/internal.h @@ -1,20 +1,24 @@ /* SPDX-License-Identifier: GPL-2.0 */ -#ifndef _ASM_X86_INTEL_RDT_H -#define _ASM_X86_INTEL_RDT_H +#ifndef _ASM_X86_RESCTRL_INTERNAL_H +#define _ASM_X86_RESCTRL_INTERNAL_H #include <linux/sched.h> #include <linux/kernfs.h> #include <linux/jump_label.h> -#define IA32_L3_QOS_CFG 0xc81 -#define IA32_L2_QOS_CFG 0xc82 -#define IA32_L3_CBM_BASE 0xc90 -#define IA32_L2_CBM_BASE 0xd10 -#define IA32_MBA_THRTL_BASE 0xd50 +#define MSR_IA32_L3_QOS_CFG 0xc81 +#define MSR_IA32_L2_QOS_CFG 0xc82 +#define MSR_IA32_L3_CBM_BASE 0xc90 +#define MSR_IA32_L2_CBM_BASE 0xd10 +#define MSR_IA32_MBA_THRTL_BASE 0xd50 +#define MSR_IA32_MBA_BW_BASE 0xc0000200 -#define L3_QOS_CDP_ENABLE 0x01ULL +#define MSR_IA32_QM_CTR 0x0c8e +#define MSR_IA32_QM_EVTSEL 0x0c8d -#define L2_QOS_CDP_ENABLE 0x01ULL +#define L3_QOS_CDP_ENABLE 0x01ULL + +#define L2_QOS_CDP_ENABLE 0x01ULL /* * Event IDs are used to program IA32_QM_EVTSEL before reading event @@ -29,6 +33,9 @@ #define MBM_CNTR_WIDTH 24 #define MBM_OVERFLOW_INTERVAL 1000 #define MAX_MBA_BW 100u +#define MBA_IS_LINEAR 0x4 +#define MBA_MAX_MBPS U32_MAX +#define MAX_MBA_BW_AMD 0x800 #define RMID_VAL_ERROR BIT_ULL(63) #define RMID_VAL_UNAVAIL BIT_ULL(62) @@ -69,7 +76,7 @@ struct rmid_read { u64 val; }; -extern unsigned int intel_cqm_threshold; +extern unsigned int resctrl_cqm_threshold; extern bool rdt_alloc_capable; extern bool rdt_mon_capable; extern unsigned int rdt_mon_features; @@ -391,9 +398,9 @@ struct rdt_parse_data { * struct rdt_resource - attributes of an RDT resource * @rid: The index of the resource * @alloc_enabled: Is allocation enabled on this machine - * @mon_enabled: Is monitoring enabled for this feature + * @mon_enabled: Is monitoring enabled for this feature * @alloc_capable: Is allocation available on this machine - * @mon_capable: Is monitor feature available on this machine + * @mon_capable: Is monitor feature available on this machine * @name: Name to use in "schemata" file * @num_closid: Number of CLOSIDs available * @cache_level: Which cache level defines scope of this resource @@ -405,10 +412,11 @@ struct rdt_parse_data { * @cache: Cache allocation related data * @format_str: Per resource format string to show domain value * @parse_ctrlval: Per resource function pointer to parse control values - * @evt_list: List of monitoring events - * @num_rmid: Number of RMIDs available - * @mon_scale: cqm counter * mon_scale = occupancy in bytes - * @fflags: flags to choose base and info files + * @cbm_validate Cache bitmask validate function + * @evt_list: List of monitoring events + * @num_rmid: Number of RMIDs available + * @mon_scale: cqm counter * mon_scale = occupancy in bytes + * @fflags: flags to choose base and info files */ struct rdt_resource { int rid; @@ -431,6 +439,7 @@ struct rdt_resource { int (*parse_ctrlval)(struct rdt_parse_data *data, struct rdt_resource *r, struct rdt_domain *d); + bool (*cbm_validate)(char *buf, u32 *data, struct rdt_resource *r); struct list_head evt_list; int num_rmid; unsigned int mon_scale; @@ -439,8 +448,10 @@ struct rdt_resource { int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r, struct rdt_domain *d); -int parse_bw(struct rdt_parse_data *data, struct rdt_resource *r, - struct rdt_domain *d); +int parse_bw_intel(struct rdt_parse_data *data, struct rdt_resource *r, + struct rdt_domain *d); +int parse_bw_amd(struct rdt_parse_data *data, struct rdt_resource *r, + struct rdt_domain *d); extern struct mutex rdtgroup_mutex; @@ -463,6 +474,10 @@ enum { RDT_NUM_RESOURCES, }; +#define for_each_rdt_resource(r) \ + for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\ + r++) + #define for_each_capable_rdt_resource(r) \ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\ r++) \ @@ -567,5 +582,7 @@ void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms); void cqm_handle_limbo(struct work_struct *work); bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d); void __check_limbo(struct rdt_domain *d, bool force_free); +bool cbm_validate_intel(char *buf, u32 *data, struct rdt_resource *r); +bool cbm_validate_amd(char *buf, u32 *data, struct rdt_resource *r); -#endif /* _ASM_X86_INTEL_RDT_H */ +#endif /* _ASM_X86_RESCTRL_INTERNAL_H */ diff --git a/arch/x86/kernel/cpu/intel_rdt_monitor.c b/arch/x86/kernel/cpu/resctrl/monitor.c index b0f3aed76b75..f33f11f69078 100644 --- a/arch/x86/kernel/cpu/intel_rdt_monitor.c +++ b/arch/x86/kernel/cpu/resctrl/monitor.c @@ -26,10 +26,7 @@ #include <linux/module.h> #include <linux/slab.h> #include <asm/cpu_device_id.h> -#include "intel_rdt.h" - -#define MSR_IA32_QM_CTR 0x0c8e -#define MSR_IA32_QM_EVTSEL 0x0c8d +#include "internal.h" struct rmid_entry { u32 rmid; @@ -73,7 +70,7 @@ unsigned int rdt_mon_features; * This is the threshold cache occupancy at which we will consider an * RMID available for re-allocation. */ -unsigned int intel_cqm_threshold; +unsigned int resctrl_cqm_threshold; static inline struct rmid_entry *__rmid_entry(u32 rmid) { @@ -107,7 +104,7 @@ static bool rmid_dirty(struct rmid_entry *entry) { u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); - return val >= intel_cqm_threshold; + return val >= resctrl_cqm_threshold; } /* @@ -187,7 +184,7 @@ static void add_rmid_to_limbo(struct rmid_entry *entry) list_for_each_entry(d, &r->domains, list) { if (cpumask_test_cpu(cpu, &d->cpu_mask)) { val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); - if (val <= intel_cqm_threshold) + if (val <= resctrl_cqm_threshold) continue; } @@ -625,6 +622,7 @@ static void l3_mon_evt_init(struct rdt_resource *r) int rdt_get_mon_l3_config(struct rdt_resource *r) { + unsigned int cl_size = boot_cpu_data.x86_cache_size; int ret; r->mon_scale = boot_cpu_data.x86_cache_occ_scale; @@ -637,10 +635,10 @@ int rdt_get_mon_l3_config(struct rdt_resource *r) * * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. */ - intel_cqm_threshold = boot_cpu_data.x86_cache_size * 1024 / r->num_rmid; + resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid; /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */ - intel_cqm_threshold /= r->mon_scale; + resctrl_cqm_threshold /= r->mon_scale; ret = dom_data_init(r); if (ret) diff --git a/arch/x86/kernel/cpu/intel_rdt_pseudo_lock.c b/arch/x86/kernel/cpu/resctrl/pseudo_lock.c index 815b4e92522c..14bed6af8377 100644 --- a/arch/x86/kernel/cpu/intel_rdt_pseudo_lock.c +++ b/arch/x86/kernel/cpu/resctrl/pseudo_lock.c @@ -24,14 +24,14 @@ #include <asm/cacheflush.h> #include <asm/intel-family.h> -#include <asm/intel_rdt_sched.h> +#include <asm/resctrl_sched.h> #include <asm/perf_event.h> #include "../../events/perf_event.h" /* For X86_CONFIG() */ -#include "intel_rdt.h" +#include "internal.h" #define CREATE_TRACE_POINTS -#include "intel_rdt_pseudo_lock_event.h" +#include "pseudo_lock_event.h" /* * MSR_MISC_FEATURE_CONTROL register enables the modification of hardware @@ -213,7 +213,7 @@ static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr) for_each_cpu(cpu, &plr->d->cpu_mask) { pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL); if (!pm_req) { - rdt_last_cmd_puts("fail allocating mem for PM QoS\n"); + rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n"); ret = -ENOMEM; goto out_err; } @@ -222,7 +222,7 @@ static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr) DEV_PM_QOS_RESUME_LATENCY, 30); if (ret < 0) { - rdt_last_cmd_printf("fail to add latency req cpu%d\n", + rdt_last_cmd_printf("Failed to add latency req CPU%d\n", cpu); kfree(pm_req); ret = -1; @@ -289,7 +289,7 @@ static int pseudo_lock_region_init(struct pseudo_lock_region *plr) plr->cpu = cpumask_first(&plr->d->cpu_mask); if (!cpu_online(plr->cpu)) { - rdt_last_cmd_printf("cpu %u associated with cache not online\n", + rdt_last_cmd_printf("CPU %u associated with cache not online\n", plr->cpu); ret = -ENODEV; goto out_region; @@ -307,7 +307,7 @@ static int pseudo_lock_region_init(struct pseudo_lock_region *plr) } ret = -1; - rdt_last_cmd_puts("unable to determine cache line size\n"); + rdt_last_cmd_puts("Unable to determine cache line size\n"); out_region: pseudo_lock_region_clear(plr); return ret; @@ -361,14 +361,14 @@ static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr) * KMALLOC_MAX_SIZE. */ if (plr->size > KMALLOC_MAX_SIZE) { - rdt_last_cmd_puts("requested region exceeds maximum size\n"); + rdt_last_cmd_puts("Requested region exceeds maximum size\n"); ret = -E2BIG; goto out_region; } plr->kmem = kzalloc(plr->size, GFP_KERNEL); if (!plr->kmem) { - rdt_last_cmd_puts("unable to allocate memory\n"); + rdt_last_cmd_puts("Unable to allocate memory\n"); ret = -ENOMEM; goto out_region; } @@ -665,7 +665,7 @@ int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) * default closid associated with it. */ if (rdtgrp == &rdtgroup_default) { - rdt_last_cmd_puts("cannot pseudo-lock default group\n"); + rdt_last_cmd_puts("Cannot pseudo-lock default group\n"); return -EINVAL; } @@ -707,17 +707,17 @@ int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) */ prefetch_disable_bits = get_prefetch_disable_bits(); if (prefetch_disable_bits == 0) { - rdt_last_cmd_puts("pseudo-locking not supported\n"); + rdt_last_cmd_puts("Pseudo-locking not supported\n"); return -EINVAL; } if (rdtgroup_monitor_in_progress(rdtgrp)) { - rdt_last_cmd_puts("monitoring in progress\n"); + rdt_last_cmd_puts("Monitoring in progress\n"); return -EINVAL; } if (rdtgroup_tasks_assigned(rdtgrp)) { - rdt_last_cmd_puts("tasks assigned to resource group\n"); + rdt_last_cmd_puts("Tasks assigned to resource group\n"); return -EINVAL; } @@ -727,13 +727,13 @@ int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) } if (rdtgroup_locksetup_user_restrict(rdtgrp)) { - rdt_last_cmd_puts("unable to modify resctrl permissions\n"); + rdt_last_cmd_puts("Unable to modify resctrl permissions\n"); return -EIO; } ret = pseudo_lock_init(rdtgrp); if (ret) { - rdt_last_cmd_puts("unable to init pseudo-lock region\n"); + rdt_last_cmd_puts("Unable to init pseudo-lock region\n"); goto out_release; } @@ -770,7 +770,7 @@ int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp) if (rdt_mon_capable) { ret = alloc_rmid(); if (ret < 0) { - rdt_last_cmd_puts("out of RMIDs\n"); + rdt_last_cmd_puts("Out of RMIDs\n"); return ret; } rdtgrp->mon.rmid = ret; @@ -1304,7 +1304,7 @@ int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) "pseudo_lock/%u", plr->cpu); if (IS_ERR(thread)) { ret = PTR_ERR(thread); - rdt_last_cmd_printf("locking thread returned error %d\n", ret); + rdt_last_cmd_printf("Locking thread returned error %d\n", ret); goto out_cstates; } @@ -1322,13 +1322,13 @@ int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) * the cleared, but not freed, plr struct resulting in an * empty pseudo-locking loop. */ - rdt_last_cmd_puts("locking thread interrupted\n"); + rdt_last_cmd_puts("Locking thread interrupted\n"); goto out_cstates; } ret = pseudo_lock_minor_get(&new_minor); if (ret < 0) { - rdt_last_cmd_puts("unable to obtain a new minor number\n"); + rdt_last_cmd_puts("Unable to obtain a new minor number\n"); goto out_cstates; } @@ -1360,7 +1360,7 @@ int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) if (IS_ERR(dev)) { ret = PTR_ERR(dev); - rdt_last_cmd_printf("failed to create character device: %d\n", + rdt_last_cmd_printf("Failed to create character device: %d\n", ret); goto out_debugfs; } diff --git a/arch/x86/kernel/cpu/intel_rdt_pseudo_lock_event.h b/arch/x86/kernel/cpu/resctrl/pseudo_lock_event.h index 2c041e6d9f05..428ebbd4270b 100644 --- a/arch/x86/kernel/cpu/intel_rdt_pseudo_lock_event.h +++ b/arch/x86/kernel/cpu/resctrl/pseudo_lock_event.h @@ -39,5 +39,5 @@ TRACE_EVENT(pseudo_lock_l3, #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . -#define TRACE_INCLUDE_FILE intel_rdt_pseudo_lock_event +#define TRACE_INCLUDE_FILE pseudo_lock_event #include <trace/define_trace.h> diff --git a/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c b/arch/x86/kernel/cpu/resctrl/rdtgroup.c index f27b8115ffa2..8388adf241b2 100644 --- a/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c +++ b/arch/x86/kernel/cpu/resctrl/rdtgroup.c @@ -35,8 +35,8 @@ #include <uapi/linux/magic.h> -#include <asm/intel_rdt_sched.h> -#include "intel_rdt.h" +#include <asm/resctrl_sched.h> +#include "internal.h" DEFINE_STATIC_KEY_FALSE(rdt_enable_key); DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); @@ -298,7 +298,7 @@ static int rdtgroup_cpus_show(struct kernfs_open_file *of, } /* - * This is safe against intel_rdt_sched_in() called from __switch_to() + * This is safe against resctrl_sched_in() called from __switch_to() * because __switch_to() is executed with interrupts disabled. A local call * from update_closid_rmid() is proteced against __switch_to() because * preemption is disabled. @@ -317,7 +317,7 @@ static void update_cpu_closid_rmid(void *info) * executing task might have its own closid selected. Just reuse * the context switch code. */ - intel_rdt_sched_in(); + resctrl_sched_in(); } /* @@ -345,7 +345,7 @@ static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, /* Check whether cpus belong to parent ctrl group */ cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); if (cpumask_weight(tmpmask)) { - rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n"); + rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); return -EINVAL; } @@ -470,14 +470,14 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, rdt_last_cmd_clear(); if (!rdtgrp) { ret = -ENOENT; - rdt_last_cmd_puts("directory was removed\n"); + rdt_last_cmd_puts("Directory was removed\n"); goto unlock; } if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { ret = -EINVAL; - rdt_last_cmd_puts("pseudo-locking in progress\n"); + rdt_last_cmd_puts("Pseudo-locking in progress\n"); goto unlock; } @@ -487,7 +487,7 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, ret = cpumask_parse(buf, newmask); if (ret) { - rdt_last_cmd_puts("bad cpu list/mask\n"); + rdt_last_cmd_puts("Bad CPU list/mask\n"); goto unlock; } @@ -495,7 +495,7 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, cpumask_andnot(tmpmask, newmask, cpu_online_mask); if (cpumask_weight(tmpmask)) { ret = -EINVAL; - rdt_last_cmd_puts("can only assign online cpus\n"); + rdt_last_cmd_puts("Can only assign online CPUs\n"); goto unlock; } @@ -542,7 +542,7 @@ static void move_myself(struct callback_head *head) preempt_disable(); /* update PQR_ASSOC MSR to make resource group go into effect */ - intel_rdt_sched_in(); + resctrl_sched_in(); preempt_enable(); kfree(callback); @@ -574,7 +574,7 @@ static int __rdtgroup_move_task(struct task_struct *tsk, */ atomic_dec(&rdtgrp->waitcount); kfree(callback); - rdt_last_cmd_puts("task exited\n"); + rdt_last_cmd_puts("Task exited\n"); } else { /* * For ctrl_mon groups move both closid and rmid. @@ -692,7 +692,7 @@ static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { ret = -EINVAL; - rdt_last_cmd_puts("pseudo-locking in progress\n"); + rdt_last_cmd_puts("Pseudo-locking in progress\n"); goto unlock; } @@ -926,7 +926,7 @@ static int max_threshold_occ_show(struct kernfs_open_file *of, { struct rdt_resource *r = of->kn->parent->priv; - seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale); + seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale); return 0; } @@ -945,7 +945,7 @@ static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, if (bytes > (boot_cpu_data.x86_cache_size * 1024)) return -EINVAL; - intel_cqm_threshold = bytes / r->mon_scale; + resctrl_cqm_threshold = bytes / r->mon_scale; return nbytes; } @@ -1029,7 +1029,7 @@ static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d, * peer RDT CDP resource. Hence the WARN. */ _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL); - if (WARN_ON(!_d_cdp)) { + if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) { _r_cdp = NULL; ret = -EINVAL; } @@ -1158,14 +1158,14 @@ static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) list_for_each_entry(d, &r->domains, list) { if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid], rdtgrp->closid, false)) { - rdt_last_cmd_puts("schemata overlaps\n"); + rdt_last_cmd_puts("Schemata overlaps\n"); return false; } } } if (!has_cache) { - rdt_last_cmd_puts("cannot be exclusive without CAT/CDP\n"); + rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); return false; } @@ -1206,7 +1206,7 @@ static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, goto out; if (mode == RDT_MODE_PSEUDO_LOCKED) { - rdt_last_cmd_printf("cannot change pseudo-locked group\n"); + rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); ret = -EINVAL; goto out; } @@ -1235,7 +1235,7 @@ static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, goto out; rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; } else { - rdt_last_cmd_printf("unknown/unsupported mode\n"); + rdt_last_cmd_puts("Unknown or unsupported mode\n"); ret = -EINVAL; } @@ -1722,14 +1722,14 @@ static void l3_qos_cfg_update(void *arg) { bool *enable = arg; - wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); + wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); } static void l2_qos_cfg_update(void *arg) { bool *enable = arg; - wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); + wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); } static inline bool is_mba_linear(void) @@ -1878,7 +1878,10 @@ static int parse_rdtgroupfs_options(char *data) if (ret) goto out; } else if (!strcmp(token, "mba_MBps")) { - ret = set_mba_sc(true); + if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) + ret = set_mba_sc(true); + else + ret = -EINVAL; if (ret) goto out; } else { @@ -2540,7 +2543,7 @@ static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) tmp_cbm = d->new_ctrl; if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { - rdt_last_cmd_printf("no space on %s:%d\n", + rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id); return -ENOSPC; } @@ -2557,7 +2560,7 @@ static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) continue; ret = update_domains(r, rdtgrp->closid); if (ret < 0) { - rdt_last_cmd_puts("failed to initialize allocations\n"); + rdt_last_cmd_puts("Failed to initialize allocations\n"); return ret; } rdtgrp->mode = RDT_MODE_SHAREABLE; @@ -2580,7 +2583,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, rdt_last_cmd_clear(); if (!prdtgrp) { ret = -ENODEV; - rdt_last_cmd_puts("directory was removed\n"); + rdt_last_cmd_puts("Directory was removed\n"); goto out_unlock; } @@ -2588,7 +2591,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { ret = -EINVAL; - rdt_last_cmd_puts("pseudo-locking in progress\n"); + rdt_last_cmd_puts("Pseudo-locking in progress\n"); goto out_unlock; } @@ -2596,7 +2599,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); if (!rdtgrp) { ret = -ENOSPC; - rdt_last_cmd_puts("kernel out of memory\n"); + rdt_last_cmd_puts("Kernel out of memory\n"); goto out_unlock; } *r = rdtgrp; @@ -2637,7 +2640,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, if (rdt_mon_capable) { ret = alloc_rmid(); if (ret < 0) { - rdt_last_cmd_puts("out of RMIDs\n"); + rdt_last_cmd_puts("Out of RMIDs\n"); goto out_destroy; } rdtgrp->mon.rmid = ret; @@ -2725,7 +2728,7 @@ static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, kn = rdtgrp->kn; ret = closid_alloc(); if (ret < 0) { - rdt_last_cmd_puts("out of CLOSIDs\n"); + rdt_last_cmd_puts("Out of CLOSIDs\n"); goto out_common_fail; } closid = ret; diff --git a/arch/x86/kernel/cpu/scattered.c b/arch/x86/kernel/cpu/scattered.c index 772c219b6889..94aa1c72ca98 100644 --- a/arch/x86/kernel/cpu/scattered.c +++ b/arch/x86/kernel/cpu/scattered.c @@ -5,9 +5,10 @@ #include <linux/cpu.h> #include <asm/pat.h> +#include <asm/apic.h> #include <asm/processor.h> -#include <asm/apic.h> +#include "cpu.h" struct cpuid_bit { u16 feature; @@ -17,7 +18,11 @@ struct cpuid_bit { u32 sub_leaf; }; -/* Please keep the leaf sorted by cpuid_bit.level for faster search. */ +/* + * Please keep the leaf sorted by cpuid_bit.level for faster search. + * X86_FEATURE_MBA is supported by both Intel and AMD. But the CPUID + * levels are different and there is a separate entry for each. + */ static const struct cpuid_bit cpuid_bits[] = { { X86_FEATURE_APERFMPERF, CPUID_ECX, 0, 0x00000006, 0 }, { X86_FEATURE_EPB, CPUID_ECX, 3, 0x00000006, 0 }, @@ -29,6 +34,7 @@ static const struct cpuid_bit cpuid_bits[] = { { X86_FEATURE_HW_PSTATE, CPUID_EDX, 7, 0x80000007, 0 }, { X86_FEATURE_CPB, CPUID_EDX, 9, 0x80000007, 0 }, { X86_FEATURE_PROC_FEEDBACK, CPUID_EDX, 11, 0x80000007, 0 }, + { X86_FEATURE_MBA, CPUID_EBX, 6, 0x80000008, 0 }, { X86_FEATURE_SME, CPUID_EAX, 0, 0x8000001f, 0 }, { X86_FEATURE_SEV, CPUID_EAX, 1, 0x8000001f, 0 }, { 0, 0, 0, 0, 0 } @@ -56,27 +62,3 @@ void init_scattered_cpuid_features(struct cpuinfo_x86 *c) set_cpu_cap(c, cb->feature); } } - -u32 get_scattered_cpuid_leaf(unsigned int level, unsigned int sub_leaf, - enum cpuid_regs_idx reg) -{ - const struct cpuid_bit *cb; - u32 cpuid_val = 0; - - for (cb = cpuid_bits; cb->feature; cb++) { - - if (level > cb->level) - continue; - - if (level < cb->level) - break; - - if (reg == cb->reg && sub_leaf == cb->sub_leaf) { - if (cpu_has(&boot_cpu_data, cb->feature)) - cpuid_val |= BIT(cb->bit); - } - } - - return cpuid_val; -} -EXPORT_SYMBOL_GPL(get_scattered_cpuid_leaf); diff --git a/arch/x86/kernel/cpu/topology.c b/arch/x86/kernel/cpu/topology.c index 71ca064e3794..8f6c784141d1 100644 --- a/arch/x86/kernel/cpu/topology.c +++ b/arch/x86/kernel/cpu/topology.c @@ -10,6 +10,8 @@ #include <asm/pat.h> #include <asm/processor.h> +#include "cpu.h" + /* leaf 0xb SMT level */ #define SMT_LEVEL 0 diff --git a/arch/x86/kernel/cpu/vmware.c b/arch/x86/kernel/cpu/vmware.c index d9ab49bed8af..0eda91f8eeac 100644 --- a/arch/x86/kernel/cpu/vmware.c +++ b/arch/x86/kernel/cpu/vmware.c @@ -77,7 +77,7 @@ static __init int setup_vmw_sched_clock(char *s) } early_param("no-vmw-sched-clock", setup_vmw_sched_clock); -static unsigned long long vmware_sched_clock(void) +static unsigned long long notrace vmware_sched_clock(void) { unsigned long long ns; diff --git a/arch/x86/kernel/crash.c b/arch/x86/kernel/crash.c index f631a3f15587..c8b07d8ea5a2 100644 --- a/arch/x86/kernel/crash.c +++ b/arch/x86/kernel/crash.c @@ -37,6 +37,7 @@ #include <asm/reboot.h> #include <asm/virtext.h> #include <asm/intel_pt.h> +#include <asm/crash.h> /* Used while preparing memory map entries for second kernel */ struct crash_memmap_data { diff --git a/arch/x86/kernel/crash_dump_64.c b/arch/x86/kernel/crash_dump_64.c index eb8ab3915268..22369dd5de3b 100644 --- a/arch/x86/kernel/crash_dump_64.c +++ b/arch/x86/kernel/crash_dump_64.c @@ -62,7 +62,7 @@ ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize, /** * copy_oldmem_page_encrypted - same as copy_oldmem_page() above but ioremap the - * memory with the encryption mask set to accomodate kdump on SME-enabled + * memory with the encryption mask set to accommodate kdump on SME-enabled * machines. */ ssize_t copy_oldmem_page_encrypted(unsigned long pfn, char *buf, size_t csize, diff --git a/arch/x86/kernel/devicetree.c b/arch/x86/kernel/devicetree.c index 7299dcbf8e85..8d85e00bb40a 100644 --- a/arch/x86/kernel/devicetree.c +++ b/arch/x86/kernel/devicetree.c @@ -23,6 +23,7 @@ #include <asm/pci_x86.h> #include <asm/setup.h> #include <asm/i8259.h> +#include <asm/prom.h> __initdata u64 initial_dtb; char __initdata cmd_line[COMMAND_LINE_SIZE]; diff --git a/arch/x86/kernel/fpu/core.c b/arch/x86/kernel/fpu/core.c index 2ea85b32421a..2e5003fef51a 100644 --- a/arch/x86/kernel/fpu/core.c +++ b/arch/x86/kernel/fpu/core.c @@ -93,7 +93,7 @@ bool irq_fpu_usable(void) } EXPORT_SYMBOL(irq_fpu_usable); -void __kernel_fpu_begin(void) +static void __kernel_fpu_begin(void) { struct fpu *fpu = ¤t->thread.fpu; @@ -111,9 +111,8 @@ void __kernel_fpu_begin(void) __cpu_invalidate_fpregs_state(); } } -EXPORT_SYMBOL(__kernel_fpu_begin); -void __kernel_fpu_end(void) +static void __kernel_fpu_end(void) { struct fpu *fpu = ¤t->thread.fpu; @@ -122,7 +121,6 @@ void __kernel_fpu_end(void) kernel_fpu_enable(); } -EXPORT_SYMBOL(__kernel_fpu_end); void kernel_fpu_begin(void) { diff --git a/arch/x86/kernel/fpu/signal.c b/arch/x86/kernel/fpu/signal.c index 61a949d84dfa..d99a8ee9e185 100644 --- a/arch/x86/kernel/fpu/signal.c +++ b/arch/x86/kernel/fpu/signal.c @@ -344,10 +344,10 @@ static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size) sanitize_restored_xstate(tsk, &env, xfeatures, fx_only); } + local_bh_disable(); fpu->initialized = 1; - preempt_disable(); fpu__restore(fpu); - preempt_enable(); + local_bh_enable(); return err; } else { diff --git a/arch/x86/kernel/fpu/xstate.c b/arch/x86/kernel/fpu/xstate.c index 87a57b7642d3..9cc108456d0b 100644 --- a/arch/x86/kernel/fpu/xstate.c +++ b/arch/x86/kernel/fpu/xstate.c @@ -444,7 +444,7 @@ static int xfeature_uncompacted_offset(int xfeature_nr) * format. Checking a supervisor state's uncompacted offset is * an error. */ - if (XFEATURE_MASK_SUPERVISOR & (1 << xfeature_nr)) { + if (XFEATURE_MASK_SUPERVISOR & BIT_ULL(xfeature_nr)) { WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr); return -1; } @@ -808,10 +808,8 @@ void fpu__resume_cpu(void) * Given an xstate feature mask, calculate where in the xsave * buffer the state is. Callers should ensure that the buffer * is valid. - * - * Note: does not work for compacted buffers. */ -void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask) +static void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask) { int feature_nr = fls64(xstate_feature_mask) - 1; diff --git a/arch/x86/kernel/ftrace.c b/arch/x86/kernel/ftrace.c index 01ebcb6f263e..7ee8067cbf45 100644 --- a/arch/x86/kernel/ftrace.c +++ b/arch/x86/kernel/ftrace.c @@ -994,7 +994,6 @@ void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent, { unsigned long old; int faulted; - struct ftrace_graph_ent trace; unsigned long return_hooker = (unsigned long) &return_to_handler; @@ -1046,19 +1045,7 @@ void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent, return; } - trace.func = self_addr; - trace.depth = current->curr_ret_stack + 1; - - /* Only trace if the calling function expects to */ - if (!ftrace_graph_entry(&trace)) { + if (function_graph_enter(old, self_addr, frame_pointer, parent)) *parent = old; - return; - } - - if (ftrace_push_return_trace(old, self_addr, &trace.depth, - frame_pointer, parent) == -EBUSY) { - *parent = old; - return; - } } #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ diff --git a/arch/x86/kernel/head32.c b/arch/x86/kernel/head32.c index 76fa3b836598..ec6fefbfd3c0 100644 --- a/arch/x86/kernel/head32.c +++ b/arch/x86/kernel/head32.c @@ -37,7 +37,6 @@ asmlinkage __visible void __init i386_start_kernel(void) cr4_init_shadow(); sanitize_boot_params(&boot_params); - x86_verify_bootdata_version(); x86_early_init_platform_quirks(); diff --git a/arch/x86/kernel/head64.c b/arch/x86/kernel/head64.c index 7663a8eb602b..16b1cbd3a61e 100644 --- a/arch/x86/kernel/head64.c +++ b/arch/x86/kernel/head64.c @@ -457,8 +457,6 @@ void __init x86_64_start_reservations(char *real_mode_data) if (!boot_params.hdr.version) copy_bootdata(__va(real_mode_data)); - x86_verify_bootdata_version(); - x86_early_init_platform_quirks(); switch (boot_params.hdr.hardware_subarch) { diff --git a/arch/x86/kernel/head_64.S b/arch/x86/kernel/head_64.S index 747c758f67b7..d1dbe8e4eb82 100644 --- a/arch/x86/kernel/head_64.S +++ b/arch/x86/kernel/head_64.S @@ -386,7 +386,7 @@ NEXT_PAGE(early_dynamic_pgts) .data -#if defined(CONFIG_XEN_PV) || defined(CONFIG_XEN_PVH) +#if defined(CONFIG_XEN_PV) || defined(CONFIG_PVH) NEXT_PGD_PAGE(init_top_pgt) .quad level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE_NOENC .org init_top_pgt + L4_PAGE_OFFSET*8, 0 diff --git a/arch/x86/kernel/jailhouse.c b/arch/x86/kernel/jailhouse.c index 108c48d0d40e..1b2ee55a2dfb 100644 --- a/arch/x86/kernel/jailhouse.c +++ b/arch/x86/kernel/jailhouse.c @@ -19,6 +19,7 @@ #include <asm/pci_x86.h> #include <asm/reboot.h> #include <asm/setup.h> +#include <asm/jailhouse_para.h> static __initdata struct jailhouse_setup_data setup_data; static unsigned int precalibrated_tsc_khz; diff --git a/arch/x86/kernel/kprobes/core.c b/arch/x86/kernel/kprobes/core.c index c33b06f5faa4..4ba75afba527 100644 --- a/arch/x86/kernel/kprobes/core.c +++ b/arch/x86/kernel/kprobes/core.c @@ -751,7 +751,7 @@ STACK_FRAME_NON_STANDARD(kretprobe_trampoline); /* * Called from kretprobe_trampoline */ -__visible __used void *trampoline_handler(struct pt_regs *regs) +static __used void *trampoline_handler(struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; @@ -1026,12 +1026,10 @@ int kprobe_fault_handler(struct pt_regs *regs, int trapnr) } NOKPROBE_SYMBOL(kprobe_fault_handler); -bool arch_within_kprobe_blacklist(unsigned long addr) +int __init arch_populate_kprobe_blacklist(void) { - return (addr >= (unsigned long)__kprobes_text_start && - addr < (unsigned long)__kprobes_text_end) || - (addr >= (unsigned long)__entry_text_start && - addr < (unsigned long)__entry_text_end); + return kprobe_add_area_blacklist((unsigned long)__entry_text_start, + (unsigned long)__entry_text_end); } int __init arch_init_kprobes(void) diff --git a/arch/x86/kernel/kprobes/opt.c b/arch/x86/kernel/kprobes/opt.c index 40b16b270656..6adf6e6c2933 100644 --- a/arch/x86/kernel/kprobes/opt.c +++ b/arch/x86/kernel/kprobes/opt.c @@ -189,7 +189,7 @@ static int copy_optimized_instructions(u8 *dest, u8 *src, u8 *real) int len = 0, ret; while (len < RELATIVEJUMP_SIZE) { - ret = __copy_instruction(dest + len, src + len, real, &insn); + ret = __copy_instruction(dest + len, src + len, real + len, &insn); if (!ret || !can_boost(&insn, src + len)) return -EINVAL; len += ret; diff --git a/arch/x86/kernel/kvmclock.c b/arch/x86/kernel/kvmclock.c index 30084ecaa20f..e811d4d1c824 100644 --- a/arch/x86/kernel/kvmclock.c +++ b/arch/x86/kernel/kvmclock.c @@ -1,19 +1,6 @@ +// SPDX-License-Identifier: GPL-2.0-or-later /* KVM paravirtual clock driver. A clocksource implementation Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/clocksource.h> diff --git a/arch/x86/kernel/ldt.c b/arch/x86/kernel/ldt.c index ab18e0884dc6..6135ae8ce036 100644 --- a/arch/x86/kernel/ldt.c +++ b/arch/x86/kernel/ldt.c @@ -199,14 +199,6 @@ static void sanity_check_ldt_mapping(struct mm_struct *mm) /* * If PTI is enabled, this maps the LDT into the kernelmode and * usermode tables for the given mm. - * - * There is no corresponding unmap function. Even if the LDT is freed, we - * leave the PTEs around until the slot is reused or the mm is destroyed. - * This is harmless: the LDT is always in ordinary memory, and no one will - * access the freed slot. - * - * If we wanted to unmap freed LDTs, we'd also need to do a flush to make - * it useful, and the flush would slow down modify_ldt(). */ static int map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) @@ -214,8 +206,7 @@ map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) unsigned long va; bool is_vmalloc; spinlock_t *ptl; - pgd_t *pgd; - int i; + int i, nr_pages; if (!static_cpu_has(X86_FEATURE_PTI)) return 0; @@ -229,16 +220,11 @@ map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) /* Check if the current mappings are sane */ sanity_check_ldt_mapping(mm); - /* - * Did we already have the top level entry allocated? We can't - * use pgd_none() for this because it doens't do anything on - * 4-level page table kernels. - */ - pgd = pgd_offset(mm, LDT_BASE_ADDR); - is_vmalloc = is_vmalloc_addr(ldt->entries); - for (i = 0; i * PAGE_SIZE < ldt->nr_entries * LDT_ENTRY_SIZE; i++) { + nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); + + for (i = 0; i < nr_pages; i++) { unsigned long offset = i << PAGE_SHIFT; const void *src = (char *)ldt->entries + offset; unsigned long pfn; @@ -272,13 +258,39 @@ map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) /* Propagate LDT mapping to the user page-table */ map_ldt_struct_to_user(mm); - va = (unsigned long)ldt_slot_va(slot); - flush_tlb_mm_range(mm, va, va + LDT_SLOT_STRIDE, PAGE_SHIFT, false); - ldt->slot = slot; return 0; } +static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) +{ + unsigned long va; + int i, nr_pages; + + if (!ldt) + return; + + /* LDT map/unmap is only required for PTI */ + if (!static_cpu_has(X86_FEATURE_PTI)) + return; + + nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); + + for (i = 0; i < nr_pages; i++) { + unsigned long offset = i << PAGE_SHIFT; + spinlock_t *ptl; + pte_t *ptep; + + va = (unsigned long)ldt_slot_va(ldt->slot) + offset; + ptep = get_locked_pte(mm, va, &ptl); + pte_clear(mm, va, ptep); + pte_unmap_unlock(ptep, ptl); + } + + va = (unsigned long)ldt_slot_va(ldt->slot); + flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false); +} + #else /* !CONFIG_PAGE_TABLE_ISOLATION */ static int @@ -286,6 +298,10 @@ map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) { return 0; } + +static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) +{ +} #endif /* CONFIG_PAGE_TABLE_ISOLATION */ static void free_ldt_pgtables(struct mm_struct *mm) @@ -524,6 +540,7 @@ static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) } install_ldt(mm, new_ldt); + unmap_ldt_struct(mm, old_ldt); free_ldt_struct(old_ldt); error = 0; diff --git a/arch/x86/kernel/macros.S b/arch/x86/kernel/macros.S deleted file mode 100644 index 161c95059044..000000000000 --- a/arch/x86/kernel/macros.S +++ /dev/null @@ -1,16 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ - -/* - * This file includes headers whose assembly part includes macros which are - * commonly used. The macros are precompiled into assmebly file which is later - * assembled together with each compiled file. - */ - -#include <linux/compiler.h> -#include <asm/refcount.h> -#include <asm/alternative-asm.h> -#include <asm/bug.h> -#include <asm/paravirt.h> -#include <asm/asm.h> -#include <asm/cpufeature.h> -#include <asm/jump_label.h> diff --git a/arch/x86/kernel/pci-calgary_64.c b/arch/x86/kernel/pci-calgary_64.c index bbfc8b1e9104..c70720f61a34 100644 --- a/arch/x86/kernel/pci-calgary_64.c +++ b/arch/x86/kernel/pci-calgary_64.c @@ -51,8 +51,6 @@ #include <asm/x86_init.h> #include <asm/iommu_table.h> -#define CALGARY_MAPPING_ERROR 0 - #ifdef CONFIG_CALGARY_IOMMU_ENABLED_BY_DEFAULT int use_calgary __read_mostly = 1; #else @@ -157,8 +155,6 @@ static const unsigned long phb_debug_offsets[] = { #define PHB_DEBUG_STUFF_OFFSET 0x0020 -#define EMERGENCY_PAGES 32 /* = 128KB */ - unsigned int specified_table_size = TCE_TABLE_SIZE_UNSPECIFIED; static int translate_empty_slots __read_mostly = 0; static int calgary_detected __read_mostly = 0; @@ -255,7 +251,7 @@ static unsigned long iommu_range_alloc(struct device *dev, if (panic_on_overflow) panic("Calgary: fix the allocator.\n"); else - return CALGARY_MAPPING_ERROR; + return DMA_MAPPING_ERROR; } } @@ -274,11 +270,10 @@ static dma_addr_t iommu_alloc(struct device *dev, struct iommu_table *tbl, dma_addr_t ret; entry = iommu_range_alloc(dev, tbl, npages); - - if (unlikely(entry == CALGARY_MAPPING_ERROR)) { + if (unlikely(entry == DMA_MAPPING_ERROR)) { pr_warn("failed to allocate %u pages in iommu %p\n", npages, tbl); - return CALGARY_MAPPING_ERROR; + return DMA_MAPPING_ERROR; } /* set the return dma address */ @@ -294,12 +289,10 @@ static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr, unsigned int npages) { unsigned long entry; - unsigned long badend; unsigned long flags; /* were we called with bad_dma_address? */ - badend = CALGARY_MAPPING_ERROR + (EMERGENCY_PAGES * PAGE_SIZE); - if (unlikely(dma_addr < badend)) { + if (unlikely(dma_addr == DMA_MAPPING_ERROR)) { WARN(1, KERN_ERR "Calgary: driver tried unmapping bad DMA " "address 0x%Lx\n", dma_addr); return; @@ -383,7 +376,7 @@ static int calgary_map_sg(struct device *dev, struct scatterlist *sg, npages = iommu_num_pages(vaddr, s->length, PAGE_SIZE); entry = iommu_range_alloc(dev, tbl, npages); - if (entry == CALGARY_MAPPING_ERROR) { + if (entry == DMA_MAPPING_ERROR) { /* makes sure unmap knows to stop */ s->dma_length = 0; goto error; @@ -401,7 +394,7 @@ static int calgary_map_sg(struct device *dev, struct scatterlist *sg, error: calgary_unmap_sg(dev, sg, nelems, dir, 0); for_each_sg(sg, s, nelems, i) { - sg->dma_address = CALGARY_MAPPING_ERROR; + sg->dma_address = DMA_MAPPING_ERROR; sg->dma_length = 0; } return 0; @@ -454,7 +447,7 @@ static void* calgary_alloc_coherent(struct device *dev, size_t size, /* set up tces to cover the allocated range */ mapping = iommu_alloc(dev, tbl, ret, npages, DMA_BIDIRECTIONAL); - if (mapping == CALGARY_MAPPING_ERROR) + if (mapping == DMA_MAPPING_ERROR) goto free; *dma_handle = mapping; return ret; @@ -479,11 +472,6 @@ static void calgary_free_coherent(struct device *dev, size_t size, free_pages((unsigned long)vaddr, get_order(size)); } -static int calgary_mapping_error(struct device *dev, dma_addr_t dma_addr) -{ - return dma_addr == CALGARY_MAPPING_ERROR; -} - static const struct dma_map_ops calgary_dma_ops = { .alloc = calgary_alloc_coherent, .free = calgary_free_coherent, @@ -491,7 +479,6 @@ static const struct dma_map_ops calgary_dma_ops = { .unmap_sg = calgary_unmap_sg, .map_page = calgary_map_page, .unmap_page = calgary_unmap_page, - .mapping_error = calgary_mapping_error, .dma_supported = dma_direct_supported, }; @@ -739,9 +726,6 @@ static void __init calgary_reserve_regions(struct pci_dev *dev) u64 start; struct iommu_table *tbl = pci_iommu(dev->bus); - /* reserve EMERGENCY_PAGES from bad_dma_address and up */ - iommu_range_reserve(tbl, CALGARY_MAPPING_ERROR, EMERGENCY_PAGES); - /* avoid the BIOS/VGA first 640KB-1MB region */ /* for CalIOC2 - avoid the entire first MB */ if (is_calgary(dev->device)) { diff --git a/arch/x86/kernel/pci-dma.c b/arch/x86/kernel/pci-dma.c index f4562fcec681..d460998ae828 100644 --- a/arch/x86/kernel/pci-dma.c +++ b/arch/x86/kernel/pci-dma.c @@ -17,7 +17,7 @@ static bool disable_dac_quirk __read_mostly; -const struct dma_map_ops *dma_ops = &dma_direct_ops; +const struct dma_map_ops *dma_ops; EXPORT_SYMBOL(dma_ops); #ifdef CONFIG_IOMMU_DEBUG diff --git a/arch/x86/kernel/pci-swiotlb.c b/arch/x86/kernel/pci-swiotlb.c index bd08b9e1c9e2..5f5302028a9a 100644 --- a/arch/x86/kernel/pci-swiotlb.c +++ b/arch/x86/kernel/pci-swiotlb.c @@ -62,10 +62,8 @@ IOMMU_INIT(pci_swiotlb_detect_4gb, void __init pci_swiotlb_init(void) { - if (swiotlb) { + if (swiotlb) swiotlb_init(0); - dma_ops = &swiotlb_dma_ops; - } } void __init pci_swiotlb_late_init(void) diff --git a/arch/x86/kernel/process.c b/arch/x86/kernel/process.c index c93fcfdf1673..90ae0ca51083 100644 --- a/arch/x86/kernel/process.c +++ b/arch/x86/kernel/process.c @@ -22,6 +22,8 @@ #include <linux/utsname.h> #include <linux/stackprotector.h> #include <linux/cpuidle.h> +#include <linux/acpi.h> +#include <linux/elf-randomize.h> #include <trace/events/power.h> #include <linux/hw_breakpoint.h> #include <asm/cpu.h> @@ -39,6 +41,9 @@ #include <asm/desc.h> #include <asm/prctl.h> #include <asm/spec-ctrl.h> +#include <asm/proto.h> + +#include "process.h" /* * per-CPU TSS segments. Threads are completely 'soft' on Linux, @@ -252,11 +257,12 @@ void arch_setup_new_exec(void) enable_cpuid(); } -static inline void switch_to_bitmap(struct tss_struct *tss, - struct thread_struct *prev, +static inline void switch_to_bitmap(struct thread_struct *prev, struct thread_struct *next, unsigned long tifp, unsigned long tifn) { + struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); + if (tifn & _TIF_IO_BITMAP) { /* * Copy the relevant range of the IO bitmap. @@ -395,32 +401,85 @@ static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); } -static __always_inline void intel_set_ssb_state(unsigned long tifn) +/* + * Update the MSRs managing speculation control, during context switch. + * + * tifp: Previous task's thread flags + * tifn: Next task's thread flags + */ +static __always_inline void __speculation_ctrl_update(unsigned long tifp, + unsigned long tifn) { - u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn); + unsigned long tif_diff = tifp ^ tifn; + u64 msr = x86_spec_ctrl_base; + bool updmsr = false; + + /* + * If TIF_SSBD is different, select the proper mitigation + * method. Note that if SSBD mitigation is disabled or permanentely + * enabled this branch can't be taken because nothing can set + * TIF_SSBD. + */ + if (tif_diff & _TIF_SSBD) { + if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { + amd_set_ssb_virt_state(tifn); + } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { + amd_set_core_ssb_state(tifn); + } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || + static_cpu_has(X86_FEATURE_AMD_SSBD)) { + msr |= ssbd_tif_to_spec_ctrl(tifn); + updmsr = true; + } + } + + /* + * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled, + * otherwise avoid the MSR write. + */ + if (IS_ENABLED(CONFIG_SMP) && + static_branch_unlikely(&switch_to_cond_stibp)) { + updmsr |= !!(tif_diff & _TIF_SPEC_IB); + msr |= stibp_tif_to_spec_ctrl(tifn); + } - wrmsrl(MSR_IA32_SPEC_CTRL, msr); + if (updmsr) + wrmsrl(MSR_IA32_SPEC_CTRL, msr); } -static __always_inline void __speculative_store_bypass_update(unsigned long tifn) +static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) { - if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) - amd_set_ssb_virt_state(tifn); - else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) - amd_set_core_ssb_state(tifn); - else - intel_set_ssb_state(tifn); + if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { + if (task_spec_ssb_disable(tsk)) + set_tsk_thread_flag(tsk, TIF_SSBD); + else + clear_tsk_thread_flag(tsk, TIF_SSBD); + + if (task_spec_ib_disable(tsk)) + set_tsk_thread_flag(tsk, TIF_SPEC_IB); + else + clear_tsk_thread_flag(tsk, TIF_SPEC_IB); + } + /* Return the updated threadinfo flags*/ + return task_thread_info(tsk)->flags; } -void speculative_store_bypass_update(unsigned long tif) +void speculation_ctrl_update(unsigned long tif) { + /* Forced update. Make sure all relevant TIF flags are different */ preempt_disable(); - __speculative_store_bypass_update(tif); + __speculation_ctrl_update(~tif, tif); preempt_enable(); } -void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, - struct tss_struct *tss) +/* Called from seccomp/prctl update */ +void speculation_ctrl_update_current(void) +{ + preempt_disable(); + speculation_ctrl_update(speculation_ctrl_update_tif(current)); + preempt_enable(); +} + +void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) { struct thread_struct *prev, *next; unsigned long tifp, tifn; @@ -430,7 +489,7 @@ void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, tifn = READ_ONCE(task_thread_info(next_p)->flags); tifp = READ_ONCE(task_thread_info(prev_p)->flags); - switch_to_bitmap(tss, prev, next, tifp, tifn); + switch_to_bitmap(prev, next, tifp, tifn); propagate_user_return_notify(prev_p, next_p); @@ -451,8 +510,15 @@ void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, if ((tifp ^ tifn) & _TIF_NOCPUID) set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); - if ((tifp ^ tifn) & _TIF_SSBD) - __speculative_store_bypass_update(tifn); + if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { + __speculation_ctrl_update(tifp, tifn); + } else { + speculation_ctrl_update_tif(prev_p); + tifn = speculation_ctrl_update_tif(next_p); + + /* Enforce MSR update to ensure consistent state */ + __speculation_ctrl_update(~tifn, tifn); + } } /* @@ -730,7 +796,7 @@ unsigned long get_wchan(struct task_struct *p) unsigned long start, bottom, top, sp, fp, ip, ret = 0; int count = 0; - if (!p || p == current || p->state == TASK_RUNNING) + if (p == current || p->state == TASK_RUNNING) return 0; if (!try_get_task_stack(p)) diff --git a/arch/x86/kernel/process.h b/arch/x86/kernel/process.h new file mode 100644 index 000000000000..320ab978fb1f --- /dev/null +++ b/arch/x86/kernel/process.h @@ -0,0 +1,39 @@ +// SPDX-License-Identifier: GPL-2.0 +// +// Code shared between 32 and 64 bit + +#include <asm/spec-ctrl.h> + +void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p); + +/* + * This needs to be inline to optimize for the common case where no extra + * work needs to be done. + */ +static inline void switch_to_extra(struct task_struct *prev, + struct task_struct *next) +{ + unsigned long next_tif = task_thread_info(next)->flags; + unsigned long prev_tif = task_thread_info(prev)->flags; + + if (IS_ENABLED(CONFIG_SMP)) { + /* + * Avoid __switch_to_xtra() invocation when conditional + * STIBP is disabled and the only different bit is + * TIF_SPEC_IB. For CONFIG_SMP=n TIF_SPEC_IB is not + * in the TIF_WORK_CTXSW masks. + */ + if (!static_branch_likely(&switch_to_cond_stibp)) { + prev_tif &= ~_TIF_SPEC_IB; + next_tif &= ~_TIF_SPEC_IB; + } + } + + /* + * __switch_to_xtra() handles debug registers, i/o bitmaps, + * speculation mitigations etc. + */ + if (unlikely(next_tif & _TIF_WORK_CTXSW_NEXT || + prev_tif & _TIF_WORK_CTXSW_PREV)) + __switch_to_xtra(prev, next); +} diff --git a/arch/x86/kernel/process_32.c b/arch/x86/kernel/process_32.c index 5046a3c9dec2..e471d8e6f0b2 100644 --- a/arch/x86/kernel/process_32.c +++ b/arch/x86/kernel/process_32.c @@ -44,9 +44,6 @@ #include <asm/processor.h> #include <asm/fpu/internal.h> #include <asm/desc.h> -#ifdef CONFIG_MATH_EMULATION -#include <asm/math_emu.h> -#endif #include <linux/err.h> @@ -56,9 +53,11 @@ #include <asm/debugreg.h> #include <asm/switch_to.h> #include <asm/vm86.h> -#include <asm/intel_rdt_sched.h> +#include <asm/resctrl_sched.h> #include <asm/proto.h> +#include "process.h" + void __show_regs(struct pt_regs *regs, enum show_regs_mode mode) { unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; @@ -232,7 +231,6 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p) struct fpu *prev_fpu = &prev->fpu; struct fpu *next_fpu = &next->fpu; int cpu = smp_processor_id(); - struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu); /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ @@ -264,12 +262,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p) if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) set_iopl_mask(next->iopl); - /* - * Now maybe handle debug registers and/or IO bitmaps - */ - if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || - task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) - __switch_to_xtra(prev_p, next_p, tss); + switch_to_extra(prev_p, next_p); /* * Leave lazy mode, flushing any hypercalls made here. @@ -302,7 +295,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p) this_cpu_write(current_task, next_p); /* Load the Intel cache allocation PQR MSR. */ - intel_rdt_sched_in(); + resctrl_sched_in(); return prev_p; } diff --git a/arch/x86/kernel/process_64.c b/arch/x86/kernel/process_64.c index 0e0b4288a4b2..6a62f4af9fcf 100644 --- a/arch/x86/kernel/process_64.c +++ b/arch/x86/kernel/process_64.c @@ -52,7 +52,7 @@ #include <asm/switch_to.h> #include <asm/xen/hypervisor.h> #include <asm/vdso.h> -#include <asm/intel_rdt_sched.h> +#include <asm/resctrl_sched.h> #include <asm/unistd.h> #include <asm/fsgsbase.h> #ifdef CONFIG_IA32_EMULATION @@ -60,13 +60,15 @@ #include <asm/unistd_32_ia32.h> #endif +#include "process.h" + /* Prints also some state that isn't saved in the pt_regs */ void __show_regs(struct pt_regs *regs, enum show_regs_mode mode) { unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; unsigned long d0, d1, d2, d3, d6, d7; unsigned int fsindex, gsindex; - unsigned int ds, cs, es; + unsigned int ds, es; show_iret_regs(regs); @@ -98,7 +100,6 @@ void __show_regs(struct pt_regs *regs, enum show_regs_mode mode) } asm("movl %%ds,%0" : "=r" (ds)); - asm("movl %%cs,%0" : "=r" (cs)); asm("movl %%es,%0" : "=r" (es)); asm("movl %%fs,%0" : "=r" (fsindex)); asm("movl %%gs,%0" : "=r" (gsindex)); @@ -114,7 +115,7 @@ void __show_regs(struct pt_regs *regs, enum show_regs_mode mode) printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", fs, fsindex, gs, gsindex, shadowgs); - printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, + printk(KERN_DEFAULT "CS: %04lx DS: %04x ES: %04x CR0: %016lx\n", regs->cs, ds, es, cr0); printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, cr4); @@ -337,24 +338,6 @@ static unsigned long x86_fsgsbase_read_task(struct task_struct *task, return base; } -void x86_fsbase_write_cpu(unsigned long fsbase) -{ - /* - * Set the selector to 0 as a notion, that the segment base is - * overwritten, which will be checked for skipping the segment load - * during context switch. - */ - loadseg(FS, 0); - wrmsrl(MSR_FS_BASE, fsbase); -} - -void x86_gsbase_write_cpu_inactive(unsigned long gsbase) -{ - /* Set the selector to 0 for the same reason as %fs above. */ - loadseg(GS, 0); - wrmsrl(MSR_KERNEL_GS_BASE, gsbase); -} - unsigned long x86_fsbase_read_task(struct task_struct *task) { unsigned long fsbase; @@ -383,38 +366,18 @@ unsigned long x86_gsbase_read_task(struct task_struct *task) return gsbase; } -int x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase) +void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase) { - /* - * Not strictly needed for %fs, but do it for symmetry - * with %gs - */ - if (unlikely(fsbase >= TASK_SIZE_MAX)) - return -EPERM; + WARN_ON_ONCE(task == current); - preempt_disable(); task->thread.fsbase = fsbase; - if (task == current) - x86_fsbase_write_cpu(fsbase); - task->thread.fsindex = 0; - preempt_enable(); - - return 0; } -int x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase) +void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase) { - if (unlikely(gsbase >= TASK_SIZE_MAX)) - return -EPERM; + WARN_ON_ONCE(task == current); - preempt_disable(); task->thread.gsbase = gsbase; - if (task == current) - x86_gsbase_write_cpu_inactive(gsbase); - task->thread.gsindex = 0; - preempt_enable(); - - return 0; } int copy_thread_tls(unsigned long clone_flags, unsigned long sp, @@ -553,7 +516,6 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p) struct fpu *prev_fpu = &prev->fpu; struct fpu *next_fpu = &next->fpu; int cpu = smp_processor_id(); - struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu); WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) && this_cpu_read(irq_count) != -1); @@ -617,12 +579,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p) /* Reload sp0. */ update_task_stack(next_p); - /* - * Now maybe reload the debug registers and handle I/O bitmaps - */ - if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT || - task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV)) - __switch_to_xtra(prev_p, next_p, tss); + switch_to_extra(prev_p, next_p); #ifdef CONFIG_XEN_PV /* @@ -664,7 +621,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p) } /* Load the Intel cache allocation PQR MSR. */ - intel_rdt_sched_in(); + resctrl_sched_in(); return prev_p; } @@ -688,7 +645,7 @@ void set_personality_64bit(void) /* TBD: overwrites user setup. Should have two bits. But 64bit processes have always behaved this way, so it's not too bad. The main problem is just that - 32bit childs are affected again. */ + 32bit children are affected again. */ current->personality &= ~READ_IMPLIES_EXEC; } @@ -758,11 +715,60 @@ long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2) switch (option) { case ARCH_SET_GS: { - ret = x86_gsbase_write_task(task, arg2); + if (unlikely(arg2 >= TASK_SIZE_MAX)) + return -EPERM; + + preempt_disable(); + /* + * ARCH_SET_GS has always overwritten the index + * and the base. Zero is the most sensible value + * to put in the index, and is the only value that + * makes any sense if FSGSBASE is unavailable. + */ + if (task == current) { + loadseg(GS, 0); + x86_gsbase_write_cpu_inactive(arg2); + + /* + * On non-FSGSBASE systems, save_base_legacy() expects + * that we also fill in thread.gsbase. + */ + task->thread.gsbase = arg2; + + } else { + task->thread.gsindex = 0; + x86_gsbase_write_task(task, arg2); + } + preempt_enable(); break; } case ARCH_SET_FS: { - ret = x86_fsbase_write_task(task, arg2); + /* + * Not strictly needed for %fs, but do it for symmetry + * with %gs + */ + if (unlikely(arg2 >= TASK_SIZE_MAX)) + return -EPERM; + + preempt_disable(); + /* + * Set the selector to 0 for the same reason + * as %gs above. + */ + if (task == current) { + loadseg(FS, 0); + x86_fsbase_write_cpu(arg2); + + /* + * On non-FSGSBASE systems, save_base_legacy() expects + * that we also fill in thread.fsbase. + */ + task->thread.fsbase = arg2; + } else { + task->thread.fsindex = 0; + x86_fsbase_write_task(task, arg2); + } + preempt_enable(); break; } case ARCH_GET_FS: { diff --git a/arch/x86/kernel/ptrace.c b/arch/x86/kernel/ptrace.c index ffae9b9740fd..4b8ee05dd6ad 100644 --- a/arch/x86/kernel/ptrace.c +++ b/arch/x86/kernel/ptrace.c @@ -397,11 +397,12 @@ static int putreg(struct task_struct *child, if (value >= TASK_SIZE_MAX) return -EIO; /* - * When changing the FS base, use the same - * mechanism as for do_arch_prctl_64(). + * When changing the FS base, use do_arch_prctl_64() + * to set the index to zero and to set the base + * as requested. */ if (child->thread.fsbase != value) - return x86_fsbase_write_task(child, value); + return do_arch_prctl_64(child, ARCH_SET_FS, value); return 0; case offsetof(struct user_regs_struct,gs_base): /* @@ -410,7 +411,7 @@ static int putreg(struct task_struct *child, if (value >= TASK_SIZE_MAX) return -EIO; if (child->thread.gsbase != value) - return x86_gsbase_write_task(child, value); + return do_arch_prctl_64(child, ARCH_SET_GS, value); return 0; #endif } diff --git a/arch/x86/kernel/quirks.c b/arch/x86/kernel/quirks.c index 736348ead421..8451f38ad399 100644 --- a/arch/x86/kernel/quirks.c +++ b/arch/x86/kernel/quirks.c @@ -7,6 +7,7 @@ #include <linux/irq.h> #include <asm/hpet.h> +#include <asm/setup.h> #if defined(CONFIG_X86_IO_APIC) && defined(CONFIG_SMP) && defined(CONFIG_PCI) diff --git a/arch/x86/kernel/setup.c b/arch/x86/kernel/setup.c index b74e7bfed6ab..d494b9bfe618 100644 --- a/arch/x86/kernel/setup.c +++ b/arch/x86/kernel/setup.c @@ -1280,23 +1280,6 @@ void __init setup_arch(char **cmdline_p) unwind_init(); } -/* - * From boot protocol 2.14 onwards we expect the bootloader to set the - * version to "0x8000 | <used version>". In case we find a version >= 2.14 - * without the 0x8000 we assume the boot loader supports 2.13 only and - * reset the version accordingly. The 0x8000 flag is removed in any case. - */ -void __init x86_verify_bootdata_version(void) -{ - if (boot_params.hdr.version & VERSION_WRITTEN) - boot_params.hdr.version &= ~VERSION_WRITTEN; - else if (boot_params.hdr.version >= 0x020e) - boot_params.hdr.version = 0x020d; - - if (boot_params.hdr.version < 0x020e) - boot_params.hdr.acpi_rsdp_addr = 0; -} - #ifdef CONFIG_X86_32 static struct resource video_ram_resource = { diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c index a9134d1910b9..ccd1f2a8e557 100644 --- a/arch/x86/kernel/smpboot.c +++ b/arch/x86/kernel/smpboot.c @@ -1347,7 +1347,7 @@ void __init calculate_max_logical_packages(void) * extrapolate the boot cpu's data to all packages. */ ncpus = cpu_data(0).booted_cores * topology_max_smt_threads(); - __max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus); + __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus); pr_info("Max logical packages: %u\n", __max_logical_packages); } diff --git a/arch/x86/kernel/sysfb_efi.c b/arch/x86/kernel/sysfb_efi.c index 623965e86b65..fa51723571c8 100644 --- a/arch/x86/kernel/sysfb_efi.c +++ b/arch/x86/kernel/sysfb_efi.c @@ -19,12 +19,15 @@ #include <linux/dmi.h> #include <linux/err.h> +#include <linux/efi.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/pci.h> #include <linux/screen_info.h> #include <video/vga.h> + +#include <asm/efi.h> #include <asm/sysfb.h> enum { diff --git a/arch/x86/kernel/tracepoint.c b/arch/x86/kernel/tracepoint.c index 5bd30c442794..496748ed266a 100644 --- a/arch/x86/kernel/tracepoint.c +++ b/arch/x86/kernel/tracepoint.c @@ -10,6 +10,8 @@ #include <asm/hw_irq.h> #include <asm/desc.h> +#include <asm/trace/exceptions.h> +#include <asm/trace/irq_vectors.h> DEFINE_STATIC_KEY_FALSE(trace_pagefault_key); diff --git a/arch/x86/kernel/vsmp_64.c b/arch/x86/kernel/vsmp_64.c index 1eae5af491c2..891a75dbc131 100644 --- a/arch/x86/kernel/vsmp_64.c +++ b/arch/x86/kernel/vsmp_64.c @@ -26,65 +26,8 @@ #define TOPOLOGY_REGISTER_OFFSET 0x10 -#if defined CONFIG_PCI && defined CONFIG_PARAVIRT_XXL -/* - * Interrupt control on vSMPowered systems: - * ~AC is a shadow of IF. If IF is 'on' AC should be 'off' - * and vice versa. - */ - -asmlinkage __visible unsigned long vsmp_save_fl(void) -{ - unsigned long flags = native_save_fl(); - - if (!(flags & X86_EFLAGS_IF) || (flags & X86_EFLAGS_AC)) - flags &= ~X86_EFLAGS_IF; - return flags; -} -PV_CALLEE_SAVE_REGS_THUNK(vsmp_save_fl); - -__visible void vsmp_restore_fl(unsigned long flags) -{ - if (flags & X86_EFLAGS_IF) - flags &= ~X86_EFLAGS_AC; - else - flags |= X86_EFLAGS_AC; - native_restore_fl(flags); -} -PV_CALLEE_SAVE_REGS_THUNK(vsmp_restore_fl); - -asmlinkage __visible void vsmp_irq_disable(void) -{ - unsigned long flags = native_save_fl(); - - native_restore_fl((flags & ~X86_EFLAGS_IF) | X86_EFLAGS_AC); -} -PV_CALLEE_SAVE_REGS_THUNK(vsmp_irq_disable); - -asmlinkage __visible void vsmp_irq_enable(void) -{ - unsigned long flags = native_save_fl(); - - native_restore_fl((flags | X86_EFLAGS_IF) & (~X86_EFLAGS_AC)); -} -PV_CALLEE_SAVE_REGS_THUNK(vsmp_irq_enable); - -static unsigned __init vsmp_patch(u8 type, void *ibuf, - unsigned long addr, unsigned len) -{ - switch (type) { - case PARAVIRT_PATCH(irq.irq_enable): - case PARAVIRT_PATCH(irq.irq_disable): - case PARAVIRT_PATCH(irq.save_fl): - case PARAVIRT_PATCH(irq.restore_fl): - return paravirt_patch_default(type, ibuf, addr, len); - default: - return native_patch(type, ibuf, addr, len); - } - -} - -static void __init set_vsmp_pv_ops(void) +#ifdef CONFIG_PCI +static void __init set_vsmp_ctl(void) { void __iomem *address; unsigned int cap, ctl, cfg; @@ -109,28 +52,12 @@ static void __init set_vsmp_pv_ops(void) } #endif - if (cap & ctl & (1 << 4)) { - /* Setup irq ops and turn on vSMP IRQ fastpath handling */ - pv_ops.irq.irq_disable = PV_CALLEE_SAVE(vsmp_irq_disable); - pv_ops.irq.irq_enable = PV_CALLEE_SAVE(vsmp_irq_enable); - pv_ops.irq.save_fl = PV_CALLEE_SAVE(vsmp_save_fl); - pv_ops.irq.restore_fl = PV_CALLEE_SAVE(vsmp_restore_fl); - pv_ops.init.patch = vsmp_patch; - ctl &= ~(1 << 4); - } writel(ctl, address + 4); ctl = readl(address + 4); pr_info("vSMP CTL: control set to:0x%08x\n", ctl); early_iounmap(address, 8); } -#else -static void __init set_vsmp_pv_ops(void) -{ -} -#endif - -#ifdef CONFIG_PCI static int is_vsmp = -1; static void __init detect_vsmp_box(void) @@ -164,11 +91,14 @@ static int is_vsmp_box(void) { return 0; } +static void __init set_vsmp_ctl(void) +{ +} #endif static void __init vsmp_cap_cpus(void) { -#if !defined(CONFIG_X86_VSMP) && defined(CONFIG_SMP) +#if !defined(CONFIG_X86_VSMP) && defined(CONFIG_SMP) && defined(CONFIG_PCI) void __iomem *address; unsigned int cfg, topology, node_shift, maxcpus; @@ -221,6 +151,6 @@ void __init vsmp_init(void) vsmp_cap_cpus(); - set_vsmp_pv_ops(); + set_vsmp_ctl(); return; } diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile index dc4f2fdf5e57..69b3a7c30013 100644 --- a/arch/x86/kvm/Makefile +++ b/arch/x86/kvm/Makefile @@ -16,7 +16,7 @@ kvm-y += x86.o mmu.o emulate.o i8259.o irq.o lapic.o \ i8254.o ioapic.o irq_comm.o cpuid.o pmu.o mtrr.o \ hyperv.o page_track.o debugfs.o -kvm-intel-y += vmx.o pmu_intel.o +kvm-intel-y += vmx/vmx.o vmx/vmenter.o vmx/pmu_intel.o vmx/vmcs12.o vmx/evmcs.o vmx/nested.o kvm-amd-y += svm.o pmu_amd.o obj-$(CONFIG_KVM) += kvm.o diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c index 7bcfa61375c0..bbffa6c54697 100644 --- a/arch/x86/kvm/cpuid.c +++ b/arch/x86/kvm/cpuid.c @@ -67,9 +67,6 @@ u64 kvm_supported_xcr0(void) #define F(x) bit(X86_FEATURE_##x) -/* For scattered features from cpufeatures.h; we currently expose none */ -#define KF(x) bit(KVM_CPUID_BIT_##x) - int kvm_update_cpuid(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; @@ -337,6 +334,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0; unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0; unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0; + unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0; /* cpuid 1.edx */ const u32 kvm_cpuid_1_edx_x86_features = @@ -380,8 +378,8 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, /* cpuid 0x80000008.ebx */ const u32 kvm_cpuid_8000_0008_ebx_x86_features = - F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | - F(AMD_SSB_NO); + F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | + F(AMD_SSB_NO) | F(AMD_STIBP); /* cpuid 0xC0000001.edx */ const u32 kvm_cpuid_C000_0001_edx_x86_features = @@ -395,7 +393,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) | - F(SHA_NI) | F(AVX512BW) | F(AVX512VL); + F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt; /* cpuid 0xD.1.eax */ const u32 kvm_cpuid_D_1_eax_x86_features = @@ -411,7 +409,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, /* cpuid 7.0.edx*/ const u32 kvm_cpuid_7_0_edx_x86_features = F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | - F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES); + F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP); /* all calls to cpuid_count() should be made on the same cpu */ get_cpu(); @@ -426,7 +424,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, switch (function) { case 0: - entry->eax = min(entry->eax, (u32)0xd); + entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd)); break; case 1: entry->edx &= kvm_cpuid_1_edx_x86_features; @@ -603,6 +601,23 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, } break; } + /* Intel PT */ + case 0x14: { + int t, times = entry->eax; + + if (!f_intel_pt) + break; + + entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + for (t = 1; t <= times; ++t) { + if (*nent >= maxnent) + goto out; + do_cpuid_1_ent(&entry[t], function, t); + entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + ++*nent; + } + break; + } case KVM_CPUID_SIGNATURE: { static const char signature[12] = "KVMKVMKVM\0\0"; const u32 *sigptr = (const u32 *)signature; diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c index 4e80080f277a..c90a5352d158 100644 --- a/arch/x86/kvm/hyperv.c +++ b/arch/x86/kvm/hyperv.c @@ -38,6 +38,9 @@ #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64) +static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, + bool vcpu_kick); + static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) { return atomic64_read(&synic->sint[sint]); @@ -158,59 +161,24 @@ static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) return (synic->active) ? synic : NULL; } -static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic, - u32 sint) -{ - struct kvm_vcpu *vcpu = synic_to_vcpu(synic); - struct page *page; - gpa_t gpa; - struct hv_message *msg; - struct hv_message_page *msg_page; - - gpa = synic->msg_page & PAGE_MASK; - page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); - if (is_error_page(page)) { - vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n", - gpa); - return; - } - msg_page = kmap_atomic(page); - - msg = &msg_page->sint_message[sint]; - msg->header.message_flags.msg_pending = 0; - - kunmap_atomic(msg_page); - kvm_release_page_dirty(page); - kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); -} - static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) { struct kvm *kvm = vcpu->kvm; struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu); struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); struct kvm_vcpu_hv_stimer *stimer; - int gsi, idx, stimers_pending; + int gsi, idx; trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); - if (synic->msg_page & HV_SYNIC_SIMP_ENABLE) - synic_clear_sint_msg_pending(synic, sint); - /* Try to deliver pending Hyper-V SynIC timers messages */ - stimers_pending = 0; for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { stimer = &hv_vcpu->stimer[idx]; - if (stimer->msg_pending && - (stimer->config & HV_STIMER_ENABLE) && - HV_STIMER_SINT(stimer->config) == sint) { - set_bit(stimer->index, - hv_vcpu->stimer_pending_bitmap); - stimers_pending++; - } + if (stimer->msg_pending && stimer->config.enable && + !stimer->config.direct_mode && + stimer->config.sintx == sint) + stimer_mark_pending(stimer, false); } - if (stimers_pending) - kvm_make_request(KVM_REQ_HV_STIMER, vcpu); idx = srcu_read_lock(&kvm->irq_srcu); gsi = atomic_read(&synic->sint_to_gsi[sint]); @@ -497,7 +465,7 @@ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm); ktime_now = ktime_get(); - if (stimer->config & HV_STIMER_PERIODIC) { + if (stimer->config.periodic) { if (stimer->exp_time) { if (time_now >= stimer->exp_time) { u64 remainder; @@ -546,13 +514,18 @@ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, bool host) { + union hv_stimer_config new_config = {.as_uint64 = config}, + old_config = {.as_uint64 = stimer->config.as_uint64}; + trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id, stimer->index, config, host); stimer_cleanup(stimer); - if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0) - config &= ~HV_STIMER_ENABLE; - stimer->config = config; + if (old_config.enable && + !new_config.direct_mode && new_config.sintx == 0) + new_config.enable = 0; + stimer->config.as_uint64 = new_config.as_uint64; + stimer_mark_pending(stimer, false); return 0; } @@ -566,16 +539,16 @@ static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, stimer_cleanup(stimer); stimer->count = count; if (stimer->count == 0) - stimer->config &= ~HV_STIMER_ENABLE; - else if (stimer->config & HV_STIMER_AUTOENABLE) - stimer->config |= HV_STIMER_ENABLE; + stimer->config.enable = 0; + else if (stimer->config.auto_enable) + stimer->config.enable = 1; stimer_mark_pending(stimer, false); return 0; } static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) { - *pconfig = stimer->config; + *pconfig = stimer->config.as_uint64; return 0; } @@ -586,44 +559,60 @@ static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) } static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, - struct hv_message *src_msg) + struct hv_message *src_msg, bool no_retry) { struct kvm_vcpu *vcpu = synic_to_vcpu(synic); - struct page *page; - gpa_t gpa; - struct hv_message *dst_msg; + int msg_off = offsetof(struct hv_message_page, sint_message[sint]); + gfn_t msg_page_gfn; + struct hv_message_header hv_hdr; int r; - struct hv_message_page *msg_page; if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) return -ENOENT; - gpa = synic->msg_page & PAGE_MASK; - page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); - if (is_error_page(page)) - return -EFAULT; + msg_page_gfn = synic->msg_page >> PAGE_SHIFT; - msg_page = kmap_atomic(page); - dst_msg = &msg_page->sint_message[sint]; - if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE, - src_msg->header.message_type) != HVMSG_NONE) { - dst_msg->header.message_flags.msg_pending = 1; - r = -EAGAIN; - } else { - memcpy(&dst_msg->u.payload, &src_msg->u.payload, - src_msg->header.payload_size); - dst_msg->header.message_type = src_msg->header.message_type; - dst_msg->header.payload_size = src_msg->header.payload_size; - r = synic_set_irq(synic, sint); - if (r >= 1) - r = 0; - else if (r == 0) - r = -EFAULT; + /* + * Strictly following the spec-mandated ordering would assume setting + * .msg_pending before checking .message_type. However, this function + * is only called in vcpu context so the entire update is atomic from + * guest POV and thus the exact order here doesn't matter. + */ + r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type, + msg_off + offsetof(struct hv_message, + header.message_type), + sizeof(hv_hdr.message_type)); + if (r < 0) + return r; + + if (hv_hdr.message_type != HVMSG_NONE) { + if (no_retry) + return 0; + + hv_hdr.message_flags.msg_pending = 1; + r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, + &hv_hdr.message_flags, + msg_off + + offsetof(struct hv_message, + header.message_flags), + sizeof(hv_hdr.message_flags)); + if (r < 0) + return r; + return -EAGAIN; } - kunmap_atomic(msg_page); - kvm_release_page_dirty(page); - kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); - return r; + + r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off, + sizeof(src_msg->header) + + src_msg->header.payload_size); + if (r < 0) + return r; + + r = synic_set_irq(synic, sint); + if (r < 0) + return r; + if (r == 0) + return -EFAULT; + return 0; } static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) @@ -633,24 +622,45 @@ static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) struct hv_timer_message_payload *payload = (struct hv_timer_message_payload *)&msg->u.payload; + /* + * To avoid piling up periodic ticks, don't retry message + * delivery for them (within "lazy" lost ticks policy). + */ + bool no_retry = stimer->config.periodic; + payload->expiration_time = stimer->exp_time; payload->delivery_time = get_time_ref_counter(vcpu->kvm); return synic_deliver_msg(vcpu_to_synic(vcpu), - HV_STIMER_SINT(stimer->config), msg); + stimer->config.sintx, msg, + no_retry); +} + +static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer) +{ + struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); + struct kvm_lapic_irq irq = { + .delivery_mode = APIC_DM_FIXED, + .vector = stimer->config.apic_vector + }; + + return !kvm_apic_set_irq(vcpu, &irq, NULL); } static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) { - int r; + int r, direct = stimer->config.direct_mode; stimer->msg_pending = true; - r = stimer_send_msg(stimer); + if (!direct) + r = stimer_send_msg(stimer); + else + r = stimer_notify_direct(stimer); trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id, - stimer->index, r); + stimer->index, direct, r); if (!r) { stimer->msg_pending = false; - if (!(stimer->config & HV_STIMER_PERIODIC)) - stimer->config &= ~HV_STIMER_ENABLE; + if (!(stimer->config.periodic)) + stimer->config.enable = 0; } } @@ -664,7 +674,7 @@ void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { stimer = &hv_vcpu->stimer[i]; - if (stimer->config & HV_STIMER_ENABLE) { + if (stimer->config.enable) { exp_time = stimer->exp_time; if (exp_time) { @@ -674,7 +684,7 @@ void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) stimer_expiration(stimer); } - if ((stimer->config & HV_STIMER_ENABLE) && + if ((stimer->config.enable) && stimer->count) { if (!stimer->msg_pending) stimer_start(stimer); @@ -815,9 +825,9 @@ static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host) struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; if (host) - hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY; + hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY; - if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) { + if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) { vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", hv->hv_crash_param[0], @@ -1758,3 +1768,124 @@ int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) return kvm_hv_eventfd_deassign(kvm, args->conn_id); return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); } + +int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries) +{ + uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu); + struct kvm_cpuid_entry2 cpuid_entries[] = { + { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS }, + { .function = HYPERV_CPUID_INTERFACE }, + { .function = HYPERV_CPUID_VERSION }, + { .function = HYPERV_CPUID_FEATURES }, + { .function = HYPERV_CPUID_ENLIGHTMENT_INFO }, + { .function = HYPERV_CPUID_IMPLEMENT_LIMITS }, + { .function = HYPERV_CPUID_NESTED_FEATURES }, + }; + int i, nent = ARRAY_SIZE(cpuid_entries); + + /* Skip NESTED_FEATURES if eVMCS is not supported */ + if (!evmcs_ver) + --nent; + + if (cpuid->nent < nent) + return -E2BIG; + + if (cpuid->nent > nent) + cpuid->nent = nent; + + for (i = 0; i < nent; i++) { + struct kvm_cpuid_entry2 *ent = &cpuid_entries[i]; + u32 signature[3]; + + switch (ent->function) { + case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS: + memcpy(signature, "Linux KVM Hv", 12); + + ent->eax = HYPERV_CPUID_NESTED_FEATURES; + ent->ebx = signature[0]; + ent->ecx = signature[1]; + ent->edx = signature[2]; + break; + + case HYPERV_CPUID_INTERFACE: + memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); + ent->eax = signature[0]; + break; + + case HYPERV_CPUID_VERSION: + /* + * We implement some Hyper-V 2016 functions so let's use + * this version. + */ + ent->eax = 0x00003839; + ent->ebx = 0x000A0000; + break; + + case HYPERV_CPUID_FEATURES: + ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; + ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE; + ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE; + ent->eax |= HV_MSR_SYNTIMER_AVAILABLE; + ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; + ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; + ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE; + ent->eax |= HV_X64_MSR_RESET_AVAILABLE; + ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE; + ent->eax |= HV_X64_MSR_GUEST_IDLE_AVAILABLE; + ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS; + ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT; + + ent->ebx |= HV_X64_POST_MESSAGES; + ent->ebx |= HV_X64_SIGNAL_EVENTS; + + ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE; + ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; + ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE; + + break; + + case HYPERV_CPUID_ENLIGHTMENT_INFO: + ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; + ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; + ent->eax |= HV_X64_SYSTEM_RESET_RECOMMENDED; + ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; + ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED; + ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED; + ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; + + /* + * Default number of spinlock retry attempts, matches + * HyperV 2016. + */ + ent->ebx = 0x00000FFF; + + break; + + case HYPERV_CPUID_IMPLEMENT_LIMITS: + /* Maximum number of virtual processors */ + ent->eax = KVM_MAX_VCPUS; + /* + * Maximum number of logical processors, matches + * HyperV 2016. + */ + ent->ebx = 64; + + break; + + case HYPERV_CPUID_NESTED_FEATURES: + ent->eax = evmcs_ver; + + break; + + default: + break; + } + } + + if (copy_to_user(entries, cpuid_entries, + nent * sizeof(struct kvm_cpuid_entry2))) + return -EFAULT; + + return 0; +} diff --git a/arch/x86/kvm/hyperv.h b/arch/x86/kvm/hyperv.h index 0e66c12ed2c3..fd7cf13a2144 100644 --- a/arch/x86/kvm/hyperv.h +++ b/arch/x86/kvm/hyperv.h @@ -24,6 +24,8 @@ #ifndef __ARCH_X86_KVM_HYPERV_H__ #define __ARCH_X86_KVM_HYPERV_H__ +#include <linux/kvm_host.h> + static inline struct kvm_vcpu_hv *vcpu_to_hv_vcpu(struct kvm_vcpu *vcpu) { return &vcpu->arch.hyperv; @@ -95,5 +97,7 @@ void kvm_hv_setup_tsc_page(struct kvm *kvm, void kvm_hv_init_vm(struct kvm *kvm); void kvm_hv_destroy_vm(struct kvm *kvm); int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args); +int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries); #endif diff --git a/arch/x86/kvm/kvm_cache_regs.h b/arch/x86/kvm/kvm_cache_regs.h index 9619dcc2b325..f8f56a93358b 100644 --- a/arch/x86/kvm/kvm_cache_regs.h +++ b/arch/x86/kvm/kvm_cache_regs.h @@ -2,6 +2,8 @@ #ifndef ASM_KVM_CACHE_REGS_H #define ASM_KVM_CACHE_REGS_H +#include <linux/kvm_host.h> + #define KVM_POSSIBLE_CR0_GUEST_BITS X86_CR0_TS #define KVM_POSSIBLE_CR4_GUEST_BITS \ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c index 89db20f8cb70..9f089e2e09d0 100644 --- a/arch/x86/kvm/lapic.c +++ b/arch/x86/kvm/lapic.c @@ -55,7 +55,7 @@ #define PRIo64 "o" /* #define apic_debug(fmt,arg...) printk(KERN_WARNING fmt,##arg) */ -#define apic_debug(fmt, arg...) +#define apic_debug(fmt, arg...) do {} while (0) /* 14 is the version for Xeon and Pentium 8.4.8*/ #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) @@ -251,10 +251,9 @@ static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) if (enabled != apic->sw_enabled) { apic->sw_enabled = enabled; - if (enabled) { + if (enabled) static_key_slow_dec_deferred(&apic_sw_disabled); - recalculate_apic_map(apic->vcpu->kvm); - } else + else static_key_slow_inc(&apic_sw_disabled.key); } } @@ -576,6 +575,11 @@ int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, rcu_read_lock(); map = rcu_dereference(kvm->arch.apic_map); + if (unlikely(!map)) { + count = -EOPNOTSUPP; + goto out; + } + if (min > map->max_apic_id) goto out; /* Bits above cluster_size are masked in the caller. */ diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c index cf5f572f2305..ce770b446238 100644 --- a/arch/x86/kvm/mmu.c +++ b/arch/x86/kvm/mmu.c @@ -264,6 +264,35 @@ static void mmu_spte_set(u64 *sptep, u64 spte); static union kvm_mmu_page_role kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); + +static inline bool kvm_available_flush_tlb_with_range(void) +{ + return kvm_x86_ops->tlb_remote_flush_with_range; +} + +static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, + struct kvm_tlb_range *range) +{ + int ret = -ENOTSUPP; + + if (range && kvm_x86_ops->tlb_remote_flush_with_range) + ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range); + + if (ret) + kvm_flush_remote_tlbs(kvm); +} + +static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, + u64 start_gfn, u64 pages) +{ + struct kvm_tlb_range range; + + range.start_gfn = start_gfn; + range.pages = pages; + + kvm_flush_remote_tlbs_with_range(kvm, &range); +} + void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value) { BUG_ON((mmio_mask & mmio_value) != mmio_value); @@ -1456,8 +1485,12 @@ static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) { - if (__drop_large_spte(vcpu->kvm, sptep)) - kvm_flush_remote_tlbs(vcpu->kvm); + if (__drop_large_spte(vcpu->kvm, sptep)) { + struct kvm_mmu_page *sp = page_header(__pa(sptep)); + + kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); + } } /* @@ -1743,10 +1776,12 @@ restart: } } - if (need_flush) - kvm_flush_remote_tlbs(kvm); + if (need_flush && kvm_available_flush_tlb_with_range()) { + kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); + return 0; + } - return 0; + return need_flush; } struct slot_rmap_walk_iterator { @@ -1880,9 +1915,9 @@ int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); } -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) { - kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); + return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); } static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, @@ -1925,7 +1960,8 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); } int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) @@ -2441,7 +2477,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, account_shadowed(vcpu->kvm, sp); if (level == PT_PAGE_TABLE_LEVEL && rmap_write_protect(vcpu, gfn)) - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); if (level > PT_PAGE_TABLE_LEVEL && need_sync) flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); @@ -2561,7 +2597,7 @@ static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, return; drop_parent_pte(child, sptep); - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); } } @@ -2985,8 +3021,10 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, ret = RET_PF_EMULATE; kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); } + if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, + KVM_PAGES_PER_HPAGE(level)); if (unlikely(is_mmio_spte(*sptep))) ret = RET_PF_EMULATE; @@ -5074,9 +5112,9 @@ static bool need_remote_flush(u64 old, u64 new) } static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, - const u8 *new, int *bytes) + int *bytes) { - u64 gentry; + u64 gentry = 0; int r; /* @@ -5088,22 +5126,12 @@ static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ *gpa &= ~(gpa_t)7; *bytes = 8; - r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8); - if (r) - gentry = 0; - new = (const u8 *)&gentry; } - switch (*bytes) { - case 4: - gentry = *(const u32 *)new; - break; - case 8: - gentry = *(const u64 *)new; - break; - default: - gentry = 0; - break; + if (*bytes == 4 || *bytes == 8) { + r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); + if (r) + gentry = 0; } return gentry; @@ -5207,8 +5235,6 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); - gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes); - /* * No need to care whether allocation memory is successful * or not since pte prefetch is skiped if it does not have @@ -5217,6 +5243,9 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, mmu_topup_memory_caches(vcpu); spin_lock(&vcpu->kvm->mmu_lock); + + gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); + ++vcpu->kvm->stat.mmu_pte_write; kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); @@ -5595,8 +5624,13 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; + bool flush_tlb = true; + bool flush = false; int i; + if (kvm_available_flush_tlb_with_range()) + flush_tlb = false; + spin_lock(&kvm->mmu_lock); for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { slots = __kvm_memslots(kvm, i); @@ -5608,12 +5642,17 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) if (start >= end) continue; - slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, - PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL, - start, end - 1, true); + flush |= slot_handle_level_range(kvm, memslot, + kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL, + PT_MAX_HUGEPAGE_LEVEL, start, + end - 1, flush_tlb); } } + if (flush) + kvm_flush_remote_tlbs_with_address(kvm, gfn_start, + gfn_end - gfn_start + 1); + spin_unlock(&kvm->mmu_lock); } @@ -5647,12 +5686,13 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, * spte from present to present (changing the spte from present * to nonpresent will flush all the TLBs immediately), in other * words, the only case we care is mmu_spte_update() where we - * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE + * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE * instead of PT_WRITABLE_MASK, that means it does not depend * on PT_WRITABLE_MASK anymore. */ if (flush) - kvm_flush_remote_tlbs(kvm); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); } static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, @@ -5680,7 +5720,13 @@ restart: !kvm_is_reserved_pfn(pfn) && PageTransCompoundMap(pfn_to_page(pfn))) { pte_list_remove(rmap_head, sptep); - need_tlb_flush = 1; + + if (kvm_available_flush_tlb_with_range()) + kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); + else + need_tlb_flush = 1; + goto restart; } } @@ -5716,7 +5762,8 @@ void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, * dirty_bitmap. */ if (flush) - kvm_flush_remote_tlbs(kvm); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); } EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); @@ -5734,7 +5781,8 @@ void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, lockdep_assert_held(&kvm->slots_lock); if (flush) - kvm_flush_remote_tlbs(kvm); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); } EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); @@ -5751,7 +5799,8 @@ void kvm_mmu_slot_set_dirty(struct kvm *kvm, /* see kvm_mmu_slot_leaf_clear_dirty */ if (flush) - kvm_flush_remote_tlbs(kvm); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); } EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h index 7cf2185b7eb5..6bdca39829bc 100644 --- a/arch/x86/kvm/paging_tmpl.h +++ b/arch/x86/kvm/paging_tmpl.h @@ -894,7 +894,8 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, + sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); if (!rmap_can_add(vcpu)) break; diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c index 0e21ccc46792..307e5bddb6d9 100644 --- a/arch/x86/kvm/svm.c +++ b/arch/x86/kvm/svm.c @@ -675,11 +675,6 @@ struct svm_cpu_data { static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); -struct svm_init_data { - int cpu; - int r; -}; - static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) @@ -711,17 +706,17 @@ static u32 svm_msrpm_offset(u32 msr) static inline void clgi(void) { - asm volatile (__ex(SVM_CLGI)); + asm volatile (__ex("clgi")); } static inline void stgi(void) { - asm volatile (__ex(SVM_STGI)); + asm volatile (__ex("stgi")); } static inline void invlpga(unsigned long addr, u32 asid) { - asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid)); + asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); } static int get_npt_level(struct kvm_vcpu *vcpu) @@ -1446,7 +1441,7 @@ static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu) return vcpu->arch.tsc_offset; } -static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) +static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) { struct vcpu_svm *svm = to_svm(vcpu); u64 g_tsc_offset = 0; @@ -1456,14 +1451,16 @@ static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) g_tsc_offset = svm->vmcb->control.tsc_offset - svm->nested.hsave->control.tsc_offset; svm->nested.hsave->control.tsc_offset = offset; - } else - trace_kvm_write_tsc_offset(vcpu->vcpu_id, - svm->vmcb->control.tsc_offset, - offset); + } + + trace_kvm_write_tsc_offset(vcpu->vcpu_id, + svm->vmcb->control.tsc_offset - g_tsc_offset, + offset); svm->vmcb->control.tsc_offset = offset + g_tsc_offset; mark_dirty(svm->vmcb, VMCB_INTERCEPTS); + return svm->vmcb->control.tsc_offset; } static void avic_init_vmcb(struct vcpu_svm *svm) @@ -1664,20 +1661,23 @@ static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, static int avic_init_access_page(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; - int ret; + int ret = 0; + mutex_lock(&kvm->slots_lock); if (kvm->arch.apic_access_page_done) - return 0; + goto out; - ret = x86_set_memory_region(kvm, - APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, - APIC_DEFAULT_PHYS_BASE, - PAGE_SIZE); + ret = __x86_set_memory_region(kvm, + APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, + APIC_DEFAULT_PHYS_BASE, + PAGE_SIZE); if (ret) - return ret; + goto out; kvm->arch.apic_access_page_done = true; - return 0; +out: + mutex_unlock(&kvm->slots_lock); + return ret; } static int avic_init_backing_page(struct kvm_vcpu *vcpu) @@ -2125,6 +2125,13 @@ static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) goto out; } + svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL); + if (!svm->vcpu.arch.guest_fpu) { + printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); + err = -ENOMEM; + goto free_partial_svm; + } + err = kvm_vcpu_init(&svm->vcpu, kvm, id); if (err) goto free_svm; @@ -2184,26 +2191,39 @@ free_page1: uninit: kvm_vcpu_uninit(&svm->vcpu); free_svm: + kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu); +free_partial_svm: kmem_cache_free(kvm_vcpu_cache, svm); out: return ERR_PTR(err); } +static void svm_clear_current_vmcb(struct vmcb *vmcb) +{ + int i; + + for_each_online_cpu(i) + cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); +} + static void svm_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); + /* + * The vmcb page can be recycled, causing a false negative in + * svm_vcpu_load(). So, ensure that no logical CPU has this + * vmcb page recorded as its current vmcb. + */ + svm_clear_current_vmcb(svm->vmcb); + __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); __free_page(virt_to_page(svm->nested.hsave)); __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); kvm_vcpu_uninit(vcpu); + kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu); kmem_cache_free(kvm_vcpu_cache, svm); - /* - * The vmcb page can be recycled, causing a false negative in - * svm_vcpu_load(). So do a full IBPB now. - */ - indirect_branch_prediction_barrier(); } static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) @@ -2923,6 +2943,8 @@ static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) { WARN_ON(mmu_is_nested(vcpu)); + + vcpu->arch.mmu = &vcpu->arch.guest_mmu; kvm_init_shadow_mmu(vcpu); vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3; vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3; @@ -2935,6 +2957,7 @@ static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) { + vcpu->arch.mmu = &vcpu->arch.root_mmu; vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; } @@ -3261,6 +3284,8 @@ static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *fr dst->event_inj_err = from->event_inj_err; dst->nested_cr3 = from->nested_cr3; dst->virt_ext = from->virt_ext; + dst->pause_filter_count = from->pause_filter_count; + dst->pause_filter_thresh = from->pause_filter_thresh; } static int nested_svm_vmexit(struct vcpu_svm *svm) @@ -3339,6 +3364,11 @@ static int nested_svm_vmexit(struct vcpu_svm *svm) nested_vmcb->control.event_inj = 0; nested_vmcb->control.event_inj_err = 0; + nested_vmcb->control.pause_filter_count = + svm->vmcb->control.pause_filter_count; + nested_vmcb->control.pause_filter_thresh = + svm->vmcb->control.pause_filter_thresh; + /* We always set V_INTR_MASKING and remember the old value in hflags */ if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; @@ -3444,7 +3474,6 @@ static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, svm->vcpu.arch.hflags &= ~HF_HIF_MASK; if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) { - kvm_mmu_unload(&svm->vcpu); svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; nested_svm_init_mmu_context(&svm->vcpu); } @@ -3516,6 +3545,11 @@ static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; + svm->vmcb->control.pause_filter_count = + nested_vmcb->control.pause_filter_count; + svm->vmcb->control.pause_filter_thresh = + nested_vmcb->control.pause_filter_thresh; + nested_svm_unmap(page); /* Enter Guest-Mode */ @@ -5620,9 +5654,9 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu) /* Enter guest mode */ "push %%" _ASM_AX " \n\t" "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t" - __ex(SVM_VMLOAD) "\n\t" - __ex(SVM_VMRUN) "\n\t" - __ex(SVM_VMSAVE) "\n\t" + __ex("vmload %%" _ASM_AX) "\n\t" + __ex("vmrun %%" _ASM_AX) "\n\t" + __ex("vmsave %%" _ASM_AX) "\n\t" "pop %%" _ASM_AX " \n\t" /* Save guest registers, load host registers */ @@ -5820,6 +5854,13 @@ static bool svm_cpu_has_accelerated_tpr(void) static bool svm_has_emulated_msr(int index) { + switch (index) { + case MSR_IA32_MCG_EXT_CTL: + return false; + default: + break; + } + return true; } @@ -5908,6 +5949,11 @@ static bool svm_umip_emulated(void) return false; } +static bool svm_pt_supported(void) +{ + return false; +} + static bool svm_has_wbinvd_exit(void) { return true; @@ -7037,6 +7083,12 @@ failed: return ret; } +static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu) +{ + /* Not supported */ + return 0; +} + static int nested_enable_evmcs(struct kvm_vcpu *vcpu, uint16_t *vmcs_version) { @@ -7143,13 +7195,14 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = { .mpx_supported = svm_mpx_supported, .xsaves_supported = svm_xsaves_supported, .umip_emulated = svm_umip_emulated, + .pt_supported = svm_pt_supported, .set_supported_cpuid = svm_set_supported_cpuid, .has_wbinvd_exit = svm_has_wbinvd_exit, .read_l1_tsc_offset = svm_read_l1_tsc_offset, - .write_tsc_offset = svm_write_tsc_offset, + .write_l1_tsc_offset = svm_write_l1_tsc_offset, .set_tdp_cr3 = set_tdp_cr3, @@ -7175,6 +7228,7 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = { .mem_enc_unreg_region = svm_unregister_enc_region, .nested_enable_evmcs = nested_enable_evmcs, + .nested_get_evmcs_version = nested_get_evmcs_version, }; static int __init svm_init(void) diff --git a/arch/x86/kvm/trace.h b/arch/x86/kvm/trace.h index 0659465a745c..705f40ae2532 100644 --- a/arch/x86/kvm/trace.h +++ b/arch/x86/kvm/trace.h @@ -1254,24 +1254,26 @@ TRACE_EVENT(kvm_hv_stimer_callback, * Tracepoint for stimer_expiration. */ TRACE_EVENT(kvm_hv_stimer_expiration, - TP_PROTO(int vcpu_id, int timer_index, int msg_send_result), - TP_ARGS(vcpu_id, timer_index, msg_send_result), + TP_PROTO(int vcpu_id, int timer_index, int direct, int msg_send_result), + TP_ARGS(vcpu_id, timer_index, direct, msg_send_result), TP_STRUCT__entry( __field(int, vcpu_id) __field(int, timer_index) + __field(int, direct) __field(int, msg_send_result) ), TP_fast_assign( __entry->vcpu_id = vcpu_id; __entry->timer_index = timer_index; + __entry->direct = direct; __entry->msg_send_result = msg_send_result; ), - TP_printk("vcpu_id %d timer %d msg send result %d", + TP_printk("vcpu_id %d timer %d direct %d send result %d", __entry->vcpu_id, __entry->timer_index, - __entry->msg_send_result) + __entry->direct, __entry->msg_send_result) ); /* diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c deleted file mode 100644 index 4555077d69ce..000000000000 --- a/arch/x86/kvm/vmx.c +++ /dev/null @@ -1,15218 +0,0 @@ -/* - * Kernel-based Virtual Machine driver for Linux - * - * This module enables machines with Intel VT-x extensions to run virtual - * machines without emulation or binary translation. - * - * Copyright (C) 2006 Qumranet, Inc. - * Copyright 2010 Red Hat, Inc. and/or its affiliates. - * - * Authors: - * Avi Kivity <avi@qumranet.com> - * Yaniv Kamay <yaniv@qumranet.com> - * - * This work is licensed under the terms of the GNU GPL, version 2. See - * the COPYING file in the top-level directory. - * - */ - -#include "irq.h" -#include "mmu.h" -#include "cpuid.h" -#include "lapic.h" -#include "hyperv.h" - -#include <linux/kvm_host.h> -#include <linux/module.h> -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/highmem.h> -#include <linux/sched.h> -#include <linux/moduleparam.h> -#include <linux/mod_devicetable.h> -#include <linux/trace_events.h> -#include <linux/slab.h> -#include <linux/tboot.h> -#include <linux/hrtimer.h> -#include <linux/frame.h> -#include <linux/nospec.h> -#include "kvm_cache_regs.h" -#include "x86.h" - -#include <asm/asm.h> -#include <asm/cpu.h> -#include <asm/io.h> -#include <asm/desc.h> -#include <asm/vmx.h> -#include <asm/virtext.h> -#include <asm/mce.h> -#include <asm/fpu/internal.h> -#include <asm/perf_event.h> -#include <asm/debugreg.h> -#include <asm/kexec.h> -#include <asm/apic.h> -#include <asm/irq_remapping.h> -#include <asm/mmu_context.h> -#include <asm/spec-ctrl.h> -#include <asm/mshyperv.h> - -#include "trace.h" -#include "pmu.h" -#include "vmx_evmcs.h" - -#define __ex(x) __kvm_handle_fault_on_reboot(x) -#define __ex_clear(x, reg) \ - ____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg) - -MODULE_AUTHOR("Qumranet"); -MODULE_LICENSE("GPL"); - -static const struct x86_cpu_id vmx_cpu_id[] = { - X86_FEATURE_MATCH(X86_FEATURE_VMX), - {} -}; -MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); - -static bool __read_mostly enable_vpid = 1; -module_param_named(vpid, enable_vpid, bool, 0444); - -static bool __read_mostly enable_vnmi = 1; -module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); - -static bool __read_mostly flexpriority_enabled = 1; -module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); - -static bool __read_mostly enable_ept = 1; -module_param_named(ept, enable_ept, bool, S_IRUGO); - -static bool __read_mostly enable_unrestricted_guest = 1; -module_param_named(unrestricted_guest, - enable_unrestricted_guest, bool, S_IRUGO); - -static bool __read_mostly enable_ept_ad_bits = 1; -module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); - -static bool __read_mostly emulate_invalid_guest_state = true; -module_param(emulate_invalid_guest_state, bool, S_IRUGO); - -static bool __read_mostly fasteoi = 1; -module_param(fasteoi, bool, S_IRUGO); - -static bool __read_mostly enable_apicv = 1; -module_param(enable_apicv, bool, S_IRUGO); - -static bool __read_mostly enable_shadow_vmcs = 1; -module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); -/* - * If nested=1, nested virtualization is supported, i.e., guests may use - * VMX and be a hypervisor for its own guests. If nested=0, guests may not - * use VMX instructions. - */ -static bool __read_mostly nested = 1; -module_param(nested, bool, S_IRUGO); - -static bool __read_mostly nested_early_check = 0; -module_param(nested_early_check, bool, S_IRUGO); - -static u64 __read_mostly host_xss; - -static bool __read_mostly enable_pml = 1; -module_param_named(pml, enable_pml, bool, S_IRUGO); - -#define MSR_TYPE_R 1 -#define MSR_TYPE_W 2 -#define MSR_TYPE_RW 3 - -#define MSR_BITMAP_MODE_X2APIC 1 -#define MSR_BITMAP_MODE_X2APIC_APICV 2 - -#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL - -/* Guest_tsc -> host_tsc conversion requires 64-bit division. */ -static int __read_mostly cpu_preemption_timer_multi; -static bool __read_mostly enable_preemption_timer = 1; -#ifdef CONFIG_X86_64 -module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); -#endif - -#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) -#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE -#define KVM_VM_CR0_ALWAYS_ON \ - (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ - X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) -#define KVM_CR4_GUEST_OWNED_BITS \ - (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ - | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) - -#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE -#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) -#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) - -#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) - -#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 - -/* - * Hyper-V requires all of these, so mark them as supported even though - * they are just treated the same as all-context. - */ -#define VMX_VPID_EXTENT_SUPPORTED_MASK \ - (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ - VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ - VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ - VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) - -/* - * These 2 parameters are used to config the controls for Pause-Loop Exiting: - * ple_gap: upper bound on the amount of time between two successive - * executions of PAUSE in a loop. Also indicate if ple enabled. - * According to test, this time is usually smaller than 128 cycles. - * ple_window: upper bound on the amount of time a guest is allowed to execute - * in a PAUSE loop. Tests indicate that most spinlocks are held for - * less than 2^12 cycles - * Time is measured based on a counter that runs at the same rate as the TSC, - * refer SDM volume 3b section 21.6.13 & 22.1.3. - */ -static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; - -static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; -module_param(ple_window, uint, 0444); - -/* Default doubles per-vcpu window every exit. */ -static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; -module_param(ple_window_grow, uint, 0444); - -/* Default resets per-vcpu window every exit to ple_window. */ -static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; -module_param(ple_window_shrink, uint, 0444); - -/* Default is to compute the maximum so we can never overflow. */ -static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; -module_param(ple_window_max, uint, 0444); - -extern const ulong vmx_return; -extern const ulong vmx_early_consistency_check_return; - -static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); -static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); -static DEFINE_MUTEX(vmx_l1d_flush_mutex); - -/* Storage for pre module init parameter parsing */ -static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; - -static const struct { - const char *option; - bool for_parse; -} vmentry_l1d_param[] = { - [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, - [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, - [VMENTER_L1D_FLUSH_COND] = {"cond", true}, - [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, - [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, - [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, -}; - -#define L1D_CACHE_ORDER 4 -static void *vmx_l1d_flush_pages; - -static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) -{ - struct page *page; - unsigned int i; - - if (!enable_ept) { - l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; - return 0; - } - - if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { - u64 msr; - - rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); - if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { - l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; - return 0; - } - } - - /* If set to auto use the default l1tf mitigation method */ - if (l1tf == VMENTER_L1D_FLUSH_AUTO) { - switch (l1tf_mitigation) { - case L1TF_MITIGATION_OFF: - l1tf = VMENTER_L1D_FLUSH_NEVER; - break; - case L1TF_MITIGATION_FLUSH_NOWARN: - case L1TF_MITIGATION_FLUSH: - case L1TF_MITIGATION_FLUSH_NOSMT: - l1tf = VMENTER_L1D_FLUSH_COND; - break; - case L1TF_MITIGATION_FULL: - case L1TF_MITIGATION_FULL_FORCE: - l1tf = VMENTER_L1D_FLUSH_ALWAYS; - break; - } - } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { - l1tf = VMENTER_L1D_FLUSH_ALWAYS; - } - - if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && - !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { - page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); - if (!page) - return -ENOMEM; - vmx_l1d_flush_pages = page_address(page); - - /* - * Initialize each page with a different pattern in - * order to protect against KSM in the nested - * virtualization case. - */ - for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { - memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, - PAGE_SIZE); - } - } - - l1tf_vmx_mitigation = l1tf; - - if (l1tf != VMENTER_L1D_FLUSH_NEVER) - static_branch_enable(&vmx_l1d_should_flush); - else - static_branch_disable(&vmx_l1d_should_flush); - - if (l1tf == VMENTER_L1D_FLUSH_COND) - static_branch_enable(&vmx_l1d_flush_cond); - else - static_branch_disable(&vmx_l1d_flush_cond); - return 0; -} - -static int vmentry_l1d_flush_parse(const char *s) -{ - unsigned int i; - - if (s) { - for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { - if (vmentry_l1d_param[i].for_parse && - sysfs_streq(s, vmentry_l1d_param[i].option)) - return i; - } - } - return -EINVAL; -} - -static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) -{ - int l1tf, ret; - - l1tf = vmentry_l1d_flush_parse(s); - if (l1tf < 0) - return l1tf; - - if (!boot_cpu_has(X86_BUG_L1TF)) - return 0; - - /* - * Has vmx_init() run already? If not then this is the pre init - * parameter parsing. In that case just store the value and let - * vmx_init() do the proper setup after enable_ept has been - * established. - */ - if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { - vmentry_l1d_flush_param = l1tf; - return 0; - } - - mutex_lock(&vmx_l1d_flush_mutex); - ret = vmx_setup_l1d_flush(l1tf); - mutex_unlock(&vmx_l1d_flush_mutex); - return ret; -} - -static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) -{ - if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) - return sprintf(s, "???\n"); - - return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); -} - -static const struct kernel_param_ops vmentry_l1d_flush_ops = { - .set = vmentry_l1d_flush_set, - .get = vmentry_l1d_flush_get, -}; -module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); - -enum ept_pointers_status { - EPT_POINTERS_CHECK = 0, - EPT_POINTERS_MATCH = 1, - EPT_POINTERS_MISMATCH = 2 -}; - -struct kvm_vmx { - struct kvm kvm; - - unsigned int tss_addr; - bool ept_identity_pagetable_done; - gpa_t ept_identity_map_addr; - - enum ept_pointers_status ept_pointers_match; - spinlock_t ept_pointer_lock; -}; - -#define NR_AUTOLOAD_MSRS 8 - -struct vmcs_hdr { - u32 revision_id:31; - u32 shadow_vmcs:1; -}; - -struct vmcs { - struct vmcs_hdr hdr; - u32 abort; - char data[0]; -}; - -/* - * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT - * and whose values change infrequently, but are not constant. I.e. this is - * used as a write-through cache of the corresponding VMCS fields. - */ -struct vmcs_host_state { - unsigned long cr3; /* May not match real cr3 */ - unsigned long cr4; /* May not match real cr4 */ - unsigned long gs_base; - unsigned long fs_base; - - u16 fs_sel, gs_sel, ldt_sel; -#ifdef CONFIG_X86_64 - u16 ds_sel, es_sel; -#endif -}; - -/* - * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also - * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs - * loaded on this CPU (so we can clear them if the CPU goes down). - */ -struct loaded_vmcs { - struct vmcs *vmcs; - struct vmcs *shadow_vmcs; - int cpu; - bool launched; - bool nmi_known_unmasked; - bool hv_timer_armed; - /* Support for vnmi-less CPUs */ - int soft_vnmi_blocked; - ktime_t entry_time; - s64 vnmi_blocked_time; - unsigned long *msr_bitmap; - struct list_head loaded_vmcss_on_cpu_link; - struct vmcs_host_state host_state; -}; - -struct shared_msr_entry { - unsigned index; - u64 data; - u64 mask; -}; - -/* - * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a - * single nested guest (L2), hence the name vmcs12. Any VMX implementation has - * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is - * stored in guest memory specified by VMPTRLD, but is opaque to the guest, - * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. - * More than one of these structures may exist, if L1 runs multiple L2 guests. - * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the - * underlying hardware which will be used to run L2. - * This structure is packed to ensure that its layout is identical across - * machines (necessary for live migration). - * - * IMPORTANT: Changing the layout of existing fields in this structure - * will break save/restore compatibility with older kvm releases. When - * adding new fields, either use space in the reserved padding* arrays - * or add the new fields to the end of the structure. - */ -typedef u64 natural_width; -struct __packed vmcs12 { - /* According to the Intel spec, a VMCS region must start with the - * following two fields. Then follow implementation-specific data. - */ - struct vmcs_hdr hdr; - u32 abort; - - u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ - u32 padding[7]; /* room for future expansion */ - - u64 io_bitmap_a; - u64 io_bitmap_b; - u64 msr_bitmap; - u64 vm_exit_msr_store_addr; - u64 vm_exit_msr_load_addr; - u64 vm_entry_msr_load_addr; - u64 tsc_offset; - u64 virtual_apic_page_addr; - u64 apic_access_addr; - u64 posted_intr_desc_addr; - u64 ept_pointer; - u64 eoi_exit_bitmap0; - u64 eoi_exit_bitmap1; - u64 eoi_exit_bitmap2; - u64 eoi_exit_bitmap3; - u64 xss_exit_bitmap; - u64 guest_physical_address; - u64 vmcs_link_pointer; - u64 guest_ia32_debugctl; - u64 guest_ia32_pat; - u64 guest_ia32_efer; - u64 guest_ia32_perf_global_ctrl; - u64 guest_pdptr0; - u64 guest_pdptr1; - u64 guest_pdptr2; - u64 guest_pdptr3; - u64 guest_bndcfgs; - u64 host_ia32_pat; - u64 host_ia32_efer; - u64 host_ia32_perf_global_ctrl; - u64 vmread_bitmap; - u64 vmwrite_bitmap; - u64 vm_function_control; - u64 eptp_list_address; - u64 pml_address; - u64 padding64[3]; /* room for future expansion */ - /* - * To allow migration of L1 (complete with its L2 guests) between - * machines of different natural widths (32 or 64 bit), we cannot have - * unsigned long fields with no explict size. We use u64 (aliased - * natural_width) instead. Luckily, x86 is little-endian. - */ - natural_width cr0_guest_host_mask; - natural_width cr4_guest_host_mask; - natural_width cr0_read_shadow; - natural_width cr4_read_shadow; - natural_width cr3_target_value0; - natural_width cr3_target_value1; - natural_width cr3_target_value2; - natural_width cr3_target_value3; - natural_width exit_qualification; - natural_width guest_linear_address; - natural_width guest_cr0; - natural_width guest_cr3; - natural_width guest_cr4; - natural_width guest_es_base; - natural_width guest_cs_base; - natural_width guest_ss_base; - natural_width guest_ds_base; - natural_width guest_fs_base; - natural_width guest_gs_base; - natural_width guest_ldtr_base; - natural_width guest_tr_base; - natural_width guest_gdtr_base; - natural_width guest_idtr_base; - natural_width guest_dr7; - natural_width guest_rsp; - natural_width guest_rip; - natural_width guest_rflags; - natural_width guest_pending_dbg_exceptions; - natural_width guest_sysenter_esp; - natural_width guest_sysenter_eip; - natural_width host_cr0; - natural_width host_cr3; - natural_width host_cr4; - natural_width host_fs_base; - natural_width host_gs_base; - natural_width host_tr_base; - natural_width host_gdtr_base; - natural_width host_idtr_base; - natural_width host_ia32_sysenter_esp; - natural_width host_ia32_sysenter_eip; - natural_width host_rsp; - natural_width host_rip; - natural_width paddingl[8]; /* room for future expansion */ - u32 pin_based_vm_exec_control; - u32 cpu_based_vm_exec_control; - u32 exception_bitmap; - u32 page_fault_error_code_mask; - u32 page_fault_error_code_match; - u32 cr3_target_count; - u32 vm_exit_controls; - u32 vm_exit_msr_store_count; - u32 vm_exit_msr_load_count; - u32 vm_entry_controls; - u32 vm_entry_msr_load_count; - u32 vm_entry_intr_info_field; - u32 vm_entry_exception_error_code; - u32 vm_entry_instruction_len; - u32 tpr_threshold; - u32 secondary_vm_exec_control; - u32 vm_instruction_error; - u32 vm_exit_reason; - u32 vm_exit_intr_info; - u32 vm_exit_intr_error_code; - u32 idt_vectoring_info_field; - u32 idt_vectoring_error_code; - u32 vm_exit_instruction_len; - u32 vmx_instruction_info; - u32 guest_es_limit; - u32 guest_cs_limit; - u32 guest_ss_limit; - u32 guest_ds_limit; - u32 guest_fs_limit; - u32 guest_gs_limit; - u32 guest_ldtr_limit; - u32 guest_tr_limit; - u32 guest_gdtr_limit; - u32 guest_idtr_limit; - u32 guest_es_ar_bytes; - u32 guest_cs_ar_bytes; - u32 guest_ss_ar_bytes; - u32 guest_ds_ar_bytes; - u32 guest_fs_ar_bytes; - u32 guest_gs_ar_bytes; - u32 guest_ldtr_ar_bytes; - u32 guest_tr_ar_bytes; - u32 guest_interruptibility_info; - u32 guest_activity_state; - u32 guest_sysenter_cs; - u32 host_ia32_sysenter_cs; - u32 vmx_preemption_timer_value; - u32 padding32[7]; /* room for future expansion */ - u16 virtual_processor_id; - u16 posted_intr_nv; - u16 guest_es_selector; - u16 guest_cs_selector; - u16 guest_ss_selector; - u16 guest_ds_selector; - u16 guest_fs_selector; - u16 guest_gs_selector; - u16 guest_ldtr_selector; - u16 guest_tr_selector; - u16 guest_intr_status; - u16 host_es_selector; - u16 host_cs_selector; - u16 host_ss_selector; - u16 host_ds_selector; - u16 host_fs_selector; - u16 host_gs_selector; - u16 host_tr_selector; - u16 guest_pml_index; -}; - -/* - * For save/restore compatibility, the vmcs12 field offsets must not change. - */ -#define CHECK_OFFSET(field, loc) \ - BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \ - "Offset of " #field " in struct vmcs12 has changed.") - -static inline void vmx_check_vmcs12_offsets(void) { - CHECK_OFFSET(hdr, 0); - CHECK_OFFSET(abort, 4); - CHECK_OFFSET(launch_state, 8); - CHECK_OFFSET(io_bitmap_a, 40); - CHECK_OFFSET(io_bitmap_b, 48); - CHECK_OFFSET(msr_bitmap, 56); - CHECK_OFFSET(vm_exit_msr_store_addr, 64); - CHECK_OFFSET(vm_exit_msr_load_addr, 72); - CHECK_OFFSET(vm_entry_msr_load_addr, 80); - CHECK_OFFSET(tsc_offset, 88); - CHECK_OFFSET(virtual_apic_page_addr, 96); - CHECK_OFFSET(apic_access_addr, 104); - CHECK_OFFSET(posted_intr_desc_addr, 112); - CHECK_OFFSET(ept_pointer, 120); - CHECK_OFFSET(eoi_exit_bitmap0, 128); - CHECK_OFFSET(eoi_exit_bitmap1, 136); - CHECK_OFFSET(eoi_exit_bitmap2, 144); - CHECK_OFFSET(eoi_exit_bitmap3, 152); - CHECK_OFFSET(xss_exit_bitmap, 160); - CHECK_OFFSET(guest_physical_address, 168); - CHECK_OFFSET(vmcs_link_pointer, 176); - CHECK_OFFSET(guest_ia32_debugctl, 184); - CHECK_OFFSET(guest_ia32_pat, 192); - CHECK_OFFSET(guest_ia32_efer, 200); - CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208); - CHECK_OFFSET(guest_pdptr0, 216); - CHECK_OFFSET(guest_pdptr1, 224); - CHECK_OFFSET(guest_pdptr2, 232); - CHECK_OFFSET(guest_pdptr3, 240); - CHECK_OFFSET(guest_bndcfgs, 248); - CHECK_OFFSET(host_ia32_pat, 256); - CHECK_OFFSET(host_ia32_efer, 264); - CHECK_OFFSET(host_ia32_perf_global_ctrl, 272); - CHECK_OFFSET(vmread_bitmap, 280); - CHECK_OFFSET(vmwrite_bitmap, 288); - CHECK_OFFSET(vm_function_control, 296); - CHECK_OFFSET(eptp_list_address, 304); - CHECK_OFFSET(pml_address, 312); - CHECK_OFFSET(cr0_guest_host_mask, 344); - CHECK_OFFSET(cr4_guest_host_mask, 352); - CHECK_OFFSET(cr0_read_shadow, 360); - CHECK_OFFSET(cr4_read_shadow, 368); - CHECK_OFFSET(cr3_target_value0, 376); - CHECK_OFFSET(cr3_target_value1, 384); - CHECK_OFFSET(cr3_target_value2, 392); - CHECK_OFFSET(cr3_target_value3, 400); - CHECK_OFFSET(exit_qualification, 408); - CHECK_OFFSET(guest_linear_address, 416); - CHECK_OFFSET(guest_cr0, 424); - CHECK_OFFSET(guest_cr3, 432); - CHECK_OFFSET(guest_cr4, 440); - CHECK_OFFSET(guest_es_base, 448); - CHECK_OFFSET(guest_cs_base, 456); - CHECK_OFFSET(guest_ss_base, 464); - CHECK_OFFSET(guest_ds_base, 472); - CHECK_OFFSET(guest_fs_base, 480); - CHECK_OFFSET(guest_gs_base, 488); - CHECK_OFFSET(guest_ldtr_base, 496); - CHECK_OFFSET(guest_tr_base, 504); - CHECK_OFFSET(guest_gdtr_base, 512); - CHECK_OFFSET(guest_idtr_base, 520); - CHECK_OFFSET(guest_dr7, 528); - CHECK_OFFSET(guest_rsp, 536); - CHECK_OFFSET(guest_rip, 544); - CHECK_OFFSET(guest_rflags, 552); - CHECK_OFFSET(guest_pending_dbg_exceptions, 560); - CHECK_OFFSET(guest_sysenter_esp, 568); - CHECK_OFFSET(guest_sysenter_eip, 576); - CHECK_OFFSET(host_cr0, 584); - CHECK_OFFSET(host_cr3, 592); - CHECK_OFFSET(host_cr4, 600); - CHECK_OFFSET(host_fs_base, 608); - CHECK_OFFSET(host_gs_base, 616); - CHECK_OFFSET(host_tr_base, 624); - CHECK_OFFSET(host_gdtr_base, 632); - CHECK_OFFSET(host_idtr_base, 640); - CHECK_OFFSET(host_ia32_sysenter_esp, 648); - CHECK_OFFSET(host_ia32_sysenter_eip, 656); - CHECK_OFFSET(host_rsp, 664); - CHECK_OFFSET(host_rip, 672); - CHECK_OFFSET(pin_based_vm_exec_control, 744); - CHECK_OFFSET(cpu_based_vm_exec_control, 748); - CHECK_OFFSET(exception_bitmap, 752); - CHECK_OFFSET(page_fault_error_code_mask, 756); - CHECK_OFFSET(page_fault_error_code_match, 760); - CHECK_OFFSET(cr3_target_count, 764); - CHECK_OFFSET(vm_exit_controls, 768); - CHECK_OFFSET(vm_exit_msr_store_count, 772); - CHECK_OFFSET(vm_exit_msr_load_count, 776); - CHECK_OFFSET(vm_entry_controls, 780); - CHECK_OFFSET(vm_entry_msr_load_count, 784); - CHECK_OFFSET(vm_entry_intr_info_field, 788); - CHECK_OFFSET(vm_entry_exception_error_code, 792); - CHECK_OFFSET(vm_entry_instruction_len, 796); - CHECK_OFFSET(tpr_threshold, 800); - CHECK_OFFSET(secondary_vm_exec_control, 804); - CHECK_OFFSET(vm_instruction_error, 808); - CHECK_OFFSET(vm_exit_reason, 812); - CHECK_OFFSET(vm_exit_intr_info, 816); - CHECK_OFFSET(vm_exit_intr_error_code, 820); - CHECK_OFFSET(idt_vectoring_info_field, 824); - CHECK_OFFSET(idt_vectoring_error_code, 828); - CHECK_OFFSET(vm_exit_instruction_len, 832); - CHECK_OFFSET(vmx_instruction_info, 836); - CHECK_OFFSET(guest_es_limit, 840); - CHECK_OFFSET(guest_cs_limit, 844); - CHECK_OFFSET(guest_ss_limit, 848); - CHECK_OFFSET(guest_ds_limit, 852); - CHECK_OFFSET(guest_fs_limit, 856); - CHECK_OFFSET(guest_gs_limit, 860); - CHECK_OFFSET(guest_ldtr_limit, 864); - CHECK_OFFSET(guest_tr_limit, 868); - CHECK_OFFSET(guest_gdtr_limit, 872); - CHECK_OFFSET(guest_idtr_limit, 876); - CHECK_OFFSET(guest_es_ar_bytes, 880); - CHECK_OFFSET(guest_cs_ar_bytes, 884); - CHECK_OFFSET(guest_ss_ar_bytes, 888); - CHECK_OFFSET(guest_ds_ar_bytes, 892); - CHECK_OFFSET(guest_fs_ar_bytes, 896); - CHECK_OFFSET(guest_gs_ar_bytes, 900); - CHECK_OFFSET(guest_ldtr_ar_bytes, 904); - CHECK_OFFSET(guest_tr_ar_bytes, 908); - CHECK_OFFSET(guest_interruptibility_info, 912); - CHECK_OFFSET(guest_activity_state, 916); - CHECK_OFFSET(guest_sysenter_cs, 920); - CHECK_OFFSET(host_ia32_sysenter_cs, 924); - CHECK_OFFSET(vmx_preemption_timer_value, 928); - CHECK_OFFSET(virtual_processor_id, 960); - CHECK_OFFSET(posted_intr_nv, 962); - CHECK_OFFSET(guest_es_selector, 964); - CHECK_OFFSET(guest_cs_selector, 966); - CHECK_OFFSET(guest_ss_selector, 968); - CHECK_OFFSET(guest_ds_selector, 970); - CHECK_OFFSET(guest_fs_selector, 972); - CHECK_OFFSET(guest_gs_selector, 974); - CHECK_OFFSET(guest_ldtr_selector, 976); - CHECK_OFFSET(guest_tr_selector, 978); - CHECK_OFFSET(guest_intr_status, 980); - CHECK_OFFSET(host_es_selector, 982); - CHECK_OFFSET(host_cs_selector, 984); - CHECK_OFFSET(host_ss_selector, 986); - CHECK_OFFSET(host_ds_selector, 988); - CHECK_OFFSET(host_fs_selector, 990); - CHECK_OFFSET(host_gs_selector, 992); - CHECK_OFFSET(host_tr_selector, 994); - CHECK_OFFSET(guest_pml_index, 996); -} - -/* - * VMCS12_REVISION is an arbitrary id that should be changed if the content or - * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and - * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. - * - * IMPORTANT: Changing this value will break save/restore compatibility with - * older kvm releases. - */ -#define VMCS12_REVISION 0x11e57ed0 - -/* - * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region - * and any VMCS region. Although only sizeof(struct vmcs12) are used by the - * current implementation, 4K are reserved to avoid future complications. - */ -#define VMCS12_SIZE 0x1000 - -/* - * VMCS12_MAX_FIELD_INDEX is the highest index value used in any - * supported VMCS12 field encoding. - */ -#define VMCS12_MAX_FIELD_INDEX 0x17 - -struct nested_vmx_msrs { - /* - * We only store the "true" versions of the VMX capability MSRs. We - * generate the "non-true" versions by setting the must-be-1 bits - * according to the SDM. - */ - u32 procbased_ctls_low; - u32 procbased_ctls_high; - u32 secondary_ctls_low; - u32 secondary_ctls_high; - u32 pinbased_ctls_low; - u32 pinbased_ctls_high; - u32 exit_ctls_low; - u32 exit_ctls_high; - u32 entry_ctls_low; - u32 entry_ctls_high; - u32 misc_low; - u32 misc_high; - u32 ept_caps; - u32 vpid_caps; - u64 basic; - u64 cr0_fixed0; - u64 cr0_fixed1; - u64 cr4_fixed0; - u64 cr4_fixed1; - u64 vmcs_enum; - u64 vmfunc_controls; -}; - -/* - * The nested_vmx structure is part of vcpu_vmx, and holds information we need - * for correct emulation of VMX (i.e., nested VMX) on this vcpu. - */ -struct nested_vmx { - /* Has the level1 guest done vmxon? */ - bool vmxon; - gpa_t vmxon_ptr; - bool pml_full; - - /* The guest-physical address of the current VMCS L1 keeps for L2 */ - gpa_t current_vmptr; - /* - * Cache of the guest's VMCS, existing outside of guest memory. - * Loaded from guest memory during VMPTRLD. Flushed to guest - * memory during VMCLEAR and VMPTRLD. - */ - struct vmcs12 *cached_vmcs12; - /* - * Cache of the guest's shadow VMCS, existing outside of guest - * memory. Loaded from guest memory during VM entry. Flushed - * to guest memory during VM exit. - */ - struct vmcs12 *cached_shadow_vmcs12; - /* - * Indicates if the shadow vmcs or enlightened vmcs must be updated - * with the data held by struct vmcs12. - */ - bool need_vmcs12_sync; - bool dirty_vmcs12; - - /* - * vmcs02 has been initialized, i.e. state that is constant for - * vmcs02 has been written to the backing VMCS. Initialization - * is delayed until L1 actually attempts to run a nested VM. - */ - bool vmcs02_initialized; - - bool change_vmcs01_virtual_apic_mode; - - /* - * Enlightened VMCS has been enabled. It does not mean that L1 has to - * use it. However, VMX features available to L1 will be limited based - * on what the enlightened VMCS supports. - */ - bool enlightened_vmcs_enabled; - - /* L2 must run next, and mustn't decide to exit to L1. */ - bool nested_run_pending; - - struct loaded_vmcs vmcs02; - - /* - * Guest pages referred to in the vmcs02 with host-physical - * pointers, so we must keep them pinned while L2 runs. - */ - struct page *apic_access_page; - struct page *virtual_apic_page; - struct page *pi_desc_page; - struct pi_desc *pi_desc; - bool pi_pending; - u16 posted_intr_nv; - - struct hrtimer preemption_timer; - bool preemption_timer_expired; - - /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ - u64 vmcs01_debugctl; - u64 vmcs01_guest_bndcfgs; - - u16 vpid02; - u16 last_vpid; - - struct nested_vmx_msrs msrs; - - /* SMM related state */ - struct { - /* in VMX operation on SMM entry? */ - bool vmxon; - /* in guest mode on SMM entry? */ - bool guest_mode; - } smm; - - gpa_t hv_evmcs_vmptr; - struct page *hv_evmcs_page; - struct hv_enlightened_vmcs *hv_evmcs; -}; - -#define POSTED_INTR_ON 0 -#define POSTED_INTR_SN 1 - -/* Posted-Interrupt Descriptor */ -struct pi_desc { - u32 pir[8]; /* Posted interrupt requested */ - union { - struct { - /* bit 256 - Outstanding Notification */ - u16 on : 1, - /* bit 257 - Suppress Notification */ - sn : 1, - /* bit 271:258 - Reserved */ - rsvd_1 : 14; - /* bit 279:272 - Notification Vector */ - u8 nv; - /* bit 287:280 - Reserved */ - u8 rsvd_2; - /* bit 319:288 - Notification Destination */ - u32 ndst; - }; - u64 control; - }; - u32 rsvd[6]; -} __aligned(64); - -static bool pi_test_and_set_on(struct pi_desc *pi_desc) -{ - return test_and_set_bit(POSTED_INTR_ON, - (unsigned long *)&pi_desc->control); -} - -static bool pi_test_and_clear_on(struct pi_desc *pi_desc) -{ - return test_and_clear_bit(POSTED_INTR_ON, - (unsigned long *)&pi_desc->control); -} - -static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) -{ - return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); -} - -static inline void pi_clear_sn(struct pi_desc *pi_desc) -{ - return clear_bit(POSTED_INTR_SN, - (unsigned long *)&pi_desc->control); -} - -static inline void pi_set_sn(struct pi_desc *pi_desc) -{ - return set_bit(POSTED_INTR_SN, - (unsigned long *)&pi_desc->control); -} - -static inline void pi_clear_on(struct pi_desc *pi_desc) -{ - clear_bit(POSTED_INTR_ON, - (unsigned long *)&pi_desc->control); -} - -static inline int pi_test_on(struct pi_desc *pi_desc) -{ - return test_bit(POSTED_INTR_ON, - (unsigned long *)&pi_desc->control); -} - -static inline int pi_test_sn(struct pi_desc *pi_desc) -{ - return test_bit(POSTED_INTR_SN, - (unsigned long *)&pi_desc->control); -} - -struct vmx_msrs { - unsigned int nr; - struct vmx_msr_entry val[NR_AUTOLOAD_MSRS]; -}; - -struct vcpu_vmx { - struct kvm_vcpu vcpu; - unsigned long host_rsp; - u8 fail; - u8 msr_bitmap_mode; - u32 exit_intr_info; - u32 idt_vectoring_info; - ulong rflags; - struct shared_msr_entry *guest_msrs; - int nmsrs; - int save_nmsrs; - unsigned long host_idt_base; -#ifdef CONFIG_X86_64 - u64 msr_host_kernel_gs_base; - u64 msr_guest_kernel_gs_base; -#endif - - u64 arch_capabilities; - u64 spec_ctrl; - - u32 vm_entry_controls_shadow; - u32 vm_exit_controls_shadow; - u32 secondary_exec_control; - - /* - * loaded_vmcs points to the VMCS currently used in this vcpu. For a - * non-nested (L1) guest, it always points to vmcs01. For a nested - * guest (L2), it points to a different VMCS. loaded_cpu_state points - * to the VMCS whose state is loaded into the CPU registers that only - * need to be switched when transitioning to/from the kernel; a NULL - * value indicates that host state is loaded. - */ - struct loaded_vmcs vmcs01; - struct loaded_vmcs *loaded_vmcs; - struct loaded_vmcs *loaded_cpu_state; - bool __launched; /* temporary, used in vmx_vcpu_run */ - struct msr_autoload { - struct vmx_msrs guest; - struct vmx_msrs host; - } msr_autoload; - - struct { - int vm86_active; - ulong save_rflags; - struct kvm_segment segs[8]; - } rmode; - struct { - u32 bitmask; /* 4 bits per segment (1 bit per field) */ - struct kvm_save_segment { - u16 selector; - unsigned long base; - u32 limit; - u32 ar; - } seg[8]; - } segment_cache; - int vpid; - bool emulation_required; - - u32 exit_reason; - - /* Posted interrupt descriptor */ - struct pi_desc pi_desc; - - /* Support for a guest hypervisor (nested VMX) */ - struct nested_vmx nested; - - /* Dynamic PLE window. */ - int ple_window; - bool ple_window_dirty; - - bool req_immediate_exit; - - /* Support for PML */ -#define PML_ENTITY_NUM 512 - struct page *pml_pg; - - /* apic deadline value in host tsc */ - u64 hv_deadline_tsc; - - u64 current_tsc_ratio; - - u32 host_pkru; - - unsigned long host_debugctlmsr; - - /* - * Only bits masked by msr_ia32_feature_control_valid_bits can be set in - * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included - * in msr_ia32_feature_control_valid_bits. - */ - u64 msr_ia32_feature_control; - u64 msr_ia32_feature_control_valid_bits; - u64 ept_pointer; -}; - -enum segment_cache_field { - SEG_FIELD_SEL = 0, - SEG_FIELD_BASE = 1, - SEG_FIELD_LIMIT = 2, - SEG_FIELD_AR = 3, - - SEG_FIELD_NR = 4 -}; - -static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) -{ - return container_of(kvm, struct kvm_vmx, kvm); -} - -static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) -{ - return container_of(vcpu, struct vcpu_vmx, vcpu); -} - -static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) -{ - return &(to_vmx(vcpu)->pi_desc); -} - -#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) -#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) -#define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name) -#define FIELD64(number, name) \ - FIELD(number, name), \ - [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32) - - -static u16 shadow_read_only_fields[] = { -#define SHADOW_FIELD_RO(x) x, -#include "vmx_shadow_fields.h" -}; -static int max_shadow_read_only_fields = - ARRAY_SIZE(shadow_read_only_fields); - -static u16 shadow_read_write_fields[] = { -#define SHADOW_FIELD_RW(x) x, -#include "vmx_shadow_fields.h" -}; -static int max_shadow_read_write_fields = - ARRAY_SIZE(shadow_read_write_fields); - -static const unsigned short vmcs_field_to_offset_table[] = { - FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), - FIELD(POSTED_INTR_NV, posted_intr_nv), - FIELD(GUEST_ES_SELECTOR, guest_es_selector), - FIELD(GUEST_CS_SELECTOR, guest_cs_selector), - FIELD(GUEST_SS_SELECTOR, guest_ss_selector), - FIELD(GUEST_DS_SELECTOR, guest_ds_selector), - FIELD(GUEST_FS_SELECTOR, guest_fs_selector), - FIELD(GUEST_GS_SELECTOR, guest_gs_selector), - FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), - FIELD(GUEST_TR_SELECTOR, guest_tr_selector), - FIELD(GUEST_INTR_STATUS, guest_intr_status), - FIELD(GUEST_PML_INDEX, guest_pml_index), - FIELD(HOST_ES_SELECTOR, host_es_selector), - FIELD(HOST_CS_SELECTOR, host_cs_selector), - FIELD(HOST_SS_SELECTOR, host_ss_selector), - FIELD(HOST_DS_SELECTOR, host_ds_selector), - FIELD(HOST_FS_SELECTOR, host_fs_selector), - FIELD(HOST_GS_SELECTOR, host_gs_selector), - FIELD(HOST_TR_SELECTOR, host_tr_selector), - FIELD64(IO_BITMAP_A, io_bitmap_a), - FIELD64(IO_BITMAP_B, io_bitmap_b), - FIELD64(MSR_BITMAP, msr_bitmap), - FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), - FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), - FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), - FIELD64(PML_ADDRESS, pml_address), - FIELD64(TSC_OFFSET, tsc_offset), - FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), - FIELD64(APIC_ACCESS_ADDR, apic_access_addr), - FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr), - FIELD64(VM_FUNCTION_CONTROL, vm_function_control), - FIELD64(EPT_POINTER, ept_pointer), - FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0), - FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1), - FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2), - FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3), - FIELD64(EPTP_LIST_ADDRESS, eptp_list_address), - FIELD64(VMREAD_BITMAP, vmread_bitmap), - FIELD64(VMWRITE_BITMAP, vmwrite_bitmap), - FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), - FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), - FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), - FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), - FIELD64(GUEST_IA32_PAT, guest_ia32_pat), - FIELD64(GUEST_IA32_EFER, guest_ia32_efer), - FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), - FIELD64(GUEST_PDPTR0, guest_pdptr0), - FIELD64(GUEST_PDPTR1, guest_pdptr1), - FIELD64(GUEST_PDPTR2, guest_pdptr2), - FIELD64(GUEST_PDPTR3, guest_pdptr3), - FIELD64(GUEST_BNDCFGS, guest_bndcfgs), - FIELD64(HOST_IA32_PAT, host_ia32_pat), - FIELD64(HOST_IA32_EFER, host_ia32_efer), - FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), - FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), - FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), - FIELD(EXCEPTION_BITMAP, exception_bitmap), - FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), - FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), - FIELD(CR3_TARGET_COUNT, cr3_target_count), - FIELD(VM_EXIT_CONTROLS, vm_exit_controls), - FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), - FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), - FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), - FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), - FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), - FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), - FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), - FIELD(TPR_THRESHOLD, tpr_threshold), - FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), - FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), - FIELD(VM_EXIT_REASON, vm_exit_reason), - FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), - FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), - FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), - FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), - FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), - FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), - FIELD(GUEST_ES_LIMIT, guest_es_limit), - FIELD(GUEST_CS_LIMIT, guest_cs_limit), - FIELD(GUEST_SS_LIMIT, guest_ss_limit), - FIELD(GUEST_DS_LIMIT, guest_ds_limit), - FIELD(GUEST_FS_LIMIT, guest_fs_limit), - FIELD(GUEST_GS_LIMIT, guest_gs_limit), - FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), - FIELD(GUEST_TR_LIMIT, guest_tr_limit), - FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), - FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), - FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), - FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), - FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), - FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), - FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), - FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), - FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), - FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), - FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), - FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), - FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), - FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), - FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), - FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), - FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), - FIELD(CR0_READ_SHADOW, cr0_read_shadow), - FIELD(CR4_READ_SHADOW, cr4_read_shadow), - FIELD(CR3_TARGET_VALUE0, cr3_target_value0), - FIELD(CR3_TARGET_VALUE1, cr3_target_value1), - FIELD(CR3_TARGET_VALUE2, cr3_target_value2), - FIELD(CR3_TARGET_VALUE3, cr3_target_value3), - FIELD(EXIT_QUALIFICATION, exit_qualification), - FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), - FIELD(GUEST_CR0, guest_cr0), - FIELD(GUEST_CR3, guest_cr3), - FIELD(GUEST_CR4, guest_cr4), - FIELD(GUEST_ES_BASE, guest_es_base), - FIELD(GUEST_CS_BASE, guest_cs_base), - FIELD(GUEST_SS_BASE, guest_ss_base), - FIELD(GUEST_DS_BASE, guest_ds_base), - FIELD(GUEST_FS_BASE, guest_fs_base), - FIELD(GUEST_GS_BASE, guest_gs_base), - FIELD(GUEST_LDTR_BASE, guest_ldtr_base), - FIELD(GUEST_TR_BASE, guest_tr_base), - FIELD(GUEST_GDTR_BASE, guest_gdtr_base), - FIELD(GUEST_IDTR_BASE, guest_idtr_base), - FIELD(GUEST_DR7, guest_dr7), - FIELD(GUEST_RSP, guest_rsp), - FIELD(GUEST_RIP, guest_rip), - FIELD(GUEST_RFLAGS, guest_rflags), - FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), - FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), - FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), - FIELD(HOST_CR0, host_cr0), - FIELD(HOST_CR3, host_cr3), - FIELD(HOST_CR4, host_cr4), - FIELD(HOST_FS_BASE, host_fs_base), - FIELD(HOST_GS_BASE, host_gs_base), - FIELD(HOST_TR_BASE, host_tr_base), - FIELD(HOST_GDTR_BASE, host_gdtr_base), - FIELD(HOST_IDTR_BASE, host_idtr_base), - FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), - FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), - FIELD(HOST_RSP, host_rsp), - FIELD(HOST_RIP, host_rip), -}; - -static inline short vmcs_field_to_offset(unsigned long field) -{ - const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table); - unsigned short offset; - unsigned index; - - if (field >> 15) - return -ENOENT; - - index = ROL16(field, 6); - if (index >= size) - return -ENOENT; - - index = array_index_nospec(index, size); - offset = vmcs_field_to_offset_table[index]; - if (offset == 0) - return -ENOENT; - return offset; -} - -static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.cached_vmcs12; -} - -static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.cached_shadow_vmcs12; -} - -static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu); -static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu); -static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); -static bool vmx_xsaves_supported(void); -static void vmx_set_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg); -static void vmx_get_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg); -static bool guest_state_valid(struct kvm_vcpu *vcpu); -static u32 vmx_segment_access_rights(struct kvm_segment *var); -static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx); -static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); -static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); -static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, - u16 error_code); -static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu); -static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, - u32 msr, int type); - -static DEFINE_PER_CPU(struct vmcs *, vmxarea); -static DEFINE_PER_CPU(struct vmcs *, current_vmcs); -/* - * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed - * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. - */ -static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); - -/* - * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we - * can find which vCPU should be waken up. - */ -static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); -static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); - -enum { - VMX_VMREAD_BITMAP, - VMX_VMWRITE_BITMAP, - VMX_BITMAP_NR -}; - -static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; - -#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) -#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) - -static bool cpu_has_load_ia32_efer; -static bool cpu_has_load_perf_global_ctrl; - -static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); -static DEFINE_SPINLOCK(vmx_vpid_lock); - -static struct vmcs_config { - int size; - int order; - u32 basic_cap; - u32 revision_id; - u32 pin_based_exec_ctrl; - u32 cpu_based_exec_ctrl; - u32 cpu_based_2nd_exec_ctrl; - u32 vmexit_ctrl; - u32 vmentry_ctrl; - struct nested_vmx_msrs nested; -} vmcs_config; - -static struct vmx_capability { - u32 ept; - u32 vpid; -} vmx_capability; - -#define VMX_SEGMENT_FIELD(seg) \ - [VCPU_SREG_##seg] = { \ - .selector = GUEST_##seg##_SELECTOR, \ - .base = GUEST_##seg##_BASE, \ - .limit = GUEST_##seg##_LIMIT, \ - .ar_bytes = GUEST_##seg##_AR_BYTES, \ - } - -static const struct kvm_vmx_segment_field { - unsigned selector; - unsigned base; - unsigned limit; - unsigned ar_bytes; -} kvm_vmx_segment_fields[] = { - VMX_SEGMENT_FIELD(CS), - VMX_SEGMENT_FIELD(DS), - VMX_SEGMENT_FIELD(ES), - VMX_SEGMENT_FIELD(FS), - VMX_SEGMENT_FIELD(GS), - VMX_SEGMENT_FIELD(SS), - VMX_SEGMENT_FIELD(TR), - VMX_SEGMENT_FIELD(LDTR), -}; - -static u64 host_efer; - -static void ept_save_pdptrs(struct kvm_vcpu *vcpu); - -/* - * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it - * away by decrementing the array size. - */ -static const u32 vmx_msr_index[] = { -#ifdef CONFIG_X86_64 - MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, -#endif - MSR_EFER, MSR_TSC_AUX, MSR_STAR, -}; - -DEFINE_STATIC_KEY_FALSE(enable_evmcs); - -#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs)) - -#define KVM_EVMCS_VERSION 1 - -/* - * Enlightened VMCSv1 doesn't support these: - * - * POSTED_INTR_NV = 0x00000002, - * GUEST_INTR_STATUS = 0x00000810, - * APIC_ACCESS_ADDR = 0x00002014, - * POSTED_INTR_DESC_ADDR = 0x00002016, - * EOI_EXIT_BITMAP0 = 0x0000201c, - * EOI_EXIT_BITMAP1 = 0x0000201e, - * EOI_EXIT_BITMAP2 = 0x00002020, - * EOI_EXIT_BITMAP3 = 0x00002022, - * GUEST_PML_INDEX = 0x00000812, - * PML_ADDRESS = 0x0000200e, - * VM_FUNCTION_CONTROL = 0x00002018, - * EPTP_LIST_ADDRESS = 0x00002024, - * VMREAD_BITMAP = 0x00002026, - * VMWRITE_BITMAP = 0x00002028, - * - * TSC_MULTIPLIER = 0x00002032, - * PLE_GAP = 0x00004020, - * PLE_WINDOW = 0x00004022, - * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E, - * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808, - * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04, - * - * Currently unsupported in KVM: - * GUEST_IA32_RTIT_CTL = 0x00002814, - */ -#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \ - PIN_BASED_VMX_PREEMPTION_TIMER) -#define EVMCS1_UNSUPPORTED_2NDEXEC \ - (SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \ - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \ - SECONDARY_EXEC_APIC_REGISTER_VIRT | \ - SECONDARY_EXEC_ENABLE_PML | \ - SECONDARY_EXEC_ENABLE_VMFUNC | \ - SECONDARY_EXEC_SHADOW_VMCS | \ - SECONDARY_EXEC_TSC_SCALING | \ - SECONDARY_EXEC_PAUSE_LOOP_EXITING) -#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) -#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) -#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING) - -#if IS_ENABLED(CONFIG_HYPERV) -static bool __read_mostly enlightened_vmcs = true; -module_param(enlightened_vmcs, bool, 0444); - -static inline void evmcs_write64(unsigned long field, u64 value) -{ - u16 clean_field; - int offset = get_evmcs_offset(field, &clean_field); - - if (offset < 0) - return; - - *(u64 *)((char *)current_evmcs + offset) = value; - - current_evmcs->hv_clean_fields &= ~clean_field; -} - -static inline void evmcs_write32(unsigned long field, u32 value) -{ - u16 clean_field; - int offset = get_evmcs_offset(field, &clean_field); - - if (offset < 0) - return; - - *(u32 *)((char *)current_evmcs + offset) = value; - current_evmcs->hv_clean_fields &= ~clean_field; -} - -static inline void evmcs_write16(unsigned long field, u16 value) -{ - u16 clean_field; - int offset = get_evmcs_offset(field, &clean_field); - - if (offset < 0) - return; - - *(u16 *)((char *)current_evmcs + offset) = value; - current_evmcs->hv_clean_fields &= ~clean_field; -} - -static inline u64 evmcs_read64(unsigned long field) -{ - int offset = get_evmcs_offset(field, NULL); - - if (offset < 0) - return 0; - - return *(u64 *)((char *)current_evmcs + offset); -} - -static inline u32 evmcs_read32(unsigned long field) -{ - int offset = get_evmcs_offset(field, NULL); - - if (offset < 0) - return 0; - - return *(u32 *)((char *)current_evmcs + offset); -} - -static inline u16 evmcs_read16(unsigned long field) -{ - int offset = get_evmcs_offset(field, NULL); - - if (offset < 0) - return 0; - - return *(u16 *)((char *)current_evmcs + offset); -} - -static inline void evmcs_touch_msr_bitmap(void) -{ - if (unlikely(!current_evmcs)) - return; - - if (current_evmcs->hv_enlightenments_control.msr_bitmap) - current_evmcs->hv_clean_fields &= - ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; -} - -static void evmcs_load(u64 phys_addr) -{ - struct hv_vp_assist_page *vp_ap = - hv_get_vp_assist_page(smp_processor_id()); - - vp_ap->current_nested_vmcs = phys_addr; - vp_ap->enlighten_vmentry = 1; -} - -static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) -{ - vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL; - vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC; - - vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL; - vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL; - -} - -/* check_ept_pointer() should be under protection of ept_pointer_lock. */ -static void check_ept_pointer_match(struct kvm *kvm) -{ - struct kvm_vcpu *vcpu; - u64 tmp_eptp = INVALID_PAGE; - int i; - - kvm_for_each_vcpu(i, vcpu, kvm) { - if (!VALID_PAGE(tmp_eptp)) { - tmp_eptp = to_vmx(vcpu)->ept_pointer; - } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { - to_kvm_vmx(kvm)->ept_pointers_match - = EPT_POINTERS_MISMATCH; - return; - } - } - - to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; -} - -static int vmx_hv_remote_flush_tlb(struct kvm *kvm) -{ - struct kvm_vcpu *vcpu; - int ret = -ENOTSUPP, i; - - spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); - - if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) - check_ept_pointer_match(kvm); - - /* - * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the - * base of EPT PML4 table, strip off EPT configuration information. - */ - if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { - kvm_for_each_vcpu(i, vcpu, kvm) - ret |= hyperv_flush_guest_mapping( - to_vmx(kvm_get_vcpu(kvm, i))->ept_pointer & PAGE_MASK); - } else { - ret = hyperv_flush_guest_mapping( - to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK); - } - - spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); - return ret; -} -#else /* !IS_ENABLED(CONFIG_HYPERV) */ -static inline void evmcs_write64(unsigned long field, u64 value) {} -static inline void evmcs_write32(unsigned long field, u32 value) {} -static inline void evmcs_write16(unsigned long field, u16 value) {} -static inline u64 evmcs_read64(unsigned long field) { return 0; } -static inline u32 evmcs_read32(unsigned long field) { return 0; } -static inline u16 evmcs_read16(unsigned long field) { return 0; } -static inline void evmcs_load(u64 phys_addr) {} -static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {} -static inline void evmcs_touch_msr_bitmap(void) {} -#endif /* IS_ENABLED(CONFIG_HYPERV) */ - -static int nested_enable_evmcs(struct kvm_vcpu *vcpu, - uint16_t *vmcs_version) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* We don't support disabling the feature for simplicity. */ - if (vmx->nested.enlightened_vmcs_enabled) - return 0; - - vmx->nested.enlightened_vmcs_enabled = true; - - /* - * vmcs_version represents the range of supported Enlightened VMCS - * versions: lower 8 bits is the minimal version, higher 8 bits is the - * maximum supported version. KVM supports versions from 1 to - * KVM_EVMCS_VERSION. - */ - if (vmcs_version) - *vmcs_version = (KVM_EVMCS_VERSION << 8) | 1; - - vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL; - vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL; - vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL; - vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC; - vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC; - - return 0; -} - -static inline bool is_exception_n(u32 intr_info, u8 vector) -{ - return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | - INTR_INFO_VALID_MASK)) == - (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK); -} - -static inline bool is_debug(u32 intr_info) -{ - return is_exception_n(intr_info, DB_VECTOR); -} - -static inline bool is_breakpoint(u32 intr_info) -{ - return is_exception_n(intr_info, BP_VECTOR); -} - -static inline bool is_page_fault(u32 intr_info) -{ - return is_exception_n(intr_info, PF_VECTOR); -} - -static inline bool is_invalid_opcode(u32 intr_info) -{ - return is_exception_n(intr_info, UD_VECTOR); -} - -static inline bool is_gp_fault(u32 intr_info) -{ - return is_exception_n(intr_info, GP_VECTOR); -} - -static inline bool is_machine_check(u32 intr_info) -{ - return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | - INTR_INFO_VALID_MASK)) == - (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); -} - -/* Undocumented: icebp/int1 */ -static inline bool is_icebp(u32 intr_info) -{ - return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) - == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK); -} - -static inline bool cpu_has_vmx_msr_bitmap(void) -{ - return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; -} - -static inline bool cpu_has_vmx_tpr_shadow(void) -{ - return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; -} - -static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu) -{ - return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu); -} - -static inline bool cpu_has_secondary_exec_ctrls(void) -{ - return vmcs_config.cpu_based_exec_ctrl & - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; -} - -static inline bool cpu_has_vmx_virtualize_apic_accesses(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; -} - -static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; -} - -static inline bool cpu_has_vmx_apic_register_virt(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_APIC_REGISTER_VIRT; -} - -static inline bool cpu_has_vmx_virtual_intr_delivery(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; -} - -static inline bool cpu_has_vmx_encls_vmexit(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENCLS_EXITING; -} - -/* - * Comment's format: document - errata name - stepping - processor name. - * Refer from - * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp - */ -static u32 vmx_preemption_cpu_tfms[] = { -/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ -0x000206E6, -/* 323056.pdf - AAX65 - C2 - Xeon L3406 */ -/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ -/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ -0x00020652, -/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ -0x00020655, -/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ -/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ -/* - * 320767.pdf - AAP86 - B1 - - * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile - */ -0x000106E5, -/* 321333.pdf - AAM126 - C0 - Xeon 3500 */ -0x000106A0, -/* 321333.pdf - AAM126 - C1 - Xeon 3500 */ -0x000106A1, -/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ -0x000106A4, - /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ - /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ - /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ -0x000106A5, -}; - -static inline bool cpu_has_broken_vmx_preemption_timer(void) -{ - u32 eax = cpuid_eax(0x00000001), i; - - /* Clear the reserved bits */ - eax &= ~(0x3U << 14 | 0xfU << 28); - for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) - if (eax == vmx_preemption_cpu_tfms[i]) - return true; - - return false; -} - -static inline bool cpu_has_vmx_preemption_timer(void) -{ - return vmcs_config.pin_based_exec_ctrl & - PIN_BASED_VMX_PREEMPTION_TIMER; -} - -static inline bool cpu_has_vmx_posted_intr(void) -{ - return IS_ENABLED(CONFIG_X86_LOCAL_APIC) && - vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; -} - -static inline bool cpu_has_vmx_apicv(void) -{ - return cpu_has_vmx_apic_register_virt() && - cpu_has_vmx_virtual_intr_delivery() && - cpu_has_vmx_posted_intr(); -} - -static inline bool cpu_has_vmx_flexpriority(void) -{ - return cpu_has_vmx_tpr_shadow() && - cpu_has_vmx_virtualize_apic_accesses(); -} - -static inline bool cpu_has_vmx_ept_execute_only(void) -{ - return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; -} - -static inline bool cpu_has_vmx_ept_2m_page(void) -{ - return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; -} - -static inline bool cpu_has_vmx_ept_1g_page(void) -{ - return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; -} - -static inline bool cpu_has_vmx_ept_4levels(void) -{ - return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; -} - -static inline bool cpu_has_vmx_ept_mt_wb(void) -{ - return vmx_capability.ept & VMX_EPTP_WB_BIT; -} - -static inline bool cpu_has_vmx_ept_5levels(void) -{ - return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT; -} - -static inline bool cpu_has_vmx_ept_ad_bits(void) -{ - return vmx_capability.ept & VMX_EPT_AD_BIT; -} - -static inline bool cpu_has_vmx_invept_context(void) -{ - return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; -} - -static inline bool cpu_has_vmx_invept_global(void) -{ - return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; -} - -static inline bool cpu_has_vmx_invvpid_individual_addr(void) -{ - return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT; -} - -static inline bool cpu_has_vmx_invvpid_single(void) -{ - return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; -} - -static inline bool cpu_has_vmx_invvpid_global(void) -{ - return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; -} - -static inline bool cpu_has_vmx_invvpid(void) -{ - return vmx_capability.vpid & VMX_VPID_INVVPID_BIT; -} - -static inline bool cpu_has_vmx_ept(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENABLE_EPT; -} - -static inline bool cpu_has_vmx_unrestricted_guest(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_UNRESTRICTED_GUEST; -} - -static inline bool cpu_has_vmx_ple(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_PAUSE_LOOP_EXITING; -} - -static inline bool cpu_has_vmx_basic_inout(void) -{ - return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT); -} - -static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) -{ - return flexpriority_enabled && lapic_in_kernel(vcpu); -} - -static inline bool cpu_has_vmx_vpid(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENABLE_VPID; -} - -static inline bool cpu_has_vmx_rdtscp(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_RDTSCP; -} - -static inline bool cpu_has_vmx_invpcid(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENABLE_INVPCID; -} - -static inline bool cpu_has_virtual_nmis(void) -{ - return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; -} - -static inline bool cpu_has_vmx_wbinvd_exit(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_WBINVD_EXITING; -} - -static inline bool cpu_has_vmx_shadow_vmcs(void) -{ - u64 vmx_msr; - rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); - /* check if the cpu supports writing r/o exit information fields */ - if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) - return false; - - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_SHADOW_VMCS; -} - -static inline bool cpu_has_vmx_pml(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML; -} - -static inline bool cpu_has_vmx_tsc_scaling(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_TSC_SCALING; -} - -static inline bool cpu_has_vmx_vmfunc(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENABLE_VMFUNC; -} - -static bool vmx_umip_emulated(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_DESC; -} - -static inline bool report_flexpriority(void) -{ - return flexpriority_enabled; -} - -static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu) -{ - return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low); -} - -/* - * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE - * to modify any valid field of the VMCS, or are the VM-exit - * information fields read-only? - */ -static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.msrs.misc_low & - MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS; -} - -static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS; -} - -static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.msrs.procbased_ctls_high & - CPU_BASED_MONITOR_TRAP_FLAG; -} - -static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.msrs.secondary_ctls_high & - SECONDARY_EXEC_SHADOW_VMCS; -} - -static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) -{ - return vmcs12->cpu_based_vm_exec_control & bit; -} - -static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) -{ - return (vmcs12->cpu_based_vm_exec_control & - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && - (vmcs12->secondary_vm_exec_control & bit); -} - -static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12) -{ - return vmcs12->pin_based_vm_exec_control & - PIN_BASED_VMX_PREEMPTION_TIMER; -} - -static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12) -{ - return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING; -} - -static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12) -{ - return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; -} - -static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT); -} - -static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); -} - -static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML); -} - -static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); -} - -static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID); -} - -static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT); -} - -static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); -} - -static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12) -{ - return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR; -} - -static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC); -} - -static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12) -{ - return nested_cpu_has_vmfunc(vmcs12) && - (vmcs12->vm_function_control & - VMX_VMFUNC_EPTP_SWITCHING); -} - -static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS); -} - -static inline bool is_nmi(u32 intr_info) -{ - return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) - == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK); -} - -static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, - u32 exit_intr_info, - unsigned long exit_qualification); - -static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) -{ - int i; - - for (i = 0; i < vmx->nmsrs; ++i) - if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) - return i; - return -1; -} - -static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva) -{ - struct { - u64 vpid : 16; - u64 rsvd : 48; - u64 gva; - } operand = { vpid, 0, gva }; - bool error; - - asm volatile (__ex("invvpid %2, %1") CC_SET(na) - : CC_OUT(na) (error) : "r"(ext), "m"(operand)); - BUG_ON(error); -} - -static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa) -{ - struct { - u64 eptp, gpa; - } operand = {eptp, gpa}; - bool error; - - asm volatile (__ex("invept %2, %1") CC_SET(na) - : CC_OUT(na) (error) : "r"(ext), "m"(operand)); - BUG_ON(error); -} - -static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) -{ - int i; - - i = __find_msr_index(vmx, msr); - if (i >= 0) - return &vmx->guest_msrs[i]; - return NULL; -} - -static void vmcs_clear(struct vmcs *vmcs) -{ - u64 phys_addr = __pa(vmcs); - bool error; - - asm volatile (__ex("vmclear %1") CC_SET(na) - : CC_OUT(na) (error) : "m"(phys_addr)); - if (unlikely(error)) - printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", - vmcs, phys_addr); -} - -static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) -{ - vmcs_clear(loaded_vmcs->vmcs); - if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) - vmcs_clear(loaded_vmcs->shadow_vmcs); - loaded_vmcs->cpu = -1; - loaded_vmcs->launched = 0; -} - -static void vmcs_load(struct vmcs *vmcs) -{ - u64 phys_addr = __pa(vmcs); - bool error; - - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_load(phys_addr); - - asm volatile (__ex("vmptrld %1") CC_SET(na) - : CC_OUT(na) (error) : "m"(phys_addr)); - if (unlikely(error)) - printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", - vmcs, phys_addr); -} - -#ifdef CONFIG_KEXEC_CORE -/* - * This bitmap is used to indicate whether the vmclear - * operation is enabled on all cpus. All disabled by - * default. - */ -static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; - -static inline void crash_enable_local_vmclear(int cpu) -{ - cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); -} - -static inline void crash_disable_local_vmclear(int cpu) -{ - cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); -} - -static inline int crash_local_vmclear_enabled(int cpu) -{ - return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); -} - -static void crash_vmclear_local_loaded_vmcss(void) -{ - int cpu = raw_smp_processor_id(); - struct loaded_vmcs *v; - - if (!crash_local_vmclear_enabled(cpu)) - return; - - list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), - loaded_vmcss_on_cpu_link) - vmcs_clear(v->vmcs); -} -#else -static inline void crash_enable_local_vmclear(int cpu) { } -static inline void crash_disable_local_vmclear(int cpu) { } -#endif /* CONFIG_KEXEC_CORE */ - -static void __loaded_vmcs_clear(void *arg) -{ - struct loaded_vmcs *loaded_vmcs = arg; - int cpu = raw_smp_processor_id(); - - if (loaded_vmcs->cpu != cpu) - return; /* vcpu migration can race with cpu offline */ - if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) - per_cpu(current_vmcs, cpu) = NULL; - crash_disable_local_vmclear(cpu); - list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); - - /* - * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link - * is before setting loaded_vmcs->vcpu to -1 which is done in - * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist - * then adds the vmcs into percpu list before it is deleted. - */ - smp_wmb(); - - loaded_vmcs_init(loaded_vmcs); - crash_enable_local_vmclear(cpu); -} - -static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) -{ - int cpu = loaded_vmcs->cpu; - - if (cpu != -1) - smp_call_function_single(cpu, - __loaded_vmcs_clear, loaded_vmcs, 1); -} - -static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr) -{ - if (vpid == 0) - return true; - - if (cpu_has_vmx_invvpid_individual_addr()) { - __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr); - return true; - } - - return false; -} - -static inline void vpid_sync_vcpu_single(int vpid) -{ - if (vpid == 0) - return; - - if (cpu_has_vmx_invvpid_single()) - __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0); -} - -static inline void vpid_sync_vcpu_global(void) -{ - if (cpu_has_vmx_invvpid_global()) - __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); -} - -static inline void vpid_sync_context(int vpid) -{ - if (cpu_has_vmx_invvpid_single()) - vpid_sync_vcpu_single(vpid); - else - vpid_sync_vcpu_global(); -} - -static inline void ept_sync_global(void) -{ - __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); -} - -static inline void ept_sync_context(u64 eptp) -{ - if (cpu_has_vmx_invept_context()) - __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); - else - ept_sync_global(); -} - -static __always_inline void vmcs_check16(unsigned long field) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, - "16-bit accessor invalid for 64-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, - "16-bit accessor invalid for 64-bit high field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, - "16-bit accessor invalid for 32-bit high field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, - "16-bit accessor invalid for natural width field"); -} - -static __always_inline void vmcs_check32(unsigned long field) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, - "32-bit accessor invalid for 16-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, - "32-bit accessor invalid for natural width field"); -} - -static __always_inline void vmcs_check64(unsigned long field) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, - "64-bit accessor invalid for 16-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, - "64-bit accessor invalid for 64-bit high field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, - "64-bit accessor invalid for 32-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, - "64-bit accessor invalid for natural width field"); -} - -static __always_inline void vmcs_checkl(unsigned long field) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, - "Natural width accessor invalid for 16-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, - "Natural width accessor invalid for 64-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, - "Natural width accessor invalid for 64-bit high field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, - "Natural width accessor invalid for 32-bit field"); -} - -static __always_inline unsigned long __vmcs_readl(unsigned long field) -{ - unsigned long value; - - asm volatile (__ex_clear("vmread %1, %0", "%k0") - : "=r"(value) : "r"(field)); - return value; -} - -static __always_inline u16 vmcs_read16(unsigned long field) -{ - vmcs_check16(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_read16(field); - return __vmcs_readl(field); -} - -static __always_inline u32 vmcs_read32(unsigned long field) -{ - vmcs_check32(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_read32(field); - return __vmcs_readl(field); -} - -static __always_inline u64 vmcs_read64(unsigned long field) -{ - vmcs_check64(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_read64(field); -#ifdef CONFIG_X86_64 - return __vmcs_readl(field); -#else - return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32); -#endif -} - -static __always_inline unsigned long vmcs_readl(unsigned long field) -{ - vmcs_checkl(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_read64(field); - return __vmcs_readl(field); -} - -static noinline void vmwrite_error(unsigned long field, unsigned long value) -{ - printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", - field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); - dump_stack(); -} - -static __always_inline void __vmcs_writel(unsigned long field, unsigned long value) -{ - bool error; - - asm volatile (__ex("vmwrite %2, %1") CC_SET(na) - : CC_OUT(na) (error) : "r"(field), "rm"(value)); - if (unlikely(error)) - vmwrite_error(field, value); -} - -static __always_inline void vmcs_write16(unsigned long field, u16 value) -{ - vmcs_check16(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write16(field, value); - - __vmcs_writel(field, value); -} - -static __always_inline void vmcs_write32(unsigned long field, u32 value) -{ - vmcs_check32(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write32(field, value); - - __vmcs_writel(field, value); -} - -static __always_inline void vmcs_write64(unsigned long field, u64 value) -{ - vmcs_check64(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write64(field, value); - - __vmcs_writel(field, value); -#ifndef CONFIG_X86_64 - asm volatile (""); - __vmcs_writel(field+1, value >> 32); -#endif -} - -static __always_inline void vmcs_writel(unsigned long field, unsigned long value) -{ - vmcs_checkl(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write64(field, value); - - __vmcs_writel(field, value); -} - -static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, - "vmcs_clear_bits does not support 64-bit fields"); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write32(field, evmcs_read32(field) & ~mask); - - __vmcs_writel(field, __vmcs_readl(field) & ~mask); -} - -static __always_inline void vmcs_set_bits(unsigned long field, u32 mask) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, - "vmcs_set_bits does not support 64-bit fields"); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write32(field, evmcs_read32(field) | mask); - - __vmcs_writel(field, __vmcs_readl(field) | mask); -} - -static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx) -{ - vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS); -} - -static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val) -{ - vmcs_write32(VM_ENTRY_CONTROLS, val); - vmx->vm_entry_controls_shadow = val; -} - -static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val) -{ - if (vmx->vm_entry_controls_shadow != val) - vm_entry_controls_init(vmx, val); -} - -static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx) -{ - return vmx->vm_entry_controls_shadow; -} - - -static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val) -{ - vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val); -} - -static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val) -{ - vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val); -} - -static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx) -{ - vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS); -} - -static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val) -{ - vmcs_write32(VM_EXIT_CONTROLS, val); - vmx->vm_exit_controls_shadow = val; -} - -static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val) -{ - if (vmx->vm_exit_controls_shadow != val) - vm_exit_controls_init(vmx, val); -} - -static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx) -{ - return vmx->vm_exit_controls_shadow; -} - - -static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val) -{ - vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val); -} - -static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val) -{ - vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val); -} - -static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) -{ - vmx->segment_cache.bitmask = 0; -} - -static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, - unsigned field) -{ - bool ret; - u32 mask = 1 << (seg * SEG_FIELD_NR + field); - - if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { - vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); - vmx->segment_cache.bitmask = 0; - } - ret = vmx->segment_cache.bitmask & mask; - vmx->segment_cache.bitmask |= mask; - return ret; -} - -static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) -{ - u16 *p = &vmx->segment_cache.seg[seg].selector; - - if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) - *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); - return *p; -} - -static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) -{ - ulong *p = &vmx->segment_cache.seg[seg].base; - - if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) - *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); - return *p; -} - -static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) -{ - u32 *p = &vmx->segment_cache.seg[seg].limit; - - if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) - *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); - return *p; -} - -static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) -{ - u32 *p = &vmx->segment_cache.seg[seg].ar; - - if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) - *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); - return *p; -} - -static void update_exception_bitmap(struct kvm_vcpu *vcpu) -{ - u32 eb; - - eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | - (1u << DB_VECTOR) | (1u << AC_VECTOR); - /* - * Guest access to VMware backdoor ports could legitimately - * trigger #GP because of TSS I/O permission bitmap. - * We intercept those #GP and allow access to them anyway - * as VMware does. - */ - if (enable_vmware_backdoor) - eb |= (1u << GP_VECTOR); - if ((vcpu->guest_debug & - (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == - (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) - eb |= 1u << BP_VECTOR; - if (to_vmx(vcpu)->rmode.vm86_active) - eb = ~0; - if (enable_ept) - eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ - - /* When we are running a nested L2 guest and L1 specified for it a - * certain exception bitmap, we must trap the same exceptions and pass - * them to L1. When running L2, we will only handle the exceptions - * specified above if L1 did not want them. - */ - if (is_guest_mode(vcpu)) - eb |= get_vmcs12(vcpu)->exception_bitmap; - - vmcs_write32(EXCEPTION_BITMAP, eb); -} - -/* - * Check if MSR is intercepted for currently loaded MSR bitmap. - */ -static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) -{ - unsigned long *msr_bitmap; - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return true; - - msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; - - if (msr <= 0x1fff) { - return !!test_bit(msr, msr_bitmap + 0x800 / f); - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - return !!test_bit(msr, msr_bitmap + 0xc00 / f); - } - - return true; -} - -/* - * Check if MSR is intercepted for L01 MSR bitmap. - */ -static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) -{ - unsigned long *msr_bitmap; - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return true; - - msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; - - if (msr <= 0x1fff) { - return !!test_bit(msr, msr_bitmap + 0x800 / f); - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - return !!test_bit(msr, msr_bitmap + 0xc00 / f); - } - - return true; -} - -static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, - unsigned long entry, unsigned long exit) -{ - vm_entry_controls_clearbit(vmx, entry); - vm_exit_controls_clearbit(vmx, exit); -} - -static int find_msr(struct vmx_msrs *m, unsigned int msr) -{ - unsigned int i; - - for (i = 0; i < m->nr; ++i) { - if (m->val[i].index == msr) - return i; - } - return -ENOENT; -} - -static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) -{ - int i; - struct msr_autoload *m = &vmx->msr_autoload; - - switch (msr) { - case MSR_EFER: - if (cpu_has_load_ia32_efer) { - clear_atomic_switch_msr_special(vmx, - VM_ENTRY_LOAD_IA32_EFER, - VM_EXIT_LOAD_IA32_EFER); - return; - } - break; - case MSR_CORE_PERF_GLOBAL_CTRL: - if (cpu_has_load_perf_global_ctrl) { - clear_atomic_switch_msr_special(vmx, - VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, - VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); - return; - } - break; - } - i = find_msr(&m->guest, msr); - if (i < 0) - goto skip_guest; - --m->guest.nr; - m->guest.val[i] = m->guest.val[m->guest.nr]; - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); - -skip_guest: - i = find_msr(&m->host, msr); - if (i < 0) - return; - - --m->host.nr; - m->host.val[i] = m->host.val[m->host.nr]; - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); -} - -static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, - unsigned long entry, unsigned long exit, - unsigned long guest_val_vmcs, unsigned long host_val_vmcs, - u64 guest_val, u64 host_val) -{ - vmcs_write64(guest_val_vmcs, guest_val); - if (host_val_vmcs != HOST_IA32_EFER) - vmcs_write64(host_val_vmcs, host_val); - vm_entry_controls_setbit(vmx, entry); - vm_exit_controls_setbit(vmx, exit); -} - -static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, - u64 guest_val, u64 host_val, bool entry_only) -{ - int i, j = 0; - struct msr_autoload *m = &vmx->msr_autoload; - - switch (msr) { - case MSR_EFER: - if (cpu_has_load_ia32_efer) { - add_atomic_switch_msr_special(vmx, - VM_ENTRY_LOAD_IA32_EFER, - VM_EXIT_LOAD_IA32_EFER, - GUEST_IA32_EFER, - HOST_IA32_EFER, - guest_val, host_val); - return; - } - break; - case MSR_CORE_PERF_GLOBAL_CTRL: - if (cpu_has_load_perf_global_ctrl) { - add_atomic_switch_msr_special(vmx, - VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, - VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, - GUEST_IA32_PERF_GLOBAL_CTRL, - HOST_IA32_PERF_GLOBAL_CTRL, - guest_val, host_val); - return; - } - break; - case MSR_IA32_PEBS_ENABLE: - /* PEBS needs a quiescent period after being disabled (to write - * a record). Disabling PEBS through VMX MSR swapping doesn't - * provide that period, so a CPU could write host's record into - * guest's memory. - */ - wrmsrl(MSR_IA32_PEBS_ENABLE, 0); - } - - i = find_msr(&m->guest, msr); - if (!entry_only) - j = find_msr(&m->host, msr); - - if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) { - printk_once(KERN_WARNING "Not enough msr switch entries. " - "Can't add msr %x\n", msr); - return; - } - if (i < 0) { - i = m->guest.nr++; - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); - } - m->guest.val[i].index = msr; - m->guest.val[i].value = guest_val; - - if (entry_only) - return; - - if (j < 0) { - j = m->host.nr++; - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); - } - m->host.val[j].index = msr; - m->host.val[j].value = host_val; -} - -static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) -{ - u64 guest_efer = vmx->vcpu.arch.efer; - u64 ignore_bits = 0; - - if (!enable_ept) { - /* - * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing - * host CPUID is more efficient than testing guest CPUID - * or CR4. Host SMEP is anyway a requirement for guest SMEP. - */ - if (boot_cpu_has(X86_FEATURE_SMEP)) - guest_efer |= EFER_NX; - else if (!(guest_efer & EFER_NX)) - ignore_bits |= EFER_NX; - } - - /* - * LMA and LME handled by hardware; SCE meaningless outside long mode. - */ - ignore_bits |= EFER_SCE; -#ifdef CONFIG_X86_64 - ignore_bits |= EFER_LMA | EFER_LME; - /* SCE is meaningful only in long mode on Intel */ - if (guest_efer & EFER_LMA) - ignore_bits &= ~(u64)EFER_SCE; -#endif - - /* - * On EPT, we can't emulate NX, so we must switch EFER atomically. - * On CPUs that support "load IA32_EFER", always switch EFER - * atomically, since it's faster than switching it manually. - */ - if (cpu_has_load_ia32_efer || - (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { - if (!(guest_efer & EFER_LMA)) - guest_efer &= ~EFER_LME; - if (guest_efer != host_efer) - add_atomic_switch_msr(vmx, MSR_EFER, - guest_efer, host_efer, false); - else - clear_atomic_switch_msr(vmx, MSR_EFER); - return false; - } else { - clear_atomic_switch_msr(vmx, MSR_EFER); - - guest_efer &= ~ignore_bits; - guest_efer |= host_efer & ignore_bits; - - vmx->guest_msrs[efer_offset].data = guest_efer; - vmx->guest_msrs[efer_offset].mask = ~ignore_bits; - - return true; - } -} - -#ifdef CONFIG_X86_32 -/* - * On 32-bit kernels, VM exits still load the FS and GS bases from the - * VMCS rather than the segment table. KVM uses this helper to figure - * out the current bases to poke them into the VMCS before entry. - */ -static unsigned long segment_base(u16 selector) -{ - struct desc_struct *table; - unsigned long v; - - if (!(selector & ~SEGMENT_RPL_MASK)) - return 0; - - table = get_current_gdt_ro(); - - if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { - u16 ldt_selector = kvm_read_ldt(); - - if (!(ldt_selector & ~SEGMENT_RPL_MASK)) - return 0; - - table = (struct desc_struct *)segment_base(ldt_selector); - } - v = get_desc_base(&table[selector >> 3]); - return v; -} -#endif - -static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs_host_state *host_state; -#ifdef CONFIG_X86_64 - int cpu = raw_smp_processor_id(); -#endif - unsigned long fs_base, gs_base; - u16 fs_sel, gs_sel; - int i; - - vmx->req_immediate_exit = false; - - if (vmx->loaded_cpu_state) - return; - - vmx->loaded_cpu_state = vmx->loaded_vmcs; - host_state = &vmx->loaded_cpu_state->host_state; - - /* - * Set host fs and gs selectors. Unfortunately, 22.2.3 does not - * allow segment selectors with cpl > 0 or ti == 1. - */ - host_state->ldt_sel = kvm_read_ldt(); - -#ifdef CONFIG_X86_64 - savesegment(ds, host_state->ds_sel); - savesegment(es, host_state->es_sel); - - gs_base = cpu_kernelmode_gs_base(cpu); - if (likely(is_64bit_mm(current->mm))) { - save_fsgs_for_kvm(); - fs_sel = current->thread.fsindex; - gs_sel = current->thread.gsindex; - fs_base = current->thread.fsbase; - vmx->msr_host_kernel_gs_base = current->thread.gsbase; - } else { - savesegment(fs, fs_sel); - savesegment(gs, gs_sel); - fs_base = read_msr(MSR_FS_BASE); - vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); - } - - wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); -#else - savesegment(fs, fs_sel); - savesegment(gs, gs_sel); - fs_base = segment_base(fs_sel); - gs_base = segment_base(gs_sel); -#endif - - if (unlikely(fs_sel != host_state->fs_sel)) { - if (!(fs_sel & 7)) - vmcs_write16(HOST_FS_SELECTOR, fs_sel); - else - vmcs_write16(HOST_FS_SELECTOR, 0); - host_state->fs_sel = fs_sel; - } - if (unlikely(gs_sel != host_state->gs_sel)) { - if (!(gs_sel & 7)) - vmcs_write16(HOST_GS_SELECTOR, gs_sel); - else - vmcs_write16(HOST_GS_SELECTOR, 0); - host_state->gs_sel = gs_sel; - } - if (unlikely(fs_base != host_state->fs_base)) { - vmcs_writel(HOST_FS_BASE, fs_base); - host_state->fs_base = fs_base; - } - if (unlikely(gs_base != host_state->gs_base)) { - vmcs_writel(HOST_GS_BASE, gs_base); - host_state->gs_base = gs_base; - } - - for (i = 0; i < vmx->save_nmsrs; ++i) - kvm_set_shared_msr(vmx->guest_msrs[i].index, - vmx->guest_msrs[i].data, - vmx->guest_msrs[i].mask); -} - -static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) -{ - struct vmcs_host_state *host_state; - - if (!vmx->loaded_cpu_state) - return; - - WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); - host_state = &vmx->loaded_cpu_state->host_state; - - ++vmx->vcpu.stat.host_state_reload; - vmx->loaded_cpu_state = NULL; - -#ifdef CONFIG_X86_64 - rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); -#endif - if (host_state->ldt_sel || (host_state->gs_sel & 7)) { - kvm_load_ldt(host_state->ldt_sel); -#ifdef CONFIG_X86_64 - load_gs_index(host_state->gs_sel); -#else - loadsegment(gs, host_state->gs_sel); -#endif - } - if (host_state->fs_sel & 7) - loadsegment(fs, host_state->fs_sel); -#ifdef CONFIG_X86_64 - if (unlikely(host_state->ds_sel | host_state->es_sel)) { - loadsegment(ds, host_state->ds_sel); - loadsegment(es, host_state->es_sel); - } -#endif - invalidate_tss_limit(); -#ifdef CONFIG_X86_64 - wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); -#endif - load_fixmap_gdt(raw_smp_processor_id()); -} - -#ifdef CONFIG_X86_64 -static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) -{ - preempt_disable(); - if (vmx->loaded_cpu_state) - rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); - preempt_enable(); - return vmx->msr_guest_kernel_gs_base; -} - -static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) -{ - preempt_disable(); - if (vmx->loaded_cpu_state) - wrmsrl(MSR_KERNEL_GS_BASE, data); - preempt_enable(); - vmx->msr_guest_kernel_gs_base = data; -} -#endif - -static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) -{ - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - struct pi_desc old, new; - unsigned int dest; - - /* - * In case of hot-plug or hot-unplug, we may have to undo - * vmx_vcpu_pi_put even if there is no assigned device. And we - * always keep PI.NDST up to date for simplicity: it makes the - * code easier, and CPU migration is not a fast path. - */ - if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) - return; - - /* - * First handle the simple case where no cmpxchg is necessary; just - * allow posting non-urgent interrupts. - * - * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change - * PI.NDST: pi_post_block will do it for us and the wakeup_handler - * expects the VCPU to be on the blocked_vcpu_list that matches - * PI.NDST. - */ - if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || - vcpu->cpu == cpu) { - pi_clear_sn(pi_desc); - return; - } - - /* The full case. */ - do { - old.control = new.control = pi_desc->control; - - dest = cpu_physical_id(cpu); - - if (x2apic_enabled()) - new.ndst = dest; - else - new.ndst = (dest << 8) & 0xFF00; - - new.sn = 0; - } while (cmpxchg64(&pi_desc->control, old.control, - new.control) != old.control); -} - -static void decache_tsc_multiplier(struct vcpu_vmx *vmx) -{ - vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio; - vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); -} - -/* - * Switches to specified vcpu, until a matching vcpu_put(), but assumes - * vcpu mutex is already taken. - */ -static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - bool already_loaded = vmx->loaded_vmcs->cpu == cpu; - - if (!already_loaded) { - loaded_vmcs_clear(vmx->loaded_vmcs); - local_irq_disable(); - crash_disable_local_vmclear(cpu); - - /* - * Read loaded_vmcs->cpu should be before fetching - * loaded_vmcs->loaded_vmcss_on_cpu_link. - * See the comments in __loaded_vmcs_clear(). - */ - smp_rmb(); - - list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, - &per_cpu(loaded_vmcss_on_cpu, cpu)); - crash_enable_local_vmclear(cpu); - local_irq_enable(); - } - - if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { - per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; - vmcs_load(vmx->loaded_vmcs->vmcs); - indirect_branch_prediction_barrier(); - } - - if (!already_loaded) { - void *gdt = get_current_gdt_ro(); - unsigned long sysenter_esp; - - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - - /* - * Linux uses per-cpu TSS and GDT, so set these when switching - * processors. See 22.2.4. - */ - vmcs_writel(HOST_TR_BASE, - (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); - vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ - - /* - * VM exits change the host TR limit to 0x67 after a VM - * exit. This is okay, since 0x67 covers everything except - * the IO bitmap and have have code to handle the IO bitmap - * being lost after a VM exit. - */ - BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); - - rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); - vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ - - vmx->loaded_vmcs->cpu = cpu; - } - - /* Setup TSC multiplier */ - if (kvm_has_tsc_control && - vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) - decache_tsc_multiplier(vmx); - - vmx_vcpu_pi_load(vcpu, cpu); - vmx->host_pkru = read_pkru(); - vmx->host_debugctlmsr = get_debugctlmsr(); -} - -static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) -{ - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - - if (!kvm_arch_has_assigned_device(vcpu->kvm) || - !irq_remapping_cap(IRQ_POSTING_CAP) || - !kvm_vcpu_apicv_active(vcpu)) - return; - - /* Set SN when the vCPU is preempted */ - if (vcpu->preempted) - pi_set_sn(pi_desc); -} - -static void vmx_vcpu_put(struct kvm_vcpu *vcpu) -{ - vmx_vcpu_pi_put(vcpu); - - vmx_prepare_switch_to_host(to_vmx(vcpu)); -} - -static bool emulation_required(struct kvm_vcpu *vcpu) -{ - return emulate_invalid_guest_state && !guest_state_valid(vcpu); -} - -static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); - -/* - * Return the cr0 value that a nested guest would read. This is a combination - * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by - * its hypervisor (cr0_read_shadow). - */ -static inline unsigned long nested_read_cr0(struct vmcs12 *fields) -{ - return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | - (fields->cr0_read_shadow & fields->cr0_guest_host_mask); -} -static inline unsigned long nested_read_cr4(struct vmcs12 *fields) -{ - return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | - (fields->cr4_read_shadow & fields->cr4_guest_host_mask); -} - -static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) -{ - unsigned long rflags, save_rflags; - - if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { - __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); - rflags = vmcs_readl(GUEST_RFLAGS); - if (to_vmx(vcpu)->rmode.vm86_active) { - rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; - save_rflags = to_vmx(vcpu)->rmode.save_rflags; - rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; - } - to_vmx(vcpu)->rflags = rflags; - } - return to_vmx(vcpu)->rflags; -} - -static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) -{ - unsigned long old_rflags = vmx_get_rflags(vcpu); - - __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); - to_vmx(vcpu)->rflags = rflags; - if (to_vmx(vcpu)->rmode.vm86_active) { - to_vmx(vcpu)->rmode.save_rflags = rflags; - rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; - } - vmcs_writel(GUEST_RFLAGS, rflags); - - if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) - to_vmx(vcpu)->emulation_required = emulation_required(vcpu); -} - -static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) -{ - u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); - int ret = 0; - - if (interruptibility & GUEST_INTR_STATE_STI) - ret |= KVM_X86_SHADOW_INT_STI; - if (interruptibility & GUEST_INTR_STATE_MOV_SS) - ret |= KVM_X86_SHADOW_INT_MOV_SS; - - return ret; -} - -static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) -{ - u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); - u32 interruptibility = interruptibility_old; - - interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); - - if (mask & KVM_X86_SHADOW_INT_MOV_SS) - interruptibility |= GUEST_INTR_STATE_MOV_SS; - else if (mask & KVM_X86_SHADOW_INT_STI) - interruptibility |= GUEST_INTR_STATE_STI; - - if ((interruptibility != interruptibility_old)) - vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); -} - -static void skip_emulated_instruction(struct kvm_vcpu *vcpu) -{ - unsigned long rip; - - rip = kvm_rip_read(vcpu); - rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - kvm_rip_write(vcpu, rip); - - /* skipping an emulated instruction also counts */ - vmx_set_interrupt_shadow(vcpu, 0); -} - -static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, - unsigned long exit_qual) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned int nr = vcpu->arch.exception.nr; - u32 intr_info = nr | INTR_INFO_VALID_MASK; - - if (vcpu->arch.exception.has_error_code) { - vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; - intr_info |= INTR_INFO_DELIVER_CODE_MASK; - } - - if (kvm_exception_is_soft(nr)) - intr_info |= INTR_TYPE_SOFT_EXCEPTION; - else - intr_info |= INTR_TYPE_HARD_EXCEPTION; - - if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && - vmx_get_nmi_mask(vcpu)) - intr_info |= INTR_INFO_UNBLOCK_NMI; - - nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); -} - -/* - * KVM wants to inject page-faults which it got to the guest. This function - * checks whether in a nested guest, we need to inject them to L1 or L2. - */ -static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned int nr = vcpu->arch.exception.nr; - bool has_payload = vcpu->arch.exception.has_payload; - unsigned long payload = vcpu->arch.exception.payload; - - if (nr == PF_VECTOR) { - if (vcpu->arch.exception.nested_apf) { - *exit_qual = vcpu->arch.apf.nested_apf_token; - return 1; - } - if (nested_vmx_is_page_fault_vmexit(vmcs12, - vcpu->arch.exception.error_code)) { - *exit_qual = has_payload ? payload : vcpu->arch.cr2; - return 1; - } - } else if (vmcs12->exception_bitmap & (1u << nr)) { - if (nr == DB_VECTOR) { - if (!has_payload) { - payload = vcpu->arch.dr6; - payload &= ~(DR6_FIXED_1 | DR6_BT); - payload ^= DR6_RTM; - } - *exit_qual = payload; - } else - *exit_qual = 0; - return 1; - } - - return 0; -} - -static void vmx_clear_hlt(struct kvm_vcpu *vcpu) -{ - /* - * Ensure that we clear the HLT state in the VMCS. We don't need to - * explicitly skip the instruction because if the HLT state is set, - * then the instruction is already executing and RIP has already been - * advanced. - */ - if (kvm_hlt_in_guest(vcpu->kvm) && - vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) - vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); -} - -static void vmx_queue_exception(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned nr = vcpu->arch.exception.nr; - bool has_error_code = vcpu->arch.exception.has_error_code; - u32 error_code = vcpu->arch.exception.error_code; - u32 intr_info = nr | INTR_INFO_VALID_MASK; - - kvm_deliver_exception_payload(vcpu); - - if (has_error_code) { - vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); - intr_info |= INTR_INFO_DELIVER_CODE_MASK; - } - - if (vmx->rmode.vm86_active) { - int inc_eip = 0; - if (kvm_exception_is_soft(nr)) - inc_eip = vcpu->arch.event_exit_inst_len; - if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - return; - } - - WARN_ON_ONCE(vmx->emulation_required); - - if (kvm_exception_is_soft(nr)) { - vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, - vmx->vcpu.arch.event_exit_inst_len); - intr_info |= INTR_TYPE_SOFT_EXCEPTION; - } else - intr_info |= INTR_TYPE_HARD_EXCEPTION; - - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); - - vmx_clear_hlt(vcpu); -} - -static bool vmx_rdtscp_supported(void) -{ - return cpu_has_vmx_rdtscp(); -} - -static bool vmx_invpcid_supported(void) -{ - return cpu_has_vmx_invpcid(); -} - -/* - * Swap MSR entry in host/guest MSR entry array. - */ -static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) -{ - struct shared_msr_entry tmp; - - tmp = vmx->guest_msrs[to]; - vmx->guest_msrs[to] = vmx->guest_msrs[from]; - vmx->guest_msrs[from] = tmp; -} - -/* - * Set up the vmcs to automatically save and restore system - * msrs. Don't touch the 64-bit msrs if the guest is in legacy - * mode, as fiddling with msrs is very expensive. - */ -static void setup_msrs(struct vcpu_vmx *vmx) -{ - int save_nmsrs, index; - - save_nmsrs = 0; -#ifdef CONFIG_X86_64 - if (is_long_mode(&vmx->vcpu)) { - index = __find_msr_index(vmx, MSR_SYSCALL_MASK); - if (index >= 0) - move_msr_up(vmx, index, save_nmsrs++); - index = __find_msr_index(vmx, MSR_LSTAR); - if (index >= 0) - move_msr_up(vmx, index, save_nmsrs++); - index = __find_msr_index(vmx, MSR_CSTAR); - if (index >= 0) - move_msr_up(vmx, index, save_nmsrs++); - index = __find_msr_index(vmx, MSR_TSC_AUX); - if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) - move_msr_up(vmx, index, save_nmsrs++); - /* - * MSR_STAR is only needed on long mode guests, and only - * if efer.sce is enabled. - */ - index = __find_msr_index(vmx, MSR_STAR); - if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) - move_msr_up(vmx, index, save_nmsrs++); - } -#endif - index = __find_msr_index(vmx, MSR_EFER); - if (index >= 0 && update_transition_efer(vmx, index)) - move_msr_up(vmx, index, save_nmsrs++); - - vmx->save_nmsrs = save_nmsrs; - - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(&vmx->vcpu); -} - -static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - if (is_guest_mode(vcpu) && - (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) - return vcpu->arch.tsc_offset - vmcs12->tsc_offset; - - return vcpu->arch.tsc_offset; -} - -/* - * writes 'offset' into guest's timestamp counter offset register - */ -static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) -{ - if (is_guest_mode(vcpu)) { - /* - * We're here if L1 chose not to trap WRMSR to TSC. According - * to the spec, this should set L1's TSC; The offset that L1 - * set for L2 remains unchanged, and still needs to be added - * to the newly set TSC to get L2's TSC. - */ - struct vmcs12 *vmcs12; - /* recalculate vmcs02.TSC_OFFSET: */ - vmcs12 = get_vmcs12(vcpu); - vmcs_write64(TSC_OFFSET, offset + - (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ? - vmcs12->tsc_offset : 0)); - } else { - trace_kvm_write_tsc_offset(vcpu->vcpu_id, - vmcs_read64(TSC_OFFSET), offset); - vmcs_write64(TSC_OFFSET, offset); - } -} - -/* - * nested_vmx_allowed() checks whether a guest should be allowed to use VMX - * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for - * all guests if the "nested" module option is off, and can also be disabled - * for a single guest by disabling its VMX cpuid bit. - */ -static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) -{ - return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); -} - -/* - * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be - * returned for the various VMX controls MSRs when nested VMX is enabled. - * The same values should also be used to verify that vmcs12 control fields are - * valid during nested entry from L1 to L2. - * Each of these control msrs has a low and high 32-bit half: A low bit is on - * if the corresponding bit in the (32-bit) control field *must* be on, and a - * bit in the high half is on if the corresponding bit in the control field - * may be on. See also vmx_control_verify(). - */ -static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv) -{ - if (!nested) { - memset(msrs, 0, sizeof(*msrs)); - return; - } - - /* - * Note that as a general rule, the high half of the MSRs (bits in - * the control fields which may be 1) should be initialized by the - * intersection of the underlying hardware's MSR (i.e., features which - * can be supported) and the list of features we want to expose - - * because they are known to be properly supported in our code. - * Also, usually, the low half of the MSRs (bits which must be 1) can - * be set to 0, meaning that L1 may turn off any of these bits. The - * reason is that if one of these bits is necessary, it will appear - * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control - * fields of vmcs01 and vmcs02, will turn these bits off - and - * nested_vmx_exit_reflected() will not pass related exits to L1. - * These rules have exceptions below. - */ - - /* pin-based controls */ - rdmsr(MSR_IA32_VMX_PINBASED_CTLS, - msrs->pinbased_ctls_low, - msrs->pinbased_ctls_high); - msrs->pinbased_ctls_low |= - PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; - msrs->pinbased_ctls_high &= - PIN_BASED_EXT_INTR_MASK | - PIN_BASED_NMI_EXITING | - PIN_BASED_VIRTUAL_NMIS | - (apicv ? PIN_BASED_POSTED_INTR : 0); - msrs->pinbased_ctls_high |= - PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | - PIN_BASED_VMX_PREEMPTION_TIMER; - - /* exit controls */ - rdmsr(MSR_IA32_VMX_EXIT_CTLS, - msrs->exit_ctls_low, - msrs->exit_ctls_high); - msrs->exit_ctls_low = - VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; - - msrs->exit_ctls_high &= -#ifdef CONFIG_X86_64 - VM_EXIT_HOST_ADDR_SPACE_SIZE | -#endif - VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; - msrs->exit_ctls_high |= - VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | - VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | - VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; - - /* We support free control of debug control saving. */ - msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; - - /* entry controls */ - rdmsr(MSR_IA32_VMX_ENTRY_CTLS, - msrs->entry_ctls_low, - msrs->entry_ctls_high); - msrs->entry_ctls_low = - VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; - msrs->entry_ctls_high &= -#ifdef CONFIG_X86_64 - VM_ENTRY_IA32E_MODE | -#endif - VM_ENTRY_LOAD_IA32_PAT; - msrs->entry_ctls_high |= - (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); - - /* We support free control of debug control loading. */ - msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; - - /* cpu-based controls */ - rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, - msrs->procbased_ctls_low, - msrs->procbased_ctls_high); - msrs->procbased_ctls_low = - CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; - msrs->procbased_ctls_high &= - CPU_BASED_VIRTUAL_INTR_PENDING | - CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | - CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | - CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING | -#ifdef CONFIG_X86_64 - CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | -#endif - CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | - CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | - CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | - CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | - CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; - /* - * We can allow some features even when not supported by the - * hardware. For example, L1 can specify an MSR bitmap - and we - * can use it to avoid exits to L1 - even when L0 runs L2 - * without MSR bitmaps. - */ - msrs->procbased_ctls_high |= - CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | - CPU_BASED_USE_MSR_BITMAPS; - - /* We support free control of CR3 access interception. */ - msrs->procbased_ctls_low &= - ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); - - /* - * secondary cpu-based controls. Do not include those that - * depend on CPUID bits, they are added later by vmx_cpuid_update. - */ - rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, - msrs->secondary_ctls_low, - msrs->secondary_ctls_high); - msrs->secondary_ctls_low = 0; - msrs->secondary_ctls_high &= - SECONDARY_EXEC_DESC | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | - SECONDARY_EXEC_WBINVD_EXITING; - - /* - * We can emulate "VMCS shadowing," even if the hardware - * doesn't support it. - */ - msrs->secondary_ctls_high |= - SECONDARY_EXEC_SHADOW_VMCS; - - if (enable_ept) { - /* nested EPT: emulate EPT also to L1 */ - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_EPT; - msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT | - VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; - if (cpu_has_vmx_ept_execute_only()) - msrs->ept_caps |= - VMX_EPT_EXECUTE_ONLY_BIT; - msrs->ept_caps &= vmx_capability.ept; - msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | - VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | - VMX_EPT_1GB_PAGE_BIT; - if (enable_ept_ad_bits) { - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_PML; - msrs->ept_caps |= VMX_EPT_AD_BIT; - } - } - - if (cpu_has_vmx_vmfunc()) { - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_VMFUNC; - /* - * Advertise EPTP switching unconditionally - * since we emulate it - */ - if (enable_ept) - msrs->vmfunc_controls = - VMX_VMFUNC_EPTP_SWITCHING; - } - - /* - * Old versions of KVM use the single-context version without - * checking for support, so declare that it is supported even - * though it is treated as global context. The alternative is - * not failing the single-context invvpid, and it is worse. - */ - if (enable_vpid) { - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_VPID; - msrs->vpid_caps = VMX_VPID_INVVPID_BIT | - VMX_VPID_EXTENT_SUPPORTED_MASK; - } - - if (enable_unrestricted_guest) - msrs->secondary_ctls_high |= - SECONDARY_EXEC_UNRESTRICTED_GUEST; - - if (flexpriority_enabled) - msrs->secondary_ctls_high |= - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - - /* miscellaneous data */ - rdmsr(MSR_IA32_VMX_MISC, - msrs->misc_low, - msrs->misc_high); - msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA; - msrs->misc_low |= - MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | - VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | - VMX_MISC_ACTIVITY_HLT; - msrs->misc_high = 0; - - /* - * This MSR reports some information about VMX support. We - * should return information about the VMX we emulate for the - * guest, and the VMCS structure we give it - not about the - * VMX support of the underlying hardware. - */ - msrs->basic = - VMCS12_REVISION | - VMX_BASIC_TRUE_CTLS | - ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | - (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); - - if (cpu_has_vmx_basic_inout()) - msrs->basic |= VMX_BASIC_INOUT; - - /* - * These MSRs specify bits which the guest must keep fixed on - * while L1 is in VMXON mode (in L1's root mode, or running an L2). - * We picked the standard core2 setting. - */ -#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) -#define VMXON_CR4_ALWAYSON X86_CR4_VMXE - msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; - msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; - - /* These MSRs specify bits which the guest must keep fixed off. */ - rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); - rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); - - /* highest index: VMX_PREEMPTION_TIMER_VALUE */ - msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1; -} - -/* - * if fixed0[i] == 1: val[i] must be 1 - * if fixed1[i] == 0: val[i] must be 0 - */ -static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1) -{ - return ((val & fixed1) | fixed0) == val; -} - -static inline bool vmx_control_verify(u32 control, u32 low, u32 high) -{ - return fixed_bits_valid(control, low, high); -} - -static inline u64 vmx_control_msr(u32 low, u32 high) -{ - return low | ((u64)high << 32); -} - -static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) -{ - superset &= mask; - subset &= mask; - - return (superset | subset) == superset; -} - -static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) -{ - const u64 feature_and_reserved = - /* feature (except bit 48; see below) */ - BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | - /* reserved */ - BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); - u64 vmx_basic = vmx->nested.msrs.basic; - - if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) - return -EINVAL; - - /* - * KVM does not emulate a version of VMX that constrains physical - * addresses of VMX structures (e.g. VMCS) to 32-bits. - */ - if (data & BIT_ULL(48)) - return -EINVAL; - - if (vmx_basic_vmcs_revision_id(vmx_basic) != - vmx_basic_vmcs_revision_id(data)) - return -EINVAL; - - if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) - return -EINVAL; - - vmx->nested.msrs.basic = data; - return 0; -} - -static int -vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) -{ - u64 supported; - u32 *lowp, *highp; - - switch (msr_index) { - case MSR_IA32_VMX_TRUE_PINBASED_CTLS: - lowp = &vmx->nested.msrs.pinbased_ctls_low; - highp = &vmx->nested.msrs.pinbased_ctls_high; - break; - case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: - lowp = &vmx->nested.msrs.procbased_ctls_low; - highp = &vmx->nested.msrs.procbased_ctls_high; - break; - case MSR_IA32_VMX_TRUE_EXIT_CTLS: - lowp = &vmx->nested.msrs.exit_ctls_low; - highp = &vmx->nested.msrs.exit_ctls_high; - break; - case MSR_IA32_VMX_TRUE_ENTRY_CTLS: - lowp = &vmx->nested.msrs.entry_ctls_low; - highp = &vmx->nested.msrs.entry_ctls_high; - break; - case MSR_IA32_VMX_PROCBASED_CTLS2: - lowp = &vmx->nested.msrs.secondary_ctls_low; - highp = &vmx->nested.msrs.secondary_ctls_high; - break; - default: - BUG(); - } - - supported = vmx_control_msr(*lowp, *highp); - - /* Check must-be-1 bits are still 1. */ - if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) - return -EINVAL; - - /* Check must-be-0 bits are still 0. */ - if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) - return -EINVAL; - - *lowp = data; - *highp = data >> 32; - return 0; -} - -static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) -{ - const u64 feature_and_reserved_bits = - /* feature */ - BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | - BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | - /* reserved */ - GENMASK_ULL(13, 9) | BIT_ULL(31); - u64 vmx_misc; - - vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, - vmx->nested.msrs.misc_high); - - if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) - return -EINVAL; - - if ((vmx->nested.msrs.pinbased_ctls_high & - PIN_BASED_VMX_PREEMPTION_TIMER) && - vmx_misc_preemption_timer_rate(data) != - vmx_misc_preemption_timer_rate(vmx_misc)) - return -EINVAL; - - if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) - return -EINVAL; - - if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) - return -EINVAL; - - if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) - return -EINVAL; - - vmx->nested.msrs.misc_low = data; - vmx->nested.msrs.misc_high = data >> 32; - - /* - * If L1 has read-only VM-exit information fields, use the - * less permissive vmx_vmwrite_bitmap to specify write - * permissions for the shadow VMCS. - */ - if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) - vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); - - return 0; -} - -static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) -{ - u64 vmx_ept_vpid_cap; - - vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps, - vmx->nested.msrs.vpid_caps); - - /* Every bit is either reserved or a feature bit. */ - if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) - return -EINVAL; - - vmx->nested.msrs.ept_caps = data; - vmx->nested.msrs.vpid_caps = data >> 32; - return 0; -} - -static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) -{ - u64 *msr; - - switch (msr_index) { - case MSR_IA32_VMX_CR0_FIXED0: - msr = &vmx->nested.msrs.cr0_fixed0; - break; - case MSR_IA32_VMX_CR4_FIXED0: - msr = &vmx->nested.msrs.cr4_fixed0; - break; - default: - BUG(); - } - - /* - * 1 bits (which indicates bits which "must-be-1" during VMX operation) - * must be 1 in the restored value. - */ - if (!is_bitwise_subset(data, *msr, -1ULL)) - return -EINVAL; - - *msr = data; - return 0; -} - -/* - * Called when userspace is restoring VMX MSRs. - * - * Returns 0 on success, non-0 otherwise. - */ -static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * Don't allow changes to the VMX capability MSRs while the vCPU - * is in VMX operation. - */ - if (vmx->nested.vmxon) - return -EBUSY; - - switch (msr_index) { - case MSR_IA32_VMX_BASIC: - return vmx_restore_vmx_basic(vmx, data); - case MSR_IA32_VMX_PINBASED_CTLS: - case MSR_IA32_VMX_PROCBASED_CTLS: - case MSR_IA32_VMX_EXIT_CTLS: - case MSR_IA32_VMX_ENTRY_CTLS: - /* - * The "non-true" VMX capability MSRs are generated from the - * "true" MSRs, so we do not support restoring them directly. - * - * If userspace wants to emulate VMX_BASIC[55]=0, userspace - * should restore the "true" MSRs with the must-be-1 bits - * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND - * DEFAULT SETTINGS". - */ - return -EINVAL; - case MSR_IA32_VMX_TRUE_PINBASED_CTLS: - case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: - case MSR_IA32_VMX_TRUE_EXIT_CTLS: - case MSR_IA32_VMX_TRUE_ENTRY_CTLS: - case MSR_IA32_VMX_PROCBASED_CTLS2: - return vmx_restore_control_msr(vmx, msr_index, data); - case MSR_IA32_VMX_MISC: - return vmx_restore_vmx_misc(vmx, data); - case MSR_IA32_VMX_CR0_FIXED0: - case MSR_IA32_VMX_CR4_FIXED0: - return vmx_restore_fixed0_msr(vmx, msr_index, data); - case MSR_IA32_VMX_CR0_FIXED1: - case MSR_IA32_VMX_CR4_FIXED1: - /* - * These MSRs are generated based on the vCPU's CPUID, so we - * do not support restoring them directly. - */ - return -EINVAL; - case MSR_IA32_VMX_EPT_VPID_CAP: - return vmx_restore_vmx_ept_vpid_cap(vmx, data); - case MSR_IA32_VMX_VMCS_ENUM: - vmx->nested.msrs.vmcs_enum = data; - return 0; - default: - /* - * The rest of the VMX capability MSRs do not support restore. - */ - return -EINVAL; - } -} - -/* Returns 0 on success, non-0 otherwise. */ -static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) -{ - switch (msr_index) { - case MSR_IA32_VMX_BASIC: - *pdata = msrs->basic; - break; - case MSR_IA32_VMX_TRUE_PINBASED_CTLS: - case MSR_IA32_VMX_PINBASED_CTLS: - *pdata = vmx_control_msr( - msrs->pinbased_ctls_low, - msrs->pinbased_ctls_high); - if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) - *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; - break; - case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: - case MSR_IA32_VMX_PROCBASED_CTLS: - *pdata = vmx_control_msr( - msrs->procbased_ctls_low, - msrs->procbased_ctls_high); - if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) - *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; - break; - case MSR_IA32_VMX_TRUE_EXIT_CTLS: - case MSR_IA32_VMX_EXIT_CTLS: - *pdata = vmx_control_msr( - msrs->exit_ctls_low, - msrs->exit_ctls_high); - if (msr_index == MSR_IA32_VMX_EXIT_CTLS) - *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; - break; - case MSR_IA32_VMX_TRUE_ENTRY_CTLS: - case MSR_IA32_VMX_ENTRY_CTLS: - *pdata = vmx_control_msr( - msrs->entry_ctls_low, - msrs->entry_ctls_high); - if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) - *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; - break; - case MSR_IA32_VMX_MISC: - *pdata = vmx_control_msr( - msrs->misc_low, - msrs->misc_high); - break; - case MSR_IA32_VMX_CR0_FIXED0: - *pdata = msrs->cr0_fixed0; - break; - case MSR_IA32_VMX_CR0_FIXED1: - *pdata = msrs->cr0_fixed1; - break; - case MSR_IA32_VMX_CR4_FIXED0: - *pdata = msrs->cr4_fixed0; - break; - case MSR_IA32_VMX_CR4_FIXED1: - *pdata = msrs->cr4_fixed1; - break; - case MSR_IA32_VMX_VMCS_ENUM: - *pdata = msrs->vmcs_enum; - break; - case MSR_IA32_VMX_PROCBASED_CTLS2: - *pdata = vmx_control_msr( - msrs->secondary_ctls_low, - msrs->secondary_ctls_high); - break; - case MSR_IA32_VMX_EPT_VPID_CAP: - *pdata = msrs->ept_caps | - ((u64)msrs->vpid_caps << 32); - break; - case MSR_IA32_VMX_VMFUNC: - *pdata = msrs->vmfunc_controls; - break; - default: - return 1; - } - - return 0; -} - -static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, - uint64_t val) -{ - uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; - - return !(val & ~valid_bits); -} - -static int vmx_get_msr_feature(struct kvm_msr_entry *msr) -{ - switch (msr->index) { - case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: - if (!nested) - return 1; - return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); - default: - return 1; - } - - return 0; -} - -/* - * Reads an msr value (of 'msr_index') into 'pdata'. - * Returns 0 on success, non-0 otherwise. - * Assumes vcpu_load() was already called. - */ -static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct shared_msr_entry *msr; - - switch (msr_info->index) { -#ifdef CONFIG_X86_64 - case MSR_FS_BASE: - msr_info->data = vmcs_readl(GUEST_FS_BASE); - break; - case MSR_GS_BASE: - msr_info->data = vmcs_readl(GUEST_GS_BASE); - break; - case MSR_KERNEL_GS_BASE: - msr_info->data = vmx_read_guest_kernel_gs_base(vmx); - break; -#endif - case MSR_EFER: - return kvm_get_msr_common(vcpu, msr_info); - case MSR_IA32_SPEC_CTRL: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) - return 1; - - msr_info->data = to_vmx(vcpu)->spec_ctrl; - break; - case MSR_IA32_ARCH_CAPABILITIES: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) - return 1; - msr_info->data = to_vmx(vcpu)->arch_capabilities; - break; - case MSR_IA32_SYSENTER_CS: - msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); - break; - case MSR_IA32_SYSENTER_EIP: - msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); - break; - case MSR_IA32_SYSENTER_ESP: - msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); - break; - case MSR_IA32_BNDCFGS: - if (!kvm_mpx_supported() || - (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) - return 1; - msr_info->data = vmcs_read64(GUEST_BNDCFGS); - break; - case MSR_IA32_MCG_EXT_CTL: - if (!msr_info->host_initiated && - !(vmx->msr_ia32_feature_control & - FEATURE_CONTROL_LMCE)) - return 1; - msr_info->data = vcpu->arch.mcg_ext_ctl; - break; - case MSR_IA32_FEATURE_CONTROL: - msr_info->data = vmx->msr_ia32_feature_control; - break; - case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: - if (!nested_vmx_allowed(vcpu)) - return 1; - return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, - &msr_info->data); - case MSR_IA32_XSS: - if (!vmx_xsaves_supported()) - return 1; - msr_info->data = vcpu->arch.ia32_xss; - break; - case MSR_TSC_AUX: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) - return 1; - /* Otherwise falls through */ - default: - msr = find_msr_entry(vmx, msr_info->index); - if (msr) { - msr_info->data = msr->data; - break; - } - return kvm_get_msr_common(vcpu, msr_info); - } - - return 0; -} - -static void vmx_leave_nested(struct kvm_vcpu *vcpu); - -/* - * Writes msr value into into the appropriate "register". - * Returns 0 on success, non-0 otherwise. - * Assumes vcpu_load() was already called. - */ -static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct shared_msr_entry *msr; - int ret = 0; - u32 msr_index = msr_info->index; - u64 data = msr_info->data; - - switch (msr_index) { - case MSR_EFER: - ret = kvm_set_msr_common(vcpu, msr_info); - break; -#ifdef CONFIG_X86_64 - case MSR_FS_BASE: - vmx_segment_cache_clear(vmx); - vmcs_writel(GUEST_FS_BASE, data); - break; - case MSR_GS_BASE: - vmx_segment_cache_clear(vmx); - vmcs_writel(GUEST_GS_BASE, data); - break; - case MSR_KERNEL_GS_BASE: - vmx_write_guest_kernel_gs_base(vmx, data); - break; -#endif - case MSR_IA32_SYSENTER_CS: - vmcs_write32(GUEST_SYSENTER_CS, data); - break; - case MSR_IA32_SYSENTER_EIP: - vmcs_writel(GUEST_SYSENTER_EIP, data); - break; - case MSR_IA32_SYSENTER_ESP: - vmcs_writel(GUEST_SYSENTER_ESP, data); - break; - case MSR_IA32_BNDCFGS: - if (!kvm_mpx_supported() || - (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) - return 1; - if (is_noncanonical_address(data & PAGE_MASK, vcpu) || - (data & MSR_IA32_BNDCFGS_RSVD)) - return 1; - vmcs_write64(GUEST_BNDCFGS, data); - break; - case MSR_IA32_SPEC_CTRL: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) - return 1; - - /* The STIBP bit doesn't fault even if it's not advertised */ - if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) - return 1; - - vmx->spec_ctrl = data; - - if (!data) - break; - - /* - * For non-nested: - * When it's written (to non-zero) for the first time, pass - * it through. - * - * For nested: - * The handling of the MSR bitmap for L2 guests is done in - * nested_vmx_merge_msr_bitmap. We should not touch the - * vmcs02.msr_bitmap here since it gets completely overwritten - * in the merging. We update the vmcs01 here for L1 as well - * since it will end up touching the MSR anyway now. - */ - vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, - MSR_IA32_SPEC_CTRL, - MSR_TYPE_RW); - break; - case MSR_IA32_PRED_CMD: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) - return 1; - - if (data & ~PRED_CMD_IBPB) - return 1; - - if (!data) - break; - - wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); - - /* - * For non-nested: - * When it's written (to non-zero) for the first time, pass - * it through. - * - * For nested: - * The handling of the MSR bitmap for L2 guests is done in - * nested_vmx_merge_msr_bitmap. We should not touch the - * vmcs02.msr_bitmap here since it gets completely overwritten - * in the merging. - */ - vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, - MSR_TYPE_W); - break; - case MSR_IA32_ARCH_CAPABILITIES: - if (!msr_info->host_initiated) - return 1; - vmx->arch_capabilities = data; - break; - case MSR_IA32_CR_PAT: - if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { - if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) - return 1; - vmcs_write64(GUEST_IA32_PAT, data); - vcpu->arch.pat = data; - break; - } - ret = kvm_set_msr_common(vcpu, msr_info); - break; - case MSR_IA32_TSC_ADJUST: - ret = kvm_set_msr_common(vcpu, msr_info); - break; - case MSR_IA32_MCG_EXT_CTL: - if ((!msr_info->host_initiated && - !(to_vmx(vcpu)->msr_ia32_feature_control & - FEATURE_CONTROL_LMCE)) || - (data & ~MCG_EXT_CTL_LMCE_EN)) - return 1; - vcpu->arch.mcg_ext_ctl = data; - break; - case MSR_IA32_FEATURE_CONTROL: - if (!vmx_feature_control_msr_valid(vcpu, data) || - (to_vmx(vcpu)->msr_ia32_feature_control & - FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) - return 1; - vmx->msr_ia32_feature_control = data; - if (msr_info->host_initiated && data == 0) - vmx_leave_nested(vcpu); - break; - case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: - if (!msr_info->host_initiated) - return 1; /* they are read-only */ - if (!nested_vmx_allowed(vcpu)) - return 1; - return vmx_set_vmx_msr(vcpu, msr_index, data); - case MSR_IA32_XSS: - if (!vmx_xsaves_supported()) - return 1; - /* - * The only supported bit as of Skylake is bit 8, but - * it is not supported on KVM. - */ - if (data != 0) - return 1; - vcpu->arch.ia32_xss = data; - if (vcpu->arch.ia32_xss != host_xss) - add_atomic_switch_msr(vmx, MSR_IA32_XSS, - vcpu->arch.ia32_xss, host_xss, false); - else - clear_atomic_switch_msr(vmx, MSR_IA32_XSS); - break; - case MSR_TSC_AUX: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) - return 1; - /* Check reserved bit, higher 32 bits should be zero */ - if ((data >> 32) != 0) - return 1; - /* Otherwise falls through */ - default: - msr = find_msr_entry(vmx, msr_index); - if (msr) { - u64 old_msr_data = msr->data; - msr->data = data; - if (msr - vmx->guest_msrs < vmx->save_nmsrs) { - preempt_disable(); - ret = kvm_set_shared_msr(msr->index, msr->data, - msr->mask); - preempt_enable(); - if (ret) - msr->data = old_msr_data; - } - break; - } - ret = kvm_set_msr_common(vcpu, msr_info); - } - - return ret; -} - -static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) -{ - __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); - switch (reg) { - case VCPU_REGS_RSP: - vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); - break; - case VCPU_REGS_RIP: - vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); - break; - case VCPU_EXREG_PDPTR: - if (enable_ept) - ept_save_pdptrs(vcpu); - break; - default: - break; - } -} - -static __init int cpu_has_kvm_support(void) -{ - return cpu_has_vmx(); -} - -static __init int vmx_disabled_by_bios(void) -{ - u64 msr; - - rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); - if (msr & FEATURE_CONTROL_LOCKED) { - /* launched w/ TXT and VMX disabled */ - if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) - && tboot_enabled()) - return 1; - /* launched w/o TXT and VMX only enabled w/ TXT */ - if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) - && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) - && !tboot_enabled()) { - printk(KERN_WARNING "kvm: disable TXT in the BIOS or " - "activate TXT before enabling KVM\n"); - return 1; - } - /* launched w/o TXT and VMX disabled */ - if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) - && !tboot_enabled()) - return 1; - } - - return 0; -} - -static void kvm_cpu_vmxon(u64 addr) -{ - cr4_set_bits(X86_CR4_VMXE); - intel_pt_handle_vmx(1); - - asm volatile ("vmxon %0" : : "m"(addr)); -} - -static int hardware_enable(void) -{ - int cpu = raw_smp_processor_id(); - u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); - u64 old, test_bits; - - if (cr4_read_shadow() & X86_CR4_VMXE) - return -EBUSY; - - /* - * This can happen if we hot-added a CPU but failed to allocate - * VP assist page for it. - */ - if (static_branch_unlikely(&enable_evmcs) && - !hv_get_vp_assist_page(cpu)) - return -EFAULT; - - INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); - INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); - spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); - - /* - * Now we can enable the vmclear operation in kdump - * since the loaded_vmcss_on_cpu list on this cpu - * has been initialized. - * - * Though the cpu is not in VMX operation now, there - * is no problem to enable the vmclear operation - * for the loaded_vmcss_on_cpu list is empty! - */ - crash_enable_local_vmclear(cpu); - - rdmsrl(MSR_IA32_FEATURE_CONTROL, old); - - test_bits = FEATURE_CONTROL_LOCKED; - test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; - if (tboot_enabled()) - test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; - - if ((old & test_bits) != test_bits) { - /* enable and lock */ - wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); - } - kvm_cpu_vmxon(phys_addr); - if (enable_ept) - ept_sync_global(); - - return 0; -} - -static void vmclear_local_loaded_vmcss(void) -{ - int cpu = raw_smp_processor_id(); - struct loaded_vmcs *v, *n; - - list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), - loaded_vmcss_on_cpu_link) - __loaded_vmcs_clear(v); -} - - -/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() - * tricks. - */ -static void kvm_cpu_vmxoff(void) -{ - asm volatile (__ex("vmxoff")); - - intel_pt_handle_vmx(0); - cr4_clear_bits(X86_CR4_VMXE); -} - -static void hardware_disable(void) -{ - vmclear_local_loaded_vmcss(); - kvm_cpu_vmxoff(); -} - -static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, - u32 msr, u32 *result) -{ - u32 vmx_msr_low, vmx_msr_high; - u32 ctl = ctl_min | ctl_opt; - - rdmsr(msr, vmx_msr_low, vmx_msr_high); - - ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ - ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ - - /* Ensure minimum (required) set of control bits are supported. */ - if (ctl_min & ~ctl) - return -EIO; - - *result = ctl; - return 0; -} - -static __init bool allow_1_setting(u32 msr, u32 ctl) -{ - u32 vmx_msr_low, vmx_msr_high; - - rdmsr(msr, vmx_msr_low, vmx_msr_high); - return vmx_msr_high & ctl; -} - -static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) -{ - u32 vmx_msr_low, vmx_msr_high; - u32 min, opt, min2, opt2; - u32 _pin_based_exec_control = 0; - u32 _cpu_based_exec_control = 0; - u32 _cpu_based_2nd_exec_control = 0; - u32 _vmexit_control = 0; - u32 _vmentry_control = 0; - - memset(vmcs_conf, 0, sizeof(*vmcs_conf)); - min = CPU_BASED_HLT_EXITING | -#ifdef CONFIG_X86_64 - CPU_BASED_CR8_LOAD_EXITING | - CPU_BASED_CR8_STORE_EXITING | -#endif - CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING | - CPU_BASED_UNCOND_IO_EXITING | - CPU_BASED_MOV_DR_EXITING | - CPU_BASED_USE_TSC_OFFSETING | - CPU_BASED_MWAIT_EXITING | - CPU_BASED_MONITOR_EXITING | - CPU_BASED_INVLPG_EXITING | - CPU_BASED_RDPMC_EXITING; - - opt = CPU_BASED_TPR_SHADOW | - CPU_BASED_USE_MSR_BITMAPS | - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; - if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, - &_cpu_based_exec_control) < 0) - return -EIO; -#ifdef CONFIG_X86_64 - if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) - _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & - ~CPU_BASED_CR8_STORE_EXITING; -#endif - if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { - min2 = 0; - opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | - SECONDARY_EXEC_WBINVD_EXITING | - SECONDARY_EXEC_ENABLE_VPID | - SECONDARY_EXEC_ENABLE_EPT | - SECONDARY_EXEC_UNRESTRICTED_GUEST | - SECONDARY_EXEC_PAUSE_LOOP_EXITING | - SECONDARY_EXEC_DESC | - SECONDARY_EXEC_RDTSCP | - SECONDARY_EXEC_ENABLE_INVPCID | - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | - SECONDARY_EXEC_SHADOW_VMCS | - SECONDARY_EXEC_XSAVES | - SECONDARY_EXEC_RDSEED_EXITING | - SECONDARY_EXEC_RDRAND_EXITING | - SECONDARY_EXEC_ENABLE_PML | - SECONDARY_EXEC_TSC_SCALING | - SECONDARY_EXEC_ENABLE_VMFUNC | - SECONDARY_EXEC_ENCLS_EXITING; - if (adjust_vmx_controls(min2, opt2, - MSR_IA32_VMX_PROCBASED_CTLS2, - &_cpu_based_2nd_exec_control) < 0) - return -EIO; - } -#ifndef CONFIG_X86_64 - if (!(_cpu_based_2nd_exec_control & - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) - _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; -#endif - - if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) - _cpu_based_2nd_exec_control &= ~( - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); - - rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, - &vmx_capability.ept, &vmx_capability.vpid); - - if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { - /* CR3 accesses and invlpg don't need to cause VM Exits when EPT - enabled */ - _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING | - CPU_BASED_INVLPG_EXITING); - } else if (vmx_capability.ept) { - vmx_capability.ept = 0; - pr_warn_once("EPT CAP should not exist if not support " - "1-setting enable EPT VM-execution control\n"); - } - if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && - vmx_capability.vpid) { - vmx_capability.vpid = 0; - pr_warn_once("VPID CAP should not exist if not support " - "1-setting enable VPID VM-execution control\n"); - } - - min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; -#ifdef CONFIG_X86_64 - min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; -#endif - opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT | - VM_EXIT_CLEAR_BNDCFGS; - if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, - &_vmexit_control) < 0) - return -EIO; - - min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; - opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | - PIN_BASED_VMX_PREEMPTION_TIMER; - if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, - &_pin_based_exec_control) < 0) - return -EIO; - - if (cpu_has_broken_vmx_preemption_timer()) - _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; - if (!(_cpu_based_2nd_exec_control & - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) - _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; - - min = VM_ENTRY_LOAD_DEBUG_CONTROLS; - opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS; - if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, - &_vmentry_control) < 0) - return -EIO; - - rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); - - /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ - if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) - return -EIO; - -#ifdef CONFIG_X86_64 - /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ - if (vmx_msr_high & (1u<<16)) - return -EIO; -#endif - - /* Require Write-Back (WB) memory type for VMCS accesses. */ - if (((vmx_msr_high >> 18) & 15) != 6) - return -EIO; - - vmcs_conf->size = vmx_msr_high & 0x1fff; - vmcs_conf->order = get_order(vmcs_conf->size); - vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; - - vmcs_conf->revision_id = vmx_msr_low; - - vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; - vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; - vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; - vmcs_conf->vmexit_ctrl = _vmexit_control; - vmcs_conf->vmentry_ctrl = _vmentry_control; - - if (static_branch_unlikely(&enable_evmcs)) - evmcs_sanitize_exec_ctrls(vmcs_conf); - - cpu_has_load_ia32_efer = - allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, - VM_ENTRY_LOAD_IA32_EFER) - && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, - VM_EXIT_LOAD_IA32_EFER); - - cpu_has_load_perf_global_ctrl = - allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, - VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) - && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, - VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); - - /* - * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL - * but due to errata below it can't be used. Workaround is to use - * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. - * - * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] - * - * AAK155 (model 26) - * AAP115 (model 30) - * AAT100 (model 37) - * BC86,AAY89,BD102 (model 44) - * BA97 (model 46) - * - */ - if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { - switch (boot_cpu_data.x86_model) { - case 26: - case 30: - case 37: - case 44: - case 46: - cpu_has_load_perf_global_ctrl = false; - printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " - "does not work properly. Using workaround\n"); - break; - default: - break; - } - } - - if (boot_cpu_has(X86_FEATURE_XSAVES)) - rdmsrl(MSR_IA32_XSS, host_xss); - - return 0; -} - -static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu) -{ - int node = cpu_to_node(cpu); - struct page *pages; - struct vmcs *vmcs; - - pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); - if (!pages) - return NULL; - vmcs = page_address(pages); - memset(vmcs, 0, vmcs_config.size); - - /* KVM supports Enlightened VMCS v1 only */ - if (static_branch_unlikely(&enable_evmcs)) - vmcs->hdr.revision_id = KVM_EVMCS_VERSION; - else - vmcs->hdr.revision_id = vmcs_config.revision_id; - - if (shadow) - vmcs->hdr.shadow_vmcs = 1; - return vmcs; -} - -static void free_vmcs(struct vmcs *vmcs) -{ - free_pages((unsigned long)vmcs, vmcs_config.order); -} - -/* - * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded - */ -static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) -{ - if (!loaded_vmcs->vmcs) - return; - loaded_vmcs_clear(loaded_vmcs); - free_vmcs(loaded_vmcs->vmcs); - loaded_vmcs->vmcs = NULL; - if (loaded_vmcs->msr_bitmap) - free_page((unsigned long)loaded_vmcs->msr_bitmap); - WARN_ON(loaded_vmcs->shadow_vmcs != NULL); -} - -static struct vmcs *alloc_vmcs(bool shadow) -{ - return alloc_vmcs_cpu(shadow, raw_smp_processor_id()); -} - -static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) -{ - loaded_vmcs->vmcs = alloc_vmcs(false); - if (!loaded_vmcs->vmcs) - return -ENOMEM; - - loaded_vmcs->shadow_vmcs = NULL; - loaded_vmcs_init(loaded_vmcs); - - if (cpu_has_vmx_msr_bitmap()) { - loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); - if (!loaded_vmcs->msr_bitmap) - goto out_vmcs; - memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); - - if (IS_ENABLED(CONFIG_HYPERV) && - static_branch_unlikely(&enable_evmcs) && - (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { - struct hv_enlightened_vmcs *evmcs = - (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; - - evmcs->hv_enlightenments_control.msr_bitmap = 1; - } - } - - memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); - - return 0; - -out_vmcs: - free_loaded_vmcs(loaded_vmcs); - return -ENOMEM; -} - -static void free_kvm_area(void) -{ - int cpu; - - for_each_possible_cpu(cpu) { - free_vmcs(per_cpu(vmxarea, cpu)); - per_cpu(vmxarea, cpu) = NULL; - } -} - -enum vmcs_field_width { - VMCS_FIELD_WIDTH_U16 = 0, - VMCS_FIELD_WIDTH_U64 = 1, - VMCS_FIELD_WIDTH_U32 = 2, - VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3 -}; - -static inline int vmcs_field_width(unsigned long field) -{ - if (0x1 & field) /* the *_HIGH fields are all 32 bit */ - return VMCS_FIELD_WIDTH_U32; - return (field >> 13) & 0x3 ; -} - -static inline int vmcs_field_readonly(unsigned long field) -{ - return (((field >> 10) & 0x3) == 1); -} - -static void init_vmcs_shadow_fields(void) -{ - int i, j; - - for (i = j = 0; i < max_shadow_read_only_fields; i++) { - u16 field = shadow_read_only_fields[i]; - if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && - (i + 1 == max_shadow_read_only_fields || - shadow_read_only_fields[i + 1] != field + 1)) - pr_err("Missing field from shadow_read_only_field %x\n", - field + 1); - - clear_bit(field, vmx_vmread_bitmap); -#ifdef CONFIG_X86_64 - if (field & 1) - continue; -#endif - if (j < i) - shadow_read_only_fields[j] = field; - j++; - } - max_shadow_read_only_fields = j; - - for (i = j = 0; i < max_shadow_read_write_fields; i++) { - u16 field = shadow_read_write_fields[i]; - if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && - (i + 1 == max_shadow_read_write_fields || - shadow_read_write_fields[i + 1] != field + 1)) - pr_err("Missing field from shadow_read_write_field %x\n", - field + 1); - - /* - * PML and the preemption timer can be emulated, but the - * processor cannot vmwrite to fields that don't exist - * on bare metal. - */ - switch (field) { - case GUEST_PML_INDEX: - if (!cpu_has_vmx_pml()) - continue; - break; - case VMX_PREEMPTION_TIMER_VALUE: - if (!cpu_has_vmx_preemption_timer()) - continue; - break; - case GUEST_INTR_STATUS: - if (!cpu_has_vmx_apicv()) - continue; - break; - default: - break; - } - - clear_bit(field, vmx_vmwrite_bitmap); - clear_bit(field, vmx_vmread_bitmap); -#ifdef CONFIG_X86_64 - if (field & 1) - continue; -#endif - if (j < i) - shadow_read_write_fields[j] = field; - j++; - } - max_shadow_read_write_fields = j; -} - -static __init int alloc_kvm_area(void) -{ - int cpu; - - for_each_possible_cpu(cpu) { - struct vmcs *vmcs; - - vmcs = alloc_vmcs_cpu(false, cpu); - if (!vmcs) { - free_kvm_area(); - return -ENOMEM; - } - - /* - * When eVMCS is enabled, alloc_vmcs_cpu() sets - * vmcs->revision_id to KVM_EVMCS_VERSION instead of - * revision_id reported by MSR_IA32_VMX_BASIC. - * - * However, even though not explictly documented by - * TLFS, VMXArea passed as VMXON argument should - * still be marked with revision_id reported by - * physical CPU. - */ - if (static_branch_unlikely(&enable_evmcs)) - vmcs->hdr.revision_id = vmcs_config.revision_id; - - per_cpu(vmxarea, cpu) = vmcs; - } - return 0; -} - -static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, - struct kvm_segment *save) -{ - if (!emulate_invalid_guest_state) { - /* - * CS and SS RPL should be equal during guest entry according - * to VMX spec, but in reality it is not always so. Since vcpu - * is in the middle of the transition from real mode to - * protected mode it is safe to assume that RPL 0 is a good - * default value. - */ - if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) - save->selector &= ~SEGMENT_RPL_MASK; - save->dpl = save->selector & SEGMENT_RPL_MASK; - save->s = 1; - } - vmx_set_segment(vcpu, save, seg); -} - -static void enter_pmode(struct kvm_vcpu *vcpu) -{ - unsigned long flags; - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * Update real mode segment cache. It may be not up-to-date if sement - * register was written while vcpu was in a guest mode. - */ - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); - - vmx->rmode.vm86_active = 0; - - vmx_segment_cache_clear(vmx); - - vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); - - flags = vmcs_readl(GUEST_RFLAGS); - flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; - flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; - vmcs_writel(GUEST_RFLAGS, flags); - - vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | - (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); - - update_exception_bitmap(vcpu); - - fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); - fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); - fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); - fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); - fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); - fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); -} - -static void fix_rmode_seg(int seg, struct kvm_segment *save) -{ - const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; - struct kvm_segment var = *save; - - var.dpl = 0x3; - if (seg == VCPU_SREG_CS) - var.type = 0x3; - - if (!emulate_invalid_guest_state) { - var.selector = var.base >> 4; - var.base = var.base & 0xffff0; - var.limit = 0xffff; - var.g = 0; - var.db = 0; - var.present = 1; - var.s = 1; - var.l = 0; - var.unusable = 0; - var.type = 0x3; - var.avl = 0; - if (save->base & 0xf) - printk_once(KERN_WARNING "kvm: segment base is not " - "paragraph aligned when entering " - "protected mode (seg=%d)", seg); - } - - vmcs_write16(sf->selector, var.selector); - vmcs_writel(sf->base, var.base); - vmcs_write32(sf->limit, var.limit); - vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); -} - -static void enter_rmode(struct kvm_vcpu *vcpu) -{ - unsigned long flags; - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); - - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); - - vmx->rmode.vm86_active = 1; - - /* - * Very old userspace does not call KVM_SET_TSS_ADDR before entering - * vcpu. Warn the user that an update is overdue. - */ - if (!kvm_vmx->tss_addr) - printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " - "called before entering vcpu\n"); - - vmx_segment_cache_clear(vmx); - - vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); - vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); - vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); - - flags = vmcs_readl(GUEST_RFLAGS); - vmx->rmode.save_rflags = flags; - - flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; - - vmcs_writel(GUEST_RFLAGS, flags); - vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); - update_exception_bitmap(vcpu); - - fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); - fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); - fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); - fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); - fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); - fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); - - kvm_mmu_reset_context(vcpu); -} - -static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); - - if (!msr) - return; - - vcpu->arch.efer = efer; - if (efer & EFER_LMA) { - vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); - msr->data = efer; - } else { - vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); - - msr->data = efer & ~EFER_LME; - } - setup_msrs(vmx); -} - -#ifdef CONFIG_X86_64 - -static void enter_lmode(struct kvm_vcpu *vcpu) -{ - u32 guest_tr_ar; - - vmx_segment_cache_clear(to_vmx(vcpu)); - - guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); - if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { - pr_debug_ratelimited("%s: tss fixup for long mode. \n", - __func__); - vmcs_write32(GUEST_TR_AR_BYTES, - (guest_tr_ar & ~VMX_AR_TYPE_MASK) - | VMX_AR_TYPE_BUSY_64_TSS); - } - vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); -} - -static void exit_lmode(struct kvm_vcpu *vcpu) -{ - vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); - vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); -} - -#endif - -static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid, - bool invalidate_gpa) -{ - if (enable_ept && (invalidate_gpa || !enable_vpid)) { - if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) - return; - ept_sync_context(construct_eptp(vcpu, - vcpu->arch.mmu->root_hpa)); - } else { - vpid_sync_context(vpid); - } -} - -static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) -{ - __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa); -} - -static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) -{ - int vpid = to_vmx(vcpu)->vpid; - - if (!vpid_sync_vcpu_addr(vpid, addr)) - vpid_sync_context(vpid); - - /* - * If VPIDs are not supported or enabled, then the above is a no-op. - * But we don't really need a TLB flush in that case anyway, because - * each VM entry/exit includes an implicit flush when VPID is 0. - */ -} - -static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) -{ - ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; - - vcpu->arch.cr0 &= ~cr0_guest_owned_bits; - vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; -} - -static void vmx_decache_cr3(struct kvm_vcpu *vcpu) -{ - if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) - vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); - __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); -} - -static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) -{ - ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; - - vcpu->arch.cr4 &= ~cr4_guest_owned_bits; - vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; -} - -static void ept_load_pdptrs(struct kvm_vcpu *vcpu) -{ - struct kvm_mmu *mmu = vcpu->arch.walk_mmu; - - if (!test_bit(VCPU_EXREG_PDPTR, - (unsigned long *)&vcpu->arch.regs_dirty)) - return; - - if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { - vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); - vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); - vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); - vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); - } -} - -static void ept_save_pdptrs(struct kvm_vcpu *vcpu) -{ - struct kvm_mmu *mmu = vcpu->arch.walk_mmu; - - if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { - mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); - mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); - mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); - mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); - } - - __set_bit(VCPU_EXREG_PDPTR, - (unsigned long *)&vcpu->arch.regs_avail); - __set_bit(VCPU_EXREG_PDPTR, - (unsigned long *)&vcpu->arch.regs_dirty); -} - -static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) -{ - u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; - u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high & - SECONDARY_EXEC_UNRESTRICTED_GUEST && - nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) - fixed0 &= ~(X86_CR0_PE | X86_CR0_PG); - - return fixed_bits_valid(val, fixed0, fixed1); -} - -static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) -{ - u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; - u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; - - return fixed_bits_valid(val, fixed0, fixed1); -} - -static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val) -{ - u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0; - u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1; - - return fixed_bits_valid(val, fixed0, fixed1); -} - -/* No difference in the restrictions on guest and host CR4 in VMX operation. */ -#define nested_guest_cr4_valid nested_cr4_valid -#define nested_host_cr4_valid nested_cr4_valid - -static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); - -static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, - unsigned long cr0, - struct kvm_vcpu *vcpu) -{ - if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) - vmx_decache_cr3(vcpu); - if (!(cr0 & X86_CR0_PG)) { - /* From paging/starting to nonpaging */ - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, - vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | - (CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING)); - vcpu->arch.cr0 = cr0; - vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); - } else if (!is_paging(vcpu)) { - /* From nonpaging to paging */ - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, - vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & - ~(CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING)); - vcpu->arch.cr0 = cr0; - vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); - } - - if (!(cr0 & X86_CR0_WP)) - *hw_cr0 &= ~X86_CR0_WP; -} - -static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long hw_cr0; - - hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); - if (enable_unrestricted_guest) - hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; - else { - hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; - - if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) - enter_pmode(vcpu); - - if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) - enter_rmode(vcpu); - } - -#ifdef CONFIG_X86_64 - if (vcpu->arch.efer & EFER_LME) { - if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) - enter_lmode(vcpu); - if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) - exit_lmode(vcpu); - } -#endif - - if (enable_ept && !enable_unrestricted_guest) - ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); - - vmcs_writel(CR0_READ_SHADOW, cr0); - vmcs_writel(GUEST_CR0, hw_cr0); - vcpu->arch.cr0 = cr0; - - /* depends on vcpu->arch.cr0 to be set to a new value */ - vmx->emulation_required = emulation_required(vcpu); -} - -static int get_ept_level(struct kvm_vcpu *vcpu) -{ - if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) - return 5; - return 4; -} - -static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) -{ - u64 eptp = VMX_EPTP_MT_WB; - - eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; - - if (enable_ept_ad_bits && - (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) - eptp |= VMX_EPTP_AD_ENABLE_BIT; - eptp |= (root_hpa & PAGE_MASK); - - return eptp; -} - -static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) -{ - struct kvm *kvm = vcpu->kvm; - unsigned long guest_cr3; - u64 eptp; - - guest_cr3 = cr3; - if (enable_ept) { - eptp = construct_eptp(vcpu, cr3); - vmcs_write64(EPT_POINTER, eptp); - - if (kvm_x86_ops->tlb_remote_flush) { - spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); - to_vmx(vcpu)->ept_pointer = eptp; - to_kvm_vmx(kvm)->ept_pointers_match - = EPT_POINTERS_CHECK; - spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); - } - - if (enable_unrestricted_guest || is_paging(vcpu) || - is_guest_mode(vcpu)) - guest_cr3 = kvm_read_cr3(vcpu); - else - guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; - ept_load_pdptrs(vcpu); - } - - vmcs_writel(GUEST_CR3, guest_cr3); -} - -static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) -{ - /* - * Pass through host's Machine Check Enable value to hw_cr4, which - * is in force while we are in guest mode. Do not let guests control - * this bit, even if host CR4.MCE == 0. - */ - unsigned long hw_cr4; - - hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); - if (enable_unrestricted_guest) - hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; - else if (to_vmx(vcpu)->rmode.vm86_active) - hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; - else - hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; - - if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { - if (cr4 & X86_CR4_UMIP) { - vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_DESC); - hw_cr4 &= ~X86_CR4_UMIP; - } else if (!is_guest_mode(vcpu) || - !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_DESC); - } - - if (cr4 & X86_CR4_VMXE) { - /* - * To use VMXON (and later other VMX instructions), a guest - * must first be able to turn on cr4.VMXE (see handle_vmon()). - * So basically the check on whether to allow nested VMX - * is here. We operate under the default treatment of SMM, - * so VMX cannot be enabled under SMM. - */ - if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) - return 1; - } - - if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) - return 1; - - vcpu->arch.cr4 = cr4; - - if (!enable_unrestricted_guest) { - if (enable_ept) { - if (!is_paging(vcpu)) { - hw_cr4 &= ~X86_CR4_PAE; - hw_cr4 |= X86_CR4_PSE; - } else if (!(cr4 & X86_CR4_PAE)) { - hw_cr4 &= ~X86_CR4_PAE; - } - } - - /* - * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in - * hardware. To emulate this behavior, SMEP/SMAP/PKU needs - * to be manually disabled when guest switches to non-paging - * mode. - * - * If !enable_unrestricted_guest, the CPU is always running - * with CR0.PG=1 and CR4 needs to be modified. - * If enable_unrestricted_guest, the CPU automatically - * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. - */ - if (!is_paging(vcpu)) - hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); - } - - vmcs_writel(CR4_READ_SHADOW, cr4); - vmcs_writel(GUEST_CR4, hw_cr4); - return 0; -} - -static void vmx_get_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 ar; - - if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { - *var = vmx->rmode.segs[seg]; - if (seg == VCPU_SREG_TR - || var->selector == vmx_read_guest_seg_selector(vmx, seg)) - return; - var->base = vmx_read_guest_seg_base(vmx, seg); - var->selector = vmx_read_guest_seg_selector(vmx, seg); - return; - } - var->base = vmx_read_guest_seg_base(vmx, seg); - var->limit = vmx_read_guest_seg_limit(vmx, seg); - var->selector = vmx_read_guest_seg_selector(vmx, seg); - ar = vmx_read_guest_seg_ar(vmx, seg); - var->unusable = (ar >> 16) & 1; - var->type = ar & 15; - var->s = (ar >> 4) & 1; - var->dpl = (ar >> 5) & 3; - /* - * Some userspaces do not preserve unusable property. Since usable - * segment has to be present according to VMX spec we can use present - * property to amend userspace bug by making unusable segment always - * nonpresent. vmx_segment_access_rights() already marks nonpresent - * segment as unusable. - */ - var->present = !var->unusable; - var->avl = (ar >> 12) & 1; - var->l = (ar >> 13) & 1; - var->db = (ar >> 14) & 1; - var->g = (ar >> 15) & 1; -} - -static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) -{ - struct kvm_segment s; - - if (to_vmx(vcpu)->rmode.vm86_active) { - vmx_get_segment(vcpu, &s, seg); - return s.base; - } - return vmx_read_guest_seg_base(to_vmx(vcpu), seg); -} - -static int vmx_get_cpl(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (unlikely(vmx->rmode.vm86_active)) - return 0; - else { - int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); - return VMX_AR_DPL(ar); - } -} - -static u32 vmx_segment_access_rights(struct kvm_segment *var) -{ - u32 ar; - - if (var->unusable || !var->present) - ar = 1 << 16; - else { - ar = var->type & 15; - ar |= (var->s & 1) << 4; - ar |= (var->dpl & 3) << 5; - ar |= (var->present & 1) << 7; - ar |= (var->avl & 1) << 12; - ar |= (var->l & 1) << 13; - ar |= (var->db & 1) << 14; - ar |= (var->g & 1) << 15; - } - - return ar; -} - -static void vmx_set_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; - - vmx_segment_cache_clear(vmx); - - if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { - vmx->rmode.segs[seg] = *var; - if (seg == VCPU_SREG_TR) - vmcs_write16(sf->selector, var->selector); - else if (var->s) - fix_rmode_seg(seg, &vmx->rmode.segs[seg]); - goto out; - } - - vmcs_writel(sf->base, var->base); - vmcs_write32(sf->limit, var->limit); - vmcs_write16(sf->selector, var->selector); - - /* - * Fix the "Accessed" bit in AR field of segment registers for older - * qemu binaries. - * IA32 arch specifies that at the time of processor reset the - * "Accessed" bit in the AR field of segment registers is 1. And qemu - * is setting it to 0 in the userland code. This causes invalid guest - * state vmexit when "unrestricted guest" mode is turned on. - * Fix for this setup issue in cpu_reset is being pushed in the qemu - * tree. Newer qemu binaries with that qemu fix would not need this - * kvm hack. - */ - if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) - var->type |= 0x1; /* Accessed */ - - vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); - -out: - vmx->emulation_required = emulation_required(vcpu); -} - -static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) -{ - u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); - - *db = (ar >> 14) & 1; - *l = (ar >> 13) & 1; -} - -static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) -{ - dt->size = vmcs_read32(GUEST_IDTR_LIMIT); - dt->address = vmcs_readl(GUEST_IDTR_BASE); -} - -static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) -{ - vmcs_write32(GUEST_IDTR_LIMIT, dt->size); - vmcs_writel(GUEST_IDTR_BASE, dt->address); -} - -static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) -{ - dt->size = vmcs_read32(GUEST_GDTR_LIMIT); - dt->address = vmcs_readl(GUEST_GDTR_BASE); -} - -static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) -{ - vmcs_write32(GUEST_GDTR_LIMIT, dt->size); - vmcs_writel(GUEST_GDTR_BASE, dt->address); -} - -static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) -{ - struct kvm_segment var; - u32 ar; - - vmx_get_segment(vcpu, &var, seg); - var.dpl = 0x3; - if (seg == VCPU_SREG_CS) - var.type = 0x3; - ar = vmx_segment_access_rights(&var); - - if (var.base != (var.selector << 4)) - return false; - if (var.limit != 0xffff) - return false; - if (ar != 0xf3) - return false; - - return true; -} - -static bool code_segment_valid(struct kvm_vcpu *vcpu) -{ - struct kvm_segment cs; - unsigned int cs_rpl; - - vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); - cs_rpl = cs.selector & SEGMENT_RPL_MASK; - - if (cs.unusable) - return false; - if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) - return false; - if (!cs.s) - return false; - if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { - if (cs.dpl > cs_rpl) - return false; - } else { - if (cs.dpl != cs_rpl) - return false; - } - if (!cs.present) - return false; - - /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ - return true; -} - -static bool stack_segment_valid(struct kvm_vcpu *vcpu) -{ - struct kvm_segment ss; - unsigned int ss_rpl; - - vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); - ss_rpl = ss.selector & SEGMENT_RPL_MASK; - - if (ss.unusable) - return true; - if (ss.type != 3 && ss.type != 7) - return false; - if (!ss.s) - return false; - if (ss.dpl != ss_rpl) /* DPL != RPL */ - return false; - if (!ss.present) - return false; - - return true; -} - -static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) -{ - struct kvm_segment var; - unsigned int rpl; - - vmx_get_segment(vcpu, &var, seg); - rpl = var.selector & SEGMENT_RPL_MASK; - - if (var.unusable) - return true; - if (!var.s) - return false; - if (!var.present) - return false; - if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { - if (var.dpl < rpl) /* DPL < RPL */ - return false; - } - - /* TODO: Add other members to kvm_segment_field to allow checking for other access - * rights flags - */ - return true; -} - -static bool tr_valid(struct kvm_vcpu *vcpu) -{ - struct kvm_segment tr; - - vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); - - if (tr.unusable) - return false; - if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ - return false; - if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ - return false; - if (!tr.present) - return false; - - return true; -} - -static bool ldtr_valid(struct kvm_vcpu *vcpu) -{ - struct kvm_segment ldtr; - - vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); - - if (ldtr.unusable) - return true; - if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ - return false; - if (ldtr.type != 2) - return false; - if (!ldtr.present) - return false; - - return true; -} - -static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) -{ - struct kvm_segment cs, ss; - - vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); - vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); - - return ((cs.selector & SEGMENT_RPL_MASK) == - (ss.selector & SEGMENT_RPL_MASK)); -} - -/* - * Check if guest state is valid. Returns true if valid, false if - * not. - * We assume that registers are always usable - */ -static bool guest_state_valid(struct kvm_vcpu *vcpu) -{ - if (enable_unrestricted_guest) - return true; - - /* real mode guest state checks */ - if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { - if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) - return false; - } else { - /* protected mode guest state checks */ - if (!cs_ss_rpl_check(vcpu)) - return false; - if (!code_segment_valid(vcpu)) - return false; - if (!stack_segment_valid(vcpu)) - return false; - if (!data_segment_valid(vcpu, VCPU_SREG_DS)) - return false; - if (!data_segment_valid(vcpu, VCPU_SREG_ES)) - return false; - if (!data_segment_valid(vcpu, VCPU_SREG_FS)) - return false; - if (!data_segment_valid(vcpu, VCPU_SREG_GS)) - return false; - if (!tr_valid(vcpu)) - return false; - if (!ldtr_valid(vcpu)) - return false; - } - /* TODO: - * - Add checks on RIP - * - Add checks on RFLAGS - */ - - return true; -} - -static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) -{ - return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); -} - -static int init_rmode_tss(struct kvm *kvm) -{ - gfn_t fn; - u16 data = 0; - int idx, r; - - idx = srcu_read_lock(&kvm->srcu); - fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; - r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); - if (r < 0) - goto out; - data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; - r = kvm_write_guest_page(kvm, fn++, &data, - TSS_IOPB_BASE_OFFSET, sizeof(u16)); - if (r < 0) - goto out; - r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); - if (r < 0) - goto out; - r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); - if (r < 0) - goto out; - data = ~0; - r = kvm_write_guest_page(kvm, fn, &data, - RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, - sizeof(u8)); -out: - srcu_read_unlock(&kvm->srcu, idx); - return r; -} - -static int init_rmode_identity_map(struct kvm *kvm) -{ - struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); - int i, idx, r = 0; - kvm_pfn_t identity_map_pfn; - u32 tmp; - - /* Protect kvm_vmx->ept_identity_pagetable_done. */ - mutex_lock(&kvm->slots_lock); - - if (likely(kvm_vmx->ept_identity_pagetable_done)) - goto out2; - - if (!kvm_vmx->ept_identity_map_addr) - kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; - identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; - - r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, - kvm_vmx->ept_identity_map_addr, PAGE_SIZE); - if (r < 0) - goto out2; - - idx = srcu_read_lock(&kvm->srcu); - r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); - if (r < 0) - goto out; - /* Set up identity-mapping pagetable for EPT in real mode */ - for (i = 0; i < PT32_ENT_PER_PAGE; i++) { - tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | - _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); - r = kvm_write_guest_page(kvm, identity_map_pfn, - &tmp, i * sizeof(tmp), sizeof(tmp)); - if (r < 0) - goto out; - } - kvm_vmx->ept_identity_pagetable_done = true; - -out: - srcu_read_unlock(&kvm->srcu, idx); - -out2: - mutex_unlock(&kvm->slots_lock); - return r; -} - -static void seg_setup(int seg) -{ - const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; - unsigned int ar; - - vmcs_write16(sf->selector, 0); - vmcs_writel(sf->base, 0); - vmcs_write32(sf->limit, 0xffff); - ar = 0x93; - if (seg == VCPU_SREG_CS) - ar |= 0x08; /* code segment */ - - vmcs_write32(sf->ar_bytes, ar); -} - -static int alloc_apic_access_page(struct kvm *kvm) -{ - struct page *page; - int r = 0; - - mutex_lock(&kvm->slots_lock); - if (kvm->arch.apic_access_page_done) - goto out; - r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, - APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); - if (r) - goto out; - - page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); - if (is_error_page(page)) { - r = -EFAULT; - goto out; - } - - /* - * Do not pin the page in memory, so that memory hot-unplug - * is able to migrate it. - */ - put_page(page); - kvm->arch.apic_access_page_done = true; -out: - mutex_unlock(&kvm->slots_lock); - return r; -} - -static int allocate_vpid(void) -{ - int vpid; - - if (!enable_vpid) - return 0; - spin_lock(&vmx_vpid_lock); - vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); - if (vpid < VMX_NR_VPIDS) - __set_bit(vpid, vmx_vpid_bitmap); - else - vpid = 0; - spin_unlock(&vmx_vpid_lock); - return vpid; -} - -static void free_vpid(int vpid) -{ - if (!enable_vpid || vpid == 0) - return; - spin_lock(&vmx_vpid_lock); - __clear_bit(vpid, vmx_vpid_bitmap); - spin_unlock(&vmx_vpid_lock); -} - -static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, - u32 msr, int type) -{ - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return; - - if (static_branch_unlikely(&enable_evmcs)) - evmcs_touch_msr_bitmap(); - - /* - * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals - * have the write-low and read-high bitmap offsets the wrong way round. - * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. - */ - if (msr <= 0x1fff) { - if (type & MSR_TYPE_R) - /* read-low */ - __clear_bit(msr, msr_bitmap + 0x000 / f); - - if (type & MSR_TYPE_W) - /* write-low */ - __clear_bit(msr, msr_bitmap + 0x800 / f); - - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - if (type & MSR_TYPE_R) - /* read-high */ - __clear_bit(msr, msr_bitmap + 0x400 / f); - - if (type & MSR_TYPE_W) - /* write-high */ - __clear_bit(msr, msr_bitmap + 0xc00 / f); - - } -} - -static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, - u32 msr, int type) -{ - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return; - - if (static_branch_unlikely(&enable_evmcs)) - evmcs_touch_msr_bitmap(); - - /* - * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals - * have the write-low and read-high bitmap offsets the wrong way round. - * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. - */ - if (msr <= 0x1fff) { - if (type & MSR_TYPE_R) - /* read-low */ - __set_bit(msr, msr_bitmap + 0x000 / f); - - if (type & MSR_TYPE_W) - /* write-low */ - __set_bit(msr, msr_bitmap + 0x800 / f); - - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - if (type & MSR_TYPE_R) - /* read-high */ - __set_bit(msr, msr_bitmap + 0x400 / f); - - if (type & MSR_TYPE_W) - /* write-high */ - __set_bit(msr, msr_bitmap + 0xc00 / f); - - } -} - -static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap, - u32 msr, int type, bool value) -{ - if (value) - vmx_enable_intercept_for_msr(msr_bitmap, msr, type); - else - vmx_disable_intercept_for_msr(msr_bitmap, msr, type); -} - -/* - * If a msr is allowed by L0, we should check whether it is allowed by L1. - * The corresponding bit will be cleared unless both of L0 and L1 allow it. - */ -static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, - unsigned long *msr_bitmap_nested, - u32 msr, int type) -{ - int f = sizeof(unsigned long); - - /* - * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals - * have the write-low and read-high bitmap offsets the wrong way round. - * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. - */ - if (msr <= 0x1fff) { - if (type & MSR_TYPE_R && - !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) - /* read-low */ - __clear_bit(msr, msr_bitmap_nested + 0x000 / f); - - if (type & MSR_TYPE_W && - !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) - /* write-low */ - __clear_bit(msr, msr_bitmap_nested + 0x800 / f); - - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - if (type & MSR_TYPE_R && - !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) - /* read-high */ - __clear_bit(msr, msr_bitmap_nested + 0x400 / f); - - if (type & MSR_TYPE_W && - !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) - /* write-high */ - __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); - - } -} - -static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) -{ - u8 mode = 0; - - if (cpu_has_secondary_exec_ctrls() && - (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { - mode |= MSR_BITMAP_MODE_X2APIC; - if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) - mode |= MSR_BITMAP_MODE_X2APIC_APICV; - } - - return mode; -} - -#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) - -static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, - u8 mode) -{ - int msr; - - for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { - unsigned word = msr / BITS_PER_LONG; - msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; - msr_bitmap[word + (0x800 / sizeof(long))] = ~0; - } - - if (mode & MSR_BITMAP_MODE_X2APIC) { - /* - * TPR reads and writes can be virtualized even if virtual interrupt - * delivery is not in use. - */ - vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); - if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { - vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); - vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); - vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); - } - } -} - -static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; - u8 mode = vmx_msr_bitmap_mode(vcpu); - u8 changed = mode ^ vmx->msr_bitmap_mode; - - if (!changed) - return; - - if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) - vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); - - vmx->msr_bitmap_mode = mode; -} - -static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) -{ - return enable_apicv; -} - -static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - gfn_t gfn; - - /* - * Don't need to mark the APIC access page dirty; it is never - * written to by the CPU during APIC virtualization. - */ - - if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { - gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; - kvm_vcpu_mark_page_dirty(vcpu, gfn); - } - - if (nested_cpu_has_posted_intr(vmcs12)) { - gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; - kvm_vcpu_mark_page_dirty(vcpu, gfn); - } -} - - -static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int max_irr; - void *vapic_page; - u16 status; - - if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) - return; - - vmx->nested.pi_pending = false; - if (!pi_test_and_clear_on(vmx->nested.pi_desc)) - return; - - max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); - if (max_irr != 256) { - vapic_page = kmap(vmx->nested.virtual_apic_page); - __kvm_apic_update_irr(vmx->nested.pi_desc->pir, - vapic_page, &max_irr); - kunmap(vmx->nested.virtual_apic_page); - - status = vmcs_read16(GUEST_INTR_STATUS); - if ((u8)max_irr > ((u8)status & 0xff)) { - status &= ~0xff; - status |= (u8)max_irr; - vmcs_write16(GUEST_INTR_STATUS, status); - } - } - - nested_mark_vmcs12_pages_dirty(vcpu); -} - -static u8 vmx_get_rvi(void) -{ - return vmcs_read16(GUEST_INTR_STATUS) & 0xff; -} - -static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - void *vapic_page; - u32 vppr; - int rvi; - - if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || - !nested_cpu_has_vid(get_vmcs12(vcpu)) || - WARN_ON_ONCE(!vmx->nested.virtual_apic_page)) - return false; - - rvi = vmx_get_rvi(); - - vapic_page = kmap(vmx->nested.virtual_apic_page); - vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); - kunmap(vmx->nested.virtual_apic_page); - - return ((rvi & 0xf0) > (vppr & 0xf0)); -} - -static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, - bool nested) -{ -#ifdef CONFIG_SMP - int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; - - if (vcpu->mode == IN_GUEST_MODE) { - /* - * The vector of interrupt to be delivered to vcpu had - * been set in PIR before this function. - * - * Following cases will be reached in this block, and - * we always send a notification event in all cases as - * explained below. - * - * Case 1: vcpu keeps in non-root mode. Sending a - * notification event posts the interrupt to vcpu. - * - * Case 2: vcpu exits to root mode and is still - * runnable. PIR will be synced to vIRR before the - * next vcpu entry. Sending a notification event in - * this case has no effect, as vcpu is not in root - * mode. - * - * Case 3: vcpu exits to root mode and is blocked. - * vcpu_block() has already synced PIR to vIRR and - * never blocks vcpu if vIRR is not cleared. Therefore, - * a blocked vcpu here does not wait for any requested - * interrupts in PIR, and sending a notification event - * which has no effect is safe here. - */ - - apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); - return true; - } -#endif - return false; -} - -static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, - int vector) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (is_guest_mode(vcpu) && - vector == vmx->nested.posted_intr_nv) { - /* - * If a posted intr is not recognized by hardware, - * we will accomplish it in the next vmentry. - */ - vmx->nested.pi_pending = true; - kvm_make_request(KVM_REQ_EVENT, vcpu); - /* the PIR and ON have been set by L1. */ - if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) - kvm_vcpu_kick(vcpu); - return 0; - } - return -1; -} -/* - * Send interrupt to vcpu via posted interrupt way. - * 1. If target vcpu is running(non-root mode), send posted interrupt - * notification to vcpu and hardware will sync PIR to vIRR atomically. - * 2. If target vcpu isn't running(root mode), kick it to pick up the - * interrupt from PIR in next vmentry. - */ -static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int r; - - r = vmx_deliver_nested_posted_interrupt(vcpu, vector); - if (!r) - return; - - if (pi_test_and_set_pir(vector, &vmx->pi_desc)) - return; - - /* If a previous notification has sent the IPI, nothing to do. */ - if (pi_test_and_set_on(&vmx->pi_desc)) - return; - - if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) - kvm_vcpu_kick(vcpu); -} - -/* - * Set up the vmcs's constant host-state fields, i.e., host-state fields that - * will not change in the lifetime of the guest. - * Note that host-state that does change is set elsewhere. E.g., host-state - * that is set differently for each CPU is set in vmx_vcpu_load(), not here. - */ -static void vmx_set_constant_host_state(struct vcpu_vmx *vmx) -{ - u32 low32, high32; - unsigned long tmpl; - struct desc_ptr dt; - unsigned long cr0, cr3, cr4; - - cr0 = read_cr0(); - WARN_ON(cr0 & X86_CR0_TS); - vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ - - /* - * Save the most likely value for this task's CR3 in the VMCS. - * We can't use __get_current_cr3_fast() because we're not atomic. - */ - cr3 = __read_cr3(); - vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ - vmx->loaded_vmcs->host_state.cr3 = cr3; - - /* Save the most likely value for this task's CR4 in the VMCS. */ - cr4 = cr4_read_shadow(); - vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ - vmx->loaded_vmcs->host_state.cr4 = cr4; - - vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ -#ifdef CONFIG_X86_64 - /* - * Load null selectors, so we can avoid reloading them in - * vmx_prepare_switch_to_host(), in case userspace uses - * the null selectors too (the expected case). - */ - vmcs_write16(HOST_DS_SELECTOR, 0); - vmcs_write16(HOST_ES_SELECTOR, 0); -#else - vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ - vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ -#endif - vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ - vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ - - store_idt(&dt); - vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ - vmx->host_idt_base = dt.address; - - vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */ - - rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); - vmcs_write32(HOST_IA32_SYSENTER_CS, low32); - rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); - vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ - - if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { - rdmsr(MSR_IA32_CR_PAT, low32, high32); - vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); - } - - if (cpu_has_load_ia32_efer) - vmcs_write64(HOST_IA32_EFER, host_efer); -} - -static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) -{ - vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; - if (enable_ept) - vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; - if (is_guest_mode(&vmx->vcpu)) - vmx->vcpu.arch.cr4_guest_owned_bits &= - ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; - vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); -} - -static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) -{ - u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; - - if (!kvm_vcpu_apicv_active(&vmx->vcpu)) - pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; - - if (!enable_vnmi) - pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; - - /* Enable the preemption timer dynamically */ - pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; - return pin_based_exec_ctrl; -} - -static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); - if (cpu_has_secondary_exec_ctrls()) { - if (kvm_vcpu_apicv_active(vcpu)) - vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); - else - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); - } - - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(vcpu); -} - -static u32 vmx_exec_control(struct vcpu_vmx *vmx) -{ - u32 exec_control = vmcs_config.cpu_based_exec_ctrl; - - if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) - exec_control &= ~CPU_BASED_MOV_DR_EXITING; - - if (!cpu_need_tpr_shadow(&vmx->vcpu)) { - exec_control &= ~CPU_BASED_TPR_SHADOW; -#ifdef CONFIG_X86_64 - exec_control |= CPU_BASED_CR8_STORE_EXITING | - CPU_BASED_CR8_LOAD_EXITING; -#endif - } - if (!enable_ept) - exec_control |= CPU_BASED_CR3_STORE_EXITING | - CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_INVLPG_EXITING; - if (kvm_mwait_in_guest(vmx->vcpu.kvm)) - exec_control &= ~(CPU_BASED_MWAIT_EXITING | - CPU_BASED_MONITOR_EXITING); - if (kvm_hlt_in_guest(vmx->vcpu.kvm)) - exec_control &= ~CPU_BASED_HLT_EXITING; - return exec_control; -} - -static bool vmx_rdrand_supported(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_RDRAND_EXITING; -} - -static bool vmx_rdseed_supported(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_RDSEED_EXITING; -} - -static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) -{ - struct kvm_vcpu *vcpu = &vmx->vcpu; - - u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; - - if (!cpu_need_virtualize_apic_accesses(vcpu)) - exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - if (vmx->vpid == 0) - exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; - if (!enable_ept) { - exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; - enable_unrestricted_guest = 0; - } - if (!enable_unrestricted_guest) - exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; - if (kvm_pause_in_guest(vmx->vcpu.kvm)) - exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; - if (!kvm_vcpu_apicv_active(vcpu)) - exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); - exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; - - /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, - * in vmx_set_cr4. */ - exec_control &= ~SECONDARY_EXEC_DESC; - - /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD - (handle_vmptrld). - We can NOT enable shadow_vmcs here because we don't have yet - a current VMCS12 - */ - exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; - - if (!enable_pml) - exec_control &= ~SECONDARY_EXEC_ENABLE_PML; - - if (vmx_xsaves_supported()) { - /* Exposing XSAVES only when XSAVE is exposed */ - bool xsaves_enabled = - guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && - guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); - - if (!xsaves_enabled) - exec_control &= ~SECONDARY_EXEC_XSAVES; - - if (nested) { - if (xsaves_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_XSAVES; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_XSAVES; - } - } - - if (vmx_rdtscp_supported()) { - bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); - if (!rdtscp_enabled) - exec_control &= ~SECONDARY_EXEC_RDTSCP; - - if (nested) { - if (rdtscp_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_RDTSCP; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_RDTSCP; - } - } - - if (vmx_invpcid_supported()) { - /* Exposing INVPCID only when PCID is exposed */ - bool invpcid_enabled = - guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && - guest_cpuid_has(vcpu, X86_FEATURE_PCID); - - if (!invpcid_enabled) { - exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; - guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); - } - - if (nested) { - if (invpcid_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_INVPCID; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_ENABLE_INVPCID; - } - } - - if (vmx_rdrand_supported()) { - bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); - if (rdrand_enabled) - exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; - - if (nested) { - if (rdrand_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_RDRAND_EXITING; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_RDRAND_EXITING; - } - } - - if (vmx_rdseed_supported()) { - bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); - if (rdseed_enabled) - exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; - - if (nested) { - if (rdseed_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_RDSEED_EXITING; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_RDSEED_EXITING; - } - } - - vmx->secondary_exec_control = exec_control; -} - -static void ept_set_mmio_spte_mask(void) -{ - /* - * EPT Misconfigurations can be generated if the value of bits 2:0 - * of an EPT paging-structure entry is 110b (write/execute). - */ - kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, - VMX_EPT_MISCONFIG_WX_VALUE); -} - -#define VMX_XSS_EXIT_BITMAP 0 -/* - * Sets up the vmcs for emulated real mode. - */ -static void vmx_vcpu_setup(struct vcpu_vmx *vmx) -{ - int i; - - if (enable_shadow_vmcs) { - /* - * At vCPU creation, "VMWRITE to any supported field - * in the VMCS" is supported, so use the more - * permissive vmx_vmread_bitmap to specify both read - * and write permissions for the shadow VMCS. - */ - vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); - vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap)); - } - if (cpu_has_vmx_msr_bitmap()) - vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); - - vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ - - /* Control */ - vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); - vmx->hv_deadline_tsc = -1; - - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); - - if (cpu_has_secondary_exec_ctrls()) { - vmx_compute_secondary_exec_control(vmx); - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, - vmx->secondary_exec_control); - } - - if (kvm_vcpu_apicv_active(&vmx->vcpu)) { - vmcs_write64(EOI_EXIT_BITMAP0, 0); - vmcs_write64(EOI_EXIT_BITMAP1, 0); - vmcs_write64(EOI_EXIT_BITMAP2, 0); - vmcs_write64(EOI_EXIT_BITMAP3, 0); - - vmcs_write16(GUEST_INTR_STATUS, 0); - - vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); - vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); - } - - if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { - vmcs_write32(PLE_GAP, ple_gap); - vmx->ple_window = ple_window; - vmx->ple_window_dirty = true; - } - - vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); - vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); - vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ - - vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ - vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ - vmx_set_constant_host_state(vmx); - vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ - vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ - - if (cpu_has_vmx_vmfunc()) - vmcs_write64(VM_FUNCTION_CONTROL, 0); - - vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); - vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); - vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); - - if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) - vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); - - for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { - u32 index = vmx_msr_index[i]; - u32 data_low, data_high; - int j = vmx->nmsrs; - - if (rdmsr_safe(index, &data_low, &data_high) < 0) - continue; - if (wrmsr_safe(index, data_low, data_high) < 0) - continue; - vmx->guest_msrs[j].index = i; - vmx->guest_msrs[j].data = 0; - vmx->guest_msrs[j].mask = -1ull; - ++vmx->nmsrs; - } - - vmx->arch_capabilities = kvm_get_arch_capabilities(); - - vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl); - - /* 22.2.1, 20.8.1 */ - vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl); - - vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; - vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); - - set_cr4_guest_host_mask(vmx); - - if (vmx_xsaves_supported()) - vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); - - if (enable_pml) { - vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); - vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); - } - - if (cpu_has_vmx_encls_vmexit()) - vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); -} - -static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct msr_data apic_base_msr; - u64 cr0; - - vmx->rmode.vm86_active = 0; - vmx->spec_ctrl = 0; - - vcpu->arch.microcode_version = 0x100000000ULL; - vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); - kvm_set_cr8(vcpu, 0); - - if (!init_event) { - apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | - MSR_IA32_APICBASE_ENABLE; - if (kvm_vcpu_is_reset_bsp(vcpu)) - apic_base_msr.data |= MSR_IA32_APICBASE_BSP; - apic_base_msr.host_initiated = true; - kvm_set_apic_base(vcpu, &apic_base_msr); - } - - vmx_segment_cache_clear(vmx); - - seg_setup(VCPU_SREG_CS); - vmcs_write16(GUEST_CS_SELECTOR, 0xf000); - vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); - - seg_setup(VCPU_SREG_DS); - seg_setup(VCPU_SREG_ES); - seg_setup(VCPU_SREG_FS); - seg_setup(VCPU_SREG_GS); - seg_setup(VCPU_SREG_SS); - - vmcs_write16(GUEST_TR_SELECTOR, 0); - vmcs_writel(GUEST_TR_BASE, 0); - vmcs_write32(GUEST_TR_LIMIT, 0xffff); - vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); - - vmcs_write16(GUEST_LDTR_SELECTOR, 0); - vmcs_writel(GUEST_LDTR_BASE, 0); - vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); - vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); - - if (!init_event) { - vmcs_write32(GUEST_SYSENTER_CS, 0); - vmcs_writel(GUEST_SYSENTER_ESP, 0); - vmcs_writel(GUEST_SYSENTER_EIP, 0); - vmcs_write64(GUEST_IA32_DEBUGCTL, 0); - } - - kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); - kvm_rip_write(vcpu, 0xfff0); - - vmcs_writel(GUEST_GDTR_BASE, 0); - vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); - - vmcs_writel(GUEST_IDTR_BASE, 0); - vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); - - vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); - vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); - vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); - if (kvm_mpx_supported()) - vmcs_write64(GUEST_BNDCFGS, 0); - - setup_msrs(vmx); - - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ - - if (cpu_has_vmx_tpr_shadow() && !init_event) { - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); - if (cpu_need_tpr_shadow(vcpu)) - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, - __pa(vcpu->arch.apic->regs)); - vmcs_write32(TPR_THRESHOLD, 0); - } - - kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); - - if (vmx->vpid != 0) - vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); - - cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; - vmx->vcpu.arch.cr0 = cr0; - vmx_set_cr0(vcpu, cr0); /* enter rmode */ - vmx_set_cr4(vcpu, 0); - vmx_set_efer(vcpu, 0); - - update_exception_bitmap(vcpu); - - vpid_sync_context(vmx->vpid); - if (init_event) - vmx_clear_hlt(vcpu); -} - -/* - * In nested virtualization, check if L1 asked to exit on external interrupts. - * For most existing hypervisors, this will always return true. - */ -static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) -{ - return get_vmcs12(vcpu)->pin_based_vm_exec_control & - PIN_BASED_EXT_INTR_MASK; -} - -/* - * In nested virtualization, check if L1 has set - * VM_EXIT_ACK_INTR_ON_EXIT - */ -static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) -{ - return get_vmcs12(vcpu)->vm_exit_controls & - VM_EXIT_ACK_INTR_ON_EXIT; -} - -static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) -{ - return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu)); -} - -static void enable_irq_window(struct kvm_vcpu *vcpu) -{ - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_VIRTUAL_INTR_PENDING); -} - -static void enable_nmi_window(struct kvm_vcpu *vcpu) -{ - if (!enable_vnmi || - vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { - enable_irq_window(vcpu); - return; - } - - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_VIRTUAL_NMI_PENDING); -} - -static void vmx_inject_irq(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - uint32_t intr; - int irq = vcpu->arch.interrupt.nr; - - trace_kvm_inj_virq(irq); - - ++vcpu->stat.irq_injections; - if (vmx->rmode.vm86_active) { - int inc_eip = 0; - if (vcpu->arch.interrupt.soft) - inc_eip = vcpu->arch.event_exit_inst_len; - if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - return; - } - intr = irq | INTR_INFO_VALID_MASK; - if (vcpu->arch.interrupt.soft) { - intr |= INTR_TYPE_SOFT_INTR; - vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, - vmx->vcpu.arch.event_exit_inst_len); - } else - intr |= INTR_TYPE_EXT_INTR; - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); - - vmx_clear_hlt(vcpu); -} - -static void vmx_inject_nmi(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!enable_vnmi) { - /* - * Tracking the NMI-blocked state in software is built upon - * finding the next open IRQ window. This, in turn, depends on - * well-behaving guests: They have to keep IRQs disabled at - * least as long as the NMI handler runs. Otherwise we may - * cause NMI nesting, maybe breaking the guest. But as this is - * highly unlikely, we can live with the residual risk. - */ - vmx->loaded_vmcs->soft_vnmi_blocked = 1; - vmx->loaded_vmcs->vnmi_blocked_time = 0; - } - - ++vcpu->stat.nmi_injections; - vmx->loaded_vmcs->nmi_known_unmasked = false; - - if (vmx->rmode.vm86_active) { - if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - return; - } - - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, - INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); - - vmx_clear_hlt(vcpu); -} - -static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - bool masked; - - if (!enable_vnmi) - return vmx->loaded_vmcs->soft_vnmi_blocked; - if (vmx->loaded_vmcs->nmi_known_unmasked) - return false; - masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; - vmx->loaded_vmcs->nmi_known_unmasked = !masked; - return masked; -} - -static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!enable_vnmi) { - if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { - vmx->loaded_vmcs->soft_vnmi_blocked = masked; - vmx->loaded_vmcs->vnmi_blocked_time = 0; - } - } else { - vmx->loaded_vmcs->nmi_known_unmasked = !masked; - if (masked) - vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, - GUEST_INTR_STATE_NMI); - else - vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, - GUEST_INTR_STATE_NMI); - } -} - -static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) -{ - if (to_vmx(vcpu)->nested.nested_run_pending) - return 0; - - if (!enable_vnmi && - to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) - return 0; - - return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & - (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI - | GUEST_INTR_STATE_NMI)); -} - -static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) -{ - return (!to_vmx(vcpu)->nested.nested_run_pending && - vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && - !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & - (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); -} - -static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) -{ - int ret; - - if (enable_unrestricted_guest) - return 0; - - ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, - PAGE_SIZE * 3); - if (ret) - return ret; - to_kvm_vmx(kvm)->tss_addr = addr; - return init_rmode_tss(kvm); -} - -static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) -{ - to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; - return 0; -} - -static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) -{ - switch (vec) { - case BP_VECTOR: - /* - * Update instruction length as we may reinject the exception - * from user space while in guest debugging mode. - */ - to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = - vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) - return false; - /* fall through */ - case DB_VECTOR: - if (vcpu->guest_debug & - (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) - return false; - /* fall through */ - case DE_VECTOR: - case OF_VECTOR: - case BR_VECTOR: - case UD_VECTOR: - case DF_VECTOR: - case SS_VECTOR: - case GP_VECTOR: - case MF_VECTOR: - return true; - break; - } - return false; -} - -static int handle_rmode_exception(struct kvm_vcpu *vcpu, - int vec, u32 err_code) -{ - /* - * Instruction with address size override prefix opcode 0x67 - * Cause the #SS fault with 0 error code in VM86 mode. - */ - if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { - if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { - if (vcpu->arch.halt_request) { - vcpu->arch.halt_request = 0; - return kvm_vcpu_halt(vcpu); - } - return 1; - } - return 0; - } - - /* - * Forward all other exceptions that are valid in real mode. - * FIXME: Breaks guest debugging in real mode, needs to be fixed with - * the required debugging infrastructure rework. - */ - kvm_queue_exception(vcpu, vec); - return 1; -} - -/* - * Trigger machine check on the host. We assume all the MSRs are already set up - * by the CPU and that we still run on the same CPU as the MCE occurred on. - * We pass a fake environment to the machine check handler because we want - * the guest to be always treated like user space, no matter what context - * it used internally. - */ -static void kvm_machine_check(void) -{ -#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) - struct pt_regs regs = { - .cs = 3, /* Fake ring 3 no matter what the guest ran on */ - .flags = X86_EFLAGS_IF, - }; - - do_machine_check(®s, 0); -#endif -} - -static int handle_machine_check(struct kvm_vcpu *vcpu) -{ - /* already handled by vcpu_run */ - return 1; -} - -static int handle_exception(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct kvm_run *kvm_run = vcpu->run; - u32 intr_info, ex_no, error_code; - unsigned long cr2, rip, dr6; - u32 vect_info; - enum emulation_result er; - - vect_info = vmx->idt_vectoring_info; - intr_info = vmx->exit_intr_info; - - if (is_machine_check(intr_info)) - return handle_machine_check(vcpu); - - if (is_nmi(intr_info)) - return 1; /* already handled by vmx_vcpu_run() */ - - if (is_invalid_opcode(intr_info)) - return handle_ud(vcpu); - - error_code = 0; - if (intr_info & INTR_INFO_DELIVER_CODE_MASK) - error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); - - if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { - WARN_ON_ONCE(!enable_vmware_backdoor); - er = kvm_emulate_instruction(vcpu, - EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); - if (er == EMULATE_USER_EXIT) - return 0; - else if (er != EMULATE_DONE) - kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); - return 1; - } - - /* - * The #PF with PFEC.RSVD = 1 indicates the guest is accessing - * MMIO, it is better to report an internal error. - * See the comments in vmx_handle_exit. - */ - if ((vect_info & VECTORING_INFO_VALID_MASK) && - !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; - vcpu->run->internal.ndata = 3; - vcpu->run->internal.data[0] = vect_info; - vcpu->run->internal.data[1] = intr_info; - vcpu->run->internal.data[2] = error_code; - return 0; - } - - if (is_page_fault(intr_info)) { - cr2 = vmcs_readl(EXIT_QUALIFICATION); - /* EPT won't cause page fault directly */ - WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); - return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); - } - - ex_no = intr_info & INTR_INFO_VECTOR_MASK; - - if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) - return handle_rmode_exception(vcpu, ex_no, error_code); - - switch (ex_no) { - case AC_VECTOR: - kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); - return 1; - case DB_VECTOR: - dr6 = vmcs_readl(EXIT_QUALIFICATION); - if (!(vcpu->guest_debug & - (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { - vcpu->arch.dr6 &= ~15; - vcpu->arch.dr6 |= dr6 | DR6_RTM; - if (is_icebp(intr_info)) - skip_emulated_instruction(vcpu); - - kvm_queue_exception(vcpu, DB_VECTOR); - return 1; - } - kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; - kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); - /* fall through */ - case BP_VECTOR: - /* - * Update instruction length as we may reinject #BP from - * user space while in guest debugging mode. Reading it for - * #DB as well causes no harm, it is not used in that case. - */ - vmx->vcpu.arch.event_exit_inst_len = - vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - kvm_run->exit_reason = KVM_EXIT_DEBUG; - rip = kvm_rip_read(vcpu); - kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; - kvm_run->debug.arch.exception = ex_no; - break; - default: - kvm_run->exit_reason = KVM_EXIT_EXCEPTION; - kvm_run->ex.exception = ex_no; - kvm_run->ex.error_code = error_code; - break; - } - return 0; -} - -static int handle_external_interrupt(struct kvm_vcpu *vcpu) -{ - ++vcpu->stat.irq_exits; - return 1; -} - -static int handle_triple_fault(struct kvm_vcpu *vcpu) -{ - vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; - vcpu->mmio_needed = 0; - return 0; -} - -static int handle_io(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification; - int size, in, string; - unsigned port; - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - string = (exit_qualification & 16) != 0; - - ++vcpu->stat.io_exits; - - if (string) - return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; - - port = exit_qualification >> 16; - size = (exit_qualification & 7) + 1; - in = (exit_qualification & 8) != 0; - - return kvm_fast_pio(vcpu, size, port, in); -} - -static void -vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) -{ - /* - * Patch in the VMCALL instruction: - */ - hypercall[0] = 0x0f; - hypercall[1] = 0x01; - hypercall[2] = 0xc1; -} - -/* called to set cr0 as appropriate for a mov-to-cr0 exit. */ -static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) -{ - if (is_guest_mode(vcpu)) { - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned long orig_val = val; - - /* - * We get here when L2 changed cr0 in a way that did not change - * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), - * but did change L0 shadowed bits. So we first calculate the - * effective cr0 value that L1 would like to write into the - * hardware. It consists of the L2-owned bits from the new - * value combined with the L1-owned bits from L1's guest_cr0. - */ - val = (val & ~vmcs12->cr0_guest_host_mask) | - (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); - - if (!nested_guest_cr0_valid(vcpu, val)) - return 1; - - if (kvm_set_cr0(vcpu, val)) - return 1; - vmcs_writel(CR0_READ_SHADOW, orig_val); - return 0; - } else { - if (to_vmx(vcpu)->nested.vmxon && - !nested_host_cr0_valid(vcpu, val)) - return 1; - - return kvm_set_cr0(vcpu, val); - } -} - -static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) -{ - if (is_guest_mode(vcpu)) { - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned long orig_val = val; - - /* analogously to handle_set_cr0 */ - val = (val & ~vmcs12->cr4_guest_host_mask) | - (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); - if (kvm_set_cr4(vcpu, val)) - return 1; - vmcs_writel(CR4_READ_SHADOW, orig_val); - return 0; - } else - return kvm_set_cr4(vcpu, val); -} - -static int handle_desc(struct kvm_vcpu *vcpu) -{ - WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); - return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; -} - -static int handle_cr(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification, val; - int cr; - int reg; - int err; - int ret; - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - cr = exit_qualification & 15; - reg = (exit_qualification >> 8) & 15; - switch ((exit_qualification >> 4) & 3) { - case 0: /* mov to cr */ - val = kvm_register_readl(vcpu, reg); - trace_kvm_cr_write(cr, val); - switch (cr) { - case 0: - err = handle_set_cr0(vcpu, val); - return kvm_complete_insn_gp(vcpu, err); - case 3: - WARN_ON_ONCE(enable_unrestricted_guest); - err = kvm_set_cr3(vcpu, val); - return kvm_complete_insn_gp(vcpu, err); - case 4: - err = handle_set_cr4(vcpu, val); - return kvm_complete_insn_gp(vcpu, err); - case 8: { - u8 cr8_prev = kvm_get_cr8(vcpu); - u8 cr8 = (u8)val; - err = kvm_set_cr8(vcpu, cr8); - ret = kvm_complete_insn_gp(vcpu, err); - if (lapic_in_kernel(vcpu)) - return ret; - if (cr8_prev <= cr8) - return ret; - /* - * TODO: we might be squashing a - * KVM_GUESTDBG_SINGLESTEP-triggered - * KVM_EXIT_DEBUG here. - */ - vcpu->run->exit_reason = KVM_EXIT_SET_TPR; - return 0; - } - } - break; - case 2: /* clts */ - WARN_ONCE(1, "Guest should always own CR0.TS"); - vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); - trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); - return kvm_skip_emulated_instruction(vcpu); - case 1: /*mov from cr*/ - switch (cr) { - case 3: - WARN_ON_ONCE(enable_unrestricted_guest); - val = kvm_read_cr3(vcpu); - kvm_register_write(vcpu, reg, val); - trace_kvm_cr_read(cr, val); - return kvm_skip_emulated_instruction(vcpu); - case 8: - val = kvm_get_cr8(vcpu); - kvm_register_write(vcpu, reg, val); - trace_kvm_cr_read(cr, val); - return kvm_skip_emulated_instruction(vcpu); - } - break; - case 3: /* lmsw */ - val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; - trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); - kvm_lmsw(vcpu, val); - - return kvm_skip_emulated_instruction(vcpu); - default: - break; - } - vcpu->run->exit_reason = 0; - vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", - (int)(exit_qualification >> 4) & 3, cr); - return 0; -} - -static int handle_dr(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification; - int dr, dr7, reg; - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - dr = exit_qualification & DEBUG_REG_ACCESS_NUM; - - /* First, if DR does not exist, trigger UD */ - if (!kvm_require_dr(vcpu, dr)) - return 1; - - /* Do not handle if the CPL > 0, will trigger GP on re-entry */ - if (!kvm_require_cpl(vcpu, 0)) - return 1; - dr7 = vmcs_readl(GUEST_DR7); - if (dr7 & DR7_GD) { - /* - * As the vm-exit takes precedence over the debug trap, we - * need to emulate the latter, either for the host or the - * guest debugging itself. - */ - if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { - vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; - vcpu->run->debug.arch.dr7 = dr7; - vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); - vcpu->run->debug.arch.exception = DB_VECTOR; - vcpu->run->exit_reason = KVM_EXIT_DEBUG; - return 0; - } else { - vcpu->arch.dr6 &= ~15; - vcpu->arch.dr6 |= DR6_BD | DR6_RTM; - kvm_queue_exception(vcpu, DB_VECTOR); - return 1; - } - } - - if (vcpu->guest_debug == 0) { - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_MOV_DR_EXITING); - - /* - * No more DR vmexits; force a reload of the debug registers - * and reenter on this instruction. The next vmexit will - * retrieve the full state of the debug registers. - */ - vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; - return 1; - } - - reg = DEBUG_REG_ACCESS_REG(exit_qualification); - if (exit_qualification & TYPE_MOV_FROM_DR) { - unsigned long val; - - if (kvm_get_dr(vcpu, dr, &val)) - return 1; - kvm_register_write(vcpu, reg, val); - } else - if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) - return 1; - - return kvm_skip_emulated_instruction(vcpu); -} - -static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) -{ - return vcpu->arch.dr6; -} - -static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) -{ -} - -static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) -{ - get_debugreg(vcpu->arch.db[0], 0); - get_debugreg(vcpu->arch.db[1], 1); - get_debugreg(vcpu->arch.db[2], 2); - get_debugreg(vcpu->arch.db[3], 3); - get_debugreg(vcpu->arch.dr6, 6); - vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); - - vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); -} - -static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) -{ - vmcs_writel(GUEST_DR7, val); -} - -static int handle_cpuid(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_cpuid(vcpu); -} - -static int handle_rdmsr(struct kvm_vcpu *vcpu) -{ - u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; - struct msr_data msr_info; - - msr_info.index = ecx; - msr_info.host_initiated = false; - if (vmx_get_msr(vcpu, &msr_info)) { - trace_kvm_msr_read_ex(ecx); - kvm_inject_gp(vcpu, 0); - return 1; - } - - trace_kvm_msr_read(ecx, msr_info.data); - - /* FIXME: handling of bits 32:63 of rax, rdx */ - vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u; - vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u; - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_wrmsr(struct kvm_vcpu *vcpu) -{ - struct msr_data msr; - u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; - u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) - | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); - - msr.data = data; - msr.index = ecx; - msr.host_initiated = false; - if (kvm_set_msr(vcpu, &msr) != 0) { - trace_kvm_msr_write_ex(ecx, data); - kvm_inject_gp(vcpu, 0); - return 1; - } - - trace_kvm_msr_write(ecx, data); - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) -{ - kvm_apic_update_ppr(vcpu); - return 1; -} - -static int handle_interrupt_window(struct kvm_vcpu *vcpu) -{ - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_VIRTUAL_INTR_PENDING); - - kvm_make_request(KVM_REQ_EVENT, vcpu); - - ++vcpu->stat.irq_window_exits; - return 1; -} - -static int handle_halt(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_halt(vcpu); -} - -static int handle_vmcall(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_hypercall(vcpu); -} - -static int handle_invd(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; -} - -static int handle_invlpg(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - kvm_mmu_invlpg(vcpu, exit_qualification); - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_rdpmc(struct kvm_vcpu *vcpu) -{ - int err; - - err = kvm_rdpmc(vcpu); - return kvm_complete_insn_gp(vcpu, err); -} - -static int handle_wbinvd(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_wbinvd(vcpu); -} - -static int handle_xsetbv(struct kvm_vcpu *vcpu) -{ - u64 new_bv = kvm_read_edx_eax(vcpu); - u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); - - if (kvm_set_xcr(vcpu, index, new_bv) == 0) - return kvm_skip_emulated_instruction(vcpu); - return 1; -} - -static int handle_xsaves(struct kvm_vcpu *vcpu) -{ - kvm_skip_emulated_instruction(vcpu); - WARN(1, "this should never happen\n"); - return 1; -} - -static int handle_xrstors(struct kvm_vcpu *vcpu) -{ - kvm_skip_emulated_instruction(vcpu); - WARN(1, "this should never happen\n"); - return 1; -} - -static int handle_apic_access(struct kvm_vcpu *vcpu) -{ - if (likely(fasteoi)) { - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - int access_type, offset; - - access_type = exit_qualification & APIC_ACCESS_TYPE; - offset = exit_qualification & APIC_ACCESS_OFFSET; - /* - * Sane guest uses MOV to write EOI, with written value - * not cared. So make a short-circuit here by avoiding - * heavy instruction emulation. - */ - if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && - (offset == APIC_EOI)) { - kvm_lapic_set_eoi(vcpu); - return kvm_skip_emulated_instruction(vcpu); - } - } - return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; -} - -static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - int vector = exit_qualification & 0xff; - - /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ - kvm_apic_set_eoi_accelerated(vcpu, vector); - return 1; -} - -static int handle_apic_write(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - u32 offset = exit_qualification & 0xfff; - - /* APIC-write VM exit is trap-like and thus no need to adjust IP */ - kvm_apic_write_nodecode(vcpu, offset); - return 1; -} - -static int handle_task_switch(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long exit_qualification; - bool has_error_code = false; - u32 error_code = 0; - u16 tss_selector; - int reason, type, idt_v, idt_index; - - idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); - idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); - type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - reason = (u32)exit_qualification >> 30; - if (reason == TASK_SWITCH_GATE && idt_v) { - switch (type) { - case INTR_TYPE_NMI_INTR: - vcpu->arch.nmi_injected = false; - vmx_set_nmi_mask(vcpu, true); - break; - case INTR_TYPE_EXT_INTR: - case INTR_TYPE_SOFT_INTR: - kvm_clear_interrupt_queue(vcpu); - break; - case INTR_TYPE_HARD_EXCEPTION: - if (vmx->idt_vectoring_info & - VECTORING_INFO_DELIVER_CODE_MASK) { - has_error_code = true; - error_code = - vmcs_read32(IDT_VECTORING_ERROR_CODE); - } - /* fall through */ - case INTR_TYPE_SOFT_EXCEPTION: - kvm_clear_exception_queue(vcpu); - break; - default: - break; - } - } - tss_selector = exit_qualification; - - if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && - type != INTR_TYPE_EXT_INTR && - type != INTR_TYPE_NMI_INTR)) - skip_emulated_instruction(vcpu); - - if (kvm_task_switch(vcpu, tss_selector, - type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, - has_error_code, error_code) == EMULATE_FAIL) { - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; - vcpu->run->internal.ndata = 0; - return 0; - } - - /* - * TODO: What about debug traps on tss switch? - * Are we supposed to inject them and update dr6? - */ - - return 1; -} - -static int handle_ept_violation(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification; - gpa_t gpa; - u64 error_code; - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - /* - * EPT violation happened while executing iret from NMI, - * "blocked by NMI" bit has to be set before next VM entry. - * There are errata that may cause this bit to not be set: - * AAK134, BY25. - */ - if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && - enable_vnmi && - (exit_qualification & INTR_INFO_UNBLOCK_NMI)) - vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); - - gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); - trace_kvm_page_fault(gpa, exit_qualification); - - /* Is it a read fault? */ - error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) - ? PFERR_USER_MASK : 0; - /* Is it a write fault? */ - error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) - ? PFERR_WRITE_MASK : 0; - /* Is it a fetch fault? */ - error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) - ? PFERR_FETCH_MASK : 0; - /* ept page table entry is present? */ - error_code |= (exit_qualification & - (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | - EPT_VIOLATION_EXECUTABLE)) - ? PFERR_PRESENT_MASK : 0; - - error_code |= (exit_qualification & 0x100) != 0 ? - PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; - - vcpu->arch.exit_qualification = exit_qualification; - return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); -} - -static int handle_ept_misconfig(struct kvm_vcpu *vcpu) -{ - gpa_t gpa; - - /* - * A nested guest cannot optimize MMIO vmexits, because we have an - * nGPA here instead of the required GPA. - */ - gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); - if (!is_guest_mode(vcpu) && - !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { - trace_kvm_fast_mmio(gpa); - /* - * Doing kvm_skip_emulated_instruction() depends on undefined - * behavior: Intel's manual doesn't mandate - * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG - * occurs and while on real hardware it was observed to be set, - * other hypervisors (namely Hyper-V) don't set it, we end up - * advancing IP with some random value. Disable fast mmio when - * running nested and keep it for real hardware in hope that - * VM_EXIT_INSTRUCTION_LEN will always be set correctly. - */ - if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) - return kvm_skip_emulated_instruction(vcpu); - else - return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == - EMULATE_DONE; - } - - return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); -} - -static int handle_nmi_window(struct kvm_vcpu *vcpu) -{ - WARN_ON_ONCE(!enable_vnmi); - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_VIRTUAL_NMI_PENDING); - ++vcpu->stat.nmi_window_exits; - kvm_make_request(KVM_REQ_EVENT, vcpu); - - return 1; -} - -static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - enum emulation_result err = EMULATE_DONE; - int ret = 1; - u32 cpu_exec_ctrl; - bool intr_window_requested; - unsigned count = 130; - - /* - * We should never reach the point where we are emulating L2 - * due to invalid guest state as that means we incorrectly - * allowed a nested VMEntry with an invalid vmcs12. - */ - WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); - - cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); - intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; - - while (vmx->emulation_required && count-- != 0) { - if (intr_window_requested && vmx_interrupt_allowed(vcpu)) - return handle_interrupt_window(&vmx->vcpu); - - if (kvm_test_request(KVM_REQ_EVENT, vcpu)) - return 1; - - err = kvm_emulate_instruction(vcpu, 0); - - if (err == EMULATE_USER_EXIT) { - ++vcpu->stat.mmio_exits; - ret = 0; - goto out; - } - - if (err != EMULATE_DONE) - goto emulation_error; - - if (vmx->emulation_required && !vmx->rmode.vm86_active && - vcpu->arch.exception.pending) - goto emulation_error; - - if (vcpu->arch.halt_request) { - vcpu->arch.halt_request = 0; - ret = kvm_vcpu_halt(vcpu); - goto out; - } - - if (signal_pending(current)) - goto out; - if (need_resched()) - schedule(); - } - -out: - return ret; - -emulation_error: - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; - vcpu->run->internal.ndata = 0; - return 0; -} - -static void grow_ple_window(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int old = vmx->ple_window; - - vmx->ple_window = __grow_ple_window(old, ple_window, - ple_window_grow, - ple_window_max); - - if (vmx->ple_window != old) - vmx->ple_window_dirty = true; - - trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); -} - -static void shrink_ple_window(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int old = vmx->ple_window; - - vmx->ple_window = __shrink_ple_window(old, ple_window, - ple_window_shrink, - ple_window); - - if (vmx->ple_window != old) - vmx->ple_window_dirty = true; - - trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); -} - -/* - * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. - */ -static void wakeup_handler(void) -{ - struct kvm_vcpu *vcpu; - int cpu = smp_processor_id(); - - spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); - list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), - blocked_vcpu_list) { - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - - if (pi_test_on(pi_desc) == 1) - kvm_vcpu_kick(vcpu); - } - spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); -} - -static void vmx_enable_tdp(void) -{ - kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, - enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, - enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, - 0ull, VMX_EPT_EXECUTABLE_MASK, - cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, - VMX_EPT_RWX_MASK, 0ull); - - ept_set_mmio_spte_mask(); - kvm_enable_tdp(); -} - -static __init int hardware_setup(void) -{ - unsigned long host_bndcfgs; - int r = -ENOMEM, i; - - rdmsrl_safe(MSR_EFER, &host_efer); - - for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) - kvm_define_shared_msr(i, vmx_msr_index[i]); - - for (i = 0; i < VMX_BITMAP_NR; i++) { - vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL); - if (!vmx_bitmap[i]) - goto out; - } - - memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); - memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); - - if (setup_vmcs_config(&vmcs_config) < 0) { - r = -EIO; - goto out; - } - - if (boot_cpu_has(X86_FEATURE_NX)) - kvm_enable_efer_bits(EFER_NX); - - if (boot_cpu_has(X86_FEATURE_MPX)) { - rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); - WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); - } - - if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || - !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) - enable_vpid = 0; - - if (!cpu_has_vmx_ept() || - !cpu_has_vmx_ept_4levels() || - !cpu_has_vmx_ept_mt_wb() || - !cpu_has_vmx_invept_global()) - enable_ept = 0; - - if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) - enable_ept_ad_bits = 0; - - if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) - enable_unrestricted_guest = 0; - - if (!cpu_has_vmx_flexpriority()) - flexpriority_enabled = 0; - - if (!cpu_has_virtual_nmis()) - enable_vnmi = 0; - - /* - * set_apic_access_page_addr() is used to reload apic access - * page upon invalidation. No need to do anything if not - * using the APIC_ACCESS_ADDR VMCS field. - */ - if (!flexpriority_enabled) - kvm_x86_ops->set_apic_access_page_addr = NULL; - - if (!cpu_has_vmx_tpr_shadow()) - kvm_x86_ops->update_cr8_intercept = NULL; - - if (enable_ept && !cpu_has_vmx_ept_2m_page()) - kvm_disable_largepages(); - -#if IS_ENABLED(CONFIG_HYPERV) - if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH - && enable_ept) - kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb; -#endif - - if (!cpu_has_vmx_ple()) { - ple_gap = 0; - ple_window = 0; - ple_window_grow = 0; - ple_window_max = 0; - ple_window_shrink = 0; - } - - if (!cpu_has_vmx_apicv()) { - enable_apicv = 0; - kvm_x86_ops->sync_pir_to_irr = NULL; - } - - if (cpu_has_vmx_tsc_scaling()) { - kvm_has_tsc_control = true; - kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; - kvm_tsc_scaling_ratio_frac_bits = 48; - } - - set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ - - if (enable_ept) - vmx_enable_tdp(); - else - kvm_disable_tdp(); - - if (!nested) { - kvm_x86_ops->get_nested_state = NULL; - kvm_x86_ops->set_nested_state = NULL; - } - - /* - * Only enable PML when hardware supports PML feature, and both EPT - * and EPT A/D bit features are enabled -- PML depends on them to work. - */ - if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) - enable_pml = 0; - - if (!enable_pml) { - kvm_x86_ops->slot_enable_log_dirty = NULL; - kvm_x86_ops->slot_disable_log_dirty = NULL; - kvm_x86_ops->flush_log_dirty = NULL; - kvm_x86_ops->enable_log_dirty_pt_masked = NULL; - } - - if (!cpu_has_vmx_preemption_timer()) - kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; - - if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { - u64 vmx_msr; - - rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); - cpu_preemption_timer_multi = - vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; - } else { - kvm_x86_ops->set_hv_timer = NULL; - kvm_x86_ops->cancel_hv_timer = NULL; - } - - if (!cpu_has_vmx_shadow_vmcs()) - enable_shadow_vmcs = 0; - if (enable_shadow_vmcs) - init_vmcs_shadow_fields(); - - kvm_set_posted_intr_wakeup_handler(wakeup_handler); - nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv); - - kvm_mce_cap_supported |= MCG_LMCE_P; - - return alloc_kvm_area(); - -out: - for (i = 0; i < VMX_BITMAP_NR; i++) - free_page((unsigned long)vmx_bitmap[i]); - - return r; -} - -static __exit void hardware_unsetup(void) -{ - int i; - - for (i = 0; i < VMX_BITMAP_NR; i++) - free_page((unsigned long)vmx_bitmap[i]); - - free_kvm_area(); -} - -/* - * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE - * exiting, so only get here on cpu with PAUSE-Loop-Exiting. - */ -static int handle_pause(struct kvm_vcpu *vcpu) -{ - if (!kvm_pause_in_guest(vcpu->kvm)) - grow_ple_window(vcpu); - - /* - * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" - * VM-execution control is ignored if CPL > 0. OTOH, KVM - * never set PAUSE_EXITING and just set PLE if supported, - * so the vcpu must be CPL=0 if it gets a PAUSE exit. - */ - kvm_vcpu_on_spin(vcpu, true); - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_nop(struct kvm_vcpu *vcpu) -{ - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_mwait(struct kvm_vcpu *vcpu) -{ - printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); - return handle_nop(vcpu); -} - -static int handle_invalid_op(struct kvm_vcpu *vcpu) -{ - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; -} - -static int handle_monitor_trap(struct kvm_vcpu *vcpu) -{ - return 1; -} - -static int handle_monitor(struct kvm_vcpu *vcpu) -{ - printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); - return handle_nop(vcpu); -} - -/* - * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), - * set the success or error code of an emulated VMX instruction (as specified - * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated - * instruction. - */ -static int nested_vmx_succeed(struct kvm_vcpu *vcpu) -{ - vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) - & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | - X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); - return kvm_skip_emulated_instruction(vcpu); -} - -static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) -{ - vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) - & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | - X86_EFLAGS_SF | X86_EFLAGS_OF)) - | X86_EFLAGS_CF); - return kvm_skip_emulated_instruction(vcpu); -} - -static int nested_vmx_failValid(struct kvm_vcpu *vcpu, - u32 vm_instruction_error) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * failValid writes the error number to the current VMCS, which - * can't be done if there isn't a current VMCS. - */ - if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs) - return nested_vmx_failInvalid(vcpu); - - vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) - & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | - X86_EFLAGS_SF | X86_EFLAGS_OF)) - | X86_EFLAGS_ZF); - get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; - /* - * We don't need to force a shadow sync because - * VM_INSTRUCTION_ERROR is not shadowed - */ - return kvm_skip_emulated_instruction(vcpu); -} - -static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) -{ - /* TODO: not to reset guest simply here. */ - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); -} - -static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) -{ - struct vcpu_vmx *vmx = - container_of(timer, struct vcpu_vmx, nested.preemption_timer); - - vmx->nested.preemption_timer_expired = true; - kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); - kvm_vcpu_kick(&vmx->vcpu); - - return HRTIMER_NORESTART; -} - -/* - * Decode the memory-address operand of a vmx instruction, as recorded on an - * exit caused by such an instruction (run by a guest hypervisor). - * On success, returns 0. When the operand is invalid, returns 1 and throws - * #UD or #GP. - */ -static int get_vmx_mem_address(struct kvm_vcpu *vcpu, - unsigned long exit_qualification, - u32 vmx_instruction_info, bool wr, gva_t *ret) -{ - gva_t off; - bool exn; - struct kvm_segment s; - - /* - * According to Vol. 3B, "Information for VM Exits Due to Instruction - * Execution", on an exit, vmx_instruction_info holds most of the - * addressing components of the operand. Only the displacement part - * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). - * For how an actual address is calculated from all these components, - * refer to Vol. 1, "Operand Addressing". - */ - int scaling = vmx_instruction_info & 3; - int addr_size = (vmx_instruction_info >> 7) & 7; - bool is_reg = vmx_instruction_info & (1u << 10); - int seg_reg = (vmx_instruction_info >> 15) & 7; - int index_reg = (vmx_instruction_info >> 18) & 0xf; - bool index_is_valid = !(vmx_instruction_info & (1u << 22)); - int base_reg = (vmx_instruction_info >> 23) & 0xf; - bool base_is_valid = !(vmx_instruction_info & (1u << 27)); - - if (is_reg) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - /* Addr = segment_base + offset */ - /* offset = base + [index * scale] + displacement */ - off = exit_qualification; /* holds the displacement */ - if (base_is_valid) - off += kvm_register_read(vcpu, base_reg); - if (index_is_valid) - off += kvm_register_read(vcpu, index_reg)<<scaling; - vmx_get_segment(vcpu, &s, seg_reg); - *ret = s.base + off; - - if (addr_size == 1) /* 32 bit */ - *ret &= 0xffffffff; - - /* Checks for #GP/#SS exceptions. */ - exn = false; - if (is_long_mode(vcpu)) { - /* Long mode: #GP(0)/#SS(0) if the memory address is in a - * non-canonical form. This is the only check on the memory - * destination for long mode! - */ - exn = is_noncanonical_address(*ret, vcpu); - } else if (is_protmode(vcpu)) { - /* Protected mode: apply checks for segment validity in the - * following order: - * - segment type check (#GP(0) may be thrown) - * - usability check (#GP(0)/#SS(0)) - * - limit check (#GP(0)/#SS(0)) - */ - if (wr) - /* #GP(0) if the destination operand is located in a - * read-only data segment or any code segment. - */ - exn = ((s.type & 0xa) == 0 || (s.type & 8)); - else - /* #GP(0) if the source operand is located in an - * execute-only code segment - */ - exn = ((s.type & 0xa) == 8); - if (exn) { - kvm_queue_exception_e(vcpu, GP_VECTOR, 0); - return 1; - } - /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. - */ - exn = (s.unusable != 0); - /* Protected mode: #GP(0)/#SS(0) if the memory - * operand is outside the segment limit. - */ - exn = exn || (off + sizeof(u64) > s.limit); - } - if (exn) { - kvm_queue_exception_e(vcpu, - seg_reg == VCPU_SREG_SS ? - SS_VECTOR : GP_VECTOR, - 0); - return 1; - } - - return 0; -} - -static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) -{ - gva_t gva; - struct x86_exception e; - - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) - return 1; - - if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - - return 0; -} - -/* - * Allocate a shadow VMCS and associate it with the currently loaded - * VMCS, unless such a shadow VMCS already exists. The newly allocated - * VMCS is also VMCLEARed, so that it is ready for use. - */ -static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; - - /* - * We should allocate a shadow vmcs for vmcs01 only when L1 - * executes VMXON and free it when L1 executes VMXOFF. - * As it is invalid to execute VMXON twice, we shouldn't reach - * here when vmcs01 already have an allocated shadow vmcs. - */ - WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); - - if (!loaded_vmcs->shadow_vmcs) { - loaded_vmcs->shadow_vmcs = alloc_vmcs(true); - if (loaded_vmcs->shadow_vmcs) - vmcs_clear(loaded_vmcs->shadow_vmcs); - } - return loaded_vmcs->shadow_vmcs; -} - -static int enter_vmx_operation(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int r; - - r = alloc_loaded_vmcs(&vmx->nested.vmcs02); - if (r < 0) - goto out_vmcs02; - - vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); - if (!vmx->nested.cached_vmcs12) - goto out_cached_vmcs12; - - vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); - if (!vmx->nested.cached_shadow_vmcs12) - goto out_cached_shadow_vmcs12; - - if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) - goto out_shadow_vmcs; - - hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, - HRTIMER_MODE_REL_PINNED); - vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; - - vmx->nested.vpid02 = allocate_vpid(); - - vmx->nested.vmcs02_initialized = false; - vmx->nested.vmxon = true; - return 0; - -out_shadow_vmcs: - kfree(vmx->nested.cached_shadow_vmcs12); - -out_cached_shadow_vmcs12: - kfree(vmx->nested.cached_vmcs12); - -out_cached_vmcs12: - free_loaded_vmcs(&vmx->nested.vmcs02); - -out_vmcs02: - return -ENOMEM; -} - -/* - * Emulate the VMXON instruction. - * Currently, we just remember that VMX is active, and do not save or even - * inspect the argument to VMXON (the so-called "VMXON pointer") because we - * do not currently need to store anything in that guest-allocated memory - * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their - * argument is different from the VMXON pointer (which the spec says they do). - */ -static int handle_vmon(struct kvm_vcpu *vcpu) -{ - int ret; - gpa_t vmptr; - struct page *page; - struct vcpu_vmx *vmx = to_vmx(vcpu); - const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED - | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; - - /* - * The Intel VMX Instruction Reference lists a bunch of bits that are - * prerequisite to running VMXON, most notably cr4.VMXE must be set to - * 1 (see vmx_set_cr4() for when we allow the guest to set this). - * Otherwise, we should fail with #UD. But most faulting conditions - * have already been checked by hardware, prior to the VM-exit for - * VMXON. We do test guest cr4.VMXE because processor CR4 always has - * that bit set to 1 in non-root mode. - */ - if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - /* CPL=0 must be checked manually. */ - if (vmx_get_cpl(vcpu)) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - if (vmx->nested.vmxon) - return nested_vmx_failValid(vcpu, - VMXERR_VMXON_IN_VMX_ROOT_OPERATION); - - if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) - != VMXON_NEEDED_FEATURES) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; - - /* - * SDM 3: 24.11.5 - * The first 4 bytes of VMXON region contain the supported - * VMCS revision identifier - * - * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; - * which replaces physical address width with 32 - */ - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failInvalid(vcpu); - - page = kvm_vcpu_gpa_to_page(vcpu, vmptr); - if (is_error_page(page)) - return nested_vmx_failInvalid(vcpu); - - if (*(u32 *)kmap(page) != VMCS12_REVISION) { - kunmap(page); - kvm_release_page_clean(page); - return nested_vmx_failInvalid(vcpu); - } - kunmap(page); - kvm_release_page_clean(page); - - vmx->nested.vmxon_ptr = vmptr; - ret = enter_vmx_operation(vcpu); - if (ret) - return ret; - - return nested_vmx_succeed(vcpu); -} - -/* - * Intel's VMX Instruction Reference specifies a common set of prerequisites - * for running VMX instructions (except VMXON, whose prerequisites are - * slightly different). It also specifies what exception to inject otherwise. - * Note that many of these exceptions have priority over VM exits, so they - * don't have to be checked again here. - */ -static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) -{ - if (!to_vmx(vcpu)->nested.vmxon) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 0; - } - - if (vmx_get_cpl(vcpu)) { - kvm_inject_gp(vcpu, 0); - return 0; - } - - return 1; -} - -static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) -{ - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); - vmcs_write64(VMCS_LINK_POINTER, -1ull); -} - -static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!vmx->nested.hv_evmcs) - return; - - kunmap(vmx->nested.hv_evmcs_page); - kvm_release_page_dirty(vmx->nested.hv_evmcs_page); - vmx->nested.hv_evmcs_vmptr = -1ull; - vmx->nested.hv_evmcs_page = NULL; - vmx->nested.hv_evmcs = NULL; -} - -static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (vmx->nested.current_vmptr == -1ull) - return; - - if (enable_shadow_vmcs) { - /* copy to memory all shadowed fields in case - they were modified */ - copy_shadow_to_vmcs12(vmx); - vmx->nested.need_vmcs12_sync = false; - vmx_disable_shadow_vmcs(vmx); - } - vmx->nested.posted_intr_nv = -1; - - /* Flush VMCS12 to guest memory */ - kvm_vcpu_write_guest_page(vcpu, - vmx->nested.current_vmptr >> PAGE_SHIFT, - vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); - - kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); - - vmx->nested.current_vmptr = -1ull; -} - -/* - * Free whatever needs to be freed from vmx->nested when L1 goes down, or - * just stops using VMX. - */ -static void free_nested(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) - return; - - vmx->nested.vmxon = false; - vmx->nested.smm.vmxon = false; - free_vpid(vmx->nested.vpid02); - vmx->nested.posted_intr_nv = -1; - vmx->nested.current_vmptr = -1ull; - if (enable_shadow_vmcs) { - vmx_disable_shadow_vmcs(vmx); - vmcs_clear(vmx->vmcs01.shadow_vmcs); - free_vmcs(vmx->vmcs01.shadow_vmcs); - vmx->vmcs01.shadow_vmcs = NULL; - } - kfree(vmx->nested.cached_vmcs12); - kfree(vmx->nested.cached_shadow_vmcs12); - /* Unpin physical memory we referred to in the vmcs02 */ - if (vmx->nested.apic_access_page) { - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; - } - if (vmx->nested.virtual_apic_page) { - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; - } - if (vmx->nested.pi_desc_page) { - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; - vmx->nested.pi_desc = NULL; - } - - kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); - - nested_release_evmcs(vcpu); - - free_loaded_vmcs(&vmx->nested.vmcs02); -} - -/* Emulate the VMXOFF instruction */ -static int handle_vmoff(struct kvm_vcpu *vcpu) -{ - if (!nested_vmx_check_permission(vcpu)) - return 1; - free_nested(vcpu); - return nested_vmx_succeed(vcpu); -} - -/* Emulate the VMCLEAR instruction */ -static int handle_vmclear(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 zero = 0; - gpa_t vmptr; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; - - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failValid(vcpu, - VMXERR_VMCLEAR_INVALID_ADDRESS); - - if (vmptr == vmx->nested.vmxon_ptr) - return nested_vmx_failValid(vcpu, - VMXERR_VMCLEAR_VMXON_POINTER); - - if (vmx->nested.hv_evmcs_page) { - if (vmptr == vmx->nested.hv_evmcs_vmptr) - nested_release_evmcs(vcpu); - } else { - if (vmptr == vmx->nested.current_vmptr) - nested_release_vmcs12(vcpu); - - kvm_vcpu_write_guest(vcpu, - vmptr + offsetof(struct vmcs12, - launch_state), - &zero, sizeof(zero)); - } - - return nested_vmx_succeed(vcpu); -} - -static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); - -/* Emulate the VMLAUNCH instruction */ -static int handle_vmlaunch(struct kvm_vcpu *vcpu) -{ - return nested_vmx_run(vcpu, true); -} - -/* Emulate the VMRESUME instruction */ -static int handle_vmresume(struct kvm_vcpu *vcpu) -{ - - return nested_vmx_run(vcpu, false); -} - -/* - * Read a vmcs12 field. Since these can have varying lengths and we return - * one type, we chose the biggest type (u64) and zero-extend the return value - * to that size. Note that the caller, handle_vmread, might need to use only - * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of - * 64-bit fields are to be returned). - */ -static inline int vmcs12_read_any(struct vmcs12 *vmcs12, - unsigned long field, u64 *ret) -{ - short offset = vmcs_field_to_offset(field); - char *p; - - if (offset < 0) - return offset; - - p = (char *)vmcs12 + offset; - - switch (vmcs_field_width(field)) { - case VMCS_FIELD_WIDTH_NATURAL_WIDTH: - *ret = *((natural_width *)p); - return 0; - case VMCS_FIELD_WIDTH_U16: - *ret = *((u16 *)p); - return 0; - case VMCS_FIELD_WIDTH_U32: - *ret = *((u32 *)p); - return 0; - case VMCS_FIELD_WIDTH_U64: - *ret = *((u64 *)p); - return 0; - default: - WARN_ON(1); - return -ENOENT; - } -} - - -static inline int vmcs12_write_any(struct vmcs12 *vmcs12, - unsigned long field, u64 field_value){ - short offset = vmcs_field_to_offset(field); - char *p = (char *)vmcs12 + offset; - if (offset < 0) - return offset; - - switch (vmcs_field_width(field)) { - case VMCS_FIELD_WIDTH_U16: - *(u16 *)p = field_value; - return 0; - case VMCS_FIELD_WIDTH_U32: - *(u32 *)p = field_value; - return 0; - case VMCS_FIELD_WIDTH_U64: - *(u64 *)p = field_value; - return 0; - case VMCS_FIELD_WIDTH_NATURAL_WIDTH: - *(natural_width *)p = field_value; - return 0; - default: - WARN_ON(1); - return -ENOENT; - } - -} - -static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) -{ - struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; - struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; - - vmcs12->hdr.revision_id = evmcs->revision_id; - - /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ - vmcs12->tpr_threshold = evmcs->tpr_threshold; - vmcs12->guest_rip = evmcs->guest_rip; - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { - vmcs12->guest_rsp = evmcs->guest_rsp; - vmcs12->guest_rflags = evmcs->guest_rflags; - vmcs12->guest_interruptibility_info = - evmcs->guest_interruptibility_info; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { - vmcs12->cpu_based_vm_exec_control = - evmcs->cpu_based_vm_exec_control; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { - vmcs12->exception_bitmap = evmcs->exception_bitmap; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { - vmcs12->vm_entry_controls = evmcs->vm_entry_controls; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { - vmcs12->vm_entry_intr_info_field = - evmcs->vm_entry_intr_info_field; - vmcs12->vm_entry_exception_error_code = - evmcs->vm_entry_exception_error_code; - vmcs12->vm_entry_instruction_len = - evmcs->vm_entry_instruction_len; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { - vmcs12->host_ia32_pat = evmcs->host_ia32_pat; - vmcs12->host_ia32_efer = evmcs->host_ia32_efer; - vmcs12->host_cr0 = evmcs->host_cr0; - vmcs12->host_cr3 = evmcs->host_cr3; - vmcs12->host_cr4 = evmcs->host_cr4; - vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp; - vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip; - vmcs12->host_rip = evmcs->host_rip; - vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs; - vmcs12->host_es_selector = evmcs->host_es_selector; - vmcs12->host_cs_selector = evmcs->host_cs_selector; - vmcs12->host_ss_selector = evmcs->host_ss_selector; - vmcs12->host_ds_selector = evmcs->host_ds_selector; - vmcs12->host_fs_selector = evmcs->host_fs_selector; - vmcs12->host_gs_selector = evmcs->host_gs_selector; - vmcs12->host_tr_selector = evmcs->host_tr_selector; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { - vmcs12->pin_based_vm_exec_control = - evmcs->pin_based_vm_exec_control; - vmcs12->vm_exit_controls = evmcs->vm_exit_controls; - vmcs12->secondary_vm_exec_control = - evmcs->secondary_vm_exec_control; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { - vmcs12->io_bitmap_a = evmcs->io_bitmap_a; - vmcs12->io_bitmap_b = evmcs->io_bitmap_b; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { - vmcs12->msr_bitmap = evmcs->msr_bitmap; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { - vmcs12->guest_es_base = evmcs->guest_es_base; - vmcs12->guest_cs_base = evmcs->guest_cs_base; - vmcs12->guest_ss_base = evmcs->guest_ss_base; - vmcs12->guest_ds_base = evmcs->guest_ds_base; - vmcs12->guest_fs_base = evmcs->guest_fs_base; - vmcs12->guest_gs_base = evmcs->guest_gs_base; - vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base; - vmcs12->guest_tr_base = evmcs->guest_tr_base; - vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base; - vmcs12->guest_idtr_base = evmcs->guest_idtr_base; - vmcs12->guest_es_limit = evmcs->guest_es_limit; - vmcs12->guest_cs_limit = evmcs->guest_cs_limit; - vmcs12->guest_ss_limit = evmcs->guest_ss_limit; - vmcs12->guest_ds_limit = evmcs->guest_ds_limit; - vmcs12->guest_fs_limit = evmcs->guest_fs_limit; - vmcs12->guest_gs_limit = evmcs->guest_gs_limit; - vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit; - vmcs12->guest_tr_limit = evmcs->guest_tr_limit; - vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit; - vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit; - vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes; - vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes; - vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes; - vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes; - vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes; - vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes; - vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes; - vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes; - vmcs12->guest_es_selector = evmcs->guest_es_selector; - vmcs12->guest_cs_selector = evmcs->guest_cs_selector; - vmcs12->guest_ss_selector = evmcs->guest_ss_selector; - vmcs12->guest_ds_selector = evmcs->guest_ds_selector; - vmcs12->guest_fs_selector = evmcs->guest_fs_selector; - vmcs12->guest_gs_selector = evmcs->guest_gs_selector; - vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector; - vmcs12->guest_tr_selector = evmcs->guest_tr_selector; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { - vmcs12->tsc_offset = evmcs->tsc_offset; - vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; - vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { - vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; - vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; - vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow; - vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow; - vmcs12->guest_cr0 = evmcs->guest_cr0; - vmcs12->guest_cr3 = evmcs->guest_cr3; - vmcs12->guest_cr4 = evmcs->guest_cr4; - vmcs12->guest_dr7 = evmcs->guest_dr7; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { - vmcs12->host_fs_base = evmcs->host_fs_base; - vmcs12->host_gs_base = evmcs->host_gs_base; - vmcs12->host_tr_base = evmcs->host_tr_base; - vmcs12->host_gdtr_base = evmcs->host_gdtr_base; - vmcs12->host_idtr_base = evmcs->host_idtr_base; - vmcs12->host_rsp = evmcs->host_rsp; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { - vmcs12->ept_pointer = evmcs->ept_pointer; - vmcs12->virtual_processor_id = evmcs->virtual_processor_id; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { - vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; - vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; - vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat; - vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer; - vmcs12->guest_pdptr0 = evmcs->guest_pdptr0; - vmcs12->guest_pdptr1 = evmcs->guest_pdptr1; - vmcs12->guest_pdptr2 = evmcs->guest_pdptr2; - vmcs12->guest_pdptr3 = evmcs->guest_pdptr3; - vmcs12->guest_pending_dbg_exceptions = - evmcs->guest_pending_dbg_exceptions; - vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp; - vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip; - vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; - vmcs12->guest_activity_state = evmcs->guest_activity_state; - vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; - } - - /* - * Not used? - * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; - * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; - * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; - * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0; - * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1; - * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2; - * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3; - * vmcs12->page_fault_error_code_mask = - * evmcs->page_fault_error_code_mask; - * vmcs12->page_fault_error_code_match = - * evmcs->page_fault_error_code_match; - * vmcs12->cr3_target_count = evmcs->cr3_target_count; - * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count; - * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count; - * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count; - */ - - /* - * Read only fields: - * vmcs12->guest_physical_address = evmcs->guest_physical_address; - * vmcs12->vm_instruction_error = evmcs->vm_instruction_error; - * vmcs12->vm_exit_reason = evmcs->vm_exit_reason; - * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info; - * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code; - * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field; - * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code; - * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len; - * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info; - * vmcs12->exit_qualification = evmcs->exit_qualification; - * vmcs12->guest_linear_address = evmcs->guest_linear_address; - * - * Not present in struct vmcs12: - * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx; - * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi; - * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi; - * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; - */ - - return 0; -} - -static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) -{ - struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; - struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; - - /* - * Should not be changed by KVM: - * - * evmcs->host_es_selector = vmcs12->host_es_selector; - * evmcs->host_cs_selector = vmcs12->host_cs_selector; - * evmcs->host_ss_selector = vmcs12->host_ss_selector; - * evmcs->host_ds_selector = vmcs12->host_ds_selector; - * evmcs->host_fs_selector = vmcs12->host_fs_selector; - * evmcs->host_gs_selector = vmcs12->host_gs_selector; - * evmcs->host_tr_selector = vmcs12->host_tr_selector; - * evmcs->host_ia32_pat = vmcs12->host_ia32_pat; - * evmcs->host_ia32_efer = vmcs12->host_ia32_efer; - * evmcs->host_cr0 = vmcs12->host_cr0; - * evmcs->host_cr3 = vmcs12->host_cr3; - * evmcs->host_cr4 = vmcs12->host_cr4; - * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp; - * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip; - * evmcs->host_rip = vmcs12->host_rip; - * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs; - * evmcs->host_fs_base = vmcs12->host_fs_base; - * evmcs->host_gs_base = vmcs12->host_gs_base; - * evmcs->host_tr_base = vmcs12->host_tr_base; - * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; - * evmcs->host_idtr_base = vmcs12->host_idtr_base; - * evmcs->host_rsp = vmcs12->host_rsp; - * sync_vmcs12() doesn't read these: - * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; - * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; - * evmcs->msr_bitmap = vmcs12->msr_bitmap; - * evmcs->ept_pointer = vmcs12->ept_pointer; - * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap; - * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; - * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; - * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; - * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0; - * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1; - * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2; - * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3; - * evmcs->tpr_threshold = vmcs12->tpr_threshold; - * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; - * evmcs->exception_bitmap = vmcs12->exception_bitmap; - * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer; - * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control; - * evmcs->vm_exit_controls = vmcs12->vm_exit_controls; - * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control; - * evmcs->page_fault_error_code_mask = - * vmcs12->page_fault_error_code_mask; - * evmcs->page_fault_error_code_match = - * vmcs12->page_fault_error_code_match; - * evmcs->cr3_target_count = vmcs12->cr3_target_count; - * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr; - * evmcs->tsc_offset = vmcs12->tsc_offset; - * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl; - * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask; - * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask; - * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow; - * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow; - * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; - * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; - * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; - * - * Not present in struct vmcs12: - * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; - * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; - * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; - * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; - */ - - evmcs->guest_es_selector = vmcs12->guest_es_selector; - evmcs->guest_cs_selector = vmcs12->guest_cs_selector; - evmcs->guest_ss_selector = vmcs12->guest_ss_selector; - evmcs->guest_ds_selector = vmcs12->guest_ds_selector; - evmcs->guest_fs_selector = vmcs12->guest_fs_selector; - evmcs->guest_gs_selector = vmcs12->guest_gs_selector; - evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector; - evmcs->guest_tr_selector = vmcs12->guest_tr_selector; - - evmcs->guest_es_limit = vmcs12->guest_es_limit; - evmcs->guest_cs_limit = vmcs12->guest_cs_limit; - evmcs->guest_ss_limit = vmcs12->guest_ss_limit; - evmcs->guest_ds_limit = vmcs12->guest_ds_limit; - evmcs->guest_fs_limit = vmcs12->guest_fs_limit; - evmcs->guest_gs_limit = vmcs12->guest_gs_limit; - evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit; - evmcs->guest_tr_limit = vmcs12->guest_tr_limit; - evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit; - evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit; - - evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes; - evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes; - evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes; - evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes; - evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes; - evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes; - evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes; - evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes; - - evmcs->guest_es_base = vmcs12->guest_es_base; - evmcs->guest_cs_base = vmcs12->guest_cs_base; - evmcs->guest_ss_base = vmcs12->guest_ss_base; - evmcs->guest_ds_base = vmcs12->guest_ds_base; - evmcs->guest_fs_base = vmcs12->guest_fs_base; - evmcs->guest_gs_base = vmcs12->guest_gs_base; - evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base; - evmcs->guest_tr_base = vmcs12->guest_tr_base; - evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base; - evmcs->guest_idtr_base = vmcs12->guest_idtr_base; - - evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat; - evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer; - - evmcs->guest_pdptr0 = vmcs12->guest_pdptr0; - evmcs->guest_pdptr1 = vmcs12->guest_pdptr1; - evmcs->guest_pdptr2 = vmcs12->guest_pdptr2; - evmcs->guest_pdptr3 = vmcs12->guest_pdptr3; - - evmcs->guest_pending_dbg_exceptions = - vmcs12->guest_pending_dbg_exceptions; - evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp; - evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip; - - evmcs->guest_activity_state = vmcs12->guest_activity_state; - evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs; - - evmcs->guest_cr0 = vmcs12->guest_cr0; - evmcs->guest_cr3 = vmcs12->guest_cr3; - evmcs->guest_cr4 = vmcs12->guest_cr4; - evmcs->guest_dr7 = vmcs12->guest_dr7; - - evmcs->guest_physical_address = vmcs12->guest_physical_address; - - evmcs->vm_instruction_error = vmcs12->vm_instruction_error; - evmcs->vm_exit_reason = vmcs12->vm_exit_reason; - evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info; - evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code; - evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field; - evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code; - evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len; - evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info; - - evmcs->exit_qualification = vmcs12->exit_qualification; - - evmcs->guest_linear_address = vmcs12->guest_linear_address; - evmcs->guest_rsp = vmcs12->guest_rsp; - evmcs->guest_rflags = vmcs12->guest_rflags; - - evmcs->guest_interruptibility_info = - vmcs12->guest_interruptibility_info; - evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control; - evmcs->vm_entry_controls = vmcs12->vm_entry_controls; - evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field; - evmcs->vm_entry_exception_error_code = - vmcs12->vm_entry_exception_error_code; - evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len; - - evmcs->guest_rip = vmcs12->guest_rip; - - evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; - - return 0; -} - -/* - * Copy the writable VMCS shadow fields back to the VMCS12, in case - * they have been modified by the L1 guest. Note that the "read-only" - * VM-exit information fields are actually writable if the vCPU is - * configured to support "VMWRITE to any supported field in the VMCS." - */ -static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) -{ - const u16 *fields[] = { - shadow_read_write_fields, - shadow_read_only_fields - }; - const int max_fields[] = { - max_shadow_read_write_fields, - max_shadow_read_only_fields - }; - int i, q; - unsigned long field; - u64 field_value; - struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; - - preempt_disable(); - - vmcs_load(shadow_vmcs); - - for (q = 0; q < ARRAY_SIZE(fields); q++) { - for (i = 0; i < max_fields[q]; i++) { - field = fields[q][i]; - field_value = __vmcs_readl(field); - vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value); - } - /* - * Skip the VM-exit information fields if they are read-only. - */ - if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) - break; - } - - vmcs_clear(shadow_vmcs); - vmcs_load(vmx->loaded_vmcs->vmcs); - - preempt_enable(); -} - -static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) -{ - const u16 *fields[] = { - shadow_read_write_fields, - shadow_read_only_fields - }; - const int max_fields[] = { - max_shadow_read_write_fields, - max_shadow_read_only_fields - }; - int i, q; - unsigned long field; - u64 field_value = 0; - struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; - - vmcs_load(shadow_vmcs); - - for (q = 0; q < ARRAY_SIZE(fields); q++) { - for (i = 0; i < max_fields[q]; i++) { - field = fields[q][i]; - vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value); - __vmcs_writel(field, field_value); - } - } - - vmcs_clear(shadow_vmcs); - vmcs_load(vmx->loaded_vmcs->vmcs); -} - -static int handle_vmread(struct kvm_vcpu *vcpu) -{ - unsigned long field; - u64 field_value; - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - gva_t gva = 0; - struct vmcs12 *vmcs12; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (to_vmx(vcpu)->nested.current_vmptr == -1ull) - return nested_vmx_failInvalid(vcpu); - - if (!is_guest_mode(vcpu)) - vmcs12 = get_vmcs12(vcpu); - else { - /* - * When vmcs->vmcs_link_pointer is -1ull, any VMREAD - * to shadowed-field sets the ALU flags for VMfailInvalid. - */ - if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) - return nested_vmx_failInvalid(vcpu); - vmcs12 = get_shadow_vmcs12(vcpu); - } - - /* Decode instruction info and find the field to read */ - field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); - /* Read the field, zero-extended to a u64 field_value */ - if (vmcs12_read_any(vmcs12, field, &field_value) < 0) - return nested_vmx_failValid(vcpu, - VMXERR_UNSUPPORTED_VMCS_COMPONENT); - - /* - * Now copy part of this value to register or memory, as requested. - * Note that the number of bits actually copied is 32 or 64 depending - * on the guest's mode (32 or 64 bit), not on the given field's length. - */ - if (vmx_instruction_info & (1u << 10)) { - kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), - field_value); - } else { - if (get_vmx_mem_address(vcpu, exit_qualification, - vmx_instruction_info, true, &gva)) - return 1; - /* _system ok, nested_vmx_check_permission has verified cpl=0 */ - kvm_write_guest_virt_system(vcpu, gva, &field_value, - (is_long_mode(vcpu) ? 8 : 4), NULL); - } - - return nested_vmx_succeed(vcpu); -} - - -static int handle_vmwrite(struct kvm_vcpu *vcpu) -{ - unsigned long field; - gva_t gva; - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - - /* The value to write might be 32 or 64 bits, depending on L1's long - * mode, and eventually we need to write that into a field of several - * possible lengths. The code below first zero-extends the value to 64 - * bit (field_value), and then copies only the appropriate number of - * bits into the vmcs12 field. - */ - u64 field_value = 0; - struct x86_exception e; - struct vmcs12 *vmcs12; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (vmx->nested.current_vmptr == -1ull) - return nested_vmx_failInvalid(vcpu); - - if (vmx_instruction_info & (1u << 10)) - field_value = kvm_register_readl(vcpu, - (((vmx_instruction_info) >> 3) & 0xf)); - else { - if (get_vmx_mem_address(vcpu, exit_qualification, - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &field_value, - (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - } - - - field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); - /* - * If the vCPU supports "VMWRITE to any supported field in the - * VMCS," then the "read-only" fields are actually read/write. - */ - if (vmcs_field_readonly(field) && - !nested_cpu_has_vmwrite_any_field(vcpu)) - return nested_vmx_failValid(vcpu, - VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); - - if (!is_guest_mode(vcpu)) - vmcs12 = get_vmcs12(vcpu); - else { - /* - * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE - * to shadowed-field sets the ALU flags for VMfailInvalid. - */ - if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) - return nested_vmx_failInvalid(vcpu); - vmcs12 = get_shadow_vmcs12(vcpu); - } - - if (vmcs12_write_any(vmcs12, field, field_value) < 0) - return nested_vmx_failValid(vcpu, - VMXERR_UNSUPPORTED_VMCS_COMPONENT); - - /* - * Do not track vmcs12 dirty-state if in guest-mode - * as we actually dirty shadow vmcs12 instead of vmcs12. - */ - if (!is_guest_mode(vcpu)) { - switch (field) { -#define SHADOW_FIELD_RW(x) case x: -#include "vmx_shadow_fields.h" - /* - * The fields that can be updated by L1 without a vmexit are - * always updated in the vmcs02, the others go down the slow - * path of prepare_vmcs02. - */ - break; - default: - vmx->nested.dirty_vmcs12 = true; - break; - } - } - - return nested_vmx_succeed(vcpu); -} - -static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) -{ - vmx->nested.current_vmptr = vmptr; - if (enable_shadow_vmcs) { - vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_SHADOW_VMCS); - vmcs_write64(VMCS_LINK_POINTER, - __pa(vmx->vmcs01.shadow_vmcs)); - vmx->nested.need_vmcs12_sync = true; - } - vmx->nested.dirty_vmcs12 = true; -} - -/* Emulate the VMPTRLD instruction */ -static int handle_vmptrld(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - gpa_t vmptr; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; - - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failValid(vcpu, - VMXERR_VMPTRLD_INVALID_ADDRESS); - - if (vmptr == vmx->nested.vmxon_ptr) - return nested_vmx_failValid(vcpu, - VMXERR_VMPTRLD_VMXON_POINTER); - - /* Forbid normal VMPTRLD if Enlightened version was used */ - if (vmx->nested.hv_evmcs) - return 1; - - if (vmx->nested.current_vmptr != vmptr) { - struct vmcs12 *new_vmcs12; - struct page *page; - page = kvm_vcpu_gpa_to_page(vcpu, vmptr); - if (is_error_page(page)) - return nested_vmx_failInvalid(vcpu); - - new_vmcs12 = kmap(page); - if (new_vmcs12->hdr.revision_id != VMCS12_REVISION || - (new_vmcs12->hdr.shadow_vmcs && - !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { - kunmap(page); - kvm_release_page_clean(page); - return nested_vmx_failValid(vcpu, - VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); - } - - nested_release_vmcs12(vcpu); - - /* - * Load VMCS12 from guest memory since it is not already - * cached. - */ - memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); - kunmap(page); - kvm_release_page_clean(page); - - set_current_vmptr(vmx, vmptr); - } - - return nested_vmx_succeed(vcpu); -} - -/* - * This is an equivalent of the nested hypervisor executing the vmptrld - * instruction. - */ -static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, - bool from_launch) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct hv_vp_assist_page assist_page; - - if (likely(!vmx->nested.enlightened_vmcs_enabled)) - return 1; - - if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page))) - return 1; - - if (unlikely(!assist_page.enlighten_vmentry)) - return 1; - - if (unlikely(assist_page.current_nested_vmcs != - vmx->nested.hv_evmcs_vmptr)) { - - if (!vmx->nested.hv_evmcs) - vmx->nested.current_vmptr = -1ull; - - nested_release_evmcs(vcpu); - - vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page( - vcpu, assist_page.current_nested_vmcs); - - if (unlikely(is_error_page(vmx->nested.hv_evmcs_page))) - return 0; - - vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page); - - if (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION) { - nested_release_evmcs(vcpu); - return 0; - } - - vmx->nested.dirty_vmcs12 = true; - /* - * As we keep L2 state for one guest only 'hv_clean_fields' mask - * can't be used when we switch between them. Reset it here for - * simplicity. - */ - vmx->nested.hv_evmcs->hv_clean_fields &= - ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs; - - /* - * Unlike normal vmcs12, enlightened vmcs12 is not fully - * reloaded from guest's memory (read only fields, fields not - * present in struct hv_enlightened_vmcs, ...). Make sure there - * are no leftovers. - */ - if (from_launch) - memset(vmx->nested.cached_vmcs12, 0, - sizeof(*vmx->nested.cached_vmcs12)); - - } - return 1; -} - -/* Emulate the VMPTRST instruction */ -static int handle_vmptrst(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); - u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); - gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; - struct x86_exception e; - gva_t gva; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (unlikely(to_vmx(vcpu)->nested.hv_evmcs)) - return 1; - - if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva)) - return 1; - /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ - if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, - sizeof(gpa_t), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - return nested_vmx_succeed(vcpu); -} - -/* Emulate the INVEPT instruction */ -static int handle_invept(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 vmx_instruction_info, types; - unsigned long type; - gva_t gva; - struct x86_exception e; - struct { - u64 eptp, gpa; - } operand; - - if (!(vmx->nested.msrs.secondary_ctls_high & - SECONDARY_EXEC_ENABLE_EPT) || - !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); - - types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; - - if (type >= 32 || !(types & (1 << type))) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - - /* According to the Intel VMX instruction reference, the memory - * operand is read even if it isn't needed (e.g., for type==global) - */ - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - - switch (type) { - case VMX_EPT_EXTENT_GLOBAL: - /* - * TODO: track mappings and invalidate - * single context requests appropriately - */ - case VMX_EPT_EXTENT_CONTEXT: - kvm_mmu_sync_roots(vcpu); - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - break; - default: - BUG_ON(1); - break; - } - - return nested_vmx_succeed(vcpu); -} - -static u16 nested_get_vpid02(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid; -} - -static int handle_invvpid(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 vmx_instruction_info; - unsigned long type, types; - gva_t gva; - struct x86_exception e; - struct { - u64 vpid; - u64 gla; - } operand; - u16 vpid02; - - if (!(vmx->nested.msrs.secondary_ctls_high & - SECONDARY_EXEC_ENABLE_VPID) || - !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); - - types = (vmx->nested.msrs.vpid_caps & - VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; - - if (type >= 32 || !(types & (1 << type))) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - - /* according to the intel vmx instruction reference, the memory - * operand is read even if it isn't needed (e.g., for type==global) - */ - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - if (operand.vpid >> 16) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - - vpid02 = nested_get_vpid02(vcpu); - switch (type) { - case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: - if (!operand.vpid || - is_noncanonical_address(operand.gla, vcpu)) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - if (cpu_has_vmx_invvpid_individual_addr()) { - __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, - vpid02, operand.gla); - } else - __vmx_flush_tlb(vcpu, vpid02, false); - break; - case VMX_VPID_EXTENT_SINGLE_CONTEXT: - case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: - if (!operand.vpid) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - __vmx_flush_tlb(vcpu, vpid02, false); - break; - case VMX_VPID_EXTENT_ALL_CONTEXT: - __vmx_flush_tlb(vcpu, vpid02, false); - break; - default: - WARN_ON_ONCE(1); - return kvm_skip_emulated_instruction(vcpu); - } - - return nested_vmx_succeed(vcpu); -} - -static int handle_invpcid(struct kvm_vcpu *vcpu) -{ - u32 vmx_instruction_info; - unsigned long type; - bool pcid_enabled; - gva_t gva; - struct x86_exception e; - unsigned i; - unsigned long roots_to_free = 0; - struct { - u64 pcid; - u64 gla; - } operand; - - if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); - - if (type > 3) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - /* According to the Intel instruction reference, the memory operand - * is read even if it isn't needed (e.g., for type==all) - */ - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmx_instruction_info, false, &gva)) - return 1; - - if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - - if (operand.pcid >> 12 != 0) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); - - switch (type) { - case INVPCID_TYPE_INDIV_ADDR: - if ((!pcid_enabled && (operand.pcid != 0)) || - is_noncanonical_address(operand.gla, vcpu)) { - kvm_inject_gp(vcpu, 0); - return 1; - } - kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); - return kvm_skip_emulated_instruction(vcpu); - - case INVPCID_TYPE_SINGLE_CTXT: - if (!pcid_enabled && (operand.pcid != 0)) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - if (kvm_get_active_pcid(vcpu) == operand.pcid) { - kvm_mmu_sync_roots(vcpu); - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } - - for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) - if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) - == operand.pcid) - roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); - - kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); - /* - * If neither the current cr3 nor any of the prev_roots use the - * given PCID, then nothing needs to be done here because a - * resync will happen anyway before switching to any other CR3. - */ - - return kvm_skip_emulated_instruction(vcpu); - - case INVPCID_TYPE_ALL_NON_GLOBAL: - /* - * Currently, KVM doesn't mark global entries in the shadow - * page tables, so a non-global flush just degenerates to a - * global flush. If needed, we could optimize this later by - * keeping track of global entries in shadow page tables. - */ - - /* fall-through */ - case INVPCID_TYPE_ALL_INCL_GLOBAL: - kvm_mmu_unload(vcpu); - return kvm_skip_emulated_instruction(vcpu); - - default: - BUG(); /* We have already checked above that type <= 3 */ - } -} - -static int handle_pml_full(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification; - - trace_kvm_pml_full(vcpu->vcpu_id); - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - /* - * PML buffer FULL happened while executing iret from NMI, - * "blocked by NMI" bit has to be set before next VM entry. - */ - if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && - enable_vnmi && - (exit_qualification & INTR_INFO_UNBLOCK_NMI)) - vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, - GUEST_INTR_STATE_NMI); - - /* - * PML buffer already flushed at beginning of VMEXIT. Nothing to do - * here.., and there's no userspace involvement needed for PML. - */ - return 1; -} - -static int handle_preemption_timer(struct kvm_vcpu *vcpu) -{ - if (!to_vmx(vcpu)->req_immediate_exit) - kvm_lapic_expired_hv_timer(vcpu); - return 1; -} - -static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int maxphyaddr = cpuid_maxphyaddr(vcpu); - - /* Check for memory type validity */ - switch (address & VMX_EPTP_MT_MASK) { - case VMX_EPTP_MT_UC: - if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)) - return false; - break; - case VMX_EPTP_MT_WB: - if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)) - return false; - break; - default: - return false; - } - - /* only 4 levels page-walk length are valid */ - if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4) - return false; - - /* Reserved bits should not be set */ - if (address >> maxphyaddr || ((address >> 7) & 0x1f)) - return false; - - /* AD, if set, should be supported */ - if (address & VMX_EPTP_AD_ENABLE_BIT) { - if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)) - return false; - } - - return true; -} - -static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - u32 index = vcpu->arch.regs[VCPU_REGS_RCX]; - u64 address; - bool accessed_dirty; - struct kvm_mmu *mmu = vcpu->arch.walk_mmu; - - if (!nested_cpu_has_eptp_switching(vmcs12) || - !nested_cpu_has_ept(vmcs12)) - return 1; - - if (index >= VMFUNC_EPTP_ENTRIES) - return 1; - - - if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, - &address, index * 8, 8)) - return 1; - - accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); - - /* - * If the (L2) guest does a vmfunc to the currently - * active ept pointer, we don't have to do anything else - */ - if (vmcs12->ept_pointer != address) { - if (!valid_ept_address(vcpu, address)) - return 1; - - kvm_mmu_unload(vcpu); - mmu->ept_ad = accessed_dirty; - mmu->mmu_role.base.ad_disabled = !accessed_dirty; - vmcs12->ept_pointer = address; - /* - * TODO: Check what's the correct approach in case - * mmu reload fails. Currently, we just let the next - * reload potentially fail - */ - kvm_mmu_reload(vcpu); - } - - return 0; -} - -static int handle_vmfunc(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12; - u32 function = vcpu->arch.regs[VCPU_REGS_RAX]; - - /* - * VMFUNC is only supported for nested guests, but we always enable the - * secondary control for simplicity; for non-nested mode, fake that we - * didn't by injecting #UD. - */ - if (!is_guest_mode(vcpu)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - vmcs12 = get_vmcs12(vcpu); - if ((vmcs12->vm_function_control & (1 << function)) == 0) - goto fail; - - switch (function) { - case 0: - if (nested_vmx_eptp_switching(vcpu, vmcs12)) - goto fail; - break; - default: - goto fail; - } - return kvm_skip_emulated_instruction(vcpu); - -fail: - nested_vmx_vmexit(vcpu, vmx->exit_reason, - vmcs_read32(VM_EXIT_INTR_INFO), - vmcs_readl(EXIT_QUALIFICATION)); - return 1; -} - -static int handle_encls(struct kvm_vcpu *vcpu) -{ - /* - * SGX virtualization is not yet supported. There is no software - * enable bit for SGX, so we have to trap ENCLS and inject a #UD - * to prevent the guest from executing ENCLS. - */ - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; -} - -/* - * The exit handlers return 1 if the exit was handled fully and guest execution - * may resume. Otherwise they set the kvm_run parameter to indicate what needs - * to be done to userspace and return 0. - */ -static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { - [EXIT_REASON_EXCEPTION_NMI] = handle_exception, - [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, - [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, - [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, - [EXIT_REASON_IO_INSTRUCTION] = handle_io, - [EXIT_REASON_CR_ACCESS] = handle_cr, - [EXIT_REASON_DR_ACCESS] = handle_dr, - [EXIT_REASON_CPUID] = handle_cpuid, - [EXIT_REASON_MSR_READ] = handle_rdmsr, - [EXIT_REASON_MSR_WRITE] = handle_wrmsr, - [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, - [EXIT_REASON_HLT] = handle_halt, - [EXIT_REASON_INVD] = handle_invd, - [EXIT_REASON_INVLPG] = handle_invlpg, - [EXIT_REASON_RDPMC] = handle_rdpmc, - [EXIT_REASON_VMCALL] = handle_vmcall, - [EXIT_REASON_VMCLEAR] = handle_vmclear, - [EXIT_REASON_VMLAUNCH] = handle_vmlaunch, - [EXIT_REASON_VMPTRLD] = handle_vmptrld, - [EXIT_REASON_VMPTRST] = handle_vmptrst, - [EXIT_REASON_VMREAD] = handle_vmread, - [EXIT_REASON_VMRESUME] = handle_vmresume, - [EXIT_REASON_VMWRITE] = handle_vmwrite, - [EXIT_REASON_VMOFF] = handle_vmoff, - [EXIT_REASON_VMON] = handle_vmon, - [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, - [EXIT_REASON_APIC_ACCESS] = handle_apic_access, - [EXIT_REASON_APIC_WRITE] = handle_apic_write, - [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, - [EXIT_REASON_WBINVD] = handle_wbinvd, - [EXIT_REASON_XSETBV] = handle_xsetbv, - [EXIT_REASON_TASK_SWITCH] = handle_task_switch, - [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, - [EXIT_REASON_GDTR_IDTR] = handle_desc, - [EXIT_REASON_LDTR_TR] = handle_desc, - [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, - [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, - [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, - [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, - [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, - [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, - [EXIT_REASON_INVEPT] = handle_invept, - [EXIT_REASON_INVVPID] = handle_invvpid, - [EXIT_REASON_RDRAND] = handle_invalid_op, - [EXIT_REASON_RDSEED] = handle_invalid_op, - [EXIT_REASON_XSAVES] = handle_xsaves, - [EXIT_REASON_XRSTORS] = handle_xrstors, - [EXIT_REASON_PML_FULL] = handle_pml_full, - [EXIT_REASON_INVPCID] = handle_invpcid, - [EXIT_REASON_VMFUNC] = handle_vmfunc, - [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, - [EXIT_REASON_ENCLS] = handle_encls, -}; - -static const int kvm_vmx_max_exit_handlers = - ARRAY_SIZE(kvm_vmx_exit_handlers); - -static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - unsigned long exit_qualification; - gpa_t bitmap, last_bitmap; - unsigned int port; - int size; - u8 b; - - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) - return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - port = exit_qualification >> 16; - size = (exit_qualification & 7) + 1; - - last_bitmap = (gpa_t)-1; - b = -1; - - while (size > 0) { - if (port < 0x8000) - bitmap = vmcs12->io_bitmap_a; - else if (port < 0x10000) - bitmap = vmcs12->io_bitmap_b; - else - return true; - bitmap += (port & 0x7fff) / 8; - - if (last_bitmap != bitmap) - if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) - return true; - if (b & (1 << (port & 7))) - return true; - - port++; - size--; - last_bitmap = bitmap; - } - - return false; -} - -/* - * Return 1 if we should exit from L2 to L1 to handle an MSR access access, - * rather than handle it ourselves in L0. I.e., check whether L1 expressed - * disinterest in the current event (read or write a specific MSR) by using an - * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. - */ -static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12, u32 exit_reason) -{ - u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; - gpa_t bitmap; - - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) - return true; - - /* - * The MSR_BITMAP page is divided into four 1024-byte bitmaps, - * for the four combinations of read/write and low/high MSR numbers. - * First we need to figure out which of the four to use: - */ - bitmap = vmcs12->msr_bitmap; - if (exit_reason == EXIT_REASON_MSR_WRITE) - bitmap += 2048; - if (msr_index >= 0xc0000000) { - msr_index -= 0xc0000000; - bitmap += 1024; - } - - /* Then read the msr_index'th bit from this bitmap: */ - if (msr_index < 1024*8) { - unsigned char b; - if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) - return true; - return 1 & (b >> (msr_index & 7)); - } else - return true; /* let L1 handle the wrong parameter */ -} - -/* - * Return 1 if we should exit from L2 to L1 to handle a CR access exit, - * rather than handle it ourselves in L0. I.e., check if L1 wanted to - * intercept (via guest_host_mask etc.) the current event. - */ -static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - int cr = exit_qualification & 15; - int reg; - unsigned long val; - - switch ((exit_qualification >> 4) & 3) { - case 0: /* mov to cr */ - reg = (exit_qualification >> 8) & 15; - val = kvm_register_readl(vcpu, reg); - switch (cr) { - case 0: - if (vmcs12->cr0_guest_host_mask & - (val ^ vmcs12->cr0_read_shadow)) - return true; - break; - case 3: - if ((vmcs12->cr3_target_count >= 1 && - vmcs12->cr3_target_value0 == val) || - (vmcs12->cr3_target_count >= 2 && - vmcs12->cr3_target_value1 == val) || - (vmcs12->cr3_target_count >= 3 && - vmcs12->cr3_target_value2 == val) || - (vmcs12->cr3_target_count >= 4 && - vmcs12->cr3_target_value3 == val)) - return false; - if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) - return true; - break; - case 4: - if (vmcs12->cr4_guest_host_mask & - (vmcs12->cr4_read_shadow ^ val)) - return true; - break; - case 8: - if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) - return true; - break; - } - break; - case 2: /* clts */ - if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && - (vmcs12->cr0_read_shadow & X86_CR0_TS)) - return true; - break; - case 1: /* mov from cr */ - switch (cr) { - case 3: - if (vmcs12->cpu_based_vm_exec_control & - CPU_BASED_CR3_STORE_EXITING) - return true; - break; - case 8: - if (vmcs12->cpu_based_vm_exec_control & - CPU_BASED_CR8_STORE_EXITING) - return true; - break; - } - break; - case 3: /* lmsw */ - /* - * lmsw can change bits 1..3 of cr0, and only set bit 0 of - * cr0. Other attempted changes are ignored, with no exit. - */ - val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; - if (vmcs12->cr0_guest_host_mask & 0xe & - (val ^ vmcs12->cr0_read_shadow)) - return true; - if ((vmcs12->cr0_guest_host_mask & 0x1) && - !(vmcs12->cr0_read_shadow & 0x1) && - (val & 0x1)) - return true; - break; - } - return false; -} - -static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12, gpa_t bitmap) -{ - u32 vmx_instruction_info; - unsigned long field; - u8 b; - - if (!nested_cpu_has_shadow_vmcs(vmcs12)) - return true; - - /* Decode instruction info and find the field to access */ - vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); - - /* Out-of-range fields always cause a VM exit from L2 to L1 */ - if (field >> 15) - return true; - - if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) - return true; - - return 1 & (b >> (field & 7)); -} - -/* - * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we - * should handle it ourselves in L0 (and then continue L2). Only call this - * when in is_guest_mode (L2). - */ -static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) -{ - u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - if (vmx->nested.nested_run_pending) - return false; - - if (unlikely(vmx->fail)) { - pr_info_ratelimited("%s failed vm entry %x\n", __func__, - vmcs_read32(VM_INSTRUCTION_ERROR)); - return true; - } - - /* - * The host physical addresses of some pages of guest memory - * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC - * Page). The CPU may write to these pages via their host - * physical address while L2 is running, bypassing any - * address-translation-based dirty tracking (e.g. EPT write - * protection). - * - * Mark them dirty on every exit from L2 to prevent them from - * getting out of sync with dirty tracking. - */ - nested_mark_vmcs12_pages_dirty(vcpu); - - trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, - vmcs_readl(EXIT_QUALIFICATION), - vmx->idt_vectoring_info, - intr_info, - vmcs_read32(VM_EXIT_INTR_ERROR_CODE), - KVM_ISA_VMX); - - switch (exit_reason) { - case EXIT_REASON_EXCEPTION_NMI: - if (is_nmi(intr_info)) - return false; - else if (is_page_fault(intr_info)) - return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; - else if (is_debug(intr_info) && - vcpu->guest_debug & - (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) - return false; - else if (is_breakpoint(intr_info) && - vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) - return false; - return vmcs12->exception_bitmap & - (1u << (intr_info & INTR_INFO_VECTOR_MASK)); - case EXIT_REASON_EXTERNAL_INTERRUPT: - return false; - case EXIT_REASON_TRIPLE_FAULT: - return true; - case EXIT_REASON_PENDING_INTERRUPT: - return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); - case EXIT_REASON_NMI_WINDOW: - return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); - case EXIT_REASON_TASK_SWITCH: - return true; - case EXIT_REASON_CPUID: - return true; - case EXIT_REASON_HLT: - return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); - case EXIT_REASON_INVD: - return true; - case EXIT_REASON_INVLPG: - return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); - case EXIT_REASON_RDPMC: - return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); - case EXIT_REASON_RDRAND: - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); - case EXIT_REASON_RDSEED: - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); - case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: - return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); - case EXIT_REASON_VMREAD: - return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, - vmcs12->vmread_bitmap); - case EXIT_REASON_VMWRITE: - return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, - vmcs12->vmwrite_bitmap); - case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: - case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: - case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: - case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: - case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: - /* - * VMX instructions trap unconditionally. This allows L1 to - * emulate them for its L2 guest, i.e., allows 3-level nesting! - */ - return true; - case EXIT_REASON_CR_ACCESS: - return nested_vmx_exit_handled_cr(vcpu, vmcs12); - case EXIT_REASON_DR_ACCESS: - return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); - case EXIT_REASON_IO_INSTRUCTION: - return nested_vmx_exit_handled_io(vcpu, vmcs12); - case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); - case EXIT_REASON_MSR_READ: - case EXIT_REASON_MSR_WRITE: - return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); - case EXIT_REASON_INVALID_STATE: - return true; - case EXIT_REASON_MWAIT_INSTRUCTION: - return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); - case EXIT_REASON_MONITOR_TRAP_FLAG: - return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); - case EXIT_REASON_MONITOR_INSTRUCTION: - return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); - case EXIT_REASON_PAUSE_INSTRUCTION: - return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || - nested_cpu_has2(vmcs12, - SECONDARY_EXEC_PAUSE_LOOP_EXITING); - case EXIT_REASON_MCE_DURING_VMENTRY: - return false; - case EXIT_REASON_TPR_BELOW_THRESHOLD: - return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); - case EXIT_REASON_APIC_ACCESS: - case EXIT_REASON_APIC_WRITE: - case EXIT_REASON_EOI_INDUCED: - /* - * The controls for "virtualize APIC accesses," "APIC- - * register virtualization," and "virtual-interrupt - * delivery" only come from vmcs12. - */ - return true; - case EXIT_REASON_EPT_VIOLATION: - /* - * L0 always deals with the EPT violation. If nested EPT is - * used, and the nested mmu code discovers that the address is - * missing in the guest EPT table (EPT12), the EPT violation - * will be injected with nested_ept_inject_page_fault() - */ - return false; - case EXIT_REASON_EPT_MISCONFIG: - /* - * L2 never uses directly L1's EPT, but rather L0's own EPT - * table (shadow on EPT) or a merged EPT table that L0 built - * (EPT on EPT). So any problems with the structure of the - * table is L0's fault. - */ - return false; - case EXIT_REASON_INVPCID: - return - nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && - nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); - case EXIT_REASON_WBINVD: - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); - case EXIT_REASON_XSETBV: - return true; - case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: - /* - * This should never happen, since it is not possible to - * set XSS to a non-zero value---neither in L1 nor in L2. - * If if it were, XSS would have to be checked against - * the XSS exit bitmap in vmcs12. - */ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); - case EXIT_REASON_PREEMPTION_TIMER: - return false; - case EXIT_REASON_PML_FULL: - /* We emulate PML support to L1. */ - return false; - case EXIT_REASON_VMFUNC: - /* VM functions are emulated through L2->L0 vmexits. */ - return false; - case EXIT_REASON_ENCLS: - /* SGX is never exposed to L1 */ - return false; - default: - return true; - } -} - -static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason) -{ - u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - - /* - * At this point, the exit interruption info in exit_intr_info - * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT - * we need to query the in-kernel LAPIC. - */ - WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT); - if ((exit_intr_info & - (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == - (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) { - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - vmcs12->vm_exit_intr_error_code = - vmcs_read32(VM_EXIT_INTR_ERROR_CODE); - } - - nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, - vmcs_readl(EXIT_QUALIFICATION)); - return 1; -} - -static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) -{ - *info1 = vmcs_readl(EXIT_QUALIFICATION); - *info2 = vmcs_read32(VM_EXIT_INTR_INFO); -} - -static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) -{ - if (vmx->pml_pg) { - __free_page(vmx->pml_pg); - vmx->pml_pg = NULL; - } -} - -static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u64 *pml_buf; - u16 pml_idx; - - pml_idx = vmcs_read16(GUEST_PML_INDEX); - - /* Do nothing if PML buffer is empty */ - if (pml_idx == (PML_ENTITY_NUM - 1)) - return; - - /* PML index always points to next available PML buffer entity */ - if (pml_idx >= PML_ENTITY_NUM) - pml_idx = 0; - else - pml_idx++; - - pml_buf = page_address(vmx->pml_pg); - for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { - u64 gpa; - - gpa = pml_buf[pml_idx]; - WARN_ON(gpa & (PAGE_SIZE - 1)); - kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); - } - - /* reset PML index */ - vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); -} - -/* - * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. - * Called before reporting dirty_bitmap to userspace. - */ -static void kvm_flush_pml_buffers(struct kvm *kvm) -{ - int i; - struct kvm_vcpu *vcpu; - /* - * We only need to kick vcpu out of guest mode here, as PML buffer - * is flushed at beginning of all VMEXITs, and it's obvious that only - * vcpus running in guest are possible to have unflushed GPAs in PML - * buffer. - */ - kvm_for_each_vcpu(i, vcpu, kvm) - kvm_vcpu_kick(vcpu); -} - -static void vmx_dump_sel(char *name, uint32_t sel) -{ - pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", - name, vmcs_read16(sel), - vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), - vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), - vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); -} - -static void vmx_dump_dtsel(char *name, uint32_t limit) -{ - pr_err("%s limit=0x%08x, base=0x%016lx\n", - name, vmcs_read32(limit), - vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); -} - -static void dump_vmcs(void) -{ - u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); - u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); - u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); - u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); - u32 secondary_exec_control = 0; - unsigned long cr4 = vmcs_readl(GUEST_CR4); - u64 efer = vmcs_read64(GUEST_IA32_EFER); - int i, n; - - if (cpu_has_secondary_exec_ctrls()) - secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); - - pr_err("*** Guest State ***\n"); - pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", - vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), - vmcs_readl(CR0_GUEST_HOST_MASK)); - pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", - cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); - pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); - if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && - (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) - { - pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", - vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); - pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", - vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); - } - pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", - vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); - pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", - vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); - pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", - vmcs_readl(GUEST_SYSENTER_ESP), - vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); - vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); - vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); - vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); - vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); - vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); - vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); - vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); - vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); - vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); - vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); - if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || - (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) - pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", - efer, vmcs_read64(GUEST_IA32_PAT)); - pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", - vmcs_read64(GUEST_IA32_DEBUGCTL), - vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); - if (cpu_has_load_perf_global_ctrl && - vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) - pr_err("PerfGlobCtl = 0x%016llx\n", - vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); - if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) - pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); - pr_err("Interruptibility = %08x ActivityState = %08x\n", - vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), - vmcs_read32(GUEST_ACTIVITY_STATE)); - if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) - pr_err("InterruptStatus = %04x\n", - vmcs_read16(GUEST_INTR_STATUS)); - - pr_err("*** Host State ***\n"); - pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", - vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); - pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", - vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), - vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), - vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), - vmcs_read16(HOST_TR_SELECTOR)); - pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", - vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), - vmcs_readl(HOST_TR_BASE)); - pr_err("GDTBase=%016lx IDTBase=%016lx\n", - vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); - pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", - vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), - vmcs_readl(HOST_CR4)); - pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", - vmcs_readl(HOST_IA32_SYSENTER_ESP), - vmcs_read32(HOST_IA32_SYSENTER_CS), - vmcs_readl(HOST_IA32_SYSENTER_EIP)); - if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) - pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", - vmcs_read64(HOST_IA32_EFER), - vmcs_read64(HOST_IA32_PAT)); - if (cpu_has_load_perf_global_ctrl && - vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) - pr_err("PerfGlobCtl = 0x%016llx\n", - vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); - - pr_err("*** Control State ***\n"); - pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", - pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); - pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); - pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", - vmcs_read32(EXCEPTION_BITMAP), - vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), - vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); - pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", - vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), - vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), - vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); - pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", - vmcs_read32(VM_EXIT_INTR_INFO), - vmcs_read32(VM_EXIT_INTR_ERROR_CODE), - vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); - pr_err(" reason=%08x qualification=%016lx\n", - vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); - pr_err("IDTVectoring: info=%08x errcode=%08x\n", - vmcs_read32(IDT_VECTORING_INFO_FIELD), - vmcs_read32(IDT_VECTORING_ERROR_CODE)); - pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); - if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) - pr_err("TSC Multiplier = 0x%016llx\n", - vmcs_read64(TSC_MULTIPLIER)); - if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) - pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); - if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) - pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); - if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) - pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); - n = vmcs_read32(CR3_TARGET_COUNT); - for (i = 0; i + 1 < n; i += 4) - pr_err("CR3 target%u=%016lx target%u=%016lx\n", - i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), - i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); - if (i < n) - pr_err("CR3 target%u=%016lx\n", - i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); - if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) - pr_err("PLE Gap=%08x Window=%08x\n", - vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); - if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) - pr_err("Virtual processor ID = 0x%04x\n", - vmcs_read16(VIRTUAL_PROCESSOR_ID)); -} - -/* - * The guest has exited. See if we can fix it or if we need userspace - * assistance. - */ -static int vmx_handle_exit(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 exit_reason = vmx->exit_reason; - u32 vectoring_info = vmx->idt_vectoring_info; - - trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); - - /* - * Flush logged GPAs PML buffer, this will make dirty_bitmap more - * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before - * querying dirty_bitmap, we only need to kick all vcpus out of guest - * mode as if vcpus is in root mode, the PML buffer must has been - * flushed already. - */ - if (enable_pml) - vmx_flush_pml_buffer(vcpu); - - /* If guest state is invalid, start emulating */ - if (vmx->emulation_required) - return handle_invalid_guest_state(vcpu); - - if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) - return nested_vmx_reflect_vmexit(vcpu, exit_reason); - - if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { - dump_vmcs(); - vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; - vcpu->run->fail_entry.hardware_entry_failure_reason - = exit_reason; - return 0; - } - - if (unlikely(vmx->fail)) { - vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; - vcpu->run->fail_entry.hardware_entry_failure_reason - = vmcs_read32(VM_INSTRUCTION_ERROR); - return 0; - } - - /* - * Note: - * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by - * delivery event since it indicates guest is accessing MMIO. - * The vm-exit can be triggered again after return to guest that - * will cause infinite loop. - */ - if ((vectoring_info & VECTORING_INFO_VALID_MASK) && - (exit_reason != EXIT_REASON_EXCEPTION_NMI && - exit_reason != EXIT_REASON_EPT_VIOLATION && - exit_reason != EXIT_REASON_PML_FULL && - exit_reason != EXIT_REASON_TASK_SWITCH)) { - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; - vcpu->run->internal.ndata = 3; - vcpu->run->internal.data[0] = vectoring_info; - vcpu->run->internal.data[1] = exit_reason; - vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; - if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { - vcpu->run->internal.ndata++; - vcpu->run->internal.data[3] = - vmcs_read64(GUEST_PHYSICAL_ADDRESS); - } - return 0; - } - - if (unlikely(!enable_vnmi && - vmx->loaded_vmcs->soft_vnmi_blocked)) { - if (vmx_interrupt_allowed(vcpu)) { - vmx->loaded_vmcs->soft_vnmi_blocked = 0; - } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && - vcpu->arch.nmi_pending) { - /* - * This CPU don't support us in finding the end of an - * NMI-blocked window if the guest runs with IRQs - * disabled. So we pull the trigger after 1 s of - * futile waiting, but inform the user about this. - */ - printk(KERN_WARNING "%s: Breaking out of NMI-blocked " - "state on VCPU %d after 1 s timeout\n", - __func__, vcpu->vcpu_id); - vmx->loaded_vmcs->soft_vnmi_blocked = 0; - } - } - - if (exit_reason < kvm_vmx_max_exit_handlers - && kvm_vmx_exit_handlers[exit_reason]) - return kvm_vmx_exit_handlers[exit_reason](vcpu); - else { - vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", - exit_reason); - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } -} - -/* - * Software based L1D cache flush which is used when microcode providing - * the cache control MSR is not loaded. - * - * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to - * flush it is required to read in 64 KiB because the replacement algorithm - * is not exactly LRU. This could be sized at runtime via topology - * information but as all relevant affected CPUs have 32KiB L1D cache size - * there is no point in doing so. - */ -static void vmx_l1d_flush(struct kvm_vcpu *vcpu) -{ - int size = PAGE_SIZE << L1D_CACHE_ORDER; - - /* - * This code is only executed when the the flush mode is 'cond' or - * 'always' - */ - if (static_branch_likely(&vmx_l1d_flush_cond)) { - bool flush_l1d; - - /* - * Clear the per-vcpu flush bit, it gets set again - * either from vcpu_run() or from one of the unsafe - * VMEXIT handlers. - */ - flush_l1d = vcpu->arch.l1tf_flush_l1d; - vcpu->arch.l1tf_flush_l1d = false; - - /* - * Clear the per-cpu flush bit, it gets set again from - * the interrupt handlers. - */ - flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); - kvm_clear_cpu_l1tf_flush_l1d(); - - if (!flush_l1d) - return; - } - - vcpu->stat.l1d_flush++; - - if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { - wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); - return; - } - - asm volatile( - /* First ensure the pages are in the TLB */ - "xorl %%eax, %%eax\n" - ".Lpopulate_tlb:\n\t" - "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" - "addl $4096, %%eax\n\t" - "cmpl %%eax, %[size]\n\t" - "jne .Lpopulate_tlb\n\t" - "xorl %%eax, %%eax\n\t" - "cpuid\n\t" - /* Now fill the cache */ - "xorl %%eax, %%eax\n" - ".Lfill_cache:\n" - "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" - "addl $64, %%eax\n\t" - "cmpl %%eax, %[size]\n\t" - "jne .Lfill_cache\n\t" - "lfence\n" - :: [flush_pages] "r" (vmx_l1d_flush_pages), - [size] "r" (size) - : "eax", "ebx", "ecx", "edx"); -} - -static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - if (is_guest_mode(vcpu) && - nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) - return; - - if (irr == -1 || tpr < irr) { - vmcs_write32(TPR_THRESHOLD, 0); - return; - } - - vmcs_write32(TPR_THRESHOLD, irr); -} - -static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) -{ - u32 sec_exec_control; - - if (!lapic_in_kernel(vcpu)) - return; - - if (!flexpriority_enabled && - !cpu_has_vmx_virtualize_x2apic_mode()) - return; - - /* Postpone execution until vmcs01 is the current VMCS. */ - if (is_guest_mode(vcpu)) { - to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; - return; - } - - sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); - sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); - - switch (kvm_get_apic_mode(vcpu)) { - case LAPIC_MODE_INVALID: - WARN_ONCE(true, "Invalid local APIC state"); - case LAPIC_MODE_DISABLED: - break; - case LAPIC_MODE_XAPIC: - if (flexpriority_enabled) { - sec_exec_control |= - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - vmx_flush_tlb(vcpu, true); - } - break; - case LAPIC_MODE_X2APIC: - if (cpu_has_vmx_virtualize_x2apic_mode()) - sec_exec_control |= - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; - break; - } - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); - - vmx_update_msr_bitmap(vcpu); -} - -static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) -{ - if (!is_guest_mode(vcpu)) { - vmcs_write64(APIC_ACCESS_ADDR, hpa); - vmx_flush_tlb(vcpu, true); - } -} - -static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) -{ - u16 status; - u8 old; - - if (max_isr == -1) - max_isr = 0; - - status = vmcs_read16(GUEST_INTR_STATUS); - old = status >> 8; - if (max_isr != old) { - status &= 0xff; - status |= max_isr << 8; - vmcs_write16(GUEST_INTR_STATUS, status); - } -} - -static void vmx_set_rvi(int vector) -{ - u16 status; - u8 old; - - if (vector == -1) - vector = 0; - - status = vmcs_read16(GUEST_INTR_STATUS); - old = (u8)status & 0xff; - if ((u8)vector != old) { - status &= ~0xff; - status |= (u8)vector; - vmcs_write16(GUEST_INTR_STATUS, status); - } -} - -static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) -{ - /* - * When running L2, updating RVI is only relevant when - * vmcs12 virtual-interrupt-delivery enabled. - * However, it can be enabled only when L1 also - * intercepts external-interrupts and in that case - * we should not update vmcs02 RVI but instead intercept - * interrupt. Therefore, do nothing when running L2. - */ - if (!is_guest_mode(vcpu)) - vmx_set_rvi(max_irr); -} - -static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int max_irr; - bool max_irr_updated; - - WARN_ON(!vcpu->arch.apicv_active); - if (pi_test_on(&vmx->pi_desc)) { - pi_clear_on(&vmx->pi_desc); - /* - * IOMMU can write to PIR.ON, so the barrier matters even on UP. - * But on x86 this is just a compiler barrier anyway. - */ - smp_mb__after_atomic(); - max_irr_updated = - kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); - - /* - * If we are running L2 and L1 has a new pending interrupt - * which can be injected, we should re-evaluate - * what should be done with this new L1 interrupt. - * If L1 intercepts external-interrupts, we should - * exit from L2 to L1. Otherwise, interrupt should be - * delivered directly to L2. - */ - if (is_guest_mode(vcpu) && max_irr_updated) { - if (nested_exit_on_intr(vcpu)) - kvm_vcpu_exiting_guest_mode(vcpu); - else - kvm_make_request(KVM_REQ_EVENT, vcpu); - } - } else { - max_irr = kvm_lapic_find_highest_irr(vcpu); - } - vmx_hwapic_irr_update(vcpu, max_irr); - return max_irr; -} - -static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) -{ - u8 rvi = vmx_get_rvi(); - u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); - - return ((rvi & 0xf0) > (vppr & 0xf0)); -} - -static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) -{ - if (!kvm_vcpu_apicv_active(vcpu)) - return; - - vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); - vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); - vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); - vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); -} - -static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - pi_clear_on(&vmx->pi_desc); - memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); -} - -static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) -{ - u32 exit_intr_info = 0; - u16 basic_exit_reason = (u16)vmx->exit_reason; - - if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY - || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI)) - return; - - if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) - exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - vmx->exit_intr_info = exit_intr_info; - - /* if exit due to PF check for async PF */ - if (is_page_fault(exit_intr_info)) - vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); - - /* Handle machine checks before interrupts are enabled */ - if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || - is_machine_check(exit_intr_info)) - kvm_machine_check(); - - /* We need to handle NMIs before interrupts are enabled */ - if (is_nmi(exit_intr_info)) { - kvm_before_interrupt(&vmx->vcpu); - asm("int $2"); - kvm_after_interrupt(&vmx->vcpu); - } -} - -static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) -{ - u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - - if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) - == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { - unsigned int vector; - unsigned long entry; - gate_desc *desc; - struct vcpu_vmx *vmx = to_vmx(vcpu); -#ifdef CONFIG_X86_64 - unsigned long tmp; -#endif - - vector = exit_intr_info & INTR_INFO_VECTOR_MASK; - desc = (gate_desc *)vmx->host_idt_base + vector; - entry = gate_offset(desc); - asm volatile( -#ifdef CONFIG_X86_64 - "mov %%" _ASM_SP ", %[sp]\n\t" - "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" - "push $%c[ss]\n\t" - "push %[sp]\n\t" -#endif - "pushf\n\t" - __ASM_SIZE(push) " $%c[cs]\n\t" - CALL_NOSPEC - : -#ifdef CONFIG_X86_64 - [sp]"=&r"(tmp), -#endif - ASM_CALL_CONSTRAINT - : - THUNK_TARGET(entry), - [ss]"i"(__KERNEL_DS), - [cs]"i"(__KERNEL_CS) - ); - } -} -STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); - -static bool vmx_has_emulated_msr(int index) -{ - switch (index) { - case MSR_IA32_SMBASE: - /* - * We cannot do SMM unless we can run the guest in big - * real mode. - */ - return enable_unrestricted_guest || emulate_invalid_guest_state; - case MSR_AMD64_VIRT_SPEC_CTRL: - /* This is AMD only. */ - return false; - default: - return true; - } -} - -static bool vmx_mpx_supported(void) -{ - return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) && - (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS); -} - -static bool vmx_xsaves_supported(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_XSAVES; -} - -static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) -{ - u32 exit_intr_info; - bool unblock_nmi; - u8 vector; - bool idtv_info_valid; - - idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; - - if (enable_vnmi) { - if (vmx->loaded_vmcs->nmi_known_unmasked) - return; - /* - * Can't use vmx->exit_intr_info since we're not sure what - * the exit reason is. - */ - exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; - vector = exit_intr_info & INTR_INFO_VECTOR_MASK; - /* - * SDM 3: 27.7.1.2 (September 2008) - * Re-set bit "block by NMI" before VM entry if vmexit caused by - * a guest IRET fault. - * SDM 3: 23.2.2 (September 2008) - * Bit 12 is undefined in any of the following cases: - * If the VM exit sets the valid bit in the IDT-vectoring - * information field. - * If the VM exit is due to a double fault. - */ - if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && - vector != DF_VECTOR && !idtv_info_valid) - vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, - GUEST_INTR_STATE_NMI); - else - vmx->loaded_vmcs->nmi_known_unmasked = - !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) - & GUEST_INTR_STATE_NMI); - } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) - vmx->loaded_vmcs->vnmi_blocked_time += - ktime_to_ns(ktime_sub(ktime_get(), - vmx->loaded_vmcs->entry_time)); -} - -static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, - u32 idt_vectoring_info, - int instr_len_field, - int error_code_field) -{ - u8 vector; - int type; - bool idtv_info_valid; - - idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; - - vcpu->arch.nmi_injected = false; - kvm_clear_exception_queue(vcpu); - kvm_clear_interrupt_queue(vcpu); - - if (!idtv_info_valid) - return; - - kvm_make_request(KVM_REQ_EVENT, vcpu); - - vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; - type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; - - switch (type) { - case INTR_TYPE_NMI_INTR: - vcpu->arch.nmi_injected = true; - /* - * SDM 3: 27.7.1.2 (September 2008) - * Clear bit "block by NMI" before VM entry if a NMI - * delivery faulted. - */ - vmx_set_nmi_mask(vcpu, false); - break; - case INTR_TYPE_SOFT_EXCEPTION: - vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); - /* fall through */ - case INTR_TYPE_HARD_EXCEPTION: - if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { - u32 err = vmcs_read32(error_code_field); - kvm_requeue_exception_e(vcpu, vector, err); - } else - kvm_requeue_exception(vcpu, vector); - break; - case INTR_TYPE_SOFT_INTR: - vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); - /* fall through */ - case INTR_TYPE_EXT_INTR: - kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); - break; - default: - break; - } -} - -static void vmx_complete_interrupts(struct vcpu_vmx *vmx) -{ - __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, - VM_EXIT_INSTRUCTION_LEN, - IDT_VECTORING_ERROR_CODE); -} - -static void vmx_cancel_injection(struct kvm_vcpu *vcpu) -{ - __vmx_complete_interrupts(vcpu, - vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), - VM_ENTRY_INSTRUCTION_LEN, - VM_ENTRY_EXCEPTION_ERROR_CODE); - - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); -} - -static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) -{ - int i, nr_msrs; - struct perf_guest_switch_msr *msrs; - - msrs = perf_guest_get_msrs(&nr_msrs); - - if (!msrs) - return; - - for (i = 0; i < nr_msrs; i++) - if (msrs[i].host == msrs[i].guest) - clear_atomic_switch_msr(vmx, msrs[i].msr); - else - add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, - msrs[i].host, false); -} - -static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val) -{ - vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val); - if (!vmx->loaded_vmcs->hv_timer_armed) - vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, - PIN_BASED_VMX_PREEMPTION_TIMER); - vmx->loaded_vmcs->hv_timer_armed = true; -} - -static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u64 tscl; - u32 delta_tsc; - - if (vmx->req_immediate_exit) { - vmx_arm_hv_timer(vmx, 0); - return; - } - - if (vmx->hv_deadline_tsc != -1) { - tscl = rdtsc(); - if (vmx->hv_deadline_tsc > tscl) - /* set_hv_timer ensures the delta fits in 32-bits */ - delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> - cpu_preemption_timer_multi); - else - delta_tsc = 0; - - vmx_arm_hv_timer(vmx, delta_tsc); - return; - } - - if (vmx->loaded_vmcs->hv_timer_armed) - vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, - PIN_BASED_VMX_PREEMPTION_TIMER); - vmx->loaded_vmcs->hv_timer_armed = false; -} - -static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long cr3, cr4, evmcs_rsp; - - /* Record the guest's net vcpu time for enforced NMI injections. */ - if (unlikely(!enable_vnmi && - vmx->loaded_vmcs->soft_vnmi_blocked)) - vmx->loaded_vmcs->entry_time = ktime_get(); - - /* Don't enter VMX if guest state is invalid, let the exit handler - start emulation until we arrive back to a valid state */ - if (vmx->emulation_required) - return; - - if (vmx->ple_window_dirty) { - vmx->ple_window_dirty = false; - vmcs_write32(PLE_WINDOW, vmx->ple_window); - } - - if (vmx->nested.need_vmcs12_sync) { - /* - * hv_evmcs may end up being not mapped after migration (when - * L2 was running), map it here to make sure vmcs12 changes are - * properly reflected. - */ - if (vmx->nested.enlightened_vmcs_enabled && - !vmx->nested.hv_evmcs) - nested_vmx_handle_enlightened_vmptrld(vcpu, false); - - if (vmx->nested.hv_evmcs) { - copy_vmcs12_to_enlightened(vmx); - /* All fields are clean */ - vmx->nested.hv_evmcs->hv_clean_fields |= - HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - } else { - copy_vmcs12_to_shadow(vmx); - } - vmx->nested.need_vmcs12_sync = false; - } - - if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) - vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); - if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) - vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); - - cr3 = __get_current_cr3_fast(); - if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { - vmcs_writel(HOST_CR3, cr3); - vmx->loaded_vmcs->host_state.cr3 = cr3; - } - - cr4 = cr4_read_shadow(); - if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { - vmcs_writel(HOST_CR4, cr4); - vmx->loaded_vmcs->host_state.cr4 = cr4; - } - - /* When single-stepping over STI and MOV SS, we must clear the - * corresponding interruptibility bits in the guest state. Otherwise - * vmentry fails as it then expects bit 14 (BS) in pending debug - * exceptions being set, but that's not correct for the guest debugging - * case. */ - if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) - vmx_set_interrupt_shadow(vcpu, 0); - - if (static_cpu_has(X86_FEATURE_PKU) && - kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && - vcpu->arch.pkru != vmx->host_pkru) - __write_pkru(vcpu->arch.pkru); - - atomic_switch_perf_msrs(vmx); - - vmx_update_hv_timer(vcpu); - - /* - * If this vCPU has touched SPEC_CTRL, restore the guest's value if - * it's non-zero. Since vmentry is serialising on affected CPUs, there - * is no need to worry about the conditional branch over the wrmsr - * being speculatively taken. - */ - x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); - - vmx->__launched = vmx->loaded_vmcs->launched; - - evmcs_rsp = static_branch_unlikely(&enable_evmcs) ? - (unsigned long)¤t_evmcs->host_rsp : 0; - - if (static_branch_unlikely(&vmx_l1d_should_flush)) - vmx_l1d_flush(vcpu); - - asm( - /* Store host registers */ - "push %%" _ASM_DX "; push %%" _ASM_BP ";" - "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ - "push %%" _ASM_CX " \n\t" - "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t" - "je 1f \n\t" - "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t" - /* Avoid VMWRITE when Enlightened VMCS is in use */ - "test %%" _ASM_SI ", %%" _ASM_SI " \n\t" - "jz 2f \n\t" - "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t" - "jmp 1f \n\t" - "2: \n\t" - __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" - "1: \n\t" - /* Reload cr2 if changed */ - "mov %c[cr2](%0), %%" _ASM_AX " \n\t" - "mov %%cr2, %%" _ASM_DX " \n\t" - "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" - "je 3f \n\t" - "mov %%" _ASM_AX", %%cr2 \n\t" - "3: \n\t" - /* Check if vmlaunch of vmresume is needed */ - "cmpl $0, %c[launched](%0) \n\t" - /* Load guest registers. Don't clobber flags. */ - "mov %c[rax](%0), %%" _ASM_AX " \n\t" - "mov %c[rbx](%0), %%" _ASM_BX " \n\t" - "mov %c[rdx](%0), %%" _ASM_DX " \n\t" - "mov %c[rsi](%0), %%" _ASM_SI " \n\t" - "mov %c[rdi](%0), %%" _ASM_DI " \n\t" - "mov %c[rbp](%0), %%" _ASM_BP " \n\t" -#ifdef CONFIG_X86_64 - "mov %c[r8](%0), %%r8 \n\t" - "mov %c[r9](%0), %%r9 \n\t" - "mov %c[r10](%0), %%r10 \n\t" - "mov %c[r11](%0), %%r11 \n\t" - "mov %c[r12](%0), %%r12 \n\t" - "mov %c[r13](%0), %%r13 \n\t" - "mov %c[r14](%0), %%r14 \n\t" - "mov %c[r15](%0), %%r15 \n\t" -#endif - "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */ - - /* Enter guest mode */ - "jne 1f \n\t" - __ex("vmlaunch") "\n\t" - "jmp 2f \n\t" - "1: " __ex("vmresume") "\n\t" - "2: " - /* Save guest registers, load host registers, keep flags */ - "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t" - "pop %0 \n\t" - "setbe %c[fail](%0)\n\t" - "mov %%" _ASM_AX ", %c[rax](%0) \n\t" - "mov %%" _ASM_BX ", %c[rbx](%0) \n\t" - __ASM_SIZE(pop) " %c[rcx](%0) \n\t" - "mov %%" _ASM_DX ", %c[rdx](%0) \n\t" - "mov %%" _ASM_SI ", %c[rsi](%0) \n\t" - "mov %%" _ASM_DI ", %c[rdi](%0) \n\t" - "mov %%" _ASM_BP ", %c[rbp](%0) \n\t" -#ifdef CONFIG_X86_64 - "mov %%r8, %c[r8](%0) \n\t" - "mov %%r9, %c[r9](%0) \n\t" - "mov %%r10, %c[r10](%0) \n\t" - "mov %%r11, %c[r11](%0) \n\t" - "mov %%r12, %c[r12](%0) \n\t" - "mov %%r13, %c[r13](%0) \n\t" - "mov %%r14, %c[r14](%0) \n\t" - "mov %%r15, %c[r15](%0) \n\t" - /* - * Clear host registers marked as clobbered to prevent - * speculative use. - */ - "xor %%r8d, %%r8d \n\t" - "xor %%r9d, %%r9d \n\t" - "xor %%r10d, %%r10d \n\t" - "xor %%r11d, %%r11d \n\t" - "xor %%r12d, %%r12d \n\t" - "xor %%r13d, %%r13d \n\t" - "xor %%r14d, %%r14d \n\t" - "xor %%r15d, %%r15d \n\t" -#endif - "mov %%cr2, %%" _ASM_AX " \n\t" - "mov %%" _ASM_AX ", %c[cr2](%0) \n\t" - - "xor %%eax, %%eax \n\t" - "xor %%ebx, %%ebx \n\t" - "xor %%esi, %%esi \n\t" - "xor %%edi, %%edi \n\t" - "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" - ".pushsection .rodata \n\t" - ".global vmx_return \n\t" - "vmx_return: " _ASM_PTR " 2b \n\t" - ".popsection" - : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp), - [launched]"i"(offsetof(struct vcpu_vmx, __launched)), - [fail]"i"(offsetof(struct vcpu_vmx, fail)), - [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), - [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), - [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), - [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), - [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), - [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), - [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), - [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), -#ifdef CONFIG_X86_64 - [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), - [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), - [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), - [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), - [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), - [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), - [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), - [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), -#endif - [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), - [wordsize]"i"(sizeof(ulong)) - : "cc", "memory" -#ifdef CONFIG_X86_64 - , "rax", "rbx", "rdi" - , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" -#else - , "eax", "ebx", "edi" -#endif - ); - - /* - * We do not use IBRS in the kernel. If this vCPU has used the - * SPEC_CTRL MSR it may have left it on; save the value and - * turn it off. This is much more efficient than blindly adding - * it to the atomic save/restore list. Especially as the former - * (Saving guest MSRs on vmexit) doesn't even exist in KVM. - * - * For non-nested case: - * If the L01 MSR bitmap does not intercept the MSR, then we need to - * save it. - * - * For nested case: - * If the L02 MSR bitmap does not intercept the MSR, then we need to - * save it. - */ - if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) - vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); - - x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); - - /* Eliminate branch target predictions from guest mode */ - vmexit_fill_RSB(); - - /* All fields are clean at this point */ - if (static_branch_unlikely(&enable_evmcs)) - current_evmcs->hv_clean_fields |= - HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - - /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ - if (vmx->host_debugctlmsr) - update_debugctlmsr(vmx->host_debugctlmsr); - -#ifndef CONFIG_X86_64 - /* - * The sysexit path does not restore ds/es, so we must set them to - * a reasonable value ourselves. - * - * We can't defer this to vmx_prepare_switch_to_host() since that - * function may be executed in interrupt context, which saves and - * restore segments around it, nullifying its effect. - */ - loadsegment(ds, __USER_DS); - loadsegment(es, __USER_DS); -#endif - - vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) - | (1 << VCPU_EXREG_RFLAGS) - | (1 << VCPU_EXREG_PDPTR) - | (1 << VCPU_EXREG_SEGMENTS) - | (1 << VCPU_EXREG_CR3)); - vcpu->arch.regs_dirty = 0; - - /* - * eager fpu is enabled if PKEY is supported and CR4 is switched - * back on host, so it is safe to read guest PKRU from current - * XSAVE. - */ - if (static_cpu_has(X86_FEATURE_PKU) && - kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { - vcpu->arch.pkru = __read_pkru(); - if (vcpu->arch.pkru != vmx->host_pkru) - __write_pkru(vmx->host_pkru); - } - - vmx->nested.nested_run_pending = 0; - vmx->idt_vectoring_info = 0; - - vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); - if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) - return; - - vmx->loaded_vmcs->launched = 1; - vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); - - vmx_complete_atomic_exit(vmx); - vmx_recover_nmi_blocking(vmx); - vmx_complete_interrupts(vmx); -} -STACK_FRAME_NON_STANDARD(vmx_vcpu_run); - -static struct kvm *vmx_vm_alloc(void) -{ - struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx)); - return &kvm_vmx->kvm; -} - -static void vmx_vm_free(struct kvm *kvm) -{ - vfree(to_kvm_vmx(kvm)); -} - -static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int cpu; - - if (vmx->loaded_vmcs == vmcs) - return; - - cpu = get_cpu(); - vmx_vcpu_put(vcpu); - vmx->loaded_vmcs = vmcs; - vmx_vcpu_load(vcpu, cpu); - put_cpu(); - - vm_entry_controls_reset_shadow(vmx); - vm_exit_controls_reset_shadow(vmx); - vmx_segment_cache_clear(vmx); -} - -/* - * Ensure that the current vmcs of the logical processor is the - * vmcs01 of the vcpu before calling free_nested(). - */ -static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu) -{ - vcpu_load(vcpu); - vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01); - free_nested(vcpu); - vcpu_put(vcpu); -} - -static void vmx_free_vcpu(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (enable_pml) - vmx_destroy_pml_buffer(vmx); - free_vpid(vmx->vpid); - leave_guest_mode(vcpu); - vmx_free_vcpu_nested(vcpu); - free_loaded_vmcs(vmx->loaded_vmcs); - kfree(vmx->guest_msrs); - kvm_vcpu_uninit(vcpu); - kmem_cache_free(kvm_vcpu_cache, vmx); -} - -static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) -{ - int err; - struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); - unsigned long *msr_bitmap; - int cpu; - - if (!vmx) - return ERR_PTR(-ENOMEM); - - vmx->vpid = allocate_vpid(); - - err = kvm_vcpu_init(&vmx->vcpu, kvm, id); - if (err) - goto free_vcpu; - - err = -ENOMEM; - - /* - * If PML is turned on, failure on enabling PML just results in failure - * of creating the vcpu, therefore we can simplify PML logic (by - * avoiding dealing with cases, such as enabling PML partially on vcpus - * for the guest, etc. - */ - if (enable_pml) { - vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); - if (!vmx->pml_pg) - goto uninit_vcpu; - } - - vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); - BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) - > PAGE_SIZE); - - if (!vmx->guest_msrs) - goto free_pml; - - err = alloc_loaded_vmcs(&vmx->vmcs01); - if (err < 0) - goto free_msrs; - - msr_bitmap = vmx->vmcs01.msr_bitmap; - vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); - vmx->msr_bitmap_mode = 0; - - vmx->loaded_vmcs = &vmx->vmcs01; - cpu = get_cpu(); - vmx_vcpu_load(&vmx->vcpu, cpu); - vmx->vcpu.cpu = cpu; - vmx_vcpu_setup(vmx); - vmx_vcpu_put(&vmx->vcpu); - put_cpu(); - if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { - err = alloc_apic_access_page(kvm); - if (err) - goto free_vmcs; - } - - if (enable_ept && !enable_unrestricted_guest) { - err = init_rmode_identity_map(kvm); - if (err) - goto free_vmcs; - } - - if (nested) - nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, - kvm_vcpu_apicv_active(&vmx->vcpu)); - - vmx->nested.posted_intr_nv = -1; - vmx->nested.current_vmptr = -1ull; - - vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; - - /* - * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR - * or POSTED_INTR_WAKEUP_VECTOR. - */ - vmx->pi_desc.nv = POSTED_INTR_VECTOR; - vmx->pi_desc.sn = 1; - - return &vmx->vcpu; - -free_vmcs: - free_loaded_vmcs(vmx->loaded_vmcs); -free_msrs: - kfree(vmx->guest_msrs); -free_pml: - vmx_destroy_pml_buffer(vmx); -uninit_vcpu: - kvm_vcpu_uninit(&vmx->vcpu); -free_vcpu: - free_vpid(vmx->vpid); - kmem_cache_free(kvm_vcpu_cache, vmx); - return ERR_PTR(err); -} - -#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" -#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" - -static int vmx_vm_init(struct kvm *kvm) -{ - spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); - - if (!ple_gap) - kvm->arch.pause_in_guest = true; - - if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { - switch (l1tf_mitigation) { - case L1TF_MITIGATION_OFF: - case L1TF_MITIGATION_FLUSH_NOWARN: - /* 'I explicitly don't care' is set */ - break; - case L1TF_MITIGATION_FLUSH: - case L1TF_MITIGATION_FLUSH_NOSMT: - case L1TF_MITIGATION_FULL: - /* - * Warn upon starting the first VM in a potentially - * insecure environment. - */ - if (cpu_smt_control == CPU_SMT_ENABLED) - pr_warn_once(L1TF_MSG_SMT); - if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) - pr_warn_once(L1TF_MSG_L1D); - break; - case L1TF_MITIGATION_FULL_FORCE: - /* Flush is enforced */ - break; - } - } - return 0; -} - -static void __init vmx_check_processor_compat(void *rtn) -{ - struct vmcs_config vmcs_conf; - - *(int *)rtn = 0; - if (setup_vmcs_config(&vmcs_conf) < 0) - *(int *)rtn = -EIO; - nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv); - if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { - printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", - smp_processor_id()); - *(int *)rtn = -EIO; - } -} - -static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) -{ - u8 cache; - u64 ipat = 0; - - /* For VT-d and EPT combination - * 1. MMIO: always map as UC - * 2. EPT with VT-d: - * a. VT-d without snooping control feature: can't guarantee the - * result, try to trust guest. - * b. VT-d with snooping control feature: snooping control feature of - * VT-d engine can guarantee the cache correctness. Just set it - * to WB to keep consistent with host. So the same as item 3. - * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep - * consistent with host MTRR - */ - if (is_mmio) { - cache = MTRR_TYPE_UNCACHABLE; - goto exit; - } - - if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { - ipat = VMX_EPT_IPAT_BIT; - cache = MTRR_TYPE_WRBACK; - goto exit; - } - - if (kvm_read_cr0(vcpu) & X86_CR0_CD) { - ipat = VMX_EPT_IPAT_BIT; - if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) - cache = MTRR_TYPE_WRBACK; - else - cache = MTRR_TYPE_UNCACHABLE; - goto exit; - } - - cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); - -exit: - return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; -} - -static int vmx_get_lpage_level(void) -{ - if (enable_ept && !cpu_has_vmx_ept_1g_page()) - return PT_DIRECTORY_LEVEL; - else - /* For shadow and EPT supported 1GB page */ - return PT_PDPE_LEVEL; -} - -static void vmcs_set_secondary_exec_control(u32 new_ctl) -{ - /* - * These bits in the secondary execution controls field - * are dynamic, the others are mostly based on the hypervisor - * architecture and the guest's CPUID. Do not touch the - * dynamic bits. - */ - u32 mask = - SECONDARY_EXEC_SHADOW_VMCS | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | - SECONDARY_EXEC_DESC; - - u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); - - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, - (new_ctl & ~mask) | (cur_ctl & mask)); -} - -/* - * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits - * (indicating "allowed-1") if they are supported in the guest's CPUID. - */ -static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct kvm_cpuid_entry2 *entry; - - vmx->nested.msrs.cr0_fixed1 = 0xffffffff; - vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; - -#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ - if (entry && (entry->_reg & (_cpuid_mask))) \ - vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ -} while (0) - - entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); - cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); - cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); - cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); - cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); - cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); - cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); - cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); - cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); - cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); - cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); - cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); - cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); - cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); - cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); - - entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); - cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); - cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); - cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); - cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); - cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); - -#undef cr4_fixed1_update -} - -static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (kvm_mpx_supported()) { - bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); - - if (mpx_enabled) { - vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; - vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; - } else { - vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; - vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; - } - } -} - -static void vmx_cpuid_update(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (cpu_has_secondary_exec_ctrls()) { - vmx_compute_secondary_exec_control(vmx); - vmcs_set_secondary_exec_control(vmx->secondary_exec_control); - } - - if (nested_vmx_allowed(vcpu)) - to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= - FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; - else - to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= - ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; - - if (nested_vmx_allowed(vcpu)) { - nested_vmx_cr_fixed1_bits_update(vcpu); - nested_vmx_entry_exit_ctls_update(vcpu); - } -} - -static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) -{ - if (func == 1 && nested) - entry->ecx |= bit(X86_FEATURE_VMX); -} - -static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, - struct x86_exception *fault) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 exit_reason; - unsigned long exit_qualification = vcpu->arch.exit_qualification; - - if (vmx->nested.pml_full) { - exit_reason = EXIT_REASON_PML_FULL; - vmx->nested.pml_full = false; - exit_qualification &= INTR_INFO_UNBLOCK_NMI; - } else if (fault->error_code & PFERR_RSVD_MASK) - exit_reason = EXIT_REASON_EPT_MISCONFIG; - else - exit_reason = EXIT_REASON_EPT_VIOLATION; - - nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); - vmcs12->guest_physical_address = fault->address; -} - -static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu) -{ - return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT; -} - -/* Callbacks for nested_ept_init_mmu_context: */ - -static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu) -{ - /* return the page table to be shadowed - in our case, EPT12 */ - return get_vmcs12(vcpu)->ept_pointer; -} - -static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) -{ - WARN_ON(mmu_is_nested(vcpu)); - - vcpu->arch.mmu = &vcpu->arch.guest_mmu; - kvm_init_shadow_ept_mmu(vcpu, - to_vmx(vcpu)->nested.msrs.ept_caps & - VMX_EPT_EXECUTE_ONLY_BIT, - nested_ept_ad_enabled(vcpu), - nested_ept_get_cr3(vcpu)); - vcpu->arch.mmu->set_cr3 = vmx_set_cr3; - vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3; - vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; - vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; - - vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; -} - -static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) -{ - vcpu->arch.mmu = &vcpu->arch.root_mmu; - vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; -} - -static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, - u16 error_code) -{ - bool inequality, bit; - - bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; - inequality = - (error_code & vmcs12->page_fault_error_code_mask) != - vmcs12->page_fault_error_code_match; - return inequality ^ bit; -} - -static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, - struct x86_exception *fault) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - WARN_ON(!is_guest_mode(vcpu)); - - if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && - !to_vmx(vcpu)->nested.nested_run_pending) { - vmcs12->vm_exit_intr_error_code = fault->error_code; - nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, - PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | - INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, - fault->address); - } else { - kvm_inject_page_fault(vcpu, fault); - } -} - -static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12); - -static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct page *page; - u64 hpa; - - if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { - /* - * Translate L1 physical address to host physical - * address for vmcs02. Keep the page pinned, so this - * physical address remains valid. We keep a reference - * to it so we can release it later. - */ - if (vmx->nested.apic_access_page) { /* shouldn't happen */ - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; - } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); - /* - * If translation failed, no matter: This feature asks - * to exit when accessing the given address, and if it - * can never be accessed, this feature won't do - * anything anyway. - */ - if (!is_error_page(page)) { - vmx->nested.apic_access_page = page; - hpa = page_to_phys(vmx->nested.apic_access_page); - vmcs_write64(APIC_ACCESS_ADDR, hpa); - } else { - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); - } - } - - if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { - if (vmx->nested.virtual_apic_page) { /* shouldn't happen */ - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; - } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr); - - /* - * If translation failed, VM entry will fail because - * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. - * Failing the vm entry is _not_ what the processor - * does but it's basically the only possibility we - * have. We could still enter the guest if CR8 load - * exits are enabled, CR8 store exits are enabled, and - * virtualize APIC access is disabled; in this case - * the processor would never use the TPR shadow and we - * could simply clear the bit from the execution - * control. But such a configuration is useless, so - * let's keep the code simple. - */ - if (!is_error_page(page)) { - vmx->nested.virtual_apic_page = page; - hpa = page_to_phys(vmx->nested.virtual_apic_page); - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); - } - } - - if (nested_cpu_has_posted_intr(vmcs12)) { - if (vmx->nested.pi_desc_page) { /* shouldn't happen */ - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; - } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr); - if (is_error_page(page)) - return; - vmx->nested.pi_desc_page = page; - vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page); - vmx->nested.pi_desc = - (struct pi_desc *)((void *)vmx->nested.pi_desc + - (unsigned long)(vmcs12->posted_intr_desc_addr & - (PAGE_SIZE - 1))); - vmcs_write64(POSTED_INTR_DESC_ADDR, - page_to_phys(vmx->nested.pi_desc_page) + - (unsigned long)(vmcs12->posted_intr_desc_addr & - (PAGE_SIZE - 1))); - } - if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_USE_MSR_BITMAPS); - else - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_USE_MSR_BITMAPS); -} - -static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) -{ - u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * A timer value of zero is architecturally guaranteed to cause - * a VMExit prior to executing any instructions in the guest. - */ - if (preemption_timeout == 0) { - vmx_preemption_timer_fn(&vmx->nested.preemption_timer); - return; - } - - if (vcpu->arch.virtual_tsc_khz == 0) - return; - - preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; - preemption_timeout *= 1000000; - do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); - hrtimer_start(&vmx->nested.preemption_timer, - ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); -} - -static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) - return 0; - - if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) || - !page_address_valid(vcpu, vmcs12->io_bitmap_b)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) - return 0; - - if (!page_address_valid(vcpu, vmcs12->msr_bitmap)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) - return 0; - - if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)) - return -EINVAL; - - return 0; -} - -/* - * Merge L0's and L1's MSR bitmap, return false to indicate that - * we do not use the hardware. - */ -static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - int msr; - struct page *page; - unsigned long *msr_bitmap_l1; - unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; - /* - * pred_cmd & spec_ctrl are trying to verify two things: - * - * 1. L0 gave a permission to L1 to actually passthrough the MSR. This - * ensures that we do not accidentally generate an L02 MSR bitmap - * from the L12 MSR bitmap that is too permissive. - * 2. That L1 or L2s have actually used the MSR. This avoids - * unnecessarily merging of the bitmap if the MSR is unused. This - * works properly because we only update the L01 MSR bitmap lazily. - * So even if L0 should pass L1 these MSRs, the L01 bitmap is only - * updated to reflect this when L1 (or its L2s) actually write to - * the MSR. - */ - bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD); - bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL); - - /* Nothing to do if the MSR bitmap is not in use. */ - if (!cpu_has_vmx_msr_bitmap() || - !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) - return false; - - if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && - !pred_cmd && !spec_ctrl) - return false; - - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap); - if (is_error_page(page)) - return false; - - msr_bitmap_l1 = (unsigned long *)kmap(page); - if (nested_cpu_has_apic_reg_virt(vmcs12)) { - /* - * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it - * just lets the processor take the value from the virtual-APIC page; - * take those 256 bits directly from the L1 bitmap. - */ - for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { - unsigned word = msr / BITS_PER_LONG; - msr_bitmap_l0[word] = msr_bitmap_l1[word]; - msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; - } - } else { - for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { - unsigned word = msr / BITS_PER_LONG; - msr_bitmap_l0[word] = ~0; - msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; - } - } - - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_TASKPRI), - MSR_TYPE_W); - - if (nested_cpu_has_vid(vmcs12)) { - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_EOI), - MSR_TYPE_W); - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_SELF_IPI), - MSR_TYPE_W); - } - - if (spec_ctrl) - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - MSR_IA32_SPEC_CTRL, - MSR_TYPE_R | MSR_TYPE_W); - - if (pred_cmd) - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - MSR_IA32_PRED_CMD, - MSR_TYPE_W); - - kunmap(page); - kvm_release_page_clean(page); - - return true; -} - -static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - struct vmcs12 *shadow; - struct page *page; - - if (!nested_cpu_has_shadow_vmcs(vmcs12) || - vmcs12->vmcs_link_pointer == -1ull) - return; - - shadow = get_shadow_vmcs12(vcpu); - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); - - memcpy(shadow, kmap(page), VMCS12_SIZE); - - kunmap(page); - kvm_release_page_clean(page); -} - -static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!nested_cpu_has_shadow_vmcs(vmcs12) || - vmcs12->vmcs_link_pointer == -1ull) - return; - - kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer, - get_shadow_vmcs12(vcpu), VMCS12_SIZE); -} - -static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && - !page_address_valid(vcpu, vmcs12->apic_access_addr)) - return -EINVAL; - else - return 0; -} - -static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && - !nested_cpu_has_apic_reg_virt(vmcs12) && - !nested_cpu_has_vid(vmcs12) && - !nested_cpu_has_posted_intr(vmcs12)) - return 0; - - /* - * If virtualize x2apic mode is enabled, - * virtualize apic access must be disabled. - */ - if (nested_cpu_has_virt_x2apic_mode(vmcs12) && - nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) - return -EINVAL; - - /* - * If virtual interrupt delivery is enabled, - * we must exit on external interrupts. - */ - if (nested_cpu_has_vid(vmcs12) && - !nested_exit_on_intr(vcpu)) - return -EINVAL; - - /* - * bits 15:8 should be zero in posted_intr_nv, - * the descriptor address has been already checked - * in nested_get_vmcs12_pages. - * - * bits 5:0 of posted_intr_desc_addr should be zero. - */ - if (nested_cpu_has_posted_intr(vmcs12) && - (!nested_cpu_has_vid(vmcs12) || - !nested_exit_intr_ack_set(vcpu) || - (vmcs12->posted_intr_nv & 0xff00) || - (vmcs12->posted_intr_desc_addr & 0x3f) || - (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))) - return -EINVAL; - - /* tpr shadow is needed by all apicv features. */ - if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, - unsigned long count_field, - unsigned long addr_field) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - int maxphyaddr; - u64 count, addr; - - if (vmcs12_read_any(vmcs12, count_field, &count) || - vmcs12_read_any(vmcs12, addr_field, &addr)) { - WARN_ON(1); - return -EINVAL; - } - if (count == 0) - return 0; - maxphyaddr = cpuid_maxphyaddr(vcpu); - if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || - (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) { - pr_debug_ratelimited( - "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)", - addr_field, maxphyaddr, count, addr); - return -EINVAL; - } - return 0; -} - -static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (vmcs12->vm_exit_msr_load_count == 0 && - vmcs12->vm_exit_msr_store_count == 0 && - vmcs12->vm_entry_msr_load_count == 0) - return 0; /* Fast path */ - if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT, - VM_EXIT_MSR_LOAD_ADDR) || - nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT, - VM_EXIT_MSR_STORE_ADDR) || - nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT, - VM_ENTRY_MSR_LOAD_ADDR)) - return -EINVAL; - return 0; -} - -static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has_pml(vmcs12)) - return 0; - - if (!nested_cpu_has_ept(vmcs12) || - !page_address_valid(vcpu, vmcs12->pml_address)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has_shadow_vmcs(vmcs12)) - return 0; - - if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) || - !page_address_valid(vcpu, vmcs12->vmwrite_bitmap)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, - struct vmx_msr_entry *e) -{ - /* x2APIC MSR accesses are not allowed */ - if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) - return -EINVAL; - if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ - e->index == MSR_IA32_UCODE_REV) - return -EINVAL; - if (e->reserved != 0) - return -EINVAL; - return 0; -} - -static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, - struct vmx_msr_entry *e) -{ - if (e->index == MSR_FS_BASE || - e->index == MSR_GS_BASE || - e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ - nested_vmx_msr_check_common(vcpu, e)) - return -EINVAL; - return 0; -} - -static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, - struct vmx_msr_entry *e) -{ - if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ - nested_vmx_msr_check_common(vcpu, e)) - return -EINVAL; - return 0; -} - -/* - * Load guest's/host's msr at nested entry/exit. - * return 0 for success, entry index for failure. - */ -static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) -{ - u32 i; - struct vmx_msr_entry e; - struct msr_data msr; - - msr.host_initiated = false; - for (i = 0; i < count; i++) { - if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), - &e, sizeof(e))) { - pr_debug_ratelimited( - "%s cannot read MSR entry (%u, 0x%08llx)\n", - __func__, i, gpa + i * sizeof(e)); - goto fail; - } - if (nested_vmx_load_msr_check(vcpu, &e)) { - pr_debug_ratelimited( - "%s check failed (%u, 0x%x, 0x%x)\n", - __func__, i, e.index, e.reserved); - goto fail; - } - msr.index = e.index; - msr.data = e.value; - if (kvm_set_msr(vcpu, &msr)) { - pr_debug_ratelimited( - "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", - __func__, i, e.index, e.value); - goto fail; - } - } - return 0; -fail: - return i + 1; -} - -static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) -{ - u32 i; - struct vmx_msr_entry e; - - for (i = 0; i < count; i++) { - struct msr_data msr_info; - if (kvm_vcpu_read_guest(vcpu, - gpa + i * sizeof(e), - &e, 2 * sizeof(u32))) { - pr_debug_ratelimited( - "%s cannot read MSR entry (%u, 0x%08llx)\n", - __func__, i, gpa + i * sizeof(e)); - return -EINVAL; - } - if (nested_vmx_store_msr_check(vcpu, &e)) { - pr_debug_ratelimited( - "%s check failed (%u, 0x%x, 0x%x)\n", - __func__, i, e.index, e.reserved); - return -EINVAL; - } - msr_info.host_initiated = false; - msr_info.index = e.index; - if (kvm_get_msr(vcpu, &msr_info)) { - pr_debug_ratelimited( - "%s cannot read MSR (%u, 0x%x)\n", - __func__, i, e.index); - return -EINVAL; - } - if (kvm_vcpu_write_guest(vcpu, - gpa + i * sizeof(e) + - offsetof(struct vmx_msr_entry, value), - &msr_info.data, sizeof(msr_info.data))) { - pr_debug_ratelimited( - "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", - __func__, i, e.index, msr_info.data); - return -EINVAL; - } - } - return 0; -} - -static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) -{ - unsigned long invalid_mask; - - invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); - return (val & invalid_mask) == 0; -} - -/* - * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are - * emulating VM entry into a guest with EPT enabled. - * Returns 0 on success, 1 on failure. Invalid state exit qualification code - * is assigned to entry_failure_code on failure. - */ -static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, - u32 *entry_failure_code) -{ - if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { - if (!nested_cr3_valid(vcpu, cr3)) { - *entry_failure_code = ENTRY_FAIL_DEFAULT; - return 1; - } - - /* - * If PAE paging and EPT are both on, CR3 is not used by the CPU and - * must not be dereferenced. - */ - if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) && - !nested_ept) { - if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) { - *entry_failure_code = ENTRY_FAIL_PDPTE; - return 1; - } - } - } - - if (!nested_ept) - kvm_mmu_new_cr3(vcpu, cr3, false); - - vcpu->arch.cr3 = cr3; - __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); - - kvm_init_mmu(vcpu, false); - - return 0; -} - -/* - * Returns if KVM is able to config CPU to tag TLB entries - * populated by L2 differently than TLB entries populated - * by L1. - * - * If L1 uses EPT, then TLB entries are tagged with different EPTP. - * - * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged - * with different VPID (L1 entries are tagged with vmx->vpid - * while L2 entries are tagged with vmx->nested.vpid02). - */ -static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - return nested_cpu_has_ept(vmcs12) || - (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); -} - -static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) -{ - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) - return vmcs12->guest_ia32_efer; - else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) - return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME); - else - return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME); -} - -static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) -{ - /* - * If vmcs02 hasn't been initialized, set the constant vmcs02 state - * according to L0's settings (vmcs12 is irrelevant here). Host - * fields that come from L0 and are not constant, e.g. HOST_CR3, - * will be set as needed prior to VMLAUNCH/VMRESUME. - */ - if (vmx->nested.vmcs02_initialized) - return; - vmx->nested.vmcs02_initialized = true; - - /* - * We don't care what the EPTP value is we just need to guarantee - * it's valid so we don't get a false positive when doing early - * consistency checks. - */ - if (enable_ept && nested_early_check) - vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0)); - - /* All VMFUNCs are currently emulated through L0 vmexits. */ - if (cpu_has_vmx_vmfunc()) - vmcs_write64(VM_FUNCTION_CONTROL, 0); - - if (cpu_has_vmx_posted_intr()) - vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); - - if (cpu_has_vmx_msr_bitmap()) - vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); - - if (enable_pml) - vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); - - /* - * Set the MSR load/store lists to match L0's settings. Only the - * addresses are constant (for vmcs02), the counts can change based - * on L2's behavior, e.g. switching to/from long mode. - */ - vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); - vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); - vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); - - vmx_set_constant_host_state(vmx); -} - -static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx, - struct vmcs12 *vmcs12) -{ - prepare_vmcs02_constant_state(vmx); - - vmcs_write64(VMCS_LINK_POINTER, -1ull); - - if (enable_vpid) { - if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) - vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); - else - vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); - } -} - -static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) -{ - u32 exec_control, vmcs12_exec_ctrl; - u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); - - if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) - prepare_vmcs02_early_full(vmx, vmcs12); - - /* - * HOST_RSP is normally set correctly in vmx_vcpu_run() just before - * entry, but only if the current (host) sp changed from the value - * we wrote last (vmx->host_rsp). This cache is no longer relevant - * if we switch vmcs, and rather than hold a separate cache per vmcs, - * here we just force the write to happen on entry. host_rsp will - * also be written unconditionally by nested_vmx_check_vmentry_hw() - * if we are doing early consistency checks via hardware. - */ - vmx->host_rsp = 0; - - /* - * PIN CONTROLS - */ - exec_control = vmcs12->pin_based_vm_exec_control; - - /* Preemption timer setting is computed directly in vmx_vcpu_run. */ - exec_control |= vmcs_config.pin_based_exec_ctrl; - exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; - vmx->loaded_vmcs->hv_timer_armed = false; - - /* Posted interrupts setting is only taken from vmcs12. */ - if (nested_cpu_has_posted_intr(vmcs12)) { - vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; - vmx->nested.pi_pending = false; - } else { - exec_control &= ~PIN_BASED_POSTED_INTR; - } - vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); - - /* - * EXEC CONTROLS - */ - exec_control = vmx_exec_control(vmx); /* L0's desires */ - exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; - exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; - exec_control &= ~CPU_BASED_TPR_SHADOW; - exec_control |= vmcs12->cpu_based_vm_exec_control; - - /* - * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if - * nested_get_vmcs12_pages can't fix it up, the illegal value - * will result in a VM entry failure. - */ - if (exec_control & CPU_BASED_TPR_SHADOW) { - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); - vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); - } else { -#ifdef CONFIG_X86_64 - exec_control |= CPU_BASED_CR8_LOAD_EXITING | - CPU_BASED_CR8_STORE_EXITING; -#endif - } - - /* - * A vmexit (to either L1 hypervisor or L0 userspace) is always needed - * for I/O port accesses. - */ - exec_control &= ~CPU_BASED_USE_IO_BITMAPS; - exec_control |= CPU_BASED_UNCOND_IO_EXITING; - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); - - /* - * SECONDARY EXEC CONTROLS - */ - if (cpu_has_secondary_exec_ctrls()) { - exec_control = vmx->secondary_exec_control; - - /* Take the following fields only from vmcs12 */ - exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | - SECONDARY_EXEC_ENABLE_INVPCID | - SECONDARY_EXEC_RDTSCP | - SECONDARY_EXEC_XSAVES | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_ENABLE_VMFUNC); - if (nested_cpu_has(vmcs12, - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { - vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & - ~SECONDARY_EXEC_ENABLE_PML; - exec_control |= vmcs12_exec_ctrl; - } - - /* VMCS shadowing for L2 is emulated for now */ - exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; - - if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) - vmcs_write16(GUEST_INTR_STATUS, - vmcs12->guest_intr_status); - - /* - * Write an illegal value to APIC_ACCESS_ADDR. Later, - * nested_get_vmcs12_pages will either fix it up or - * remove the VM execution control. - */ - if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) - vmcs_write64(APIC_ACCESS_ADDR, -1ull); - - if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) - vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); - - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); - } - - /* - * ENTRY CONTROLS - * - * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE - * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate - * on the related bits (if supported by the CPU) in the hope that - * we can avoid VMWrites during vmx_set_efer(). - */ - exec_control = (vmcs12->vm_entry_controls | vmcs_config.vmentry_ctrl) & - ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER; - if (cpu_has_load_ia32_efer) { - if (guest_efer & EFER_LMA) - exec_control |= VM_ENTRY_IA32E_MODE; - if (guest_efer != host_efer) - exec_control |= VM_ENTRY_LOAD_IA32_EFER; - } - vm_entry_controls_init(vmx, exec_control); - - /* - * EXIT CONTROLS - * - * L2->L1 exit controls are emulated - the hardware exit is to L0 so - * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER - * bits may be modified by vmx_set_efer() in prepare_vmcs02(). - */ - exec_control = vmcs_config.vmexit_ctrl; - if (cpu_has_load_ia32_efer && guest_efer != host_efer) - exec_control |= VM_EXIT_LOAD_IA32_EFER; - vm_exit_controls_init(vmx, exec_control); - - /* - * Conceptually we want to copy the PML address and index from - * vmcs01 here, and then back to vmcs01 on nested vmexit. But, - * since we always flush the log on each vmexit and never change - * the PML address (once set), this happens to be equivalent to - * simply resetting the index in vmcs02. - */ - if (enable_pml) - vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); - - /* - * Interrupt/Exception Fields - */ - if (vmx->nested.nested_run_pending) { - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, - vmcs12->vm_entry_intr_info_field); - vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, - vmcs12->vm_entry_exception_error_code); - vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, - vmcs12->vm_entry_instruction_len); - vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, - vmcs12->guest_interruptibility_info); - vmx->loaded_vmcs->nmi_known_unmasked = - !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); - } else { - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); - } -} - -static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) -{ - struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; - - if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { - vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); - vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); - vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); - vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); - vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); - vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); - vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); - vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); - vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); - vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); - vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); - vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); - vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); - vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); - vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); - vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); - vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); - vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); - vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); - vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); - vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); - vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); - vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); - vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); - vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); - vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); - vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); - vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); - vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); - vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); - vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); - vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); - vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); - vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); - } - - if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) { - vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); - vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, - vmcs12->guest_pending_dbg_exceptions); - vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); - vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); - - /* - * L1 may access the L2's PDPTR, so save them to construct - * vmcs12 - */ - if (enable_ept) { - vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); - vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); - vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); - vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); - } - } - - if (nested_cpu_has_xsaves(vmcs12)) - vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); - - /* - * Whether page-faults are trapped is determined by a combination of - * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. - * If enable_ept, L0 doesn't care about page faults and we should - * set all of these to L1's desires. However, if !enable_ept, L0 does - * care about (at least some) page faults, and because it is not easy - * (if at all possible?) to merge L0 and L1's desires, we simply ask - * to exit on each and every L2 page fault. This is done by setting - * MASK=MATCH=0 and (see below) EB.PF=1. - * Note that below we don't need special code to set EB.PF beyond the - * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, - * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when - * !enable_ept, EB.PF is 1, so the "or" will always be 1. - */ - vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, - enable_ept ? vmcs12->page_fault_error_code_mask : 0); - vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, - enable_ept ? vmcs12->page_fault_error_code_match : 0); - - if (cpu_has_vmx_apicv()) { - vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); - vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); - vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); - vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); - } - - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); - - set_cr4_guest_host_mask(vmx); - - if (kvm_mpx_supported()) { - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) - vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); - else - vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs); - } -} - -/* - * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested - * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it - * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 - * guest in a way that will both be appropriate to L1's requests, and our - * needs. In addition to modifying the active vmcs (which is vmcs02), this - * function also has additional necessary side-effects, like setting various - * vcpu->arch fields. - * Returns 0 on success, 1 on failure. Invalid state exit qualification code - * is assigned to entry_failure_code on failure. - */ -static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 *entry_failure_code) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; - - if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) { - prepare_vmcs02_full(vmx, vmcs12); - vmx->nested.dirty_vmcs12 = false; - } - - /* - * First, the fields that are shadowed. This must be kept in sync - * with vmx_shadow_fields.h. - */ - if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { - vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); - vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); - } - - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { - kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); - vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); - } else { - kvm_set_dr(vcpu, 7, vcpu->arch.dr7); - vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); - } - vmx_set_rflags(vcpu, vmcs12->guest_rflags); - - vmx->nested.preemption_timer_expired = false; - if (nested_cpu_has_preemption_timer(vmcs12)) - vmx_start_preemption_timer(vcpu); - - /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the - * bitwise-or of what L1 wants to trap for L2, and what we want to - * trap. Note that CR0.TS also needs updating - we do this later. - */ - update_exception_bitmap(vcpu); - vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; - vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); - - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { - vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); - vcpu->arch.pat = vmcs12->guest_ia32_pat; - } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { - vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); - } - - vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); - - if (kvm_has_tsc_control) - decache_tsc_multiplier(vmx); - - if (enable_vpid) { - /* - * There is no direct mapping between vpid02 and vpid12, the - * vpid02 is per-vCPU for L0 and reused while the value of - * vpid12 is changed w/ one invvpid during nested vmentry. - * The vpid12 is allocated by L1 for L2, so it will not - * influence global bitmap(for vpid01 and vpid02 allocation) - * even if spawn a lot of nested vCPUs. - */ - if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) { - if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { - vmx->nested.last_vpid = vmcs12->virtual_processor_id; - __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false); - } - } else { - /* - * If L1 use EPT, then L0 needs to execute INVEPT on - * EPTP02 instead of EPTP01. Therefore, delay TLB - * flush until vmcs02->eptp is fully updated by - * KVM_REQ_LOAD_CR3. Note that this assumes - * KVM_REQ_TLB_FLUSH is evaluated after - * KVM_REQ_LOAD_CR3 in vcpu_enter_guest(). - */ - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } - } - - if (nested_cpu_has_ept(vmcs12)) - nested_ept_init_mmu_context(vcpu); - else if (nested_cpu_has2(vmcs12, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) - vmx_flush_tlb(vcpu, true); - - /* - * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those - * bits which we consider mandatory enabled. - * The CR0_READ_SHADOW is what L2 should have expected to read given - * the specifications by L1; It's not enough to take - * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we - * have more bits than L1 expected. - */ - vmx_set_cr0(vcpu, vmcs12->guest_cr0); - vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); - - vmx_set_cr4(vcpu, vmcs12->guest_cr4); - vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); - - vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12); - /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ - vmx_set_efer(vcpu, vcpu->arch.efer); - - /* - * Guest state is invalid and unrestricted guest is disabled, - * which means L1 attempted VMEntry to L2 with invalid state. - * Fail the VMEntry. - */ - if (vmx->emulation_required) { - *entry_failure_code = ENTRY_FAIL_DEFAULT; - return 1; - } - - /* Shadow page tables on either EPT or shadow page tables. */ - if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), - entry_failure_code)) - return 1; - - if (!enable_ept) - vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; - - kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); - kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); - return 0; -} - -static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has_nmi_exiting(vmcs12) && - nested_cpu_has_virtual_nmis(vmcs12)) - return -EINVAL; - - if (!nested_cpu_has_virtual_nmis(vmcs12) && - nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)) - return -EINVAL; - - return 0; -} - -static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - bool ia32e; - - if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && - vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_apic_access_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_pml_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, - vmx->nested.msrs.procbased_ctls_low, - vmx->nested.msrs.procbased_ctls_high) || - (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && - !vmx_control_verify(vmcs12->secondary_vm_exec_control, - vmx->nested.msrs.secondary_ctls_low, - vmx->nested.msrs.secondary_ctls_high)) || - !vmx_control_verify(vmcs12->pin_based_vm_exec_control, - vmx->nested.msrs.pinbased_ctls_low, - vmx->nested.msrs.pinbased_ctls_high) || - !vmx_control_verify(vmcs12->vm_exit_controls, - vmx->nested.msrs.exit_ctls_low, - vmx->nested.msrs.exit_ctls_high) || - !vmx_control_verify(vmcs12->vm_entry_controls, - vmx->nested.msrs.entry_ctls_low, - vmx->nested.msrs.entry_ctls_high)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_nmi_controls(vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_cpu_has_vmfunc(vmcs12)) { - if (vmcs12->vm_function_control & - ~vmx->nested.msrs.vmfunc_controls) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_cpu_has_eptp_switching(vmcs12)) { - if (!nested_cpu_has_ept(vmcs12) || - !page_address_valid(vcpu, vmcs12->eptp_list_address)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - } - } - - if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || - !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || - !nested_cr3_valid(vcpu, vmcs12->host_cr3)) - return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; - - /* - * If the load IA32_EFER VM-exit control is 1, bits reserved in the - * IA32_EFER MSR must be 0 in the field for that register. In addition, - * the values of the LMA and LME bits in the field must each be that of - * the host address-space size VM-exit control. - */ - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { - ia32e = (vmcs12->vm_exit_controls & - VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; - if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || - ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || - ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) - return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; - } - - /* - * From the Intel SDM, volume 3: - * Fields relevant to VM-entry event injection must be set properly. - * These fields are the VM-entry interruption-information field, the - * VM-entry exception error code, and the VM-entry instruction length. - */ - if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { - u32 intr_info = vmcs12->vm_entry_intr_info_field; - u8 vector = intr_info & INTR_INFO_VECTOR_MASK; - u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; - bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; - bool should_have_error_code; - bool urg = nested_cpu_has2(vmcs12, - SECONDARY_EXEC_UNRESTRICTED_GUEST); - bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; - - /* VM-entry interruption-info field: interruption type */ - if (intr_type == INTR_TYPE_RESERVED || - (intr_type == INTR_TYPE_OTHER_EVENT && - !nested_cpu_supports_monitor_trap_flag(vcpu))) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry interruption-info field: vector */ - if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || - (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || - (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry interruption-info field: deliver error code */ - should_have_error_code = - intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && - x86_exception_has_error_code(vector); - if (has_error_code != should_have_error_code) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry exception error code */ - if (has_error_code && - vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry interruption-info field: reserved bits */ - if (intr_info & INTR_INFO_RESVD_BITS_MASK) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry instruction length */ - switch (intr_type) { - case INTR_TYPE_SOFT_EXCEPTION: - case INTR_TYPE_SOFT_INTR: - case INTR_TYPE_PRIV_SW_EXCEPTION: - if ((vmcs12->vm_entry_instruction_len > 15) || - (vmcs12->vm_entry_instruction_len == 0 && - !nested_cpu_has_zero_length_injection(vcpu))) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - } - } - - if (nested_cpu_has_ept(vmcs12) && - !valid_ept_address(vcpu, vmcs12->ept_pointer)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - return 0; -} - -static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - int r; - struct page *page; - struct vmcs12 *shadow; - - if (vmcs12->vmcs_link_pointer == -1ull) - return 0; - - if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)) - return -EINVAL; - - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); - if (is_error_page(page)) - return -EINVAL; - - r = 0; - shadow = kmap(page); - if (shadow->hdr.revision_id != VMCS12_REVISION || - shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)) - r = -EINVAL; - kunmap(page); - kvm_release_page_clean(page); - return r; -} - -static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 *exit_qual) -{ - bool ia32e; - - *exit_qual = ENTRY_FAIL_DEFAULT; - - if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || - !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) - return 1; - - if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { - *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; - return 1; - } - - /* - * If the load IA32_EFER VM-entry control is 1, the following checks - * are performed on the field for the IA32_EFER MSR: - * - Bits reserved in the IA32_EFER MSR must be 0. - * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of - * the IA-32e mode guest VM-exit control. It must also be identical - * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to - * CR0.PG) is 1. - */ - if (to_vmx(vcpu)->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { - ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; - if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || - ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || - ((vmcs12->guest_cr0 & X86_CR0_PG) && - ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) - return 1; - } - - if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && - (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) || - (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))) - return 1; - - return 0; -} - -static int __noclone nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long cr3, cr4; - - if (!nested_early_check) - return 0; - - if (vmx->msr_autoload.host.nr) - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); - if (vmx->msr_autoload.guest.nr) - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); - - preempt_disable(); - - vmx_prepare_switch_to_guest(vcpu); - - /* - * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, - * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to - * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e. - * there is no need to preserve other bits or save/restore the field. - */ - vmcs_writel(GUEST_RFLAGS, 0); - - vmcs_writel(HOST_RIP, vmx_early_consistency_check_return); - - cr3 = __get_current_cr3_fast(); - if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { - vmcs_writel(HOST_CR3, cr3); - vmx->loaded_vmcs->host_state.cr3 = cr3; - } - - cr4 = cr4_read_shadow(); - if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { - vmcs_writel(HOST_CR4, cr4); - vmx->loaded_vmcs->host_state.cr4 = cr4; - } - - vmx->__launched = vmx->loaded_vmcs->launched; - - asm( - /* Set HOST_RSP */ - __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" - "mov %%" _ASM_SP ", %c[host_rsp](%0)\n\t" - - /* Check if vmlaunch of vmresume is needed */ - "cmpl $0, %c[launched](%0)\n\t" - "je 1f\n\t" - __ex("vmresume") "\n\t" - "jmp 2f\n\t" - "1: " __ex("vmlaunch") "\n\t" - "jmp 2f\n\t" - "2: " - - /* Set vmx->fail accordingly */ - "setbe %c[fail](%0)\n\t" - - ".pushsection .rodata\n\t" - ".global vmx_early_consistency_check_return\n\t" - "vmx_early_consistency_check_return: " _ASM_PTR " 2b\n\t" - ".popsection" - : - : "c"(vmx), "d"((unsigned long)HOST_RSP), - [launched]"i"(offsetof(struct vcpu_vmx, __launched)), - [fail]"i"(offsetof(struct vcpu_vmx, fail)), - [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)) - : "rax", "cc", "memory" - ); - - vmcs_writel(HOST_RIP, vmx_return); - - preempt_enable(); - - if (vmx->msr_autoload.host.nr) - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); - if (vmx->msr_autoload.guest.nr) - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); - - if (vmx->fail) { - WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != - VMXERR_ENTRY_INVALID_CONTROL_FIELD); - vmx->fail = 0; - return 1; - } - - /* - * VMExit clears RFLAGS.IF and DR7, even on a consistency check. - */ - local_irq_enable(); - if (hw_breakpoint_active()) - set_debugreg(__this_cpu_read(cpu_dr7), 7); - - /* - * A non-failing VMEntry means we somehow entered guest mode with - * an illegal RIP, and that's just the tip of the iceberg. There - * is no telling what memory has been modified or what state has - * been exposed to unknown code. Hitting this all but guarantees - * a (very critical) hardware issue. - */ - WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & - VMX_EXIT_REASONS_FAILED_VMENTRY)); - - return 0; -} -STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw); - -static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12); - -/* - * If from_vmentry is false, this is being called from state restore (either RSM - * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. -+ * -+ * Returns: -+ * 0 - success, i.e. proceed with actual VMEnter -+ * 1 - consistency check VMExit -+ * -1 - consistency check VMFail - */ -static int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, - bool from_vmentry) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - bool evaluate_pending_interrupts; - u32 exit_reason = EXIT_REASON_INVALID_STATE; - u32 exit_qual; - - evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & - (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING); - if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) - evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); - - if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) - vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); - if (kvm_mpx_supported() && - !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) - vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); - - vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); - - prepare_vmcs02_early(vmx, vmcs12); - - if (from_vmentry) { - nested_get_vmcs12_pages(vcpu); - - if (nested_vmx_check_vmentry_hw(vcpu)) { - vmx_switch_vmcs(vcpu, &vmx->vmcs01); - return -1; - } - - if (check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) - goto vmentry_fail_vmexit; - } - - enter_guest_mode(vcpu); - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) - vcpu->arch.tsc_offset += vmcs12->tsc_offset; - - if (prepare_vmcs02(vcpu, vmcs12, &exit_qual)) - goto vmentry_fail_vmexit_guest_mode; - - if (from_vmentry) { - exit_reason = EXIT_REASON_MSR_LOAD_FAIL; - exit_qual = nested_vmx_load_msr(vcpu, - vmcs12->vm_entry_msr_load_addr, - vmcs12->vm_entry_msr_load_count); - if (exit_qual) - goto vmentry_fail_vmexit_guest_mode; - } else { - /* - * The MMU is not initialized to point at the right entities yet and - * "get pages" would need to read data from the guest (i.e. we will - * need to perform gpa to hpa translation). Request a call - * to nested_get_vmcs12_pages before the next VM-entry. The MSRs - * have already been set at vmentry time and should not be reset. - */ - kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); - } - - /* - * If L1 had a pending IRQ/NMI until it executed - * VMLAUNCH/VMRESUME which wasn't delivered because it was - * disallowed (e.g. interrupts disabled), L0 needs to - * evaluate if this pending event should cause an exit from L2 - * to L1 or delivered directly to L2 (e.g. In case L1 don't - * intercept EXTERNAL_INTERRUPT). - * - * Usually this would be handled by the processor noticing an - * IRQ/NMI window request, or checking RVI during evaluation of - * pending virtual interrupts. However, this setting was done - * on VMCS01 and now VMCS02 is active instead. Thus, we force L0 - * to perform pending event evaluation by requesting a KVM_REQ_EVENT. - */ - if (unlikely(evaluate_pending_interrupts)) - kvm_make_request(KVM_REQ_EVENT, vcpu); - - /* - * Note no nested_vmx_succeed or nested_vmx_fail here. At this point - * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet - * returned as far as L1 is concerned. It will only return (and set - * the success flag) when L2 exits (see nested_vmx_vmexit()). - */ - return 0; - - /* - * A failed consistency check that leads to a VMExit during L1's - * VMEnter to L2 is a variation of a normal VMexit, as explained in - * 26.7 "VM-entry failures during or after loading guest state". - */ -vmentry_fail_vmexit_guest_mode: - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) - vcpu->arch.tsc_offset -= vmcs12->tsc_offset; - leave_guest_mode(vcpu); - -vmentry_fail_vmexit: - vmx_switch_vmcs(vcpu, &vmx->vmcs01); - - if (!from_vmentry) - return 1; - - load_vmcs12_host_state(vcpu, vmcs12); - vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY; - vmcs12->exit_qualification = exit_qual; - if (enable_shadow_vmcs || vmx->nested.hv_evmcs) - vmx->nested.need_vmcs12_sync = true; - return 1; -} - -/* - * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 - * for running an L2 nested guest. - */ -static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) -{ - struct vmcs12 *vmcs12; - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); - int ret; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true)) - return 1; - - if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull) - return nested_vmx_failInvalid(vcpu); - - vmcs12 = get_vmcs12(vcpu); - - /* - * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact - * that there *is* a valid VMCS pointer, RFLAGS.CF is set - * rather than RFLAGS.ZF, and no error number is stored to the - * VM-instruction error field. - */ - if (vmcs12->hdr.shadow_vmcs) - return nested_vmx_failInvalid(vcpu); - - if (vmx->nested.hv_evmcs) { - copy_enlightened_to_vmcs12(vmx); - /* Enlightened VMCS doesn't have launch state */ - vmcs12->launch_state = !launch; - } else if (enable_shadow_vmcs) { - copy_shadow_to_vmcs12(vmx); - } - - /* - * The nested entry process starts with enforcing various prerequisites - * on vmcs12 as required by the Intel SDM, and act appropriately when - * they fail: As the SDM explains, some conditions should cause the - * instruction to fail, while others will cause the instruction to seem - * to succeed, but return an EXIT_REASON_INVALID_STATE. - * To speed up the normal (success) code path, we should avoid checking - * for misconfigurations which will anyway be caught by the processor - * when using the merged vmcs02. - */ - if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) - return nested_vmx_failValid(vcpu, - VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); - - if (vmcs12->launch_state == launch) - return nested_vmx_failValid(vcpu, - launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS - : VMXERR_VMRESUME_NONLAUNCHED_VMCS); - - ret = check_vmentry_prereqs(vcpu, vmcs12); - if (ret) - return nested_vmx_failValid(vcpu, ret); - - /* - * We're finally done with prerequisite checking, and can start with - * the nested entry. - */ - vmx->nested.nested_run_pending = 1; - ret = nested_vmx_enter_non_root_mode(vcpu, true); - vmx->nested.nested_run_pending = !ret; - if (ret > 0) - return 1; - else if (ret) - return nested_vmx_failValid(vcpu, - VMXERR_ENTRY_INVALID_CONTROL_FIELD); - - /* Hide L1D cache contents from the nested guest. */ - vmx->vcpu.arch.l1tf_flush_l1d = true; - - /* - * Must happen outside of nested_vmx_enter_non_root_mode() as it will - * also be used as part of restoring nVMX state for - * snapshot restore (migration). - * - * In this flow, it is assumed that vmcs12 cache was - * trasferred as part of captured nVMX state and should - * therefore not be read from guest memory (which may not - * exist on destination host yet). - */ - nested_cache_shadow_vmcs12(vcpu, vmcs12); - - /* - * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken - * by event injection, halt vcpu. - */ - if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && - !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) { - vmx->nested.nested_run_pending = 0; - return kvm_vcpu_halt(vcpu); - } - return 1; -} - -/* - * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date - * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). - * This function returns the new value we should put in vmcs12.guest_cr0. - * It's not enough to just return the vmcs02 GUEST_CR0. Rather, - * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now - * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 - * didn't trap the bit, because if L1 did, so would L0). - * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have - * been modified by L2, and L1 knows it. So just leave the old value of - * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 - * isn't relevant, because if L0 traps this bit it can set it to anything. - * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have - * changed these bits, and therefore they need to be updated, but L0 - * didn't necessarily allow them to be changed in GUEST_CR0 - and rather - * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. - */ -static inline unsigned long -vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - return - /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | - /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | - /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | - vcpu->arch.cr0_guest_owned_bits)); -} - -static inline unsigned long -vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - return - /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | - /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | - /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | - vcpu->arch.cr4_guest_owned_bits)); -} - -static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - u32 idt_vectoring; - unsigned int nr; - - if (vcpu->arch.exception.injected) { - nr = vcpu->arch.exception.nr; - idt_vectoring = nr | VECTORING_INFO_VALID_MASK; - - if (kvm_exception_is_soft(nr)) { - vmcs12->vm_exit_instruction_len = - vcpu->arch.event_exit_inst_len; - idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; - } else - idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; - - if (vcpu->arch.exception.has_error_code) { - idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; - vmcs12->idt_vectoring_error_code = - vcpu->arch.exception.error_code; - } - - vmcs12->idt_vectoring_info_field = idt_vectoring; - } else if (vcpu->arch.nmi_injected) { - vmcs12->idt_vectoring_info_field = - INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; - } else if (vcpu->arch.interrupt.injected) { - nr = vcpu->arch.interrupt.nr; - idt_vectoring = nr | VECTORING_INFO_VALID_MASK; - - if (vcpu->arch.interrupt.soft) { - idt_vectoring |= INTR_TYPE_SOFT_INTR; - vmcs12->vm_entry_instruction_len = - vcpu->arch.event_exit_inst_len; - } else - idt_vectoring |= INTR_TYPE_EXT_INTR; - - vmcs12->idt_vectoring_info_field = idt_vectoring; - } -} - -static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long exit_qual; - bool block_nested_events = - vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); - - if (vcpu->arch.exception.pending && - nested_vmx_check_exception(vcpu, &exit_qual)) { - if (block_nested_events) - return -EBUSY; - nested_vmx_inject_exception_vmexit(vcpu, exit_qual); - return 0; - } - - if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && - vmx->nested.preemption_timer_expired) { - if (block_nested_events) - return -EBUSY; - nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); - return 0; - } - - if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { - if (block_nested_events) - return -EBUSY; - nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, - NMI_VECTOR | INTR_TYPE_NMI_INTR | - INTR_INFO_VALID_MASK, 0); - /* - * The NMI-triggered VM exit counts as injection: - * clear this one and block further NMIs. - */ - vcpu->arch.nmi_pending = 0; - vmx_set_nmi_mask(vcpu, true); - return 0; - } - - if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && - nested_exit_on_intr(vcpu)) { - if (block_nested_events) - return -EBUSY; - nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); - return 0; - } - - vmx_complete_nested_posted_interrupt(vcpu); - return 0; -} - -static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) -{ - to_vmx(vcpu)->req_immediate_exit = true; -} - -static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) -{ - ktime_t remaining = - hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); - u64 value; - - if (ktime_to_ns(remaining) <= 0) - return 0; - - value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; - do_div(value, 1000000); - return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; -} - -/* - * Update the guest state fields of vmcs12 to reflect changes that - * occurred while L2 was running. (The "IA-32e mode guest" bit of the - * VM-entry controls is also updated, since this is really a guest - * state bit.) - */ -static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); - vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); - - vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); - vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); - vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); - - vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); - vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); - vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); - vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); - vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); - vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); - vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); - vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); - vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); - vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); - vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); - vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); - vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); - vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); - vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); - vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); - vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); - vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); - vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); - vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); - vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); - vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); - vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); - vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); - vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); - vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); - vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); - vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); - vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); - vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); - vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); - vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); - vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); - vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); - vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); - vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); - - vmcs12->guest_interruptibility_info = - vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); - vmcs12->guest_pending_dbg_exceptions = - vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); - if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) - vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; - else - vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; - - if (nested_cpu_has_preemption_timer(vmcs12)) { - if (vmcs12->vm_exit_controls & - VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) - vmcs12->vmx_preemption_timer_value = - vmx_get_preemption_timer_value(vcpu); - hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); - } - - /* - * In some cases (usually, nested EPT), L2 is allowed to change its - * own CR3 without exiting. If it has changed it, we must keep it. - * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined - * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. - * - * Additionally, restore L2's PDPTR to vmcs12. - */ - if (enable_ept) { - vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); - vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); - vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); - vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); - vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); - } - - vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); - - if (nested_cpu_has_vid(vmcs12)) - vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); - - vmcs12->vm_entry_controls = - (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | - (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); - - if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { - kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); - vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); - } - - /* TODO: These cannot have changed unless we have MSR bitmaps and - * the relevant bit asks not to trap the change */ - if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) - vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); - if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) - vmcs12->guest_ia32_efer = vcpu->arch.efer; - vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); - vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); - vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); - if (kvm_mpx_supported()) - vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); -} - -/* - * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits - * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), - * and this function updates it to reflect the changes to the guest state while - * L2 was running (and perhaps made some exits which were handled directly by L0 - * without going back to L1), and to reflect the exit reason. - * Note that we do not have to copy here all VMCS fields, just those that - * could have changed by the L2 guest or the exit - i.e., the guest-state and - * exit-information fields only. Other fields are modified by L1 with VMWRITE, - * which already writes to vmcs12 directly. - */ -static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 exit_reason, u32 exit_intr_info, - unsigned long exit_qualification) -{ - /* update guest state fields: */ - sync_vmcs12(vcpu, vmcs12); - - /* update exit information fields: */ - - vmcs12->vm_exit_reason = exit_reason; - vmcs12->exit_qualification = exit_qualification; - vmcs12->vm_exit_intr_info = exit_intr_info; - - vmcs12->idt_vectoring_info_field = 0; - vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - - if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { - vmcs12->launch_state = 1; - - /* vm_entry_intr_info_field is cleared on exit. Emulate this - * instead of reading the real value. */ - vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; - - /* - * Transfer the event that L0 or L1 may wanted to inject into - * L2 to IDT_VECTORING_INFO_FIELD. - */ - vmcs12_save_pending_event(vcpu, vmcs12); - } - - /* - * Drop what we picked up for L2 via vmx_complete_interrupts. It is - * preserved above and would only end up incorrectly in L1. - */ - vcpu->arch.nmi_injected = false; - kvm_clear_exception_queue(vcpu); - kvm_clear_interrupt_queue(vcpu); -} - -/* - * A part of what we need to when the nested L2 guest exits and we want to - * run its L1 parent, is to reset L1's guest state to the host state specified - * in vmcs12. - * This function is to be called not only on normal nested exit, but also on - * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry - * Failures During or After Loading Guest State"). - * This function should be called when the active VMCS is L1's (vmcs01). - */ -static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - struct kvm_segment seg; - u32 entry_failure_code; - - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) - vcpu->arch.efer = vmcs12->host_ia32_efer; - else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) - vcpu->arch.efer |= (EFER_LMA | EFER_LME); - else - vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); - vmx_set_efer(vcpu, vcpu->arch.efer); - - kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); - kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); - vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); - vmx_set_interrupt_shadow(vcpu, 0); - - /* - * Note that calling vmx_set_cr0 is important, even if cr0 hasn't - * actually changed, because vmx_set_cr0 refers to efer set above. - * - * CR0_GUEST_HOST_MASK is already set in the original vmcs01 - * (KVM doesn't change it); - */ - vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; - vmx_set_cr0(vcpu, vmcs12->host_cr0); - - /* Same as above - no reason to call set_cr4_guest_host_mask(). */ - vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); - vmx_set_cr4(vcpu, vmcs12->host_cr4); - - nested_ept_uninit_mmu_context(vcpu); - - /* - * Only PDPTE load can fail as the value of cr3 was checked on entry and - * couldn't have changed. - */ - if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) - nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); - - if (!enable_ept) - vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; - - /* - * If vmcs01 doesn't use VPID, CPU flushes TLB on every - * VMEntry/VMExit. Thus, no need to flush TLB. - * - * If vmcs12 doesn't use VPID, L1 expects TLB to be - * flushed on every VMEntry/VMExit. - * - * Otherwise, we can preserve TLB entries as long as we are - * able to tag L1 TLB entries differently than L2 TLB entries. - * - * If vmcs12 uses EPT, we need to execute this flush on EPTP01 - * and therefore we request the TLB flush to happen only after VMCS EPTP - * has been set by KVM_REQ_LOAD_CR3. - */ - if (enable_vpid && - (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) { - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } - - vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); - vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); - vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); - vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); - vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); - vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); - vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); - - /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ - if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) - vmcs_write64(GUEST_BNDCFGS, 0); - - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { - vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); - vcpu->arch.pat = vmcs12->host_ia32_pat; - } - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) - vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, - vmcs12->host_ia32_perf_global_ctrl); - - /* Set L1 segment info according to Intel SDM - 27.5.2 Loading Host Segment and Descriptor-Table Registers */ - seg = (struct kvm_segment) { - .base = 0, - .limit = 0xFFFFFFFF, - .selector = vmcs12->host_cs_selector, - .type = 11, - .present = 1, - .s = 1, - .g = 1 - }; - if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) - seg.l = 1; - else - seg.db = 1; - vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); - seg = (struct kvm_segment) { - .base = 0, - .limit = 0xFFFFFFFF, - .type = 3, - .present = 1, - .s = 1, - .db = 1, - .g = 1 - }; - seg.selector = vmcs12->host_ds_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); - seg.selector = vmcs12->host_es_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); - seg.selector = vmcs12->host_ss_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); - seg.selector = vmcs12->host_fs_selector; - seg.base = vmcs12->host_fs_base; - vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); - seg.selector = vmcs12->host_gs_selector; - seg.base = vmcs12->host_gs_base; - vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); - seg = (struct kvm_segment) { - .base = vmcs12->host_tr_base, - .limit = 0x67, - .selector = vmcs12->host_tr_selector, - .type = 11, - .present = 1 - }; - vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); - - kvm_set_dr(vcpu, 7, 0x400); - vmcs_write64(GUEST_IA32_DEBUGCTL, 0); - - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(vcpu); - - if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, - vmcs12->vm_exit_msr_load_count)) - nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); -} - -static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) -{ - struct shared_msr_entry *efer_msr; - unsigned int i; - - if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) - return vmcs_read64(GUEST_IA32_EFER); - - if (cpu_has_load_ia32_efer) - return host_efer; - - for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { - if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) - return vmx->msr_autoload.guest.val[i].value; - } - - efer_msr = find_msr_entry(vmx, MSR_EFER); - if (efer_msr) - return efer_msr->data; - - return host_efer; -} - -static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmx_msr_entry g, h; - struct msr_data msr; - gpa_t gpa; - u32 i, j; - - vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); - - if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { - /* - * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set - * as vmcs01.GUEST_DR7 contains a userspace defined value - * and vcpu->arch.dr7 is not squirreled away before the - * nested VMENTER (not worth adding a variable in nested_vmx). - */ - if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) - kvm_set_dr(vcpu, 7, DR7_FIXED_1); - else - WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); - } - - /* - * Note that calling vmx_set_{efer,cr0,cr4} is important as they - * handle a variety of side effects to KVM's software model. - */ - vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); - - vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; - vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); - - vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); - vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); - - nested_ept_uninit_mmu_context(vcpu); - vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); - __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); - - /* - * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs - * from vmcs01 (if necessary). The PDPTRs are not loaded on - * VMFail, like everything else we just need to ensure our - * software model is up-to-date. - */ - ept_save_pdptrs(vcpu); - - kvm_mmu_reset_context(vcpu); - - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(vcpu); - - /* - * This nasty bit of open coding is a compromise between blindly - * loading L1's MSRs using the exit load lists (incorrect emulation - * of VMFail), leaving the nested VM's MSRs in the software model - * (incorrect behavior) and snapshotting the modified MSRs (too - * expensive since the lists are unbound by hardware). For each - * MSR that was (prematurely) loaded from the nested VMEntry load - * list, reload it from the exit load list if it exists and differs - * from the guest value. The intent is to stuff host state as - * silently as possible, not to fully process the exit load list. - */ - msr.host_initiated = false; - for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { - gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); - if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { - pr_debug_ratelimited( - "%s read MSR index failed (%u, 0x%08llx)\n", - __func__, i, gpa); - goto vmabort; - } - - for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { - gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); - if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { - pr_debug_ratelimited( - "%s read MSR failed (%u, 0x%08llx)\n", - __func__, j, gpa); - goto vmabort; - } - if (h.index != g.index) - continue; - if (h.value == g.value) - break; - - if (nested_vmx_load_msr_check(vcpu, &h)) { - pr_debug_ratelimited( - "%s check failed (%u, 0x%x, 0x%x)\n", - __func__, j, h.index, h.reserved); - goto vmabort; - } - - msr.index = h.index; - msr.data = h.value; - if (kvm_set_msr(vcpu, &msr)) { - pr_debug_ratelimited( - "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", - __func__, j, h.index, h.value); - goto vmabort; - } - } - } - - return; - -vmabort: - nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); -} - -/* - * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 - * and modify vmcs12 to make it see what it would expect to see there if - * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) - */ -static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, - u32 exit_intr_info, - unsigned long exit_qualification) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - /* trying to cancel vmlaunch/vmresume is a bug */ - WARN_ON_ONCE(vmx->nested.nested_run_pending); - - leave_guest_mode(vcpu); - - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) - vcpu->arch.tsc_offset -= vmcs12->tsc_offset; - - if (likely(!vmx->fail)) { - if (exit_reason == -1) - sync_vmcs12(vcpu, vmcs12); - else - prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, - exit_qualification); - - /* - * Must happen outside of sync_vmcs12() as it will - * also be used to capture vmcs12 cache as part of - * capturing nVMX state for snapshot (migration). - * - * Otherwise, this flush will dirty guest memory at a - * point it is already assumed by user-space to be - * immutable. - */ - nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); - - if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr, - vmcs12->vm_exit_msr_store_count)) - nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL); - } else { - /* - * The only expected VM-instruction error is "VM entry with - * invalid control field(s)." Anything else indicates a - * problem with L0. And we should never get here with a - * VMFail of any type if early consistency checks are enabled. - */ - WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != - VMXERR_ENTRY_INVALID_CONTROL_FIELD); - WARN_ON_ONCE(nested_early_check); - } - - vmx_switch_vmcs(vcpu, &vmx->vmcs01); - - /* Update any VMCS fields that might have changed while L2 ran */ - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); - vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); - - if (kvm_has_tsc_control) - decache_tsc_multiplier(vmx); - - if (vmx->nested.change_vmcs01_virtual_apic_mode) { - vmx->nested.change_vmcs01_virtual_apic_mode = false; - vmx_set_virtual_apic_mode(vcpu); - } else if (!nested_cpu_has_ept(vmcs12) && - nested_cpu_has2(vmcs12, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { - vmx_flush_tlb(vcpu, true); - } - - /* This is needed for same reason as it was needed in prepare_vmcs02 */ - vmx->host_rsp = 0; - - /* Unpin physical memory we referred to in vmcs02 */ - if (vmx->nested.apic_access_page) { - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; - } - if (vmx->nested.virtual_apic_page) { - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; - } - if (vmx->nested.pi_desc_page) { - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; - vmx->nested.pi_desc = NULL; - } - - /* - * We are now running in L2, mmu_notifier will force to reload the - * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. - */ - kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); - - if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs)) - vmx->nested.need_vmcs12_sync = true; - - /* in case we halted in L2 */ - vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; - - if (likely(!vmx->fail)) { - /* - * TODO: SDM says that with acknowledge interrupt on - * exit, bit 31 of the VM-exit interrupt information - * (valid interrupt) is always set to 1 on - * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't - * need kvm_cpu_has_interrupt(). See the commit - * message for details. - */ - if (nested_exit_intr_ack_set(vcpu) && - exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && - kvm_cpu_has_interrupt(vcpu)) { - int irq = kvm_cpu_get_interrupt(vcpu); - WARN_ON(irq < 0); - vmcs12->vm_exit_intr_info = irq | - INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; - } - - if (exit_reason != -1) - trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, - vmcs12->exit_qualification, - vmcs12->idt_vectoring_info_field, - vmcs12->vm_exit_intr_info, - vmcs12->vm_exit_intr_error_code, - KVM_ISA_VMX); - - load_vmcs12_host_state(vcpu, vmcs12); - - return; - } - - /* - * After an early L2 VM-entry failure, we're now back - * in L1 which thinks it just finished a VMLAUNCH or - * VMRESUME instruction, so we need to set the failure - * flag and the VM-instruction error field of the VMCS - * accordingly, and skip the emulated instruction. - */ - (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); - - /* - * Restore L1's host state to KVM's software model. We're here - * because a consistency check was caught by hardware, which - * means some amount of guest state has been propagated to KVM's - * model and needs to be unwound to the host's state. - */ - nested_vmx_restore_host_state(vcpu); - - vmx->fail = 0; -} - -/* - * Forcibly leave nested mode in order to be able to reset the VCPU later on. - */ -static void vmx_leave_nested(struct kvm_vcpu *vcpu) -{ - if (is_guest_mode(vcpu)) { - to_vmx(vcpu)->nested.nested_run_pending = 0; - nested_vmx_vmexit(vcpu, -1, 0, 0); - } - free_nested(vcpu); -} - -static int vmx_check_intercept(struct kvm_vcpu *vcpu, - struct x86_instruction_info *info, - enum x86_intercept_stage stage) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; - - /* - * RDPID causes #UD if disabled through secondary execution controls. - * Because it is marked as EmulateOnUD, we need to intercept it here. - */ - if (info->intercept == x86_intercept_rdtscp && - !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { - ctxt->exception.vector = UD_VECTOR; - ctxt->exception.error_code_valid = false; - return X86EMUL_PROPAGATE_FAULT; - } - - /* TODO: check more intercepts... */ - return X86EMUL_CONTINUE; -} - -#ifdef CONFIG_X86_64 -/* (a << shift) / divisor, return 1 if overflow otherwise 0 */ -static inline int u64_shl_div_u64(u64 a, unsigned int shift, - u64 divisor, u64 *result) -{ - u64 low = a << shift, high = a >> (64 - shift); - - /* To avoid the overflow on divq */ - if (high >= divisor) - return 1; - - /* Low hold the result, high hold rem which is discarded */ - asm("divq %2\n\t" : "=a" (low), "=d" (high) : - "rm" (divisor), "0" (low), "1" (high)); - *result = low; - - return 0; -} - -static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc) -{ - struct vcpu_vmx *vmx; - u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; - - if (kvm_mwait_in_guest(vcpu->kvm)) - return -EOPNOTSUPP; - - vmx = to_vmx(vcpu); - tscl = rdtsc(); - guest_tscl = kvm_read_l1_tsc(vcpu, tscl); - delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; - lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns); - - if (delta_tsc > lapic_timer_advance_cycles) - delta_tsc -= lapic_timer_advance_cycles; - else - delta_tsc = 0; - - /* Convert to host delta tsc if tsc scaling is enabled */ - if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && - u64_shl_div_u64(delta_tsc, - kvm_tsc_scaling_ratio_frac_bits, - vcpu->arch.tsc_scaling_ratio, - &delta_tsc)) - return -ERANGE; - - /* - * If the delta tsc can't fit in the 32 bit after the multi shift, - * we can't use the preemption timer. - * It's possible that it fits on later vmentries, but checking - * on every vmentry is costly so we just use an hrtimer. - */ - if (delta_tsc >> (cpu_preemption_timer_multi + 32)) - return -ERANGE; - - vmx->hv_deadline_tsc = tscl + delta_tsc; - return delta_tsc == 0; -} - -static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) -{ - to_vmx(vcpu)->hv_deadline_tsc = -1; -} -#endif - -static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) -{ - if (!kvm_pause_in_guest(vcpu->kvm)) - shrink_ple_window(vcpu); -} - -static void vmx_slot_enable_log_dirty(struct kvm *kvm, - struct kvm_memory_slot *slot) -{ - kvm_mmu_slot_leaf_clear_dirty(kvm, slot); - kvm_mmu_slot_largepage_remove_write_access(kvm, slot); -} - -static void vmx_slot_disable_log_dirty(struct kvm *kvm, - struct kvm_memory_slot *slot) -{ - kvm_mmu_slot_set_dirty(kvm, slot); -} - -static void vmx_flush_log_dirty(struct kvm *kvm) -{ - kvm_flush_pml_buffers(kvm); -} - -static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12; - struct vcpu_vmx *vmx = to_vmx(vcpu); - gpa_t gpa; - struct page *page = NULL; - u64 *pml_address; - - if (is_guest_mode(vcpu)) { - WARN_ON_ONCE(vmx->nested.pml_full); - - /* - * Check if PML is enabled for the nested guest. - * Whether eptp bit 6 is set is already checked - * as part of A/D emulation. - */ - vmcs12 = get_vmcs12(vcpu); - if (!nested_cpu_has_pml(vmcs12)) - return 0; - - if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { - vmx->nested.pml_full = true; - return 1; - } - - gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; - - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address); - if (is_error_page(page)) - return 0; - - pml_address = kmap(page); - pml_address[vmcs12->guest_pml_index--] = gpa; - kunmap(page); - kvm_release_page_clean(page); - } - - return 0; -} - -static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, - struct kvm_memory_slot *memslot, - gfn_t offset, unsigned long mask) -{ - kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); -} - -static void __pi_post_block(struct kvm_vcpu *vcpu) -{ - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - struct pi_desc old, new; - unsigned int dest; - - do { - old.control = new.control = pi_desc->control; - WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, - "Wakeup handler not enabled while the VCPU is blocked\n"); - - dest = cpu_physical_id(vcpu->cpu); - - if (x2apic_enabled()) - new.ndst = dest; - else - new.ndst = (dest << 8) & 0xFF00; - - /* set 'NV' to 'notification vector' */ - new.nv = POSTED_INTR_VECTOR; - } while (cmpxchg64(&pi_desc->control, old.control, - new.control) != old.control); - - if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { - spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); - list_del(&vcpu->blocked_vcpu_list); - spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); - vcpu->pre_pcpu = -1; - } -} - -/* - * This routine does the following things for vCPU which is going - * to be blocked if VT-d PI is enabled. - * - Store the vCPU to the wakeup list, so when interrupts happen - * we can find the right vCPU to wake up. - * - Change the Posted-interrupt descriptor as below: - * 'NDST' <-- vcpu->pre_pcpu - * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR - * - If 'ON' is set during this process, which means at least one - * interrupt is posted for this vCPU, we cannot block it, in - * this case, return 1, otherwise, return 0. - * - */ -static int pi_pre_block(struct kvm_vcpu *vcpu) -{ - unsigned int dest; - struct pi_desc old, new; - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - - if (!kvm_arch_has_assigned_device(vcpu->kvm) || - !irq_remapping_cap(IRQ_POSTING_CAP) || - !kvm_vcpu_apicv_active(vcpu)) - return 0; - - WARN_ON(irqs_disabled()); - local_irq_disable(); - if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { - vcpu->pre_pcpu = vcpu->cpu; - spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); - list_add_tail(&vcpu->blocked_vcpu_list, - &per_cpu(blocked_vcpu_on_cpu, - vcpu->pre_pcpu)); - spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); - } - - do { - old.control = new.control = pi_desc->control; - - WARN((pi_desc->sn == 1), - "Warning: SN field of posted-interrupts " - "is set before blocking\n"); - - /* - * Since vCPU can be preempted during this process, - * vcpu->cpu could be different with pre_pcpu, we - * need to set pre_pcpu as the destination of wakeup - * notification event, then we can find the right vCPU - * to wakeup in wakeup handler if interrupts happen - * when the vCPU is in blocked state. - */ - dest = cpu_physical_id(vcpu->pre_pcpu); - - if (x2apic_enabled()) - new.ndst = dest; - else - new.ndst = (dest << 8) & 0xFF00; - - /* set 'NV' to 'wakeup vector' */ - new.nv = POSTED_INTR_WAKEUP_VECTOR; - } while (cmpxchg64(&pi_desc->control, old.control, - new.control) != old.control); - - /* We should not block the vCPU if an interrupt is posted for it. */ - if (pi_test_on(pi_desc) == 1) - __pi_post_block(vcpu); - - local_irq_enable(); - return (vcpu->pre_pcpu == -1); -} - -static int vmx_pre_block(struct kvm_vcpu *vcpu) -{ - if (pi_pre_block(vcpu)) - return 1; - - if (kvm_lapic_hv_timer_in_use(vcpu)) - kvm_lapic_switch_to_sw_timer(vcpu); - - return 0; -} - -static void pi_post_block(struct kvm_vcpu *vcpu) -{ - if (vcpu->pre_pcpu == -1) - return; - - WARN_ON(irqs_disabled()); - local_irq_disable(); - __pi_post_block(vcpu); - local_irq_enable(); -} - -static void vmx_post_block(struct kvm_vcpu *vcpu) -{ - if (kvm_x86_ops->set_hv_timer) - kvm_lapic_switch_to_hv_timer(vcpu); - - pi_post_block(vcpu); -} - -/* - * vmx_update_pi_irte - set IRTE for Posted-Interrupts - * - * @kvm: kvm - * @host_irq: host irq of the interrupt - * @guest_irq: gsi of the interrupt - * @set: set or unset PI - * returns 0 on success, < 0 on failure - */ -static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, - uint32_t guest_irq, bool set) -{ - struct kvm_kernel_irq_routing_entry *e; - struct kvm_irq_routing_table *irq_rt; - struct kvm_lapic_irq irq; - struct kvm_vcpu *vcpu; - struct vcpu_data vcpu_info; - int idx, ret = 0; - - if (!kvm_arch_has_assigned_device(kvm) || - !irq_remapping_cap(IRQ_POSTING_CAP) || - !kvm_vcpu_apicv_active(kvm->vcpus[0])) - return 0; - - idx = srcu_read_lock(&kvm->irq_srcu); - irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); - if (guest_irq >= irq_rt->nr_rt_entries || - hlist_empty(&irq_rt->map[guest_irq])) { - pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", - guest_irq, irq_rt->nr_rt_entries); - goto out; - } - - hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { - if (e->type != KVM_IRQ_ROUTING_MSI) - continue; - /* - * VT-d PI cannot support posting multicast/broadcast - * interrupts to a vCPU, we still use interrupt remapping - * for these kind of interrupts. - * - * For lowest-priority interrupts, we only support - * those with single CPU as the destination, e.g. user - * configures the interrupts via /proc/irq or uses - * irqbalance to make the interrupts single-CPU. - * - * We will support full lowest-priority interrupt later. - */ - - kvm_set_msi_irq(kvm, e, &irq); - if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { - /* - * Make sure the IRTE is in remapped mode if - * we don't handle it in posted mode. - */ - ret = irq_set_vcpu_affinity(host_irq, NULL); - if (ret < 0) { - printk(KERN_INFO - "failed to back to remapped mode, irq: %u\n", - host_irq); - goto out; - } - - continue; - } - - vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); - vcpu_info.vector = irq.vector; - - trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, - vcpu_info.vector, vcpu_info.pi_desc_addr, set); - - if (set) - ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); - else - ret = irq_set_vcpu_affinity(host_irq, NULL); - - if (ret < 0) { - printk(KERN_INFO "%s: failed to update PI IRTE\n", - __func__); - goto out; - } - } - - ret = 0; -out: - srcu_read_unlock(&kvm->irq_srcu, idx); - return ret; -} - -static void vmx_setup_mce(struct kvm_vcpu *vcpu) -{ - if (vcpu->arch.mcg_cap & MCG_LMCE_P) - to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= - FEATURE_CONTROL_LMCE; - else - to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= - ~FEATURE_CONTROL_LMCE; -} - -static int vmx_smi_allowed(struct kvm_vcpu *vcpu) -{ - /* we need a nested vmexit to enter SMM, postpone if run is pending */ - if (to_vmx(vcpu)->nested.nested_run_pending) - return 0; - return 1; -} - -static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - vmx->nested.smm.guest_mode = is_guest_mode(vcpu); - if (vmx->nested.smm.guest_mode) - nested_vmx_vmexit(vcpu, -1, 0, 0); - - vmx->nested.smm.vmxon = vmx->nested.vmxon; - vmx->nested.vmxon = false; - vmx_clear_hlt(vcpu); - return 0; -} - -static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int ret; - - if (vmx->nested.smm.vmxon) { - vmx->nested.vmxon = true; - vmx->nested.smm.vmxon = false; - } - - if (vmx->nested.smm.guest_mode) { - vcpu->arch.hflags &= ~HF_SMM_MASK; - ret = nested_vmx_enter_non_root_mode(vcpu, false); - vcpu->arch.hflags |= HF_SMM_MASK; - if (ret) - return ret; - - vmx->nested.smm.guest_mode = false; - } - return 0; -} - -static int enable_smi_window(struct kvm_vcpu *vcpu) -{ - return 0; -} - -static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * In case we do two consecutive get/set_nested_state()s while L2 was - * running hv_evmcs may end up not being mapped (we map it from - * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always - * have vmcs12 if it is true. - */ - return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull || - vmx->nested.hv_evmcs; -} - -static int vmx_get_nested_state(struct kvm_vcpu *vcpu, - struct kvm_nested_state __user *user_kvm_nested_state, - u32 user_data_size) -{ - struct vcpu_vmx *vmx; - struct vmcs12 *vmcs12; - struct kvm_nested_state kvm_state = { - .flags = 0, - .format = 0, - .size = sizeof(kvm_state), - .vmx.vmxon_pa = -1ull, - .vmx.vmcs_pa = -1ull, - }; - - if (!vcpu) - return kvm_state.size + 2 * VMCS12_SIZE; - - vmx = to_vmx(vcpu); - vmcs12 = get_vmcs12(vcpu); - - if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled) - kvm_state.flags |= KVM_STATE_NESTED_EVMCS; - - if (nested_vmx_allowed(vcpu) && - (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { - kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr; - kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr; - - if (vmx_has_valid_vmcs12(vcpu)) { - kvm_state.size += VMCS12_SIZE; - - if (is_guest_mode(vcpu) && - nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) - kvm_state.size += VMCS12_SIZE; - } - - if (vmx->nested.smm.vmxon) - kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; - - if (vmx->nested.smm.guest_mode) - kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; - - if (is_guest_mode(vcpu)) { - kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; - - if (vmx->nested.nested_run_pending) - kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; - } - } - - if (user_data_size < kvm_state.size) - goto out; - - if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) - return -EFAULT; - - if (!vmx_has_valid_vmcs12(vcpu)) - goto out; - - /* - * When running L2, the authoritative vmcs12 state is in the - * vmcs02. When running L1, the authoritative vmcs12 state is - * in the shadow or enlightened vmcs linked to vmcs01, unless - * need_vmcs12_sync is set, in which case, the authoritative - * vmcs12 state is in the vmcs12 already. - */ - if (is_guest_mode(vcpu)) { - sync_vmcs12(vcpu, vmcs12); - } else if (!vmx->nested.need_vmcs12_sync) { - if (vmx->nested.hv_evmcs) - copy_enlightened_to_vmcs12(vmx); - else if (enable_shadow_vmcs) - copy_shadow_to_vmcs12(vmx); - } - - if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12))) - return -EFAULT; - - if (nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) { - if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE, - get_shadow_vmcs12(vcpu), sizeof(*vmcs12))) - return -EFAULT; - } - -out: - return kvm_state.size; -} - -static int vmx_set_nested_state(struct kvm_vcpu *vcpu, - struct kvm_nested_state __user *user_kvm_nested_state, - struct kvm_nested_state *kvm_state) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12; - u32 exit_qual; - int ret; - - if (kvm_state->format != 0) - return -EINVAL; - - if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) - nested_enable_evmcs(vcpu, NULL); - - if (!nested_vmx_allowed(vcpu)) - return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL; - - if (kvm_state->vmx.vmxon_pa == -1ull) { - if (kvm_state->vmx.smm.flags) - return -EINVAL; - - if (kvm_state->vmx.vmcs_pa != -1ull) - return -EINVAL; - - vmx_leave_nested(vcpu); - return 0; - } - - if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa)) - return -EINVAL; - - if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && - (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) - return -EINVAL; - - if (kvm_state->vmx.smm.flags & - ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) - return -EINVAL; - - /* - * SMM temporarily disables VMX, so we cannot be in guest mode, - * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags - * must be zero. - */ - if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags) - return -EINVAL; - - if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && - !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) - return -EINVAL; - - vmx_leave_nested(vcpu); - if (kvm_state->vmx.vmxon_pa == -1ull) - return 0; - - vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa; - ret = enter_vmx_operation(vcpu); - if (ret) - return ret; - - /* Empty 'VMXON' state is permitted */ - if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12)) - return 0; - - if (kvm_state->vmx.vmcs_pa != -1ull) { - if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa || - !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa)) - return -EINVAL; - - set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa); - } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { - /* - * Sync eVMCS upon entry as we may not have - * HV_X64_MSR_VP_ASSIST_PAGE set up yet. - */ - vmx->nested.need_vmcs12_sync = true; - } else { - return -EINVAL; - } - - if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { - vmx->nested.smm.vmxon = true; - vmx->nested.vmxon = false; - - if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) - vmx->nested.smm.guest_mode = true; - } - - vmcs12 = get_vmcs12(vcpu); - if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12))) - return -EFAULT; - - if (vmcs12->hdr.revision_id != VMCS12_REVISION) - return -EINVAL; - - if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) - return 0; - - vmx->nested.nested_run_pending = - !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); - - if (nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) { - struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); - if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12)) - return -EINVAL; - - if (copy_from_user(shadow_vmcs12, - user_kvm_nested_state->data + VMCS12_SIZE, - sizeof(*vmcs12))) - return -EFAULT; - - if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || - !shadow_vmcs12->hdr.shadow_vmcs) - return -EINVAL; - } - - if (check_vmentry_prereqs(vcpu, vmcs12) || - check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) - return -EINVAL; - - vmx->nested.dirty_vmcs12 = true; - ret = nested_vmx_enter_non_root_mode(vcpu, false); - if (ret) - return -EINVAL; - - return 0; -} - -static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { - .cpu_has_kvm_support = cpu_has_kvm_support, - .disabled_by_bios = vmx_disabled_by_bios, - .hardware_setup = hardware_setup, - .hardware_unsetup = hardware_unsetup, - .check_processor_compatibility = vmx_check_processor_compat, - .hardware_enable = hardware_enable, - .hardware_disable = hardware_disable, - .cpu_has_accelerated_tpr = report_flexpriority, - .has_emulated_msr = vmx_has_emulated_msr, - - .vm_init = vmx_vm_init, - .vm_alloc = vmx_vm_alloc, - .vm_free = vmx_vm_free, - - .vcpu_create = vmx_create_vcpu, - .vcpu_free = vmx_free_vcpu, - .vcpu_reset = vmx_vcpu_reset, - - .prepare_guest_switch = vmx_prepare_switch_to_guest, - .vcpu_load = vmx_vcpu_load, - .vcpu_put = vmx_vcpu_put, - - .update_bp_intercept = update_exception_bitmap, - .get_msr_feature = vmx_get_msr_feature, - .get_msr = vmx_get_msr, - .set_msr = vmx_set_msr, - .get_segment_base = vmx_get_segment_base, - .get_segment = vmx_get_segment, - .set_segment = vmx_set_segment, - .get_cpl = vmx_get_cpl, - .get_cs_db_l_bits = vmx_get_cs_db_l_bits, - .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, - .decache_cr3 = vmx_decache_cr3, - .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, - .set_cr0 = vmx_set_cr0, - .set_cr3 = vmx_set_cr3, - .set_cr4 = vmx_set_cr4, - .set_efer = vmx_set_efer, - .get_idt = vmx_get_idt, - .set_idt = vmx_set_idt, - .get_gdt = vmx_get_gdt, - .set_gdt = vmx_set_gdt, - .get_dr6 = vmx_get_dr6, - .set_dr6 = vmx_set_dr6, - .set_dr7 = vmx_set_dr7, - .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, - .cache_reg = vmx_cache_reg, - .get_rflags = vmx_get_rflags, - .set_rflags = vmx_set_rflags, - - .tlb_flush = vmx_flush_tlb, - .tlb_flush_gva = vmx_flush_tlb_gva, - - .run = vmx_vcpu_run, - .handle_exit = vmx_handle_exit, - .skip_emulated_instruction = skip_emulated_instruction, - .set_interrupt_shadow = vmx_set_interrupt_shadow, - .get_interrupt_shadow = vmx_get_interrupt_shadow, - .patch_hypercall = vmx_patch_hypercall, - .set_irq = vmx_inject_irq, - .set_nmi = vmx_inject_nmi, - .queue_exception = vmx_queue_exception, - .cancel_injection = vmx_cancel_injection, - .interrupt_allowed = vmx_interrupt_allowed, - .nmi_allowed = vmx_nmi_allowed, - .get_nmi_mask = vmx_get_nmi_mask, - .set_nmi_mask = vmx_set_nmi_mask, - .enable_nmi_window = enable_nmi_window, - .enable_irq_window = enable_irq_window, - .update_cr8_intercept = update_cr8_intercept, - .set_virtual_apic_mode = vmx_set_virtual_apic_mode, - .set_apic_access_page_addr = vmx_set_apic_access_page_addr, - .get_enable_apicv = vmx_get_enable_apicv, - .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, - .load_eoi_exitmap = vmx_load_eoi_exitmap, - .apicv_post_state_restore = vmx_apicv_post_state_restore, - .hwapic_irr_update = vmx_hwapic_irr_update, - .hwapic_isr_update = vmx_hwapic_isr_update, - .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, - .sync_pir_to_irr = vmx_sync_pir_to_irr, - .deliver_posted_interrupt = vmx_deliver_posted_interrupt, - - .set_tss_addr = vmx_set_tss_addr, - .set_identity_map_addr = vmx_set_identity_map_addr, - .get_tdp_level = get_ept_level, - .get_mt_mask = vmx_get_mt_mask, - - .get_exit_info = vmx_get_exit_info, - - .get_lpage_level = vmx_get_lpage_level, - - .cpuid_update = vmx_cpuid_update, - - .rdtscp_supported = vmx_rdtscp_supported, - .invpcid_supported = vmx_invpcid_supported, - - .set_supported_cpuid = vmx_set_supported_cpuid, - - .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, - - .read_l1_tsc_offset = vmx_read_l1_tsc_offset, - .write_tsc_offset = vmx_write_tsc_offset, - - .set_tdp_cr3 = vmx_set_cr3, - - .check_intercept = vmx_check_intercept, - .handle_external_intr = vmx_handle_external_intr, - .mpx_supported = vmx_mpx_supported, - .xsaves_supported = vmx_xsaves_supported, - .umip_emulated = vmx_umip_emulated, - - .check_nested_events = vmx_check_nested_events, - .request_immediate_exit = vmx_request_immediate_exit, - - .sched_in = vmx_sched_in, - - .slot_enable_log_dirty = vmx_slot_enable_log_dirty, - .slot_disable_log_dirty = vmx_slot_disable_log_dirty, - .flush_log_dirty = vmx_flush_log_dirty, - .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, - .write_log_dirty = vmx_write_pml_buffer, - - .pre_block = vmx_pre_block, - .post_block = vmx_post_block, - - .pmu_ops = &intel_pmu_ops, - - .update_pi_irte = vmx_update_pi_irte, - -#ifdef CONFIG_X86_64 - .set_hv_timer = vmx_set_hv_timer, - .cancel_hv_timer = vmx_cancel_hv_timer, -#endif - - .setup_mce = vmx_setup_mce, - - .get_nested_state = vmx_get_nested_state, - .set_nested_state = vmx_set_nested_state, - .get_vmcs12_pages = nested_get_vmcs12_pages, - - .smi_allowed = vmx_smi_allowed, - .pre_enter_smm = vmx_pre_enter_smm, - .pre_leave_smm = vmx_pre_leave_smm, - .enable_smi_window = enable_smi_window, - - .nested_enable_evmcs = nested_enable_evmcs, -}; - -static void vmx_cleanup_l1d_flush(void) -{ - if (vmx_l1d_flush_pages) { - free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); - vmx_l1d_flush_pages = NULL; - } - /* Restore state so sysfs ignores VMX */ - l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; -} - -static void vmx_exit(void) -{ -#ifdef CONFIG_KEXEC_CORE - RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); - synchronize_rcu(); -#endif - - kvm_exit(); - -#if IS_ENABLED(CONFIG_HYPERV) - if (static_branch_unlikely(&enable_evmcs)) { - int cpu; - struct hv_vp_assist_page *vp_ap; - /* - * Reset everything to support using non-enlightened VMCS - * access later (e.g. when we reload the module with - * enlightened_vmcs=0) - */ - for_each_online_cpu(cpu) { - vp_ap = hv_get_vp_assist_page(cpu); - - if (!vp_ap) - continue; - - vp_ap->current_nested_vmcs = 0; - vp_ap->enlighten_vmentry = 0; - } - - static_branch_disable(&enable_evmcs); - } -#endif - vmx_cleanup_l1d_flush(); -} -module_exit(vmx_exit); - -static int __init vmx_init(void) -{ - int r; - -#if IS_ENABLED(CONFIG_HYPERV) - /* - * Enlightened VMCS usage should be recommended and the host needs - * to support eVMCS v1 or above. We can also disable eVMCS support - * with module parameter. - */ - if (enlightened_vmcs && - ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && - (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= - KVM_EVMCS_VERSION) { - int cpu; - - /* Check that we have assist pages on all online CPUs */ - for_each_online_cpu(cpu) { - if (!hv_get_vp_assist_page(cpu)) { - enlightened_vmcs = false; - break; - } - } - - if (enlightened_vmcs) { - pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); - static_branch_enable(&enable_evmcs); - } - } else { - enlightened_vmcs = false; - } -#endif - - r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), - __alignof__(struct vcpu_vmx), THIS_MODULE); - if (r) - return r; - - /* - * Must be called after kvm_init() so enable_ept is properly set - * up. Hand the parameter mitigation value in which was stored in - * the pre module init parser. If no parameter was given, it will - * contain 'auto' which will be turned into the default 'cond' - * mitigation mode. - */ - if (boot_cpu_has(X86_BUG_L1TF)) { - r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); - if (r) { - vmx_exit(); - return r; - } - } - -#ifdef CONFIG_KEXEC_CORE - rcu_assign_pointer(crash_vmclear_loaded_vmcss, - crash_vmclear_local_loaded_vmcss); -#endif - vmx_check_vmcs12_offsets(); - - return 0; -} -module_init(vmx_init); diff --git a/arch/x86/kvm/vmx/capabilities.h b/arch/x86/kvm/vmx/capabilities.h new file mode 100644 index 000000000000..854e144131c6 --- /dev/null +++ b/arch/x86/kvm/vmx/capabilities.h @@ -0,0 +1,343 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_CAPS_H +#define __KVM_X86_VMX_CAPS_H + +#include "lapic.h" + +extern bool __read_mostly enable_vpid; +extern bool __read_mostly flexpriority_enabled; +extern bool __read_mostly enable_ept; +extern bool __read_mostly enable_unrestricted_guest; +extern bool __read_mostly enable_ept_ad_bits; +extern bool __read_mostly enable_pml; +extern int __read_mostly pt_mode; + +#define PT_MODE_SYSTEM 0 +#define PT_MODE_HOST_GUEST 1 + +struct nested_vmx_msrs { + /* + * We only store the "true" versions of the VMX capability MSRs. We + * generate the "non-true" versions by setting the must-be-1 bits + * according to the SDM. + */ + u32 procbased_ctls_low; + u32 procbased_ctls_high; + u32 secondary_ctls_low; + u32 secondary_ctls_high; + u32 pinbased_ctls_low; + u32 pinbased_ctls_high; + u32 exit_ctls_low; + u32 exit_ctls_high; + u32 entry_ctls_low; + u32 entry_ctls_high; + u32 misc_low; + u32 misc_high; + u32 ept_caps; + u32 vpid_caps; + u64 basic; + u64 cr0_fixed0; + u64 cr0_fixed1; + u64 cr4_fixed0; + u64 cr4_fixed1; + u64 vmcs_enum; + u64 vmfunc_controls; +}; + +struct vmcs_config { + int size; + int order; + u32 basic_cap; + u32 revision_id; + u32 pin_based_exec_ctrl; + u32 cpu_based_exec_ctrl; + u32 cpu_based_2nd_exec_ctrl; + u32 vmexit_ctrl; + u32 vmentry_ctrl; + struct nested_vmx_msrs nested; +}; +extern struct vmcs_config vmcs_config; + +struct vmx_capability { + u32 ept; + u32 vpid; +}; +extern struct vmx_capability vmx_capability; + +static inline bool cpu_has_vmx_basic_inout(void) +{ + return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT); +} + +static inline bool cpu_has_virtual_nmis(void) +{ + return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; +} + +static inline bool cpu_has_vmx_preemption_timer(void) +{ + return vmcs_config.pin_based_exec_ctrl & + PIN_BASED_VMX_PREEMPTION_TIMER; +} + +static inline bool cpu_has_vmx_posted_intr(void) +{ + return IS_ENABLED(CONFIG_X86_LOCAL_APIC) && + vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; +} + +static inline bool cpu_has_load_ia32_efer(void) +{ + return (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_EFER) && + (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_EFER); +} + +static inline bool cpu_has_load_perf_global_ctrl(void) +{ + return (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && + (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); +} + +static inline bool vmx_mpx_supported(void) +{ + return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) && + (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS); +} + +static inline bool cpu_has_vmx_tpr_shadow(void) +{ + return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; +} + +static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu) +{ + return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu); +} + +static inline bool cpu_has_vmx_msr_bitmap(void) +{ + return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; +} + +static inline bool cpu_has_secondary_exec_ctrls(void) +{ + return vmcs_config.cpu_based_exec_ctrl & + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; +} + +static inline bool cpu_has_vmx_virtualize_apic_accesses(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; +} + +static inline bool cpu_has_vmx_ept(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_EPT; +} + +static inline bool vmx_umip_emulated(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_DESC; +} + +static inline bool cpu_has_vmx_rdtscp(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_RDTSCP; +} + +static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; +} + +static inline bool cpu_has_vmx_vpid(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_VPID; +} + +static inline bool cpu_has_vmx_wbinvd_exit(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_WBINVD_EXITING; +} + +static inline bool cpu_has_vmx_unrestricted_guest(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_UNRESTRICTED_GUEST; +} + +static inline bool cpu_has_vmx_apic_register_virt(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_APIC_REGISTER_VIRT; +} + +static inline bool cpu_has_vmx_virtual_intr_delivery(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; +} + +static inline bool cpu_has_vmx_ple(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_PAUSE_LOOP_EXITING; +} + +static inline bool vmx_rdrand_supported(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_RDRAND_EXITING; +} + +static inline bool cpu_has_vmx_invpcid(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_INVPCID; +} + +static inline bool cpu_has_vmx_vmfunc(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_VMFUNC; +} + +static inline bool cpu_has_vmx_shadow_vmcs(void) +{ + u64 vmx_msr; + + /* check if the cpu supports writing r/o exit information fields */ + rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); + if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) + return false; + + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_SHADOW_VMCS; +} + +static inline bool cpu_has_vmx_encls_vmexit(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENCLS_EXITING; +} + +static inline bool vmx_rdseed_supported(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_RDSEED_EXITING; +} + +static inline bool cpu_has_vmx_pml(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML; +} + +static inline bool vmx_xsaves_supported(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_XSAVES; +} + +static inline bool cpu_has_vmx_tsc_scaling(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_TSC_SCALING; +} + +static inline bool cpu_has_vmx_apicv(void) +{ + return cpu_has_vmx_apic_register_virt() && + cpu_has_vmx_virtual_intr_delivery() && + cpu_has_vmx_posted_intr(); +} + +static inline bool cpu_has_vmx_flexpriority(void) +{ + return cpu_has_vmx_tpr_shadow() && + cpu_has_vmx_virtualize_apic_accesses(); +} + +static inline bool cpu_has_vmx_ept_execute_only(void) +{ + return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; +} + +static inline bool cpu_has_vmx_ept_4levels(void) +{ + return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; +} + +static inline bool cpu_has_vmx_ept_5levels(void) +{ + return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT; +} + +static inline bool cpu_has_vmx_ept_mt_wb(void) +{ + return vmx_capability.ept & VMX_EPTP_WB_BIT; +} + +static inline bool cpu_has_vmx_ept_2m_page(void) +{ + return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; +} + +static inline bool cpu_has_vmx_ept_1g_page(void) +{ + return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; +} + +static inline bool cpu_has_vmx_ept_ad_bits(void) +{ + return vmx_capability.ept & VMX_EPT_AD_BIT; +} + +static inline bool cpu_has_vmx_invept_context(void) +{ + return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_invept_global(void) +{ + return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; +} + +static inline bool cpu_has_vmx_invvpid(void) +{ + return vmx_capability.vpid & VMX_VPID_INVVPID_BIT; +} + +static inline bool cpu_has_vmx_invvpid_individual_addr(void) +{ + return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT; +} + +static inline bool cpu_has_vmx_invvpid_single(void) +{ + return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_invvpid_global(void) +{ + return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_intel_pt(void) +{ + u64 vmx_msr; + + rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); + return (vmx_msr & MSR_IA32_VMX_MISC_INTEL_PT) && + (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_PT_USE_GPA) && + (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_IA32_RTIT_CTL) && + (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_RTIT_CTL); +} + +#endif /* __KVM_X86_VMX_CAPS_H */ diff --git a/arch/x86/kvm/vmx_evmcs.h b/arch/x86/kvm/vmx/evmcs.c index 210a884090ad..95bc2247478d 100644 --- a/arch/x86/kvm/vmx_evmcs.h +++ b/arch/x86/kvm/vmx/evmcs.c @@ -1,20 +1,22 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef __KVM_X86_VMX_EVMCS_H -#define __KVM_X86_VMX_EVMCS_H +// SPDX-License-Identifier: GPL-2.0 -#include <asm/hyperv-tlfs.h> +#include <linux/errno.h> +#include <linux/smp.h> + +#include "evmcs.h" +#include "vmcs.h" +#include "vmx.h" + +DEFINE_STATIC_KEY_FALSE(enable_evmcs); + +#if IS_ENABLED(CONFIG_HYPERV) #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) #define EVMCS1_OFFSET(x) offsetof(struct hv_enlightened_vmcs, x) #define EVMCS1_FIELD(number, name, clean_field)[ROL16(number, 6)] = \ {EVMCS1_OFFSET(name), clean_field} -struct evmcs_field { - u16 offset; - u16 clean_field; -}; - -static const struct evmcs_field vmcs_field_to_evmcs_1[] = { +const struct evmcs_field vmcs_field_to_evmcs_1[] = { /* 64 bit rw */ EVMCS1_FIELD(GUEST_RIP, guest_rip, HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE), @@ -298,27 +300,53 @@ static const struct evmcs_field vmcs_field_to_evmcs_1[] = { EVMCS1_FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id, HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT), }; +const unsigned int nr_evmcs_1_fields = ARRAY_SIZE(vmcs_field_to_evmcs_1); -static __always_inline int get_evmcs_offset(unsigned long field, - u16 *clean_field) +void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) { - unsigned int index = ROL16(field, 6); - const struct evmcs_field *evmcs_field; + vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL; + vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC; - if (unlikely(index >= ARRAY_SIZE(vmcs_field_to_evmcs_1))) { - WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n", - field); - return -ENOENT; - } + vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL; + vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL; - evmcs_field = &vmcs_field_to_evmcs_1[index]; +} +#endif - if (clean_field) - *clean_field = evmcs_field->clean_field; +uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + /* + * vmcs_version represents the range of supported Enlightened VMCS + * versions: lower 8 bits is the minimal version, higher 8 bits is the + * maximum supported version. KVM supports versions from 1 to + * KVM_EVMCS_VERSION. + */ + if (vmx->nested.enlightened_vmcs_enabled) + return (KVM_EVMCS_VERSION << 8) | 1; - return evmcs_field->offset; + return 0; } -#undef ROL16 +int nested_enable_evmcs(struct kvm_vcpu *vcpu, + uint16_t *vmcs_version) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (vmcs_version) + *vmcs_version = nested_get_evmcs_version(vcpu); + + /* We don't support disabling the feature for simplicity. */ + if (vmx->nested.enlightened_vmcs_enabled) + return 0; -#endif /* __KVM_X86_VMX_EVMCS_H */ + vmx->nested.enlightened_vmcs_enabled = true; + + vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL; + vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL; + vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL; + vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC; + vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC; + + return 0; +} diff --git a/arch/x86/kvm/vmx/evmcs.h b/arch/x86/kvm/vmx/evmcs.h new file mode 100644 index 000000000000..e0fcef85b332 --- /dev/null +++ b/arch/x86/kvm/vmx/evmcs.h @@ -0,0 +1,202 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_EVMCS_H +#define __KVM_X86_VMX_EVMCS_H + +#include <linux/jump_label.h> + +#include <asm/hyperv-tlfs.h> +#include <asm/mshyperv.h> +#include <asm/vmx.h> + +#include "capabilities.h" +#include "vmcs.h" + +struct vmcs_config; + +DECLARE_STATIC_KEY_FALSE(enable_evmcs); + +#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs)) + +#define KVM_EVMCS_VERSION 1 + +/* + * Enlightened VMCSv1 doesn't support these: + * + * POSTED_INTR_NV = 0x00000002, + * GUEST_INTR_STATUS = 0x00000810, + * APIC_ACCESS_ADDR = 0x00002014, + * POSTED_INTR_DESC_ADDR = 0x00002016, + * EOI_EXIT_BITMAP0 = 0x0000201c, + * EOI_EXIT_BITMAP1 = 0x0000201e, + * EOI_EXIT_BITMAP2 = 0x00002020, + * EOI_EXIT_BITMAP3 = 0x00002022, + * GUEST_PML_INDEX = 0x00000812, + * PML_ADDRESS = 0x0000200e, + * VM_FUNCTION_CONTROL = 0x00002018, + * EPTP_LIST_ADDRESS = 0x00002024, + * VMREAD_BITMAP = 0x00002026, + * VMWRITE_BITMAP = 0x00002028, + * + * TSC_MULTIPLIER = 0x00002032, + * PLE_GAP = 0x00004020, + * PLE_WINDOW = 0x00004022, + * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E, + * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808, + * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04, + * + * Currently unsupported in KVM: + * GUEST_IA32_RTIT_CTL = 0x00002814, + */ +#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \ + PIN_BASED_VMX_PREEMPTION_TIMER) +#define EVMCS1_UNSUPPORTED_2NDEXEC \ + (SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \ + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \ + SECONDARY_EXEC_APIC_REGISTER_VIRT | \ + SECONDARY_EXEC_ENABLE_PML | \ + SECONDARY_EXEC_ENABLE_VMFUNC | \ + SECONDARY_EXEC_SHADOW_VMCS | \ + SECONDARY_EXEC_TSC_SCALING | \ + SECONDARY_EXEC_PAUSE_LOOP_EXITING) +#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) +#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) +#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING) + +#if IS_ENABLED(CONFIG_HYPERV) + +struct evmcs_field { + u16 offset; + u16 clean_field; +}; + +extern const struct evmcs_field vmcs_field_to_evmcs_1[]; +extern const unsigned int nr_evmcs_1_fields; + +#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) + +static __always_inline int get_evmcs_offset(unsigned long field, + u16 *clean_field) +{ + unsigned int index = ROL16(field, 6); + const struct evmcs_field *evmcs_field; + + if (unlikely(index >= nr_evmcs_1_fields)) { + WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n", + field); + return -ENOENT; + } + + evmcs_field = &vmcs_field_to_evmcs_1[index]; + + if (clean_field) + *clean_field = evmcs_field->clean_field; + + return evmcs_field->offset; +} + +#undef ROL16 + +static inline void evmcs_write64(unsigned long field, u64 value) +{ + u16 clean_field; + int offset = get_evmcs_offset(field, &clean_field); + + if (offset < 0) + return; + + *(u64 *)((char *)current_evmcs + offset) = value; + + current_evmcs->hv_clean_fields &= ~clean_field; +} + +static inline void evmcs_write32(unsigned long field, u32 value) +{ + u16 clean_field; + int offset = get_evmcs_offset(field, &clean_field); + + if (offset < 0) + return; + + *(u32 *)((char *)current_evmcs + offset) = value; + current_evmcs->hv_clean_fields &= ~clean_field; +} + +static inline void evmcs_write16(unsigned long field, u16 value) +{ + u16 clean_field; + int offset = get_evmcs_offset(field, &clean_field); + + if (offset < 0) + return; + + *(u16 *)((char *)current_evmcs + offset) = value; + current_evmcs->hv_clean_fields &= ~clean_field; +} + +static inline u64 evmcs_read64(unsigned long field) +{ + int offset = get_evmcs_offset(field, NULL); + + if (offset < 0) + return 0; + + return *(u64 *)((char *)current_evmcs + offset); +} + +static inline u32 evmcs_read32(unsigned long field) +{ + int offset = get_evmcs_offset(field, NULL); + + if (offset < 0) + return 0; + + return *(u32 *)((char *)current_evmcs + offset); +} + +static inline u16 evmcs_read16(unsigned long field) +{ + int offset = get_evmcs_offset(field, NULL); + + if (offset < 0) + return 0; + + return *(u16 *)((char *)current_evmcs + offset); +} + +static inline void evmcs_touch_msr_bitmap(void) +{ + if (unlikely(!current_evmcs)) + return; + + if (current_evmcs->hv_enlightenments_control.msr_bitmap) + current_evmcs->hv_clean_fields &= + ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; +} + +static inline void evmcs_load(u64 phys_addr) +{ + struct hv_vp_assist_page *vp_ap = + hv_get_vp_assist_page(smp_processor_id()); + + vp_ap->current_nested_vmcs = phys_addr; + vp_ap->enlighten_vmentry = 1; +} + +void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf); +#else /* !IS_ENABLED(CONFIG_HYPERV) */ +static inline void evmcs_write64(unsigned long field, u64 value) {} +static inline void evmcs_write32(unsigned long field, u32 value) {} +static inline void evmcs_write16(unsigned long field, u16 value) {} +static inline u64 evmcs_read64(unsigned long field) { return 0; } +static inline u32 evmcs_read32(unsigned long field) { return 0; } +static inline u16 evmcs_read16(unsigned long field) { return 0; } +static inline void evmcs_load(u64 phys_addr) {} +static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {} +static inline void evmcs_touch_msr_bitmap(void) {} +#endif /* IS_ENABLED(CONFIG_HYPERV) */ + +uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu); +int nested_enable_evmcs(struct kvm_vcpu *vcpu, + uint16_t *vmcs_version); + +#endif /* __KVM_X86_VMX_EVMCS_H */ diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c new file mode 100644 index 000000000000..3170e291215d --- /dev/null +++ b/arch/x86/kvm/vmx/nested.c @@ -0,0 +1,5721 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/frame.h> +#include <linux/percpu.h> + +#include <asm/debugreg.h> +#include <asm/mmu_context.h> + +#include "cpuid.h" +#include "hyperv.h" +#include "mmu.h" +#include "nested.h" +#include "trace.h" +#include "x86.h" + +static bool __read_mostly enable_shadow_vmcs = 1; +module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); + +static bool __read_mostly nested_early_check = 0; +module_param(nested_early_check, bool, S_IRUGO); + +/* + * Hyper-V requires all of these, so mark them as supported even though + * they are just treated the same as all-context. + */ +#define VMX_VPID_EXTENT_SUPPORTED_MASK \ + (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ + VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ + VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ + VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) + +#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 + +enum { + VMX_VMREAD_BITMAP, + VMX_VMWRITE_BITMAP, + VMX_BITMAP_NR +}; +static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; + +#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) +#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) + +static u16 shadow_read_only_fields[] = { +#define SHADOW_FIELD_RO(x) x, +#include "vmcs_shadow_fields.h" +}; +static int max_shadow_read_only_fields = + ARRAY_SIZE(shadow_read_only_fields); + +static u16 shadow_read_write_fields[] = { +#define SHADOW_FIELD_RW(x) x, +#include "vmcs_shadow_fields.h" +}; +static int max_shadow_read_write_fields = + ARRAY_SIZE(shadow_read_write_fields); + +void init_vmcs_shadow_fields(void) +{ + int i, j; + + memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); + memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); + + for (i = j = 0; i < max_shadow_read_only_fields; i++) { + u16 field = shadow_read_only_fields[i]; + + if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && + (i + 1 == max_shadow_read_only_fields || + shadow_read_only_fields[i + 1] != field + 1)) + pr_err("Missing field from shadow_read_only_field %x\n", + field + 1); + + clear_bit(field, vmx_vmread_bitmap); +#ifdef CONFIG_X86_64 + if (field & 1) + continue; +#endif + if (j < i) + shadow_read_only_fields[j] = field; + j++; + } + max_shadow_read_only_fields = j; + + for (i = j = 0; i < max_shadow_read_write_fields; i++) { + u16 field = shadow_read_write_fields[i]; + + if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && + (i + 1 == max_shadow_read_write_fields || + shadow_read_write_fields[i + 1] != field + 1)) + pr_err("Missing field from shadow_read_write_field %x\n", + field + 1); + + /* + * PML and the preemption timer can be emulated, but the + * processor cannot vmwrite to fields that don't exist + * on bare metal. + */ + switch (field) { + case GUEST_PML_INDEX: + if (!cpu_has_vmx_pml()) + continue; + break; + case VMX_PREEMPTION_TIMER_VALUE: + if (!cpu_has_vmx_preemption_timer()) + continue; + break; + case GUEST_INTR_STATUS: + if (!cpu_has_vmx_apicv()) + continue; + break; + default: + break; + } + + clear_bit(field, vmx_vmwrite_bitmap); + clear_bit(field, vmx_vmread_bitmap); +#ifdef CONFIG_X86_64 + if (field & 1) + continue; +#endif + if (j < i) + shadow_read_write_fields[j] = field; + j++; + } + max_shadow_read_write_fields = j; +} + +/* + * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), + * set the success or error code of an emulated VMX instruction (as specified + * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated + * instruction. + */ +static int nested_vmx_succeed(struct kvm_vcpu *vcpu) +{ + vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | + X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); + return kvm_skip_emulated_instruction(vcpu); +} + +static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) +{ + vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | + X86_EFLAGS_SF | X86_EFLAGS_OF)) + | X86_EFLAGS_CF); + return kvm_skip_emulated_instruction(vcpu); +} + +static int nested_vmx_failValid(struct kvm_vcpu *vcpu, + u32 vm_instruction_error) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * failValid writes the error number to the current VMCS, which + * can't be done if there isn't a current VMCS. + */ + if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs) + return nested_vmx_failInvalid(vcpu); + + vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | + X86_EFLAGS_SF | X86_EFLAGS_OF)) + | X86_EFLAGS_ZF); + get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; + /* + * We don't need to force a shadow sync because + * VM_INSTRUCTION_ERROR is not shadowed + */ + return kvm_skip_emulated_instruction(vcpu); +} + +static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) +{ + /* TODO: not to reset guest simply here. */ + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); +} + +static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) +{ + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); + vmcs_write64(VMCS_LINK_POINTER, -1ull); +} + +static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx->nested.hv_evmcs) + return; + + kunmap(vmx->nested.hv_evmcs_page); + kvm_release_page_dirty(vmx->nested.hv_evmcs_page); + vmx->nested.hv_evmcs_vmptr = -1ull; + vmx->nested.hv_evmcs_page = NULL; + vmx->nested.hv_evmcs = NULL; +} + +/* + * Free whatever needs to be freed from vmx->nested when L1 goes down, or + * just stops using VMX. + */ +static void free_nested(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) + return; + + vmx->nested.vmxon = false; + vmx->nested.smm.vmxon = false; + free_vpid(vmx->nested.vpid02); + vmx->nested.posted_intr_nv = -1; + vmx->nested.current_vmptr = -1ull; + if (enable_shadow_vmcs) { + vmx_disable_shadow_vmcs(vmx); + vmcs_clear(vmx->vmcs01.shadow_vmcs); + free_vmcs(vmx->vmcs01.shadow_vmcs); + vmx->vmcs01.shadow_vmcs = NULL; + } + kfree(vmx->nested.cached_vmcs12); + kfree(vmx->nested.cached_shadow_vmcs12); + /* Unpin physical memory we referred to in the vmcs02 */ + if (vmx->nested.apic_access_page) { + kvm_release_page_dirty(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = NULL; + } + if (vmx->nested.virtual_apic_page) { + kvm_release_page_dirty(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = NULL; + } + if (vmx->nested.pi_desc_page) { + kunmap(vmx->nested.pi_desc_page); + kvm_release_page_dirty(vmx->nested.pi_desc_page); + vmx->nested.pi_desc_page = NULL; + vmx->nested.pi_desc = NULL; + } + + kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); + + nested_release_evmcs(vcpu); + + free_loaded_vmcs(&vmx->nested.vmcs02); +} + +static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int cpu; + + if (vmx->loaded_vmcs == vmcs) + return; + + cpu = get_cpu(); + vmx_vcpu_put(vcpu); + vmx->loaded_vmcs = vmcs; + vmx_vcpu_load(vcpu, cpu); + put_cpu(); + + vm_entry_controls_reset_shadow(vmx); + vm_exit_controls_reset_shadow(vmx); + vmx_segment_cache_clear(vmx); +} + +/* + * Ensure that the current vmcs of the logical processor is the + * vmcs01 of the vcpu before calling free_nested(). + */ +void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu) +{ + vcpu_load(vcpu); + vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01); + free_nested(vcpu); + vcpu_put(vcpu); +} + +static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 exit_reason; + unsigned long exit_qualification = vcpu->arch.exit_qualification; + + if (vmx->nested.pml_full) { + exit_reason = EXIT_REASON_PML_FULL; + vmx->nested.pml_full = false; + exit_qualification &= INTR_INFO_UNBLOCK_NMI; + } else if (fault->error_code & PFERR_RSVD_MASK) + exit_reason = EXIT_REASON_EPT_MISCONFIG; + else + exit_reason = EXIT_REASON_EPT_VIOLATION; + + nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); + vmcs12->guest_physical_address = fault->address; +} + +static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) +{ + WARN_ON(mmu_is_nested(vcpu)); + + vcpu->arch.mmu = &vcpu->arch.guest_mmu; + kvm_init_shadow_ept_mmu(vcpu, + to_vmx(vcpu)->nested.msrs.ept_caps & + VMX_EPT_EXECUTE_ONLY_BIT, + nested_ept_ad_enabled(vcpu), + nested_ept_get_cr3(vcpu)); + vcpu->arch.mmu->set_cr3 = vmx_set_cr3; + vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3; + vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; + vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; + + vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; +} + +static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) +{ + vcpu->arch.mmu = &vcpu->arch.root_mmu; + vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; +} + +static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, + u16 error_code) +{ + bool inequality, bit; + + bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; + inequality = + (error_code & vmcs12->page_fault_error_code_mask) != + vmcs12->page_fault_error_code_match; + return inequality ^ bit; +} + + +/* + * KVM wants to inject page-faults which it got to the guest. This function + * checks whether in a nested guest, we need to inject them to L1 or L2. + */ +static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned int nr = vcpu->arch.exception.nr; + bool has_payload = vcpu->arch.exception.has_payload; + unsigned long payload = vcpu->arch.exception.payload; + + if (nr == PF_VECTOR) { + if (vcpu->arch.exception.nested_apf) { + *exit_qual = vcpu->arch.apf.nested_apf_token; + return 1; + } + if (nested_vmx_is_page_fault_vmexit(vmcs12, + vcpu->arch.exception.error_code)) { + *exit_qual = has_payload ? payload : vcpu->arch.cr2; + return 1; + } + } else if (vmcs12->exception_bitmap & (1u << nr)) { + if (nr == DB_VECTOR) { + if (!has_payload) { + payload = vcpu->arch.dr6; + payload &= ~(DR6_FIXED_1 | DR6_BT); + payload ^= DR6_RTM; + } + *exit_qual = payload; + } else + *exit_qual = 0; + return 1; + } + + return 0; +} + + +static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + WARN_ON(!is_guest_mode(vcpu)); + + if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && + !to_vmx(vcpu)->nested.nested_run_pending) { + vmcs12->vm_exit_intr_error_code = fault->error_code; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, + PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | + INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, + fault->address); + } else { + kvm_inject_page_fault(vcpu, fault); + } +} + +static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) +{ + return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); +} + +static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) + return 0; + + if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) || + !page_address_valid(vcpu, vmcs12->io_bitmap_b)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) + return 0; + + if (!page_address_valid(vcpu, vmcs12->msr_bitmap)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + return 0; + + if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)) + return -EINVAL; + + return 0; +} + +/* + * Check if MSR is intercepted for L01 MSR bitmap. + */ +static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) +{ + unsigned long *msr_bitmap; + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return true; + + msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; + + if (msr <= 0x1fff) { + return !!test_bit(msr, msr_bitmap + 0x800 / f); + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + return !!test_bit(msr, msr_bitmap + 0xc00 / f); + } + + return true; +} + +/* + * If a msr is allowed by L0, we should check whether it is allowed by L1. + * The corresponding bit will be cleared unless both of L0 and L1 allow it. + */ +static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, + unsigned long *msr_bitmap_nested, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R && + !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) + /* read-low */ + __clear_bit(msr, msr_bitmap_nested + 0x000 / f); + + if (type & MSR_TYPE_W && + !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) + /* write-low */ + __clear_bit(msr, msr_bitmap_nested + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R && + !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) + /* read-high */ + __clear_bit(msr, msr_bitmap_nested + 0x400 / f); + + if (type & MSR_TYPE_W && + !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) + /* write-high */ + __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); + + } +} + +/* + * Merge L0's and L1's MSR bitmap, return false to indicate that + * we do not use the hardware. + */ +static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + int msr; + struct page *page; + unsigned long *msr_bitmap_l1; + unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; + /* + * pred_cmd & spec_ctrl are trying to verify two things: + * + * 1. L0 gave a permission to L1 to actually passthrough the MSR. This + * ensures that we do not accidentally generate an L02 MSR bitmap + * from the L12 MSR bitmap that is too permissive. + * 2. That L1 or L2s have actually used the MSR. This avoids + * unnecessarily merging of the bitmap if the MSR is unused. This + * works properly because we only update the L01 MSR bitmap lazily. + * So even if L0 should pass L1 these MSRs, the L01 bitmap is only + * updated to reflect this when L1 (or its L2s) actually write to + * the MSR. + */ + bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD); + bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL); + + /* Nothing to do if the MSR bitmap is not in use. */ + if (!cpu_has_vmx_msr_bitmap() || + !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) + return false; + + if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && + !pred_cmd && !spec_ctrl) + return false; + + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap); + if (is_error_page(page)) + return false; + + msr_bitmap_l1 = (unsigned long *)kmap(page); + if (nested_cpu_has_apic_reg_virt(vmcs12)) { + /* + * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it + * just lets the processor take the value from the virtual-APIC page; + * take those 256 bits directly from the L1 bitmap. + */ + for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { + unsigned word = msr / BITS_PER_LONG; + msr_bitmap_l0[word] = msr_bitmap_l1[word]; + msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; + } + } else { + for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { + unsigned word = msr / BITS_PER_LONG; + msr_bitmap_l0[word] = ~0; + msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; + } + } + + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_TASKPRI), + MSR_TYPE_W); + + if (nested_cpu_has_vid(vmcs12)) { + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_EOI), + MSR_TYPE_W); + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_SELF_IPI), + MSR_TYPE_W); + } + + if (spec_ctrl) + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_SPEC_CTRL, + MSR_TYPE_R | MSR_TYPE_W); + + if (pred_cmd) + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_PRED_CMD, + MSR_TYPE_W); + + kunmap(page); + kvm_release_page_clean(page); + + return true; +} + +static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vmcs12 *shadow; + struct page *page; + + if (!nested_cpu_has_shadow_vmcs(vmcs12) || + vmcs12->vmcs_link_pointer == -1ull) + return; + + shadow = get_shadow_vmcs12(vcpu); + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); + + memcpy(shadow, kmap(page), VMCS12_SIZE); + + kunmap(page); + kvm_release_page_clean(page); +} + +static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!nested_cpu_has_shadow_vmcs(vmcs12) || + vmcs12->vmcs_link_pointer == -1ull) + return; + + kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer, + get_shadow_vmcs12(vcpu), VMCS12_SIZE); +} + +/* + * In nested virtualization, check if L1 has set + * VM_EXIT_ACK_INTR_ON_EXIT + */ +static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) +{ + return get_vmcs12(vcpu)->vm_exit_controls & + VM_EXIT_ACK_INTR_ON_EXIT; +} + +static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) +{ + return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu)); +} + +static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && + !page_address_valid(vcpu, vmcs12->apic_access_addr)) + return -EINVAL; + else + return 0; +} + +static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && + !nested_cpu_has_apic_reg_virt(vmcs12) && + !nested_cpu_has_vid(vmcs12) && + !nested_cpu_has_posted_intr(vmcs12)) + return 0; + + /* + * If virtualize x2apic mode is enabled, + * virtualize apic access must be disabled. + */ + if (nested_cpu_has_virt_x2apic_mode(vmcs12) && + nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + return -EINVAL; + + /* + * If virtual interrupt delivery is enabled, + * we must exit on external interrupts. + */ + if (nested_cpu_has_vid(vmcs12) && + !nested_exit_on_intr(vcpu)) + return -EINVAL; + + /* + * bits 15:8 should be zero in posted_intr_nv, + * the descriptor address has been already checked + * in nested_get_vmcs12_pages. + * + * bits 5:0 of posted_intr_desc_addr should be zero. + */ + if (nested_cpu_has_posted_intr(vmcs12) && + (!nested_cpu_has_vid(vmcs12) || + !nested_exit_intr_ack_set(vcpu) || + (vmcs12->posted_intr_nv & 0xff00) || + (vmcs12->posted_intr_desc_addr & 0x3f) || + (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))) + return -EINVAL; + + /* tpr shadow is needed by all apicv features. */ + if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, + u32 count, u64 addr) +{ + int maxphyaddr; + + if (count == 0) + return 0; + maxphyaddr = cpuid_maxphyaddr(vcpu); + if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || + (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count, + vmcs12->vm_exit_msr_load_addr) || + nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count, + vmcs12->vm_exit_msr_store_addr)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count, + vmcs12->vm_entry_msr_load_addr)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_pml(vmcs12)) + return 0; + + if (!nested_cpu_has_ept(vmcs12) || + !page_address_valid(vcpu, vmcs12->pml_address)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) && + !nested_cpu_has_ept(vmcs12)) + return -EINVAL; + return 0; +} + +static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) && + !nested_cpu_has_ept(vmcs12)) + return -EINVAL; + return 0; +} + +static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_shadow_vmcs(vmcs12)) + return 0; + + if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) || + !page_address_valid(vcpu, vmcs12->vmwrite_bitmap)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + /* x2APIC MSR accesses are not allowed */ + if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) + return -EINVAL; + if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ + e->index == MSR_IA32_UCODE_REV) + return -EINVAL; + if (e->reserved != 0) + return -EINVAL; + return 0; +} + +static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + if (e->index == MSR_FS_BASE || + e->index == MSR_GS_BASE || + e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ + nested_vmx_msr_check_common(vcpu, e)) + return -EINVAL; + return 0; +} + +static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ + nested_vmx_msr_check_common(vcpu, e)) + return -EINVAL; + return 0; +} + +/* + * Load guest's/host's msr at nested entry/exit. + * return 0 for success, entry index for failure. + */ +static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) +{ + u32 i; + struct vmx_msr_entry e; + struct msr_data msr; + + msr.host_initiated = false; + for (i = 0; i < count; i++) { + if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), + &e, sizeof(e))) { + pr_debug_ratelimited( + "%s cannot read MSR entry (%u, 0x%08llx)\n", + __func__, i, gpa + i * sizeof(e)); + goto fail; + } + if (nested_vmx_load_msr_check(vcpu, &e)) { + pr_debug_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, i, e.index, e.reserved); + goto fail; + } + msr.index = e.index; + msr.data = e.value; + if (kvm_set_msr(vcpu, &msr)) { + pr_debug_ratelimited( + "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", + __func__, i, e.index, e.value); + goto fail; + } + } + return 0; +fail: + return i + 1; +} + +static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) +{ + u32 i; + struct vmx_msr_entry e; + + for (i = 0; i < count; i++) { + struct msr_data msr_info; + if (kvm_vcpu_read_guest(vcpu, + gpa + i * sizeof(e), + &e, 2 * sizeof(u32))) { + pr_debug_ratelimited( + "%s cannot read MSR entry (%u, 0x%08llx)\n", + __func__, i, gpa + i * sizeof(e)); + return -EINVAL; + } + if (nested_vmx_store_msr_check(vcpu, &e)) { + pr_debug_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, i, e.index, e.reserved); + return -EINVAL; + } + msr_info.host_initiated = false; + msr_info.index = e.index; + if (kvm_get_msr(vcpu, &msr_info)) { + pr_debug_ratelimited( + "%s cannot read MSR (%u, 0x%x)\n", + __func__, i, e.index); + return -EINVAL; + } + if (kvm_vcpu_write_guest(vcpu, + gpa + i * sizeof(e) + + offsetof(struct vmx_msr_entry, value), + &msr_info.data, sizeof(msr_info.data))) { + pr_debug_ratelimited( + "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", + __func__, i, e.index, msr_info.data); + return -EINVAL; + } + } + return 0; +} + +static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + unsigned long invalid_mask; + + invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); + return (val & invalid_mask) == 0; +} + +/* + * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are + * emulating VM entry into a guest with EPT enabled. + * Returns 0 on success, 1 on failure. Invalid state exit qualification code + * is assigned to entry_failure_code on failure. + */ +static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, + u32 *entry_failure_code) +{ + if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { + if (!nested_cr3_valid(vcpu, cr3)) { + *entry_failure_code = ENTRY_FAIL_DEFAULT; + return 1; + } + + /* + * If PAE paging and EPT are both on, CR3 is not used by the CPU and + * must not be dereferenced. + */ + if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) && + !nested_ept) { + if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) { + *entry_failure_code = ENTRY_FAIL_PDPTE; + return 1; + } + } + } + + if (!nested_ept) + kvm_mmu_new_cr3(vcpu, cr3, false); + + vcpu->arch.cr3 = cr3; + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + + kvm_init_mmu(vcpu, false); + + return 0; +} + +/* + * Returns if KVM is able to config CPU to tag TLB entries + * populated by L2 differently than TLB entries populated + * by L1. + * + * If L1 uses EPT, then TLB entries are tagged with different EPTP. + * + * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged + * with different VPID (L1 entries are tagged with vmx->vpid + * while L2 entries are tagged with vmx->nested.vpid02). + */ +static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + return nested_cpu_has_ept(vmcs12) || + (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); +} + +static u16 nested_get_vpid02(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid; +} + + +static inline bool vmx_control_verify(u32 control, u32 low, u32 high) +{ + return fixed_bits_valid(control, low, high); +} + +static inline u64 vmx_control_msr(u32 low, u32 high) +{ + return low | ((u64)high << 32); +} + +static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) +{ + superset &= mask; + subset &= mask; + + return (superset | subset) == superset; +} + +static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) +{ + const u64 feature_and_reserved = + /* feature (except bit 48; see below) */ + BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | + /* reserved */ + BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); + u64 vmx_basic = vmx->nested.msrs.basic; + + if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) + return -EINVAL; + + /* + * KVM does not emulate a version of VMX that constrains physical + * addresses of VMX structures (e.g. VMCS) to 32-bits. + */ + if (data & BIT_ULL(48)) + return -EINVAL; + + if (vmx_basic_vmcs_revision_id(vmx_basic) != + vmx_basic_vmcs_revision_id(data)) + return -EINVAL; + + if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) + return -EINVAL; + + vmx->nested.msrs.basic = data; + return 0; +} + +static int +vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) +{ + u64 supported; + u32 *lowp, *highp; + + switch (msr_index) { + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + lowp = &vmx->nested.msrs.pinbased_ctls_low; + highp = &vmx->nested.msrs.pinbased_ctls_high; + break; + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + lowp = &vmx->nested.msrs.procbased_ctls_low; + highp = &vmx->nested.msrs.procbased_ctls_high; + break; + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + lowp = &vmx->nested.msrs.exit_ctls_low; + highp = &vmx->nested.msrs.exit_ctls_high; + break; + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + lowp = &vmx->nested.msrs.entry_ctls_low; + highp = &vmx->nested.msrs.entry_ctls_high; + break; + case MSR_IA32_VMX_PROCBASED_CTLS2: + lowp = &vmx->nested.msrs.secondary_ctls_low; + highp = &vmx->nested.msrs.secondary_ctls_high; + break; + default: + BUG(); + } + + supported = vmx_control_msr(*lowp, *highp); + + /* Check must-be-1 bits are still 1. */ + if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) + return -EINVAL; + + /* Check must-be-0 bits are still 0. */ + if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) + return -EINVAL; + + *lowp = data; + *highp = data >> 32; + return 0; +} + +static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) +{ + const u64 feature_and_reserved_bits = + /* feature */ + BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | + BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | + /* reserved */ + GENMASK_ULL(13, 9) | BIT_ULL(31); + u64 vmx_misc; + + vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, + vmx->nested.msrs.misc_high); + + if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) + return -EINVAL; + + if ((vmx->nested.msrs.pinbased_ctls_high & + PIN_BASED_VMX_PREEMPTION_TIMER) && + vmx_misc_preemption_timer_rate(data) != + vmx_misc_preemption_timer_rate(vmx_misc)) + return -EINVAL; + + if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) + return -EINVAL; + + if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) + return -EINVAL; + + if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) + return -EINVAL; + + vmx->nested.msrs.misc_low = data; + vmx->nested.msrs.misc_high = data >> 32; + + /* + * If L1 has read-only VM-exit information fields, use the + * less permissive vmx_vmwrite_bitmap to specify write + * permissions for the shadow VMCS. + */ + if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) + vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); + + return 0; +} + +static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) +{ + u64 vmx_ept_vpid_cap; + + vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps, + vmx->nested.msrs.vpid_caps); + + /* Every bit is either reserved or a feature bit. */ + if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) + return -EINVAL; + + vmx->nested.msrs.ept_caps = data; + vmx->nested.msrs.vpid_caps = data >> 32; + return 0; +} + +static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) +{ + u64 *msr; + + switch (msr_index) { + case MSR_IA32_VMX_CR0_FIXED0: + msr = &vmx->nested.msrs.cr0_fixed0; + break; + case MSR_IA32_VMX_CR4_FIXED0: + msr = &vmx->nested.msrs.cr4_fixed0; + break; + default: + BUG(); + } + + /* + * 1 bits (which indicates bits which "must-be-1" during VMX operation) + * must be 1 in the restored value. + */ + if (!is_bitwise_subset(data, *msr, -1ULL)) + return -EINVAL; + + *msr = data; + return 0; +} + +/* + * Called when userspace is restoring VMX MSRs. + * + * Returns 0 on success, non-0 otherwise. + */ +int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * Don't allow changes to the VMX capability MSRs while the vCPU + * is in VMX operation. + */ + if (vmx->nested.vmxon) + return -EBUSY; + + switch (msr_index) { + case MSR_IA32_VMX_BASIC: + return vmx_restore_vmx_basic(vmx, data); + case MSR_IA32_VMX_PINBASED_CTLS: + case MSR_IA32_VMX_PROCBASED_CTLS: + case MSR_IA32_VMX_EXIT_CTLS: + case MSR_IA32_VMX_ENTRY_CTLS: + /* + * The "non-true" VMX capability MSRs are generated from the + * "true" MSRs, so we do not support restoring them directly. + * + * If userspace wants to emulate VMX_BASIC[55]=0, userspace + * should restore the "true" MSRs with the must-be-1 bits + * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND + * DEFAULT SETTINGS". + */ + return -EINVAL; + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + case MSR_IA32_VMX_PROCBASED_CTLS2: + return vmx_restore_control_msr(vmx, msr_index, data); + case MSR_IA32_VMX_MISC: + return vmx_restore_vmx_misc(vmx, data); + case MSR_IA32_VMX_CR0_FIXED0: + case MSR_IA32_VMX_CR4_FIXED0: + return vmx_restore_fixed0_msr(vmx, msr_index, data); + case MSR_IA32_VMX_CR0_FIXED1: + case MSR_IA32_VMX_CR4_FIXED1: + /* + * These MSRs are generated based on the vCPU's CPUID, so we + * do not support restoring them directly. + */ + return -EINVAL; + case MSR_IA32_VMX_EPT_VPID_CAP: + return vmx_restore_vmx_ept_vpid_cap(vmx, data); + case MSR_IA32_VMX_VMCS_ENUM: + vmx->nested.msrs.vmcs_enum = data; + return 0; + default: + /* + * The rest of the VMX capability MSRs do not support restore. + */ + return -EINVAL; + } +} + +/* Returns 0 on success, non-0 otherwise. */ +int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) +{ + switch (msr_index) { + case MSR_IA32_VMX_BASIC: + *pdata = msrs->basic; + break; + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + case MSR_IA32_VMX_PINBASED_CTLS: + *pdata = vmx_control_msr( + msrs->pinbased_ctls_low, + msrs->pinbased_ctls_high); + if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) + *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + break; + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + case MSR_IA32_VMX_PROCBASED_CTLS: + *pdata = vmx_control_msr( + msrs->procbased_ctls_low, + msrs->procbased_ctls_high); + if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) + *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + break; + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + case MSR_IA32_VMX_EXIT_CTLS: + *pdata = vmx_control_msr( + msrs->exit_ctls_low, + msrs->exit_ctls_high); + if (msr_index == MSR_IA32_VMX_EXIT_CTLS) + *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; + break; + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + case MSR_IA32_VMX_ENTRY_CTLS: + *pdata = vmx_control_msr( + msrs->entry_ctls_low, + msrs->entry_ctls_high); + if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) + *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; + break; + case MSR_IA32_VMX_MISC: + *pdata = vmx_control_msr( + msrs->misc_low, + msrs->misc_high); + break; + case MSR_IA32_VMX_CR0_FIXED0: + *pdata = msrs->cr0_fixed0; + break; + case MSR_IA32_VMX_CR0_FIXED1: + *pdata = msrs->cr0_fixed1; + break; + case MSR_IA32_VMX_CR4_FIXED0: + *pdata = msrs->cr4_fixed0; + break; + case MSR_IA32_VMX_CR4_FIXED1: + *pdata = msrs->cr4_fixed1; + break; + case MSR_IA32_VMX_VMCS_ENUM: + *pdata = msrs->vmcs_enum; + break; + case MSR_IA32_VMX_PROCBASED_CTLS2: + *pdata = vmx_control_msr( + msrs->secondary_ctls_low, + msrs->secondary_ctls_high); + break; + case MSR_IA32_VMX_EPT_VPID_CAP: + *pdata = msrs->ept_caps | + ((u64)msrs->vpid_caps << 32); + break; + case MSR_IA32_VMX_VMFUNC: + *pdata = msrs->vmfunc_controls; + break; + default: + return 1; + } + + return 0; +} + +/* + * Copy the writable VMCS shadow fields back to the VMCS12, in case + * they have been modified by the L1 guest. Note that the "read-only" + * VM-exit information fields are actually writable if the vCPU is + * configured to support "VMWRITE to any supported field in the VMCS." + */ +static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) +{ + const u16 *fields[] = { + shadow_read_write_fields, + shadow_read_only_fields + }; + const int max_fields[] = { + max_shadow_read_write_fields, + max_shadow_read_only_fields + }; + int i, q; + unsigned long field; + u64 field_value; + struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; + + preempt_disable(); + + vmcs_load(shadow_vmcs); + + for (q = 0; q < ARRAY_SIZE(fields); q++) { + for (i = 0; i < max_fields[q]; i++) { + field = fields[q][i]; + field_value = __vmcs_readl(field); + vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value); + } + /* + * Skip the VM-exit information fields if they are read-only. + */ + if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) + break; + } + + vmcs_clear(shadow_vmcs); + vmcs_load(vmx->loaded_vmcs->vmcs); + + preempt_enable(); +} + +static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) +{ + const u16 *fields[] = { + shadow_read_write_fields, + shadow_read_only_fields + }; + const int max_fields[] = { + max_shadow_read_write_fields, + max_shadow_read_only_fields + }; + int i, q; + unsigned long field; + u64 field_value = 0; + struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; + + vmcs_load(shadow_vmcs); + + for (q = 0; q < ARRAY_SIZE(fields); q++) { + for (i = 0; i < max_fields[q]; i++) { + field = fields[q][i]; + vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value); + __vmcs_writel(field, field_value); + } + } + + vmcs_clear(shadow_vmcs); + vmcs_load(vmx->loaded_vmcs->vmcs); +} + +static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) +{ + struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; + struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; + + /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ + vmcs12->tpr_threshold = evmcs->tpr_threshold; + vmcs12->guest_rip = evmcs->guest_rip; + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { + vmcs12->guest_rsp = evmcs->guest_rsp; + vmcs12->guest_rflags = evmcs->guest_rflags; + vmcs12->guest_interruptibility_info = + evmcs->guest_interruptibility_info; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { + vmcs12->cpu_based_vm_exec_control = + evmcs->cpu_based_vm_exec_control; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { + vmcs12->exception_bitmap = evmcs->exception_bitmap; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { + vmcs12->vm_entry_controls = evmcs->vm_entry_controls; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { + vmcs12->vm_entry_intr_info_field = + evmcs->vm_entry_intr_info_field; + vmcs12->vm_entry_exception_error_code = + evmcs->vm_entry_exception_error_code; + vmcs12->vm_entry_instruction_len = + evmcs->vm_entry_instruction_len; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { + vmcs12->host_ia32_pat = evmcs->host_ia32_pat; + vmcs12->host_ia32_efer = evmcs->host_ia32_efer; + vmcs12->host_cr0 = evmcs->host_cr0; + vmcs12->host_cr3 = evmcs->host_cr3; + vmcs12->host_cr4 = evmcs->host_cr4; + vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp; + vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip; + vmcs12->host_rip = evmcs->host_rip; + vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs; + vmcs12->host_es_selector = evmcs->host_es_selector; + vmcs12->host_cs_selector = evmcs->host_cs_selector; + vmcs12->host_ss_selector = evmcs->host_ss_selector; + vmcs12->host_ds_selector = evmcs->host_ds_selector; + vmcs12->host_fs_selector = evmcs->host_fs_selector; + vmcs12->host_gs_selector = evmcs->host_gs_selector; + vmcs12->host_tr_selector = evmcs->host_tr_selector; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { + vmcs12->pin_based_vm_exec_control = + evmcs->pin_based_vm_exec_control; + vmcs12->vm_exit_controls = evmcs->vm_exit_controls; + vmcs12->secondary_vm_exec_control = + evmcs->secondary_vm_exec_control; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { + vmcs12->io_bitmap_a = evmcs->io_bitmap_a; + vmcs12->io_bitmap_b = evmcs->io_bitmap_b; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { + vmcs12->msr_bitmap = evmcs->msr_bitmap; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { + vmcs12->guest_es_base = evmcs->guest_es_base; + vmcs12->guest_cs_base = evmcs->guest_cs_base; + vmcs12->guest_ss_base = evmcs->guest_ss_base; + vmcs12->guest_ds_base = evmcs->guest_ds_base; + vmcs12->guest_fs_base = evmcs->guest_fs_base; + vmcs12->guest_gs_base = evmcs->guest_gs_base; + vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base; + vmcs12->guest_tr_base = evmcs->guest_tr_base; + vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base; + vmcs12->guest_idtr_base = evmcs->guest_idtr_base; + vmcs12->guest_es_limit = evmcs->guest_es_limit; + vmcs12->guest_cs_limit = evmcs->guest_cs_limit; + vmcs12->guest_ss_limit = evmcs->guest_ss_limit; + vmcs12->guest_ds_limit = evmcs->guest_ds_limit; + vmcs12->guest_fs_limit = evmcs->guest_fs_limit; + vmcs12->guest_gs_limit = evmcs->guest_gs_limit; + vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit; + vmcs12->guest_tr_limit = evmcs->guest_tr_limit; + vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit; + vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit; + vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes; + vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes; + vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes; + vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes; + vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes; + vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes; + vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes; + vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes; + vmcs12->guest_es_selector = evmcs->guest_es_selector; + vmcs12->guest_cs_selector = evmcs->guest_cs_selector; + vmcs12->guest_ss_selector = evmcs->guest_ss_selector; + vmcs12->guest_ds_selector = evmcs->guest_ds_selector; + vmcs12->guest_fs_selector = evmcs->guest_fs_selector; + vmcs12->guest_gs_selector = evmcs->guest_gs_selector; + vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector; + vmcs12->guest_tr_selector = evmcs->guest_tr_selector; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { + vmcs12->tsc_offset = evmcs->tsc_offset; + vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; + vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { + vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; + vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; + vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow; + vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow; + vmcs12->guest_cr0 = evmcs->guest_cr0; + vmcs12->guest_cr3 = evmcs->guest_cr3; + vmcs12->guest_cr4 = evmcs->guest_cr4; + vmcs12->guest_dr7 = evmcs->guest_dr7; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { + vmcs12->host_fs_base = evmcs->host_fs_base; + vmcs12->host_gs_base = evmcs->host_gs_base; + vmcs12->host_tr_base = evmcs->host_tr_base; + vmcs12->host_gdtr_base = evmcs->host_gdtr_base; + vmcs12->host_idtr_base = evmcs->host_idtr_base; + vmcs12->host_rsp = evmcs->host_rsp; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { + vmcs12->ept_pointer = evmcs->ept_pointer; + vmcs12->virtual_processor_id = evmcs->virtual_processor_id; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { + vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; + vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; + vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat; + vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer; + vmcs12->guest_pdptr0 = evmcs->guest_pdptr0; + vmcs12->guest_pdptr1 = evmcs->guest_pdptr1; + vmcs12->guest_pdptr2 = evmcs->guest_pdptr2; + vmcs12->guest_pdptr3 = evmcs->guest_pdptr3; + vmcs12->guest_pending_dbg_exceptions = + evmcs->guest_pending_dbg_exceptions; + vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp; + vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip; + vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; + vmcs12->guest_activity_state = evmcs->guest_activity_state; + vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; + } + + /* + * Not used? + * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; + * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; + * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; + * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0; + * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1; + * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2; + * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3; + * vmcs12->page_fault_error_code_mask = + * evmcs->page_fault_error_code_mask; + * vmcs12->page_fault_error_code_match = + * evmcs->page_fault_error_code_match; + * vmcs12->cr3_target_count = evmcs->cr3_target_count; + * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count; + * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count; + * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count; + */ + + /* + * Read only fields: + * vmcs12->guest_physical_address = evmcs->guest_physical_address; + * vmcs12->vm_instruction_error = evmcs->vm_instruction_error; + * vmcs12->vm_exit_reason = evmcs->vm_exit_reason; + * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info; + * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code; + * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field; + * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code; + * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len; + * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info; + * vmcs12->exit_qualification = evmcs->exit_qualification; + * vmcs12->guest_linear_address = evmcs->guest_linear_address; + * + * Not present in struct vmcs12: + * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx; + * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi; + * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi; + * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; + */ + + return 0; +} + +static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) +{ + struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; + struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; + + /* + * Should not be changed by KVM: + * + * evmcs->host_es_selector = vmcs12->host_es_selector; + * evmcs->host_cs_selector = vmcs12->host_cs_selector; + * evmcs->host_ss_selector = vmcs12->host_ss_selector; + * evmcs->host_ds_selector = vmcs12->host_ds_selector; + * evmcs->host_fs_selector = vmcs12->host_fs_selector; + * evmcs->host_gs_selector = vmcs12->host_gs_selector; + * evmcs->host_tr_selector = vmcs12->host_tr_selector; + * evmcs->host_ia32_pat = vmcs12->host_ia32_pat; + * evmcs->host_ia32_efer = vmcs12->host_ia32_efer; + * evmcs->host_cr0 = vmcs12->host_cr0; + * evmcs->host_cr3 = vmcs12->host_cr3; + * evmcs->host_cr4 = vmcs12->host_cr4; + * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp; + * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip; + * evmcs->host_rip = vmcs12->host_rip; + * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs; + * evmcs->host_fs_base = vmcs12->host_fs_base; + * evmcs->host_gs_base = vmcs12->host_gs_base; + * evmcs->host_tr_base = vmcs12->host_tr_base; + * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; + * evmcs->host_idtr_base = vmcs12->host_idtr_base; + * evmcs->host_rsp = vmcs12->host_rsp; + * sync_vmcs12() doesn't read these: + * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; + * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; + * evmcs->msr_bitmap = vmcs12->msr_bitmap; + * evmcs->ept_pointer = vmcs12->ept_pointer; + * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap; + * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; + * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; + * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; + * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0; + * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1; + * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2; + * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3; + * evmcs->tpr_threshold = vmcs12->tpr_threshold; + * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; + * evmcs->exception_bitmap = vmcs12->exception_bitmap; + * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer; + * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control; + * evmcs->vm_exit_controls = vmcs12->vm_exit_controls; + * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control; + * evmcs->page_fault_error_code_mask = + * vmcs12->page_fault_error_code_mask; + * evmcs->page_fault_error_code_match = + * vmcs12->page_fault_error_code_match; + * evmcs->cr3_target_count = vmcs12->cr3_target_count; + * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr; + * evmcs->tsc_offset = vmcs12->tsc_offset; + * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl; + * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask; + * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask; + * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow; + * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow; + * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; + * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; + * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; + * + * Not present in struct vmcs12: + * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; + * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; + * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; + * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; + */ + + evmcs->guest_es_selector = vmcs12->guest_es_selector; + evmcs->guest_cs_selector = vmcs12->guest_cs_selector; + evmcs->guest_ss_selector = vmcs12->guest_ss_selector; + evmcs->guest_ds_selector = vmcs12->guest_ds_selector; + evmcs->guest_fs_selector = vmcs12->guest_fs_selector; + evmcs->guest_gs_selector = vmcs12->guest_gs_selector; + evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector; + evmcs->guest_tr_selector = vmcs12->guest_tr_selector; + + evmcs->guest_es_limit = vmcs12->guest_es_limit; + evmcs->guest_cs_limit = vmcs12->guest_cs_limit; + evmcs->guest_ss_limit = vmcs12->guest_ss_limit; + evmcs->guest_ds_limit = vmcs12->guest_ds_limit; + evmcs->guest_fs_limit = vmcs12->guest_fs_limit; + evmcs->guest_gs_limit = vmcs12->guest_gs_limit; + evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit; + evmcs->guest_tr_limit = vmcs12->guest_tr_limit; + evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit; + evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit; + + evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes; + evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes; + evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes; + evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes; + evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes; + evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes; + evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes; + evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes; + + evmcs->guest_es_base = vmcs12->guest_es_base; + evmcs->guest_cs_base = vmcs12->guest_cs_base; + evmcs->guest_ss_base = vmcs12->guest_ss_base; + evmcs->guest_ds_base = vmcs12->guest_ds_base; + evmcs->guest_fs_base = vmcs12->guest_fs_base; + evmcs->guest_gs_base = vmcs12->guest_gs_base; + evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base; + evmcs->guest_tr_base = vmcs12->guest_tr_base; + evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base; + evmcs->guest_idtr_base = vmcs12->guest_idtr_base; + + evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat; + evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer; + + evmcs->guest_pdptr0 = vmcs12->guest_pdptr0; + evmcs->guest_pdptr1 = vmcs12->guest_pdptr1; + evmcs->guest_pdptr2 = vmcs12->guest_pdptr2; + evmcs->guest_pdptr3 = vmcs12->guest_pdptr3; + + evmcs->guest_pending_dbg_exceptions = + vmcs12->guest_pending_dbg_exceptions; + evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp; + evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip; + + evmcs->guest_activity_state = vmcs12->guest_activity_state; + evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs; + + evmcs->guest_cr0 = vmcs12->guest_cr0; + evmcs->guest_cr3 = vmcs12->guest_cr3; + evmcs->guest_cr4 = vmcs12->guest_cr4; + evmcs->guest_dr7 = vmcs12->guest_dr7; + + evmcs->guest_physical_address = vmcs12->guest_physical_address; + + evmcs->vm_instruction_error = vmcs12->vm_instruction_error; + evmcs->vm_exit_reason = vmcs12->vm_exit_reason; + evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info; + evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code; + evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field; + evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code; + evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len; + evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info; + + evmcs->exit_qualification = vmcs12->exit_qualification; + + evmcs->guest_linear_address = vmcs12->guest_linear_address; + evmcs->guest_rsp = vmcs12->guest_rsp; + evmcs->guest_rflags = vmcs12->guest_rflags; + + evmcs->guest_interruptibility_info = + vmcs12->guest_interruptibility_info; + evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control; + evmcs->vm_entry_controls = vmcs12->vm_entry_controls; + evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field; + evmcs->vm_entry_exception_error_code = + vmcs12->vm_entry_exception_error_code; + evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len; + + evmcs->guest_rip = vmcs12->guest_rip; + + evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; + + return 0; +} + +/* + * This is an equivalent of the nested hypervisor executing the vmptrld + * instruction. + */ +static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, + bool from_launch) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct hv_vp_assist_page assist_page; + + if (likely(!vmx->nested.enlightened_vmcs_enabled)) + return 1; + + if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page))) + return 1; + + if (unlikely(!assist_page.enlighten_vmentry)) + return 1; + + if (unlikely(assist_page.current_nested_vmcs != + vmx->nested.hv_evmcs_vmptr)) { + + if (!vmx->nested.hv_evmcs) + vmx->nested.current_vmptr = -1ull; + + nested_release_evmcs(vcpu); + + vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page( + vcpu, assist_page.current_nested_vmcs); + + if (unlikely(is_error_page(vmx->nested.hv_evmcs_page))) + return 0; + + vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page); + + /* + * Currently, KVM only supports eVMCS version 1 + * (== KVM_EVMCS_VERSION) and thus we expect guest to set this + * value to first u32 field of eVMCS which should specify eVMCS + * VersionNumber. + * + * Guest should be aware of supported eVMCS versions by host by + * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is + * expected to set this CPUID leaf according to the value + * returned in vmcs_version from nested_enable_evmcs(). + * + * However, it turns out that Microsoft Hyper-V fails to comply + * to their own invented interface: When Hyper-V use eVMCS, it + * just sets first u32 field of eVMCS to revision_id specified + * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number + * which is one of the supported versions specified in + * CPUID.0x4000000A.EAX[0:15]. + * + * To overcome Hyper-V bug, we accept here either a supported + * eVMCS version or VMCS12 revision_id as valid values for first + * u32 field of eVMCS. + */ + if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) && + (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) { + nested_release_evmcs(vcpu); + return 0; + } + + vmx->nested.dirty_vmcs12 = true; + /* + * As we keep L2 state for one guest only 'hv_clean_fields' mask + * can't be used when we switch between them. Reset it here for + * simplicity. + */ + vmx->nested.hv_evmcs->hv_clean_fields &= + ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; + vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs; + + /* + * Unlike normal vmcs12, enlightened vmcs12 is not fully + * reloaded from guest's memory (read only fields, fields not + * present in struct hv_enlightened_vmcs, ...). Make sure there + * are no leftovers. + */ + if (from_launch) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + memset(vmcs12, 0, sizeof(*vmcs12)); + vmcs12->hdr.revision_id = VMCS12_REVISION; + } + + } + return 1; +} + +void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * hv_evmcs may end up being not mapped after migration (when + * L2 was running), map it here to make sure vmcs12 changes are + * properly reflected. + */ + if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) + nested_vmx_handle_enlightened_vmptrld(vcpu, false); + + if (vmx->nested.hv_evmcs) { + copy_vmcs12_to_enlightened(vmx); + /* All fields are clean */ + vmx->nested.hv_evmcs->hv_clean_fields |= + HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; + } else { + copy_vmcs12_to_shadow(vmx); + } + + vmx->nested.need_vmcs12_sync = false; +} + +static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) +{ + struct vcpu_vmx *vmx = + container_of(timer, struct vcpu_vmx, nested.preemption_timer); + + vmx->nested.preemption_timer_expired = true; + kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); + kvm_vcpu_kick(&vmx->vcpu); + + return HRTIMER_NORESTART; +} + +static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) +{ + u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * A timer value of zero is architecturally guaranteed to cause + * a VMExit prior to executing any instructions in the guest. + */ + if (preemption_timeout == 0) { + vmx_preemption_timer_fn(&vmx->nested.preemption_timer); + return; + } + + if (vcpu->arch.virtual_tsc_khz == 0) + return; + + preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; + preemption_timeout *= 1000000; + do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); + hrtimer_start(&vmx->nested.preemption_timer, + ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); +} + +static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +{ + if (vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) + return vmcs12->guest_ia32_efer; + else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) + return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME); + else + return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME); +} + +static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) +{ + /* + * If vmcs02 hasn't been initialized, set the constant vmcs02 state + * according to L0's settings (vmcs12 is irrelevant here). Host + * fields that come from L0 and are not constant, e.g. HOST_CR3, + * will be set as needed prior to VMLAUNCH/VMRESUME. + */ + if (vmx->nested.vmcs02_initialized) + return; + vmx->nested.vmcs02_initialized = true; + + /* + * We don't care what the EPTP value is we just need to guarantee + * it's valid so we don't get a false positive when doing early + * consistency checks. + */ + if (enable_ept && nested_early_check) + vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0)); + + /* All VMFUNCs are currently emulated through L0 vmexits. */ + if (cpu_has_vmx_vmfunc()) + vmcs_write64(VM_FUNCTION_CONTROL, 0); + + if (cpu_has_vmx_posted_intr()) + vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); + + if (cpu_has_vmx_msr_bitmap()) + vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); + + if (enable_pml) + vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); + + /* + * Set the MSR load/store lists to match L0's settings. Only the + * addresses are constant (for vmcs02), the counts can change based + * on L2's behavior, e.g. switching to/from long mode. + */ + vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); + vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); + vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); + + vmx_set_constant_host_state(vmx); +} + +static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx, + struct vmcs12 *vmcs12) +{ + prepare_vmcs02_constant_state(vmx); + + vmcs_write64(VMCS_LINK_POINTER, -1ull); + + if (enable_vpid) { + if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) + vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); + else + vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); + } +} + +static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +{ + u32 exec_control, vmcs12_exec_ctrl; + u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); + + if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) + prepare_vmcs02_early_full(vmx, vmcs12); + + /* + * HOST_RSP is normally set correctly in vmx_vcpu_run() just before + * entry, but only if the current (host) sp changed from the value + * we wrote last (vmx->host_rsp). This cache is no longer relevant + * if we switch vmcs, and rather than hold a separate cache per vmcs, + * here we just force the write to happen on entry. host_rsp will + * also be written unconditionally by nested_vmx_check_vmentry_hw() + * if we are doing early consistency checks via hardware. + */ + vmx->host_rsp = 0; + + /* + * PIN CONTROLS + */ + exec_control = vmcs12->pin_based_vm_exec_control; + + /* Preemption timer setting is computed directly in vmx_vcpu_run. */ + exec_control |= vmcs_config.pin_based_exec_ctrl; + exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; + vmx->loaded_vmcs->hv_timer_armed = false; + + /* Posted interrupts setting is only taken from vmcs12. */ + if (nested_cpu_has_posted_intr(vmcs12)) { + vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; + vmx->nested.pi_pending = false; + } else { + exec_control &= ~PIN_BASED_POSTED_INTR; + } + vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); + + /* + * EXEC CONTROLS + */ + exec_control = vmx_exec_control(vmx); /* L0's desires */ + exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; + exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; + exec_control &= ~CPU_BASED_TPR_SHADOW; + exec_control |= vmcs12->cpu_based_vm_exec_control; + + /* + * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if + * nested_get_vmcs12_pages can't fix it up, the illegal value + * will result in a VM entry failure. + */ + if (exec_control & CPU_BASED_TPR_SHADOW) { + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); + vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); + } else { +#ifdef CONFIG_X86_64 + exec_control |= CPU_BASED_CR8_LOAD_EXITING | + CPU_BASED_CR8_STORE_EXITING; +#endif + } + + /* + * A vmexit (to either L1 hypervisor or L0 userspace) is always needed + * for I/O port accesses. + */ + exec_control &= ~CPU_BASED_USE_IO_BITMAPS; + exec_control |= CPU_BASED_UNCOND_IO_EXITING; + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); + + /* + * SECONDARY EXEC CONTROLS + */ + if (cpu_has_secondary_exec_ctrls()) { + exec_control = vmx->secondary_exec_control; + + /* Take the following fields only from vmcs12 */ + exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_ENABLE_INVPCID | + SECONDARY_EXEC_RDTSCP | + SECONDARY_EXEC_XSAVES | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_ENABLE_VMFUNC); + if (nested_cpu_has(vmcs12, + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { + vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & + ~SECONDARY_EXEC_ENABLE_PML; + exec_control |= vmcs12_exec_ctrl; + } + + /* VMCS shadowing for L2 is emulated for now */ + exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; + + if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) + vmcs_write16(GUEST_INTR_STATUS, + vmcs12->guest_intr_status); + + /* + * Write an illegal value to APIC_ACCESS_ADDR. Later, + * nested_get_vmcs12_pages will either fix it up or + * remove the VM execution control. + */ + if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) + vmcs_write64(APIC_ACCESS_ADDR, -1ull); + + if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) + vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); + + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); + } + + /* + * ENTRY CONTROLS + * + * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE + * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate + * on the related bits (if supported by the CPU) in the hope that + * we can avoid VMWrites during vmx_set_efer(). + */ + exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) & + ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER; + if (cpu_has_load_ia32_efer()) { + if (guest_efer & EFER_LMA) + exec_control |= VM_ENTRY_IA32E_MODE; + if (guest_efer != host_efer) + exec_control |= VM_ENTRY_LOAD_IA32_EFER; + } + vm_entry_controls_init(vmx, exec_control); + + /* + * EXIT CONTROLS + * + * L2->L1 exit controls are emulated - the hardware exit is to L0 so + * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER + * bits may be modified by vmx_set_efer() in prepare_vmcs02(). + */ + exec_control = vmx_vmexit_ctrl(); + if (cpu_has_load_ia32_efer() && guest_efer != host_efer) + exec_control |= VM_EXIT_LOAD_IA32_EFER; + vm_exit_controls_init(vmx, exec_control); + + /* + * Conceptually we want to copy the PML address and index from + * vmcs01 here, and then back to vmcs01 on nested vmexit. But, + * since we always flush the log on each vmexit and never change + * the PML address (once set), this happens to be equivalent to + * simply resetting the index in vmcs02. + */ + if (enable_pml) + vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); + + /* + * Interrupt/Exception Fields + */ + if (vmx->nested.nested_run_pending) { + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, + vmcs12->vm_entry_intr_info_field); + vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, + vmcs12->vm_entry_exception_error_code); + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmcs12->vm_entry_instruction_len); + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, + vmcs12->guest_interruptibility_info); + vmx->loaded_vmcs->nmi_known_unmasked = + !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); + } else { + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); + } +} + +static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +{ + struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; + + if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { + vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); + vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); + vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); + vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); + vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); + vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); + vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); + vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); + vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); + vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); + vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); + vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); + vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); + vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); + vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); + vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); + vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); + vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); + vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); + vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); + vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); + vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); + vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); + vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); + vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); + vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); + vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); + vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); + vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); + vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); + vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); + vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); + vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); + vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); + } + + if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) { + vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); + vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, + vmcs12->guest_pending_dbg_exceptions); + vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); + vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); + + /* + * L1 may access the L2's PDPTR, so save them to construct + * vmcs12 + */ + if (enable_ept) { + vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); + vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); + vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); + vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); + } + } + + if (nested_cpu_has_xsaves(vmcs12)) + vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); + + /* + * Whether page-faults are trapped is determined by a combination of + * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. + * If enable_ept, L0 doesn't care about page faults and we should + * set all of these to L1's desires. However, if !enable_ept, L0 does + * care about (at least some) page faults, and because it is not easy + * (if at all possible?) to merge L0 and L1's desires, we simply ask + * to exit on each and every L2 page fault. This is done by setting + * MASK=MATCH=0 and (see below) EB.PF=1. + * Note that below we don't need special code to set EB.PF beyond the + * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, + * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when + * !enable_ept, EB.PF is 1, so the "or" will always be 1. + */ + vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, + enable_ept ? vmcs12->page_fault_error_code_mask : 0); + vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, + enable_ept ? vmcs12->page_fault_error_code_match : 0); + + if (cpu_has_vmx_apicv()) { + vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); + vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); + vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); + vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); + } + + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); + + set_cr4_guest_host_mask(vmx); + + if (kvm_mpx_supported()) { + if (vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) + vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); + else + vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs); + } +} + +/* + * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested + * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it + * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 + * guest in a way that will both be appropriate to L1's requests, and our + * needs. In addition to modifying the active vmcs (which is vmcs02), this + * function also has additional necessary side-effects, like setting various + * vcpu->arch fields. + * Returns 0 on success, 1 on failure. Invalid state exit qualification code + * is assigned to entry_failure_code on failure. + */ +static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, + u32 *entry_failure_code) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; + + if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) { + prepare_vmcs02_full(vmx, vmcs12); + vmx->nested.dirty_vmcs12 = false; + } + + /* + * First, the fields that are shadowed. This must be kept in sync + * with vmcs_shadow_fields.h. + */ + if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { + vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); + vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); + } + + if (vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { + kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); + vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); + } else { + kvm_set_dr(vcpu, 7, vcpu->arch.dr7); + vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); + } + vmx_set_rflags(vcpu, vmcs12->guest_rflags); + + vmx->nested.preemption_timer_expired = false; + if (nested_cpu_has_preemption_timer(vmcs12)) + vmx_start_preemption_timer(vcpu); + + /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the + * bitwise-or of what L1 wants to trap for L2, and what we want to + * trap. Note that CR0.TS also needs updating - we do this later. + */ + update_exception_bitmap(vcpu); + vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; + vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); + + if (vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { + vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); + vcpu->arch.pat = vmcs12->guest_ia32_pat; + } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { + vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); + } + + vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); + + if (kvm_has_tsc_control) + decache_tsc_multiplier(vmx); + + if (enable_vpid) { + /* + * There is no direct mapping between vpid02 and vpid12, the + * vpid02 is per-vCPU for L0 and reused while the value of + * vpid12 is changed w/ one invvpid during nested vmentry. + * The vpid12 is allocated by L1 for L2, so it will not + * influence global bitmap(for vpid01 and vpid02 allocation) + * even if spawn a lot of nested vCPUs. + */ + if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) { + if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { + vmx->nested.last_vpid = vmcs12->virtual_processor_id; + __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false); + } + } else { + /* + * If L1 use EPT, then L0 needs to execute INVEPT on + * EPTP02 instead of EPTP01. Therefore, delay TLB + * flush until vmcs02->eptp is fully updated by + * KVM_REQ_LOAD_CR3. Note that this assumes + * KVM_REQ_TLB_FLUSH is evaluated after + * KVM_REQ_LOAD_CR3 in vcpu_enter_guest(). + */ + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + } + } + + if (nested_cpu_has_ept(vmcs12)) + nested_ept_init_mmu_context(vcpu); + else if (nested_cpu_has2(vmcs12, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + vmx_flush_tlb(vcpu, true); + + /* + * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those + * bits which we consider mandatory enabled. + * The CR0_READ_SHADOW is what L2 should have expected to read given + * the specifications by L1; It's not enough to take + * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we + * have more bits than L1 expected. + */ + vmx_set_cr0(vcpu, vmcs12->guest_cr0); + vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); + + vmx_set_cr4(vcpu, vmcs12->guest_cr4); + vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); + + vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12); + /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ + vmx_set_efer(vcpu, vcpu->arch.efer); + + /* + * Guest state is invalid and unrestricted guest is disabled, + * which means L1 attempted VMEntry to L2 with invalid state. + * Fail the VMEntry. + */ + if (vmx->emulation_required) { + *entry_failure_code = ENTRY_FAIL_DEFAULT; + return 1; + } + + /* Shadow page tables on either EPT or shadow page tables. */ + if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), + entry_failure_code)) + return 1; + + if (!enable_ept) + vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; + + kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); + kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); + return 0; +} + +static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_nmi_exiting(vmcs12) && + nested_cpu_has_virtual_nmis(vmcs12)) + return -EINVAL; + + if (!nested_cpu_has_virtual_nmis(vmcs12) && + nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)) + return -EINVAL; + + return 0; +} + +static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int maxphyaddr = cpuid_maxphyaddr(vcpu); + + /* Check for memory type validity */ + switch (address & VMX_EPTP_MT_MASK) { + case VMX_EPTP_MT_UC: + if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)) + return false; + break; + case VMX_EPTP_MT_WB: + if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)) + return false; + break; + default: + return false; + } + + /* only 4 levels page-walk length are valid */ + if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4) + return false; + + /* Reserved bits should not be set */ + if (address >> maxphyaddr || ((address >> 7) & 0x1f)) + return false; + + /* AD, if set, should be supported */ + if (address & VMX_EPTP_AD_ENABLE_BIT) { + if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)) + return false; + } + + return true; +} + +/* + * Checks related to VM-Execution Control Fields + */ +static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control, + vmx->nested.msrs.pinbased_ctls_low, + vmx->nested.msrs.pinbased_ctls_high) || + !vmx_control_verify(vmcs12->cpu_based_vm_exec_control, + vmx->nested.msrs.procbased_ctls_low, + vmx->nested.msrs.procbased_ctls_high)) + return -EINVAL; + + if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && + !vmx_control_verify(vmcs12->secondary_vm_exec_control, + vmx->nested.msrs.secondary_ctls_low, + vmx->nested.msrs.secondary_ctls_high)) + return -EINVAL; + + if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) || + nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) || + nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) || + nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) || + nested_vmx_check_apic_access_controls(vcpu, vmcs12) || + nested_vmx_check_apicv_controls(vcpu, vmcs12) || + nested_vmx_check_nmi_controls(vmcs12) || + nested_vmx_check_pml_controls(vcpu, vmcs12) || + nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) || + nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) || + nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) || + (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)) + return -EINVAL; + + if (nested_cpu_has_ept(vmcs12) && + !valid_ept_address(vcpu, vmcs12->ept_pointer)) + return -EINVAL; + + if (nested_cpu_has_vmfunc(vmcs12)) { + if (vmcs12->vm_function_control & + ~vmx->nested.msrs.vmfunc_controls) + return -EINVAL; + + if (nested_cpu_has_eptp_switching(vmcs12)) { + if (!nested_cpu_has_ept(vmcs12) || + !page_address_valid(vcpu, vmcs12->eptp_list_address)) + return -EINVAL; + } + } + + return 0; +} + +/* + * Checks related to VM-Exit Control Fields + */ +static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx_control_verify(vmcs12->vm_exit_controls, + vmx->nested.msrs.exit_ctls_low, + vmx->nested.msrs.exit_ctls_high) || + nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)) + return -EINVAL; + + return 0; +} + +/* + * Checks related to VM-Entry Control Fields + */ +static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx_control_verify(vmcs12->vm_entry_controls, + vmx->nested.msrs.entry_ctls_low, + vmx->nested.msrs.entry_ctls_high)) + return -EINVAL; + + /* + * From the Intel SDM, volume 3: + * Fields relevant to VM-entry event injection must be set properly. + * These fields are the VM-entry interruption-information field, the + * VM-entry exception error code, and the VM-entry instruction length. + */ + if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { + u32 intr_info = vmcs12->vm_entry_intr_info_field; + u8 vector = intr_info & INTR_INFO_VECTOR_MASK; + u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; + bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; + bool should_have_error_code; + bool urg = nested_cpu_has2(vmcs12, + SECONDARY_EXEC_UNRESTRICTED_GUEST); + bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; + + /* VM-entry interruption-info field: interruption type */ + if (intr_type == INTR_TYPE_RESERVED || + (intr_type == INTR_TYPE_OTHER_EVENT && + !nested_cpu_supports_monitor_trap_flag(vcpu))) + return -EINVAL; + + /* VM-entry interruption-info field: vector */ + if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || + (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || + (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) + return -EINVAL; + + /* VM-entry interruption-info field: deliver error code */ + should_have_error_code = + intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && + x86_exception_has_error_code(vector); + if (has_error_code != should_have_error_code) + return -EINVAL; + + /* VM-entry exception error code */ + if (has_error_code && + vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)) + return -EINVAL; + + /* VM-entry interruption-info field: reserved bits */ + if (intr_info & INTR_INFO_RESVD_BITS_MASK) + return -EINVAL; + + /* VM-entry instruction length */ + switch (intr_type) { + case INTR_TYPE_SOFT_EXCEPTION: + case INTR_TYPE_SOFT_INTR: + case INTR_TYPE_PRIV_SW_EXCEPTION: + if ((vmcs12->vm_entry_instruction_len > 15) || + (vmcs12->vm_entry_instruction_len == 0 && + !nested_cpu_has_zero_length_injection(vcpu))) + return -EINVAL; + } + } + + if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12)) + return -EINVAL; + + return 0; +} + +/* + * Checks related to Host Control Registers and MSRs + */ +static int nested_check_host_control_regs(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + bool ia32e; + + if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || + !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || + !nested_cr3_valid(vcpu, vmcs12->host_cr3)) + return -EINVAL; + /* + * If the load IA32_EFER VM-exit control is 1, bits reserved in the + * IA32_EFER MSR must be 0 in the field for that register. In addition, + * the values of the LMA and LME bits in the field must each be that of + * the host address-space size VM-exit control. + */ + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { + ia32e = (vmcs12->vm_exit_controls & + VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; + if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || + ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || + ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) + return -EINVAL; + } + + return 0; +} + +/* + * Checks related to Guest Non-register State + */ +static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12) +{ + if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && + vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_check_vm_execution_controls(vcpu, vmcs12) || + nested_check_vm_exit_controls(vcpu, vmcs12) || + nested_check_vm_entry_controls(vcpu, vmcs12)) + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; + + if (nested_check_host_control_regs(vcpu, vmcs12)) + return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; + + if (nested_check_guest_non_reg_state(vmcs12)) + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; + + return 0; +} + +static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + int r; + struct page *page; + struct vmcs12 *shadow; + + if (vmcs12->vmcs_link_pointer == -1ull) + return 0; + + if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)) + return -EINVAL; + + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); + if (is_error_page(page)) + return -EINVAL; + + r = 0; + shadow = kmap(page); + if (shadow->hdr.revision_id != VMCS12_REVISION || + shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)) + r = -EINVAL; + kunmap(page); + kvm_release_page_clean(page); + return r; +} + +static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, + u32 *exit_qual) +{ + bool ia32e; + + *exit_qual = ENTRY_FAIL_DEFAULT; + + if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || + !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) + return 1; + + if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { + *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; + return 1; + } + + /* + * If the load IA32_EFER VM-entry control is 1, the following checks + * are performed on the field for the IA32_EFER MSR: + * - Bits reserved in the IA32_EFER MSR must be 0. + * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of + * the IA-32e mode guest VM-exit control. It must also be identical + * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to + * CR0.PG) is 1. + */ + if (to_vmx(vcpu)->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { + ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; + if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || + ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || + ((vmcs12->guest_cr0 & X86_CR0_PG) && + ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) + return 1; + } + + if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && + (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) || + (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))) + return 1; + + return 0; +} + +static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long cr3, cr4; + + if (!nested_early_check) + return 0; + + if (vmx->msr_autoload.host.nr) + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); + if (vmx->msr_autoload.guest.nr) + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); + + preempt_disable(); + + vmx_prepare_switch_to_guest(vcpu); + + /* + * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, + * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to + * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e. + * there is no need to preserve other bits or save/restore the field. + */ + vmcs_writel(GUEST_RFLAGS, 0); + + cr3 = __get_current_cr3_fast(); + if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { + vmcs_writel(HOST_CR3, cr3); + vmx->loaded_vmcs->host_state.cr3 = cr3; + } + + cr4 = cr4_read_shadow(); + if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { + vmcs_writel(HOST_CR4, cr4); + vmx->loaded_vmcs->host_state.cr4 = cr4; + } + + vmx->__launched = vmx->loaded_vmcs->launched; + + asm( + /* Set HOST_RSP */ + "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */ + __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" + "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t" + "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */ + + /* Check if vmlaunch or vmresume is needed */ + "cmpl $0, %c[launched](%% " _ASM_CX")\n\t" + + "call vmx_vmenter\n\t" + + /* Set vmx->fail accordingly */ + "setbe %c[fail](%% " _ASM_CX")\n\t" + : ASM_CALL_CONSTRAINT + : "c"(vmx), "d"((unsigned long)HOST_RSP), + [launched]"i"(offsetof(struct vcpu_vmx, __launched)), + [fail]"i"(offsetof(struct vcpu_vmx, fail)), + [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), + [wordsize]"i"(sizeof(ulong)) + : "rax", "cc", "memory" + ); + + preempt_enable(); + + if (vmx->msr_autoload.host.nr) + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); + if (vmx->msr_autoload.guest.nr) + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); + + if (vmx->fail) { + WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != + VMXERR_ENTRY_INVALID_CONTROL_FIELD); + vmx->fail = 0; + return 1; + } + + /* + * VMExit clears RFLAGS.IF and DR7, even on a consistency check. + */ + local_irq_enable(); + if (hw_breakpoint_active()) + set_debugreg(__this_cpu_read(cpu_dr7), 7); + + /* + * A non-failing VMEntry means we somehow entered guest mode with + * an illegal RIP, and that's just the tip of the iceberg. There + * is no telling what memory has been modified or what state has + * been exposed to unknown code. Hitting this all but guarantees + * a (very critical) hardware issue. + */ + WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & + VMX_EXIT_REASONS_FAILED_VMENTRY)); + + return 0; +} +STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw); + + +static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12); + +static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct page *page; + u64 hpa; + + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { + /* + * Translate L1 physical address to host physical + * address for vmcs02. Keep the page pinned, so this + * physical address remains valid. We keep a reference + * to it so we can release it later. + */ + if (vmx->nested.apic_access_page) { /* shouldn't happen */ + kvm_release_page_dirty(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = NULL; + } + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); + /* + * If translation failed, no matter: This feature asks + * to exit when accessing the given address, and if it + * can never be accessed, this feature won't do + * anything anyway. + */ + if (!is_error_page(page)) { + vmx->nested.apic_access_page = page; + hpa = page_to_phys(vmx->nested.apic_access_page); + vmcs_write64(APIC_ACCESS_ADDR, hpa); + } else { + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); + } + } + + if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { + if (vmx->nested.virtual_apic_page) { /* shouldn't happen */ + kvm_release_page_dirty(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = NULL; + } + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr); + + /* + * If translation failed, VM entry will fail because + * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. + * Failing the vm entry is _not_ what the processor + * does but it's basically the only possibility we + * have. We could still enter the guest if CR8 load + * exits are enabled, CR8 store exits are enabled, and + * virtualize APIC access is disabled; in this case + * the processor would never use the TPR shadow and we + * could simply clear the bit from the execution + * control. But such a configuration is useless, so + * let's keep the code simple. + */ + if (!is_error_page(page)) { + vmx->nested.virtual_apic_page = page; + hpa = page_to_phys(vmx->nested.virtual_apic_page); + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); + } + } + + if (nested_cpu_has_posted_intr(vmcs12)) { + if (vmx->nested.pi_desc_page) { /* shouldn't happen */ + kunmap(vmx->nested.pi_desc_page); + kvm_release_page_dirty(vmx->nested.pi_desc_page); + vmx->nested.pi_desc_page = NULL; + vmx->nested.pi_desc = NULL; + vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull); + } + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr); + if (is_error_page(page)) + return; + vmx->nested.pi_desc_page = page; + vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page); + vmx->nested.pi_desc = + (struct pi_desc *)((void *)vmx->nested.pi_desc + + (unsigned long)(vmcs12->posted_intr_desc_addr & + (PAGE_SIZE - 1))); + vmcs_write64(POSTED_INTR_DESC_ADDR, + page_to_phys(vmx->nested.pi_desc_page) + + (unsigned long)(vmcs12->posted_intr_desc_addr & + (PAGE_SIZE - 1))); + } + if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_USE_MSR_BITMAPS); + else + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_USE_MSR_BITMAPS); +} + +/* + * Intel's VMX Instruction Reference specifies a common set of prerequisites + * for running VMX instructions (except VMXON, whose prerequisites are + * slightly different). It also specifies what exception to inject otherwise. + * Note that many of these exceptions have priority over VM exits, so they + * don't have to be checked again here. + */ +static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) +{ + if (!to_vmx(vcpu)->nested.vmxon) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 0; + } + + if (vmx_get_cpl(vcpu)) { + kvm_inject_gp(vcpu, 0); + return 0; + } + + return 1; +} + +static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) +{ + u8 rvi = vmx_get_rvi(); + u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); + + return ((rvi & 0xf0) > (vppr & 0xf0)); +} + +static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12); + +/* + * If from_vmentry is false, this is being called from state restore (either RSM + * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. ++ * ++ * Returns: ++ * 0 - success, i.e. proceed with actual VMEnter ++ * 1 - consistency check VMExit ++ * -1 - consistency check VMFail + */ +int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + bool evaluate_pending_interrupts; + u32 exit_reason = EXIT_REASON_INVALID_STATE; + u32 exit_qual; + + evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & + (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING); + if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) + evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); + + if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) + vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); + if (kvm_mpx_supported() && + !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) + vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); + + vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); + + prepare_vmcs02_early(vmx, vmcs12); + + if (from_vmentry) { + nested_get_vmcs12_pages(vcpu); + + if (nested_vmx_check_vmentry_hw(vcpu)) { + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + return -1; + } + + if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) + goto vmentry_fail_vmexit; + } + + enter_guest_mode(vcpu); + if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) + vcpu->arch.tsc_offset += vmcs12->tsc_offset; + + if (prepare_vmcs02(vcpu, vmcs12, &exit_qual)) + goto vmentry_fail_vmexit_guest_mode; + + if (from_vmentry) { + exit_reason = EXIT_REASON_MSR_LOAD_FAIL; + exit_qual = nested_vmx_load_msr(vcpu, + vmcs12->vm_entry_msr_load_addr, + vmcs12->vm_entry_msr_load_count); + if (exit_qual) + goto vmentry_fail_vmexit_guest_mode; + } else { + /* + * The MMU is not initialized to point at the right entities yet and + * "get pages" would need to read data from the guest (i.e. we will + * need to perform gpa to hpa translation). Request a call + * to nested_get_vmcs12_pages before the next VM-entry. The MSRs + * have already been set at vmentry time and should not be reset. + */ + kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); + } + + /* + * If L1 had a pending IRQ/NMI until it executed + * VMLAUNCH/VMRESUME which wasn't delivered because it was + * disallowed (e.g. interrupts disabled), L0 needs to + * evaluate if this pending event should cause an exit from L2 + * to L1 or delivered directly to L2 (e.g. In case L1 don't + * intercept EXTERNAL_INTERRUPT). + * + * Usually this would be handled by the processor noticing an + * IRQ/NMI window request, or checking RVI during evaluation of + * pending virtual interrupts. However, this setting was done + * on VMCS01 and now VMCS02 is active instead. Thus, we force L0 + * to perform pending event evaluation by requesting a KVM_REQ_EVENT. + */ + if (unlikely(evaluate_pending_interrupts)) + kvm_make_request(KVM_REQ_EVENT, vcpu); + + /* + * Note no nested_vmx_succeed or nested_vmx_fail here. At this point + * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet + * returned as far as L1 is concerned. It will only return (and set + * the success flag) when L2 exits (see nested_vmx_vmexit()). + */ + return 0; + + /* + * A failed consistency check that leads to a VMExit during L1's + * VMEnter to L2 is a variation of a normal VMexit, as explained in + * 26.7 "VM-entry failures during or after loading guest state". + */ +vmentry_fail_vmexit_guest_mode: + if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) + vcpu->arch.tsc_offset -= vmcs12->tsc_offset; + leave_guest_mode(vcpu); + +vmentry_fail_vmexit: + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + + if (!from_vmentry) + return 1; + + load_vmcs12_host_state(vcpu, vmcs12); + vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY; + vmcs12->exit_qualification = exit_qual; + if (enable_shadow_vmcs || vmx->nested.hv_evmcs) + vmx->nested.need_vmcs12_sync = true; + return 1; +} + +/* + * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 + * for running an L2 nested guest. + */ +static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) +{ + struct vmcs12 *vmcs12; + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); + int ret; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true)) + return 1; + + if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull) + return nested_vmx_failInvalid(vcpu); + + vmcs12 = get_vmcs12(vcpu); + + /* + * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact + * that there *is* a valid VMCS pointer, RFLAGS.CF is set + * rather than RFLAGS.ZF, and no error number is stored to the + * VM-instruction error field. + */ + if (vmcs12->hdr.shadow_vmcs) + return nested_vmx_failInvalid(vcpu); + + if (vmx->nested.hv_evmcs) { + copy_enlightened_to_vmcs12(vmx); + /* Enlightened VMCS doesn't have launch state */ + vmcs12->launch_state = !launch; + } else if (enable_shadow_vmcs) { + copy_shadow_to_vmcs12(vmx); + } + + /* + * The nested entry process starts with enforcing various prerequisites + * on vmcs12 as required by the Intel SDM, and act appropriately when + * they fail: As the SDM explains, some conditions should cause the + * instruction to fail, while others will cause the instruction to seem + * to succeed, but return an EXIT_REASON_INVALID_STATE. + * To speed up the normal (success) code path, we should avoid checking + * for misconfigurations which will anyway be caught by the processor + * when using the merged vmcs02. + */ + if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) + return nested_vmx_failValid(vcpu, + VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); + + if (vmcs12->launch_state == launch) + return nested_vmx_failValid(vcpu, + launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS + : VMXERR_VMRESUME_NONLAUNCHED_VMCS); + + ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12); + if (ret) + return nested_vmx_failValid(vcpu, ret); + + /* + * We're finally done with prerequisite checking, and can start with + * the nested entry. + */ + vmx->nested.nested_run_pending = 1; + ret = nested_vmx_enter_non_root_mode(vcpu, true); + vmx->nested.nested_run_pending = !ret; + if (ret > 0) + return 1; + else if (ret) + return nested_vmx_failValid(vcpu, + VMXERR_ENTRY_INVALID_CONTROL_FIELD); + + /* Hide L1D cache contents from the nested guest. */ + vmx->vcpu.arch.l1tf_flush_l1d = true; + + /* + * Must happen outside of nested_vmx_enter_non_root_mode() as it will + * also be used as part of restoring nVMX state for + * snapshot restore (migration). + * + * In this flow, it is assumed that vmcs12 cache was + * trasferred as part of captured nVMX state and should + * therefore not be read from guest memory (which may not + * exist on destination host yet). + */ + nested_cache_shadow_vmcs12(vcpu, vmcs12); + + /* + * If we're entering a halted L2 vcpu and the L2 vcpu won't be + * awakened by event injection or by an NMI-window VM-exit or + * by an interrupt-window VM-exit, halt the vcpu. + */ + if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && + !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && + !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) && + !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) && + (vmcs12->guest_rflags & X86_EFLAGS_IF))) { + vmx->nested.nested_run_pending = 0; + return kvm_vcpu_halt(vcpu); + } + return 1; +} + +/* + * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date + * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). + * This function returns the new value we should put in vmcs12.guest_cr0. + * It's not enough to just return the vmcs02 GUEST_CR0. Rather, + * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now + * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 + * didn't trap the bit, because if L1 did, so would L0). + * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have + * been modified by L2, and L1 knows it. So just leave the old value of + * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 + * isn't relevant, because if L0 traps this bit it can set it to anything. + * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have + * changed these bits, and therefore they need to be updated, but L0 + * didn't necessarily allow them to be changed in GUEST_CR0 - and rather + * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. + */ +static inline unsigned long +vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + return + /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | + /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | + /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | + vcpu->arch.cr0_guest_owned_bits)); +} + +static inline unsigned long +vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + return + /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | + /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | + /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | + vcpu->arch.cr4_guest_owned_bits)); +} + +static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + u32 idt_vectoring; + unsigned int nr; + + if (vcpu->arch.exception.injected) { + nr = vcpu->arch.exception.nr; + idt_vectoring = nr | VECTORING_INFO_VALID_MASK; + + if (kvm_exception_is_soft(nr)) { + vmcs12->vm_exit_instruction_len = + vcpu->arch.event_exit_inst_len; + idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; + } else + idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; + + if (vcpu->arch.exception.has_error_code) { + idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; + vmcs12->idt_vectoring_error_code = + vcpu->arch.exception.error_code; + } + + vmcs12->idt_vectoring_info_field = idt_vectoring; + } else if (vcpu->arch.nmi_injected) { + vmcs12->idt_vectoring_info_field = + INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; + } else if (vcpu->arch.interrupt.injected) { + nr = vcpu->arch.interrupt.nr; + idt_vectoring = nr | VECTORING_INFO_VALID_MASK; + + if (vcpu->arch.interrupt.soft) { + idt_vectoring |= INTR_TYPE_SOFT_INTR; + vmcs12->vm_entry_instruction_len = + vcpu->arch.event_exit_inst_len; + } else + idt_vectoring |= INTR_TYPE_EXT_INTR; + + vmcs12->idt_vectoring_info_field = idt_vectoring; + } +} + + +static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + gfn_t gfn; + + /* + * Don't need to mark the APIC access page dirty; it is never + * written to by the CPU during APIC virtualization. + */ + + if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { + gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; + kvm_vcpu_mark_page_dirty(vcpu, gfn); + } + + if (nested_cpu_has_posted_intr(vmcs12)) { + gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; + kvm_vcpu_mark_page_dirty(vcpu, gfn); + } +} + +static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int max_irr; + void *vapic_page; + u16 status; + + if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) + return; + + vmx->nested.pi_pending = false; + if (!pi_test_and_clear_on(vmx->nested.pi_desc)) + return; + + max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); + if (max_irr != 256) { + vapic_page = kmap(vmx->nested.virtual_apic_page); + __kvm_apic_update_irr(vmx->nested.pi_desc->pir, + vapic_page, &max_irr); + kunmap(vmx->nested.virtual_apic_page); + + status = vmcs_read16(GUEST_INTR_STATUS); + if ((u8)max_irr > ((u8)status & 0xff)) { + status &= ~0xff; + status |= (u8)max_irr; + vmcs_write16(GUEST_INTR_STATUS, status); + } + } + + nested_mark_vmcs12_pages_dirty(vcpu); +} + +static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, + unsigned long exit_qual) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned int nr = vcpu->arch.exception.nr; + u32 intr_info = nr | INTR_INFO_VALID_MASK; + + if (vcpu->arch.exception.has_error_code) { + vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; + intr_info |= INTR_INFO_DELIVER_CODE_MASK; + } + + if (kvm_exception_is_soft(nr)) + intr_info |= INTR_TYPE_SOFT_EXCEPTION; + else + intr_info |= INTR_TYPE_HARD_EXCEPTION; + + if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && + vmx_get_nmi_mask(vcpu)) + intr_info |= INTR_INFO_UNBLOCK_NMI; + + nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); +} + +static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long exit_qual; + bool block_nested_events = + vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); + + if (vcpu->arch.exception.pending && + nested_vmx_check_exception(vcpu, &exit_qual)) { + if (block_nested_events) + return -EBUSY; + nested_vmx_inject_exception_vmexit(vcpu, exit_qual); + return 0; + } + + if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && + vmx->nested.preemption_timer_expired) { + if (block_nested_events) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); + return 0; + } + + if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { + if (block_nested_events) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, + NMI_VECTOR | INTR_TYPE_NMI_INTR | + INTR_INFO_VALID_MASK, 0); + /* + * The NMI-triggered VM exit counts as injection: + * clear this one and block further NMIs. + */ + vcpu->arch.nmi_pending = 0; + vmx_set_nmi_mask(vcpu, true); + return 0; + } + + if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && + nested_exit_on_intr(vcpu)) { + if (block_nested_events) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); + return 0; + } + + vmx_complete_nested_posted_interrupt(vcpu); + return 0; +} + +static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) +{ + ktime_t remaining = + hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); + u64 value; + + if (ktime_to_ns(remaining) <= 0) + return 0; + + value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; + do_div(value, 1000000); + return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; +} + +/* + * Update the guest state fields of vmcs12 to reflect changes that + * occurred while L2 was running. (The "IA-32e mode guest" bit of the + * VM-entry controls is also updated, since this is really a guest + * state bit.) + */ +static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); + vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); + + vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); + vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); + vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); + + vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); + vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); + vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); + vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); + vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); + vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); + vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); + vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); + vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); + vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); + vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); + vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); + vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); + vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); + vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); + vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); + vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); + vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); + vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); + vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); + vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); + vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); + vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); + vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); + vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); + vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); + vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); + vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); + vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); + vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); + vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); + vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); + vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); + vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); + vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); + vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); + + vmcs12->guest_interruptibility_info = + vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + vmcs12->guest_pending_dbg_exceptions = + vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); + if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) + vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; + else + vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; + + if (nested_cpu_has_preemption_timer(vmcs12)) { + if (vmcs12->vm_exit_controls & + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) + vmcs12->vmx_preemption_timer_value = + vmx_get_preemption_timer_value(vcpu); + hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); + } + + /* + * In some cases (usually, nested EPT), L2 is allowed to change its + * own CR3 without exiting. If it has changed it, we must keep it. + * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined + * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. + * + * Additionally, restore L2's PDPTR to vmcs12. + */ + if (enable_ept) { + vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); + vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); + vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); + vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); + vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); + } + + vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); + + if (nested_cpu_has_vid(vmcs12)) + vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); + + vmcs12->vm_entry_controls = + (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | + (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); + + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { + kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); + vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); + } + + /* TODO: These cannot have changed unless we have MSR bitmaps and + * the relevant bit asks not to trap the change */ + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) + vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) + vmcs12->guest_ia32_efer = vcpu->arch.efer; + vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); + vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); + vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); + if (kvm_mpx_supported()) + vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); +} + +/* + * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits + * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), + * and this function updates it to reflect the changes to the guest state while + * L2 was running (and perhaps made some exits which were handled directly by L0 + * without going back to L1), and to reflect the exit reason. + * Note that we do not have to copy here all VMCS fields, just those that + * could have changed by the L2 guest or the exit - i.e., the guest-state and + * exit-information fields only. Other fields are modified by L1 with VMWRITE, + * which already writes to vmcs12 directly. + */ +static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, + u32 exit_reason, u32 exit_intr_info, + unsigned long exit_qualification) +{ + /* update guest state fields: */ + sync_vmcs12(vcpu, vmcs12); + + /* update exit information fields: */ + + vmcs12->vm_exit_reason = exit_reason; + vmcs12->exit_qualification = exit_qualification; + vmcs12->vm_exit_intr_info = exit_intr_info; + + vmcs12->idt_vectoring_info_field = 0; + vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + + if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { + vmcs12->launch_state = 1; + + /* vm_entry_intr_info_field is cleared on exit. Emulate this + * instead of reading the real value. */ + vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; + + /* + * Transfer the event that L0 or L1 may wanted to inject into + * L2 to IDT_VECTORING_INFO_FIELD. + */ + vmcs12_save_pending_event(vcpu, vmcs12); + + /* + * According to spec, there's no need to store the guest's + * MSRs if the exit is due to a VM-entry failure that occurs + * during or after loading the guest state. Since this exit + * does not fall in that category, we need to save the MSRs. + */ + if (nested_vmx_store_msr(vcpu, + vmcs12->vm_exit_msr_store_addr, + vmcs12->vm_exit_msr_store_count)) + nested_vmx_abort(vcpu, + VMX_ABORT_SAVE_GUEST_MSR_FAIL); + } + + /* + * Drop what we picked up for L2 via vmx_complete_interrupts. It is + * preserved above and would only end up incorrectly in L1. + */ + vcpu->arch.nmi_injected = false; + kvm_clear_exception_queue(vcpu); + kvm_clear_interrupt_queue(vcpu); +} + +/* + * A part of what we need to when the nested L2 guest exits and we want to + * run its L1 parent, is to reset L1's guest state to the host state specified + * in vmcs12. + * This function is to be called not only on normal nested exit, but also on + * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry + * Failures During or After Loading Guest State"). + * This function should be called when the active VMCS is L1's (vmcs01). + */ +static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct kvm_segment seg; + u32 entry_failure_code; + + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) + vcpu->arch.efer = vmcs12->host_ia32_efer; + else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) + vcpu->arch.efer |= (EFER_LMA | EFER_LME); + else + vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); + vmx_set_efer(vcpu, vcpu->arch.efer); + + kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); + kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); + vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); + vmx_set_interrupt_shadow(vcpu, 0); + + /* + * Note that calling vmx_set_cr0 is important, even if cr0 hasn't + * actually changed, because vmx_set_cr0 refers to efer set above. + * + * CR0_GUEST_HOST_MASK is already set in the original vmcs01 + * (KVM doesn't change it); + */ + vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; + vmx_set_cr0(vcpu, vmcs12->host_cr0); + + /* Same as above - no reason to call set_cr4_guest_host_mask(). */ + vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); + vmx_set_cr4(vcpu, vmcs12->host_cr4); + + nested_ept_uninit_mmu_context(vcpu); + + /* + * Only PDPTE load can fail as the value of cr3 was checked on entry and + * couldn't have changed. + */ + if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) + nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); + + if (!enable_ept) + vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; + + /* + * If vmcs01 doesn't use VPID, CPU flushes TLB on every + * VMEntry/VMExit. Thus, no need to flush TLB. + * + * If vmcs12 doesn't use VPID, L1 expects TLB to be + * flushed on every VMEntry/VMExit. + * + * Otherwise, we can preserve TLB entries as long as we are + * able to tag L1 TLB entries differently than L2 TLB entries. + * + * If vmcs12 uses EPT, we need to execute this flush on EPTP01 + * and therefore we request the TLB flush to happen only after VMCS EPTP + * has been set by KVM_REQ_LOAD_CR3. + */ + if (enable_vpid && + (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) { + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + } + + vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); + vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); + vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); + vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); + vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); + vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); + vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); + + /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ + if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) + vmcs_write64(GUEST_BNDCFGS, 0); + + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { + vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); + vcpu->arch.pat = vmcs12->host_ia32_pat; + } + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) + vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, + vmcs12->host_ia32_perf_global_ctrl); + + /* Set L1 segment info according to Intel SDM + 27.5.2 Loading Host Segment and Descriptor-Table Registers */ + seg = (struct kvm_segment) { + .base = 0, + .limit = 0xFFFFFFFF, + .selector = vmcs12->host_cs_selector, + .type = 11, + .present = 1, + .s = 1, + .g = 1 + }; + if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) + seg.l = 1; + else + seg.db = 1; + vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); + seg = (struct kvm_segment) { + .base = 0, + .limit = 0xFFFFFFFF, + .type = 3, + .present = 1, + .s = 1, + .db = 1, + .g = 1 + }; + seg.selector = vmcs12->host_ds_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); + seg.selector = vmcs12->host_es_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); + seg.selector = vmcs12->host_ss_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); + seg.selector = vmcs12->host_fs_selector; + seg.base = vmcs12->host_fs_base; + vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); + seg.selector = vmcs12->host_gs_selector; + seg.base = vmcs12->host_gs_base; + vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); + seg = (struct kvm_segment) { + .base = vmcs12->host_tr_base, + .limit = 0x67, + .selector = vmcs12->host_tr_selector, + .type = 11, + .present = 1 + }; + vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); + + kvm_set_dr(vcpu, 7, 0x400); + vmcs_write64(GUEST_IA32_DEBUGCTL, 0); + + if (cpu_has_vmx_msr_bitmap()) + vmx_update_msr_bitmap(vcpu); + + if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, + vmcs12->vm_exit_msr_load_count)) + nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); +} + +static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) +{ + struct shared_msr_entry *efer_msr; + unsigned int i; + + if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) + return vmcs_read64(GUEST_IA32_EFER); + + if (cpu_has_load_ia32_efer()) + return host_efer; + + for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { + if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) + return vmx->msr_autoload.guest.val[i].value; + } + + efer_msr = find_msr_entry(vmx, MSR_EFER); + if (efer_msr) + return efer_msr->data; + + return host_efer; +} + +static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmx_msr_entry g, h; + struct msr_data msr; + gpa_t gpa; + u32 i, j; + + vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); + + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { + /* + * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set + * as vmcs01.GUEST_DR7 contains a userspace defined value + * and vcpu->arch.dr7 is not squirreled away before the + * nested VMENTER (not worth adding a variable in nested_vmx). + */ + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) + kvm_set_dr(vcpu, 7, DR7_FIXED_1); + else + WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); + } + + /* + * Note that calling vmx_set_{efer,cr0,cr4} is important as they + * handle a variety of side effects to KVM's software model. + */ + vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); + + vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; + vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); + + vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); + vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); + + nested_ept_uninit_mmu_context(vcpu); + vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + + /* + * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs + * from vmcs01 (if necessary). The PDPTRs are not loaded on + * VMFail, like everything else we just need to ensure our + * software model is up-to-date. + */ + ept_save_pdptrs(vcpu); + + kvm_mmu_reset_context(vcpu); + + if (cpu_has_vmx_msr_bitmap()) + vmx_update_msr_bitmap(vcpu); + + /* + * This nasty bit of open coding is a compromise between blindly + * loading L1's MSRs using the exit load lists (incorrect emulation + * of VMFail), leaving the nested VM's MSRs in the software model + * (incorrect behavior) and snapshotting the modified MSRs (too + * expensive since the lists are unbound by hardware). For each + * MSR that was (prematurely) loaded from the nested VMEntry load + * list, reload it from the exit load list if it exists and differs + * from the guest value. The intent is to stuff host state as + * silently as possible, not to fully process the exit load list. + */ + msr.host_initiated = false; + for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { + gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); + if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { + pr_debug_ratelimited( + "%s read MSR index failed (%u, 0x%08llx)\n", + __func__, i, gpa); + goto vmabort; + } + + for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { + gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); + if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { + pr_debug_ratelimited( + "%s read MSR failed (%u, 0x%08llx)\n", + __func__, j, gpa); + goto vmabort; + } + if (h.index != g.index) + continue; + if (h.value == g.value) + break; + + if (nested_vmx_load_msr_check(vcpu, &h)) { + pr_debug_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, j, h.index, h.reserved); + goto vmabort; + } + + msr.index = h.index; + msr.data = h.value; + if (kvm_set_msr(vcpu, &msr)) { + pr_debug_ratelimited( + "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", + __func__, j, h.index, h.value); + goto vmabort; + } + } + } + + return; + +vmabort: + nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); +} + +/* + * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 + * and modify vmcs12 to make it see what it would expect to see there if + * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) + */ +void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, + u32 exit_intr_info, unsigned long exit_qualification) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + /* trying to cancel vmlaunch/vmresume is a bug */ + WARN_ON_ONCE(vmx->nested.nested_run_pending); + + leave_guest_mode(vcpu); + + if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) + vcpu->arch.tsc_offset -= vmcs12->tsc_offset; + + if (likely(!vmx->fail)) { + if (exit_reason == -1) + sync_vmcs12(vcpu, vmcs12); + else + prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, + exit_qualification); + + /* + * Must happen outside of sync_vmcs12() as it will + * also be used to capture vmcs12 cache as part of + * capturing nVMX state for snapshot (migration). + * + * Otherwise, this flush will dirty guest memory at a + * point it is already assumed by user-space to be + * immutable. + */ + nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); + } else { + /* + * The only expected VM-instruction error is "VM entry with + * invalid control field(s)." Anything else indicates a + * problem with L0. And we should never get here with a + * VMFail of any type if early consistency checks are enabled. + */ + WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != + VMXERR_ENTRY_INVALID_CONTROL_FIELD); + WARN_ON_ONCE(nested_early_check); + } + + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + + /* Update any VMCS fields that might have changed while L2 ran */ + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); + vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); + + if (kvm_has_tsc_control) + decache_tsc_multiplier(vmx); + + if (vmx->nested.change_vmcs01_virtual_apic_mode) { + vmx->nested.change_vmcs01_virtual_apic_mode = false; + vmx_set_virtual_apic_mode(vcpu); + } else if (!nested_cpu_has_ept(vmcs12) && + nested_cpu_has2(vmcs12, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { + vmx_flush_tlb(vcpu, true); + } + + /* This is needed for same reason as it was needed in prepare_vmcs02 */ + vmx->host_rsp = 0; + + /* Unpin physical memory we referred to in vmcs02 */ + if (vmx->nested.apic_access_page) { + kvm_release_page_dirty(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = NULL; + } + if (vmx->nested.virtual_apic_page) { + kvm_release_page_dirty(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = NULL; + } + if (vmx->nested.pi_desc_page) { + kunmap(vmx->nested.pi_desc_page); + kvm_release_page_dirty(vmx->nested.pi_desc_page); + vmx->nested.pi_desc_page = NULL; + vmx->nested.pi_desc = NULL; + } + + /* + * We are now running in L2, mmu_notifier will force to reload the + * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. + */ + kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); + + if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs)) + vmx->nested.need_vmcs12_sync = true; + + /* in case we halted in L2 */ + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + + if (likely(!vmx->fail)) { + /* + * TODO: SDM says that with acknowledge interrupt on + * exit, bit 31 of the VM-exit interrupt information + * (valid interrupt) is always set to 1 on + * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't + * need kvm_cpu_has_interrupt(). See the commit + * message for details. + */ + if (nested_exit_intr_ack_set(vcpu) && + exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && + kvm_cpu_has_interrupt(vcpu)) { + int irq = kvm_cpu_get_interrupt(vcpu); + WARN_ON(irq < 0); + vmcs12->vm_exit_intr_info = irq | + INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; + } + + if (exit_reason != -1) + trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, + vmcs12->exit_qualification, + vmcs12->idt_vectoring_info_field, + vmcs12->vm_exit_intr_info, + vmcs12->vm_exit_intr_error_code, + KVM_ISA_VMX); + + load_vmcs12_host_state(vcpu, vmcs12); + + return; + } + + /* + * After an early L2 VM-entry failure, we're now back + * in L1 which thinks it just finished a VMLAUNCH or + * VMRESUME instruction, so we need to set the failure + * flag and the VM-instruction error field of the VMCS + * accordingly, and skip the emulated instruction. + */ + (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + + /* + * Restore L1's host state to KVM's software model. We're here + * because a consistency check was caught by hardware, which + * means some amount of guest state has been propagated to KVM's + * model and needs to be unwound to the host's state. + */ + nested_vmx_restore_host_state(vcpu); + + vmx->fail = 0; +} + +/* + * Decode the memory-address operand of a vmx instruction, as recorded on an + * exit caused by such an instruction (run by a guest hypervisor). + * On success, returns 0. When the operand is invalid, returns 1 and throws + * #UD or #GP. + */ +int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, + u32 vmx_instruction_info, bool wr, gva_t *ret) +{ + gva_t off; + bool exn; + struct kvm_segment s; + + /* + * According to Vol. 3B, "Information for VM Exits Due to Instruction + * Execution", on an exit, vmx_instruction_info holds most of the + * addressing components of the operand. Only the displacement part + * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). + * For how an actual address is calculated from all these components, + * refer to Vol. 1, "Operand Addressing". + */ + int scaling = vmx_instruction_info & 3; + int addr_size = (vmx_instruction_info >> 7) & 7; + bool is_reg = vmx_instruction_info & (1u << 10); + int seg_reg = (vmx_instruction_info >> 15) & 7; + int index_reg = (vmx_instruction_info >> 18) & 0xf; + bool index_is_valid = !(vmx_instruction_info & (1u << 22)); + int base_reg = (vmx_instruction_info >> 23) & 0xf; + bool base_is_valid = !(vmx_instruction_info & (1u << 27)); + + if (is_reg) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + /* Addr = segment_base + offset */ + /* offset = base + [index * scale] + displacement */ + off = exit_qualification; /* holds the displacement */ + if (base_is_valid) + off += kvm_register_read(vcpu, base_reg); + if (index_is_valid) + off += kvm_register_read(vcpu, index_reg)<<scaling; + vmx_get_segment(vcpu, &s, seg_reg); + *ret = s.base + off; + + if (addr_size == 1) /* 32 bit */ + *ret &= 0xffffffff; + + /* Checks for #GP/#SS exceptions. */ + exn = false; + if (is_long_mode(vcpu)) { + /* Long mode: #GP(0)/#SS(0) if the memory address is in a + * non-canonical form. This is the only check on the memory + * destination for long mode! + */ + exn = is_noncanonical_address(*ret, vcpu); + } else if (is_protmode(vcpu)) { + /* Protected mode: apply checks for segment validity in the + * following order: + * - segment type check (#GP(0) may be thrown) + * - usability check (#GP(0)/#SS(0)) + * - limit check (#GP(0)/#SS(0)) + */ + if (wr) + /* #GP(0) if the destination operand is located in a + * read-only data segment or any code segment. + */ + exn = ((s.type & 0xa) == 0 || (s.type & 8)); + else + /* #GP(0) if the source operand is located in an + * execute-only code segment + */ + exn = ((s.type & 0xa) == 8); + if (exn) { + kvm_queue_exception_e(vcpu, GP_VECTOR, 0); + return 1; + } + /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. + */ + exn = (s.unusable != 0); + /* Protected mode: #GP(0)/#SS(0) if the memory + * operand is outside the segment limit. + */ + exn = exn || (off + sizeof(u64) > s.limit); + } + if (exn) { + kvm_queue_exception_e(vcpu, + seg_reg == VCPU_SREG_SS ? + SS_VECTOR : GP_VECTOR, + 0); + return 1; + } + + return 0; +} + +static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) +{ + gva_t gva; + struct x86_exception e; + + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) + return 1; + + if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + + return 0; +} + +/* + * Allocate a shadow VMCS and associate it with the currently loaded + * VMCS, unless such a shadow VMCS already exists. The newly allocated + * VMCS is also VMCLEARed, so that it is ready for use. + */ +static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; + + /* + * We should allocate a shadow vmcs for vmcs01 only when L1 + * executes VMXON and free it when L1 executes VMXOFF. + * As it is invalid to execute VMXON twice, we shouldn't reach + * here when vmcs01 already have an allocated shadow vmcs. + */ + WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); + + if (!loaded_vmcs->shadow_vmcs) { + loaded_vmcs->shadow_vmcs = alloc_vmcs(true); + if (loaded_vmcs->shadow_vmcs) + vmcs_clear(loaded_vmcs->shadow_vmcs); + } + return loaded_vmcs->shadow_vmcs; +} + +static int enter_vmx_operation(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int r; + + r = alloc_loaded_vmcs(&vmx->nested.vmcs02); + if (r < 0) + goto out_vmcs02; + + vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); + if (!vmx->nested.cached_vmcs12) + goto out_cached_vmcs12; + + vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); + if (!vmx->nested.cached_shadow_vmcs12) + goto out_cached_shadow_vmcs12; + + if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) + goto out_shadow_vmcs; + + hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, + HRTIMER_MODE_REL_PINNED); + vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; + + vmx->nested.vpid02 = allocate_vpid(); + + vmx->nested.vmcs02_initialized = false; + vmx->nested.vmxon = true; + + if (pt_mode == PT_MODE_HOST_GUEST) { + vmx->pt_desc.guest.ctl = 0; + pt_update_intercept_for_msr(vmx); + } + + return 0; + +out_shadow_vmcs: + kfree(vmx->nested.cached_shadow_vmcs12); + +out_cached_shadow_vmcs12: + kfree(vmx->nested.cached_vmcs12); + +out_cached_vmcs12: + free_loaded_vmcs(&vmx->nested.vmcs02); + +out_vmcs02: + return -ENOMEM; +} + +/* + * Emulate the VMXON instruction. + * Currently, we just remember that VMX is active, and do not save or even + * inspect the argument to VMXON (the so-called "VMXON pointer") because we + * do not currently need to store anything in that guest-allocated memory + * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their + * argument is different from the VMXON pointer (which the spec says they do). + */ +static int handle_vmon(struct kvm_vcpu *vcpu) +{ + int ret; + gpa_t vmptr; + struct page *page; + struct vcpu_vmx *vmx = to_vmx(vcpu); + const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED + | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + + /* + * The Intel VMX Instruction Reference lists a bunch of bits that are + * prerequisite to running VMXON, most notably cr4.VMXE must be set to + * 1 (see vmx_set_cr4() for when we allow the guest to set this). + * Otherwise, we should fail with #UD. But most faulting conditions + * have already been checked by hardware, prior to the VM-exit for + * VMXON. We do test guest cr4.VMXE because processor CR4 always has + * that bit set to 1 in non-root mode. + */ + if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + /* CPL=0 must be checked manually. */ + if (vmx_get_cpl(vcpu)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + if (vmx->nested.vmxon) + return nested_vmx_failValid(vcpu, + VMXERR_VMXON_IN_VMX_ROOT_OPERATION); + + if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) + != VMXON_NEEDED_FEATURES) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + if (nested_vmx_get_vmptr(vcpu, &vmptr)) + return 1; + + /* + * SDM 3: 24.11.5 + * The first 4 bytes of VMXON region contain the supported + * VMCS revision identifier + * + * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; + * which replaces physical address width with 32 + */ + if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) + return nested_vmx_failInvalid(vcpu); + + page = kvm_vcpu_gpa_to_page(vcpu, vmptr); + if (is_error_page(page)) + return nested_vmx_failInvalid(vcpu); + + if (*(u32 *)kmap(page) != VMCS12_REVISION) { + kunmap(page); + kvm_release_page_clean(page); + return nested_vmx_failInvalid(vcpu); + } + kunmap(page); + kvm_release_page_clean(page); + + vmx->nested.vmxon_ptr = vmptr; + ret = enter_vmx_operation(vcpu); + if (ret) + return ret; + + return nested_vmx_succeed(vcpu); +} + +static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (vmx->nested.current_vmptr == -1ull) + return; + + if (enable_shadow_vmcs) { + /* copy to memory all shadowed fields in case + they were modified */ + copy_shadow_to_vmcs12(vmx); + vmx->nested.need_vmcs12_sync = false; + vmx_disable_shadow_vmcs(vmx); + } + vmx->nested.posted_intr_nv = -1; + + /* Flush VMCS12 to guest memory */ + kvm_vcpu_write_guest_page(vcpu, + vmx->nested.current_vmptr >> PAGE_SHIFT, + vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); + + kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); + + vmx->nested.current_vmptr = -1ull; +} + +/* Emulate the VMXOFF instruction */ +static int handle_vmoff(struct kvm_vcpu *vcpu) +{ + if (!nested_vmx_check_permission(vcpu)) + return 1; + free_nested(vcpu); + return nested_vmx_succeed(vcpu); +} + +/* Emulate the VMCLEAR instruction */ +static int handle_vmclear(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 zero = 0; + gpa_t vmptr; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (nested_vmx_get_vmptr(vcpu, &vmptr)) + return 1; + + if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) + return nested_vmx_failValid(vcpu, + VMXERR_VMCLEAR_INVALID_ADDRESS); + + if (vmptr == vmx->nested.vmxon_ptr) + return nested_vmx_failValid(vcpu, + VMXERR_VMCLEAR_VMXON_POINTER); + + if (vmx->nested.hv_evmcs_page) { + if (vmptr == vmx->nested.hv_evmcs_vmptr) + nested_release_evmcs(vcpu); + } else { + if (vmptr == vmx->nested.current_vmptr) + nested_release_vmcs12(vcpu); + + kvm_vcpu_write_guest(vcpu, + vmptr + offsetof(struct vmcs12, + launch_state), + &zero, sizeof(zero)); + } + + return nested_vmx_succeed(vcpu); +} + +static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); + +/* Emulate the VMLAUNCH instruction */ +static int handle_vmlaunch(struct kvm_vcpu *vcpu) +{ + return nested_vmx_run(vcpu, true); +} + +/* Emulate the VMRESUME instruction */ +static int handle_vmresume(struct kvm_vcpu *vcpu) +{ + + return nested_vmx_run(vcpu, false); +} + +static int handle_vmread(struct kvm_vcpu *vcpu) +{ + unsigned long field; + u64 field_value; + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + gva_t gva = 0; + struct vmcs12 *vmcs12; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (to_vmx(vcpu)->nested.current_vmptr == -1ull) + return nested_vmx_failInvalid(vcpu); + + if (!is_guest_mode(vcpu)) + vmcs12 = get_vmcs12(vcpu); + else { + /* + * When vmcs->vmcs_link_pointer is -1ull, any VMREAD + * to shadowed-field sets the ALU flags for VMfailInvalid. + */ + if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) + return nested_vmx_failInvalid(vcpu); + vmcs12 = get_shadow_vmcs12(vcpu); + } + + /* Decode instruction info and find the field to read */ + field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); + /* Read the field, zero-extended to a u64 field_value */ + if (vmcs12_read_any(vmcs12, field, &field_value) < 0) + return nested_vmx_failValid(vcpu, + VMXERR_UNSUPPORTED_VMCS_COMPONENT); + + /* + * Now copy part of this value to register or memory, as requested. + * Note that the number of bits actually copied is 32 or 64 depending + * on the guest's mode (32 or 64 bit), not on the given field's length. + */ + if (vmx_instruction_info & (1u << 10)) { + kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), + field_value); + } else { + if (get_vmx_mem_address(vcpu, exit_qualification, + vmx_instruction_info, true, &gva)) + return 1; + /* _system ok, nested_vmx_check_permission has verified cpl=0 */ + kvm_write_guest_virt_system(vcpu, gva, &field_value, + (is_long_mode(vcpu) ? 8 : 4), NULL); + } + + return nested_vmx_succeed(vcpu); +} + + +static int handle_vmwrite(struct kvm_vcpu *vcpu) +{ + unsigned long field; + gva_t gva; + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + + /* The value to write might be 32 or 64 bits, depending on L1's long + * mode, and eventually we need to write that into a field of several + * possible lengths. The code below first zero-extends the value to 64 + * bit (field_value), and then copies only the appropriate number of + * bits into the vmcs12 field. + */ + u64 field_value = 0; + struct x86_exception e; + struct vmcs12 *vmcs12; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (vmx->nested.current_vmptr == -1ull) + return nested_vmx_failInvalid(vcpu); + + if (vmx_instruction_info & (1u << 10)) + field_value = kvm_register_readl(vcpu, + (((vmx_instruction_info) >> 3) & 0xf)); + else { + if (get_vmx_mem_address(vcpu, exit_qualification, + vmx_instruction_info, false, &gva)) + return 1; + if (kvm_read_guest_virt(vcpu, gva, &field_value, + (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + } + + + field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); + /* + * If the vCPU supports "VMWRITE to any supported field in the + * VMCS," then the "read-only" fields are actually read/write. + */ + if (vmcs_field_readonly(field) && + !nested_cpu_has_vmwrite_any_field(vcpu)) + return nested_vmx_failValid(vcpu, + VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); + + if (!is_guest_mode(vcpu)) + vmcs12 = get_vmcs12(vcpu); + else { + /* + * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE + * to shadowed-field sets the ALU flags for VMfailInvalid. + */ + if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) + return nested_vmx_failInvalid(vcpu); + vmcs12 = get_shadow_vmcs12(vcpu); + } + + if (vmcs12_write_any(vmcs12, field, field_value) < 0) + return nested_vmx_failValid(vcpu, + VMXERR_UNSUPPORTED_VMCS_COMPONENT); + + /* + * Do not track vmcs12 dirty-state if in guest-mode + * as we actually dirty shadow vmcs12 instead of vmcs12. + */ + if (!is_guest_mode(vcpu)) { + switch (field) { +#define SHADOW_FIELD_RW(x) case x: +#include "vmcs_shadow_fields.h" + /* + * The fields that can be updated by L1 without a vmexit are + * always updated in the vmcs02, the others go down the slow + * path of prepare_vmcs02. + */ + break; + default: + vmx->nested.dirty_vmcs12 = true; + break; + } + } + + return nested_vmx_succeed(vcpu); +} + +static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) +{ + vmx->nested.current_vmptr = vmptr; + if (enable_shadow_vmcs) { + vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_SHADOW_VMCS); + vmcs_write64(VMCS_LINK_POINTER, + __pa(vmx->vmcs01.shadow_vmcs)); + vmx->nested.need_vmcs12_sync = true; + } + vmx->nested.dirty_vmcs12 = true; +} + +/* Emulate the VMPTRLD instruction */ +static int handle_vmptrld(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + gpa_t vmptr; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (nested_vmx_get_vmptr(vcpu, &vmptr)) + return 1; + + if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) + return nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_INVALID_ADDRESS); + + if (vmptr == vmx->nested.vmxon_ptr) + return nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_VMXON_POINTER); + + /* Forbid normal VMPTRLD if Enlightened version was used */ + if (vmx->nested.hv_evmcs) + return 1; + + if (vmx->nested.current_vmptr != vmptr) { + struct vmcs12 *new_vmcs12; + struct page *page; + + page = kvm_vcpu_gpa_to_page(vcpu, vmptr); + if (is_error_page(page)) { + /* + * Reads from an unbacked page return all 1s, + * which means that the 32 bits located at the + * given physical address won't match the required + * VMCS12_REVISION identifier. + */ + nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); + return kvm_skip_emulated_instruction(vcpu); + } + new_vmcs12 = kmap(page); + if (new_vmcs12->hdr.revision_id != VMCS12_REVISION || + (new_vmcs12->hdr.shadow_vmcs && + !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { + kunmap(page); + kvm_release_page_clean(page); + return nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); + } + + nested_release_vmcs12(vcpu); + + /* + * Load VMCS12 from guest memory since it is not already + * cached. + */ + memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); + kunmap(page); + kvm_release_page_clean(page); + + set_current_vmptr(vmx, vmptr); + } + + return nested_vmx_succeed(vcpu); +} + +/* Emulate the VMPTRST instruction */ +static int handle_vmptrst(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); + u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); + gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; + struct x86_exception e; + gva_t gva; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (unlikely(to_vmx(vcpu)->nested.hv_evmcs)) + return 1; + + if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva)) + return 1; + /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ + if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, + sizeof(gpa_t), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + return nested_vmx_succeed(vcpu); +} + +/* Emulate the INVEPT instruction */ +static int handle_invept(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 vmx_instruction_info, types; + unsigned long type; + gva_t gva; + struct x86_exception e; + struct { + u64 eptp, gpa; + } operand; + + if (!(vmx->nested.msrs.secondary_ctls_high & + SECONDARY_EXEC_ENABLE_EPT) || + !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + + types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; + + if (type >= 32 || !(types & (1 << type))) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + + /* According to the Intel VMX instruction reference, the memory + * operand is read even if it isn't needed (e.g., for type==global) + */ + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmx_instruction_info, false, &gva)) + return 1; + if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + + switch (type) { + case VMX_EPT_EXTENT_GLOBAL: + /* + * TODO: track mappings and invalidate + * single context requests appropriately + */ + case VMX_EPT_EXTENT_CONTEXT: + kvm_mmu_sync_roots(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + break; + default: + BUG_ON(1); + break; + } + + return nested_vmx_succeed(vcpu); +} + +static int handle_invvpid(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 vmx_instruction_info; + unsigned long type, types; + gva_t gva; + struct x86_exception e; + struct { + u64 vpid; + u64 gla; + } operand; + u16 vpid02; + + if (!(vmx->nested.msrs.secondary_ctls_high & + SECONDARY_EXEC_ENABLE_VPID) || + !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + + types = (vmx->nested.msrs.vpid_caps & + VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; + + if (type >= 32 || !(types & (1 << type))) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + + /* according to the intel vmx instruction reference, the memory + * operand is read even if it isn't needed (e.g., for type==global) + */ + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmx_instruction_info, false, &gva)) + return 1; + if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + if (operand.vpid >> 16) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + + vpid02 = nested_get_vpid02(vcpu); + switch (type) { + case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: + if (!operand.vpid || + is_noncanonical_address(operand.gla, vcpu)) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + if (cpu_has_vmx_invvpid_individual_addr()) { + __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, + vpid02, operand.gla); + } else + __vmx_flush_tlb(vcpu, vpid02, false); + break; + case VMX_VPID_EXTENT_SINGLE_CONTEXT: + case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: + if (!operand.vpid) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + __vmx_flush_tlb(vcpu, vpid02, false); + break; + case VMX_VPID_EXTENT_ALL_CONTEXT: + __vmx_flush_tlb(vcpu, vpid02, false); + break; + default: + WARN_ON_ONCE(1); + return kvm_skip_emulated_instruction(vcpu); + } + + return nested_vmx_succeed(vcpu); +} + +static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + u32 index = vcpu->arch.regs[VCPU_REGS_RCX]; + u64 address; + bool accessed_dirty; + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + if (!nested_cpu_has_eptp_switching(vmcs12) || + !nested_cpu_has_ept(vmcs12)) + return 1; + + if (index >= VMFUNC_EPTP_ENTRIES) + return 1; + + + if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, + &address, index * 8, 8)) + return 1; + + accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); + + /* + * If the (L2) guest does a vmfunc to the currently + * active ept pointer, we don't have to do anything else + */ + if (vmcs12->ept_pointer != address) { + if (!valid_ept_address(vcpu, address)) + return 1; + + kvm_mmu_unload(vcpu); + mmu->ept_ad = accessed_dirty; + mmu->mmu_role.base.ad_disabled = !accessed_dirty; + vmcs12->ept_pointer = address; + /* + * TODO: Check what's the correct approach in case + * mmu reload fails. Currently, we just let the next + * reload potentially fail + */ + kvm_mmu_reload(vcpu); + } + + return 0; +} + +static int handle_vmfunc(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12; + u32 function = vcpu->arch.regs[VCPU_REGS_RAX]; + + /* + * VMFUNC is only supported for nested guests, but we always enable the + * secondary control for simplicity; for non-nested mode, fake that we + * didn't by injecting #UD. + */ + if (!is_guest_mode(vcpu)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + vmcs12 = get_vmcs12(vcpu); + if ((vmcs12->vm_function_control & (1 << function)) == 0) + goto fail; + + switch (function) { + case 0: + if (nested_vmx_eptp_switching(vcpu, vmcs12)) + goto fail; + break; + default: + goto fail; + } + return kvm_skip_emulated_instruction(vcpu); + +fail: + nested_vmx_vmexit(vcpu, vmx->exit_reason, + vmcs_read32(VM_EXIT_INTR_INFO), + vmcs_readl(EXIT_QUALIFICATION)); + return 1; +} + + +static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + unsigned long exit_qualification; + gpa_t bitmap, last_bitmap; + unsigned int port; + int size; + u8 b; + + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) + return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + port = exit_qualification >> 16; + size = (exit_qualification & 7) + 1; + + last_bitmap = (gpa_t)-1; + b = -1; + + while (size > 0) { + if (port < 0x8000) + bitmap = vmcs12->io_bitmap_a; + else if (port < 0x10000) + bitmap = vmcs12->io_bitmap_b; + else + return true; + bitmap += (port & 0x7fff) / 8; + + if (last_bitmap != bitmap) + if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) + return true; + if (b & (1 << (port & 7))) + return true; + + port++; + size--; + last_bitmap = bitmap; + } + + return false; +} + +/* + * Return 1 if we should exit from L2 to L1 to handle an MSR access access, + * rather than handle it ourselves in L0. I.e., check whether L1 expressed + * disinterest in the current event (read or write a specific MSR) by using an + * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. + */ +static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, u32 exit_reason) +{ + u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; + gpa_t bitmap; + + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) + return true; + + /* + * The MSR_BITMAP page is divided into four 1024-byte bitmaps, + * for the four combinations of read/write and low/high MSR numbers. + * First we need to figure out which of the four to use: + */ + bitmap = vmcs12->msr_bitmap; + if (exit_reason == EXIT_REASON_MSR_WRITE) + bitmap += 2048; + if (msr_index >= 0xc0000000) { + msr_index -= 0xc0000000; + bitmap += 1024; + } + + /* Then read the msr_index'th bit from this bitmap: */ + if (msr_index < 1024*8) { + unsigned char b; + if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) + return true; + return 1 & (b >> (msr_index & 7)); + } else + return true; /* let L1 handle the wrong parameter */ +} + +/* + * Return 1 if we should exit from L2 to L1 to handle a CR access exit, + * rather than handle it ourselves in L0. I.e., check if L1 wanted to + * intercept (via guest_host_mask etc.) the current event. + */ +static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int cr = exit_qualification & 15; + int reg; + unsigned long val; + + switch ((exit_qualification >> 4) & 3) { + case 0: /* mov to cr */ + reg = (exit_qualification >> 8) & 15; + val = kvm_register_readl(vcpu, reg); + switch (cr) { + case 0: + if (vmcs12->cr0_guest_host_mask & + (val ^ vmcs12->cr0_read_shadow)) + return true; + break; + case 3: + if ((vmcs12->cr3_target_count >= 1 && + vmcs12->cr3_target_value0 == val) || + (vmcs12->cr3_target_count >= 2 && + vmcs12->cr3_target_value1 == val) || + (vmcs12->cr3_target_count >= 3 && + vmcs12->cr3_target_value2 == val) || + (vmcs12->cr3_target_count >= 4 && + vmcs12->cr3_target_value3 == val)) + return false; + if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) + return true; + break; + case 4: + if (vmcs12->cr4_guest_host_mask & + (vmcs12->cr4_read_shadow ^ val)) + return true; + break; + case 8: + if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) + return true; + break; + } + break; + case 2: /* clts */ + if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && + (vmcs12->cr0_read_shadow & X86_CR0_TS)) + return true; + break; + case 1: /* mov from cr */ + switch (cr) { + case 3: + if (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_CR3_STORE_EXITING) + return true; + break; + case 8: + if (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_CR8_STORE_EXITING) + return true; + break; + } + break; + case 3: /* lmsw */ + /* + * lmsw can change bits 1..3 of cr0, and only set bit 0 of + * cr0. Other attempted changes are ignored, with no exit. + */ + val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; + if (vmcs12->cr0_guest_host_mask & 0xe & + (val ^ vmcs12->cr0_read_shadow)) + return true; + if ((vmcs12->cr0_guest_host_mask & 0x1) && + !(vmcs12->cr0_read_shadow & 0x1) && + (val & 0x1)) + return true; + break; + } + return false; +} + +static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, gpa_t bitmap) +{ + u32 vmx_instruction_info; + unsigned long field; + u8 b; + + if (!nested_cpu_has_shadow_vmcs(vmcs12)) + return true; + + /* Decode instruction info and find the field to access */ + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); + + /* Out-of-range fields always cause a VM exit from L2 to L1 */ + if (field >> 15) + return true; + + if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) + return true; + + return 1 & (b >> (field & 7)); +} + +/* + * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we + * should handle it ourselves in L0 (and then continue L2). Only call this + * when in is_guest_mode (L2). + */ +bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) +{ + u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (vmx->nested.nested_run_pending) + return false; + + if (unlikely(vmx->fail)) { + pr_info_ratelimited("%s failed vm entry %x\n", __func__, + vmcs_read32(VM_INSTRUCTION_ERROR)); + return true; + } + + /* + * The host physical addresses of some pages of guest memory + * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC + * Page). The CPU may write to these pages via their host + * physical address while L2 is running, bypassing any + * address-translation-based dirty tracking (e.g. EPT write + * protection). + * + * Mark them dirty on every exit from L2 to prevent them from + * getting out of sync with dirty tracking. + */ + nested_mark_vmcs12_pages_dirty(vcpu); + + trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, + vmcs_readl(EXIT_QUALIFICATION), + vmx->idt_vectoring_info, + intr_info, + vmcs_read32(VM_EXIT_INTR_ERROR_CODE), + KVM_ISA_VMX); + + switch (exit_reason) { + case EXIT_REASON_EXCEPTION_NMI: + if (is_nmi(intr_info)) + return false; + else if (is_page_fault(intr_info)) + return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; + else if (is_debug(intr_info) && + vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) + return false; + else if (is_breakpoint(intr_info) && + vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) + return false; + return vmcs12->exception_bitmap & + (1u << (intr_info & INTR_INFO_VECTOR_MASK)); + case EXIT_REASON_EXTERNAL_INTERRUPT: + return false; + case EXIT_REASON_TRIPLE_FAULT: + return true; + case EXIT_REASON_PENDING_INTERRUPT: + return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); + case EXIT_REASON_NMI_WINDOW: + return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); + case EXIT_REASON_TASK_SWITCH: + return true; + case EXIT_REASON_CPUID: + return true; + case EXIT_REASON_HLT: + return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); + case EXIT_REASON_INVD: + return true; + case EXIT_REASON_INVLPG: + return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); + case EXIT_REASON_RDPMC: + return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); + case EXIT_REASON_RDRAND: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); + case EXIT_REASON_RDSEED: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); + case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: + return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); + case EXIT_REASON_VMREAD: + return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, + vmcs12->vmread_bitmap); + case EXIT_REASON_VMWRITE: + return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, + vmcs12->vmwrite_bitmap); + case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: + case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: + case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: + case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: + case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: + /* + * VMX instructions trap unconditionally. This allows L1 to + * emulate them for its L2 guest, i.e., allows 3-level nesting! + */ + return true; + case EXIT_REASON_CR_ACCESS: + return nested_vmx_exit_handled_cr(vcpu, vmcs12); + case EXIT_REASON_DR_ACCESS: + return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); + case EXIT_REASON_IO_INSTRUCTION: + return nested_vmx_exit_handled_io(vcpu, vmcs12); + case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); + case EXIT_REASON_MSR_READ: + case EXIT_REASON_MSR_WRITE: + return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); + case EXIT_REASON_INVALID_STATE: + return true; + case EXIT_REASON_MWAIT_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); + case EXIT_REASON_MONITOR_TRAP_FLAG: + return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); + case EXIT_REASON_MONITOR_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); + case EXIT_REASON_PAUSE_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || + nested_cpu_has2(vmcs12, + SECONDARY_EXEC_PAUSE_LOOP_EXITING); + case EXIT_REASON_MCE_DURING_VMENTRY: + return false; + case EXIT_REASON_TPR_BELOW_THRESHOLD: + return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); + case EXIT_REASON_APIC_ACCESS: + case EXIT_REASON_APIC_WRITE: + case EXIT_REASON_EOI_INDUCED: + /* + * The controls for "virtualize APIC accesses," "APIC- + * register virtualization," and "virtual-interrupt + * delivery" only come from vmcs12. + */ + return true; + case EXIT_REASON_EPT_VIOLATION: + /* + * L0 always deals with the EPT violation. If nested EPT is + * used, and the nested mmu code discovers that the address is + * missing in the guest EPT table (EPT12), the EPT violation + * will be injected with nested_ept_inject_page_fault() + */ + return false; + case EXIT_REASON_EPT_MISCONFIG: + /* + * L2 never uses directly L1's EPT, but rather L0's own EPT + * table (shadow on EPT) or a merged EPT table that L0 built + * (EPT on EPT). So any problems with the structure of the + * table is L0's fault. + */ + return false; + case EXIT_REASON_INVPCID: + return + nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && + nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); + case EXIT_REASON_WBINVD: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); + case EXIT_REASON_XSETBV: + return true; + case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: + /* + * This should never happen, since it is not possible to + * set XSS to a non-zero value---neither in L1 nor in L2. + * If if it were, XSS would have to be checked against + * the XSS exit bitmap in vmcs12. + */ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); + case EXIT_REASON_PREEMPTION_TIMER: + return false; + case EXIT_REASON_PML_FULL: + /* We emulate PML support to L1. */ + return false; + case EXIT_REASON_VMFUNC: + /* VM functions are emulated through L2->L0 vmexits. */ + return false; + case EXIT_REASON_ENCLS: + /* SGX is never exposed to L1 */ + return false; + default: + return true; + } +} + + +static int vmx_get_nested_state(struct kvm_vcpu *vcpu, + struct kvm_nested_state __user *user_kvm_nested_state, + u32 user_data_size) +{ + struct vcpu_vmx *vmx; + struct vmcs12 *vmcs12; + struct kvm_nested_state kvm_state = { + .flags = 0, + .format = 0, + .size = sizeof(kvm_state), + .vmx.vmxon_pa = -1ull, + .vmx.vmcs_pa = -1ull, + }; + + if (!vcpu) + return kvm_state.size + 2 * VMCS12_SIZE; + + vmx = to_vmx(vcpu); + vmcs12 = get_vmcs12(vcpu); + + if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled) + kvm_state.flags |= KVM_STATE_NESTED_EVMCS; + + if (nested_vmx_allowed(vcpu) && + (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { + kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr; + kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr; + + if (vmx_has_valid_vmcs12(vcpu)) { + kvm_state.size += VMCS12_SIZE; + + if (is_guest_mode(vcpu) && + nested_cpu_has_shadow_vmcs(vmcs12) && + vmcs12->vmcs_link_pointer != -1ull) + kvm_state.size += VMCS12_SIZE; + } + + if (vmx->nested.smm.vmxon) + kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; + + if (vmx->nested.smm.guest_mode) + kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; + + if (is_guest_mode(vcpu)) { + kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; + + if (vmx->nested.nested_run_pending) + kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; + } + } + + if (user_data_size < kvm_state.size) + goto out; + + if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) + return -EFAULT; + + if (!vmx_has_valid_vmcs12(vcpu)) + goto out; + + /* + * When running L2, the authoritative vmcs12 state is in the + * vmcs02. When running L1, the authoritative vmcs12 state is + * in the shadow or enlightened vmcs linked to vmcs01, unless + * need_vmcs12_sync is set, in which case, the authoritative + * vmcs12 state is in the vmcs12 already. + */ + if (is_guest_mode(vcpu)) { + sync_vmcs12(vcpu, vmcs12); + } else if (!vmx->nested.need_vmcs12_sync) { + if (vmx->nested.hv_evmcs) + copy_enlightened_to_vmcs12(vmx); + else if (enable_shadow_vmcs) + copy_shadow_to_vmcs12(vmx); + } + + if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12))) + return -EFAULT; + + if (nested_cpu_has_shadow_vmcs(vmcs12) && + vmcs12->vmcs_link_pointer != -1ull) { + if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE, + get_shadow_vmcs12(vcpu), sizeof(*vmcs12))) + return -EFAULT; + } + +out: + return kvm_state.size; +} + +/* + * Forcibly leave nested mode in order to be able to reset the VCPU later on. + */ +void vmx_leave_nested(struct kvm_vcpu *vcpu) +{ + if (is_guest_mode(vcpu)) { + to_vmx(vcpu)->nested.nested_run_pending = 0; + nested_vmx_vmexit(vcpu, -1, 0, 0); + } + free_nested(vcpu); +} + +static int vmx_set_nested_state(struct kvm_vcpu *vcpu, + struct kvm_nested_state __user *user_kvm_nested_state, + struct kvm_nested_state *kvm_state) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12; + u32 exit_qual; + int ret; + + if (kvm_state->format != 0) + return -EINVAL; + + if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) + nested_enable_evmcs(vcpu, NULL); + + if (!nested_vmx_allowed(vcpu)) + return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL; + + if (kvm_state->vmx.vmxon_pa == -1ull) { + if (kvm_state->vmx.smm.flags) + return -EINVAL; + + if (kvm_state->vmx.vmcs_pa != -1ull) + return -EINVAL; + + vmx_leave_nested(vcpu); + return 0; + } + + if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa)) + return -EINVAL; + + if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && + (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) + return -EINVAL; + + if (kvm_state->vmx.smm.flags & + ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) + return -EINVAL; + + /* + * SMM temporarily disables VMX, so we cannot be in guest mode, + * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags + * must be zero. + */ + if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags) + return -EINVAL; + + if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && + !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) + return -EINVAL; + + vmx_leave_nested(vcpu); + if (kvm_state->vmx.vmxon_pa == -1ull) + return 0; + + vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa; + ret = enter_vmx_operation(vcpu); + if (ret) + return ret; + + /* Empty 'VMXON' state is permitted */ + if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12)) + return 0; + + if (kvm_state->vmx.vmcs_pa != -1ull) { + if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa || + !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa)) + return -EINVAL; + + set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa); + } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { + /* + * Sync eVMCS upon entry as we may not have + * HV_X64_MSR_VP_ASSIST_PAGE set up yet. + */ + vmx->nested.need_vmcs12_sync = true; + } else { + return -EINVAL; + } + + if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { + vmx->nested.smm.vmxon = true; + vmx->nested.vmxon = false; + + if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) + vmx->nested.smm.guest_mode = true; + } + + vmcs12 = get_vmcs12(vcpu); + if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12))) + return -EFAULT; + + if (vmcs12->hdr.revision_id != VMCS12_REVISION) + return -EINVAL; + + if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) + return 0; + + vmx->nested.nested_run_pending = + !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); + + if (nested_cpu_has_shadow_vmcs(vmcs12) && + vmcs12->vmcs_link_pointer != -1ull) { + struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); + + if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12)) + return -EINVAL; + + if (copy_from_user(shadow_vmcs12, + user_kvm_nested_state->data + VMCS12_SIZE, + sizeof(*vmcs12))) + return -EFAULT; + + if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || + !shadow_vmcs12->hdr.shadow_vmcs) + return -EINVAL; + } + + if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) || + nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) + return -EINVAL; + + vmx->nested.dirty_vmcs12 = true; + ret = nested_vmx_enter_non_root_mode(vcpu, false); + if (ret) + return -EINVAL; + + return 0; +} + +void nested_vmx_vcpu_setup(void) +{ + if (enable_shadow_vmcs) { + /* + * At vCPU creation, "VMWRITE to any supported field + * in the VMCS" is supported, so use the more + * permissive vmx_vmread_bitmap to specify both read + * and write permissions for the shadow VMCS. + */ + vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); + vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap)); + } +} + +/* + * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be + * returned for the various VMX controls MSRs when nested VMX is enabled. + * The same values should also be used to verify that vmcs12 control fields are + * valid during nested entry from L1 to L2. + * Each of these control msrs has a low and high 32-bit half: A low bit is on + * if the corresponding bit in the (32-bit) control field *must* be on, and a + * bit in the high half is on if the corresponding bit in the control field + * may be on. See also vmx_control_verify(). + */ +void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, + bool apicv) +{ + /* + * Note that as a general rule, the high half of the MSRs (bits in + * the control fields which may be 1) should be initialized by the + * intersection of the underlying hardware's MSR (i.e., features which + * can be supported) and the list of features we want to expose - + * because they are known to be properly supported in our code. + * Also, usually, the low half of the MSRs (bits which must be 1) can + * be set to 0, meaning that L1 may turn off any of these bits. The + * reason is that if one of these bits is necessary, it will appear + * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control + * fields of vmcs01 and vmcs02, will turn these bits off - and + * nested_vmx_exit_reflected() will not pass related exits to L1. + * These rules have exceptions below. + */ + + /* pin-based controls */ + rdmsr(MSR_IA32_VMX_PINBASED_CTLS, + msrs->pinbased_ctls_low, + msrs->pinbased_ctls_high); + msrs->pinbased_ctls_low |= + PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + msrs->pinbased_ctls_high &= + PIN_BASED_EXT_INTR_MASK | + PIN_BASED_NMI_EXITING | + PIN_BASED_VIRTUAL_NMIS | + (apicv ? PIN_BASED_POSTED_INTR : 0); + msrs->pinbased_ctls_high |= + PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | + PIN_BASED_VMX_PREEMPTION_TIMER; + + /* exit controls */ + rdmsr(MSR_IA32_VMX_EXIT_CTLS, + msrs->exit_ctls_low, + msrs->exit_ctls_high); + msrs->exit_ctls_low = + VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; + + msrs->exit_ctls_high &= +#ifdef CONFIG_X86_64 + VM_EXIT_HOST_ADDR_SPACE_SIZE | +#endif + VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; + msrs->exit_ctls_high |= + VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | + VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; + + /* We support free control of debug control saving. */ + msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; + + /* entry controls */ + rdmsr(MSR_IA32_VMX_ENTRY_CTLS, + msrs->entry_ctls_low, + msrs->entry_ctls_high); + msrs->entry_ctls_low = + VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; + msrs->entry_ctls_high &= +#ifdef CONFIG_X86_64 + VM_ENTRY_IA32E_MODE | +#endif + VM_ENTRY_LOAD_IA32_PAT; + msrs->entry_ctls_high |= + (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); + + /* We support free control of debug control loading. */ + msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; + + /* cpu-based controls */ + rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, + msrs->procbased_ctls_low, + msrs->procbased_ctls_high); + msrs->procbased_ctls_low = + CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + msrs->procbased_ctls_high &= + CPU_BASED_VIRTUAL_INTR_PENDING | + CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | + CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | + CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | +#ifdef CONFIG_X86_64 + CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | +#endif + CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | + CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | + CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | + CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | + CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; + /* + * We can allow some features even when not supported by the + * hardware. For example, L1 can specify an MSR bitmap - and we + * can use it to avoid exits to L1 - even when L0 runs L2 + * without MSR bitmaps. + */ + msrs->procbased_ctls_high |= + CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | + CPU_BASED_USE_MSR_BITMAPS; + + /* We support free control of CR3 access interception. */ + msrs->procbased_ctls_low &= + ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); + + /* + * secondary cpu-based controls. Do not include those that + * depend on CPUID bits, they are added later by vmx_cpuid_update. + */ + rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, + msrs->secondary_ctls_low, + msrs->secondary_ctls_high); + msrs->secondary_ctls_low = 0; + msrs->secondary_ctls_high &= + SECONDARY_EXEC_DESC | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_WBINVD_EXITING; + + /* + * We can emulate "VMCS shadowing," even if the hardware + * doesn't support it. + */ + msrs->secondary_ctls_high |= + SECONDARY_EXEC_SHADOW_VMCS; + + if (enable_ept) { + /* nested EPT: emulate EPT also to L1 */ + msrs->secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_EPT; + msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT | + VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; + if (cpu_has_vmx_ept_execute_only()) + msrs->ept_caps |= + VMX_EPT_EXECUTE_ONLY_BIT; + msrs->ept_caps &= ept_caps; + msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | + VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | + VMX_EPT_1GB_PAGE_BIT; + if (enable_ept_ad_bits) { + msrs->secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_PML; + msrs->ept_caps |= VMX_EPT_AD_BIT; + } + } + + if (cpu_has_vmx_vmfunc()) { + msrs->secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_VMFUNC; + /* + * Advertise EPTP switching unconditionally + * since we emulate it + */ + if (enable_ept) + msrs->vmfunc_controls = + VMX_VMFUNC_EPTP_SWITCHING; + } + + /* + * Old versions of KVM use the single-context version without + * checking for support, so declare that it is supported even + * though it is treated as global context. The alternative is + * not failing the single-context invvpid, and it is worse. + */ + if (enable_vpid) { + msrs->secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_VPID; + msrs->vpid_caps = VMX_VPID_INVVPID_BIT | + VMX_VPID_EXTENT_SUPPORTED_MASK; + } + + if (enable_unrestricted_guest) + msrs->secondary_ctls_high |= + SECONDARY_EXEC_UNRESTRICTED_GUEST; + + if (flexpriority_enabled) + msrs->secondary_ctls_high |= + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + + /* miscellaneous data */ + rdmsr(MSR_IA32_VMX_MISC, + msrs->misc_low, + msrs->misc_high); + msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA; + msrs->misc_low |= + MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | + VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | + VMX_MISC_ACTIVITY_HLT; + msrs->misc_high = 0; + + /* + * This MSR reports some information about VMX support. We + * should return information about the VMX we emulate for the + * guest, and the VMCS structure we give it - not about the + * VMX support of the underlying hardware. + */ + msrs->basic = + VMCS12_REVISION | + VMX_BASIC_TRUE_CTLS | + ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | + (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); + + if (cpu_has_vmx_basic_inout()) + msrs->basic |= VMX_BASIC_INOUT; + + /* + * These MSRs specify bits which the guest must keep fixed on + * while L1 is in VMXON mode (in L1's root mode, or running an L2). + * We picked the standard core2 setting. + */ +#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) +#define VMXON_CR4_ALWAYSON X86_CR4_VMXE + msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; + msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; + + /* These MSRs specify bits which the guest must keep fixed off. */ + rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); + rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); + + /* highest index: VMX_PREEMPTION_TIMER_VALUE */ + msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1; +} + +void nested_vmx_hardware_unsetup(void) +{ + int i; + + if (enable_shadow_vmcs) { + for (i = 0; i < VMX_BITMAP_NR; i++) + free_page((unsigned long)vmx_bitmap[i]); + } +} + +__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)) +{ + int i; + + if (!cpu_has_vmx_shadow_vmcs()) + enable_shadow_vmcs = 0; + if (enable_shadow_vmcs) { + for (i = 0; i < VMX_BITMAP_NR; i++) { + vmx_bitmap[i] = (unsigned long *) + __get_free_page(GFP_KERNEL); + if (!vmx_bitmap[i]) { + nested_vmx_hardware_unsetup(); + return -ENOMEM; + } + } + + init_vmcs_shadow_fields(); + } + + exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear, + exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch, + exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld, + exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst, + exit_handlers[EXIT_REASON_VMREAD] = handle_vmread, + exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume, + exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite, + exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff, + exit_handlers[EXIT_REASON_VMON] = handle_vmon, + exit_handlers[EXIT_REASON_INVEPT] = handle_invept, + exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid, + exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc, + + kvm_x86_ops->check_nested_events = vmx_check_nested_events; + kvm_x86_ops->get_nested_state = vmx_get_nested_state; + kvm_x86_ops->set_nested_state = vmx_set_nested_state; + kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages, + kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs; + kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version; + + return 0; +} diff --git a/arch/x86/kvm/vmx/nested.h b/arch/x86/kvm/vmx/nested.h new file mode 100644 index 000000000000..e847ff1019a2 --- /dev/null +++ b/arch/x86/kvm/vmx/nested.h @@ -0,0 +1,282 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_NESTED_H +#define __KVM_X86_VMX_NESTED_H + +#include "kvm_cache_regs.h" +#include "vmcs12.h" +#include "vmx.h" + +void vmx_leave_nested(struct kvm_vcpu *vcpu); +void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, + bool apicv); +void nested_vmx_hardware_unsetup(void); +__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)); +void nested_vmx_vcpu_setup(void); +void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu); +int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry); +bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason); +void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, + u32 exit_intr_info, unsigned long exit_qualification); +void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu); +int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data); +int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata); +int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, + u32 vmx_instruction_info, bool wr, gva_t *ret); + +static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.cached_vmcs12; +} + +static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.cached_shadow_vmcs12; +} + +static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * In case we do two consecutive get/set_nested_state()s while L2 was + * running hv_evmcs may end up not being mapped (we map it from + * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always + * have vmcs12 if it is true. + */ + return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull || + vmx->nested.hv_evmcs; +} + +static inline unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu) +{ + /* return the page table to be shadowed - in our case, EPT12 */ + return get_vmcs12(vcpu)->ept_pointer; +} + +static inline bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu) +{ + return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT; +} + +/* + * Reflect a VM Exit into L1. + */ +static inline int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, + u32 exit_reason) +{ + u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + + /* + * At this point, the exit interruption info in exit_intr_info + * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT + * we need to query the in-kernel LAPIC. + */ + WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT); + if ((exit_intr_info & + (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == + (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + vmcs12->vm_exit_intr_error_code = + vmcs_read32(VM_EXIT_INTR_ERROR_CODE); + } + + nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, + vmcs_readl(EXIT_QUALIFICATION)); + return 1; +} + +/* + * Return the cr0 value that a nested guest would read. This is a combination + * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by + * its hypervisor (cr0_read_shadow). + */ +static inline unsigned long nested_read_cr0(struct vmcs12 *fields) +{ + return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | + (fields->cr0_read_shadow & fields->cr0_guest_host_mask); +} +static inline unsigned long nested_read_cr4(struct vmcs12 *fields) +{ + return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | + (fields->cr4_read_shadow & fields->cr4_guest_host_mask); +} + +static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu) +{ + return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low); +} + +/* + * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE + * to modify any valid field of the VMCS, or are the VM-exit + * information fields read-only? + */ +static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.msrs.misc_low & + MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS; +} + +static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS; +} + +static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.msrs.procbased_ctls_high & + CPU_BASED_MONITOR_TRAP_FLAG; +} + +static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.msrs.secondary_ctls_high & + SECONDARY_EXEC_SHADOW_VMCS; +} + +static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) +{ + return vmcs12->cpu_based_vm_exec_control & bit; +} + +static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) +{ + return (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && + (vmcs12->secondary_vm_exec_control & bit); +} + +static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & + PIN_BASED_VMX_PREEMPTION_TIMER; +} + +static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING; +} + +static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; +} + +static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT); +} + +static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); +} + +static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML); +} + +static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); +} + +static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID); +} + +static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT); +} + +static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); +} + +static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR; +} + +static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC); +} + +static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12) +{ + return nested_cpu_has_vmfunc(vmcs12) && + (vmcs12->vm_function_control & + VMX_VMFUNC_EPTP_SWITCHING); +} + +static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS); +} + +static inline bool nested_cpu_has_save_preemption_timer(struct vmcs12 *vmcs12) +{ + return vmcs12->vm_exit_controls & + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER; +} + +/* + * In nested virtualization, check if L1 asked to exit on external interrupts. + * For most existing hypervisors, this will always return true. + */ +static inline bool nested_exit_on_intr(struct kvm_vcpu *vcpu) +{ + return get_vmcs12(vcpu)->pin_based_vm_exec_control & + PIN_BASED_EXT_INTR_MASK; +} + +/* + * if fixed0[i] == 1: val[i] must be 1 + * if fixed1[i] == 0: val[i] must be 0 + */ +static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1) +{ + return ((val & fixed1) | fixed0) == val; +} + +static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; + u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high & + SECONDARY_EXEC_UNRESTRICTED_GUEST && + nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) + fixed0 &= ~(X86_CR0_PE | X86_CR0_PG); + + return fixed_bits_valid(val, fixed0, fixed1); +} + +static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; + u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; + + return fixed_bits_valid(val, fixed0, fixed1); +} + +static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0; + u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1; + + return fixed_bits_valid(val, fixed0, fixed1); +} + +/* No difference in the restrictions on guest and host CR4 in VMX operation. */ +#define nested_guest_cr4_valid nested_cr4_valid +#define nested_host_cr4_valid nested_cr4_valid + +#endif /* __KVM_X86_VMX_NESTED_H */ diff --git a/arch/x86/kvm/vmx/ops.h b/arch/x86/kvm/vmx/ops.h new file mode 100644 index 000000000000..b8e50f76fefc --- /dev/null +++ b/arch/x86/kvm/vmx/ops.h @@ -0,0 +1,285 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_INSN_H +#define __KVM_X86_VMX_INSN_H + +#include <linux/nospec.h> + +#include <asm/kvm_host.h> +#include <asm/vmx.h> + +#include "evmcs.h" +#include "vmcs.h" + +#define __ex(x) __kvm_handle_fault_on_reboot(x) +#define __ex_clear(x, reg) \ + ____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg) + +static __always_inline void vmcs_check16(unsigned long field) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, + "16-bit accessor invalid for 64-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, + "16-bit accessor invalid for 64-bit high field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, + "16-bit accessor invalid for 32-bit high field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, + "16-bit accessor invalid for natural width field"); +} + +static __always_inline void vmcs_check32(unsigned long field) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, + "32-bit accessor invalid for 16-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, + "32-bit accessor invalid for natural width field"); +} + +static __always_inline void vmcs_check64(unsigned long field) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, + "64-bit accessor invalid for 16-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, + "64-bit accessor invalid for 64-bit high field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, + "64-bit accessor invalid for 32-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, + "64-bit accessor invalid for natural width field"); +} + +static __always_inline void vmcs_checkl(unsigned long field) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, + "Natural width accessor invalid for 16-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, + "Natural width accessor invalid for 64-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, + "Natural width accessor invalid for 64-bit high field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, + "Natural width accessor invalid for 32-bit field"); +} + +static __always_inline unsigned long __vmcs_readl(unsigned long field) +{ + unsigned long value; + + asm volatile (__ex_clear("vmread %1, %0", "%k0") + : "=r"(value) : "r"(field)); + return value; +} + +static __always_inline u16 vmcs_read16(unsigned long field) +{ + vmcs_check16(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_read16(field); + return __vmcs_readl(field); +} + +static __always_inline u32 vmcs_read32(unsigned long field) +{ + vmcs_check32(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_read32(field); + return __vmcs_readl(field); +} + +static __always_inline u64 vmcs_read64(unsigned long field) +{ + vmcs_check64(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_read64(field); +#ifdef CONFIG_X86_64 + return __vmcs_readl(field); +#else + return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32); +#endif +} + +static __always_inline unsigned long vmcs_readl(unsigned long field) +{ + vmcs_checkl(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_read64(field); + return __vmcs_readl(field); +} + +static noinline void vmwrite_error(unsigned long field, unsigned long value) +{ + printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", + field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); + dump_stack(); +} + +static __always_inline void __vmcs_writel(unsigned long field, unsigned long value) +{ + bool error; + + asm volatile (__ex("vmwrite %2, %1") CC_SET(na) + : CC_OUT(na) (error) : "r"(field), "rm"(value)); + if (unlikely(error)) + vmwrite_error(field, value); +} + +static __always_inline void vmcs_write16(unsigned long field, u16 value) +{ + vmcs_check16(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write16(field, value); + + __vmcs_writel(field, value); +} + +static __always_inline void vmcs_write32(unsigned long field, u32 value) +{ + vmcs_check32(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write32(field, value); + + __vmcs_writel(field, value); +} + +static __always_inline void vmcs_write64(unsigned long field, u64 value) +{ + vmcs_check64(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write64(field, value); + + __vmcs_writel(field, value); +#ifndef CONFIG_X86_64 + asm volatile (""); + __vmcs_writel(field+1, value >> 32); +#endif +} + +static __always_inline void vmcs_writel(unsigned long field, unsigned long value) +{ + vmcs_checkl(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write64(field, value); + + __vmcs_writel(field, value); +} + +static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, + "vmcs_clear_bits does not support 64-bit fields"); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write32(field, evmcs_read32(field) & ~mask); + + __vmcs_writel(field, __vmcs_readl(field) & ~mask); +} + +static __always_inline void vmcs_set_bits(unsigned long field, u32 mask) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, + "vmcs_set_bits does not support 64-bit fields"); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write32(field, evmcs_read32(field) | mask); + + __vmcs_writel(field, __vmcs_readl(field) | mask); +} + +static inline void vmcs_clear(struct vmcs *vmcs) +{ + u64 phys_addr = __pa(vmcs); + bool error; + + asm volatile (__ex("vmclear %1") CC_SET(na) + : CC_OUT(na) (error) : "m"(phys_addr)); + if (unlikely(error)) + printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", + vmcs, phys_addr); +} + +static inline void vmcs_load(struct vmcs *vmcs) +{ + u64 phys_addr = __pa(vmcs); + bool error; + + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_load(phys_addr); + + asm volatile (__ex("vmptrld %1") CC_SET(na) + : CC_OUT(na) (error) : "m"(phys_addr)); + if (unlikely(error)) + printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", + vmcs, phys_addr); +} + +static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva) +{ + struct { + u64 vpid : 16; + u64 rsvd : 48; + u64 gva; + } operand = { vpid, 0, gva }; + bool error; + + asm volatile (__ex("invvpid %2, %1") CC_SET(na) + : CC_OUT(na) (error) : "r"(ext), "m"(operand)); + BUG_ON(error); +} + +static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa) +{ + struct { + u64 eptp, gpa; + } operand = {eptp, gpa}; + bool error; + + asm volatile (__ex("invept %2, %1") CC_SET(na) + : CC_OUT(na) (error) : "r"(ext), "m"(operand)); + BUG_ON(error); +} + +static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr) +{ + if (vpid == 0) + return true; + + if (cpu_has_vmx_invvpid_individual_addr()) { + __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr); + return true; + } + + return false; +} + +static inline void vpid_sync_vcpu_single(int vpid) +{ + if (vpid == 0) + return; + + if (cpu_has_vmx_invvpid_single()) + __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0); +} + +static inline void vpid_sync_vcpu_global(void) +{ + if (cpu_has_vmx_invvpid_global()) + __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); +} + +static inline void vpid_sync_context(int vpid) +{ + if (cpu_has_vmx_invvpid_single()) + vpid_sync_vcpu_single(vpid); + else + vpid_sync_vcpu_global(); +} + +static inline void ept_sync_global(void) +{ + __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); +} + +static inline void ept_sync_context(u64 eptp) +{ + if (cpu_has_vmx_invept_context()) + __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); + else + ept_sync_global(); +} + +#endif /* __KVM_X86_VMX_INSN_H */ diff --git a/arch/x86/kvm/pmu_intel.c b/arch/x86/kvm/vmx/pmu_intel.c index 5ab4a364348e..5ab4a364348e 100644 --- a/arch/x86/kvm/pmu_intel.c +++ b/arch/x86/kvm/vmx/pmu_intel.c diff --git a/arch/x86/kvm/vmx/vmcs.h b/arch/x86/kvm/vmx/vmcs.h new file mode 100644 index 000000000000..6def3ba88e3b --- /dev/null +++ b/arch/x86/kvm/vmx/vmcs.h @@ -0,0 +1,136 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_VMCS_H +#define __KVM_X86_VMX_VMCS_H + +#include <linux/ktime.h> +#include <linux/list.h> +#include <linux/nospec.h> + +#include <asm/kvm.h> +#include <asm/vmx.h> + +#include "capabilities.h" + +struct vmcs_hdr { + u32 revision_id:31; + u32 shadow_vmcs:1; +}; + +struct vmcs { + struct vmcs_hdr hdr; + u32 abort; + char data[0]; +}; + +DECLARE_PER_CPU(struct vmcs *, current_vmcs); + +/* + * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT + * and whose values change infrequently, but are not constant. I.e. this is + * used as a write-through cache of the corresponding VMCS fields. + */ +struct vmcs_host_state { + unsigned long cr3; /* May not match real cr3 */ + unsigned long cr4; /* May not match real cr4 */ + unsigned long gs_base; + unsigned long fs_base; + + u16 fs_sel, gs_sel, ldt_sel; +#ifdef CONFIG_X86_64 + u16 ds_sel, es_sel; +#endif +}; + +/* + * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also + * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs + * loaded on this CPU (so we can clear them if the CPU goes down). + */ +struct loaded_vmcs { + struct vmcs *vmcs; + struct vmcs *shadow_vmcs; + int cpu; + bool launched; + bool nmi_known_unmasked; + bool hv_timer_armed; + /* Support for vnmi-less CPUs */ + int soft_vnmi_blocked; + ktime_t entry_time; + s64 vnmi_blocked_time; + unsigned long *msr_bitmap; + struct list_head loaded_vmcss_on_cpu_link; + struct vmcs_host_state host_state; +}; + +static inline bool is_exception_n(u32 intr_info, u8 vector) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | + INTR_INFO_VALID_MASK)) == + (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK); +} + +static inline bool is_debug(u32 intr_info) +{ + return is_exception_n(intr_info, DB_VECTOR); +} + +static inline bool is_breakpoint(u32 intr_info) +{ + return is_exception_n(intr_info, BP_VECTOR); +} + +static inline bool is_page_fault(u32 intr_info) +{ + return is_exception_n(intr_info, PF_VECTOR); +} + +static inline bool is_invalid_opcode(u32 intr_info) +{ + return is_exception_n(intr_info, UD_VECTOR); +} + +static inline bool is_gp_fault(u32 intr_info) +{ + return is_exception_n(intr_info, GP_VECTOR); +} + +static inline bool is_machine_check(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | + INTR_INFO_VALID_MASK)) == + (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); +} + +/* Undocumented: icebp/int1 */ +static inline bool is_icebp(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) + == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK); +} + +static inline bool is_nmi(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) + == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK); +} + +enum vmcs_field_width { + VMCS_FIELD_WIDTH_U16 = 0, + VMCS_FIELD_WIDTH_U64 = 1, + VMCS_FIELD_WIDTH_U32 = 2, + VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3 +}; + +static inline int vmcs_field_width(unsigned long field) +{ + if (0x1 & field) /* the *_HIGH fields are all 32 bit */ + return VMCS_FIELD_WIDTH_U32; + return (field >> 13) & 0x3; +} + +static inline int vmcs_field_readonly(unsigned long field) +{ + return (((field >> 10) & 0x3) == 1); +} + +#endif /* __KVM_X86_VMX_VMCS_H */ diff --git a/arch/x86/kvm/vmx/vmcs12.c b/arch/x86/kvm/vmx/vmcs12.c new file mode 100644 index 000000000000..53dfb401316d --- /dev/null +++ b/arch/x86/kvm/vmx/vmcs12.c @@ -0,0 +1,157 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include "vmcs12.h" + +#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) +#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) +#define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name) +#define FIELD64(number, name) \ + FIELD(number, name), \ + [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32) + +const unsigned short vmcs_field_to_offset_table[] = { + FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), + FIELD(POSTED_INTR_NV, posted_intr_nv), + FIELD(GUEST_ES_SELECTOR, guest_es_selector), + FIELD(GUEST_CS_SELECTOR, guest_cs_selector), + FIELD(GUEST_SS_SELECTOR, guest_ss_selector), + FIELD(GUEST_DS_SELECTOR, guest_ds_selector), + FIELD(GUEST_FS_SELECTOR, guest_fs_selector), + FIELD(GUEST_GS_SELECTOR, guest_gs_selector), + FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), + FIELD(GUEST_TR_SELECTOR, guest_tr_selector), + FIELD(GUEST_INTR_STATUS, guest_intr_status), + FIELD(GUEST_PML_INDEX, guest_pml_index), + FIELD(HOST_ES_SELECTOR, host_es_selector), + FIELD(HOST_CS_SELECTOR, host_cs_selector), + FIELD(HOST_SS_SELECTOR, host_ss_selector), + FIELD(HOST_DS_SELECTOR, host_ds_selector), + FIELD(HOST_FS_SELECTOR, host_fs_selector), + FIELD(HOST_GS_SELECTOR, host_gs_selector), + FIELD(HOST_TR_SELECTOR, host_tr_selector), + FIELD64(IO_BITMAP_A, io_bitmap_a), + FIELD64(IO_BITMAP_B, io_bitmap_b), + FIELD64(MSR_BITMAP, msr_bitmap), + FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), + FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), + FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), + FIELD64(PML_ADDRESS, pml_address), + FIELD64(TSC_OFFSET, tsc_offset), + FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), + FIELD64(APIC_ACCESS_ADDR, apic_access_addr), + FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr), + FIELD64(VM_FUNCTION_CONTROL, vm_function_control), + FIELD64(EPT_POINTER, ept_pointer), + FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0), + FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1), + FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2), + FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3), + FIELD64(EPTP_LIST_ADDRESS, eptp_list_address), + FIELD64(VMREAD_BITMAP, vmread_bitmap), + FIELD64(VMWRITE_BITMAP, vmwrite_bitmap), + FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), + FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), + FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), + FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), + FIELD64(GUEST_IA32_PAT, guest_ia32_pat), + FIELD64(GUEST_IA32_EFER, guest_ia32_efer), + FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), + FIELD64(GUEST_PDPTR0, guest_pdptr0), + FIELD64(GUEST_PDPTR1, guest_pdptr1), + FIELD64(GUEST_PDPTR2, guest_pdptr2), + FIELD64(GUEST_PDPTR3, guest_pdptr3), + FIELD64(GUEST_BNDCFGS, guest_bndcfgs), + FIELD64(HOST_IA32_PAT, host_ia32_pat), + FIELD64(HOST_IA32_EFER, host_ia32_efer), + FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), + FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), + FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), + FIELD(EXCEPTION_BITMAP, exception_bitmap), + FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), + FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), + FIELD(CR3_TARGET_COUNT, cr3_target_count), + FIELD(VM_EXIT_CONTROLS, vm_exit_controls), + FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), + FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), + FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), + FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), + FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), + FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), + FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), + FIELD(TPR_THRESHOLD, tpr_threshold), + FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), + FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), + FIELD(VM_EXIT_REASON, vm_exit_reason), + FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), + FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), + FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), + FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), + FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), + FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), + FIELD(GUEST_ES_LIMIT, guest_es_limit), + FIELD(GUEST_CS_LIMIT, guest_cs_limit), + FIELD(GUEST_SS_LIMIT, guest_ss_limit), + FIELD(GUEST_DS_LIMIT, guest_ds_limit), + FIELD(GUEST_FS_LIMIT, guest_fs_limit), + FIELD(GUEST_GS_LIMIT, guest_gs_limit), + FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), + FIELD(GUEST_TR_LIMIT, guest_tr_limit), + FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), + FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), + FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), + FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), + FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), + FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), + FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), + FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), + FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), + FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), + FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), + FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), + FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), + FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), + FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), + FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), + FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), + FIELD(CR0_READ_SHADOW, cr0_read_shadow), + FIELD(CR4_READ_SHADOW, cr4_read_shadow), + FIELD(CR3_TARGET_VALUE0, cr3_target_value0), + FIELD(CR3_TARGET_VALUE1, cr3_target_value1), + FIELD(CR3_TARGET_VALUE2, cr3_target_value2), + FIELD(CR3_TARGET_VALUE3, cr3_target_value3), + FIELD(EXIT_QUALIFICATION, exit_qualification), + FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), + FIELD(GUEST_CR0, guest_cr0), + FIELD(GUEST_CR3, guest_cr3), + FIELD(GUEST_CR4, guest_cr4), + FIELD(GUEST_ES_BASE, guest_es_base), + FIELD(GUEST_CS_BASE, guest_cs_base), + FIELD(GUEST_SS_BASE, guest_ss_base), + FIELD(GUEST_DS_BASE, guest_ds_base), + FIELD(GUEST_FS_BASE, guest_fs_base), + FIELD(GUEST_GS_BASE, guest_gs_base), + FIELD(GUEST_LDTR_BASE, guest_ldtr_base), + FIELD(GUEST_TR_BASE, guest_tr_base), + FIELD(GUEST_GDTR_BASE, guest_gdtr_base), + FIELD(GUEST_IDTR_BASE, guest_idtr_base), + FIELD(GUEST_DR7, guest_dr7), + FIELD(GUEST_RSP, guest_rsp), + FIELD(GUEST_RIP, guest_rip), + FIELD(GUEST_RFLAGS, guest_rflags), + FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), + FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), + FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), + FIELD(HOST_CR0, host_cr0), + FIELD(HOST_CR3, host_cr3), + FIELD(HOST_CR4, host_cr4), + FIELD(HOST_FS_BASE, host_fs_base), + FIELD(HOST_GS_BASE, host_gs_base), + FIELD(HOST_TR_BASE, host_tr_base), + FIELD(HOST_GDTR_BASE, host_gdtr_base), + FIELD(HOST_IDTR_BASE, host_idtr_base), + FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), + FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), + FIELD(HOST_RSP, host_rsp), + FIELD(HOST_RIP, host_rip), +}; +const unsigned int nr_vmcs12_fields = ARRAY_SIZE(vmcs_field_to_offset_table); diff --git a/arch/x86/kvm/vmx/vmcs12.h b/arch/x86/kvm/vmx/vmcs12.h new file mode 100644 index 000000000000..3a742428ad17 --- /dev/null +++ b/arch/x86/kvm/vmx/vmcs12.h @@ -0,0 +1,462 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_VMCS12_H +#define __KVM_X86_VMX_VMCS12_H + +#include <linux/build_bug.h> + +#include "vmcs.h" + +/* + * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a + * single nested guest (L2), hence the name vmcs12. Any VMX implementation has + * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is + * stored in guest memory specified by VMPTRLD, but is opaque to the guest, + * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. + * More than one of these structures may exist, if L1 runs multiple L2 guests. + * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the + * underlying hardware which will be used to run L2. + * This structure is packed to ensure that its layout is identical across + * machines (necessary for live migration). + * + * IMPORTANT: Changing the layout of existing fields in this structure + * will break save/restore compatibility with older kvm releases. When + * adding new fields, either use space in the reserved padding* arrays + * or add the new fields to the end of the structure. + */ +typedef u64 natural_width; +struct __packed vmcs12 { + /* According to the Intel spec, a VMCS region must start with the + * following two fields. Then follow implementation-specific data. + */ + struct vmcs_hdr hdr; + u32 abort; + + u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ + u32 padding[7]; /* room for future expansion */ + + u64 io_bitmap_a; + u64 io_bitmap_b; + u64 msr_bitmap; + u64 vm_exit_msr_store_addr; + u64 vm_exit_msr_load_addr; + u64 vm_entry_msr_load_addr; + u64 tsc_offset; + u64 virtual_apic_page_addr; + u64 apic_access_addr; + u64 posted_intr_desc_addr; + u64 ept_pointer; + u64 eoi_exit_bitmap0; + u64 eoi_exit_bitmap1; + u64 eoi_exit_bitmap2; + u64 eoi_exit_bitmap3; + u64 xss_exit_bitmap; + u64 guest_physical_address; + u64 vmcs_link_pointer; + u64 guest_ia32_debugctl; + u64 guest_ia32_pat; + u64 guest_ia32_efer; + u64 guest_ia32_perf_global_ctrl; + u64 guest_pdptr0; + u64 guest_pdptr1; + u64 guest_pdptr2; + u64 guest_pdptr3; + u64 guest_bndcfgs; + u64 host_ia32_pat; + u64 host_ia32_efer; + u64 host_ia32_perf_global_ctrl; + u64 vmread_bitmap; + u64 vmwrite_bitmap; + u64 vm_function_control; + u64 eptp_list_address; + u64 pml_address; + u64 padding64[3]; /* room for future expansion */ + /* + * To allow migration of L1 (complete with its L2 guests) between + * machines of different natural widths (32 or 64 bit), we cannot have + * unsigned long fields with no explicit size. We use u64 (aliased + * natural_width) instead. Luckily, x86 is little-endian. + */ + natural_width cr0_guest_host_mask; + natural_width cr4_guest_host_mask; + natural_width cr0_read_shadow; + natural_width cr4_read_shadow; + natural_width cr3_target_value0; + natural_width cr3_target_value1; + natural_width cr3_target_value2; + natural_width cr3_target_value3; + natural_width exit_qualification; + natural_width guest_linear_address; + natural_width guest_cr0; + natural_width guest_cr3; + natural_width guest_cr4; + natural_width guest_es_base; + natural_width guest_cs_base; + natural_width guest_ss_base; + natural_width guest_ds_base; + natural_width guest_fs_base; + natural_width guest_gs_base; + natural_width guest_ldtr_base; + natural_width guest_tr_base; + natural_width guest_gdtr_base; + natural_width guest_idtr_base; + natural_width guest_dr7; + natural_width guest_rsp; + natural_width guest_rip; + natural_width guest_rflags; + natural_width guest_pending_dbg_exceptions; + natural_width guest_sysenter_esp; + natural_width guest_sysenter_eip; + natural_width host_cr0; + natural_width host_cr3; + natural_width host_cr4; + natural_width host_fs_base; + natural_width host_gs_base; + natural_width host_tr_base; + natural_width host_gdtr_base; + natural_width host_idtr_base; + natural_width host_ia32_sysenter_esp; + natural_width host_ia32_sysenter_eip; + natural_width host_rsp; + natural_width host_rip; + natural_width paddingl[8]; /* room for future expansion */ + u32 pin_based_vm_exec_control; + u32 cpu_based_vm_exec_control; + u32 exception_bitmap; + u32 page_fault_error_code_mask; + u32 page_fault_error_code_match; + u32 cr3_target_count; + u32 vm_exit_controls; + u32 vm_exit_msr_store_count; + u32 vm_exit_msr_load_count; + u32 vm_entry_controls; + u32 vm_entry_msr_load_count; + u32 vm_entry_intr_info_field; + u32 vm_entry_exception_error_code; + u32 vm_entry_instruction_len; + u32 tpr_threshold; + u32 secondary_vm_exec_control; + u32 vm_instruction_error; + u32 vm_exit_reason; + u32 vm_exit_intr_info; + u32 vm_exit_intr_error_code; + u32 idt_vectoring_info_field; + u32 idt_vectoring_error_code; + u32 vm_exit_instruction_len; + u32 vmx_instruction_info; + u32 guest_es_limit; + u32 guest_cs_limit; + u32 guest_ss_limit; + u32 guest_ds_limit; + u32 guest_fs_limit; + u32 guest_gs_limit; + u32 guest_ldtr_limit; + u32 guest_tr_limit; + u32 guest_gdtr_limit; + u32 guest_idtr_limit; + u32 guest_es_ar_bytes; + u32 guest_cs_ar_bytes; + u32 guest_ss_ar_bytes; + u32 guest_ds_ar_bytes; + u32 guest_fs_ar_bytes; + u32 guest_gs_ar_bytes; + u32 guest_ldtr_ar_bytes; + u32 guest_tr_ar_bytes; + u32 guest_interruptibility_info; + u32 guest_activity_state; + u32 guest_sysenter_cs; + u32 host_ia32_sysenter_cs; + u32 vmx_preemption_timer_value; + u32 padding32[7]; /* room for future expansion */ + u16 virtual_processor_id; + u16 posted_intr_nv; + u16 guest_es_selector; + u16 guest_cs_selector; + u16 guest_ss_selector; + u16 guest_ds_selector; + u16 guest_fs_selector; + u16 guest_gs_selector; + u16 guest_ldtr_selector; + u16 guest_tr_selector; + u16 guest_intr_status; + u16 host_es_selector; + u16 host_cs_selector; + u16 host_ss_selector; + u16 host_ds_selector; + u16 host_fs_selector; + u16 host_gs_selector; + u16 host_tr_selector; + u16 guest_pml_index; +}; + +/* + * VMCS12_REVISION is an arbitrary id that should be changed if the content or + * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and + * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. + * + * IMPORTANT: Changing this value will break save/restore compatibility with + * older kvm releases. + */ +#define VMCS12_REVISION 0x11e57ed0 + +/* + * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region + * and any VMCS region. Although only sizeof(struct vmcs12) are used by the + * current implementation, 4K are reserved to avoid future complications. + */ +#define VMCS12_SIZE 0x1000 + +/* + * VMCS12_MAX_FIELD_INDEX is the highest index value used in any + * supported VMCS12 field encoding. + */ +#define VMCS12_MAX_FIELD_INDEX 0x17 + +/* + * For save/restore compatibility, the vmcs12 field offsets must not change. + */ +#define CHECK_OFFSET(field, loc) \ + BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \ + "Offset of " #field " in struct vmcs12 has changed.") + +static inline void vmx_check_vmcs12_offsets(void) +{ + CHECK_OFFSET(hdr, 0); + CHECK_OFFSET(abort, 4); + CHECK_OFFSET(launch_state, 8); + CHECK_OFFSET(io_bitmap_a, 40); + CHECK_OFFSET(io_bitmap_b, 48); + CHECK_OFFSET(msr_bitmap, 56); + CHECK_OFFSET(vm_exit_msr_store_addr, 64); + CHECK_OFFSET(vm_exit_msr_load_addr, 72); + CHECK_OFFSET(vm_entry_msr_load_addr, 80); + CHECK_OFFSET(tsc_offset, 88); + CHECK_OFFSET(virtual_apic_page_addr, 96); + CHECK_OFFSET(apic_access_addr, 104); + CHECK_OFFSET(posted_intr_desc_addr, 112); + CHECK_OFFSET(ept_pointer, 120); + CHECK_OFFSET(eoi_exit_bitmap0, 128); + CHECK_OFFSET(eoi_exit_bitmap1, 136); + CHECK_OFFSET(eoi_exit_bitmap2, 144); + CHECK_OFFSET(eoi_exit_bitmap3, 152); + CHECK_OFFSET(xss_exit_bitmap, 160); + CHECK_OFFSET(guest_physical_address, 168); + CHECK_OFFSET(vmcs_link_pointer, 176); + CHECK_OFFSET(guest_ia32_debugctl, 184); + CHECK_OFFSET(guest_ia32_pat, 192); + CHECK_OFFSET(guest_ia32_efer, 200); + CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208); + CHECK_OFFSET(guest_pdptr0, 216); + CHECK_OFFSET(guest_pdptr1, 224); + CHECK_OFFSET(guest_pdptr2, 232); + CHECK_OFFSET(guest_pdptr3, 240); + CHECK_OFFSET(guest_bndcfgs, 248); + CHECK_OFFSET(host_ia32_pat, 256); + CHECK_OFFSET(host_ia32_efer, 264); + CHECK_OFFSET(host_ia32_perf_global_ctrl, 272); + CHECK_OFFSET(vmread_bitmap, 280); + CHECK_OFFSET(vmwrite_bitmap, 288); + CHECK_OFFSET(vm_function_control, 296); + CHECK_OFFSET(eptp_list_address, 304); + CHECK_OFFSET(pml_address, 312); + CHECK_OFFSET(cr0_guest_host_mask, 344); + CHECK_OFFSET(cr4_guest_host_mask, 352); + CHECK_OFFSET(cr0_read_shadow, 360); + CHECK_OFFSET(cr4_read_shadow, 368); + CHECK_OFFSET(cr3_target_value0, 376); + CHECK_OFFSET(cr3_target_value1, 384); + CHECK_OFFSET(cr3_target_value2, 392); + CHECK_OFFSET(cr3_target_value3, 400); + CHECK_OFFSET(exit_qualification, 408); + CHECK_OFFSET(guest_linear_address, 416); + CHECK_OFFSET(guest_cr0, 424); + CHECK_OFFSET(guest_cr3, 432); + CHECK_OFFSET(guest_cr4, 440); + CHECK_OFFSET(guest_es_base, 448); + CHECK_OFFSET(guest_cs_base, 456); + CHECK_OFFSET(guest_ss_base, 464); + CHECK_OFFSET(guest_ds_base, 472); + CHECK_OFFSET(guest_fs_base, 480); + CHECK_OFFSET(guest_gs_base, 488); + CHECK_OFFSET(guest_ldtr_base, 496); + CHECK_OFFSET(guest_tr_base, 504); + CHECK_OFFSET(guest_gdtr_base, 512); + CHECK_OFFSET(guest_idtr_base, 520); + CHECK_OFFSET(guest_dr7, 528); + CHECK_OFFSET(guest_rsp, 536); + CHECK_OFFSET(guest_rip, 544); + CHECK_OFFSET(guest_rflags, 552); + CHECK_OFFSET(guest_pending_dbg_exceptions, 560); + CHECK_OFFSET(guest_sysenter_esp, 568); + CHECK_OFFSET(guest_sysenter_eip, 576); + CHECK_OFFSET(host_cr0, 584); + CHECK_OFFSET(host_cr3, 592); + CHECK_OFFSET(host_cr4, 600); + CHECK_OFFSET(host_fs_base, 608); + CHECK_OFFSET(host_gs_base, 616); + CHECK_OFFSET(host_tr_base, 624); + CHECK_OFFSET(host_gdtr_base, 632); + CHECK_OFFSET(host_idtr_base, 640); + CHECK_OFFSET(host_ia32_sysenter_esp, 648); + CHECK_OFFSET(host_ia32_sysenter_eip, 656); + CHECK_OFFSET(host_rsp, 664); + CHECK_OFFSET(host_rip, 672); + CHECK_OFFSET(pin_based_vm_exec_control, 744); + CHECK_OFFSET(cpu_based_vm_exec_control, 748); + CHECK_OFFSET(exception_bitmap, 752); + CHECK_OFFSET(page_fault_error_code_mask, 756); + CHECK_OFFSET(page_fault_error_code_match, 760); + CHECK_OFFSET(cr3_target_count, 764); + CHECK_OFFSET(vm_exit_controls, 768); + CHECK_OFFSET(vm_exit_msr_store_count, 772); + CHECK_OFFSET(vm_exit_msr_load_count, 776); + CHECK_OFFSET(vm_entry_controls, 780); + CHECK_OFFSET(vm_entry_msr_load_count, 784); + CHECK_OFFSET(vm_entry_intr_info_field, 788); + CHECK_OFFSET(vm_entry_exception_error_code, 792); + CHECK_OFFSET(vm_entry_instruction_len, 796); + CHECK_OFFSET(tpr_threshold, 800); + CHECK_OFFSET(secondary_vm_exec_control, 804); + CHECK_OFFSET(vm_instruction_error, 808); + CHECK_OFFSET(vm_exit_reason, 812); + CHECK_OFFSET(vm_exit_intr_info, 816); + CHECK_OFFSET(vm_exit_intr_error_code, 820); + CHECK_OFFSET(idt_vectoring_info_field, 824); + CHECK_OFFSET(idt_vectoring_error_code, 828); + CHECK_OFFSET(vm_exit_instruction_len, 832); + CHECK_OFFSET(vmx_instruction_info, 836); + CHECK_OFFSET(guest_es_limit, 840); + CHECK_OFFSET(guest_cs_limit, 844); + CHECK_OFFSET(guest_ss_limit, 848); + CHECK_OFFSET(guest_ds_limit, 852); + CHECK_OFFSET(guest_fs_limit, 856); + CHECK_OFFSET(guest_gs_limit, 860); + CHECK_OFFSET(guest_ldtr_limit, 864); + CHECK_OFFSET(guest_tr_limit, 868); + CHECK_OFFSET(guest_gdtr_limit, 872); + CHECK_OFFSET(guest_idtr_limit, 876); + CHECK_OFFSET(guest_es_ar_bytes, 880); + CHECK_OFFSET(guest_cs_ar_bytes, 884); + CHECK_OFFSET(guest_ss_ar_bytes, 888); + CHECK_OFFSET(guest_ds_ar_bytes, 892); + CHECK_OFFSET(guest_fs_ar_bytes, 896); + CHECK_OFFSET(guest_gs_ar_bytes, 900); + CHECK_OFFSET(guest_ldtr_ar_bytes, 904); + CHECK_OFFSET(guest_tr_ar_bytes, 908); + CHECK_OFFSET(guest_interruptibility_info, 912); + CHECK_OFFSET(guest_activity_state, 916); + CHECK_OFFSET(guest_sysenter_cs, 920); + CHECK_OFFSET(host_ia32_sysenter_cs, 924); + CHECK_OFFSET(vmx_preemption_timer_value, 928); + CHECK_OFFSET(virtual_processor_id, 960); + CHECK_OFFSET(posted_intr_nv, 962); + CHECK_OFFSET(guest_es_selector, 964); + CHECK_OFFSET(guest_cs_selector, 966); + CHECK_OFFSET(guest_ss_selector, 968); + CHECK_OFFSET(guest_ds_selector, 970); + CHECK_OFFSET(guest_fs_selector, 972); + CHECK_OFFSET(guest_gs_selector, 974); + CHECK_OFFSET(guest_ldtr_selector, 976); + CHECK_OFFSET(guest_tr_selector, 978); + CHECK_OFFSET(guest_intr_status, 980); + CHECK_OFFSET(host_es_selector, 982); + CHECK_OFFSET(host_cs_selector, 984); + CHECK_OFFSET(host_ss_selector, 986); + CHECK_OFFSET(host_ds_selector, 988); + CHECK_OFFSET(host_fs_selector, 990); + CHECK_OFFSET(host_gs_selector, 992); + CHECK_OFFSET(host_tr_selector, 994); + CHECK_OFFSET(guest_pml_index, 996); +} + +extern const unsigned short vmcs_field_to_offset_table[]; +extern const unsigned int nr_vmcs12_fields; + +#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) + +static inline short vmcs_field_to_offset(unsigned long field) +{ + unsigned short offset; + unsigned int index; + + if (field >> 15) + return -ENOENT; + + index = ROL16(field, 6); + if (index >= nr_vmcs12_fields) + return -ENOENT; + + index = array_index_nospec(index, nr_vmcs12_fields); + offset = vmcs_field_to_offset_table[index]; + if (offset == 0) + return -ENOENT; + return offset; +} + +#undef ROL16 + +/* + * Read a vmcs12 field. Since these can have varying lengths and we return + * one type, we chose the biggest type (u64) and zero-extend the return value + * to that size. Note that the caller, handle_vmread, might need to use only + * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of + * 64-bit fields are to be returned). + */ +static inline int vmcs12_read_any(struct vmcs12 *vmcs12, + unsigned long field, u64 *ret) +{ + short offset = vmcs_field_to_offset(field); + char *p; + + if (offset < 0) + return offset; + + p = (char *)vmcs12 + offset; + + switch (vmcs_field_width(field)) { + case VMCS_FIELD_WIDTH_NATURAL_WIDTH: + *ret = *((natural_width *)p); + return 0; + case VMCS_FIELD_WIDTH_U16: + *ret = *((u16 *)p); + return 0; + case VMCS_FIELD_WIDTH_U32: + *ret = *((u32 *)p); + return 0; + case VMCS_FIELD_WIDTH_U64: + *ret = *((u64 *)p); + return 0; + default: + WARN_ON(1); + return -ENOENT; + } +} + +static inline int vmcs12_write_any(struct vmcs12 *vmcs12, + unsigned long field, u64 field_value){ + short offset = vmcs_field_to_offset(field); + char *p = (char *)vmcs12 + offset; + + if (offset < 0) + return offset; + + switch (vmcs_field_width(field)) { + case VMCS_FIELD_WIDTH_U16: + *(u16 *)p = field_value; + return 0; + case VMCS_FIELD_WIDTH_U32: + *(u32 *)p = field_value; + return 0; + case VMCS_FIELD_WIDTH_U64: + *(u64 *)p = field_value; + return 0; + case VMCS_FIELD_WIDTH_NATURAL_WIDTH: + *(natural_width *)p = field_value; + return 0; + default: + WARN_ON(1); + return -ENOENT; + } + +} + +#endif /* __KVM_X86_VMX_VMCS12_H */ diff --git a/arch/x86/kvm/vmx_shadow_fields.h b/arch/x86/kvm/vmx/vmcs_shadow_fields.h index 132432f375c2..132432f375c2 100644 --- a/arch/x86/kvm/vmx_shadow_fields.h +++ b/arch/x86/kvm/vmx/vmcs_shadow_fields.h diff --git a/arch/x86/kvm/vmx/vmenter.S b/arch/x86/kvm/vmx/vmenter.S new file mode 100644 index 000000000000..bcef2c7e9bc4 --- /dev/null +++ b/arch/x86/kvm/vmx/vmenter.S @@ -0,0 +1,57 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#include <linux/linkage.h> +#include <asm/asm.h> + + .text + +/** + * vmx_vmenter - VM-Enter the current loaded VMCS + * + * %RFLAGS.ZF: !VMCS.LAUNCHED, i.e. controls VMLAUNCH vs. VMRESUME + * + * Returns: + * %RFLAGS.CF is set on VM-Fail Invalid + * %RFLAGS.ZF is set on VM-Fail Valid + * %RFLAGS.{CF,ZF} are cleared on VM-Success, i.e. VM-Exit + * + * Note that VMRESUME/VMLAUNCH fall-through and return directly if + * they VM-Fail, whereas a successful VM-Enter + VM-Exit will jump + * to vmx_vmexit. + */ +ENTRY(vmx_vmenter) + /* EFLAGS.ZF is set if VMCS.LAUNCHED == 0 */ + je 2f + +1: vmresume + ret + +2: vmlaunch + ret + +3: cmpb $0, kvm_rebooting + jne 4f + call kvm_spurious_fault +4: ret + + .pushsection .fixup, "ax" +5: jmp 3b + .popsection + + _ASM_EXTABLE(1b, 5b) + _ASM_EXTABLE(2b, 5b) + +ENDPROC(vmx_vmenter) + +/** + * vmx_vmexit - Handle a VMX VM-Exit + * + * Returns: + * %RFLAGS.{CF,ZF} are cleared on VM-Success, i.e. VM-Exit + * + * This is vmx_vmenter's partner in crime. On a VM-Exit, control will jump + * here after hardware loads the host's state, i.e. this is the destination + * referred to by VMCS.HOST_RIP. + */ +ENTRY(vmx_vmexit) + ret +ENDPROC(vmx_vmexit) diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c new file mode 100644 index 000000000000..4d39f731bc33 --- /dev/null +++ b/arch/x86/kvm/vmx/vmx.c @@ -0,0 +1,7935 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * This module enables machines with Intel VT-x extensions to run virtual + * machines without emulation or binary translation. + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Avi Kivity <avi@qumranet.com> + * Yaniv Kamay <yaniv@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include <linux/frame.h> +#include <linux/highmem.h> +#include <linux/hrtimer.h> +#include <linux/kernel.h> +#include <linux/kvm_host.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mod_devicetable.h> +#include <linux/mm.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/tboot.h> +#include <linux/trace_events.h> + +#include <asm/apic.h> +#include <asm/asm.h> +#include <asm/cpu.h> +#include <asm/debugreg.h> +#include <asm/desc.h> +#include <asm/fpu/internal.h> +#include <asm/io.h> +#include <asm/irq_remapping.h> +#include <asm/kexec.h> +#include <asm/perf_event.h> +#include <asm/mce.h> +#include <asm/mmu_context.h> +#include <asm/mshyperv.h> +#include <asm/spec-ctrl.h> +#include <asm/virtext.h> +#include <asm/vmx.h> + +#include "capabilities.h" +#include "cpuid.h" +#include "evmcs.h" +#include "irq.h" +#include "kvm_cache_regs.h" +#include "lapic.h" +#include "mmu.h" +#include "nested.h" +#include "ops.h" +#include "pmu.h" +#include "trace.h" +#include "vmcs.h" +#include "vmcs12.h" +#include "vmx.h" +#include "x86.h" + +MODULE_AUTHOR("Qumranet"); +MODULE_LICENSE("GPL"); + +static const struct x86_cpu_id vmx_cpu_id[] = { + X86_FEATURE_MATCH(X86_FEATURE_VMX), + {} +}; +MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); + +bool __read_mostly enable_vpid = 1; +module_param_named(vpid, enable_vpid, bool, 0444); + +static bool __read_mostly enable_vnmi = 1; +module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); + +bool __read_mostly flexpriority_enabled = 1; +module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); + +bool __read_mostly enable_ept = 1; +module_param_named(ept, enable_ept, bool, S_IRUGO); + +bool __read_mostly enable_unrestricted_guest = 1; +module_param_named(unrestricted_guest, + enable_unrestricted_guest, bool, S_IRUGO); + +bool __read_mostly enable_ept_ad_bits = 1; +module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); + +static bool __read_mostly emulate_invalid_guest_state = true; +module_param(emulate_invalid_guest_state, bool, S_IRUGO); + +static bool __read_mostly fasteoi = 1; +module_param(fasteoi, bool, S_IRUGO); + +static bool __read_mostly enable_apicv = 1; +module_param(enable_apicv, bool, S_IRUGO); + +/* + * If nested=1, nested virtualization is supported, i.e., guests may use + * VMX and be a hypervisor for its own guests. If nested=0, guests may not + * use VMX instructions. + */ +static bool __read_mostly nested = 1; +module_param(nested, bool, S_IRUGO); + +static u64 __read_mostly host_xss; + +bool __read_mostly enable_pml = 1; +module_param_named(pml, enable_pml, bool, S_IRUGO); + +#define MSR_BITMAP_MODE_X2APIC 1 +#define MSR_BITMAP_MODE_X2APIC_APICV 2 + +#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL + +/* Guest_tsc -> host_tsc conversion requires 64-bit division. */ +static int __read_mostly cpu_preemption_timer_multi; +static bool __read_mostly enable_preemption_timer = 1; +#ifdef CONFIG_X86_64 +module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); +#endif + +#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) +#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE +#define KVM_VM_CR0_ALWAYS_ON \ + (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ + X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) +#define KVM_CR4_GUEST_OWNED_BITS \ + (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ + | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) + +#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE +#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) +#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) + +#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) + +#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ + RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ + RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ + RTIT_STATUS_BYTECNT)) + +#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \ + (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f) + +/* + * These 2 parameters are used to config the controls for Pause-Loop Exiting: + * ple_gap: upper bound on the amount of time between two successive + * executions of PAUSE in a loop. Also indicate if ple enabled. + * According to test, this time is usually smaller than 128 cycles. + * ple_window: upper bound on the amount of time a guest is allowed to execute + * in a PAUSE loop. Tests indicate that most spinlocks are held for + * less than 2^12 cycles + * Time is measured based on a counter that runs at the same rate as the TSC, + * refer SDM volume 3b section 21.6.13 & 22.1.3. + */ +static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; +module_param(ple_gap, uint, 0444); + +static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; +module_param(ple_window, uint, 0444); + +/* Default doubles per-vcpu window every exit. */ +static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; +module_param(ple_window_grow, uint, 0444); + +/* Default resets per-vcpu window every exit to ple_window. */ +static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; +module_param(ple_window_shrink, uint, 0444); + +/* Default is to compute the maximum so we can never overflow. */ +static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; +module_param(ple_window_max, uint, 0444); + +/* Default is SYSTEM mode, 1 for host-guest mode */ +int __read_mostly pt_mode = PT_MODE_SYSTEM; +module_param(pt_mode, int, S_IRUGO); + +static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); +static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); +static DEFINE_MUTEX(vmx_l1d_flush_mutex); + +/* Storage for pre module init parameter parsing */ +static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; + +static const struct { + const char *option; + bool for_parse; +} vmentry_l1d_param[] = { + [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, + [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, + [VMENTER_L1D_FLUSH_COND] = {"cond", true}, + [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, + [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, + [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, +}; + +#define L1D_CACHE_ORDER 4 +static void *vmx_l1d_flush_pages; + +static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) +{ + struct page *page; + unsigned int i; + + if (!enable_ept) { + l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; + return 0; + } + + if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { + u64 msr; + + rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); + if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { + l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; + return 0; + } + } + + /* If set to auto use the default l1tf mitigation method */ + if (l1tf == VMENTER_L1D_FLUSH_AUTO) { + switch (l1tf_mitigation) { + case L1TF_MITIGATION_OFF: + l1tf = VMENTER_L1D_FLUSH_NEVER; + break; + case L1TF_MITIGATION_FLUSH_NOWARN: + case L1TF_MITIGATION_FLUSH: + case L1TF_MITIGATION_FLUSH_NOSMT: + l1tf = VMENTER_L1D_FLUSH_COND; + break; + case L1TF_MITIGATION_FULL: + case L1TF_MITIGATION_FULL_FORCE: + l1tf = VMENTER_L1D_FLUSH_ALWAYS; + break; + } + } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { + l1tf = VMENTER_L1D_FLUSH_ALWAYS; + } + + if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && + !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { + page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); + if (!page) + return -ENOMEM; + vmx_l1d_flush_pages = page_address(page); + + /* + * Initialize each page with a different pattern in + * order to protect against KSM in the nested + * virtualization case. + */ + for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { + memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, + PAGE_SIZE); + } + } + + l1tf_vmx_mitigation = l1tf; + + if (l1tf != VMENTER_L1D_FLUSH_NEVER) + static_branch_enable(&vmx_l1d_should_flush); + else + static_branch_disable(&vmx_l1d_should_flush); + + if (l1tf == VMENTER_L1D_FLUSH_COND) + static_branch_enable(&vmx_l1d_flush_cond); + else + static_branch_disable(&vmx_l1d_flush_cond); + return 0; +} + +static int vmentry_l1d_flush_parse(const char *s) +{ + unsigned int i; + + if (s) { + for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { + if (vmentry_l1d_param[i].for_parse && + sysfs_streq(s, vmentry_l1d_param[i].option)) + return i; + } + } + return -EINVAL; +} + +static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) +{ + int l1tf, ret; + + l1tf = vmentry_l1d_flush_parse(s); + if (l1tf < 0) + return l1tf; + + if (!boot_cpu_has(X86_BUG_L1TF)) + return 0; + + /* + * Has vmx_init() run already? If not then this is the pre init + * parameter parsing. In that case just store the value and let + * vmx_init() do the proper setup after enable_ept has been + * established. + */ + if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { + vmentry_l1d_flush_param = l1tf; + return 0; + } + + mutex_lock(&vmx_l1d_flush_mutex); + ret = vmx_setup_l1d_flush(l1tf); + mutex_unlock(&vmx_l1d_flush_mutex); + return ret; +} + +static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) +{ + if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) + return sprintf(s, "???\n"); + + return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); +} + +static const struct kernel_param_ops vmentry_l1d_flush_ops = { + .set = vmentry_l1d_flush_set, + .get = vmentry_l1d_flush_get, +}; +module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); + +static bool guest_state_valid(struct kvm_vcpu *vcpu); +static u32 vmx_segment_access_rights(struct kvm_segment *var); +static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type); + +void vmx_vmexit(void); + +static DEFINE_PER_CPU(struct vmcs *, vmxarea); +DEFINE_PER_CPU(struct vmcs *, current_vmcs); +/* + * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed + * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. + */ +static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); + +/* + * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we + * can find which vCPU should be waken up. + */ +static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); +static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); + +static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); +static DEFINE_SPINLOCK(vmx_vpid_lock); + +struct vmcs_config vmcs_config; +struct vmx_capability vmx_capability; + +#define VMX_SEGMENT_FIELD(seg) \ + [VCPU_SREG_##seg] = { \ + .selector = GUEST_##seg##_SELECTOR, \ + .base = GUEST_##seg##_BASE, \ + .limit = GUEST_##seg##_LIMIT, \ + .ar_bytes = GUEST_##seg##_AR_BYTES, \ + } + +static const struct kvm_vmx_segment_field { + unsigned selector; + unsigned base; + unsigned limit; + unsigned ar_bytes; +} kvm_vmx_segment_fields[] = { + VMX_SEGMENT_FIELD(CS), + VMX_SEGMENT_FIELD(DS), + VMX_SEGMENT_FIELD(ES), + VMX_SEGMENT_FIELD(FS), + VMX_SEGMENT_FIELD(GS), + VMX_SEGMENT_FIELD(SS), + VMX_SEGMENT_FIELD(TR), + VMX_SEGMENT_FIELD(LDTR), +}; + +u64 host_efer; + +/* + * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm + * will emulate SYSCALL in legacy mode if the vendor string in guest + * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To + * support this emulation, IA32_STAR must always be included in + * vmx_msr_index[], even in i386 builds. + */ +const u32 vmx_msr_index[] = { +#ifdef CONFIG_X86_64 + MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, +#endif + MSR_EFER, MSR_TSC_AUX, MSR_STAR, +}; + +#if IS_ENABLED(CONFIG_HYPERV) +static bool __read_mostly enlightened_vmcs = true; +module_param(enlightened_vmcs, bool, 0444); + +/* check_ept_pointer() should be under protection of ept_pointer_lock. */ +static void check_ept_pointer_match(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + u64 tmp_eptp = INVALID_PAGE; + int i; + + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!VALID_PAGE(tmp_eptp)) { + tmp_eptp = to_vmx(vcpu)->ept_pointer; + } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { + to_kvm_vmx(kvm)->ept_pointers_match + = EPT_POINTERS_MISMATCH; + return; + } + } + + to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; +} + +int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, + void *data) +{ + struct kvm_tlb_range *range = data; + + return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, + range->pages); +} + +static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, + struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) +{ + u64 ept_pointer = to_vmx(vcpu)->ept_pointer; + + /* + * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address + * of the base of EPT PML4 table, strip off EPT configuration + * information. + */ + if (range) + return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, + kvm_fill_hv_flush_list_func, (void *)range); + else + return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); +} + +static int hv_remote_flush_tlb_with_range(struct kvm *kvm, + struct kvm_tlb_range *range) +{ + struct kvm_vcpu *vcpu; + int ret = -ENOTSUPP, i; + + spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); + + if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) + check_ept_pointer_match(kvm); + + if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { + kvm_for_each_vcpu(i, vcpu, kvm) { + /* If ept_pointer is invalid pointer, bypass flush request. */ + if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) + ret |= __hv_remote_flush_tlb_with_range( + kvm, vcpu, range); + } + } else { + ret = __hv_remote_flush_tlb_with_range(kvm, + kvm_get_vcpu(kvm, 0), range); + } + + spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); + return ret; +} +static int hv_remote_flush_tlb(struct kvm *kvm) +{ + return hv_remote_flush_tlb_with_range(kvm, NULL); +} + +#endif /* IS_ENABLED(CONFIG_HYPERV) */ + +/* + * Comment's format: document - errata name - stepping - processor name. + * Refer from + * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp + */ +static u32 vmx_preemption_cpu_tfms[] = { +/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ +0x000206E6, +/* 323056.pdf - AAX65 - C2 - Xeon L3406 */ +/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ +/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ +0x00020652, +/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ +0x00020655, +/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ +/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ +/* + * 320767.pdf - AAP86 - B1 - + * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile + */ +0x000106E5, +/* 321333.pdf - AAM126 - C0 - Xeon 3500 */ +0x000106A0, +/* 321333.pdf - AAM126 - C1 - Xeon 3500 */ +0x000106A1, +/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ +0x000106A4, + /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ + /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ + /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ +0x000106A5, + /* Xeon E3-1220 V2 */ +0x000306A8, +}; + +static inline bool cpu_has_broken_vmx_preemption_timer(void) +{ + u32 eax = cpuid_eax(0x00000001), i; + + /* Clear the reserved bits */ + eax &= ~(0x3U << 14 | 0xfU << 28); + for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) + if (eax == vmx_preemption_cpu_tfms[i]) + return true; + + return false; +} + +static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) +{ + return flexpriority_enabled && lapic_in_kernel(vcpu); +} + +static inline bool report_flexpriority(void) +{ + return flexpriority_enabled; +} + +static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) +{ + int i; + + for (i = 0; i < vmx->nmsrs; ++i) + if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) + return i; + return -1; +} + +struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) +{ + int i; + + i = __find_msr_index(vmx, msr); + if (i >= 0) + return &vmx->guest_msrs[i]; + return NULL; +} + +void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) +{ + vmcs_clear(loaded_vmcs->vmcs); + if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) + vmcs_clear(loaded_vmcs->shadow_vmcs); + loaded_vmcs->cpu = -1; + loaded_vmcs->launched = 0; +} + +#ifdef CONFIG_KEXEC_CORE +/* + * This bitmap is used to indicate whether the vmclear + * operation is enabled on all cpus. All disabled by + * default. + */ +static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; + +static inline void crash_enable_local_vmclear(int cpu) +{ + cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static inline void crash_disable_local_vmclear(int cpu) +{ + cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static inline int crash_local_vmclear_enabled(int cpu) +{ + return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static void crash_vmclear_local_loaded_vmcss(void) +{ + int cpu = raw_smp_processor_id(); + struct loaded_vmcs *v; + + if (!crash_local_vmclear_enabled(cpu)) + return; + + list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), + loaded_vmcss_on_cpu_link) + vmcs_clear(v->vmcs); +} +#else +static inline void crash_enable_local_vmclear(int cpu) { } +static inline void crash_disable_local_vmclear(int cpu) { } +#endif /* CONFIG_KEXEC_CORE */ + +static void __loaded_vmcs_clear(void *arg) +{ + struct loaded_vmcs *loaded_vmcs = arg; + int cpu = raw_smp_processor_id(); + + if (loaded_vmcs->cpu != cpu) + return; /* vcpu migration can race with cpu offline */ + if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) + per_cpu(current_vmcs, cpu) = NULL; + crash_disable_local_vmclear(cpu); + list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); + + /* + * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link + * is before setting loaded_vmcs->vcpu to -1 which is done in + * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist + * then adds the vmcs into percpu list before it is deleted. + */ + smp_wmb(); + + loaded_vmcs_init(loaded_vmcs); + crash_enable_local_vmclear(cpu); +} + +void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) +{ + int cpu = loaded_vmcs->cpu; + + if (cpu != -1) + smp_call_function_single(cpu, + __loaded_vmcs_clear, loaded_vmcs, 1); +} + +static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, + unsigned field) +{ + bool ret; + u32 mask = 1 << (seg * SEG_FIELD_NR + field); + + if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { + vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); + vmx->segment_cache.bitmask = 0; + } + ret = vmx->segment_cache.bitmask & mask; + vmx->segment_cache.bitmask |= mask; + return ret; +} + +static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) +{ + u16 *p = &vmx->segment_cache.seg[seg].selector; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) + *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); + return *p; +} + +static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) +{ + ulong *p = &vmx->segment_cache.seg[seg].base; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) + *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); + return *p; +} + +static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) +{ + u32 *p = &vmx->segment_cache.seg[seg].limit; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) + *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); + return *p; +} + +static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) +{ + u32 *p = &vmx->segment_cache.seg[seg].ar; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) + *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); + return *p; +} + +void update_exception_bitmap(struct kvm_vcpu *vcpu) +{ + u32 eb; + + eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | + (1u << DB_VECTOR) | (1u << AC_VECTOR); + /* + * Guest access to VMware backdoor ports could legitimately + * trigger #GP because of TSS I/O permission bitmap. + * We intercept those #GP and allow access to them anyway + * as VMware does. + */ + if (enable_vmware_backdoor) + eb |= (1u << GP_VECTOR); + if ((vcpu->guest_debug & + (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == + (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) + eb |= 1u << BP_VECTOR; + if (to_vmx(vcpu)->rmode.vm86_active) + eb = ~0; + if (enable_ept) + eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ + + /* When we are running a nested L2 guest and L1 specified for it a + * certain exception bitmap, we must trap the same exceptions and pass + * them to L1. When running L2, we will only handle the exceptions + * specified above if L1 did not want them. + */ + if (is_guest_mode(vcpu)) + eb |= get_vmcs12(vcpu)->exception_bitmap; + + vmcs_write32(EXCEPTION_BITMAP, eb); +} + +/* + * Check if MSR is intercepted for currently loaded MSR bitmap. + */ +static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) +{ + unsigned long *msr_bitmap; + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return true; + + msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; + + if (msr <= 0x1fff) { + return !!test_bit(msr, msr_bitmap + 0x800 / f); + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + return !!test_bit(msr, msr_bitmap + 0xc00 / f); + } + + return true; +} + +static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, + unsigned long entry, unsigned long exit) +{ + vm_entry_controls_clearbit(vmx, entry); + vm_exit_controls_clearbit(vmx, exit); +} + +static int find_msr(struct vmx_msrs *m, unsigned int msr) +{ + unsigned int i; + + for (i = 0; i < m->nr; ++i) { + if (m->val[i].index == msr) + return i; + } + return -ENOENT; +} + +static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) +{ + int i; + struct msr_autoload *m = &vmx->msr_autoload; + + switch (msr) { + case MSR_EFER: + if (cpu_has_load_ia32_efer()) { + clear_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_EFER, + VM_EXIT_LOAD_IA32_EFER); + return; + } + break; + case MSR_CORE_PERF_GLOBAL_CTRL: + if (cpu_has_load_perf_global_ctrl()) { + clear_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, + VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); + return; + } + break; + } + i = find_msr(&m->guest, msr); + if (i < 0) + goto skip_guest; + --m->guest.nr; + m->guest.val[i] = m->guest.val[m->guest.nr]; + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); + +skip_guest: + i = find_msr(&m->host, msr); + if (i < 0) + return; + + --m->host.nr; + m->host.val[i] = m->host.val[m->host.nr]; + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); +} + +static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, + unsigned long entry, unsigned long exit, + unsigned long guest_val_vmcs, unsigned long host_val_vmcs, + u64 guest_val, u64 host_val) +{ + vmcs_write64(guest_val_vmcs, guest_val); + if (host_val_vmcs != HOST_IA32_EFER) + vmcs_write64(host_val_vmcs, host_val); + vm_entry_controls_setbit(vmx, entry); + vm_exit_controls_setbit(vmx, exit); +} + +static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, + u64 guest_val, u64 host_val, bool entry_only) +{ + int i, j = 0; + struct msr_autoload *m = &vmx->msr_autoload; + + switch (msr) { + case MSR_EFER: + if (cpu_has_load_ia32_efer()) { + add_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_EFER, + VM_EXIT_LOAD_IA32_EFER, + GUEST_IA32_EFER, + HOST_IA32_EFER, + guest_val, host_val); + return; + } + break; + case MSR_CORE_PERF_GLOBAL_CTRL: + if (cpu_has_load_perf_global_ctrl()) { + add_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, + VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, + GUEST_IA32_PERF_GLOBAL_CTRL, + HOST_IA32_PERF_GLOBAL_CTRL, + guest_val, host_val); + return; + } + break; + case MSR_IA32_PEBS_ENABLE: + /* PEBS needs a quiescent period after being disabled (to write + * a record). Disabling PEBS through VMX MSR swapping doesn't + * provide that period, so a CPU could write host's record into + * guest's memory. + */ + wrmsrl(MSR_IA32_PEBS_ENABLE, 0); + } + + i = find_msr(&m->guest, msr); + if (!entry_only) + j = find_msr(&m->host, msr); + + if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) { + printk_once(KERN_WARNING "Not enough msr switch entries. " + "Can't add msr %x\n", msr); + return; + } + if (i < 0) { + i = m->guest.nr++; + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); + } + m->guest.val[i].index = msr; + m->guest.val[i].value = guest_val; + + if (entry_only) + return; + + if (j < 0) { + j = m->host.nr++; + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); + } + m->host.val[j].index = msr; + m->host.val[j].value = host_val; +} + +static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) +{ + u64 guest_efer = vmx->vcpu.arch.efer; + u64 ignore_bits = 0; + + if (!enable_ept) { + /* + * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing + * host CPUID is more efficient than testing guest CPUID + * or CR4. Host SMEP is anyway a requirement for guest SMEP. + */ + if (boot_cpu_has(X86_FEATURE_SMEP)) + guest_efer |= EFER_NX; + else if (!(guest_efer & EFER_NX)) + ignore_bits |= EFER_NX; + } + + /* + * LMA and LME handled by hardware; SCE meaningless outside long mode. + */ + ignore_bits |= EFER_SCE; +#ifdef CONFIG_X86_64 + ignore_bits |= EFER_LMA | EFER_LME; + /* SCE is meaningful only in long mode on Intel */ + if (guest_efer & EFER_LMA) + ignore_bits &= ~(u64)EFER_SCE; +#endif + + /* + * On EPT, we can't emulate NX, so we must switch EFER atomically. + * On CPUs that support "load IA32_EFER", always switch EFER + * atomically, since it's faster than switching it manually. + */ + if (cpu_has_load_ia32_efer() || + (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { + if (!(guest_efer & EFER_LMA)) + guest_efer &= ~EFER_LME; + if (guest_efer != host_efer) + add_atomic_switch_msr(vmx, MSR_EFER, + guest_efer, host_efer, false); + else + clear_atomic_switch_msr(vmx, MSR_EFER); + return false; + } else { + clear_atomic_switch_msr(vmx, MSR_EFER); + + guest_efer &= ~ignore_bits; + guest_efer |= host_efer & ignore_bits; + + vmx->guest_msrs[efer_offset].data = guest_efer; + vmx->guest_msrs[efer_offset].mask = ~ignore_bits; + + return true; + } +} + +#ifdef CONFIG_X86_32 +/* + * On 32-bit kernels, VM exits still load the FS and GS bases from the + * VMCS rather than the segment table. KVM uses this helper to figure + * out the current bases to poke them into the VMCS before entry. + */ +static unsigned long segment_base(u16 selector) +{ + struct desc_struct *table; + unsigned long v; + + if (!(selector & ~SEGMENT_RPL_MASK)) + return 0; + + table = get_current_gdt_ro(); + + if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { + u16 ldt_selector = kvm_read_ldt(); + + if (!(ldt_selector & ~SEGMENT_RPL_MASK)) + return 0; + + table = (struct desc_struct *)segment_base(ldt_selector); + } + v = get_desc_base(&table[selector >> 3]); + return v; +} +#endif + +static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) +{ + u32 i; + + wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); + wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); + wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); + wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); + for (i = 0; i < addr_range; i++) { + wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); + wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); + } +} + +static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) +{ + u32 i; + + rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); + rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); + rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); + rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); + for (i = 0; i < addr_range; i++) { + rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); + rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); + } +} + +static void pt_guest_enter(struct vcpu_vmx *vmx) +{ + if (pt_mode == PT_MODE_SYSTEM) + return; + + /* + * GUEST_IA32_RTIT_CTL is already set in the VMCS. + * Save host state before VM entry. + */ + rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); + if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { + wrmsrl(MSR_IA32_RTIT_CTL, 0); + pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); + pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); + } +} + +static void pt_guest_exit(struct vcpu_vmx *vmx) +{ + if (pt_mode == PT_MODE_SYSTEM) + return; + + if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { + pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); + pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); + } + + /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ + wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); +} + +void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs_host_state *host_state; +#ifdef CONFIG_X86_64 + int cpu = raw_smp_processor_id(); +#endif + unsigned long fs_base, gs_base; + u16 fs_sel, gs_sel; + int i; + + vmx->req_immediate_exit = false; + + /* + * Note that guest MSRs to be saved/restored can also be changed + * when guest state is loaded. This happens when guest transitions + * to/from long-mode by setting MSR_EFER.LMA. + */ + if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) { + vmx->guest_msrs_dirty = false; + for (i = 0; i < vmx->save_nmsrs; ++i) + kvm_set_shared_msr(vmx->guest_msrs[i].index, + vmx->guest_msrs[i].data, + vmx->guest_msrs[i].mask); + + } + + if (vmx->loaded_cpu_state) + return; + + vmx->loaded_cpu_state = vmx->loaded_vmcs; + host_state = &vmx->loaded_cpu_state->host_state; + + /* + * Set host fs and gs selectors. Unfortunately, 22.2.3 does not + * allow segment selectors with cpl > 0 or ti == 1. + */ + host_state->ldt_sel = kvm_read_ldt(); + +#ifdef CONFIG_X86_64 + savesegment(ds, host_state->ds_sel); + savesegment(es, host_state->es_sel); + + gs_base = cpu_kernelmode_gs_base(cpu); + if (likely(is_64bit_mm(current->mm))) { + save_fsgs_for_kvm(); + fs_sel = current->thread.fsindex; + gs_sel = current->thread.gsindex; + fs_base = current->thread.fsbase; + vmx->msr_host_kernel_gs_base = current->thread.gsbase; + } else { + savesegment(fs, fs_sel); + savesegment(gs, gs_sel); + fs_base = read_msr(MSR_FS_BASE); + vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); + } + + wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); +#else + savesegment(fs, fs_sel); + savesegment(gs, gs_sel); + fs_base = segment_base(fs_sel); + gs_base = segment_base(gs_sel); +#endif + + if (unlikely(fs_sel != host_state->fs_sel)) { + if (!(fs_sel & 7)) + vmcs_write16(HOST_FS_SELECTOR, fs_sel); + else + vmcs_write16(HOST_FS_SELECTOR, 0); + host_state->fs_sel = fs_sel; + } + if (unlikely(gs_sel != host_state->gs_sel)) { + if (!(gs_sel & 7)) + vmcs_write16(HOST_GS_SELECTOR, gs_sel); + else + vmcs_write16(HOST_GS_SELECTOR, 0); + host_state->gs_sel = gs_sel; + } + if (unlikely(fs_base != host_state->fs_base)) { + vmcs_writel(HOST_FS_BASE, fs_base); + host_state->fs_base = fs_base; + } + if (unlikely(gs_base != host_state->gs_base)) { + vmcs_writel(HOST_GS_BASE, gs_base); + host_state->gs_base = gs_base; + } +} + +static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) +{ + struct vmcs_host_state *host_state; + + if (!vmx->loaded_cpu_state) + return; + + WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); + host_state = &vmx->loaded_cpu_state->host_state; + + ++vmx->vcpu.stat.host_state_reload; + vmx->loaded_cpu_state = NULL; + +#ifdef CONFIG_X86_64 + rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); +#endif + if (host_state->ldt_sel || (host_state->gs_sel & 7)) { + kvm_load_ldt(host_state->ldt_sel); +#ifdef CONFIG_X86_64 + load_gs_index(host_state->gs_sel); +#else + loadsegment(gs, host_state->gs_sel); +#endif + } + if (host_state->fs_sel & 7) + loadsegment(fs, host_state->fs_sel); +#ifdef CONFIG_X86_64 + if (unlikely(host_state->ds_sel | host_state->es_sel)) { + loadsegment(ds, host_state->ds_sel); + loadsegment(es, host_state->es_sel); + } +#endif + invalidate_tss_limit(); +#ifdef CONFIG_X86_64 + wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); +#endif + load_fixmap_gdt(raw_smp_processor_id()); +} + +#ifdef CONFIG_X86_64 +static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) +{ + preempt_disable(); + if (vmx->loaded_cpu_state) + rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); + preempt_enable(); + return vmx->msr_guest_kernel_gs_base; +} + +static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) +{ + preempt_disable(); + if (vmx->loaded_cpu_state) + wrmsrl(MSR_KERNEL_GS_BASE, data); + preempt_enable(); + vmx->msr_guest_kernel_gs_base = data; +} +#endif + +static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) +{ + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + struct pi_desc old, new; + unsigned int dest; + + /* + * In case of hot-plug or hot-unplug, we may have to undo + * vmx_vcpu_pi_put even if there is no assigned device. And we + * always keep PI.NDST up to date for simplicity: it makes the + * code easier, and CPU migration is not a fast path. + */ + if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) + return; + + /* + * First handle the simple case where no cmpxchg is necessary; just + * allow posting non-urgent interrupts. + * + * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change + * PI.NDST: pi_post_block will do it for us and the wakeup_handler + * expects the VCPU to be on the blocked_vcpu_list that matches + * PI.NDST. + */ + if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || + vcpu->cpu == cpu) { + pi_clear_sn(pi_desc); + return; + } + + /* The full case. */ + do { + old.control = new.control = pi_desc->control; + + dest = cpu_physical_id(cpu); + + if (x2apic_enabled()) + new.ndst = dest; + else + new.ndst = (dest << 8) & 0xFF00; + + new.sn = 0; + } while (cmpxchg64(&pi_desc->control, old.control, + new.control) != old.control); +} + +/* + * Switches to specified vcpu, until a matching vcpu_put(), but assumes + * vcpu mutex is already taken. + */ +void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + bool already_loaded = vmx->loaded_vmcs->cpu == cpu; + + if (!already_loaded) { + loaded_vmcs_clear(vmx->loaded_vmcs); + local_irq_disable(); + crash_disable_local_vmclear(cpu); + + /* + * Read loaded_vmcs->cpu should be before fetching + * loaded_vmcs->loaded_vmcss_on_cpu_link. + * See the comments in __loaded_vmcs_clear(). + */ + smp_rmb(); + + list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, + &per_cpu(loaded_vmcss_on_cpu, cpu)); + crash_enable_local_vmclear(cpu); + local_irq_enable(); + } + + if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { + per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; + vmcs_load(vmx->loaded_vmcs->vmcs); + indirect_branch_prediction_barrier(); + } + + if (!already_loaded) { + void *gdt = get_current_gdt_ro(); + unsigned long sysenter_esp; + + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + + /* + * Linux uses per-cpu TSS and GDT, so set these when switching + * processors. See 22.2.4. + */ + vmcs_writel(HOST_TR_BASE, + (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); + vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ + + /* + * VM exits change the host TR limit to 0x67 after a VM + * exit. This is okay, since 0x67 covers everything except + * the IO bitmap and have have code to handle the IO bitmap + * being lost after a VM exit. + */ + BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); + + rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); + vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ + + vmx->loaded_vmcs->cpu = cpu; + } + + /* Setup TSC multiplier */ + if (kvm_has_tsc_control && + vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) + decache_tsc_multiplier(vmx); + + vmx_vcpu_pi_load(vcpu, cpu); + vmx->host_pkru = read_pkru(); + vmx->host_debugctlmsr = get_debugctlmsr(); +} + +static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) +{ + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + + if (!kvm_arch_has_assigned_device(vcpu->kvm) || + !irq_remapping_cap(IRQ_POSTING_CAP) || + !kvm_vcpu_apicv_active(vcpu)) + return; + + /* Set SN when the vCPU is preempted */ + if (vcpu->preempted) + pi_set_sn(pi_desc); +} + +void vmx_vcpu_put(struct kvm_vcpu *vcpu) +{ + vmx_vcpu_pi_put(vcpu); + + vmx_prepare_switch_to_host(to_vmx(vcpu)); +} + +static bool emulation_required(struct kvm_vcpu *vcpu) +{ + return emulate_invalid_guest_state && !guest_state_valid(vcpu); +} + +static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); + +unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) +{ + unsigned long rflags, save_rflags; + + if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { + __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); + rflags = vmcs_readl(GUEST_RFLAGS); + if (to_vmx(vcpu)->rmode.vm86_active) { + rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; + save_rflags = to_vmx(vcpu)->rmode.save_rflags; + rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; + } + to_vmx(vcpu)->rflags = rflags; + } + return to_vmx(vcpu)->rflags; +} + +void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) +{ + unsigned long old_rflags = vmx_get_rflags(vcpu); + + __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); + to_vmx(vcpu)->rflags = rflags; + if (to_vmx(vcpu)->rmode.vm86_active) { + to_vmx(vcpu)->rmode.save_rflags = rflags; + rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; + } + vmcs_writel(GUEST_RFLAGS, rflags); + + if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) + to_vmx(vcpu)->emulation_required = emulation_required(vcpu); +} + +u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) +{ + u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + int ret = 0; + + if (interruptibility & GUEST_INTR_STATE_STI) + ret |= KVM_X86_SHADOW_INT_STI; + if (interruptibility & GUEST_INTR_STATE_MOV_SS) + ret |= KVM_X86_SHADOW_INT_MOV_SS; + + return ret; +} + +void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) +{ + u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + u32 interruptibility = interruptibility_old; + + interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); + + if (mask & KVM_X86_SHADOW_INT_MOV_SS) + interruptibility |= GUEST_INTR_STATE_MOV_SS; + else if (mask & KVM_X86_SHADOW_INT_STI) + interruptibility |= GUEST_INTR_STATE_STI; + + if ((interruptibility != interruptibility_old)) + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); +} + +static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long value; + + /* + * Any MSR write that attempts to change bits marked reserved will + * case a #GP fault. + */ + if (data & vmx->pt_desc.ctl_bitmask) + return 1; + + /* + * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will + * result in a #GP unless the same write also clears TraceEn. + */ + if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && + ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) + return 1; + + /* + * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit + * and FabricEn would cause #GP, if + * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 + */ + if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && + !(data & RTIT_CTL_FABRIC_EN) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output)) + return 1; + + /* + * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that + * utilize encodings marked reserved will casue a #GP fault. + */ + value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && + !test_bit((data & RTIT_CTL_MTC_RANGE) >> + RTIT_CTL_MTC_RANGE_OFFSET, &value)) + return 1; + value = intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_cycle_thresholds); + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && + !test_bit((data & RTIT_CTL_CYC_THRESH) >> + RTIT_CTL_CYC_THRESH_OFFSET, &value)) + return 1; + value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && + !test_bit((data & RTIT_CTL_PSB_FREQ) >> + RTIT_CTL_PSB_FREQ_OFFSET, &value)) + return 1; + + /* + * If ADDRx_CFG is reserved or the encodings is >2 will + * cause a #GP fault. + */ + value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; + if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) + return 1; + value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; + if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) + return 1; + value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; + if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) + return 1; + value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; + if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) + return 1; + + return 0; +} + + +static void skip_emulated_instruction(struct kvm_vcpu *vcpu) +{ + unsigned long rip; + + rip = kvm_rip_read(vcpu); + rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + kvm_rip_write(vcpu, rip); + + /* skipping an emulated instruction also counts */ + vmx_set_interrupt_shadow(vcpu, 0); +} + +static void vmx_clear_hlt(struct kvm_vcpu *vcpu) +{ + /* + * Ensure that we clear the HLT state in the VMCS. We don't need to + * explicitly skip the instruction because if the HLT state is set, + * then the instruction is already executing and RIP has already been + * advanced. + */ + if (kvm_hlt_in_guest(vcpu->kvm) && + vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) + vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); +} + +static void vmx_queue_exception(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned nr = vcpu->arch.exception.nr; + bool has_error_code = vcpu->arch.exception.has_error_code; + u32 error_code = vcpu->arch.exception.error_code; + u32 intr_info = nr | INTR_INFO_VALID_MASK; + + kvm_deliver_exception_payload(vcpu); + + if (has_error_code) { + vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); + intr_info |= INTR_INFO_DELIVER_CODE_MASK; + } + + if (vmx->rmode.vm86_active) { + int inc_eip = 0; + if (kvm_exception_is_soft(nr)) + inc_eip = vcpu->arch.event_exit_inst_len; + if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + + WARN_ON_ONCE(vmx->emulation_required); + + if (kvm_exception_is_soft(nr)) { + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmx->vcpu.arch.event_exit_inst_len); + intr_info |= INTR_TYPE_SOFT_EXCEPTION; + } else + intr_info |= INTR_TYPE_HARD_EXCEPTION; + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); + + vmx_clear_hlt(vcpu); +} + +static bool vmx_rdtscp_supported(void) +{ + return cpu_has_vmx_rdtscp(); +} + +static bool vmx_invpcid_supported(void) +{ + return cpu_has_vmx_invpcid(); +} + +/* + * Swap MSR entry in host/guest MSR entry array. + */ +static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) +{ + struct shared_msr_entry tmp; + + tmp = vmx->guest_msrs[to]; + vmx->guest_msrs[to] = vmx->guest_msrs[from]; + vmx->guest_msrs[from] = tmp; +} + +/* + * Set up the vmcs to automatically save and restore system + * msrs. Don't touch the 64-bit msrs if the guest is in legacy + * mode, as fiddling with msrs is very expensive. + */ +static void setup_msrs(struct vcpu_vmx *vmx) +{ + int save_nmsrs, index; + + save_nmsrs = 0; +#ifdef CONFIG_X86_64 + /* + * The SYSCALL MSRs are only needed on long mode guests, and only + * when EFER.SCE is set. + */ + if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { + index = __find_msr_index(vmx, MSR_STAR); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_LSTAR); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_SYSCALL_MASK); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + } +#endif + index = __find_msr_index(vmx, MSR_EFER); + if (index >= 0 && update_transition_efer(vmx, index)) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_TSC_AUX); + if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) + move_msr_up(vmx, index, save_nmsrs++); + + vmx->save_nmsrs = save_nmsrs; + vmx->guest_msrs_dirty = true; + + if (cpu_has_vmx_msr_bitmap()) + vmx_update_msr_bitmap(&vmx->vcpu); +} + +static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (is_guest_mode(vcpu) && + (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) + return vcpu->arch.tsc_offset - vmcs12->tsc_offset; + + return vcpu->arch.tsc_offset; +} + +static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + u64 g_tsc_offset = 0; + + /* + * We're here if L1 chose not to trap WRMSR to TSC. According + * to the spec, this should set L1's TSC; The offset that L1 + * set for L2 remains unchanged, and still needs to be added + * to the newly set TSC to get L2's TSC. + */ + if (is_guest_mode(vcpu) && + (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) + g_tsc_offset = vmcs12->tsc_offset; + + trace_kvm_write_tsc_offset(vcpu->vcpu_id, + vcpu->arch.tsc_offset - g_tsc_offset, + offset); + vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); + return offset + g_tsc_offset; +} + +/* + * nested_vmx_allowed() checks whether a guest should be allowed to use VMX + * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for + * all guests if the "nested" module option is off, and can also be disabled + * for a single guest by disabling its VMX cpuid bit. + */ +bool nested_vmx_allowed(struct kvm_vcpu *vcpu) +{ + return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); +} + +static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, + uint64_t val) +{ + uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; + + return !(val & ~valid_bits); +} + +static int vmx_get_msr_feature(struct kvm_msr_entry *msr) +{ + switch (msr->index) { + case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + if (!nested) + return 1; + return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); + default: + return 1; + } + + return 0; +} + +/* + * Reads an msr value (of 'msr_index') into 'pdata'. + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct shared_msr_entry *msr; + u32 index; + + switch (msr_info->index) { +#ifdef CONFIG_X86_64 + case MSR_FS_BASE: + msr_info->data = vmcs_readl(GUEST_FS_BASE); + break; + case MSR_GS_BASE: + msr_info->data = vmcs_readl(GUEST_GS_BASE); + break; + case MSR_KERNEL_GS_BASE: + msr_info->data = vmx_read_guest_kernel_gs_base(vmx); + break; +#endif + case MSR_EFER: + return kvm_get_msr_common(vcpu, msr_info); + case MSR_IA32_SPEC_CTRL: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) + return 1; + + msr_info->data = to_vmx(vcpu)->spec_ctrl; + break; + case MSR_IA32_ARCH_CAPABILITIES: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) + return 1; + msr_info->data = to_vmx(vcpu)->arch_capabilities; + break; + case MSR_IA32_SYSENTER_CS: + msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); + break; + case MSR_IA32_SYSENTER_EIP: + msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); + break; + case MSR_IA32_SYSENTER_ESP: + msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); + break; + case MSR_IA32_BNDCFGS: + if (!kvm_mpx_supported() || + (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) + return 1; + msr_info->data = vmcs_read64(GUEST_BNDCFGS); + break; + case MSR_IA32_MCG_EXT_CTL: + if (!msr_info->host_initiated && + !(vmx->msr_ia32_feature_control & + FEATURE_CONTROL_LMCE)) + return 1; + msr_info->data = vcpu->arch.mcg_ext_ctl; + break; + case MSR_IA32_FEATURE_CONTROL: + msr_info->data = vmx->msr_ia32_feature_control; + break; + case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + if (!nested_vmx_allowed(vcpu)) + return 1; + return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, + &msr_info->data); + case MSR_IA32_XSS: + if (!vmx_xsaves_supported()) + return 1; + msr_info->data = vcpu->arch.ia32_xss; + break; + case MSR_IA32_RTIT_CTL: + if (pt_mode != PT_MODE_HOST_GUEST) + return 1; + msr_info->data = vmx->pt_desc.guest.ctl; + break; + case MSR_IA32_RTIT_STATUS: + if (pt_mode != PT_MODE_HOST_GUEST) + return 1; + msr_info->data = vmx->pt_desc.guest.status; + break; + case MSR_IA32_RTIT_CR3_MATCH: + if ((pt_mode != PT_MODE_HOST_GUEST) || + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_cr3_filtering)) + return 1; + msr_info->data = vmx->pt_desc.guest.cr3_match; + break; + case MSR_IA32_RTIT_OUTPUT_BASE: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (!intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_topa_output) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output))) + return 1; + msr_info->data = vmx->pt_desc.guest.output_base; + break; + case MSR_IA32_RTIT_OUTPUT_MASK: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (!intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_topa_output) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output))) + return 1; + msr_info->data = vmx->pt_desc.guest.output_mask; + break; + case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: + index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; + if ((pt_mode != PT_MODE_HOST_GUEST) || + (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_num_address_ranges))) + return 1; + if (index % 2) + msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; + else + msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; + break; + case MSR_TSC_AUX: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) + return 1; + /* Otherwise falls through */ + default: + msr = find_msr_entry(vmx, msr_info->index); + if (msr) { + msr_info->data = msr->data; + break; + } + return kvm_get_msr_common(vcpu, msr_info); + } + + return 0; +} + +/* + * Writes msr value into into the appropriate "register". + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct shared_msr_entry *msr; + int ret = 0; + u32 msr_index = msr_info->index; + u64 data = msr_info->data; + u32 index; + + switch (msr_index) { + case MSR_EFER: + ret = kvm_set_msr_common(vcpu, msr_info); + break; +#ifdef CONFIG_X86_64 + case MSR_FS_BASE: + vmx_segment_cache_clear(vmx); + vmcs_writel(GUEST_FS_BASE, data); + break; + case MSR_GS_BASE: + vmx_segment_cache_clear(vmx); + vmcs_writel(GUEST_GS_BASE, data); + break; + case MSR_KERNEL_GS_BASE: + vmx_write_guest_kernel_gs_base(vmx, data); + break; +#endif + case MSR_IA32_SYSENTER_CS: + vmcs_write32(GUEST_SYSENTER_CS, data); + break; + case MSR_IA32_SYSENTER_EIP: + vmcs_writel(GUEST_SYSENTER_EIP, data); + break; + case MSR_IA32_SYSENTER_ESP: + vmcs_writel(GUEST_SYSENTER_ESP, data); + break; + case MSR_IA32_BNDCFGS: + if (!kvm_mpx_supported() || + (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) + return 1; + if (is_noncanonical_address(data & PAGE_MASK, vcpu) || + (data & MSR_IA32_BNDCFGS_RSVD)) + return 1; + vmcs_write64(GUEST_BNDCFGS, data); + break; + case MSR_IA32_SPEC_CTRL: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) + return 1; + + /* The STIBP bit doesn't fault even if it's not advertised */ + if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) + return 1; + + vmx->spec_ctrl = data; + + if (!data) + break; + + /* + * For non-nested: + * When it's written (to non-zero) for the first time, pass + * it through. + * + * For nested: + * The handling of the MSR bitmap for L2 guests is done in + * nested_vmx_merge_msr_bitmap. We should not touch the + * vmcs02.msr_bitmap here since it gets completely overwritten + * in the merging. We update the vmcs01 here for L1 as well + * since it will end up touching the MSR anyway now. + */ + vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, + MSR_IA32_SPEC_CTRL, + MSR_TYPE_RW); + break; + case MSR_IA32_PRED_CMD: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) + return 1; + + if (data & ~PRED_CMD_IBPB) + return 1; + + if (!data) + break; + + wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); + + /* + * For non-nested: + * When it's written (to non-zero) for the first time, pass + * it through. + * + * For nested: + * The handling of the MSR bitmap for L2 guests is done in + * nested_vmx_merge_msr_bitmap. We should not touch the + * vmcs02.msr_bitmap here since it gets completely overwritten + * in the merging. + */ + vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, + MSR_TYPE_W); + break; + case MSR_IA32_ARCH_CAPABILITIES: + if (!msr_info->host_initiated) + return 1; + vmx->arch_capabilities = data; + break; + case MSR_IA32_CR_PAT: + if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { + if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) + return 1; + vmcs_write64(GUEST_IA32_PAT, data); + vcpu->arch.pat = data; + break; + } + ret = kvm_set_msr_common(vcpu, msr_info); + break; + case MSR_IA32_TSC_ADJUST: + ret = kvm_set_msr_common(vcpu, msr_info); + break; + case MSR_IA32_MCG_EXT_CTL: + if ((!msr_info->host_initiated && + !(to_vmx(vcpu)->msr_ia32_feature_control & + FEATURE_CONTROL_LMCE)) || + (data & ~MCG_EXT_CTL_LMCE_EN)) + return 1; + vcpu->arch.mcg_ext_ctl = data; + break; + case MSR_IA32_FEATURE_CONTROL: + if (!vmx_feature_control_msr_valid(vcpu, data) || + (to_vmx(vcpu)->msr_ia32_feature_control & + FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) + return 1; + vmx->msr_ia32_feature_control = data; + if (msr_info->host_initiated && data == 0) + vmx_leave_nested(vcpu); + break; + case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + if (!msr_info->host_initiated) + return 1; /* they are read-only */ + if (!nested_vmx_allowed(vcpu)) + return 1; + return vmx_set_vmx_msr(vcpu, msr_index, data); + case MSR_IA32_XSS: + if (!vmx_xsaves_supported()) + return 1; + /* + * The only supported bit as of Skylake is bit 8, but + * it is not supported on KVM. + */ + if (data != 0) + return 1; + vcpu->arch.ia32_xss = data; + if (vcpu->arch.ia32_xss != host_xss) + add_atomic_switch_msr(vmx, MSR_IA32_XSS, + vcpu->arch.ia32_xss, host_xss, false); + else + clear_atomic_switch_msr(vmx, MSR_IA32_XSS); + break; + case MSR_IA32_RTIT_CTL: + if ((pt_mode != PT_MODE_HOST_GUEST) || + vmx_rtit_ctl_check(vcpu, data) || + vmx->nested.vmxon) + return 1; + vmcs_write64(GUEST_IA32_RTIT_CTL, data); + vmx->pt_desc.guest.ctl = data; + pt_update_intercept_for_msr(vmx); + break; + case MSR_IA32_RTIT_STATUS: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + (data & MSR_IA32_RTIT_STATUS_MASK)) + return 1; + vmx->pt_desc.guest.status = data; + break; + case MSR_IA32_RTIT_CR3_MATCH: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_cr3_filtering)) + return 1; + vmx->pt_desc.guest.cr3_match = data; + break; + case MSR_IA32_RTIT_OUTPUT_BASE: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + (!intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_topa_output) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output)) || + (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)) + return 1; + vmx->pt_desc.guest.output_base = data; + break; + case MSR_IA32_RTIT_OUTPUT_MASK: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + (!intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_topa_output) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output))) + return 1; + vmx->pt_desc.guest.output_mask = data; + break; + case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: + index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_num_address_ranges))) + return 1; + if (index % 2) + vmx->pt_desc.guest.addr_b[index / 2] = data; + else + vmx->pt_desc.guest.addr_a[index / 2] = data; + break; + case MSR_TSC_AUX: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) + return 1; + /* Check reserved bit, higher 32 bits should be zero */ + if ((data >> 32) != 0) + return 1; + /* Otherwise falls through */ + default: + msr = find_msr_entry(vmx, msr_index); + if (msr) { + u64 old_msr_data = msr->data; + msr->data = data; + if (msr - vmx->guest_msrs < vmx->save_nmsrs) { + preempt_disable(); + ret = kvm_set_shared_msr(msr->index, msr->data, + msr->mask); + preempt_enable(); + if (ret) + msr->data = old_msr_data; + } + break; + } + ret = kvm_set_msr_common(vcpu, msr_info); + } + + return ret; +} + +static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) +{ + __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); + switch (reg) { + case VCPU_REGS_RSP: + vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); + break; + case VCPU_REGS_RIP: + vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); + break; + case VCPU_EXREG_PDPTR: + if (enable_ept) + ept_save_pdptrs(vcpu); + break; + default: + break; + } +} + +static __init int cpu_has_kvm_support(void) +{ + return cpu_has_vmx(); +} + +static __init int vmx_disabled_by_bios(void) +{ + u64 msr; + + rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); + if (msr & FEATURE_CONTROL_LOCKED) { + /* launched w/ TXT and VMX disabled */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) + && tboot_enabled()) + return 1; + /* launched w/o TXT and VMX only enabled w/ TXT */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) + && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) + && !tboot_enabled()) { + printk(KERN_WARNING "kvm: disable TXT in the BIOS or " + "activate TXT before enabling KVM\n"); + return 1; + } + /* launched w/o TXT and VMX disabled */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) + && !tboot_enabled()) + return 1; + } + + return 0; +} + +static void kvm_cpu_vmxon(u64 addr) +{ + cr4_set_bits(X86_CR4_VMXE); + intel_pt_handle_vmx(1); + + asm volatile ("vmxon %0" : : "m"(addr)); +} + +static int hardware_enable(void) +{ + int cpu = raw_smp_processor_id(); + u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); + u64 old, test_bits; + + if (cr4_read_shadow() & X86_CR4_VMXE) + return -EBUSY; + + /* + * This can happen if we hot-added a CPU but failed to allocate + * VP assist page for it. + */ + if (static_branch_unlikely(&enable_evmcs) && + !hv_get_vp_assist_page(cpu)) + return -EFAULT; + + INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); + INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); + spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); + + /* + * Now we can enable the vmclear operation in kdump + * since the loaded_vmcss_on_cpu list on this cpu + * has been initialized. + * + * Though the cpu is not in VMX operation now, there + * is no problem to enable the vmclear operation + * for the loaded_vmcss_on_cpu list is empty! + */ + crash_enable_local_vmclear(cpu); + + rdmsrl(MSR_IA32_FEATURE_CONTROL, old); + + test_bits = FEATURE_CONTROL_LOCKED; + test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + if (tboot_enabled()) + test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; + + if ((old & test_bits) != test_bits) { + /* enable and lock */ + wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); + } + kvm_cpu_vmxon(phys_addr); + if (enable_ept) + ept_sync_global(); + + return 0; +} + +static void vmclear_local_loaded_vmcss(void) +{ + int cpu = raw_smp_processor_id(); + struct loaded_vmcs *v, *n; + + list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), + loaded_vmcss_on_cpu_link) + __loaded_vmcs_clear(v); +} + + +/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() + * tricks. + */ +static void kvm_cpu_vmxoff(void) +{ + asm volatile (__ex("vmxoff")); + + intel_pt_handle_vmx(0); + cr4_clear_bits(X86_CR4_VMXE); +} + +static void hardware_disable(void) +{ + vmclear_local_loaded_vmcss(); + kvm_cpu_vmxoff(); +} + +static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, + u32 msr, u32 *result) +{ + u32 vmx_msr_low, vmx_msr_high; + u32 ctl = ctl_min | ctl_opt; + + rdmsr(msr, vmx_msr_low, vmx_msr_high); + + ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ + ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ + + /* Ensure minimum (required) set of control bits are supported. */ + if (ctl_min & ~ctl) + return -EIO; + + *result = ctl; + return 0; +} + +static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, + struct vmx_capability *vmx_cap) +{ + u32 vmx_msr_low, vmx_msr_high; + u32 min, opt, min2, opt2; + u32 _pin_based_exec_control = 0; + u32 _cpu_based_exec_control = 0; + u32 _cpu_based_2nd_exec_control = 0; + u32 _vmexit_control = 0; + u32 _vmentry_control = 0; + + memset(vmcs_conf, 0, sizeof(*vmcs_conf)); + min = CPU_BASED_HLT_EXITING | +#ifdef CONFIG_X86_64 + CPU_BASED_CR8_LOAD_EXITING | + CPU_BASED_CR8_STORE_EXITING | +#endif + CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_UNCOND_IO_EXITING | + CPU_BASED_MOV_DR_EXITING | + CPU_BASED_USE_TSC_OFFSETING | + CPU_BASED_MWAIT_EXITING | + CPU_BASED_MONITOR_EXITING | + CPU_BASED_INVLPG_EXITING | + CPU_BASED_RDPMC_EXITING; + + opt = CPU_BASED_TPR_SHADOW | + CPU_BASED_USE_MSR_BITMAPS | + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, + &_cpu_based_exec_control) < 0) + return -EIO; +#ifdef CONFIG_X86_64 + if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) + _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & + ~CPU_BASED_CR8_STORE_EXITING; +#endif + if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { + min2 = 0; + opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_WBINVD_EXITING | + SECONDARY_EXEC_ENABLE_VPID | + SECONDARY_EXEC_ENABLE_EPT | + SECONDARY_EXEC_UNRESTRICTED_GUEST | + SECONDARY_EXEC_PAUSE_LOOP_EXITING | + SECONDARY_EXEC_DESC | + SECONDARY_EXEC_RDTSCP | + SECONDARY_EXEC_ENABLE_INVPCID | + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_SHADOW_VMCS | + SECONDARY_EXEC_XSAVES | + SECONDARY_EXEC_RDSEED_EXITING | + SECONDARY_EXEC_RDRAND_EXITING | + SECONDARY_EXEC_ENABLE_PML | + SECONDARY_EXEC_TSC_SCALING | + SECONDARY_EXEC_PT_USE_GPA | + SECONDARY_EXEC_PT_CONCEAL_VMX | + SECONDARY_EXEC_ENABLE_VMFUNC | + SECONDARY_EXEC_ENCLS_EXITING; + if (adjust_vmx_controls(min2, opt2, + MSR_IA32_VMX_PROCBASED_CTLS2, + &_cpu_based_2nd_exec_control) < 0) + return -EIO; + } +#ifndef CONFIG_X86_64 + if (!(_cpu_based_2nd_exec_control & + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; +#endif + + if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) + _cpu_based_2nd_exec_control &= ~( + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + + rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, + &vmx_cap->ept, &vmx_cap->vpid); + + if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { + /* CR3 accesses and invlpg don't need to cause VM Exits when EPT + enabled */ + _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_INVLPG_EXITING); + } else if (vmx_cap->ept) { + vmx_cap->ept = 0; + pr_warn_once("EPT CAP should not exist if not support " + "1-setting enable EPT VM-execution control\n"); + } + if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && + vmx_cap->vpid) { + vmx_cap->vpid = 0; + pr_warn_once("VPID CAP should not exist if not support " + "1-setting enable VPID VM-execution control\n"); + } + + min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; +#ifdef CONFIG_X86_64 + min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; +#endif + opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | + VM_EXIT_SAVE_IA32_PAT | + VM_EXIT_LOAD_IA32_PAT | + VM_EXIT_LOAD_IA32_EFER | + VM_EXIT_CLEAR_BNDCFGS | + VM_EXIT_PT_CONCEAL_PIP | + VM_EXIT_CLEAR_IA32_RTIT_CTL; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, + &_vmexit_control) < 0) + return -EIO; + + min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; + opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | + PIN_BASED_VMX_PREEMPTION_TIMER; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, + &_pin_based_exec_control) < 0) + return -EIO; + + if (cpu_has_broken_vmx_preemption_timer()) + _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; + if (!(_cpu_based_2nd_exec_control & + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) + _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; + + min = VM_ENTRY_LOAD_DEBUG_CONTROLS; + opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | + VM_ENTRY_LOAD_IA32_PAT | + VM_ENTRY_LOAD_IA32_EFER | + VM_ENTRY_LOAD_BNDCFGS | + VM_ENTRY_PT_CONCEAL_PIP | + VM_ENTRY_LOAD_IA32_RTIT_CTL; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, + &_vmentry_control) < 0) + return -EIO; + + /* + * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they + * can't be used due to an errata where VM Exit may incorrectly clear + * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the + * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. + */ + if (boot_cpu_data.x86 == 0x6) { + switch (boot_cpu_data.x86_model) { + case 26: /* AAK155 */ + case 30: /* AAP115 */ + case 37: /* AAT100 */ + case 44: /* BC86,AAY89,BD102 */ + case 46: /* BA97 */ + _vmexit_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; + _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; + pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " + "does not work properly. Using workaround\n"); + break; + default: + break; + } + } + + + rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); + + /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ + if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) + return -EIO; + +#ifdef CONFIG_X86_64 + /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ + if (vmx_msr_high & (1u<<16)) + return -EIO; +#endif + + /* Require Write-Back (WB) memory type for VMCS accesses. */ + if (((vmx_msr_high >> 18) & 15) != 6) + return -EIO; + + vmcs_conf->size = vmx_msr_high & 0x1fff; + vmcs_conf->order = get_order(vmcs_conf->size); + vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; + + vmcs_conf->revision_id = vmx_msr_low; + + vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; + vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; + vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; + vmcs_conf->vmexit_ctrl = _vmexit_control; + vmcs_conf->vmentry_ctrl = _vmentry_control; + + if (static_branch_unlikely(&enable_evmcs)) + evmcs_sanitize_exec_ctrls(vmcs_conf); + + return 0; +} + +struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu) +{ + int node = cpu_to_node(cpu); + struct page *pages; + struct vmcs *vmcs; + + pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); + if (!pages) + return NULL; + vmcs = page_address(pages); + memset(vmcs, 0, vmcs_config.size); + + /* KVM supports Enlightened VMCS v1 only */ + if (static_branch_unlikely(&enable_evmcs)) + vmcs->hdr.revision_id = KVM_EVMCS_VERSION; + else + vmcs->hdr.revision_id = vmcs_config.revision_id; + + if (shadow) + vmcs->hdr.shadow_vmcs = 1; + return vmcs; +} + +void free_vmcs(struct vmcs *vmcs) +{ + free_pages((unsigned long)vmcs, vmcs_config.order); +} + +/* + * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded + */ +void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) +{ + if (!loaded_vmcs->vmcs) + return; + loaded_vmcs_clear(loaded_vmcs); + free_vmcs(loaded_vmcs->vmcs); + loaded_vmcs->vmcs = NULL; + if (loaded_vmcs->msr_bitmap) + free_page((unsigned long)loaded_vmcs->msr_bitmap); + WARN_ON(loaded_vmcs->shadow_vmcs != NULL); +} + +int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) +{ + loaded_vmcs->vmcs = alloc_vmcs(false); + if (!loaded_vmcs->vmcs) + return -ENOMEM; + + loaded_vmcs->shadow_vmcs = NULL; + loaded_vmcs_init(loaded_vmcs); + + if (cpu_has_vmx_msr_bitmap()) { + loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); + if (!loaded_vmcs->msr_bitmap) + goto out_vmcs; + memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); + + if (IS_ENABLED(CONFIG_HYPERV) && + static_branch_unlikely(&enable_evmcs) && + (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { + struct hv_enlightened_vmcs *evmcs = + (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; + + evmcs->hv_enlightenments_control.msr_bitmap = 1; + } + } + + memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); + + return 0; + +out_vmcs: + free_loaded_vmcs(loaded_vmcs); + return -ENOMEM; +} + +static void free_kvm_area(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + free_vmcs(per_cpu(vmxarea, cpu)); + per_cpu(vmxarea, cpu) = NULL; + } +} + +static __init int alloc_kvm_area(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + struct vmcs *vmcs; + + vmcs = alloc_vmcs_cpu(false, cpu); + if (!vmcs) { + free_kvm_area(); + return -ENOMEM; + } + + /* + * When eVMCS is enabled, alloc_vmcs_cpu() sets + * vmcs->revision_id to KVM_EVMCS_VERSION instead of + * revision_id reported by MSR_IA32_VMX_BASIC. + * + * However, even though not explicitly documented by + * TLFS, VMXArea passed as VMXON argument should + * still be marked with revision_id reported by + * physical CPU. + */ + if (static_branch_unlikely(&enable_evmcs)) + vmcs->hdr.revision_id = vmcs_config.revision_id; + + per_cpu(vmxarea, cpu) = vmcs; + } + return 0; +} + +static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, + struct kvm_segment *save) +{ + if (!emulate_invalid_guest_state) { + /* + * CS and SS RPL should be equal during guest entry according + * to VMX spec, but in reality it is not always so. Since vcpu + * is in the middle of the transition from real mode to + * protected mode it is safe to assume that RPL 0 is a good + * default value. + */ + if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) + save->selector &= ~SEGMENT_RPL_MASK; + save->dpl = save->selector & SEGMENT_RPL_MASK; + save->s = 1; + } + vmx_set_segment(vcpu, save, seg); +} + +static void enter_pmode(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * Update real mode segment cache. It may be not up-to-date if sement + * register was written while vcpu was in a guest mode. + */ + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); + + vmx->rmode.vm86_active = 0; + + vmx_segment_cache_clear(vmx); + + vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); + + flags = vmcs_readl(GUEST_RFLAGS); + flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; + flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; + vmcs_writel(GUEST_RFLAGS, flags); + + vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | + (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); + + update_exception_bitmap(vcpu); + + fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); + fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); + fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); + fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); + fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); + fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); +} + +static void fix_rmode_seg(int seg, struct kvm_segment *save) +{ + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + struct kvm_segment var = *save; + + var.dpl = 0x3; + if (seg == VCPU_SREG_CS) + var.type = 0x3; + + if (!emulate_invalid_guest_state) { + var.selector = var.base >> 4; + var.base = var.base & 0xffff0; + var.limit = 0xffff; + var.g = 0; + var.db = 0; + var.present = 1; + var.s = 1; + var.l = 0; + var.unusable = 0; + var.type = 0x3; + var.avl = 0; + if (save->base & 0xf) + printk_once(KERN_WARNING "kvm: segment base is not " + "paragraph aligned when entering " + "protected mode (seg=%d)", seg); + } + + vmcs_write16(sf->selector, var.selector); + vmcs_writel(sf->base, var.base); + vmcs_write32(sf->limit, var.limit); + vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); +} + +static void enter_rmode(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); + + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); + + vmx->rmode.vm86_active = 1; + + /* + * Very old userspace does not call KVM_SET_TSS_ADDR before entering + * vcpu. Warn the user that an update is overdue. + */ + if (!kvm_vmx->tss_addr) + printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " + "called before entering vcpu\n"); + + vmx_segment_cache_clear(vmx); + + vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); + vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); + vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); + + flags = vmcs_readl(GUEST_RFLAGS); + vmx->rmode.save_rflags = flags; + + flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; + + vmcs_writel(GUEST_RFLAGS, flags); + vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); + update_exception_bitmap(vcpu); + + fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); + fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); + fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); + fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); + fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); + fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); + + kvm_mmu_reset_context(vcpu); +} + +void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); + + if (!msr) + return; + + vcpu->arch.efer = efer; + if (efer & EFER_LMA) { + vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + msr->data = efer; + } else { + vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + + msr->data = efer & ~EFER_LME; + } + setup_msrs(vmx); +} + +#ifdef CONFIG_X86_64 + +static void enter_lmode(struct kvm_vcpu *vcpu) +{ + u32 guest_tr_ar; + + vmx_segment_cache_clear(to_vmx(vcpu)); + + guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); + if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { + pr_debug_ratelimited("%s: tss fixup for long mode. \n", + __func__); + vmcs_write32(GUEST_TR_AR_BYTES, + (guest_tr_ar & ~VMX_AR_TYPE_MASK) + | VMX_AR_TYPE_BUSY_64_TSS); + } + vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); +} + +static void exit_lmode(struct kvm_vcpu *vcpu) +{ + vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); +} + +#endif + +static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) +{ + int vpid = to_vmx(vcpu)->vpid; + + if (!vpid_sync_vcpu_addr(vpid, addr)) + vpid_sync_context(vpid); + + /* + * If VPIDs are not supported or enabled, then the above is a no-op. + * But we don't really need a TLB flush in that case anyway, because + * each VM entry/exit includes an implicit flush when VPID is 0. + */ +} + +static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) +{ + ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; + + vcpu->arch.cr0 &= ~cr0_guest_owned_bits; + vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; +} + +static void vmx_decache_cr3(struct kvm_vcpu *vcpu) +{ + if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) + vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); +} + +static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) +{ + ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; + + vcpu->arch.cr4 &= ~cr4_guest_owned_bits; + vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; +} + +static void ept_load_pdptrs(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + if (!test_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_dirty)) + return; + + if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { + vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); + vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); + vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); + vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); + } +} + +void ept_save_pdptrs(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { + mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); + mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); + mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); + mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); + } + + __set_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_avail); + __set_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_dirty); +} + +static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, + unsigned long cr0, + struct kvm_vcpu *vcpu) +{ + if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) + vmx_decache_cr3(vcpu); + if (!(cr0 & X86_CR0_PG)) { + /* From paging/starting to nonpaging */ + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, + vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | + (CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING)); + vcpu->arch.cr0 = cr0; + vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); + } else if (!is_paging(vcpu)) { + /* From nonpaging to paging */ + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, + vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & + ~(CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING)); + vcpu->arch.cr0 = cr0; + vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); + } + + if (!(cr0 & X86_CR0_WP)) + *hw_cr0 &= ~X86_CR0_WP; +} + +void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long hw_cr0; + + hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); + if (enable_unrestricted_guest) + hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; + else { + hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; + + if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) + enter_pmode(vcpu); + + if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) + enter_rmode(vcpu); + } + +#ifdef CONFIG_X86_64 + if (vcpu->arch.efer & EFER_LME) { + if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) + enter_lmode(vcpu); + if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) + exit_lmode(vcpu); + } +#endif + + if (enable_ept && !enable_unrestricted_guest) + ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); + + vmcs_writel(CR0_READ_SHADOW, cr0); + vmcs_writel(GUEST_CR0, hw_cr0); + vcpu->arch.cr0 = cr0; + + /* depends on vcpu->arch.cr0 to be set to a new value */ + vmx->emulation_required = emulation_required(vcpu); +} + +static int get_ept_level(struct kvm_vcpu *vcpu) +{ + if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) + return 5; + return 4; +} + +u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) +{ + u64 eptp = VMX_EPTP_MT_WB; + + eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; + + if (enable_ept_ad_bits && + (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) + eptp |= VMX_EPTP_AD_ENABLE_BIT; + eptp |= (root_hpa & PAGE_MASK); + + return eptp; +} + +void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) +{ + struct kvm *kvm = vcpu->kvm; + unsigned long guest_cr3; + u64 eptp; + + guest_cr3 = cr3; + if (enable_ept) { + eptp = construct_eptp(vcpu, cr3); + vmcs_write64(EPT_POINTER, eptp); + + if (kvm_x86_ops->tlb_remote_flush) { + spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); + to_vmx(vcpu)->ept_pointer = eptp; + to_kvm_vmx(kvm)->ept_pointers_match + = EPT_POINTERS_CHECK; + spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); + } + + if (enable_unrestricted_guest || is_paging(vcpu) || + is_guest_mode(vcpu)) + guest_cr3 = kvm_read_cr3(vcpu); + else + guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; + ept_load_pdptrs(vcpu); + } + + vmcs_writel(GUEST_CR3, guest_cr3); +} + +int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + /* + * Pass through host's Machine Check Enable value to hw_cr4, which + * is in force while we are in guest mode. Do not let guests control + * this bit, even if host CR4.MCE == 0. + */ + unsigned long hw_cr4; + + hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); + if (enable_unrestricted_guest) + hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; + else if (to_vmx(vcpu)->rmode.vm86_active) + hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; + else + hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; + + if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { + if (cr4 & X86_CR4_UMIP) { + vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_DESC); + hw_cr4 &= ~X86_CR4_UMIP; + } else if (!is_guest_mode(vcpu) || + !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_DESC); + } + + if (cr4 & X86_CR4_VMXE) { + /* + * To use VMXON (and later other VMX instructions), a guest + * must first be able to turn on cr4.VMXE (see handle_vmon()). + * So basically the check on whether to allow nested VMX + * is here. We operate under the default treatment of SMM, + * so VMX cannot be enabled under SMM. + */ + if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) + return 1; + } + + if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) + return 1; + + vcpu->arch.cr4 = cr4; + + if (!enable_unrestricted_guest) { + if (enable_ept) { + if (!is_paging(vcpu)) { + hw_cr4 &= ~X86_CR4_PAE; + hw_cr4 |= X86_CR4_PSE; + } else if (!(cr4 & X86_CR4_PAE)) { + hw_cr4 &= ~X86_CR4_PAE; + } + } + + /* + * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in + * hardware. To emulate this behavior, SMEP/SMAP/PKU needs + * to be manually disabled when guest switches to non-paging + * mode. + * + * If !enable_unrestricted_guest, the CPU is always running + * with CR0.PG=1 and CR4 needs to be modified. + * If enable_unrestricted_guest, the CPU automatically + * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. + */ + if (!is_paging(vcpu)) + hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); + } + + vmcs_writel(CR4_READ_SHADOW, cr4); + vmcs_writel(GUEST_CR4, hw_cr4); + return 0; +} + +void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 ar; + + if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { + *var = vmx->rmode.segs[seg]; + if (seg == VCPU_SREG_TR + || var->selector == vmx_read_guest_seg_selector(vmx, seg)) + return; + var->base = vmx_read_guest_seg_base(vmx, seg); + var->selector = vmx_read_guest_seg_selector(vmx, seg); + return; + } + var->base = vmx_read_guest_seg_base(vmx, seg); + var->limit = vmx_read_guest_seg_limit(vmx, seg); + var->selector = vmx_read_guest_seg_selector(vmx, seg); + ar = vmx_read_guest_seg_ar(vmx, seg); + var->unusable = (ar >> 16) & 1; + var->type = ar & 15; + var->s = (ar >> 4) & 1; + var->dpl = (ar >> 5) & 3; + /* + * Some userspaces do not preserve unusable property. Since usable + * segment has to be present according to VMX spec we can use present + * property to amend userspace bug by making unusable segment always + * nonpresent. vmx_segment_access_rights() already marks nonpresent + * segment as unusable. + */ + var->present = !var->unusable; + var->avl = (ar >> 12) & 1; + var->l = (ar >> 13) & 1; + var->db = (ar >> 14) & 1; + var->g = (ar >> 15) & 1; +} + +static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment s; + + if (to_vmx(vcpu)->rmode.vm86_active) { + vmx_get_segment(vcpu, &s, seg); + return s.base; + } + return vmx_read_guest_seg_base(to_vmx(vcpu), seg); +} + +int vmx_get_cpl(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (unlikely(vmx->rmode.vm86_active)) + return 0; + else { + int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); + return VMX_AR_DPL(ar); + } +} + +static u32 vmx_segment_access_rights(struct kvm_segment *var) +{ + u32 ar; + + if (var->unusable || !var->present) + ar = 1 << 16; + else { + ar = var->type & 15; + ar |= (var->s & 1) << 4; + ar |= (var->dpl & 3) << 5; + ar |= (var->present & 1) << 7; + ar |= (var->avl & 1) << 12; + ar |= (var->l & 1) << 13; + ar |= (var->db & 1) << 14; + ar |= (var->g & 1) << 15; + } + + return ar; +} + +void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + + vmx_segment_cache_clear(vmx); + + if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { + vmx->rmode.segs[seg] = *var; + if (seg == VCPU_SREG_TR) + vmcs_write16(sf->selector, var->selector); + else if (var->s) + fix_rmode_seg(seg, &vmx->rmode.segs[seg]); + goto out; + } + + vmcs_writel(sf->base, var->base); + vmcs_write32(sf->limit, var->limit); + vmcs_write16(sf->selector, var->selector); + + /* + * Fix the "Accessed" bit in AR field of segment registers for older + * qemu binaries. + * IA32 arch specifies that at the time of processor reset the + * "Accessed" bit in the AR field of segment registers is 1. And qemu + * is setting it to 0 in the userland code. This causes invalid guest + * state vmexit when "unrestricted guest" mode is turned on. + * Fix for this setup issue in cpu_reset is being pushed in the qemu + * tree. Newer qemu binaries with that qemu fix would not need this + * kvm hack. + */ + if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) + var->type |= 0x1; /* Accessed */ + + vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); + +out: + vmx->emulation_required = emulation_required(vcpu); +} + +static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) +{ + u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); + + *db = (ar >> 14) & 1; + *l = (ar >> 13) & 1; +} + +static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + dt->size = vmcs_read32(GUEST_IDTR_LIMIT); + dt->address = vmcs_readl(GUEST_IDTR_BASE); +} + +static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + vmcs_write32(GUEST_IDTR_LIMIT, dt->size); + vmcs_writel(GUEST_IDTR_BASE, dt->address); +} + +static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + dt->size = vmcs_read32(GUEST_GDTR_LIMIT); + dt->address = vmcs_readl(GUEST_GDTR_BASE); +} + +static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + vmcs_write32(GUEST_GDTR_LIMIT, dt->size); + vmcs_writel(GUEST_GDTR_BASE, dt->address); +} + +static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment var; + u32 ar; + + vmx_get_segment(vcpu, &var, seg); + var.dpl = 0x3; + if (seg == VCPU_SREG_CS) + var.type = 0x3; + ar = vmx_segment_access_rights(&var); + + if (var.base != (var.selector << 4)) + return false; + if (var.limit != 0xffff) + return false; + if (ar != 0xf3) + return false; + + return true; +} + +static bool code_segment_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment cs; + unsigned int cs_rpl; + + vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); + cs_rpl = cs.selector & SEGMENT_RPL_MASK; + + if (cs.unusable) + return false; + if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) + return false; + if (!cs.s) + return false; + if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { + if (cs.dpl > cs_rpl) + return false; + } else { + if (cs.dpl != cs_rpl) + return false; + } + if (!cs.present) + return false; + + /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ + return true; +} + +static bool stack_segment_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment ss; + unsigned int ss_rpl; + + vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); + ss_rpl = ss.selector & SEGMENT_RPL_MASK; + + if (ss.unusable) + return true; + if (ss.type != 3 && ss.type != 7) + return false; + if (!ss.s) + return false; + if (ss.dpl != ss_rpl) /* DPL != RPL */ + return false; + if (!ss.present) + return false; + + return true; +} + +static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment var; + unsigned int rpl; + + vmx_get_segment(vcpu, &var, seg); + rpl = var.selector & SEGMENT_RPL_MASK; + + if (var.unusable) + return true; + if (!var.s) + return false; + if (!var.present) + return false; + if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { + if (var.dpl < rpl) /* DPL < RPL */ + return false; + } + + /* TODO: Add other members to kvm_segment_field to allow checking for other access + * rights flags + */ + return true; +} + +static bool tr_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment tr; + + vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); + + if (tr.unusable) + return false; + if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ + return false; + if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ + return false; + if (!tr.present) + return false; + + return true; +} + +static bool ldtr_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment ldtr; + + vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); + + if (ldtr.unusable) + return true; + if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ + return false; + if (ldtr.type != 2) + return false; + if (!ldtr.present) + return false; + + return true; +} + +static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) +{ + struct kvm_segment cs, ss; + + vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); + vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); + + return ((cs.selector & SEGMENT_RPL_MASK) == + (ss.selector & SEGMENT_RPL_MASK)); +} + +/* + * Check if guest state is valid. Returns true if valid, false if + * not. + * We assume that registers are always usable + */ +static bool guest_state_valid(struct kvm_vcpu *vcpu) +{ + if (enable_unrestricted_guest) + return true; + + /* real mode guest state checks */ + if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { + if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) + return false; + } else { + /* protected mode guest state checks */ + if (!cs_ss_rpl_check(vcpu)) + return false; + if (!code_segment_valid(vcpu)) + return false; + if (!stack_segment_valid(vcpu)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_DS)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_ES)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_FS)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_GS)) + return false; + if (!tr_valid(vcpu)) + return false; + if (!ldtr_valid(vcpu)) + return false; + } + /* TODO: + * - Add checks on RIP + * - Add checks on RFLAGS + */ + + return true; +} + +static int init_rmode_tss(struct kvm *kvm) +{ + gfn_t fn; + u16 data = 0; + int idx, r; + + idx = srcu_read_lock(&kvm->srcu); + fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; + r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); + if (r < 0) + goto out; + data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; + r = kvm_write_guest_page(kvm, fn++, &data, + TSS_IOPB_BASE_OFFSET, sizeof(u16)); + if (r < 0) + goto out; + r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); + if (r < 0) + goto out; + r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); + if (r < 0) + goto out; + data = ~0; + r = kvm_write_guest_page(kvm, fn, &data, + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, + sizeof(u8)); +out: + srcu_read_unlock(&kvm->srcu, idx); + return r; +} + +static int init_rmode_identity_map(struct kvm *kvm) +{ + struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); + int i, idx, r = 0; + kvm_pfn_t identity_map_pfn; + u32 tmp; + + /* Protect kvm_vmx->ept_identity_pagetable_done. */ + mutex_lock(&kvm->slots_lock); + + if (likely(kvm_vmx->ept_identity_pagetable_done)) + goto out2; + + if (!kvm_vmx->ept_identity_map_addr) + kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; + identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; + + r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, + kvm_vmx->ept_identity_map_addr, PAGE_SIZE); + if (r < 0) + goto out2; + + idx = srcu_read_lock(&kvm->srcu); + r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); + if (r < 0) + goto out; + /* Set up identity-mapping pagetable for EPT in real mode */ + for (i = 0; i < PT32_ENT_PER_PAGE; i++) { + tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | + _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); + r = kvm_write_guest_page(kvm, identity_map_pfn, + &tmp, i * sizeof(tmp), sizeof(tmp)); + if (r < 0) + goto out; + } + kvm_vmx->ept_identity_pagetable_done = true; + +out: + srcu_read_unlock(&kvm->srcu, idx); + +out2: + mutex_unlock(&kvm->slots_lock); + return r; +} + +static void seg_setup(int seg) +{ + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + unsigned int ar; + + vmcs_write16(sf->selector, 0); + vmcs_writel(sf->base, 0); + vmcs_write32(sf->limit, 0xffff); + ar = 0x93; + if (seg == VCPU_SREG_CS) + ar |= 0x08; /* code segment */ + + vmcs_write32(sf->ar_bytes, ar); +} + +static int alloc_apic_access_page(struct kvm *kvm) +{ + struct page *page; + int r = 0; + + mutex_lock(&kvm->slots_lock); + if (kvm->arch.apic_access_page_done) + goto out; + r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, + APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); + if (r) + goto out; + + page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); + if (is_error_page(page)) { + r = -EFAULT; + goto out; + } + + /* + * Do not pin the page in memory, so that memory hot-unplug + * is able to migrate it. + */ + put_page(page); + kvm->arch.apic_access_page_done = true; +out: + mutex_unlock(&kvm->slots_lock); + return r; +} + +int allocate_vpid(void) +{ + int vpid; + + if (!enable_vpid) + return 0; + spin_lock(&vmx_vpid_lock); + vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); + if (vpid < VMX_NR_VPIDS) + __set_bit(vpid, vmx_vpid_bitmap); + else + vpid = 0; + spin_unlock(&vmx_vpid_lock); + return vpid; +} + +void free_vpid(int vpid) +{ + if (!enable_vpid || vpid == 0) + return; + spin_lock(&vmx_vpid_lock); + __clear_bit(vpid, vmx_vpid_bitmap); + spin_unlock(&vmx_vpid_lock); +} + +static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return; + + if (static_branch_unlikely(&enable_evmcs)) + evmcs_touch_msr_bitmap(); + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R) + /* read-low */ + __clear_bit(msr, msr_bitmap + 0x000 / f); + + if (type & MSR_TYPE_W) + /* write-low */ + __clear_bit(msr, msr_bitmap + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R) + /* read-high */ + __clear_bit(msr, msr_bitmap + 0x400 / f); + + if (type & MSR_TYPE_W) + /* write-high */ + __clear_bit(msr, msr_bitmap + 0xc00 / f); + + } +} + +static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return; + + if (static_branch_unlikely(&enable_evmcs)) + evmcs_touch_msr_bitmap(); + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R) + /* read-low */ + __set_bit(msr, msr_bitmap + 0x000 / f); + + if (type & MSR_TYPE_W) + /* write-low */ + __set_bit(msr, msr_bitmap + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R) + /* read-high */ + __set_bit(msr, msr_bitmap + 0x400 / f); + + if (type & MSR_TYPE_W) + /* write-high */ + __set_bit(msr, msr_bitmap + 0xc00 / f); + + } +} + +static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type, bool value) +{ + if (value) + vmx_enable_intercept_for_msr(msr_bitmap, msr, type); + else + vmx_disable_intercept_for_msr(msr_bitmap, msr, type); +} + +static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) +{ + u8 mode = 0; + + if (cpu_has_secondary_exec_ctrls() && + (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { + mode |= MSR_BITMAP_MODE_X2APIC; + if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) + mode |= MSR_BITMAP_MODE_X2APIC_APICV; + } + + return mode; +} + +static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, + u8 mode) +{ + int msr; + + for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { + unsigned word = msr / BITS_PER_LONG; + msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; + msr_bitmap[word + (0x800 / sizeof(long))] = ~0; + } + + if (mode & MSR_BITMAP_MODE_X2APIC) { + /* + * TPR reads and writes can be virtualized even if virtual interrupt + * delivery is not in use. + */ + vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); + if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { + vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); + vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); + vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); + } + } +} + +void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; + u8 mode = vmx_msr_bitmap_mode(vcpu); + u8 changed = mode ^ vmx->msr_bitmap_mode; + + if (!changed) + return; + + if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) + vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); + + vmx->msr_bitmap_mode = mode; +} + +void pt_update_intercept_for_msr(struct vcpu_vmx *vmx) +{ + unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; + bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); + u32 i; + + vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS, + MSR_TYPE_RW, flag); + vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE, + MSR_TYPE_RW, flag); + vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK, + MSR_TYPE_RW, flag); + vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH, + MSR_TYPE_RW, flag); + for (i = 0; i < vmx->pt_desc.addr_range; i++) { + vmx_set_intercept_for_msr(msr_bitmap, + MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); + vmx_set_intercept_for_msr(msr_bitmap, + MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); + } +} + +static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) +{ + return enable_apicv; +} + +static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + void *vapic_page; + u32 vppr; + int rvi; + + if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || + !nested_cpu_has_vid(get_vmcs12(vcpu)) || + WARN_ON_ONCE(!vmx->nested.virtual_apic_page)) + return false; + + rvi = vmx_get_rvi(); + + vapic_page = kmap(vmx->nested.virtual_apic_page); + vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); + kunmap(vmx->nested.virtual_apic_page); + + return ((rvi & 0xf0) > (vppr & 0xf0)); +} + +static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, + bool nested) +{ +#ifdef CONFIG_SMP + int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; + + if (vcpu->mode == IN_GUEST_MODE) { + /* + * The vector of interrupt to be delivered to vcpu had + * been set in PIR before this function. + * + * Following cases will be reached in this block, and + * we always send a notification event in all cases as + * explained below. + * + * Case 1: vcpu keeps in non-root mode. Sending a + * notification event posts the interrupt to vcpu. + * + * Case 2: vcpu exits to root mode and is still + * runnable. PIR will be synced to vIRR before the + * next vcpu entry. Sending a notification event in + * this case has no effect, as vcpu is not in root + * mode. + * + * Case 3: vcpu exits to root mode and is blocked. + * vcpu_block() has already synced PIR to vIRR and + * never blocks vcpu if vIRR is not cleared. Therefore, + * a blocked vcpu here does not wait for any requested + * interrupts in PIR, and sending a notification event + * which has no effect is safe here. + */ + + apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); + return true; + } +#endif + return false; +} + +static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, + int vector) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (is_guest_mode(vcpu) && + vector == vmx->nested.posted_intr_nv) { + /* + * If a posted intr is not recognized by hardware, + * we will accomplish it in the next vmentry. + */ + vmx->nested.pi_pending = true; + kvm_make_request(KVM_REQ_EVENT, vcpu); + /* the PIR and ON have been set by L1. */ + if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) + kvm_vcpu_kick(vcpu); + return 0; + } + return -1; +} +/* + * Send interrupt to vcpu via posted interrupt way. + * 1. If target vcpu is running(non-root mode), send posted interrupt + * notification to vcpu and hardware will sync PIR to vIRR atomically. + * 2. If target vcpu isn't running(root mode), kick it to pick up the + * interrupt from PIR in next vmentry. + */ +static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int r; + + r = vmx_deliver_nested_posted_interrupt(vcpu, vector); + if (!r) + return; + + if (pi_test_and_set_pir(vector, &vmx->pi_desc)) + return; + + /* If a previous notification has sent the IPI, nothing to do. */ + if (pi_test_and_set_on(&vmx->pi_desc)) + return; + + if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) + kvm_vcpu_kick(vcpu); +} + +/* + * Set up the vmcs's constant host-state fields, i.e., host-state fields that + * will not change in the lifetime of the guest. + * Note that host-state that does change is set elsewhere. E.g., host-state + * that is set differently for each CPU is set in vmx_vcpu_load(), not here. + */ +void vmx_set_constant_host_state(struct vcpu_vmx *vmx) +{ + u32 low32, high32; + unsigned long tmpl; + struct desc_ptr dt; + unsigned long cr0, cr3, cr4; + + cr0 = read_cr0(); + WARN_ON(cr0 & X86_CR0_TS); + vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ + + /* + * Save the most likely value for this task's CR3 in the VMCS. + * We can't use __get_current_cr3_fast() because we're not atomic. + */ + cr3 = __read_cr3(); + vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ + vmx->loaded_vmcs->host_state.cr3 = cr3; + + /* Save the most likely value for this task's CR4 in the VMCS. */ + cr4 = cr4_read_shadow(); + vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ + vmx->loaded_vmcs->host_state.cr4 = cr4; + + vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ +#ifdef CONFIG_X86_64 + /* + * Load null selectors, so we can avoid reloading them in + * vmx_prepare_switch_to_host(), in case userspace uses + * the null selectors too (the expected case). + */ + vmcs_write16(HOST_DS_SELECTOR, 0); + vmcs_write16(HOST_ES_SELECTOR, 0); +#else + vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ + vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ +#endif + vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ + vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ + + store_idt(&dt); + vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ + vmx->host_idt_base = dt.address; + + vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ + + rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); + vmcs_write32(HOST_IA32_SYSENTER_CS, low32); + rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); + vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ + + if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { + rdmsr(MSR_IA32_CR_PAT, low32, high32); + vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); + } + + if (cpu_has_load_ia32_efer()) + vmcs_write64(HOST_IA32_EFER, host_efer); +} + +void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) +{ + vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; + if (enable_ept) + vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; + if (is_guest_mode(&vmx->vcpu)) + vmx->vcpu.arch.cr4_guest_owned_bits &= + ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; + vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); +} + +static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) +{ + u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; + + if (!kvm_vcpu_apicv_active(&vmx->vcpu)) + pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; + + if (!enable_vnmi) + pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; + + /* Enable the preemption timer dynamically */ + pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; + return pin_based_exec_ctrl; +} + +static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); + if (cpu_has_secondary_exec_ctrls()) { + if (kvm_vcpu_apicv_active(vcpu)) + vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + else + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + } + + if (cpu_has_vmx_msr_bitmap()) + vmx_update_msr_bitmap(vcpu); +} + +u32 vmx_exec_control(struct vcpu_vmx *vmx) +{ + u32 exec_control = vmcs_config.cpu_based_exec_ctrl; + + if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) + exec_control &= ~CPU_BASED_MOV_DR_EXITING; + + if (!cpu_need_tpr_shadow(&vmx->vcpu)) { + exec_control &= ~CPU_BASED_TPR_SHADOW; +#ifdef CONFIG_X86_64 + exec_control |= CPU_BASED_CR8_STORE_EXITING | + CPU_BASED_CR8_LOAD_EXITING; +#endif + } + if (!enable_ept) + exec_control |= CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_INVLPG_EXITING; + if (kvm_mwait_in_guest(vmx->vcpu.kvm)) + exec_control &= ~(CPU_BASED_MWAIT_EXITING | + CPU_BASED_MONITOR_EXITING); + if (kvm_hlt_in_guest(vmx->vcpu.kvm)) + exec_control &= ~CPU_BASED_HLT_EXITING; + return exec_control; +} + + +static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) +{ + struct kvm_vcpu *vcpu = &vmx->vcpu; + + u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; + + if (pt_mode == PT_MODE_SYSTEM) + exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); + if (!cpu_need_virtualize_apic_accesses(vcpu)) + exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + if (vmx->vpid == 0) + exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; + if (!enable_ept) { + exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; + enable_unrestricted_guest = 0; + } + if (!enable_unrestricted_guest) + exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; + if (kvm_pause_in_guest(vmx->vcpu.kvm)) + exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; + if (!kvm_vcpu_apicv_active(vcpu)) + exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; + + /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, + * in vmx_set_cr4. */ + exec_control &= ~SECONDARY_EXEC_DESC; + + /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD + (handle_vmptrld). + We can NOT enable shadow_vmcs here because we don't have yet + a current VMCS12 + */ + exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; + + if (!enable_pml) + exec_control &= ~SECONDARY_EXEC_ENABLE_PML; + + if (vmx_xsaves_supported()) { + /* Exposing XSAVES only when XSAVE is exposed */ + bool xsaves_enabled = + guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && + guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); + + if (!xsaves_enabled) + exec_control &= ~SECONDARY_EXEC_XSAVES; + + if (nested) { + if (xsaves_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_XSAVES; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_XSAVES; + } + } + + if (vmx_rdtscp_supported()) { + bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); + if (!rdtscp_enabled) + exec_control &= ~SECONDARY_EXEC_RDTSCP; + + if (nested) { + if (rdtscp_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_RDTSCP; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_RDTSCP; + } + } + + if (vmx_invpcid_supported()) { + /* Exposing INVPCID only when PCID is exposed */ + bool invpcid_enabled = + guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && + guest_cpuid_has(vcpu, X86_FEATURE_PCID); + + if (!invpcid_enabled) { + exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; + guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); + } + + if (nested) { + if (invpcid_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_INVPCID; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_ENABLE_INVPCID; + } + } + + if (vmx_rdrand_supported()) { + bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); + if (rdrand_enabled) + exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; + + if (nested) { + if (rdrand_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_RDRAND_EXITING; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_RDRAND_EXITING; + } + } + + if (vmx_rdseed_supported()) { + bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); + if (rdseed_enabled) + exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; + + if (nested) { + if (rdseed_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_RDSEED_EXITING; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_RDSEED_EXITING; + } + } + + vmx->secondary_exec_control = exec_control; +} + +static void ept_set_mmio_spte_mask(void) +{ + /* + * EPT Misconfigurations can be generated if the value of bits 2:0 + * of an EPT paging-structure entry is 110b (write/execute). + */ + kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, + VMX_EPT_MISCONFIG_WX_VALUE); +} + +#define VMX_XSS_EXIT_BITMAP 0 + +/* + * Sets up the vmcs for emulated real mode. + */ +static void vmx_vcpu_setup(struct vcpu_vmx *vmx) +{ + int i; + + if (nested) + nested_vmx_vcpu_setup(); + + if (cpu_has_vmx_msr_bitmap()) + vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); + + vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ + + /* Control */ + vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); + vmx->hv_deadline_tsc = -1; + + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); + + if (cpu_has_secondary_exec_ctrls()) { + vmx_compute_secondary_exec_control(vmx); + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, + vmx->secondary_exec_control); + } + + if (kvm_vcpu_apicv_active(&vmx->vcpu)) { + vmcs_write64(EOI_EXIT_BITMAP0, 0); + vmcs_write64(EOI_EXIT_BITMAP1, 0); + vmcs_write64(EOI_EXIT_BITMAP2, 0); + vmcs_write64(EOI_EXIT_BITMAP3, 0); + + vmcs_write16(GUEST_INTR_STATUS, 0); + + vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); + vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); + } + + if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { + vmcs_write32(PLE_GAP, ple_gap); + vmx->ple_window = ple_window; + vmx->ple_window_dirty = true; + } + + vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); + vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); + vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ + + vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ + vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ + vmx_set_constant_host_state(vmx); + vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ + vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ + + if (cpu_has_vmx_vmfunc()) + vmcs_write64(VM_FUNCTION_CONTROL, 0); + + vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); + vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); + vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); + + if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) + vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); + + for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { + u32 index = vmx_msr_index[i]; + u32 data_low, data_high; + int j = vmx->nmsrs; + + if (rdmsr_safe(index, &data_low, &data_high) < 0) + continue; + if (wrmsr_safe(index, data_low, data_high) < 0) + continue; + vmx->guest_msrs[j].index = i; + vmx->guest_msrs[j].data = 0; + vmx->guest_msrs[j].mask = -1ull; + ++vmx->nmsrs; + } + + vmx->arch_capabilities = kvm_get_arch_capabilities(); + + vm_exit_controls_init(vmx, vmx_vmexit_ctrl()); + + /* 22.2.1, 20.8.1 */ + vm_entry_controls_init(vmx, vmx_vmentry_ctrl()); + + vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; + vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); + + set_cr4_guest_host_mask(vmx); + + if (vmx_xsaves_supported()) + vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); + + if (enable_pml) { + vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); + vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); + } + + if (cpu_has_vmx_encls_vmexit()) + vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); + + if (pt_mode == PT_MODE_HOST_GUEST) { + memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); + /* Bit[6~0] are forced to 1, writes are ignored. */ + vmx->pt_desc.guest.output_mask = 0x7F; + vmcs_write64(GUEST_IA32_RTIT_CTL, 0); + } +} + +static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct msr_data apic_base_msr; + u64 cr0; + + vmx->rmode.vm86_active = 0; + vmx->spec_ctrl = 0; + + vcpu->arch.microcode_version = 0x100000000ULL; + vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); + kvm_set_cr8(vcpu, 0); + + if (!init_event) { + apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | + MSR_IA32_APICBASE_ENABLE; + if (kvm_vcpu_is_reset_bsp(vcpu)) + apic_base_msr.data |= MSR_IA32_APICBASE_BSP; + apic_base_msr.host_initiated = true; + kvm_set_apic_base(vcpu, &apic_base_msr); + } + + vmx_segment_cache_clear(vmx); + + seg_setup(VCPU_SREG_CS); + vmcs_write16(GUEST_CS_SELECTOR, 0xf000); + vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); + + seg_setup(VCPU_SREG_DS); + seg_setup(VCPU_SREG_ES); + seg_setup(VCPU_SREG_FS); + seg_setup(VCPU_SREG_GS); + seg_setup(VCPU_SREG_SS); + + vmcs_write16(GUEST_TR_SELECTOR, 0); + vmcs_writel(GUEST_TR_BASE, 0); + vmcs_write32(GUEST_TR_LIMIT, 0xffff); + vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); + + vmcs_write16(GUEST_LDTR_SELECTOR, 0); + vmcs_writel(GUEST_LDTR_BASE, 0); + vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); + vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); + + if (!init_event) { + vmcs_write32(GUEST_SYSENTER_CS, 0); + vmcs_writel(GUEST_SYSENTER_ESP, 0); + vmcs_writel(GUEST_SYSENTER_EIP, 0); + vmcs_write64(GUEST_IA32_DEBUGCTL, 0); + } + + kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); + kvm_rip_write(vcpu, 0xfff0); + + vmcs_writel(GUEST_GDTR_BASE, 0); + vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); + + vmcs_writel(GUEST_IDTR_BASE, 0); + vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); + + vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); + vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); + if (kvm_mpx_supported()) + vmcs_write64(GUEST_BNDCFGS, 0); + + setup_msrs(vmx); + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ + + if (cpu_has_vmx_tpr_shadow() && !init_event) { + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); + if (cpu_need_tpr_shadow(vcpu)) + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, + __pa(vcpu->arch.apic->regs)); + vmcs_write32(TPR_THRESHOLD, 0); + } + + kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); + + if (vmx->vpid != 0) + vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); + + cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; + vmx->vcpu.arch.cr0 = cr0; + vmx_set_cr0(vcpu, cr0); /* enter rmode */ + vmx_set_cr4(vcpu, 0); + vmx_set_efer(vcpu, 0); + + update_exception_bitmap(vcpu); + + vpid_sync_context(vmx->vpid); + if (init_event) + vmx_clear_hlt(vcpu); +} + +static void enable_irq_window(struct kvm_vcpu *vcpu) +{ + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_INTR_PENDING); +} + +static void enable_nmi_window(struct kvm_vcpu *vcpu) +{ + if (!enable_vnmi || + vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { + enable_irq_window(vcpu); + return; + } + + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_NMI_PENDING); +} + +static void vmx_inject_irq(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + uint32_t intr; + int irq = vcpu->arch.interrupt.nr; + + trace_kvm_inj_virq(irq); + + ++vcpu->stat.irq_injections; + if (vmx->rmode.vm86_active) { + int inc_eip = 0; + if (vcpu->arch.interrupt.soft) + inc_eip = vcpu->arch.event_exit_inst_len; + if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + intr = irq | INTR_INFO_VALID_MASK; + if (vcpu->arch.interrupt.soft) { + intr |= INTR_TYPE_SOFT_INTR; + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmx->vcpu.arch.event_exit_inst_len); + } else + intr |= INTR_TYPE_EXT_INTR; + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); + + vmx_clear_hlt(vcpu); +} + +static void vmx_inject_nmi(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!enable_vnmi) { + /* + * Tracking the NMI-blocked state in software is built upon + * finding the next open IRQ window. This, in turn, depends on + * well-behaving guests: They have to keep IRQs disabled at + * least as long as the NMI handler runs. Otherwise we may + * cause NMI nesting, maybe breaking the guest. But as this is + * highly unlikely, we can live with the residual risk. + */ + vmx->loaded_vmcs->soft_vnmi_blocked = 1; + vmx->loaded_vmcs->vnmi_blocked_time = 0; + } + + ++vcpu->stat.nmi_injections; + vmx->loaded_vmcs->nmi_known_unmasked = false; + + if (vmx->rmode.vm86_active) { + if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, + INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); + + vmx_clear_hlt(vcpu); +} + +bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + bool masked; + + if (!enable_vnmi) + return vmx->loaded_vmcs->soft_vnmi_blocked; + if (vmx->loaded_vmcs->nmi_known_unmasked) + return false; + masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; + vmx->loaded_vmcs->nmi_known_unmasked = !masked; + return masked; +} + +void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!enable_vnmi) { + if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { + vmx->loaded_vmcs->soft_vnmi_blocked = masked; + vmx->loaded_vmcs->vnmi_blocked_time = 0; + } + } else { + vmx->loaded_vmcs->nmi_known_unmasked = !masked; + if (masked) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + else + vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + } +} + +static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) +{ + if (to_vmx(vcpu)->nested.nested_run_pending) + return 0; + + if (!enable_vnmi && + to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) + return 0; + + return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & + (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI + | GUEST_INTR_STATE_NMI)); +} + +static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) +{ + return (!to_vmx(vcpu)->nested.nested_run_pending && + vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && + !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & + (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); +} + +static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) +{ + int ret; + + if (enable_unrestricted_guest) + return 0; + + ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, + PAGE_SIZE * 3); + if (ret) + return ret; + to_kvm_vmx(kvm)->tss_addr = addr; + return init_rmode_tss(kvm); +} + +static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) +{ + to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; + return 0; +} + +static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) +{ + switch (vec) { + case BP_VECTOR: + /* + * Update instruction length as we may reinject the exception + * from user space while in guest debugging mode. + */ + to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = + vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) + return false; + /* fall through */ + case DB_VECTOR: + if (vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) + return false; + /* fall through */ + case DE_VECTOR: + case OF_VECTOR: + case BR_VECTOR: + case UD_VECTOR: + case DF_VECTOR: + case SS_VECTOR: + case GP_VECTOR: + case MF_VECTOR: + return true; + break; + } + return false; +} + +static int handle_rmode_exception(struct kvm_vcpu *vcpu, + int vec, u32 err_code) +{ + /* + * Instruction with address size override prefix opcode 0x67 + * Cause the #SS fault with 0 error code in VM86 mode. + */ + if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { + if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { + if (vcpu->arch.halt_request) { + vcpu->arch.halt_request = 0; + return kvm_vcpu_halt(vcpu); + } + return 1; + } + return 0; + } + + /* + * Forward all other exceptions that are valid in real mode. + * FIXME: Breaks guest debugging in real mode, needs to be fixed with + * the required debugging infrastructure rework. + */ + kvm_queue_exception(vcpu, vec); + return 1; +} + +/* + * Trigger machine check on the host. We assume all the MSRs are already set up + * by the CPU and that we still run on the same CPU as the MCE occurred on. + * We pass a fake environment to the machine check handler because we want + * the guest to be always treated like user space, no matter what context + * it used internally. + */ +static void kvm_machine_check(void) +{ +#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) + struct pt_regs regs = { + .cs = 3, /* Fake ring 3 no matter what the guest ran on */ + .flags = X86_EFLAGS_IF, + }; + + do_machine_check(®s, 0); +#endif +} + +static int handle_machine_check(struct kvm_vcpu *vcpu) +{ + /* already handled by vcpu_run */ + return 1; +} + +static int handle_exception(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_run *kvm_run = vcpu->run; + u32 intr_info, ex_no, error_code; + unsigned long cr2, rip, dr6; + u32 vect_info; + enum emulation_result er; + + vect_info = vmx->idt_vectoring_info; + intr_info = vmx->exit_intr_info; + + if (is_machine_check(intr_info)) + return handle_machine_check(vcpu); + + if (is_nmi(intr_info)) + return 1; /* already handled by vmx_vcpu_run() */ + + if (is_invalid_opcode(intr_info)) + return handle_ud(vcpu); + + error_code = 0; + if (intr_info & INTR_INFO_DELIVER_CODE_MASK) + error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); + + if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { + WARN_ON_ONCE(!enable_vmware_backdoor); + er = kvm_emulate_instruction(vcpu, + EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); + if (er == EMULATE_USER_EXIT) + return 0; + else if (er != EMULATE_DONE) + kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); + return 1; + } + + /* + * The #PF with PFEC.RSVD = 1 indicates the guest is accessing + * MMIO, it is better to report an internal error. + * See the comments in vmx_handle_exit. + */ + if ((vect_info & VECTORING_INFO_VALID_MASK) && + !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; + vcpu->run->internal.ndata = 3; + vcpu->run->internal.data[0] = vect_info; + vcpu->run->internal.data[1] = intr_info; + vcpu->run->internal.data[2] = error_code; + return 0; + } + + if (is_page_fault(intr_info)) { + cr2 = vmcs_readl(EXIT_QUALIFICATION); + /* EPT won't cause page fault directly */ + WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); + return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); + } + + ex_no = intr_info & INTR_INFO_VECTOR_MASK; + + if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) + return handle_rmode_exception(vcpu, ex_no, error_code); + + switch (ex_no) { + case AC_VECTOR: + kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); + return 1; + case DB_VECTOR: + dr6 = vmcs_readl(EXIT_QUALIFICATION); + if (!(vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= dr6 | DR6_RTM; + if (is_icebp(intr_info)) + skip_emulated_instruction(vcpu); + + kvm_queue_exception(vcpu, DB_VECTOR); + return 1; + } + kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; + kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); + /* fall through */ + case BP_VECTOR: + /* + * Update instruction length as we may reinject #BP from + * user space while in guest debugging mode. Reading it for + * #DB as well causes no harm, it is not used in that case. + */ + vmx->vcpu.arch.event_exit_inst_len = + vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + kvm_run->exit_reason = KVM_EXIT_DEBUG; + rip = kvm_rip_read(vcpu); + kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; + kvm_run->debug.arch.exception = ex_no; + break; + default: + kvm_run->exit_reason = KVM_EXIT_EXCEPTION; + kvm_run->ex.exception = ex_no; + kvm_run->ex.error_code = error_code; + break; + } + return 0; +} + +static int handle_external_interrupt(struct kvm_vcpu *vcpu) +{ + ++vcpu->stat.irq_exits; + return 1; +} + +static int handle_triple_fault(struct kvm_vcpu *vcpu) +{ + vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; + vcpu->mmio_needed = 0; + return 0; +} + +static int handle_io(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + int size, in, string; + unsigned port; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + string = (exit_qualification & 16) != 0; + + ++vcpu->stat.io_exits; + + if (string) + return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; + + port = exit_qualification >> 16; + size = (exit_qualification & 7) + 1; + in = (exit_qualification & 8) != 0; + + return kvm_fast_pio(vcpu, size, port, in); +} + +static void +vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) +{ + /* + * Patch in the VMCALL instruction: + */ + hypercall[0] = 0x0f; + hypercall[1] = 0x01; + hypercall[2] = 0xc1; +} + +/* called to set cr0 as appropriate for a mov-to-cr0 exit. */ +static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) +{ + if (is_guest_mode(vcpu)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned long orig_val = val; + + /* + * We get here when L2 changed cr0 in a way that did not change + * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), + * but did change L0 shadowed bits. So we first calculate the + * effective cr0 value that L1 would like to write into the + * hardware. It consists of the L2-owned bits from the new + * value combined with the L1-owned bits from L1's guest_cr0. + */ + val = (val & ~vmcs12->cr0_guest_host_mask) | + (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); + + if (!nested_guest_cr0_valid(vcpu, val)) + return 1; + + if (kvm_set_cr0(vcpu, val)) + return 1; + vmcs_writel(CR0_READ_SHADOW, orig_val); + return 0; + } else { + if (to_vmx(vcpu)->nested.vmxon && + !nested_host_cr0_valid(vcpu, val)) + return 1; + + return kvm_set_cr0(vcpu, val); + } +} + +static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) +{ + if (is_guest_mode(vcpu)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned long orig_val = val; + + /* analogously to handle_set_cr0 */ + val = (val & ~vmcs12->cr4_guest_host_mask) | + (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); + if (kvm_set_cr4(vcpu, val)) + return 1; + vmcs_writel(CR4_READ_SHADOW, orig_val); + return 0; + } else + return kvm_set_cr4(vcpu, val); +} + +static int handle_desc(struct kvm_vcpu *vcpu) +{ + WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); + return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; +} + +static int handle_cr(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification, val; + int cr; + int reg; + int err; + int ret; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + cr = exit_qualification & 15; + reg = (exit_qualification >> 8) & 15; + switch ((exit_qualification >> 4) & 3) { + case 0: /* mov to cr */ + val = kvm_register_readl(vcpu, reg); + trace_kvm_cr_write(cr, val); + switch (cr) { + case 0: + err = handle_set_cr0(vcpu, val); + return kvm_complete_insn_gp(vcpu, err); + case 3: + WARN_ON_ONCE(enable_unrestricted_guest); + err = kvm_set_cr3(vcpu, val); + return kvm_complete_insn_gp(vcpu, err); + case 4: + err = handle_set_cr4(vcpu, val); + return kvm_complete_insn_gp(vcpu, err); + case 8: { + u8 cr8_prev = kvm_get_cr8(vcpu); + u8 cr8 = (u8)val; + err = kvm_set_cr8(vcpu, cr8); + ret = kvm_complete_insn_gp(vcpu, err); + if (lapic_in_kernel(vcpu)) + return ret; + if (cr8_prev <= cr8) + return ret; + /* + * TODO: we might be squashing a + * KVM_GUESTDBG_SINGLESTEP-triggered + * KVM_EXIT_DEBUG here. + */ + vcpu->run->exit_reason = KVM_EXIT_SET_TPR; + return 0; + } + } + break; + case 2: /* clts */ + WARN_ONCE(1, "Guest should always own CR0.TS"); + vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); + trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); + return kvm_skip_emulated_instruction(vcpu); + case 1: /*mov from cr*/ + switch (cr) { + case 3: + WARN_ON_ONCE(enable_unrestricted_guest); + val = kvm_read_cr3(vcpu); + kvm_register_write(vcpu, reg, val); + trace_kvm_cr_read(cr, val); + return kvm_skip_emulated_instruction(vcpu); + case 8: + val = kvm_get_cr8(vcpu); + kvm_register_write(vcpu, reg, val); + trace_kvm_cr_read(cr, val); + return kvm_skip_emulated_instruction(vcpu); + } + break; + case 3: /* lmsw */ + val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; + trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); + kvm_lmsw(vcpu, val); + + return kvm_skip_emulated_instruction(vcpu); + default: + break; + } + vcpu->run->exit_reason = 0; + vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", + (int)(exit_qualification >> 4) & 3, cr); + return 0; +} + +static int handle_dr(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + int dr, dr7, reg; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + dr = exit_qualification & DEBUG_REG_ACCESS_NUM; + + /* First, if DR does not exist, trigger UD */ + if (!kvm_require_dr(vcpu, dr)) + return 1; + + /* Do not handle if the CPL > 0, will trigger GP on re-entry */ + if (!kvm_require_cpl(vcpu, 0)) + return 1; + dr7 = vmcs_readl(GUEST_DR7); + if (dr7 & DR7_GD) { + /* + * As the vm-exit takes precedence over the debug trap, we + * need to emulate the latter, either for the host or the + * guest debugging itself. + */ + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { + vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; + vcpu->run->debug.arch.dr7 = dr7; + vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); + vcpu->run->debug.arch.exception = DB_VECTOR; + vcpu->run->exit_reason = KVM_EXIT_DEBUG; + return 0; + } else { + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= DR6_BD | DR6_RTM; + kvm_queue_exception(vcpu, DB_VECTOR); + return 1; + } + } + + if (vcpu->guest_debug == 0) { + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_MOV_DR_EXITING); + + /* + * No more DR vmexits; force a reload of the debug registers + * and reenter on this instruction. The next vmexit will + * retrieve the full state of the debug registers. + */ + vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; + return 1; + } + + reg = DEBUG_REG_ACCESS_REG(exit_qualification); + if (exit_qualification & TYPE_MOV_FROM_DR) { + unsigned long val; + + if (kvm_get_dr(vcpu, dr, &val)) + return 1; + kvm_register_write(vcpu, reg, val); + } else + if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) + return 1; + + return kvm_skip_emulated_instruction(vcpu); +} + +static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.dr6; +} + +static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) +{ +} + +static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) +{ + get_debugreg(vcpu->arch.db[0], 0); + get_debugreg(vcpu->arch.db[1], 1); + get_debugreg(vcpu->arch.db[2], 2); + get_debugreg(vcpu->arch.db[3], 3); + get_debugreg(vcpu->arch.dr6, 6); + vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); + + vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); +} + +static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) +{ + vmcs_writel(GUEST_DR7, val); +} + +static int handle_cpuid(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_cpuid(vcpu); +} + +static int handle_rdmsr(struct kvm_vcpu *vcpu) +{ + u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; + struct msr_data msr_info; + + msr_info.index = ecx; + msr_info.host_initiated = false; + if (vmx_get_msr(vcpu, &msr_info)) { + trace_kvm_msr_read_ex(ecx); + kvm_inject_gp(vcpu, 0); + return 1; + } + + trace_kvm_msr_read(ecx, msr_info.data); + + /* FIXME: handling of bits 32:63 of rax, rdx */ + vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u; + vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u; + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_wrmsr(struct kvm_vcpu *vcpu) +{ + struct msr_data msr; + u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; + u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) + | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); + + msr.data = data; + msr.index = ecx; + msr.host_initiated = false; + if (kvm_set_msr(vcpu, &msr) != 0) { + trace_kvm_msr_write_ex(ecx, data); + kvm_inject_gp(vcpu, 0); + return 1; + } + + trace_kvm_msr_write(ecx, data); + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) +{ + kvm_apic_update_ppr(vcpu); + return 1; +} + +static int handle_interrupt_window(struct kvm_vcpu *vcpu) +{ + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_INTR_PENDING); + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + ++vcpu->stat.irq_window_exits; + return 1; +} + +static int handle_halt(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_halt(vcpu); +} + +static int handle_vmcall(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_hypercall(vcpu); +} + +static int handle_invd(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; +} + +static int handle_invlpg(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + kvm_mmu_invlpg(vcpu, exit_qualification); + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_rdpmc(struct kvm_vcpu *vcpu) +{ + int err; + + err = kvm_rdpmc(vcpu); + return kvm_complete_insn_gp(vcpu, err); +} + +static int handle_wbinvd(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_wbinvd(vcpu); +} + +static int handle_xsetbv(struct kvm_vcpu *vcpu) +{ + u64 new_bv = kvm_read_edx_eax(vcpu); + u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); + + if (kvm_set_xcr(vcpu, index, new_bv) == 0) + return kvm_skip_emulated_instruction(vcpu); + return 1; +} + +static int handle_xsaves(struct kvm_vcpu *vcpu) +{ + kvm_skip_emulated_instruction(vcpu); + WARN(1, "this should never happen\n"); + return 1; +} + +static int handle_xrstors(struct kvm_vcpu *vcpu) +{ + kvm_skip_emulated_instruction(vcpu); + WARN(1, "this should never happen\n"); + return 1; +} + +static int handle_apic_access(struct kvm_vcpu *vcpu) +{ + if (likely(fasteoi)) { + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int access_type, offset; + + access_type = exit_qualification & APIC_ACCESS_TYPE; + offset = exit_qualification & APIC_ACCESS_OFFSET; + /* + * Sane guest uses MOV to write EOI, with written value + * not cared. So make a short-circuit here by avoiding + * heavy instruction emulation. + */ + if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && + (offset == APIC_EOI)) { + kvm_lapic_set_eoi(vcpu); + return kvm_skip_emulated_instruction(vcpu); + } + } + return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; +} + +static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int vector = exit_qualification & 0xff; + + /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ + kvm_apic_set_eoi_accelerated(vcpu, vector); + return 1; +} + +static int handle_apic_write(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 offset = exit_qualification & 0xfff; + + /* APIC-write VM exit is trap-like and thus no need to adjust IP */ + kvm_apic_write_nodecode(vcpu, offset); + return 1; +} + +static int handle_task_switch(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long exit_qualification; + bool has_error_code = false; + u32 error_code = 0; + u16 tss_selector; + int reason, type, idt_v, idt_index; + + idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); + idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); + type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + reason = (u32)exit_qualification >> 30; + if (reason == TASK_SWITCH_GATE && idt_v) { + switch (type) { + case INTR_TYPE_NMI_INTR: + vcpu->arch.nmi_injected = false; + vmx_set_nmi_mask(vcpu, true); + break; + case INTR_TYPE_EXT_INTR: + case INTR_TYPE_SOFT_INTR: + kvm_clear_interrupt_queue(vcpu); + break; + case INTR_TYPE_HARD_EXCEPTION: + if (vmx->idt_vectoring_info & + VECTORING_INFO_DELIVER_CODE_MASK) { + has_error_code = true; + error_code = + vmcs_read32(IDT_VECTORING_ERROR_CODE); + } + /* fall through */ + case INTR_TYPE_SOFT_EXCEPTION: + kvm_clear_exception_queue(vcpu); + break; + default: + break; + } + } + tss_selector = exit_qualification; + + if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && + type != INTR_TYPE_EXT_INTR && + type != INTR_TYPE_NMI_INTR)) + skip_emulated_instruction(vcpu); + + if (kvm_task_switch(vcpu, tss_selector, + type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, + has_error_code, error_code) == EMULATE_FAIL) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + return 0; + } + + /* + * TODO: What about debug traps on tss switch? + * Are we supposed to inject them and update dr6? + */ + + return 1; +} + +static int handle_ept_violation(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + gpa_t gpa; + u64 error_code; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + /* + * EPT violation happened while executing iret from NMI, + * "blocked by NMI" bit has to be set before next VM entry. + * There are errata that may cause this bit to not be set: + * AAK134, BY25. + */ + if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && + enable_vnmi && + (exit_qualification & INTR_INFO_UNBLOCK_NMI)) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); + + gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); + trace_kvm_page_fault(gpa, exit_qualification); + + /* Is it a read fault? */ + error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) + ? PFERR_USER_MASK : 0; + /* Is it a write fault? */ + error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) + ? PFERR_WRITE_MASK : 0; + /* Is it a fetch fault? */ + error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) + ? PFERR_FETCH_MASK : 0; + /* ept page table entry is present? */ + error_code |= (exit_qualification & + (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | + EPT_VIOLATION_EXECUTABLE)) + ? PFERR_PRESENT_MASK : 0; + + error_code |= (exit_qualification & 0x100) != 0 ? + PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; + + vcpu->arch.exit_qualification = exit_qualification; + return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); +} + +static int handle_ept_misconfig(struct kvm_vcpu *vcpu) +{ + gpa_t gpa; + + /* + * A nested guest cannot optimize MMIO vmexits, because we have an + * nGPA here instead of the required GPA. + */ + gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); + if (!is_guest_mode(vcpu) && + !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { + trace_kvm_fast_mmio(gpa); + /* + * Doing kvm_skip_emulated_instruction() depends on undefined + * behavior: Intel's manual doesn't mandate + * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG + * occurs and while on real hardware it was observed to be set, + * other hypervisors (namely Hyper-V) don't set it, we end up + * advancing IP with some random value. Disable fast mmio when + * running nested and keep it for real hardware in hope that + * VM_EXIT_INSTRUCTION_LEN will always be set correctly. + */ + if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) + return kvm_skip_emulated_instruction(vcpu); + else + return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == + EMULATE_DONE; + } + + return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); +} + +static int handle_nmi_window(struct kvm_vcpu *vcpu) +{ + WARN_ON_ONCE(!enable_vnmi); + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_NMI_PENDING); + ++vcpu->stat.nmi_window_exits; + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 1; +} + +static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + enum emulation_result err = EMULATE_DONE; + int ret = 1; + u32 cpu_exec_ctrl; + bool intr_window_requested; + unsigned count = 130; + + /* + * We should never reach the point where we are emulating L2 + * due to invalid guest state as that means we incorrectly + * allowed a nested VMEntry with an invalid vmcs12. + */ + WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); + + cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; + + while (vmx->emulation_required && count-- != 0) { + if (intr_window_requested && vmx_interrupt_allowed(vcpu)) + return handle_interrupt_window(&vmx->vcpu); + + if (kvm_test_request(KVM_REQ_EVENT, vcpu)) + return 1; + + err = kvm_emulate_instruction(vcpu, 0); + + if (err == EMULATE_USER_EXIT) { + ++vcpu->stat.mmio_exits; + ret = 0; + goto out; + } + + if (err != EMULATE_DONE) + goto emulation_error; + + if (vmx->emulation_required && !vmx->rmode.vm86_active && + vcpu->arch.exception.pending) + goto emulation_error; + + if (vcpu->arch.halt_request) { + vcpu->arch.halt_request = 0; + ret = kvm_vcpu_halt(vcpu); + goto out; + } + + if (signal_pending(current)) + goto out; + if (need_resched()) + schedule(); + } + +out: + return ret; + +emulation_error: + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + return 0; +} + +static void grow_ple_window(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int old = vmx->ple_window; + + vmx->ple_window = __grow_ple_window(old, ple_window, + ple_window_grow, + ple_window_max); + + if (vmx->ple_window != old) + vmx->ple_window_dirty = true; + + trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); +} + +static void shrink_ple_window(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int old = vmx->ple_window; + + vmx->ple_window = __shrink_ple_window(old, ple_window, + ple_window_shrink, + ple_window); + + if (vmx->ple_window != old) + vmx->ple_window_dirty = true; + + trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); +} + +/* + * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. + */ +static void wakeup_handler(void) +{ + struct kvm_vcpu *vcpu; + int cpu = smp_processor_id(); + + spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); + list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), + blocked_vcpu_list) { + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + + if (pi_test_on(pi_desc) == 1) + kvm_vcpu_kick(vcpu); + } + spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); +} + +static void vmx_enable_tdp(void) +{ + kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, + enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, + enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, + 0ull, VMX_EPT_EXECUTABLE_MASK, + cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, + VMX_EPT_RWX_MASK, 0ull); + + ept_set_mmio_spte_mask(); + kvm_enable_tdp(); +} + +/* + * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE + * exiting, so only get here on cpu with PAUSE-Loop-Exiting. + */ +static int handle_pause(struct kvm_vcpu *vcpu) +{ + if (!kvm_pause_in_guest(vcpu->kvm)) + grow_ple_window(vcpu); + + /* + * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" + * VM-execution control is ignored if CPL > 0. OTOH, KVM + * never set PAUSE_EXITING and just set PLE if supported, + * so the vcpu must be CPL=0 if it gets a PAUSE exit. + */ + kvm_vcpu_on_spin(vcpu, true); + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_nop(struct kvm_vcpu *vcpu) +{ + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_mwait(struct kvm_vcpu *vcpu) +{ + printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); + return handle_nop(vcpu); +} + +static int handle_invalid_op(struct kvm_vcpu *vcpu) +{ + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; +} + +static int handle_monitor_trap(struct kvm_vcpu *vcpu) +{ + return 1; +} + +static int handle_monitor(struct kvm_vcpu *vcpu) +{ + printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); + return handle_nop(vcpu); +} + +static int handle_invpcid(struct kvm_vcpu *vcpu) +{ + u32 vmx_instruction_info; + unsigned long type; + bool pcid_enabled; + gva_t gva; + struct x86_exception e; + unsigned i; + unsigned long roots_to_free = 0; + struct { + u64 pcid; + u64 gla; + } operand; + + if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + + if (type > 3) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + /* According to the Intel instruction reference, the memory operand + * is read even if it isn't needed (e.g., for type==all) + */ + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmx_instruction_info, false, &gva)) + return 1; + + if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + + if (operand.pcid >> 12 != 0) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); + + switch (type) { + case INVPCID_TYPE_INDIV_ADDR: + if ((!pcid_enabled && (operand.pcid != 0)) || + is_noncanonical_address(operand.gla, vcpu)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); + return kvm_skip_emulated_instruction(vcpu); + + case INVPCID_TYPE_SINGLE_CTXT: + if (!pcid_enabled && (operand.pcid != 0)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + if (kvm_get_active_pcid(vcpu) == operand.pcid) { + kvm_mmu_sync_roots(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + } + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) + == operand.pcid) + roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); + + kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); + /* + * If neither the current cr3 nor any of the prev_roots use the + * given PCID, then nothing needs to be done here because a + * resync will happen anyway before switching to any other CR3. + */ + + return kvm_skip_emulated_instruction(vcpu); + + case INVPCID_TYPE_ALL_NON_GLOBAL: + /* + * Currently, KVM doesn't mark global entries in the shadow + * page tables, so a non-global flush just degenerates to a + * global flush. If needed, we could optimize this later by + * keeping track of global entries in shadow page tables. + */ + + /* fall-through */ + case INVPCID_TYPE_ALL_INCL_GLOBAL: + kvm_mmu_unload(vcpu); + return kvm_skip_emulated_instruction(vcpu); + + default: + BUG(); /* We have already checked above that type <= 3 */ + } +} + +static int handle_pml_full(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + + trace_kvm_pml_full(vcpu->vcpu_id); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + /* + * PML buffer FULL happened while executing iret from NMI, + * "blocked by NMI" bit has to be set before next VM entry. + */ + if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && + enable_vnmi && + (exit_qualification & INTR_INFO_UNBLOCK_NMI)) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + + /* + * PML buffer already flushed at beginning of VMEXIT. Nothing to do + * here.., and there's no userspace involvement needed for PML. + */ + return 1; +} + +static int handle_preemption_timer(struct kvm_vcpu *vcpu) +{ + if (!to_vmx(vcpu)->req_immediate_exit) + kvm_lapic_expired_hv_timer(vcpu); + return 1; +} + +/* + * When nested=0, all VMX instruction VM Exits filter here. The handlers + * are overwritten by nested_vmx_setup() when nested=1. + */ +static int handle_vmx_instruction(struct kvm_vcpu *vcpu) +{ + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; +} + +static int handle_encls(struct kvm_vcpu *vcpu) +{ + /* + * SGX virtualization is not yet supported. There is no software + * enable bit for SGX, so we have to trap ENCLS and inject a #UD + * to prevent the guest from executing ENCLS. + */ + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; +} + +/* + * The exit handlers return 1 if the exit was handled fully and guest execution + * may resume. Otherwise they set the kvm_run parameter to indicate what needs + * to be done to userspace and return 0. + */ +static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { + [EXIT_REASON_EXCEPTION_NMI] = handle_exception, + [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, + [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, + [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, + [EXIT_REASON_IO_INSTRUCTION] = handle_io, + [EXIT_REASON_CR_ACCESS] = handle_cr, + [EXIT_REASON_DR_ACCESS] = handle_dr, + [EXIT_REASON_CPUID] = handle_cpuid, + [EXIT_REASON_MSR_READ] = handle_rdmsr, + [EXIT_REASON_MSR_WRITE] = handle_wrmsr, + [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, + [EXIT_REASON_HLT] = handle_halt, + [EXIT_REASON_INVD] = handle_invd, + [EXIT_REASON_INVLPG] = handle_invlpg, + [EXIT_REASON_RDPMC] = handle_rdpmc, + [EXIT_REASON_VMCALL] = handle_vmcall, + [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, + [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, + [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, + [EXIT_REASON_VMPTRST] = handle_vmx_instruction, + [EXIT_REASON_VMREAD] = handle_vmx_instruction, + [EXIT_REASON_VMRESUME] = handle_vmx_instruction, + [EXIT_REASON_VMWRITE] = handle_vmx_instruction, + [EXIT_REASON_VMOFF] = handle_vmx_instruction, + [EXIT_REASON_VMON] = handle_vmx_instruction, + [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, + [EXIT_REASON_APIC_ACCESS] = handle_apic_access, + [EXIT_REASON_APIC_WRITE] = handle_apic_write, + [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, + [EXIT_REASON_WBINVD] = handle_wbinvd, + [EXIT_REASON_XSETBV] = handle_xsetbv, + [EXIT_REASON_TASK_SWITCH] = handle_task_switch, + [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, + [EXIT_REASON_GDTR_IDTR] = handle_desc, + [EXIT_REASON_LDTR_TR] = handle_desc, + [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, + [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, + [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, + [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, + [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, + [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, + [EXIT_REASON_INVEPT] = handle_vmx_instruction, + [EXIT_REASON_INVVPID] = handle_vmx_instruction, + [EXIT_REASON_RDRAND] = handle_invalid_op, + [EXIT_REASON_RDSEED] = handle_invalid_op, + [EXIT_REASON_XSAVES] = handle_xsaves, + [EXIT_REASON_XRSTORS] = handle_xrstors, + [EXIT_REASON_PML_FULL] = handle_pml_full, + [EXIT_REASON_INVPCID] = handle_invpcid, + [EXIT_REASON_VMFUNC] = handle_vmx_instruction, + [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, + [EXIT_REASON_ENCLS] = handle_encls, +}; + +static const int kvm_vmx_max_exit_handlers = + ARRAY_SIZE(kvm_vmx_exit_handlers); + +static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) +{ + *info1 = vmcs_readl(EXIT_QUALIFICATION); + *info2 = vmcs_read32(VM_EXIT_INTR_INFO); +} + +static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) +{ + if (vmx->pml_pg) { + __free_page(vmx->pml_pg); + vmx->pml_pg = NULL; + } +} + +static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u64 *pml_buf; + u16 pml_idx; + + pml_idx = vmcs_read16(GUEST_PML_INDEX); + + /* Do nothing if PML buffer is empty */ + if (pml_idx == (PML_ENTITY_NUM - 1)) + return; + + /* PML index always points to next available PML buffer entity */ + if (pml_idx >= PML_ENTITY_NUM) + pml_idx = 0; + else + pml_idx++; + + pml_buf = page_address(vmx->pml_pg); + for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { + u64 gpa; + + gpa = pml_buf[pml_idx]; + WARN_ON(gpa & (PAGE_SIZE - 1)); + kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); + } + + /* reset PML index */ + vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); +} + +/* + * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. + * Called before reporting dirty_bitmap to userspace. + */ +static void kvm_flush_pml_buffers(struct kvm *kvm) +{ + int i; + struct kvm_vcpu *vcpu; + /* + * We only need to kick vcpu out of guest mode here, as PML buffer + * is flushed at beginning of all VMEXITs, and it's obvious that only + * vcpus running in guest are possible to have unflushed GPAs in PML + * buffer. + */ + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_vcpu_kick(vcpu); +} + +static void vmx_dump_sel(char *name, uint32_t sel) +{ + pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", + name, vmcs_read16(sel), + vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), + vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), + vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); +} + +static void vmx_dump_dtsel(char *name, uint32_t limit) +{ + pr_err("%s limit=0x%08x, base=0x%016lx\n", + name, vmcs_read32(limit), + vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); +} + +static void dump_vmcs(void) +{ + u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); + u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); + u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); + u32 secondary_exec_control = 0; + unsigned long cr4 = vmcs_readl(GUEST_CR4); + u64 efer = vmcs_read64(GUEST_IA32_EFER); + int i, n; + + if (cpu_has_secondary_exec_ctrls()) + secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + + pr_err("*** Guest State ***\n"); + pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", + vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), + vmcs_readl(CR0_GUEST_HOST_MASK)); + pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", + cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); + pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); + if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && + (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) + { + pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", + vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); + pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", + vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); + } + pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", + vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); + pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", + vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); + pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", + vmcs_readl(GUEST_SYSENTER_ESP), + vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); + vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); + vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); + vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); + vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); + vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); + vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); + vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); + vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); + vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); + vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); + if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || + (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) + pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", + efer, vmcs_read64(GUEST_IA32_PAT)); + pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", + vmcs_read64(GUEST_IA32_DEBUGCTL), + vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); + if (cpu_has_load_perf_global_ctrl() && + vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) + pr_err("PerfGlobCtl = 0x%016llx\n", + vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); + if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) + pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); + pr_err("Interruptibility = %08x ActivityState = %08x\n", + vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), + vmcs_read32(GUEST_ACTIVITY_STATE)); + if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) + pr_err("InterruptStatus = %04x\n", + vmcs_read16(GUEST_INTR_STATUS)); + + pr_err("*** Host State ***\n"); + pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", + vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); + pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", + vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), + vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), + vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), + vmcs_read16(HOST_TR_SELECTOR)); + pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", + vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), + vmcs_readl(HOST_TR_BASE)); + pr_err("GDTBase=%016lx IDTBase=%016lx\n", + vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); + pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", + vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), + vmcs_readl(HOST_CR4)); + pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", + vmcs_readl(HOST_IA32_SYSENTER_ESP), + vmcs_read32(HOST_IA32_SYSENTER_CS), + vmcs_readl(HOST_IA32_SYSENTER_EIP)); + if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) + pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", + vmcs_read64(HOST_IA32_EFER), + vmcs_read64(HOST_IA32_PAT)); + if (cpu_has_load_perf_global_ctrl() && + vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) + pr_err("PerfGlobCtl = 0x%016llx\n", + vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); + + pr_err("*** Control State ***\n"); + pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", + pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); + pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); + pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", + vmcs_read32(EXCEPTION_BITMAP), + vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), + vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); + pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", + vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), + vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), + vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); + pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", + vmcs_read32(VM_EXIT_INTR_INFO), + vmcs_read32(VM_EXIT_INTR_ERROR_CODE), + vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); + pr_err(" reason=%08x qualification=%016lx\n", + vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); + pr_err("IDTVectoring: info=%08x errcode=%08x\n", + vmcs_read32(IDT_VECTORING_INFO_FIELD), + vmcs_read32(IDT_VECTORING_ERROR_CODE)); + pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); + if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) + pr_err("TSC Multiplier = 0x%016llx\n", + vmcs_read64(TSC_MULTIPLIER)); + if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) + pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); + if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) + pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); + if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) + pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); + n = vmcs_read32(CR3_TARGET_COUNT); + for (i = 0; i + 1 < n; i += 4) + pr_err("CR3 target%u=%016lx target%u=%016lx\n", + i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), + i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); + if (i < n) + pr_err("CR3 target%u=%016lx\n", + i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); + if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) + pr_err("PLE Gap=%08x Window=%08x\n", + vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); + if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) + pr_err("Virtual processor ID = 0x%04x\n", + vmcs_read16(VIRTUAL_PROCESSOR_ID)); +} + +/* + * The guest has exited. See if we can fix it or if we need userspace + * assistance. + */ +static int vmx_handle_exit(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 exit_reason = vmx->exit_reason; + u32 vectoring_info = vmx->idt_vectoring_info; + + trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); + + /* + * Flush logged GPAs PML buffer, this will make dirty_bitmap more + * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before + * querying dirty_bitmap, we only need to kick all vcpus out of guest + * mode as if vcpus is in root mode, the PML buffer must has been + * flushed already. + */ + if (enable_pml) + vmx_flush_pml_buffer(vcpu); + + /* If guest state is invalid, start emulating */ + if (vmx->emulation_required) + return handle_invalid_guest_state(vcpu); + + if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) + return nested_vmx_reflect_vmexit(vcpu, exit_reason); + + if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { + dump_vmcs(); + vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; + vcpu->run->fail_entry.hardware_entry_failure_reason + = exit_reason; + return 0; + } + + if (unlikely(vmx->fail)) { + vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; + vcpu->run->fail_entry.hardware_entry_failure_reason + = vmcs_read32(VM_INSTRUCTION_ERROR); + return 0; + } + + /* + * Note: + * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by + * delivery event since it indicates guest is accessing MMIO. + * The vm-exit can be triggered again after return to guest that + * will cause infinite loop. + */ + if ((vectoring_info & VECTORING_INFO_VALID_MASK) && + (exit_reason != EXIT_REASON_EXCEPTION_NMI && + exit_reason != EXIT_REASON_EPT_VIOLATION && + exit_reason != EXIT_REASON_PML_FULL && + exit_reason != EXIT_REASON_TASK_SWITCH)) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; + vcpu->run->internal.ndata = 3; + vcpu->run->internal.data[0] = vectoring_info; + vcpu->run->internal.data[1] = exit_reason; + vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; + if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { + vcpu->run->internal.ndata++; + vcpu->run->internal.data[3] = + vmcs_read64(GUEST_PHYSICAL_ADDRESS); + } + return 0; + } + + if (unlikely(!enable_vnmi && + vmx->loaded_vmcs->soft_vnmi_blocked)) { + if (vmx_interrupt_allowed(vcpu)) { + vmx->loaded_vmcs->soft_vnmi_blocked = 0; + } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && + vcpu->arch.nmi_pending) { + /* + * This CPU don't support us in finding the end of an + * NMI-blocked window if the guest runs with IRQs + * disabled. So we pull the trigger after 1 s of + * futile waiting, but inform the user about this. + */ + printk(KERN_WARNING "%s: Breaking out of NMI-blocked " + "state on VCPU %d after 1 s timeout\n", + __func__, vcpu->vcpu_id); + vmx->loaded_vmcs->soft_vnmi_blocked = 0; + } + } + + if (exit_reason < kvm_vmx_max_exit_handlers + && kvm_vmx_exit_handlers[exit_reason]) + return kvm_vmx_exit_handlers[exit_reason](vcpu); + else { + vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", + exit_reason); + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } +} + +/* + * Software based L1D cache flush which is used when microcode providing + * the cache control MSR is not loaded. + * + * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to + * flush it is required to read in 64 KiB because the replacement algorithm + * is not exactly LRU. This could be sized at runtime via topology + * information but as all relevant affected CPUs have 32KiB L1D cache size + * there is no point in doing so. + */ +static void vmx_l1d_flush(struct kvm_vcpu *vcpu) +{ + int size = PAGE_SIZE << L1D_CACHE_ORDER; + + /* + * This code is only executed when the the flush mode is 'cond' or + * 'always' + */ + if (static_branch_likely(&vmx_l1d_flush_cond)) { + bool flush_l1d; + + /* + * Clear the per-vcpu flush bit, it gets set again + * either from vcpu_run() or from one of the unsafe + * VMEXIT handlers. + */ + flush_l1d = vcpu->arch.l1tf_flush_l1d; + vcpu->arch.l1tf_flush_l1d = false; + + /* + * Clear the per-cpu flush bit, it gets set again from + * the interrupt handlers. + */ + flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); + kvm_clear_cpu_l1tf_flush_l1d(); + + if (!flush_l1d) + return; + } + + vcpu->stat.l1d_flush++; + + if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { + wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); + return; + } + + asm volatile( + /* First ensure the pages are in the TLB */ + "xorl %%eax, %%eax\n" + ".Lpopulate_tlb:\n\t" + "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" + "addl $4096, %%eax\n\t" + "cmpl %%eax, %[size]\n\t" + "jne .Lpopulate_tlb\n\t" + "xorl %%eax, %%eax\n\t" + "cpuid\n\t" + /* Now fill the cache */ + "xorl %%eax, %%eax\n" + ".Lfill_cache:\n" + "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" + "addl $64, %%eax\n\t" + "cmpl %%eax, %[size]\n\t" + "jne .Lfill_cache\n\t" + "lfence\n" + :: [flush_pages] "r" (vmx_l1d_flush_pages), + [size] "r" (size) + : "eax", "ebx", "ecx", "edx"); +} + +static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (is_guest_mode(vcpu) && + nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + return; + + if (irr == -1 || tpr < irr) { + vmcs_write32(TPR_THRESHOLD, 0); + return; + } + + vmcs_write32(TPR_THRESHOLD, irr); +} + +void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) +{ + u32 sec_exec_control; + + if (!lapic_in_kernel(vcpu)) + return; + + if (!flexpriority_enabled && + !cpu_has_vmx_virtualize_x2apic_mode()) + return; + + /* Postpone execution until vmcs01 is the current VMCS. */ + if (is_guest_mode(vcpu)) { + to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; + return; + } + + sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); + + switch (kvm_get_apic_mode(vcpu)) { + case LAPIC_MODE_INVALID: + WARN_ONCE(true, "Invalid local APIC state"); + case LAPIC_MODE_DISABLED: + break; + case LAPIC_MODE_XAPIC: + if (flexpriority_enabled) { + sec_exec_control |= + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + vmx_flush_tlb(vcpu, true); + } + break; + case LAPIC_MODE_X2APIC: + if (cpu_has_vmx_virtualize_x2apic_mode()) + sec_exec_control |= + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; + break; + } + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); + + vmx_update_msr_bitmap(vcpu); +} + +static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) +{ + if (!is_guest_mode(vcpu)) { + vmcs_write64(APIC_ACCESS_ADDR, hpa); + vmx_flush_tlb(vcpu, true); + } +} + +static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) +{ + u16 status; + u8 old; + + if (max_isr == -1) + max_isr = 0; + + status = vmcs_read16(GUEST_INTR_STATUS); + old = status >> 8; + if (max_isr != old) { + status &= 0xff; + status |= max_isr << 8; + vmcs_write16(GUEST_INTR_STATUS, status); + } +} + +static void vmx_set_rvi(int vector) +{ + u16 status; + u8 old; + + if (vector == -1) + vector = 0; + + status = vmcs_read16(GUEST_INTR_STATUS); + old = (u8)status & 0xff; + if ((u8)vector != old) { + status &= ~0xff; + status |= (u8)vector; + vmcs_write16(GUEST_INTR_STATUS, status); + } +} + +static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) +{ + /* + * When running L2, updating RVI is only relevant when + * vmcs12 virtual-interrupt-delivery enabled. + * However, it can be enabled only when L1 also + * intercepts external-interrupts and in that case + * we should not update vmcs02 RVI but instead intercept + * interrupt. Therefore, do nothing when running L2. + */ + if (!is_guest_mode(vcpu)) + vmx_set_rvi(max_irr); +} + +static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int max_irr; + bool max_irr_updated; + + WARN_ON(!vcpu->arch.apicv_active); + if (pi_test_on(&vmx->pi_desc)) { + pi_clear_on(&vmx->pi_desc); + /* + * IOMMU can write to PIR.ON, so the barrier matters even on UP. + * But on x86 this is just a compiler barrier anyway. + */ + smp_mb__after_atomic(); + max_irr_updated = + kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); + + /* + * If we are running L2 and L1 has a new pending interrupt + * which can be injected, we should re-evaluate + * what should be done with this new L1 interrupt. + * If L1 intercepts external-interrupts, we should + * exit from L2 to L1. Otherwise, interrupt should be + * delivered directly to L2. + */ + if (is_guest_mode(vcpu) && max_irr_updated) { + if (nested_exit_on_intr(vcpu)) + kvm_vcpu_exiting_guest_mode(vcpu); + else + kvm_make_request(KVM_REQ_EVENT, vcpu); + } + } else { + max_irr = kvm_lapic_find_highest_irr(vcpu); + } + vmx_hwapic_irr_update(vcpu, max_irr); + return max_irr; +} + +static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) +{ + if (!kvm_vcpu_apicv_active(vcpu)) + return; + + vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); + vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); + vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); + vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); +} + +static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + pi_clear_on(&vmx->pi_desc); + memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); +} + +static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) +{ + u32 exit_intr_info = 0; + u16 basic_exit_reason = (u16)vmx->exit_reason; + + if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY + || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI)) + return; + + if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) + exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + vmx->exit_intr_info = exit_intr_info; + + /* if exit due to PF check for async PF */ + if (is_page_fault(exit_intr_info)) + vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); + + /* Handle machine checks before interrupts are enabled */ + if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || + is_machine_check(exit_intr_info)) + kvm_machine_check(); + + /* We need to handle NMIs before interrupts are enabled */ + if (is_nmi(exit_intr_info)) { + kvm_before_interrupt(&vmx->vcpu); + asm("int $2"); + kvm_after_interrupt(&vmx->vcpu); + } +} + +static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) +{ + u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + + if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) + == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { + unsigned int vector; + unsigned long entry; + gate_desc *desc; + struct vcpu_vmx *vmx = to_vmx(vcpu); +#ifdef CONFIG_X86_64 + unsigned long tmp; +#endif + + vector = exit_intr_info & INTR_INFO_VECTOR_MASK; + desc = (gate_desc *)vmx->host_idt_base + vector; + entry = gate_offset(desc); + asm volatile( +#ifdef CONFIG_X86_64 + "mov %%" _ASM_SP ", %[sp]\n\t" + "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" + "push $%c[ss]\n\t" + "push %[sp]\n\t" +#endif + "pushf\n\t" + __ASM_SIZE(push) " $%c[cs]\n\t" + CALL_NOSPEC + : +#ifdef CONFIG_X86_64 + [sp]"=&r"(tmp), +#endif + ASM_CALL_CONSTRAINT + : + THUNK_TARGET(entry), + [ss]"i"(__KERNEL_DS), + [cs]"i"(__KERNEL_CS) + ); + } +} +STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); + +static bool vmx_has_emulated_msr(int index) +{ + switch (index) { + case MSR_IA32_SMBASE: + /* + * We cannot do SMM unless we can run the guest in big + * real mode. + */ + return enable_unrestricted_guest || emulate_invalid_guest_state; + case MSR_AMD64_VIRT_SPEC_CTRL: + /* This is AMD only. */ + return false; + default: + return true; + } +} + +static bool vmx_pt_supported(void) +{ + return pt_mode == PT_MODE_HOST_GUEST; +} + +static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) +{ + u32 exit_intr_info; + bool unblock_nmi; + u8 vector; + bool idtv_info_valid; + + idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; + + if (enable_vnmi) { + if (vmx->loaded_vmcs->nmi_known_unmasked) + return; + /* + * Can't use vmx->exit_intr_info since we're not sure what + * the exit reason is. + */ + exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; + vector = exit_intr_info & INTR_INFO_VECTOR_MASK; + /* + * SDM 3: 27.7.1.2 (September 2008) + * Re-set bit "block by NMI" before VM entry if vmexit caused by + * a guest IRET fault. + * SDM 3: 23.2.2 (September 2008) + * Bit 12 is undefined in any of the following cases: + * If the VM exit sets the valid bit in the IDT-vectoring + * information field. + * If the VM exit is due to a double fault. + */ + if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && + vector != DF_VECTOR && !idtv_info_valid) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + else + vmx->loaded_vmcs->nmi_known_unmasked = + !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) + & GUEST_INTR_STATE_NMI); + } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) + vmx->loaded_vmcs->vnmi_blocked_time += + ktime_to_ns(ktime_sub(ktime_get(), + vmx->loaded_vmcs->entry_time)); +} + +static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, + u32 idt_vectoring_info, + int instr_len_field, + int error_code_field) +{ + u8 vector; + int type; + bool idtv_info_valid; + + idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; + + vcpu->arch.nmi_injected = false; + kvm_clear_exception_queue(vcpu); + kvm_clear_interrupt_queue(vcpu); + + if (!idtv_info_valid) + return; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; + type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; + + switch (type) { + case INTR_TYPE_NMI_INTR: + vcpu->arch.nmi_injected = true; + /* + * SDM 3: 27.7.1.2 (September 2008) + * Clear bit "block by NMI" before VM entry if a NMI + * delivery faulted. + */ + vmx_set_nmi_mask(vcpu, false); + break; + case INTR_TYPE_SOFT_EXCEPTION: + vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); + /* fall through */ + case INTR_TYPE_HARD_EXCEPTION: + if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { + u32 err = vmcs_read32(error_code_field); + kvm_requeue_exception_e(vcpu, vector, err); + } else + kvm_requeue_exception(vcpu, vector); + break; + case INTR_TYPE_SOFT_INTR: + vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); + /* fall through */ + case INTR_TYPE_EXT_INTR: + kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); + break; + default: + break; + } +} + +static void vmx_complete_interrupts(struct vcpu_vmx *vmx) +{ + __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, + VM_EXIT_INSTRUCTION_LEN, + IDT_VECTORING_ERROR_CODE); +} + +static void vmx_cancel_injection(struct kvm_vcpu *vcpu) +{ + __vmx_complete_interrupts(vcpu, + vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), + VM_ENTRY_INSTRUCTION_LEN, + VM_ENTRY_EXCEPTION_ERROR_CODE); + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); +} + +static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) +{ + int i, nr_msrs; + struct perf_guest_switch_msr *msrs; + + msrs = perf_guest_get_msrs(&nr_msrs); + + if (!msrs) + return; + + for (i = 0; i < nr_msrs; i++) + if (msrs[i].host == msrs[i].guest) + clear_atomic_switch_msr(vmx, msrs[i].msr); + else + add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, + msrs[i].host, false); +} + +static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val) +{ + vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val); + if (!vmx->loaded_vmcs->hv_timer_armed) + vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, + PIN_BASED_VMX_PREEMPTION_TIMER); + vmx->loaded_vmcs->hv_timer_armed = true; +} + +static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u64 tscl; + u32 delta_tsc; + + if (vmx->req_immediate_exit) { + vmx_arm_hv_timer(vmx, 0); + return; + } + + if (vmx->hv_deadline_tsc != -1) { + tscl = rdtsc(); + if (vmx->hv_deadline_tsc > tscl) + /* set_hv_timer ensures the delta fits in 32-bits */ + delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> + cpu_preemption_timer_multi); + else + delta_tsc = 0; + + vmx_arm_hv_timer(vmx, delta_tsc); + return; + } + + if (vmx->loaded_vmcs->hv_timer_armed) + vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, + PIN_BASED_VMX_PREEMPTION_TIMER); + vmx->loaded_vmcs->hv_timer_armed = false; +} + +static void vmx_vcpu_run(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long cr3, cr4, evmcs_rsp; + + /* Record the guest's net vcpu time for enforced NMI injections. */ + if (unlikely(!enable_vnmi && + vmx->loaded_vmcs->soft_vnmi_blocked)) + vmx->loaded_vmcs->entry_time = ktime_get(); + + /* Don't enter VMX if guest state is invalid, let the exit handler + start emulation until we arrive back to a valid state */ + if (vmx->emulation_required) + return; + + if (vmx->ple_window_dirty) { + vmx->ple_window_dirty = false; + vmcs_write32(PLE_WINDOW, vmx->ple_window); + } + + if (vmx->nested.need_vmcs12_sync) + nested_sync_from_vmcs12(vcpu); + + if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) + vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); + if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) + vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); + + cr3 = __get_current_cr3_fast(); + if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { + vmcs_writel(HOST_CR3, cr3); + vmx->loaded_vmcs->host_state.cr3 = cr3; + } + + cr4 = cr4_read_shadow(); + if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { + vmcs_writel(HOST_CR4, cr4); + vmx->loaded_vmcs->host_state.cr4 = cr4; + } + + /* When single-stepping over STI and MOV SS, we must clear the + * corresponding interruptibility bits in the guest state. Otherwise + * vmentry fails as it then expects bit 14 (BS) in pending debug + * exceptions being set, but that's not correct for the guest debugging + * case. */ + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) + vmx_set_interrupt_shadow(vcpu, 0); + + if (static_cpu_has(X86_FEATURE_PKU) && + kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && + vcpu->arch.pkru != vmx->host_pkru) + __write_pkru(vcpu->arch.pkru); + + pt_guest_enter(vmx); + + atomic_switch_perf_msrs(vmx); + + vmx_update_hv_timer(vcpu); + + /* + * If this vCPU has touched SPEC_CTRL, restore the guest's value if + * it's non-zero. Since vmentry is serialising on affected CPUs, there + * is no need to worry about the conditional branch over the wrmsr + * being speculatively taken. + */ + x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); + + vmx->__launched = vmx->loaded_vmcs->launched; + + evmcs_rsp = static_branch_unlikely(&enable_evmcs) ? + (unsigned long)¤t_evmcs->host_rsp : 0; + + if (static_branch_unlikely(&vmx_l1d_should_flush)) + vmx_l1d_flush(vcpu); + + asm( + /* Store host registers */ + "push %%" _ASM_DX "; push %%" _ASM_BP ";" + "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ + "push %%" _ASM_CX " \n\t" + "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */ + "cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t" + "je 1f \n\t" + "mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t" + /* Avoid VMWRITE when Enlightened VMCS is in use */ + "test %%" _ASM_SI ", %%" _ASM_SI " \n\t" + "jz 2f \n\t" + "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t" + "jmp 1f \n\t" + "2: \n\t" + __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" + "1: \n\t" + "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */ + + /* Reload cr2 if changed */ + "mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t" + "mov %%cr2, %%" _ASM_DX " \n\t" + "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" + "je 3f \n\t" + "mov %%" _ASM_AX", %%cr2 \n\t" + "3: \n\t" + /* Check if vmlaunch or vmresume is needed */ + "cmpl $0, %c[launched](%%" _ASM_CX ") \n\t" + /* Load guest registers. Don't clobber flags. */ + "mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t" + "mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t" + "mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t" + "mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t" + "mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t" + "mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t" +#ifdef CONFIG_X86_64 + "mov %c[r8](%%" _ASM_CX "), %%r8 \n\t" + "mov %c[r9](%%" _ASM_CX "), %%r9 \n\t" + "mov %c[r10](%%" _ASM_CX "), %%r10 \n\t" + "mov %c[r11](%%" _ASM_CX "), %%r11 \n\t" + "mov %c[r12](%%" _ASM_CX "), %%r12 \n\t" + "mov %c[r13](%%" _ASM_CX "), %%r13 \n\t" + "mov %c[r14](%%" _ASM_CX "), %%r14 \n\t" + "mov %c[r15](%%" _ASM_CX "), %%r15 \n\t" +#endif + /* Load guest RCX. This kills the vmx_vcpu pointer! */ + "mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t" + + /* Enter guest mode */ + "call vmx_vmenter\n\t" + + /* Save guest's RCX to the stack placeholder (see above) */ + "mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t" + + /* Load host's RCX, i.e. the vmx_vcpu pointer */ + "pop %%" _ASM_CX " \n\t" + + /* Set vmx->fail based on EFLAGS.{CF,ZF} */ + "setbe %c[fail](%%" _ASM_CX ")\n\t" + + /* Save all guest registers, including RCX from the stack */ + "mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t" + __ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t" +#ifdef CONFIG_X86_64 + "mov %%r8, %c[r8](%%" _ASM_CX ") \n\t" + "mov %%r9, %c[r9](%%" _ASM_CX ") \n\t" + "mov %%r10, %c[r10](%%" _ASM_CX ") \n\t" + "mov %%r11, %c[r11](%%" _ASM_CX ") \n\t" + "mov %%r12, %c[r12](%%" _ASM_CX ") \n\t" + "mov %%r13, %c[r13](%%" _ASM_CX ") \n\t" + "mov %%r14, %c[r14](%%" _ASM_CX ") \n\t" + "mov %%r15, %c[r15](%%" _ASM_CX ") \n\t" + /* + * Clear host registers marked as clobbered to prevent + * speculative use. + */ + "xor %%r8d, %%r8d \n\t" + "xor %%r9d, %%r9d \n\t" + "xor %%r10d, %%r10d \n\t" + "xor %%r11d, %%r11d \n\t" + "xor %%r12d, %%r12d \n\t" + "xor %%r13d, %%r13d \n\t" + "xor %%r14d, %%r14d \n\t" + "xor %%r15d, %%r15d \n\t" +#endif + "mov %%cr2, %%" _ASM_AX " \n\t" + "mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t" + + "xor %%eax, %%eax \n\t" + "xor %%ebx, %%ebx \n\t" + "xor %%esi, %%esi \n\t" + "xor %%edi, %%edi \n\t" + "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" + : ASM_CALL_CONSTRAINT + : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp), + [launched]"i"(offsetof(struct vcpu_vmx, __launched)), + [fail]"i"(offsetof(struct vcpu_vmx, fail)), + [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), + [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), + [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), + [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), + [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), + [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), + [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), + [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), +#ifdef CONFIG_X86_64 + [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), + [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), + [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), + [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), + [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), + [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), + [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), + [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), +#endif + [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), + [wordsize]"i"(sizeof(ulong)) + : "cc", "memory" +#ifdef CONFIG_X86_64 + , "rax", "rbx", "rdi" + , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" +#else + , "eax", "ebx", "edi" +#endif + ); + + /* + * We do not use IBRS in the kernel. If this vCPU has used the + * SPEC_CTRL MSR it may have left it on; save the value and + * turn it off. This is much more efficient than blindly adding + * it to the atomic save/restore list. Especially as the former + * (Saving guest MSRs on vmexit) doesn't even exist in KVM. + * + * For non-nested case: + * If the L01 MSR bitmap does not intercept the MSR, then we need to + * save it. + * + * For nested case: + * If the L02 MSR bitmap does not intercept the MSR, then we need to + * save it. + */ + if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) + vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); + + x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); + + /* Eliminate branch target predictions from guest mode */ + vmexit_fill_RSB(); + + /* All fields are clean at this point */ + if (static_branch_unlikely(&enable_evmcs)) + current_evmcs->hv_clean_fields |= + HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; + + /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ + if (vmx->host_debugctlmsr) + update_debugctlmsr(vmx->host_debugctlmsr); + +#ifndef CONFIG_X86_64 + /* + * The sysexit path does not restore ds/es, so we must set them to + * a reasonable value ourselves. + * + * We can't defer this to vmx_prepare_switch_to_host() since that + * function may be executed in interrupt context, which saves and + * restore segments around it, nullifying its effect. + */ + loadsegment(ds, __USER_DS); + loadsegment(es, __USER_DS); +#endif + + vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) + | (1 << VCPU_EXREG_RFLAGS) + | (1 << VCPU_EXREG_PDPTR) + | (1 << VCPU_EXREG_SEGMENTS) + | (1 << VCPU_EXREG_CR3)); + vcpu->arch.regs_dirty = 0; + + pt_guest_exit(vmx); + + /* + * eager fpu is enabled if PKEY is supported and CR4 is switched + * back on host, so it is safe to read guest PKRU from current + * XSAVE. + */ + if (static_cpu_has(X86_FEATURE_PKU) && + kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { + vcpu->arch.pkru = __read_pkru(); + if (vcpu->arch.pkru != vmx->host_pkru) + __write_pkru(vmx->host_pkru); + } + + vmx->nested.nested_run_pending = 0; + vmx->idt_vectoring_info = 0; + + vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); + if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) + return; + + vmx->loaded_vmcs->launched = 1; + vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); + + vmx_complete_atomic_exit(vmx); + vmx_recover_nmi_blocking(vmx); + vmx_complete_interrupts(vmx); +} +STACK_FRAME_NON_STANDARD(vmx_vcpu_run); + +static struct kvm *vmx_vm_alloc(void) +{ + struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx)); + return &kvm_vmx->kvm; +} + +static void vmx_vm_free(struct kvm *kvm) +{ + vfree(to_kvm_vmx(kvm)); +} + +static void vmx_free_vcpu(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (enable_pml) + vmx_destroy_pml_buffer(vmx); + free_vpid(vmx->vpid); + leave_guest_mode(vcpu); + nested_vmx_free_vcpu(vcpu); + free_loaded_vmcs(vmx->loaded_vmcs); + kfree(vmx->guest_msrs); + kvm_vcpu_uninit(vcpu); + kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); + kmem_cache_free(kvm_vcpu_cache, vmx); +} + +static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) +{ + int err; + struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); + unsigned long *msr_bitmap; + int cpu; + + if (!vmx) + return ERR_PTR(-ENOMEM); + + vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL); + if (!vmx->vcpu.arch.guest_fpu) { + printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); + err = -ENOMEM; + goto free_partial_vcpu; + } + + vmx->vpid = allocate_vpid(); + + err = kvm_vcpu_init(&vmx->vcpu, kvm, id); + if (err) + goto free_vcpu; + + err = -ENOMEM; + + /* + * If PML is turned on, failure on enabling PML just results in failure + * of creating the vcpu, therefore we can simplify PML logic (by + * avoiding dealing with cases, such as enabling PML partially on vcpus + * for the guest, etc. + */ + if (enable_pml) { + vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); + if (!vmx->pml_pg) + goto uninit_vcpu; + } + + vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); + BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) + > PAGE_SIZE); + + if (!vmx->guest_msrs) + goto free_pml; + + err = alloc_loaded_vmcs(&vmx->vmcs01); + if (err < 0) + goto free_msrs; + + msr_bitmap = vmx->vmcs01.msr_bitmap; + vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); + vmx->msr_bitmap_mode = 0; + + vmx->loaded_vmcs = &vmx->vmcs01; + cpu = get_cpu(); + vmx_vcpu_load(&vmx->vcpu, cpu); + vmx->vcpu.cpu = cpu; + vmx_vcpu_setup(vmx); + vmx_vcpu_put(&vmx->vcpu); + put_cpu(); + if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { + err = alloc_apic_access_page(kvm); + if (err) + goto free_vmcs; + } + + if (enable_ept && !enable_unrestricted_guest) { + err = init_rmode_identity_map(kvm); + if (err) + goto free_vmcs; + } + + if (nested) + nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, + vmx_capability.ept, + kvm_vcpu_apicv_active(&vmx->vcpu)); + else + memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); + + vmx->nested.posted_intr_nv = -1; + vmx->nested.current_vmptr = -1ull; + + vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; + + /* + * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR + * or POSTED_INTR_WAKEUP_VECTOR. + */ + vmx->pi_desc.nv = POSTED_INTR_VECTOR; + vmx->pi_desc.sn = 1; + + vmx->ept_pointer = INVALID_PAGE; + + return &vmx->vcpu; + +free_vmcs: + free_loaded_vmcs(vmx->loaded_vmcs); +free_msrs: + kfree(vmx->guest_msrs); +free_pml: + vmx_destroy_pml_buffer(vmx); +uninit_vcpu: + kvm_vcpu_uninit(&vmx->vcpu); +free_vcpu: + free_vpid(vmx->vpid); + kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); +free_partial_vcpu: + kmem_cache_free(kvm_vcpu_cache, vmx); + return ERR_PTR(err); +} + +#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" +#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" + +static int vmx_vm_init(struct kvm *kvm) +{ + spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); + + if (!ple_gap) + kvm->arch.pause_in_guest = true; + + if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { + switch (l1tf_mitigation) { + case L1TF_MITIGATION_OFF: + case L1TF_MITIGATION_FLUSH_NOWARN: + /* 'I explicitly don't care' is set */ + break; + case L1TF_MITIGATION_FLUSH: + case L1TF_MITIGATION_FLUSH_NOSMT: + case L1TF_MITIGATION_FULL: + /* + * Warn upon starting the first VM in a potentially + * insecure environment. + */ + if (cpu_smt_control == CPU_SMT_ENABLED) + pr_warn_once(L1TF_MSG_SMT); + if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) + pr_warn_once(L1TF_MSG_L1D); + break; + case L1TF_MITIGATION_FULL_FORCE: + /* Flush is enforced */ + break; + } + } + return 0; +} + +static void __init vmx_check_processor_compat(void *rtn) +{ + struct vmcs_config vmcs_conf; + struct vmx_capability vmx_cap; + + *(int *)rtn = 0; + if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) + *(int *)rtn = -EIO; + if (nested) + nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept, + enable_apicv); + if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { + printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", + smp_processor_id()); + *(int *)rtn = -EIO; + } +} + +static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) +{ + u8 cache; + u64 ipat = 0; + + /* For VT-d and EPT combination + * 1. MMIO: always map as UC + * 2. EPT with VT-d: + * a. VT-d without snooping control feature: can't guarantee the + * result, try to trust guest. + * b. VT-d with snooping control feature: snooping control feature of + * VT-d engine can guarantee the cache correctness. Just set it + * to WB to keep consistent with host. So the same as item 3. + * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep + * consistent with host MTRR + */ + if (is_mmio) { + cache = MTRR_TYPE_UNCACHABLE; + goto exit; + } + + if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { + ipat = VMX_EPT_IPAT_BIT; + cache = MTRR_TYPE_WRBACK; + goto exit; + } + + if (kvm_read_cr0(vcpu) & X86_CR0_CD) { + ipat = VMX_EPT_IPAT_BIT; + if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) + cache = MTRR_TYPE_WRBACK; + else + cache = MTRR_TYPE_UNCACHABLE; + goto exit; + } + + cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); + +exit: + return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; +} + +static int vmx_get_lpage_level(void) +{ + if (enable_ept && !cpu_has_vmx_ept_1g_page()) + return PT_DIRECTORY_LEVEL; + else + /* For shadow and EPT supported 1GB page */ + return PT_PDPE_LEVEL; +} + +static void vmcs_set_secondary_exec_control(u32 new_ctl) +{ + /* + * These bits in the secondary execution controls field + * are dynamic, the others are mostly based on the hypervisor + * architecture and the guest's CPUID. Do not touch the + * dynamic bits. + */ + u32 mask = + SECONDARY_EXEC_SHADOW_VMCS | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_DESC; + + u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, + (new_ctl & ~mask) | (cur_ctl & mask)); +} + +/* + * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits + * (indicating "allowed-1") if they are supported in the guest's CPUID. + */ +static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_cpuid_entry2 *entry; + + vmx->nested.msrs.cr0_fixed1 = 0xffffffff; + vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; + +#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ + if (entry && (entry->_reg & (_cpuid_mask))) \ + vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ +} while (0) + + entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); + cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); + cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); + cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); + cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); + cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); + cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); + cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); + cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); + cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); + cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); + cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); + cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); + cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); + cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); + + entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); + cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); + cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); + cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); + cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); + cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); + +#undef cr4_fixed1_update +} + +static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (kvm_mpx_supported()) { + bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); + + if (mpx_enabled) { + vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; + vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; + } else { + vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; + vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; + } + } +} + +static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_cpuid_entry2 *best = NULL; + int i; + + for (i = 0; i < PT_CPUID_LEAVES; i++) { + best = kvm_find_cpuid_entry(vcpu, 0x14, i); + if (!best) + return; + vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; + vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; + vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; + vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; + } + + /* Get the number of configurable Address Ranges for filtering */ + vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_num_address_ranges); + + /* Initialize and clear the no dependency bits */ + vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | + RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); + + /* + * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise + * will inject an #GP + */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) + vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; + + /* + * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and + * PSBFreq can be set + */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) + vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | + RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); + + /* + * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and + * MTCFreq can be set + */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) + vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | + RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); + + /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) + vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | + RTIT_CTL_PTW_EN); + + /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) + vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; + + /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) + vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; + + /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) + vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; + + /* unmask address range configure area */ + for (i = 0; i < vmx->pt_desc.addr_range; i++) + vmx->pt_desc.ctl_bitmask &= ~(0xf << (32 + i * 4)); +} + +static void vmx_cpuid_update(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (cpu_has_secondary_exec_ctrls()) { + vmx_compute_secondary_exec_control(vmx); + vmcs_set_secondary_exec_control(vmx->secondary_exec_control); + } + + if (nested_vmx_allowed(vcpu)) + to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= + FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + else + to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= + ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + + if (nested_vmx_allowed(vcpu)) { + nested_vmx_cr_fixed1_bits_update(vcpu); + nested_vmx_entry_exit_ctls_update(vcpu); + } + + if (boot_cpu_has(X86_FEATURE_INTEL_PT) && + guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) + update_intel_pt_cfg(vcpu); +} + +static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) +{ + if (func == 1 && nested) + entry->ecx |= bit(X86_FEATURE_VMX); +} + +static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) +{ + to_vmx(vcpu)->req_immediate_exit = true; +} + +static int vmx_check_intercept(struct kvm_vcpu *vcpu, + struct x86_instruction_info *info, + enum x86_intercept_stage stage) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + + /* + * RDPID causes #UD if disabled through secondary execution controls. + * Because it is marked as EmulateOnUD, we need to intercept it here. + */ + if (info->intercept == x86_intercept_rdtscp && + !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { + ctxt->exception.vector = UD_VECTOR; + ctxt->exception.error_code_valid = false; + return X86EMUL_PROPAGATE_FAULT; + } + + /* TODO: check more intercepts... */ + return X86EMUL_CONTINUE; +} + +#ifdef CONFIG_X86_64 +/* (a << shift) / divisor, return 1 if overflow otherwise 0 */ +static inline int u64_shl_div_u64(u64 a, unsigned int shift, + u64 divisor, u64 *result) +{ + u64 low = a << shift, high = a >> (64 - shift); + + /* To avoid the overflow on divq */ + if (high >= divisor) + return 1; + + /* Low hold the result, high hold rem which is discarded */ + asm("divq %2\n\t" : "=a" (low), "=d" (high) : + "rm" (divisor), "0" (low), "1" (high)); + *result = low; + + return 0; +} + +static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc) +{ + struct vcpu_vmx *vmx; + u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; + + if (kvm_mwait_in_guest(vcpu->kvm)) + return -EOPNOTSUPP; + + vmx = to_vmx(vcpu); + tscl = rdtsc(); + guest_tscl = kvm_read_l1_tsc(vcpu, tscl); + delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; + lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns); + + if (delta_tsc > lapic_timer_advance_cycles) + delta_tsc -= lapic_timer_advance_cycles; + else + delta_tsc = 0; + + /* Convert to host delta tsc if tsc scaling is enabled */ + if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && + u64_shl_div_u64(delta_tsc, + kvm_tsc_scaling_ratio_frac_bits, + vcpu->arch.tsc_scaling_ratio, + &delta_tsc)) + return -ERANGE; + + /* + * If the delta tsc can't fit in the 32 bit after the multi shift, + * we can't use the preemption timer. + * It's possible that it fits on later vmentries, but checking + * on every vmentry is costly so we just use an hrtimer. + */ + if (delta_tsc >> (cpu_preemption_timer_multi + 32)) + return -ERANGE; + + vmx->hv_deadline_tsc = tscl + delta_tsc; + return delta_tsc == 0; +} + +static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) +{ + to_vmx(vcpu)->hv_deadline_tsc = -1; +} +#endif + +static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) +{ + if (!kvm_pause_in_guest(vcpu->kvm)) + shrink_ple_window(vcpu); +} + +static void vmx_slot_enable_log_dirty(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + kvm_mmu_slot_leaf_clear_dirty(kvm, slot); + kvm_mmu_slot_largepage_remove_write_access(kvm, slot); +} + +static void vmx_slot_disable_log_dirty(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + kvm_mmu_slot_set_dirty(kvm, slot); +} + +static void vmx_flush_log_dirty(struct kvm *kvm) +{ + kvm_flush_pml_buffers(kvm); +} + +static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12; + struct vcpu_vmx *vmx = to_vmx(vcpu); + gpa_t gpa; + struct page *page = NULL; + u64 *pml_address; + + if (is_guest_mode(vcpu)) { + WARN_ON_ONCE(vmx->nested.pml_full); + + /* + * Check if PML is enabled for the nested guest. + * Whether eptp bit 6 is set is already checked + * as part of A/D emulation. + */ + vmcs12 = get_vmcs12(vcpu); + if (!nested_cpu_has_pml(vmcs12)) + return 0; + + if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { + vmx->nested.pml_full = true; + return 1; + } + + gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; + + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address); + if (is_error_page(page)) + return 0; + + pml_address = kmap(page); + pml_address[vmcs12->guest_pml_index--] = gpa; + kunmap(page); + kvm_release_page_clean(page); + } + + return 0; +} + +static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *memslot, + gfn_t offset, unsigned long mask) +{ + kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); +} + +static void __pi_post_block(struct kvm_vcpu *vcpu) +{ + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + struct pi_desc old, new; + unsigned int dest; + + do { + old.control = new.control = pi_desc->control; + WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, + "Wakeup handler not enabled while the VCPU is blocked\n"); + + dest = cpu_physical_id(vcpu->cpu); + + if (x2apic_enabled()) + new.ndst = dest; + else + new.ndst = (dest << 8) & 0xFF00; + + /* set 'NV' to 'notification vector' */ + new.nv = POSTED_INTR_VECTOR; + } while (cmpxchg64(&pi_desc->control, old.control, + new.control) != old.control); + + if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { + spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); + list_del(&vcpu->blocked_vcpu_list); + spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); + vcpu->pre_pcpu = -1; + } +} + +/* + * This routine does the following things for vCPU which is going + * to be blocked if VT-d PI is enabled. + * - Store the vCPU to the wakeup list, so when interrupts happen + * we can find the right vCPU to wake up. + * - Change the Posted-interrupt descriptor as below: + * 'NDST' <-- vcpu->pre_pcpu + * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR + * - If 'ON' is set during this process, which means at least one + * interrupt is posted for this vCPU, we cannot block it, in + * this case, return 1, otherwise, return 0. + * + */ +static int pi_pre_block(struct kvm_vcpu *vcpu) +{ + unsigned int dest; + struct pi_desc old, new; + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + + if (!kvm_arch_has_assigned_device(vcpu->kvm) || + !irq_remapping_cap(IRQ_POSTING_CAP) || + !kvm_vcpu_apicv_active(vcpu)) + return 0; + + WARN_ON(irqs_disabled()); + local_irq_disable(); + if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { + vcpu->pre_pcpu = vcpu->cpu; + spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); + list_add_tail(&vcpu->blocked_vcpu_list, + &per_cpu(blocked_vcpu_on_cpu, + vcpu->pre_pcpu)); + spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); + } + + do { + old.control = new.control = pi_desc->control; + + WARN((pi_desc->sn == 1), + "Warning: SN field of posted-interrupts " + "is set before blocking\n"); + + /* + * Since vCPU can be preempted during this process, + * vcpu->cpu could be different with pre_pcpu, we + * need to set pre_pcpu as the destination of wakeup + * notification event, then we can find the right vCPU + * to wakeup in wakeup handler if interrupts happen + * when the vCPU is in blocked state. + */ + dest = cpu_physical_id(vcpu->pre_pcpu); + + if (x2apic_enabled()) + new.ndst = dest; + else + new.ndst = (dest << 8) & 0xFF00; + + /* set 'NV' to 'wakeup vector' */ + new.nv = POSTED_INTR_WAKEUP_VECTOR; + } while (cmpxchg64(&pi_desc->control, old.control, + new.control) != old.control); + + /* We should not block the vCPU if an interrupt is posted for it. */ + if (pi_test_on(pi_desc) == 1) + __pi_post_block(vcpu); + + local_irq_enable(); + return (vcpu->pre_pcpu == -1); +} + +static int vmx_pre_block(struct kvm_vcpu *vcpu) +{ + if (pi_pre_block(vcpu)) + return 1; + + if (kvm_lapic_hv_timer_in_use(vcpu)) + kvm_lapic_switch_to_sw_timer(vcpu); + + return 0; +} + +static void pi_post_block(struct kvm_vcpu *vcpu) +{ + if (vcpu->pre_pcpu == -1) + return; + + WARN_ON(irqs_disabled()); + local_irq_disable(); + __pi_post_block(vcpu); + local_irq_enable(); +} + +static void vmx_post_block(struct kvm_vcpu *vcpu) +{ + if (kvm_x86_ops->set_hv_timer) + kvm_lapic_switch_to_hv_timer(vcpu); + + pi_post_block(vcpu); +} + +/* + * vmx_update_pi_irte - set IRTE for Posted-Interrupts + * + * @kvm: kvm + * @host_irq: host irq of the interrupt + * @guest_irq: gsi of the interrupt + * @set: set or unset PI + * returns 0 on success, < 0 on failure + */ +static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, + uint32_t guest_irq, bool set) +{ + struct kvm_kernel_irq_routing_entry *e; + struct kvm_irq_routing_table *irq_rt; + struct kvm_lapic_irq irq; + struct kvm_vcpu *vcpu; + struct vcpu_data vcpu_info; + int idx, ret = 0; + + if (!kvm_arch_has_assigned_device(kvm) || + !irq_remapping_cap(IRQ_POSTING_CAP) || + !kvm_vcpu_apicv_active(kvm->vcpus[0])) + return 0; + + idx = srcu_read_lock(&kvm->irq_srcu); + irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); + if (guest_irq >= irq_rt->nr_rt_entries || + hlist_empty(&irq_rt->map[guest_irq])) { + pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", + guest_irq, irq_rt->nr_rt_entries); + goto out; + } + + hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { + if (e->type != KVM_IRQ_ROUTING_MSI) + continue; + /* + * VT-d PI cannot support posting multicast/broadcast + * interrupts to a vCPU, we still use interrupt remapping + * for these kind of interrupts. + * + * For lowest-priority interrupts, we only support + * those with single CPU as the destination, e.g. user + * configures the interrupts via /proc/irq or uses + * irqbalance to make the interrupts single-CPU. + * + * We will support full lowest-priority interrupt later. + */ + + kvm_set_msi_irq(kvm, e, &irq); + if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { + /* + * Make sure the IRTE is in remapped mode if + * we don't handle it in posted mode. + */ + ret = irq_set_vcpu_affinity(host_irq, NULL); + if (ret < 0) { + printk(KERN_INFO + "failed to back to remapped mode, irq: %u\n", + host_irq); + goto out; + } + + continue; + } + + vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); + vcpu_info.vector = irq.vector; + + trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, + vcpu_info.vector, vcpu_info.pi_desc_addr, set); + + if (set) + ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); + else + ret = irq_set_vcpu_affinity(host_irq, NULL); + + if (ret < 0) { + printk(KERN_INFO "%s: failed to update PI IRTE\n", + __func__); + goto out; + } + } + + ret = 0; +out: + srcu_read_unlock(&kvm->irq_srcu, idx); + return ret; +} + +static void vmx_setup_mce(struct kvm_vcpu *vcpu) +{ + if (vcpu->arch.mcg_cap & MCG_LMCE_P) + to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= + FEATURE_CONTROL_LMCE; + else + to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= + ~FEATURE_CONTROL_LMCE; +} + +static int vmx_smi_allowed(struct kvm_vcpu *vcpu) +{ + /* we need a nested vmexit to enter SMM, postpone if run is pending */ + if (to_vmx(vcpu)->nested.nested_run_pending) + return 0; + return 1; +} + +static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + vmx->nested.smm.guest_mode = is_guest_mode(vcpu); + if (vmx->nested.smm.guest_mode) + nested_vmx_vmexit(vcpu, -1, 0, 0); + + vmx->nested.smm.vmxon = vmx->nested.vmxon; + vmx->nested.vmxon = false; + vmx_clear_hlt(vcpu); + return 0; +} + +static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int ret; + + if (vmx->nested.smm.vmxon) { + vmx->nested.vmxon = true; + vmx->nested.smm.vmxon = false; + } + + if (vmx->nested.smm.guest_mode) { + vcpu->arch.hflags &= ~HF_SMM_MASK; + ret = nested_vmx_enter_non_root_mode(vcpu, false); + vcpu->arch.hflags |= HF_SMM_MASK; + if (ret) + return ret; + + vmx->nested.smm.guest_mode = false; + } + return 0; +} + +static int enable_smi_window(struct kvm_vcpu *vcpu) +{ + return 0; +} + +static __init int hardware_setup(void) +{ + unsigned long host_bndcfgs; + int r, i; + + rdmsrl_safe(MSR_EFER, &host_efer); + + for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) + kvm_define_shared_msr(i, vmx_msr_index[i]); + + if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) + return -EIO; + + if (boot_cpu_has(X86_FEATURE_NX)) + kvm_enable_efer_bits(EFER_NX); + + if (boot_cpu_has(X86_FEATURE_MPX)) { + rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); + WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); + } + + if (boot_cpu_has(X86_FEATURE_XSAVES)) + rdmsrl(MSR_IA32_XSS, host_xss); + + if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || + !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) + enable_vpid = 0; + + if (!cpu_has_vmx_ept() || + !cpu_has_vmx_ept_4levels() || + !cpu_has_vmx_ept_mt_wb() || + !cpu_has_vmx_invept_global()) + enable_ept = 0; + + if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) + enable_ept_ad_bits = 0; + + if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) + enable_unrestricted_guest = 0; + + if (!cpu_has_vmx_flexpriority()) + flexpriority_enabled = 0; + + if (!cpu_has_virtual_nmis()) + enable_vnmi = 0; + + /* + * set_apic_access_page_addr() is used to reload apic access + * page upon invalidation. No need to do anything if not + * using the APIC_ACCESS_ADDR VMCS field. + */ + if (!flexpriority_enabled) + kvm_x86_ops->set_apic_access_page_addr = NULL; + + if (!cpu_has_vmx_tpr_shadow()) + kvm_x86_ops->update_cr8_intercept = NULL; + + if (enable_ept && !cpu_has_vmx_ept_2m_page()) + kvm_disable_largepages(); + +#if IS_ENABLED(CONFIG_HYPERV) + if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH + && enable_ept) { + kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb; + kvm_x86_ops->tlb_remote_flush_with_range = + hv_remote_flush_tlb_with_range; + } +#endif + + if (!cpu_has_vmx_ple()) { + ple_gap = 0; + ple_window = 0; + ple_window_grow = 0; + ple_window_max = 0; + ple_window_shrink = 0; + } + + if (!cpu_has_vmx_apicv()) { + enable_apicv = 0; + kvm_x86_ops->sync_pir_to_irr = NULL; + } + + if (cpu_has_vmx_tsc_scaling()) { + kvm_has_tsc_control = true; + kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; + kvm_tsc_scaling_ratio_frac_bits = 48; + } + + set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ + + if (enable_ept) + vmx_enable_tdp(); + else + kvm_disable_tdp(); + + /* + * Only enable PML when hardware supports PML feature, and both EPT + * and EPT A/D bit features are enabled -- PML depends on them to work. + */ + if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) + enable_pml = 0; + + if (!enable_pml) { + kvm_x86_ops->slot_enable_log_dirty = NULL; + kvm_x86_ops->slot_disable_log_dirty = NULL; + kvm_x86_ops->flush_log_dirty = NULL; + kvm_x86_ops->enable_log_dirty_pt_masked = NULL; + } + + if (!cpu_has_vmx_preemption_timer()) + kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; + + if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { + u64 vmx_msr; + + rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); + cpu_preemption_timer_multi = + vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; + } else { + kvm_x86_ops->set_hv_timer = NULL; + kvm_x86_ops->cancel_hv_timer = NULL; + } + + kvm_set_posted_intr_wakeup_handler(wakeup_handler); + + kvm_mce_cap_supported |= MCG_LMCE_P; + + if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) + return -EINVAL; + if (!enable_ept || !cpu_has_vmx_intel_pt()) + pt_mode = PT_MODE_SYSTEM; + + if (nested) { + nested_vmx_setup_ctls_msrs(&vmcs_config.nested, + vmx_capability.ept, enable_apicv); + + r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); + if (r) + return r; + } + + r = alloc_kvm_area(); + if (r) + nested_vmx_hardware_unsetup(); + return r; +} + +static __exit void hardware_unsetup(void) +{ + if (nested) + nested_vmx_hardware_unsetup(); + + free_kvm_area(); +} + +static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { + .cpu_has_kvm_support = cpu_has_kvm_support, + .disabled_by_bios = vmx_disabled_by_bios, + .hardware_setup = hardware_setup, + .hardware_unsetup = hardware_unsetup, + .check_processor_compatibility = vmx_check_processor_compat, + .hardware_enable = hardware_enable, + .hardware_disable = hardware_disable, + .cpu_has_accelerated_tpr = report_flexpriority, + .has_emulated_msr = vmx_has_emulated_msr, + + .vm_init = vmx_vm_init, + .vm_alloc = vmx_vm_alloc, + .vm_free = vmx_vm_free, + + .vcpu_create = vmx_create_vcpu, + .vcpu_free = vmx_free_vcpu, + .vcpu_reset = vmx_vcpu_reset, + + .prepare_guest_switch = vmx_prepare_switch_to_guest, + .vcpu_load = vmx_vcpu_load, + .vcpu_put = vmx_vcpu_put, + + .update_bp_intercept = update_exception_bitmap, + .get_msr_feature = vmx_get_msr_feature, + .get_msr = vmx_get_msr, + .set_msr = vmx_set_msr, + .get_segment_base = vmx_get_segment_base, + .get_segment = vmx_get_segment, + .set_segment = vmx_set_segment, + .get_cpl = vmx_get_cpl, + .get_cs_db_l_bits = vmx_get_cs_db_l_bits, + .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, + .decache_cr3 = vmx_decache_cr3, + .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, + .set_cr0 = vmx_set_cr0, + .set_cr3 = vmx_set_cr3, + .set_cr4 = vmx_set_cr4, + .set_efer = vmx_set_efer, + .get_idt = vmx_get_idt, + .set_idt = vmx_set_idt, + .get_gdt = vmx_get_gdt, + .set_gdt = vmx_set_gdt, + .get_dr6 = vmx_get_dr6, + .set_dr6 = vmx_set_dr6, + .set_dr7 = vmx_set_dr7, + .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, + .cache_reg = vmx_cache_reg, + .get_rflags = vmx_get_rflags, + .set_rflags = vmx_set_rflags, + + .tlb_flush = vmx_flush_tlb, + .tlb_flush_gva = vmx_flush_tlb_gva, + + .run = vmx_vcpu_run, + .handle_exit = vmx_handle_exit, + .skip_emulated_instruction = skip_emulated_instruction, + .set_interrupt_shadow = vmx_set_interrupt_shadow, + .get_interrupt_shadow = vmx_get_interrupt_shadow, + .patch_hypercall = vmx_patch_hypercall, + .set_irq = vmx_inject_irq, + .set_nmi = vmx_inject_nmi, + .queue_exception = vmx_queue_exception, + .cancel_injection = vmx_cancel_injection, + .interrupt_allowed = vmx_interrupt_allowed, + .nmi_allowed = vmx_nmi_allowed, + .get_nmi_mask = vmx_get_nmi_mask, + .set_nmi_mask = vmx_set_nmi_mask, + .enable_nmi_window = enable_nmi_window, + .enable_irq_window = enable_irq_window, + .update_cr8_intercept = update_cr8_intercept, + .set_virtual_apic_mode = vmx_set_virtual_apic_mode, + .set_apic_access_page_addr = vmx_set_apic_access_page_addr, + .get_enable_apicv = vmx_get_enable_apicv, + .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, + .load_eoi_exitmap = vmx_load_eoi_exitmap, + .apicv_post_state_restore = vmx_apicv_post_state_restore, + .hwapic_irr_update = vmx_hwapic_irr_update, + .hwapic_isr_update = vmx_hwapic_isr_update, + .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, + .sync_pir_to_irr = vmx_sync_pir_to_irr, + .deliver_posted_interrupt = vmx_deliver_posted_interrupt, + + .set_tss_addr = vmx_set_tss_addr, + .set_identity_map_addr = vmx_set_identity_map_addr, + .get_tdp_level = get_ept_level, + .get_mt_mask = vmx_get_mt_mask, + + .get_exit_info = vmx_get_exit_info, + + .get_lpage_level = vmx_get_lpage_level, + + .cpuid_update = vmx_cpuid_update, + + .rdtscp_supported = vmx_rdtscp_supported, + .invpcid_supported = vmx_invpcid_supported, + + .set_supported_cpuid = vmx_set_supported_cpuid, + + .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, + + .read_l1_tsc_offset = vmx_read_l1_tsc_offset, + .write_l1_tsc_offset = vmx_write_l1_tsc_offset, + + .set_tdp_cr3 = vmx_set_cr3, + + .check_intercept = vmx_check_intercept, + .handle_external_intr = vmx_handle_external_intr, + .mpx_supported = vmx_mpx_supported, + .xsaves_supported = vmx_xsaves_supported, + .umip_emulated = vmx_umip_emulated, + .pt_supported = vmx_pt_supported, + + .request_immediate_exit = vmx_request_immediate_exit, + + .sched_in = vmx_sched_in, + + .slot_enable_log_dirty = vmx_slot_enable_log_dirty, + .slot_disable_log_dirty = vmx_slot_disable_log_dirty, + .flush_log_dirty = vmx_flush_log_dirty, + .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, + .write_log_dirty = vmx_write_pml_buffer, + + .pre_block = vmx_pre_block, + .post_block = vmx_post_block, + + .pmu_ops = &intel_pmu_ops, + + .update_pi_irte = vmx_update_pi_irte, + +#ifdef CONFIG_X86_64 + .set_hv_timer = vmx_set_hv_timer, + .cancel_hv_timer = vmx_cancel_hv_timer, +#endif + + .setup_mce = vmx_setup_mce, + + .smi_allowed = vmx_smi_allowed, + .pre_enter_smm = vmx_pre_enter_smm, + .pre_leave_smm = vmx_pre_leave_smm, + .enable_smi_window = enable_smi_window, + + .check_nested_events = NULL, + .get_nested_state = NULL, + .set_nested_state = NULL, + .get_vmcs12_pages = NULL, + .nested_enable_evmcs = NULL, +}; + +static void vmx_cleanup_l1d_flush(void) +{ + if (vmx_l1d_flush_pages) { + free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); + vmx_l1d_flush_pages = NULL; + } + /* Restore state so sysfs ignores VMX */ + l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; +} + +static void vmx_exit(void) +{ +#ifdef CONFIG_KEXEC_CORE + RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); + synchronize_rcu(); +#endif + + kvm_exit(); + +#if IS_ENABLED(CONFIG_HYPERV) + if (static_branch_unlikely(&enable_evmcs)) { + int cpu; + struct hv_vp_assist_page *vp_ap; + /* + * Reset everything to support using non-enlightened VMCS + * access later (e.g. when we reload the module with + * enlightened_vmcs=0) + */ + for_each_online_cpu(cpu) { + vp_ap = hv_get_vp_assist_page(cpu); + + if (!vp_ap) + continue; + + vp_ap->current_nested_vmcs = 0; + vp_ap->enlighten_vmentry = 0; + } + + static_branch_disable(&enable_evmcs); + } +#endif + vmx_cleanup_l1d_flush(); +} +module_exit(vmx_exit); + +static int __init vmx_init(void) +{ + int r; + +#if IS_ENABLED(CONFIG_HYPERV) + /* + * Enlightened VMCS usage should be recommended and the host needs + * to support eVMCS v1 or above. We can also disable eVMCS support + * with module parameter. + */ + if (enlightened_vmcs && + ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && + (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= + KVM_EVMCS_VERSION) { + int cpu; + + /* Check that we have assist pages on all online CPUs */ + for_each_online_cpu(cpu) { + if (!hv_get_vp_assist_page(cpu)) { + enlightened_vmcs = false; + break; + } + } + + if (enlightened_vmcs) { + pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); + static_branch_enable(&enable_evmcs); + } + } else { + enlightened_vmcs = false; + } +#endif + + r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), + __alignof__(struct vcpu_vmx), THIS_MODULE); + if (r) + return r; + + /* + * Must be called after kvm_init() so enable_ept is properly set + * up. Hand the parameter mitigation value in which was stored in + * the pre module init parser. If no parameter was given, it will + * contain 'auto' which will be turned into the default 'cond' + * mitigation mode. + */ + if (boot_cpu_has(X86_BUG_L1TF)) { + r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); + if (r) { + vmx_exit(); + return r; + } + } + +#ifdef CONFIG_KEXEC_CORE + rcu_assign_pointer(crash_vmclear_loaded_vmcss, + crash_vmclear_local_loaded_vmcss); +#endif + vmx_check_vmcs12_offsets(); + + return 0; +} +module_init(vmx_init); diff --git a/arch/x86/kvm/vmx/vmx.h b/arch/x86/kvm/vmx/vmx.h new file mode 100644 index 000000000000..99328954c2fc --- /dev/null +++ b/arch/x86/kvm/vmx/vmx.h @@ -0,0 +1,519 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_H +#define __KVM_X86_VMX_H + +#include <linux/kvm_host.h> + +#include <asm/kvm.h> +#include <asm/intel_pt.h> + +#include "capabilities.h" +#include "ops.h" +#include "vmcs.h" + +extern const u32 vmx_msr_index[]; +extern u64 host_efer; + +#define MSR_TYPE_R 1 +#define MSR_TYPE_W 2 +#define MSR_TYPE_RW 3 + +#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) + +#define NR_AUTOLOAD_MSRS 8 + +struct vmx_msrs { + unsigned int nr; + struct vmx_msr_entry val[NR_AUTOLOAD_MSRS]; +}; + +struct shared_msr_entry { + unsigned index; + u64 data; + u64 mask; +}; + +enum segment_cache_field { + SEG_FIELD_SEL = 0, + SEG_FIELD_BASE = 1, + SEG_FIELD_LIMIT = 2, + SEG_FIELD_AR = 3, + + SEG_FIELD_NR = 4 +}; + +/* Posted-Interrupt Descriptor */ +struct pi_desc { + u32 pir[8]; /* Posted interrupt requested */ + union { + struct { + /* bit 256 - Outstanding Notification */ + u16 on : 1, + /* bit 257 - Suppress Notification */ + sn : 1, + /* bit 271:258 - Reserved */ + rsvd_1 : 14; + /* bit 279:272 - Notification Vector */ + u8 nv; + /* bit 287:280 - Reserved */ + u8 rsvd_2; + /* bit 319:288 - Notification Destination */ + u32 ndst; + }; + u64 control; + }; + u32 rsvd[6]; +} __aligned(64); + +#define RTIT_ADDR_RANGE 4 + +struct pt_ctx { + u64 ctl; + u64 status; + u64 output_base; + u64 output_mask; + u64 cr3_match; + u64 addr_a[RTIT_ADDR_RANGE]; + u64 addr_b[RTIT_ADDR_RANGE]; +}; + +struct pt_desc { + u64 ctl_bitmask; + u32 addr_range; + u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; + struct pt_ctx host; + struct pt_ctx guest; +}; + +/* + * The nested_vmx structure is part of vcpu_vmx, and holds information we need + * for correct emulation of VMX (i.e., nested VMX) on this vcpu. + */ +struct nested_vmx { + /* Has the level1 guest done vmxon? */ + bool vmxon; + gpa_t vmxon_ptr; + bool pml_full; + + /* The guest-physical address of the current VMCS L1 keeps for L2 */ + gpa_t current_vmptr; + /* + * Cache of the guest's VMCS, existing outside of guest memory. + * Loaded from guest memory during VMPTRLD. Flushed to guest + * memory during VMCLEAR and VMPTRLD. + */ + struct vmcs12 *cached_vmcs12; + /* + * Cache of the guest's shadow VMCS, existing outside of guest + * memory. Loaded from guest memory during VM entry. Flushed + * to guest memory during VM exit. + */ + struct vmcs12 *cached_shadow_vmcs12; + /* + * Indicates if the shadow vmcs or enlightened vmcs must be updated + * with the data held by struct vmcs12. + */ + bool need_vmcs12_sync; + bool dirty_vmcs12; + + /* + * vmcs02 has been initialized, i.e. state that is constant for + * vmcs02 has been written to the backing VMCS. Initialization + * is delayed until L1 actually attempts to run a nested VM. + */ + bool vmcs02_initialized; + + bool change_vmcs01_virtual_apic_mode; + + /* + * Enlightened VMCS has been enabled. It does not mean that L1 has to + * use it. However, VMX features available to L1 will be limited based + * on what the enlightened VMCS supports. + */ + bool enlightened_vmcs_enabled; + + /* L2 must run next, and mustn't decide to exit to L1. */ + bool nested_run_pending; + + struct loaded_vmcs vmcs02; + + /* + * Guest pages referred to in the vmcs02 with host-physical + * pointers, so we must keep them pinned while L2 runs. + */ + struct page *apic_access_page; + struct page *virtual_apic_page; + struct page *pi_desc_page; + struct pi_desc *pi_desc; + bool pi_pending; + u16 posted_intr_nv; + + struct hrtimer preemption_timer; + bool preemption_timer_expired; + + /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ + u64 vmcs01_debugctl; + u64 vmcs01_guest_bndcfgs; + + u16 vpid02; + u16 last_vpid; + + struct nested_vmx_msrs msrs; + + /* SMM related state */ + struct { + /* in VMX operation on SMM entry? */ + bool vmxon; + /* in guest mode on SMM entry? */ + bool guest_mode; + } smm; + + gpa_t hv_evmcs_vmptr; + struct page *hv_evmcs_page; + struct hv_enlightened_vmcs *hv_evmcs; +}; + +struct vcpu_vmx { + struct kvm_vcpu vcpu; + unsigned long host_rsp; + u8 fail; + u8 msr_bitmap_mode; + u32 exit_intr_info; + u32 idt_vectoring_info; + ulong rflags; + struct shared_msr_entry *guest_msrs; + int nmsrs; + int save_nmsrs; + bool guest_msrs_dirty; + unsigned long host_idt_base; +#ifdef CONFIG_X86_64 + u64 msr_host_kernel_gs_base; + u64 msr_guest_kernel_gs_base; +#endif + + u64 arch_capabilities; + u64 spec_ctrl; + + u32 vm_entry_controls_shadow; + u32 vm_exit_controls_shadow; + u32 secondary_exec_control; + + /* + * loaded_vmcs points to the VMCS currently used in this vcpu. For a + * non-nested (L1) guest, it always points to vmcs01. For a nested + * guest (L2), it points to a different VMCS. loaded_cpu_state points + * to the VMCS whose state is loaded into the CPU registers that only + * need to be switched when transitioning to/from the kernel; a NULL + * value indicates that host state is loaded. + */ + struct loaded_vmcs vmcs01; + struct loaded_vmcs *loaded_vmcs; + struct loaded_vmcs *loaded_cpu_state; + bool __launched; /* temporary, used in vmx_vcpu_run */ + struct msr_autoload { + struct vmx_msrs guest; + struct vmx_msrs host; + } msr_autoload; + + struct { + int vm86_active; + ulong save_rflags; + struct kvm_segment segs[8]; + } rmode; + struct { + u32 bitmask; /* 4 bits per segment (1 bit per field) */ + struct kvm_save_segment { + u16 selector; + unsigned long base; + u32 limit; + u32 ar; + } seg[8]; + } segment_cache; + int vpid; + bool emulation_required; + + u32 exit_reason; + + /* Posted interrupt descriptor */ + struct pi_desc pi_desc; + + /* Support for a guest hypervisor (nested VMX) */ + struct nested_vmx nested; + + /* Dynamic PLE window. */ + int ple_window; + bool ple_window_dirty; + + bool req_immediate_exit; + + /* Support for PML */ +#define PML_ENTITY_NUM 512 + struct page *pml_pg; + + /* apic deadline value in host tsc */ + u64 hv_deadline_tsc; + + u64 current_tsc_ratio; + + u32 host_pkru; + + unsigned long host_debugctlmsr; + + /* + * Only bits masked by msr_ia32_feature_control_valid_bits can be set in + * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included + * in msr_ia32_feature_control_valid_bits. + */ + u64 msr_ia32_feature_control; + u64 msr_ia32_feature_control_valid_bits; + u64 ept_pointer; + + struct pt_desc pt_desc; +}; + +enum ept_pointers_status { + EPT_POINTERS_CHECK = 0, + EPT_POINTERS_MATCH = 1, + EPT_POINTERS_MISMATCH = 2 +}; + +struct kvm_vmx { + struct kvm kvm; + + unsigned int tss_addr; + bool ept_identity_pagetable_done; + gpa_t ept_identity_map_addr; + + enum ept_pointers_status ept_pointers_match; + spinlock_t ept_pointer_lock; +}; + +bool nested_vmx_allowed(struct kvm_vcpu *vcpu); +void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu); +void vmx_vcpu_put(struct kvm_vcpu *vcpu); +int allocate_vpid(void); +void free_vpid(int vpid); +void vmx_set_constant_host_state(struct vcpu_vmx *vmx); +void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); +int vmx_get_cpl(struct kvm_vcpu *vcpu); +unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); +void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); +u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); +void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); +void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); +void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); +void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); +int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); +void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); +void ept_save_pdptrs(struct kvm_vcpu *vcpu); +void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); +void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); +u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); +void update_exception_bitmap(struct kvm_vcpu *vcpu); +void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu); +bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); +void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); +void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); +struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr); +void pt_update_intercept_for_msr(struct vcpu_vmx *vmx); + +#define POSTED_INTR_ON 0 +#define POSTED_INTR_SN 1 + +static inline bool pi_test_and_set_on(struct pi_desc *pi_desc) +{ + return test_and_set_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc) +{ + return test_and_clear_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) +{ + return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); +} + +static inline void pi_clear_sn(struct pi_desc *pi_desc) +{ + return clear_bit(POSTED_INTR_SN, + (unsigned long *)&pi_desc->control); +} + +static inline void pi_set_sn(struct pi_desc *pi_desc) +{ + return set_bit(POSTED_INTR_SN, + (unsigned long *)&pi_desc->control); +} + +static inline void pi_clear_on(struct pi_desc *pi_desc) +{ + clear_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static inline int pi_test_on(struct pi_desc *pi_desc) +{ + return test_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static inline int pi_test_sn(struct pi_desc *pi_desc) +{ + return test_bit(POSTED_INTR_SN, + (unsigned long *)&pi_desc->control); +} + +static inline u8 vmx_get_rvi(void) +{ + return vmcs_read16(GUEST_INTR_STATUS) & 0xff; +} + +static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx) +{ + vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS); +} + +static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val) +{ + vmcs_write32(VM_ENTRY_CONTROLS, val); + vmx->vm_entry_controls_shadow = val; +} + +static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val) +{ + if (vmx->vm_entry_controls_shadow != val) + vm_entry_controls_init(vmx, val); +} + +static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx) +{ + return vmx->vm_entry_controls_shadow; +} + +static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val); +} + +static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val); +} + +static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx) +{ + vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS); +} + +static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val) +{ + vmcs_write32(VM_EXIT_CONTROLS, val); + vmx->vm_exit_controls_shadow = val; +} + +static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val) +{ + if (vmx->vm_exit_controls_shadow != val) + vm_exit_controls_init(vmx, val); +} + +static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx) +{ + return vmx->vm_exit_controls_shadow; +} + +static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val); +} + +static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val); +} + +static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) +{ + vmx->segment_cache.bitmask = 0; +} + +static inline u32 vmx_vmentry_ctrl(void) +{ + u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; + if (pt_mode == PT_MODE_SYSTEM) + vmentry_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | VM_EXIT_CLEAR_IA32_RTIT_CTL); + /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ + return vmentry_ctrl & + ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); +} + +static inline u32 vmx_vmexit_ctrl(void) +{ + u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; + if (pt_mode == PT_MODE_SYSTEM) + vmexit_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | VM_ENTRY_LOAD_IA32_RTIT_CTL); + /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ + return vmcs_config.vmexit_ctrl & + ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); +} + +u32 vmx_exec_control(struct vcpu_vmx *vmx); + +static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) +{ + return container_of(kvm, struct kvm_vmx, kvm); +} + +static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) +{ + return container_of(vcpu, struct vcpu_vmx, vcpu); +} + +static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) +{ + return &(to_vmx(vcpu)->pi_desc); +} + +struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu); +void free_vmcs(struct vmcs *vmcs); +int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); +void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); +void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs); +void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); + +static inline struct vmcs *alloc_vmcs(bool shadow) +{ + return alloc_vmcs_cpu(shadow, raw_smp_processor_id()); +} + +u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); + +static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid, + bool invalidate_gpa) +{ + if (enable_ept && (invalidate_gpa || !enable_vpid)) { + if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) + return; + ept_sync_context(construct_eptp(vcpu, + vcpu->arch.mmu->root_hpa)); + } else { + vpid_sync_context(vpid); + } +} + +static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) +{ + __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa); +} + +static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx) +{ + vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio; + vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); +} + +#endif /* __KVM_X86_VMX_H */ diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index 5cd5647120f2..02c8e095a239 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -69,6 +69,7 @@ #include <asm/irq_remapping.h> #include <asm/mshyperv.h> #include <asm/hypervisor.h> +#include <asm/intel_pt.h> #define CREATE_TRACE_POINTS #include "trace.h" @@ -213,6 +214,9 @@ struct kvm_stats_debugfs_item debugfs_entries[] = { u64 __read_mostly host_xcr0; +struct kmem_cache *x86_fpu_cache; +EXPORT_SYMBOL_GPL(x86_fpu_cache); + static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) @@ -1121,7 +1125,13 @@ static u32 msrs_to_save[] = { #endif MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, - MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES + MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES, + MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, + MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, + MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, + MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, + MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, + MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, }; static unsigned num_msrs_to_save; @@ -1665,8 +1675,7 @@ EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) { - kvm_x86_ops->write_tsc_offset(vcpu, offset); - vcpu->arch.tsc_offset = offset; + vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset); } static inline bool kvm_check_tsc_unstable(void) @@ -1794,7 +1803,8 @@ EXPORT_SYMBOL_GPL(kvm_write_tsc); static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment) { - kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); + u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); + kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); } static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) @@ -2426,6 +2436,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) case MSR_AMD64_PATCH_LOADER: case MSR_AMD64_BU_CFG2: case MSR_AMD64_DC_CFG: + case MSR_F15H_EX_CFG: break; case MSR_IA32_UCODE_REV: @@ -2721,6 +2732,7 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) case MSR_AMD64_BU_CFG2: case MSR_IA32_PERF_CTL: case MSR_AMD64_DC_CFG: + case MSR_F15H_EX_CFG: msr_info->data = 0; break; case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: @@ -2997,6 +3009,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) case KVM_CAP_HYPERV_TLBFLUSH: case KVM_CAP_HYPERV_SEND_IPI: case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: + case KVM_CAP_HYPERV_CPUID: case KVM_CAP_PCI_SEGMENT: case KVM_CAP_DEBUGREGS: case KVM_CAP_X86_ROBUST_SINGLESTEP: @@ -3008,7 +3021,6 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) case KVM_CAP_HYPERV_TIME: case KVM_CAP_IOAPIC_POLARITY_IGNORED: case KVM_CAP_TSC_DEADLINE_TIMER: - case KVM_CAP_ENABLE_CAP_VM: case KVM_CAP_DISABLE_QUIRKS: case KVM_CAP_SET_BOOT_CPU_ID: case KVM_CAP_SPLIT_IRQCHIP: @@ -3630,7 +3642,7 @@ static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) { - struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; + struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; u64 xstate_bv = xsave->header.xfeatures; u64 valid; @@ -3672,7 +3684,7 @@ static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) { - struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; + struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); u64 valid; @@ -3720,7 +3732,7 @@ static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, fill_xsave((u8 *) guest_xsave->region, vcpu); } else { memcpy(guest_xsave->region, - &vcpu->arch.guest_fpu.state.fxsave, + &vcpu->arch.guest_fpu->state.fxsave, sizeof(struct fxregs_state)); *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = XFEATURE_MASK_FPSSE; @@ -3750,7 +3762,7 @@ static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, if (xstate_bv & ~XFEATURE_MASK_FPSSE || mxcsr & ~mxcsr_feature_mask) return -EINVAL; - memcpy(&vcpu->arch.guest_fpu.state.fxsave, + memcpy(&vcpu->arch.guest_fpu->state.fxsave, guest_xsave->region, sizeof(struct fxregs_state)); } return 0; @@ -3828,6 +3840,8 @@ static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, return kvm_hv_activate_synic(vcpu, cap->cap == KVM_CAP_HYPERV_SYNIC2); case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: + if (!kvm_x86_ops->nested_enable_evmcs) + return -ENOTTY; r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version); if (!r) { user_ptr = (void __user *)(uintptr_t)cap->args[0]; @@ -4190,6 +4204,25 @@ long kvm_arch_vcpu_ioctl(struct file *filp, r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); break; } + case KVM_GET_SUPPORTED_HV_CPUID: { + struct kvm_cpuid2 __user *cpuid_arg = argp; + struct kvm_cpuid2 cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) + goto out; + + r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, + cpuid_arg->entries); + if (r) + goto out; + + r = -EFAULT; + if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) + goto out; + r = 0; + break; + } default: r = -EINVAL; } @@ -4394,7 +4427,7 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm, */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { - bool is_dirty = false; + bool flush = false; int r; mutex_lock(&kvm->slots_lock); @@ -4405,14 +4438,41 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) if (kvm_x86_ops->flush_log_dirty) kvm_x86_ops->flush_log_dirty(kvm); - r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); + r = kvm_get_dirty_log_protect(kvm, log, &flush); /* * All the TLBs can be flushed out of mmu lock, see the comments in * kvm_mmu_slot_remove_write_access(). */ lockdep_assert_held(&kvm->slots_lock); - if (is_dirty) + if (flush) + kvm_flush_remote_tlbs(kvm); + + mutex_unlock(&kvm->slots_lock); + return r; +} + +int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) +{ + bool flush = false; + int r; + + mutex_lock(&kvm->slots_lock); + + /* + * Flush potentially hardware-cached dirty pages to dirty_bitmap. + */ + if (kvm_x86_ops->flush_log_dirty) + kvm_x86_ops->flush_log_dirty(kvm); + + r = kvm_clear_dirty_log_protect(kvm, log, &flush); + + /* + * All the TLBs can be flushed out of mmu lock, see the comments in + * kvm_mmu_slot_remove_write_access(). + */ + lockdep_assert_held(&kvm->slots_lock); + if (flush) kvm_flush_remote_tlbs(kvm); mutex_unlock(&kvm->slots_lock); @@ -4431,8 +4491,8 @@ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, return 0; } -static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, - struct kvm_enable_cap *cap) +int kvm_vm_ioctl_enable_cap(struct kvm *kvm, + struct kvm_enable_cap *cap) { int r; @@ -4765,15 +4825,6 @@ set_identity_unlock: r = 0; break; } - case KVM_ENABLE_CAP: { - struct kvm_enable_cap cap; - - r = -EFAULT; - if (copy_from_user(&cap, argp, sizeof(cap))) - goto out; - r = kvm_vm_ioctl_enable_cap(kvm, &cap); - break; - } case KVM_MEMORY_ENCRYPT_OP: { r = -ENOTTY; if (kvm_x86_ops->mem_enc_op) @@ -4842,6 +4893,30 @@ static void kvm_init_msr_list(void) if (!kvm_x86_ops->rdtscp_supported()) continue; break; + case MSR_IA32_RTIT_CTL: + case MSR_IA32_RTIT_STATUS: + if (!kvm_x86_ops->pt_supported()) + continue; + break; + case MSR_IA32_RTIT_CR3_MATCH: + if (!kvm_x86_ops->pt_supported() || + !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) + continue; + break; + case MSR_IA32_RTIT_OUTPUT_BASE: + case MSR_IA32_RTIT_OUTPUT_MASK: + if (!kvm_x86_ops->pt_supported() || + (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && + !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) + continue; + break; + case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: { + if (!kvm_x86_ops->pt_supported() || + msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >= + intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) + continue; + break; + } default: break; } @@ -6813,11 +6888,30 @@ int kvm_arch_init(void *opaque) goto out; } + /* + * KVM explicitly assumes that the guest has an FPU and + * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the + * vCPU's FPU state as a fxregs_state struct. + */ + if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { + printk(KERN_ERR "kvm: inadequate fpu\n"); + r = -EOPNOTSUPP; + goto out; + } + r = -ENOMEM; + x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), + __alignof__(struct fpu), SLAB_ACCOUNT, + NULL); + if (!x86_fpu_cache) { + printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); + goto out; + } + shared_msrs = alloc_percpu(struct kvm_shared_msrs); if (!shared_msrs) { printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); - goto out; + goto out_free_x86_fpu_cache; } r = kvm_mmu_module_init(); @@ -6850,6 +6944,8 @@ int kvm_arch_init(void *opaque) out_free_percpu: free_percpu(shared_msrs); +out_free_x86_fpu_cache: + kmem_cache_destroy(x86_fpu_cache); out: return r; } @@ -6873,6 +6969,7 @@ void kvm_arch_exit(void) kvm_x86_ops = NULL; kvm_mmu_module_exit(); free_percpu(shared_msrs); + kmem_cache_destroy(x86_fpu_cache); } int kvm_vcpu_halt(struct kvm_vcpu *vcpu) @@ -6918,6 +7015,7 @@ static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, clock_pairing.nsec = ts.tv_nsec; clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); clock_pairing.flags = 0; + memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); ret = 0; if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, @@ -7445,7 +7543,7 @@ void kvm_make_scan_ioapic_request(struct kvm *kvm) static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) { - if (!kvm_apic_hw_enabled(vcpu->arch.apic)) + if (!kvm_apic_present(vcpu)) return; bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); @@ -7455,7 +7553,8 @@ static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) else { if (vcpu->arch.apicv_active) kvm_x86_ops->sync_pir_to_irr(vcpu); - kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); + if (ioapic_in_kernel(vcpu->kvm)) + kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); } if (is_guest_mode(vcpu)) @@ -7994,9 +8093,9 @@ static int complete_emulated_mmio(struct kvm_vcpu *vcpu) static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) { preempt_disable(); - copy_fpregs_to_fpstate(&vcpu->arch.user_fpu); + copy_fpregs_to_fpstate(¤t->thread.fpu); /* PKRU is separately restored in kvm_x86_ops->run. */ - __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, + __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, ~XFEATURE_MASK_PKRU); preempt_enable(); trace_kvm_fpu(1); @@ -8006,8 +8105,8 @@ static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) { preempt_disable(); - copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); - copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state); + copy_fpregs_to_fpstate(vcpu->arch.guest_fpu); + copy_kernel_to_fpregs(¤t->thread.fpu.state); preempt_enable(); ++vcpu->stat.fpu_reload; trace_kvm_fpu(0); @@ -8501,7 +8600,7 @@ int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) vcpu_load(vcpu); - fxsave = &vcpu->arch.guest_fpu.state.fxsave; + fxsave = &vcpu->arch.guest_fpu->state.fxsave; memcpy(fpu->fpr, fxsave->st_space, 128); fpu->fcw = fxsave->cwd; fpu->fsw = fxsave->swd; @@ -8521,7 +8620,7 @@ int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) vcpu_load(vcpu); - fxsave = &vcpu->arch.guest_fpu.state.fxsave; + fxsave = &vcpu->arch.guest_fpu->state.fxsave; memcpy(fxsave->st_space, fpu->fpr, 128); fxsave->cwd = fpu->fcw; @@ -8577,9 +8676,9 @@ static int sync_regs(struct kvm_vcpu *vcpu) static void fx_init(struct kvm_vcpu *vcpu) { - fpstate_init(&vcpu->arch.guest_fpu.state); + fpstate_init(&vcpu->arch.guest_fpu->state); if (boot_cpu_has(X86_FEATURE_XSAVES)) - vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = + vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; /* @@ -8617,6 +8716,7 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { + vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; kvm_vcpu_mtrr_init(vcpu); vcpu_load(vcpu); kvm_vcpu_reset(vcpu, false); @@ -8703,11 +8803,11 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) */ if (init_event) kvm_put_guest_fpu(vcpu); - mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, + mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, XFEATURE_MASK_BNDREGS); if (mpx_state_buffer) memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); - mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, + mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, XFEATURE_MASK_BNDCSR); if (mpx_state_buffer) memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); @@ -8719,7 +8819,6 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) kvm_pmu_reset(vcpu); vcpu->arch.smbase = 0x30000; - vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; vcpu->arch.msr_misc_features_enables = 0; vcpu->arch.xcr0 = XFEATURE_MASK_FP; @@ -9278,7 +9377,7 @@ static void kvm_mmu_slot_apply_flags(struct kvm *kvm, * with dirty logging disabled in order to eliminate unnecessary GPA * logging in PML buffer (and potential PML buffer full VMEXT). This * guarantees leaving PML enabled during guest's lifetime won't have - * any additonal overhead from PML when guest is running with dirty + * any additional overhead from PML when guest is running with dirty * logging disabled for memory slots. * * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot diff --git a/arch/x86/mm/debug_pagetables.c b/arch/x86/mm/debug_pagetables.c index 225fe2f0bfec..cd84f067e41d 100644 --- a/arch/x86/mm/debug_pagetables.c +++ b/arch/x86/mm/debug_pagetables.c @@ -10,20 +10,9 @@ static int ptdump_show(struct seq_file *m, void *v) return 0; } -static int ptdump_open(struct inode *inode, struct file *filp) -{ - return single_open(filp, ptdump_show, NULL); -} - -static const struct file_operations ptdump_fops = { - .owner = THIS_MODULE, - .open = ptdump_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; +DEFINE_SHOW_ATTRIBUTE(ptdump); -static int ptdump_show_curknl(struct seq_file *m, void *v) +static int ptdump_curknl_show(struct seq_file *m, void *v) { if (current->mm->pgd) { down_read(¤t->mm->mmap_sem); @@ -33,23 +22,12 @@ static int ptdump_show_curknl(struct seq_file *m, void *v) return 0; } -static int ptdump_open_curknl(struct inode *inode, struct file *filp) -{ - return single_open(filp, ptdump_show_curknl, NULL); -} - -static const struct file_operations ptdump_curknl_fops = { - .owner = THIS_MODULE, - .open = ptdump_open_curknl, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; +DEFINE_SHOW_ATTRIBUTE(ptdump_curknl); #ifdef CONFIG_PAGE_TABLE_ISOLATION static struct dentry *pe_curusr; -static int ptdump_show_curusr(struct seq_file *m, void *v) +static int ptdump_curusr_show(struct seq_file *m, void *v) { if (current->mm->pgd) { down_read(¤t->mm->mmap_sem); @@ -59,42 +37,20 @@ static int ptdump_show_curusr(struct seq_file *m, void *v) return 0; } -static int ptdump_open_curusr(struct inode *inode, struct file *filp) -{ - return single_open(filp, ptdump_show_curusr, NULL); -} - -static const struct file_operations ptdump_curusr_fops = { - .owner = THIS_MODULE, - .open = ptdump_open_curusr, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; +DEFINE_SHOW_ATTRIBUTE(ptdump_curusr); #endif #if defined(CONFIG_EFI) && defined(CONFIG_X86_64) static struct dentry *pe_efi; -static int ptdump_show_efi(struct seq_file *m, void *v) +static int ptdump_efi_show(struct seq_file *m, void *v) { if (efi_mm.pgd) ptdump_walk_pgd_level_debugfs(m, efi_mm.pgd, false); return 0; } -static int ptdump_open_efi(struct inode *inode, struct file *filp) -{ - return single_open(filp, ptdump_show_efi, NULL); -} - -static const struct file_operations ptdump_efi_fops = { - .owner = THIS_MODULE, - .open = ptdump_open_efi, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; +DEFINE_SHOW_ATTRIBUTE(ptdump_efi); #endif static struct dentry *dir, *pe_knl, *pe_curknl; diff --git a/arch/x86/mm/dump_pagetables.c b/arch/x86/mm/dump_pagetables.c index fc37bbd23eb8..abcb8d00b014 100644 --- a/arch/x86/mm/dump_pagetables.c +++ b/arch/x86/mm/dump_pagetables.c @@ -55,10 +55,10 @@ struct addr_marker { enum address_markers_idx { USER_SPACE_NR = 0, KERNEL_SPACE_NR, - LOW_KERNEL_NR, -#if defined(CONFIG_MODIFY_LDT_SYSCALL) && defined(CONFIG_X86_5LEVEL) +#ifdef CONFIG_MODIFY_LDT_SYSCALL LDT_NR, #endif + LOW_KERNEL_NR, VMALLOC_START_NR, VMEMMAP_START_NR, #ifdef CONFIG_KASAN @@ -66,9 +66,6 @@ enum address_markers_idx { KASAN_SHADOW_END_NR, #endif CPU_ENTRY_AREA_NR, -#if defined(CONFIG_MODIFY_LDT_SYSCALL) && !defined(CONFIG_X86_5LEVEL) - LDT_NR, -#endif #ifdef CONFIG_X86_ESPFIX64 ESPFIX_START_NR, #endif @@ -512,11 +509,11 @@ static inline bool is_hypervisor_range(int idx) { #ifdef CONFIG_X86_64 /* - * ffff800000000000 - ffff87ffffffffff is reserved for - * the hypervisor. + * A hole in the beginning of kernel address space reserved + * for a hypervisor. */ - return (idx >= pgd_index(__PAGE_OFFSET) - 16) && - (idx < pgd_index(__PAGE_OFFSET)); + return (idx >= pgd_index(GUARD_HOLE_BASE_ADDR)) && + (idx < pgd_index(GUARD_HOLE_END_ADDR)); #else return false; #endif diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c index 71d4b9d4d43f..2ff25ad33233 100644 --- a/arch/x86/mm/fault.c +++ b/arch/x86/mm/fault.c @@ -27,6 +27,7 @@ #include <asm/vm86.h> /* struct vm86 */ #include <asm/mmu_context.h> /* vma_pkey() */ #include <asm/efi.h> /* efi_recover_from_page_fault()*/ +#include <asm/desc.h> /* store_idt(), ... */ #define CREATE_TRACE_POINTS #include <asm/trace/exceptions.h> @@ -571,10 +572,55 @@ static int is_f00f_bug(struct pt_regs *regs, unsigned long address) return 0; } +static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) +{ + u32 offset = (index >> 3) * sizeof(struct desc_struct); + unsigned long addr; + struct ldttss_desc desc; + + if (index == 0) { + pr_alert("%s: NULL\n", name); + return; + } + + if (offset + sizeof(struct ldttss_desc) >= gdt->size) { + pr_alert("%s: 0x%hx -- out of bounds\n", name, index); + return; + } + + if (probe_kernel_read(&desc, (void *)(gdt->address + offset), + sizeof(struct ldttss_desc))) { + pr_alert("%s: 0x%hx -- GDT entry is not readable\n", + name, index); + return; + } + + addr = desc.base0 | (desc.base1 << 16) | (desc.base2 << 24); +#ifdef CONFIG_X86_64 + addr |= ((u64)desc.base3 << 32); +#endif + pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", + name, index, addr, (desc.limit0 | (desc.limit1 << 16))); +} + +/* + * This helper function transforms the #PF error_code bits into + * "[PROT] [USER]" type of descriptive, almost human-readable error strings: + */ +static void err_str_append(unsigned long error_code, char *buf, unsigned long mask, const char *txt) +{ + if (error_code & mask) { + if (buf[0]) + strcat(buf, " "); + strcat(buf, txt); + } +} + static void -show_fault_oops(struct pt_regs *regs, unsigned long error_code, - unsigned long address) +show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) { + char err_txt[64]; + if (!oops_may_print()) return; @@ -602,6 +648,52 @@ show_fault_oops(struct pt_regs *regs, unsigned long error_code, address < PAGE_SIZE ? "NULL pointer dereference" : "paging request", (void *)address); + err_txt[0] = 0; + + /* + * Note: length of these appended strings including the separation space and the + * zero delimiter must fit into err_txt[]. + */ + err_str_append(error_code, err_txt, X86_PF_PROT, "[PROT]" ); + err_str_append(error_code, err_txt, X86_PF_WRITE, "[WRITE]"); + err_str_append(error_code, err_txt, X86_PF_USER, "[USER]" ); + err_str_append(error_code, err_txt, X86_PF_RSVD, "[RSVD]" ); + err_str_append(error_code, err_txt, X86_PF_INSTR, "[INSTR]"); + err_str_append(error_code, err_txt, X86_PF_PK, "[PK]" ); + + pr_alert("#PF error: %s\n", error_code ? err_txt : "[normal kernel read fault]"); + + if (!(error_code & X86_PF_USER) && user_mode(regs)) { + struct desc_ptr idt, gdt; + u16 ldtr, tr; + + pr_alert("This was a system access from user code\n"); + + /* + * This can happen for quite a few reasons. The more obvious + * ones are faults accessing the GDT, or LDT. Perhaps + * surprisingly, if the CPU tries to deliver a benign or + * contributory exception from user code and gets a page fault + * during delivery, the page fault can be delivered as though + * it originated directly from user code. This could happen + * due to wrong permissions on the IDT, GDT, LDT, TSS, or + * kernel or IST stack. + */ + store_idt(&idt); + + /* Usable even on Xen PV -- it's just slow. */ + native_store_gdt(&gdt); + + pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", + idt.address, idt.size, gdt.address, gdt.size); + + store_ldt(ldtr); + show_ldttss(&gdt, "LDTR", ldtr); + + store_tr(tr); + show_ldttss(&gdt, "TR", tr); + } + dump_pagetable(address); } @@ -621,16 +713,30 @@ pgtable_bad(struct pt_regs *regs, unsigned long error_code, tsk->comm, address); dump_pagetable(address); - tsk->thread.cr2 = address; - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code; - if (__die("Bad pagetable", regs, error_code)) sig = 0; oops_end(flags, regs, sig); } +static void set_signal_archinfo(unsigned long address, + unsigned long error_code) +{ + struct task_struct *tsk = current; + + /* + * To avoid leaking information about the kernel page + * table layout, pretend that user-mode accesses to + * kernel addresses are always protection faults. + */ + if (address >= TASK_SIZE_MAX) + error_code |= X86_PF_PROT; + + tsk->thread.trap_nr = X86_TRAP_PF; + tsk->thread.error_code = error_code | X86_PF_USER; + tsk->thread.cr2 = address; +} + static noinline void no_context(struct pt_regs *regs, unsigned long error_code, unsigned long address, int signal, int si_code) @@ -639,6 +745,15 @@ no_context(struct pt_regs *regs, unsigned long error_code, unsigned long flags; int sig; + if (user_mode(regs)) { + /* + * This is an implicit supervisor-mode access from user + * mode. Bypass all the kernel-mode recovery code and just + * OOPS. + */ + goto oops; + } + /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { /* @@ -656,9 +771,7 @@ no_context(struct pt_regs *regs, unsigned long error_code, * faulting through the emulate_vsyscall() logic. */ if (current->thread.sig_on_uaccess_err && signal) { - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code | X86_PF_USER; - tsk->thread.cr2 = address; + set_signal_archinfo(address, error_code); /* XXX: hwpoison faults will set the wrong code. */ force_sig_fault(signal, si_code, (void __user *)address, @@ -726,6 +839,7 @@ no_context(struct pt_regs *regs, unsigned long error_code, if (IS_ENABLED(CONFIG_EFI)) efi_recover_from_page_fault(address); +oops: /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice: @@ -737,10 +851,6 @@ no_context(struct pt_regs *regs, unsigned long error_code, if (task_stack_end_corrupted(tsk)) printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); - tsk->thread.cr2 = address; - tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code; - sig = SIGKILL; if (__die("Oops", regs, error_code)) sig = 0; @@ -794,7 +904,7 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, struct task_struct *tsk = current; /* User mode accesses just cause a SIGSEGV */ - if (error_code & X86_PF_USER) { + if (user_mode(regs) && (error_code & X86_PF_USER)) { /* * It's possible to have interrupts off here: */ @@ -821,9 +931,7 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, if (likely(show_unhandled_signals)) show_signal_msg(regs, error_code, address, tsk); - tsk->thread.cr2 = address; - tsk->thread.error_code = error_code; - tsk->thread.trap_nr = X86_TRAP_PF; + set_signal_archinfo(address, error_code); if (si_code == SEGV_PKUERR) force_sig_pkuerr((void __user *)address, pkey); @@ -937,9 +1045,7 @@ do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, if (is_prefetch(regs, error_code, address)) return; - tsk->thread.cr2 = address; - tsk->thread.error_code = error_code; - tsk->thread.trap_nr = X86_TRAP_PF; + set_signal_archinfo(address, error_code); #ifdef CONFIG_MEMORY_FAILURE if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { @@ -1148,23 +1254,6 @@ static int fault_in_kernel_space(unsigned long address) return address >= TASK_SIZE_MAX; } -static inline bool smap_violation(int error_code, struct pt_regs *regs) -{ - if (!IS_ENABLED(CONFIG_X86_SMAP)) - return false; - - if (!static_cpu_has(X86_FEATURE_SMAP)) - return false; - - if (error_code & X86_PF_USER) - return false; - - if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) - return false; - - return true; -} - /* * Called for all faults where 'address' is part of the kernel address * space. Might get called for faults that originate from *code* that @@ -1230,7 +1319,6 @@ void do_user_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, unsigned long address) { - unsigned long sw_error_code; struct vm_area_struct *vma; struct task_struct *tsk; struct mm_struct *mm; @@ -1252,10 +1340,16 @@ void do_user_addr_fault(struct pt_regs *regs, pgtable_bad(regs, hw_error_code, address); /* - * Check for invalid kernel (supervisor) access to user - * pages in the user address space. + * If SMAP is on, check for invalid kernel (supervisor) access to user + * pages in the user address space. The odd case here is WRUSS, + * which, according to the preliminary documentation, does not respect + * SMAP and will have the USER bit set so, in all cases, SMAP + * enforcement appears to be consistent with the USER bit. */ - if (unlikely(smap_violation(hw_error_code, regs))) { + if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && + !(hw_error_code & X86_PF_USER) && + !(regs->flags & X86_EFLAGS_AC))) + { bad_area_nosemaphore(regs, hw_error_code, address); return; } @@ -1270,13 +1364,6 @@ void do_user_addr_fault(struct pt_regs *regs, } /* - * hw_error_code is literally the "page fault error code" passed to - * the kernel directly from the hardware. But, we will shortly be - * modifying it in software, so give it a new name. - */ - sw_error_code = hw_error_code; - - /* * It's safe to allow irq's after cr2 has been saved and the * vmalloc fault has been handled. * @@ -1285,26 +1372,6 @@ void do_user_addr_fault(struct pt_regs *regs, */ if (user_mode(regs)) { local_irq_enable(); - /* - * Up to this point, X86_PF_USER set in hw_error_code - * indicated a user-mode access. But, after this, - * X86_PF_USER in sw_error_code will indicate either - * that, *or* an implicit kernel(supervisor)-mode access - * which originated from user mode. - */ - if (!(hw_error_code & X86_PF_USER)) { - /* - * The CPU was in user mode, but the CPU says - * the fault was not a user-mode access. - * Must be an implicit kernel-mode access, - * which we do not expect to happen in the - * user address space. - */ - pr_warn_once("kernel-mode error from user-mode: %lx\n", - hw_error_code); - - sw_error_code |= X86_PF_USER; - } flags |= FAULT_FLAG_USER; } else { if (regs->flags & X86_EFLAGS_IF) @@ -1313,9 +1380,9 @@ void do_user_addr_fault(struct pt_regs *regs, perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); - if (sw_error_code & X86_PF_WRITE) + if (hw_error_code & X86_PF_WRITE) flags |= FAULT_FLAG_WRITE; - if (sw_error_code & X86_PF_INSTR) + if (hw_error_code & X86_PF_INSTR) flags |= FAULT_FLAG_INSTRUCTION; #ifdef CONFIG_X86_64 @@ -1328,7 +1395,7 @@ void do_user_addr_fault(struct pt_regs *regs, * The vsyscall page does not have a "real" VMA, so do this * emulation before we go searching for VMAs. */ - if ((sw_error_code & X86_PF_INSTR) && is_vsyscall_vaddr(address)) { + if ((hw_error_code & X86_PF_INSTR) && is_vsyscall_vaddr(address)) { if (emulate_vsyscall(regs, address)) return; } @@ -1344,18 +1411,15 @@ void do_user_addr_fault(struct pt_regs *regs, * Only do the expensive exception table search when we might be at * risk of a deadlock. This happens if we * 1. Failed to acquire mmap_sem, and - * 2. The access did not originate in userspace. Note: either the - * hardware or earlier page fault code may set X86_PF_USER - * in sw_error_code. + * 2. The access did not originate in userspace. */ if (unlikely(!down_read_trylock(&mm->mmap_sem))) { - if (!(sw_error_code & X86_PF_USER) && - !search_exception_tables(regs->ip)) { + if (!user_mode(regs) && !search_exception_tables(regs->ip)) { /* * Fault from code in kernel from * which we do not expect faults. */ - bad_area_nosemaphore(regs, sw_error_code, address); + bad_area_nosemaphore(regs, hw_error_code, address); return; } retry: @@ -1371,29 +1435,17 @@ retry: vma = find_vma(mm, address); if (unlikely(!vma)) { - bad_area(regs, sw_error_code, address); + bad_area(regs, hw_error_code, address); return; } if (likely(vma->vm_start <= address)) goto good_area; if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { - bad_area(regs, sw_error_code, address); + bad_area(regs, hw_error_code, address); return; } - if (sw_error_code & X86_PF_USER) { - /* - * Accessing the stack below %sp is always a bug. - * The large cushion allows instructions like enter - * and pusha to work. ("enter $65535, $31" pushes - * 32 pointers and then decrements %sp by 65535.) - */ - if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { - bad_area(regs, sw_error_code, address); - return; - } - } if (unlikely(expand_stack(vma, address))) { - bad_area(regs, sw_error_code, address); + bad_area(regs, hw_error_code, address); return; } @@ -1402,8 +1454,8 @@ retry: * we can handle it.. */ good_area: - if (unlikely(access_error(sw_error_code, vma))) { - bad_area_access_error(regs, sw_error_code, address, vma); + if (unlikely(access_error(hw_error_code, vma))) { + bad_area_access_error(regs, hw_error_code, address, vma); return; } @@ -1442,13 +1494,13 @@ good_area: return; /* Not returning to user mode? Handle exceptions or die: */ - no_context(regs, sw_error_code, address, SIGBUS, BUS_ADRERR); + no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR); return; } up_read(&mm->mmap_sem); if (unlikely(fault & VM_FAULT_ERROR)) { - mm_fault_error(regs, sw_error_code, address, fault); + mm_fault_error(regs, hw_error_code, address, fault); return; } diff --git a/arch/x86/mm/init.c b/arch/x86/mm/init.c index ef99f3892e1f..427a955a2cf2 100644 --- a/arch/x86/mm/init.c +++ b/arch/x86/mm/init.c @@ -931,7 +931,7 @@ unsigned long max_swapfile_size(void) pages = generic_max_swapfile_size(); - if (boot_cpu_has_bug(X86_BUG_L1TF)) { + if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ unsigned long long l1tf_limit = l1tf_pfn_limit(); /* diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c index 5fab264948c2..484c1b92f078 100644 --- a/arch/x86/mm/init_64.c +++ b/arch/x86/mm/init_64.c @@ -432,7 +432,7 @@ phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, E820_TYPE_RAM) && !e820__mapped_any(paddr & PAGE_MASK, paddr_next, E820_TYPE_RESERVED_KERN)) - set_pte(pte, __pte(0)); + set_pte_safe(pte, __pte(0)); continue; } @@ -452,7 +452,7 @@ phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end, pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte); pages++; - set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); + set_pte_safe(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE; } @@ -487,7 +487,7 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, E820_TYPE_RAM) && !e820__mapped_any(paddr & PMD_MASK, paddr_next, E820_TYPE_RESERVED_KERN)) - set_pmd(pmd, __pmd(0)); + set_pmd_safe(pmd, __pmd(0)); continue; } @@ -524,7 +524,7 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, if (page_size_mask & (1<<PG_LEVEL_2M)) { pages++; spin_lock(&init_mm.page_table_lock); - set_pte((pte_t *)pmd, + set_pte_safe((pte_t *)pmd, pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT, __pgprot(pgprot_val(prot) | _PAGE_PSE))); spin_unlock(&init_mm.page_table_lock); @@ -536,7 +536,7 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end, paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot); spin_lock(&init_mm.page_table_lock); - pmd_populate_kernel(&init_mm, pmd, pte); + pmd_populate_kernel_safe(&init_mm, pmd, pte); spin_unlock(&init_mm.page_table_lock); } update_page_count(PG_LEVEL_2M, pages); @@ -573,7 +573,7 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, E820_TYPE_RAM) && !e820__mapped_any(paddr & PUD_MASK, paddr_next, E820_TYPE_RESERVED_KERN)) - set_pud(pud, __pud(0)); + set_pud_safe(pud, __pud(0)); continue; } @@ -584,7 +584,6 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, paddr_end, page_size_mask, prot); - __flush_tlb_all(); continue; } /* @@ -611,7 +610,7 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, if (page_size_mask & (1<<PG_LEVEL_1G)) { pages++; spin_lock(&init_mm.page_table_lock); - set_pte((pte_t *)pud, + set_pte_safe((pte_t *)pud, pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT, PAGE_KERNEL_LARGE)); spin_unlock(&init_mm.page_table_lock); @@ -624,10 +623,9 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end, page_size_mask, prot); spin_lock(&init_mm.page_table_lock); - pud_populate(&init_mm, pud, pmd); + pud_populate_safe(&init_mm, pud, pmd); spin_unlock(&init_mm.page_table_lock); } - __flush_tlb_all(); update_page_count(PG_LEVEL_1G, pages); @@ -659,7 +657,7 @@ phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, E820_TYPE_RAM) && !e820__mapped_any(paddr & P4D_MASK, paddr_next, E820_TYPE_RESERVED_KERN)) - set_p4d(p4d, __p4d(0)); + set_p4d_safe(p4d, __p4d(0)); continue; } @@ -668,7 +666,6 @@ phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, paddr_last = phys_pud_init(pud, paddr, paddr_end, page_size_mask); - __flush_tlb_all(); continue; } @@ -677,10 +674,9 @@ phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end, page_size_mask); spin_lock(&init_mm.page_table_lock); - p4d_populate(&init_mm, p4d, pud); + p4d_populate_safe(&init_mm, p4d, pud); spin_unlock(&init_mm.page_table_lock); } - __flush_tlb_all(); return paddr_last; } @@ -723,9 +719,9 @@ kernel_physical_mapping_init(unsigned long paddr_start, spin_lock(&init_mm.page_table_lock); if (pgtable_l5_enabled()) - pgd_populate(&init_mm, pgd, p4d); + pgd_populate_safe(&init_mm, pgd, p4d); else - p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d); + p4d_populate_safe(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d); spin_unlock(&init_mm.page_table_lock); pgd_changed = true; } @@ -733,8 +729,6 @@ kernel_physical_mapping_init(unsigned long paddr_start, if (pgd_changed) sync_global_pgds(vaddr_start, vaddr_end - 1); - __flush_tlb_all(); - return paddr_last; } diff --git a/arch/x86/mm/mem_encrypt.c b/arch/x86/mm/mem_encrypt.c index 006f373f54ab..385afa2b9e17 100644 --- a/arch/x86/mm/mem_encrypt.c +++ b/arch/x86/mm/mem_encrypt.c @@ -381,13 +381,6 @@ void __init mem_encrypt_init(void) swiotlb_update_mem_attributes(); /* - * With SEV, DMA operations cannot use encryption, we need to use - * SWIOTLB to bounce buffer DMA operation. - */ - if (sev_active()) - dma_ops = &swiotlb_dma_ops; - - /* * With SEV, we need to unroll the rep string I/O instructions. */ if (sev_active()) diff --git a/arch/x86/mm/mm_internal.h b/arch/x86/mm/mm_internal.h index 4e1f6e1b8159..319bde386d5f 100644 --- a/arch/x86/mm/mm_internal.h +++ b/arch/x86/mm/mm_internal.h @@ -19,4 +19,6 @@ extern int after_bootmem; void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache); +extern unsigned long tlb_single_page_flush_ceiling; + #endif /* __X86_MM_INTERNAL_H */ diff --git a/arch/x86/mm/pageattr-test.c b/arch/x86/mm/pageattr-test.c index 08f8f76a4852..facce271e8b9 100644 --- a/arch/x86/mm/pageattr-test.c +++ b/arch/x86/mm/pageattr-test.c @@ -23,7 +23,8 @@ static __read_mostly int print = 1; enum { - NTEST = 400, + NTEST = 3 * 100, + NPAGES = 100, #ifdef CONFIG_X86_64 LPS = (1 << PMD_SHIFT), #elif defined(CONFIG_X86_PAE) @@ -110,6 +111,9 @@ static int print_split(struct split_state *s) static unsigned long addr[NTEST]; static unsigned int len[NTEST]; +static struct page *pages[NPAGES]; +static unsigned long addrs[NPAGES]; + /* Change the global bit on random pages in the direct mapping */ static int pageattr_test(void) { @@ -120,7 +124,6 @@ static int pageattr_test(void) unsigned int level; int i, k; int err; - unsigned long test_addr; if (print) printk(KERN_INFO "CPA self-test:\n"); @@ -137,7 +140,7 @@ static int pageattr_test(void) unsigned long pfn = prandom_u32() % max_pfn_mapped; addr[i] = (unsigned long)__va(pfn << PAGE_SHIFT); - len[i] = prandom_u32() % 100; + len[i] = prandom_u32() % NPAGES; len[i] = min_t(unsigned long, len[i], max_pfn_mapped - pfn - 1); if (len[i] == 0) @@ -167,14 +170,29 @@ static int pageattr_test(void) break; } __set_bit(pfn + k, bm); + addrs[k] = addr[i] + k*PAGE_SIZE; + pages[k] = pfn_to_page(pfn + k); } if (!addr[i] || !pte || !k) { addr[i] = 0; continue; } - test_addr = addr[i]; - err = change_page_attr_set(&test_addr, len[i], PAGE_CPA_TEST, 0); + switch (i % 3) { + case 0: + err = change_page_attr_set(&addr[i], len[i], PAGE_CPA_TEST, 0); + break; + + case 1: + err = change_page_attr_set(addrs, len[1], PAGE_CPA_TEST, 1); + break; + + case 2: + err = cpa_set_pages_array(pages, len[i], PAGE_CPA_TEST); + break; + } + + if (err < 0) { printk(KERN_ERR "CPA %d failed %d\n", i, err); failed++; @@ -206,8 +224,7 @@ static int pageattr_test(void) failed++; continue; } - test_addr = addr[i]; - err = change_page_attr_clear(&test_addr, len[i], PAGE_CPA_TEST, 0); + err = change_page_attr_clear(&addr[i], len[i], PAGE_CPA_TEST, 0); if (err < 0) { printk(KERN_ERR "CPA reverting failed: %d\n", err); failed++; diff --git a/arch/x86/mm/pageattr.c b/arch/x86/mm/pageattr.c index db7a10082238..4f8972311a77 100644 --- a/arch/x86/mm/pageattr.c +++ b/arch/x86/mm/pageattr.c @@ -26,6 +26,8 @@ #include <asm/pat.h> #include <asm/set_memory.h> +#include "mm_internal.h" + /* * The current flushing context - we pass it instead of 5 arguments: */ @@ -35,11 +37,11 @@ struct cpa_data { pgprot_t mask_set; pgprot_t mask_clr; unsigned long numpages; - int flags; + unsigned long curpage; unsigned long pfn; - unsigned force_split : 1, + unsigned int flags; + unsigned int force_split : 1, force_static_prot : 1; - int curpage; struct page **pages; }; @@ -228,19 +230,28 @@ static bool __cpa_pfn_in_highmap(unsigned long pfn) #endif +static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx) +{ + if (cpa->flags & CPA_PAGES_ARRAY) { + struct page *page = cpa->pages[idx]; + + if (unlikely(PageHighMem(page))) + return 0; + + return (unsigned long)page_address(page); + } + + if (cpa->flags & CPA_ARRAY) + return cpa->vaddr[idx]; + + return *cpa->vaddr + idx * PAGE_SIZE; +} + /* * Flushing functions */ -/** - * clflush_cache_range - flush a cache range with clflush - * @vaddr: virtual start address - * @size: number of bytes to flush - * - * clflushopt is an unordered instruction which needs fencing with mfence or - * sfence to avoid ordering issues. - */ -void clflush_cache_range(void *vaddr, unsigned int size) +static void clflush_cache_range_opt(void *vaddr, unsigned int size) { const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); @@ -249,11 +260,22 @@ void clflush_cache_range(void *vaddr, unsigned int size) if (p >= vend) return; - mb(); - for (; p < vend; p += clflush_size) clflushopt(p); +} +/** + * clflush_cache_range - flush a cache range with clflush + * @vaddr: virtual start address + * @size: number of bytes to flush + * + * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or + * SFENCE to avoid ordering issues. + */ +void clflush_cache_range(void *vaddr, unsigned int size) +{ + mb(); + clflush_cache_range_opt(vaddr, size); mb(); } EXPORT_SYMBOL_GPL(clflush_cache_range); @@ -285,79 +307,49 @@ static void cpa_flush_all(unsigned long cache) on_each_cpu(__cpa_flush_all, (void *) cache, 1); } -static bool __cpa_flush_range(unsigned long start, int numpages, int cache) +void __cpa_flush_tlb(void *data) { - BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); - - WARN_ON(PAGE_ALIGN(start) != start); - - if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { - cpa_flush_all(cache); - return true; - } + struct cpa_data *cpa = data; + unsigned int i; - flush_tlb_kernel_range(start, start + PAGE_SIZE * numpages); - - return !cache; + for (i = 0; i < cpa->numpages; i++) + __flush_tlb_one_kernel(__cpa_addr(cpa, i)); } -static void cpa_flush_range(unsigned long start, int numpages, int cache) +static void cpa_flush(struct cpa_data *data, int cache) { - unsigned int i, level; - unsigned long addr; + struct cpa_data *cpa = data; + unsigned int i; - if (__cpa_flush_range(start, numpages, cache)) - return; - - /* - * We only need to flush on one CPU, - * clflush is a MESI-coherent instruction that - * will cause all other CPUs to flush the same - * cachelines: - */ - for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) { - pte_t *pte = lookup_address(addr, &level); + BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); - /* - * Only flush present addresses: - */ - if (pte && (pte_val(*pte) & _PAGE_PRESENT)) - clflush_cache_range((void *) addr, PAGE_SIZE); + if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) { + cpa_flush_all(cache); + return; } -} -static void cpa_flush_array(unsigned long baddr, unsigned long *start, - int numpages, int cache, - int in_flags, struct page **pages) -{ - unsigned int i, level; + if (cpa->numpages <= tlb_single_page_flush_ceiling) + on_each_cpu(__cpa_flush_tlb, cpa, 1); + else + flush_tlb_all(); - if (__cpa_flush_range(baddr, numpages, cache)) + if (!cache) return; - /* - * We only need to flush on one CPU, - * clflush is a MESI-coherent instruction that - * will cause all other CPUs to flush the same - * cachelines: - */ - for (i = 0; i < numpages; i++) { - unsigned long addr; - pte_t *pte; - - if (in_flags & CPA_PAGES_ARRAY) - addr = (unsigned long)page_address(pages[i]); - else - addr = start[i]; + mb(); + for (i = 0; i < cpa->numpages; i++) { + unsigned long addr = __cpa_addr(cpa, i); + unsigned int level; - pte = lookup_address(addr, &level); + pte_t *pte = lookup_address(addr, &level); /* * Only flush present addresses: */ if (pte && (pte_val(*pte) & _PAGE_PRESENT)) - clflush_cache_range((void *)addr, PAGE_SIZE); + clflush_cache_range_opt((void *)addr, PAGE_SIZE); } + mb(); } static bool overlaps(unsigned long r1_start, unsigned long r1_end, @@ -1468,15 +1460,7 @@ static int __change_page_attr(struct cpa_data *cpa, int primary) unsigned int level; pte_t *kpte, old_pte; - if (cpa->flags & CPA_PAGES_ARRAY) { - struct page *page = cpa->pages[cpa->curpage]; - if (unlikely(PageHighMem(page))) - return 0; - address = (unsigned long)page_address(page); - } else if (cpa->flags & CPA_ARRAY) - address = cpa->vaddr[cpa->curpage]; - else - address = *cpa->vaddr; + address = __cpa_addr(cpa, cpa->curpage); repeat: kpte = _lookup_address_cpa(cpa, address, &level); if (!kpte) @@ -1557,22 +1541,14 @@ static int cpa_process_alias(struct cpa_data *cpa) * No need to redo, when the primary call touched the direct * mapping already: */ - if (cpa->flags & CPA_PAGES_ARRAY) { - struct page *page = cpa->pages[cpa->curpage]; - if (unlikely(PageHighMem(page))) - return 0; - vaddr = (unsigned long)page_address(page); - } else if (cpa->flags & CPA_ARRAY) - vaddr = cpa->vaddr[cpa->curpage]; - else - vaddr = *cpa->vaddr; - + vaddr = __cpa_addr(cpa, cpa->curpage); if (!(within(vaddr, PAGE_OFFSET, PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { alias_cpa = *cpa; alias_cpa.vaddr = &laddr; alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); + alias_cpa.curpage = 0; ret = __change_page_attr_set_clr(&alias_cpa, 0); if (ret) @@ -1592,6 +1568,7 @@ static int cpa_process_alias(struct cpa_data *cpa) alias_cpa = *cpa; alias_cpa.vaddr = &temp_cpa_vaddr; alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); + alias_cpa.curpage = 0; /* * The high mapping range is imprecise, so ignore the @@ -1607,14 +1584,15 @@ static int cpa_process_alias(struct cpa_data *cpa) static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) { unsigned long numpages = cpa->numpages; - int ret; + unsigned long rempages = numpages; + int ret = 0; - while (numpages) { + while (rempages) { /* * Store the remaining nr of pages for the large page * preservation check. */ - cpa->numpages = numpages; + cpa->numpages = rempages; /* for array changes, we can't use large page */ if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) cpa->numpages = 1; @@ -1625,12 +1603,12 @@ static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) if (!debug_pagealloc_enabled()) spin_unlock(&cpa_lock); if (ret) - return ret; + goto out; if (checkalias) { ret = cpa_process_alias(cpa); if (ret) - return ret; + goto out; } /* @@ -1638,15 +1616,15 @@ static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) * CPA operation. Either a large page has been * preserved or a single page update happened. */ - BUG_ON(cpa->numpages > numpages || !cpa->numpages); - numpages -= cpa->numpages; - if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) - cpa->curpage++; - else - *cpa->vaddr += cpa->numpages * PAGE_SIZE; - + BUG_ON(cpa->numpages > rempages || !cpa->numpages); + rempages -= cpa->numpages; + cpa->curpage += cpa->numpages; } - return 0; + +out: + /* Restore the original numpages */ + cpa->numpages = numpages; + return ret; } /* @@ -1679,7 +1657,6 @@ static int change_page_attr_set_clr(unsigned long *addr, int numpages, { struct cpa_data cpa; int ret, cache, checkalias; - unsigned long baddr = 0; memset(&cpa, 0, sizeof(cpa)); @@ -1704,7 +1681,7 @@ static int change_page_attr_set_clr(unsigned long *addr, int numpages, } else if (!(in_flag & CPA_PAGES_ARRAY)) { /* * in_flag of CPA_PAGES_ARRAY implies it is aligned. - * No need to cehck in that case + * No need to check in that case */ if (*addr & ~PAGE_MASK) { *addr &= PAGE_MASK; @@ -1713,11 +1690,6 @@ static int change_page_attr_set_clr(unsigned long *addr, int numpages, */ WARN_ON_ONCE(1); } - /* - * Save address for cache flush. *addr is modified in the call - * to __change_page_attr_set_clr() below. - */ - baddr = make_addr_canonical_again(*addr); } /* Must avoid aliasing mappings in the highmem code */ @@ -1765,13 +1737,7 @@ static int change_page_attr_set_clr(unsigned long *addr, int numpages, goto out; } - if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) { - cpa_flush_array(baddr, addr, numpages, cache, - cpa.flags, pages); - } else { - cpa_flush_range(baddr, numpages, cache); - } - + cpa_flush(&cpa, cache); out: return ret; } @@ -1842,14 +1808,14 @@ out_err: } EXPORT_SYMBOL(set_memory_uc); -static int _set_memory_array(unsigned long *addr, int addrinarray, +static int _set_memory_array(unsigned long *addr, int numpages, enum page_cache_mode new_type) { enum page_cache_mode set_type; int i, j; int ret; - for (i = 0; i < addrinarray; i++) { + for (i = 0; i < numpages; i++) { ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE, new_type, NULL); if (ret) @@ -1860,11 +1826,11 @@ static int _set_memory_array(unsigned long *addr, int addrinarray, set_type = (new_type == _PAGE_CACHE_MODE_WC) ? _PAGE_CACHE_MODE_UC_MINUS : new_type; - ret = change_page_attr_set(addr, addrinarray, + ret = change_page_attr_set(addr, numpages, cachemode2pgprot(set_type), 1); if (!ret && new_type == _PAGE_CACHE_MODE_WC) - ret = change_page_attr_set_clr(addr, addrinarray, + ret = change_page_attr_set_clr(addr, numpages, cachemode2pgprot( _PAGE_CACHE_MODE_WC), __pgprot(_PAGE_CACHE_MASK), @@ -1881,36 +1847,34 @@ out_free: return ret; } -int set_memory_array_uc(unsigned long *addr, int addrinarray) +int set_memory_array_uc(unsigned long *addr, int numpages) { - return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS); + return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_UC_MINUS); } EXPORT_SYMBOL(set_memory_array_uc); -int set_memory_array_wc(unsigned long *addr, int addrinarray) +int set_memory_array_wc(unsigned long *addr, int numpages) { - return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC); + return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WC); } EXPORT_SYMBOL(set_memory_array_wc); -int set_memory_array_wt(unsigned long *addr, int addrinarray) +int set_memory_array_wt(unsigned long *addr, int numpages) { - return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT); + return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WT); } EXPORT_SYMBOL_GPL(set_memory_array_wt); int _set_memory_wc(unsigned long addr, int numpages) { int ret; - unsigned long addr_copy = addr; ret = change_page_attr_set(&addr, numpages, cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), 0); if (!ret) { - ret = change_page_attr_set_clr(&addr_copy, numpages, - cachemode2pgprot( - _PAGE_CACHE_MODE_WC), + ret = change_page_attr_set_clr(&addr, numpages, + cachemode2pgprot(_PAGE_CACHE_MODE_WC), __pgprot(_PAGE_CACHE_MASK), 0, 0, NULL); } @@ -1977,18 +1941,18 @@ int set_memory_wb(unsigned long addr, int numpages) } EXPORT_SYMBOL(set_memory_wb); -int set_memory_array_wb(unsigned long *addr, int addrinarray) +int set_memory_array_wb(unsigned long *addr, int numpages) { int i; int ret; /* WB cache mode is hard wired to all cache attribute bits being 0 */ - ret = change_page_attr_clear(addr, addrinarray, + ret = change_page_attr_clear(addr, numpages, __pgprot(_PAGE_CACHE_MASK), 1); if (ret) return ret; - for (i = 0; i < addrinarray; i++) + for (i = 0; i < numpages; i++) free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE); return 0; @@ -2058,7 +2022,6 @@ int set_memory_global(unsigned long addr, int numpages) static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) { struct cpa_data cpa; - unsigned long start; int ret; /* Nothing to do if memory encryption is not active */ @@ -2069,8 +2032,6 @@ static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) addr &= PAGE_MASK; - start = addr; - memset(&cpa, 0, sizeof(cpa)); cpa.vaddr = &addr; cpa.numpages = numpages; @@ -2085,18 +2046,18 @@ static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) /* * Before changing the encryption attribute, we need to flush caches. */ - cpa_flush_range(start, numpages, 1); + cpa_flush(&cpa, 1); ret = __change_page_attr_set_clr(&cpa, 1); /* - * After changing the encryption attribute, we need to flush TLBs - * again in case any speculative TLB caching occurred (but no need - * to flush caches again). We could just use cpa_flush_all(), but - * in case TLB flushing gets optimized in the cpa_flush_range() - * path use the same logic as above. + * After changing the encryption attribute, we need to flush TLBs again + * in case any speculative TLB caching occurred (but no need to flush + * caches again). We could just use cpa_flush_all(), but in case TLB + * flushing gets optimized in the cpa_flush() path use the same logic + * as above. */ - cpa_flush_range(start, numpages, 0); + cpa_flush(&cpa, 0); return ret; } @@ -2121,7 +2082,7 @@ int set_pages_uc(struct page *page, int numpages) } EXPORT_SYMBOL(set_pages_uc); -static int _set_pages_array(struct page **pages, int addrinarray, +static int _set_pages_array(struct page **pages, int numpages, enum page_cache_mode new_type) { unsigned long start; @@ -2131,7 +2092,7 @@ static int _set_pages_array(struct page **pages, int addrinarray, int free_idx; int ret; - for (i = 0; i < addrinarray; i++) { + for (i = 0; i < numpages; i++) { if (PageHighMem(pages[i])) continue; start = page_to_pfn(pages[i]) << PAGE_SHIFT; @@ -2144,10 +2105,10 @@ static int _set_pages_array(struct page **pages, int addrinarray, set_type = (new_type == _PAGE_CACHE_MODE_WC) ? _PAGE_CACHE_MODE_UC_MINUS : new_type; - ret = cpa_set_pages_array(pages, addrinarray, + ret = cpa_set_pages_array(pages, numpages, cachemode2pgprot(set_type)); if (!ret && new_type == _PAGE_CACHE_MODE_WC) - ret = change_page_attr_set_clr(NULL, addrinarray, + ret = change_page_attr_set_clr(NULL, numpages, cachemode2pgprot( _PAGE_CACHE_MODE_WC), __pgprot(_PAGE_CACHE_MASK), @@ -2167,21 +2128,21 @@ err_out: return -EINVAL; } -int set_pages_array_uc(struct page **pages, int addrinarray) +int set_pages_array_uc(struct page **pages, int numpages) { - return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS); + return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS); } EXPORT_SYMBOL(set_pages_array_uc); -int set_pages_array_wc(struct page **pages, int addrinarray) +int set_pages_array_wc(struct page **pages, int numpages) { - return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC); + return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC); } EXPORT_SYMBOL(set_pages_array_wc); -int set_pages_array_wt(struct page **pages, int addrinarray) +int set_pages_array_wt(struct page **pages, int numpages) { - return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT); + return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT); } EXPORT_SYMBOL_GPL(set_pages_array_wt); @@ -2193,7 +2154,7 @@ int set_pages_wb(struct page *page, int numpages) } EXPORT_SYMBOL(set_pages_wb); -int set_pages_array_wb(struct page **pages, int addrinarray) +int set_pages_array_wb(struct page **pages, int numpages) { int retval; unsigned long start; @@ -2201,12 +2162,12 @@ int set_pages_array_wb(struct page **pages, int addrinarray) int i; /* WB cache mode is hard wired to all cache attribute bits being 0 */ - retval = cpa_clear_pages_array(pages, addrinarray, + retval = cpa_clear_pages_array(pages, numpages, __pgprot(_PAGE_CACHE_MASK)); if (retval) return retval; - for (i = 0; i < addrinarray; i++) { + for (i = 0; i < numpages; i++) { if (PageHighMem(pages[i])) continue; start = page_to_pfn(pages[i]) << PAGE_SHIFT; @@ -2338,8 +2299,8 @@ bool kernel_page_present(struct page *page) #endif /* CONFIG_DEBUG_PAGEALLOC */ -int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, - unsigned numpages, unsigned long page_flags) +int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, + unsigned numpages, unsigned long page_flags) { int retval = -EINVAL; @@ -2353,6 +2314,8 @@ int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, .flags = 0, }; + WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); + if (!(__supported_pte_mask & _PAGE_NX)) goto out; @@ -2375,6 +2338,40 @@ out: } /* + * __flush_tlb_all() flushes mappings only on current CPU and hence this + * function shouldn't be used in an SMP environment. Presently, it's used only + * during boot (way before smp_init()) by EFI subsystem and hence is ok. + */ +int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, + unsigned long numpages) +{ + int retval; + + /* + * The typical sequence for unmapping is to find a pte through + * lookup_address_in_pgd() (ideally, it should never return NULL because + * the address is already mapped) and change it's protections. As pfn is + * the *target* of a mapping, it's not useful while unmapping. + */ + struct cpa_data cpa = { + .vaddr = &address, + .pfn = 0, + .pgd = pgd, + .numpages = numpages, + .mask_set = __pgprot(0), + .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), + .flags = 0, + }; + + WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP"); + + retval = __change_page_attr_set_clr(&cpa, 0); + __flush_tlb_all(); + + return retval; +} + +/* * The testcases use internal knowledge of the implementation that shouldn't * be exposed to the rest of the kernel. Include these directly here. */ diff --git a/arch/x86/mm/pat.c b/arch/x86/mm/pat.c index 08013524fba1..4fe956a63b25 100644 --- a/arch/x86/mm/pat.c +++ b/arch/x86/mm/pat.c @@ -519,8 +519,13 @@ static u64 sanitize_phys(u64 address) * for a "decoy" virtual address (bit 63 clear) passed to * set_memory_X(). __pa() on a "decoy" address results in a * physical address with bit 63 set. + * + * Decoy addresses are not present for 32-bit builds, see + * set_mce_nospec(). */ - return address & __PHYSICAL_MASK; + if (IS_ENABLED(CONFIG_X86_64)) + return address & __PHYSICAL_MASK; + return address; } /* @@ -546,7 +551,11 @@ int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type, start = sanitize_phys(start); end = sanitize_phys(end); - BUG_ON(start >= end); /* end is exclusive */ + if (start >= end) { + WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__, + start, end - 1, cattr_name(req_type)); + return -EINVAL; + } if (!pat_enabled()) { /* This is identical to page table setting without PAT */ diff --git a/arch/x86/mm/pkeys.c b/arch/x86/mm/pkeys.c index 6e98e0a7c923..047a77f6a10c 100644 --- a/arch/x86/mm/pkeys.c +++ b/arch/x86/mm/pkeys.c @@ -131,6 +131,7 @@ int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, int pkey * in the process's lifetime will not accidentally get access * to data which is pkey-protected later on. */ +static u32 init_pkru_value = PKRU_AD_KEY( 1) | PKRU_AD_KEY( 2) | PKRU_AD_KEY( 3) | PKRU_AD_KEY( 4) | PKRU_AD_KEY( 5) | PKRU_AD_KEY( 6) | PKRU_AD_KEY( 7) | PKRU_AD_KEY( 8) | PKRU_AD_KEY( 9) | diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c index bddd6b3cee1d..999d6d8f0bef 100644 --- a/arch/x86/mm/tlb.c +++ b/arch/x86/mm/tlb.c @@ -7,7 +7,6 @@ #include <linux/export.h> #include <linux/cpu.h> #include <linux/debugfs.h> -#include <linux/ptrace.h> #include <asm/tlbflush.h> #include <asm/mmu_context.h> @@ -16,6 +15,8 @@ #include <asm/apic.h> #include <asm/uv/uv.h> +#include "mm_internal.h" + /* * TLB flushing, formerly SMP-only * c/o Linus Torvalds. @@ -31,6 +32,12 @@ */ /* + * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is + * stored in cpu_tlb_state.last_user_mm_ibpb. + */ +#define LAST_USER_MM_IBPB 0x1UL + +/* * We get here when we do something requiring a TLB invalidation * but could not go invalidate all of the contexts. We do the * necessary invalidation by clearing out the 'ctx_id' which @@ -181,17 +188,87 @@ static void sync_current_stack_to_mm(struct mm_struct *mm) } } -static bool ibpb_needed(struct task_struct *tsk, u64 last_ctx_id) +static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) +{ + unsigned long next_tif = task_thread_info(next)->flags; + unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; + + return (unsigned long)next->mm | ibpb; +} + +static void cond_ibpb(struct task_struct *next) { + if (!next || !next->mm) + return; + /* - * Check if the current (previous) task has access to the memory - * of the @tsk (next) task. If access is denied, make sure to - * issue a IBPB to stop user->user Spectre-v2 attacks. - * - * Note: __ptrace_may_access() returns 0 or -ERRNO. + * Both, the conditional and the always IBPB mode use the mm + * pointer to avoid the IBPB when switching between tasks of the + * same process. Using the mm pointer instead of mm->context.ctx_id + * opens a hypothetical hole vs. mm_struct reuse, which is more or + * less impossible to control by an attacker. Aside of that it + * would only affect the first schedule so the theoretically + * exposed data is not really interesting. */ - return (tsk && tsk->mm && tsk->mm->context.ctx_id != last_ctx_id && - ptrace_may_access_sched(tsk, PTRACE_MODE_SPEC_IBPB)); + if (static_branch_likely(&switch_mm_cond_ibpb)) { + unsigned long prev_mm, next_mm; + + /* + * This is a bit more complex than the always mode because + * it has to handle two cases: + * + * 1) Switch from a user space task (potential attacker) + * which has TIF_SPEC_IB set to a user space task + * (potential victim) which has TIF_SPEC_IB not set. + * + * 2) Switch from a user space task (potential attacker) + * which has TIF_SPEC_IB not set to a user space task + * (potential victim) which has TIF_SPEC_IB set. + * + * This could be done by unconditionally issuing IBPB when + * a task which has TIF_SPEC_IB set is either scheduled in + * or out. Though that results in two flushes when: + * + * - the same user space task is scheduled out and later + * scheduled in again and only a kernel thread ran in + * between. + * + * - a user space task belonging to the same process is + * scheduled in after a kernel thread ran in between + * + * - a user space task belonging to the same process is + * scheduled in immediately. + * + * Optimize this with reasonably small overhead for the + * above cases. Mangle the TIF_SPEC_IB bit into the mm + * pointer of the incoming task which is stored in + * cpu_tlbstate.last_user_mm_ibpb for comparison. + */ + next_mm = mm_mangle_tif_spec_ib(next); + prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); + + /* + * Issue IBPB only if the mm's are different and one or + * both have the IBPB bit set. + */ + if (next_mm != prev_mm && + (next_mm | prev_mm) & LAST_USER_MM_IBPB) + indirect_branch_prediction_barrier(); + + this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); + } + + if (static_branch_unlikely(&switch_mm_always_ibpb)) { + /* + * Only flush when switching to a user space task with a + * different context than the user space task which ran + * last on this CPU. + */ + if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { + indirect_branch_prediction_barrier(); + this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); + } + } } void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, @@ -292,22 +369,12 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, new_asid = prev_asid; need_flush = true; } else { - u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id); - /* * Avoid user/user BTB poisoning by flushing the branch * predictor when switching between processes. This stops * one process from doing Spectre-v2 attacks on another. - * - * As an optimization, flush indirect branches only when - * switching into a processes that can't be ptrace by the - * current one (as in such case, attacker has much more - * convenient way how to tamper with the next process than - * branch buffer poisoning). */ - if (static_cpu_has(X86_FEATURE_USE_IBPB) && - ibpb_needed(tsk, last_ctx_id)) - indirect_branch_prediction_barrier(); + cond_ibpb(tsk); if (IS_ENABLED(CONFIG_VMAP_STACK)) { /* @@ -365,14 +432,6 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0); } - /* - * Record last user mm's context id, so we can avoid - * flushing branch buffer with IBPB if we switch back - * to the same user. - */ - if (next != &init_mm) - this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id); - /* Make sure we write CR3 before loaded_mm. */ barrier(); @@ -441,7 +500,7 @@ void initialize_tlbstate_and_flush(void) write_cr3(build_cr3(mm->pgd, 0)); /* Reinitialize tlbstate. */ - this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id); + this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); this_cpu_write(cpu_tlbstate.next_asid, 1); this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); @@ -664,7 +723,7 @@ void native_flush_tlb_others(const struct cpumask *cpumask, * * This is in units of pages. */ -static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; +unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned int stride_shift, diff --git a/arch/x86/net/bpf_jit_comp.c b/arch/x86/net/bpf_jit_comp.c index 2580cd2e98b1..5542303c43d9 100644 --- a/arch/x86/net/bpf_jit_comp.c +++ b/arch/x86/net/bpf_jit_comp.c @@ -1181,6 +1181,8 @@ out_image: } if (!image || !prog->is_func || extra_pass) { + if (image) + bpf_prog_fill_jited_linfo(prog, addrs); out_addrs: kfree(addrs); kfree(jit_data); diff --git a/arch/x86/pci/i386.c b/arch/x86/pci/i386.c index 8cd66152cdb0..9df652d3d927 100644 --- a/arch/x86/pci/i386.c +++ b/arch/x86/pci/i386.c @@ -59,7 +59,7 @@ static struct pcibios_fwaddrmap *pcibios_fwaddrmap_lookup(struct pci_dev *dev) { struct pcibios_fwaddrmap *map; - WARN_ON_SMP(!spin_is_locked(&pcibios_fwaddrmap_lock)); + lockdep_assert_held(&pcibios_fwaddrmap_lock); list_for_each_entry(map, &pcibios_fwaddrmappings, list) if (map->dev == dev) diff --git a/arch/x86/pci/sta2x11-fixup.c b/arch/x86/pci/sta2x11-fixup.c index 7a5bafb76d77..3cdafea55ab6 100644 --- a/arch/x86/pci/sta2x11-fixup.c +++ b/arch/x86/pci/sta2x11-fixup.c @@ -168,7 +168,6 @@ static void sta2x11_setup_pdev(struct pci_dev *pdev) return; pci_set_consistent_dma_mask(pdev, STA2X11_AMBA_SIZE - 1); pci_set_dma_mask(pdev, STA2X11_AMBA_SIZE - 1); - pdev->dev.dma_ops = &swiotlb_dma_ops; pdev->dev.archdata.is_sta2x11 = true; /* We must enable all devices as master, for audio DMA to work */ diff --git a/arch/x86/platform/ce4100/ce4100.c b/arch/x86/platform/ce4100/ce4100.c index ce4b06733c09..b3233b1835ea 100644 --- a/arch/x86/platform/ce4100/ce4100.c +++ b/arch/x86/platform/ce4100/ce4100.c @@ -84,7 +84,7 @@ static void ce4100_mem_serial_out(struct uart_port *p, int offset, int value) } static void ce4100_serial_fixup(int port, struct uart_port *up, - u32 *capabilites) + u32 *capabilities) { #ifdef CONFIG_EARLY_PRINTK /* @@ -111,7 +111,7 @@ static void ce4100_serial_fixup(int port, struct uart_port *up, up->serial_in = ce4100_mem_serial_in; up->serial_out = ce4100_mem_serial_out; - *capabilites |= (1 << 12); + *capabilities |= (1 << 12); } static __init void sdv_serial_fixup(void) diff --git a/arch/x86/platform/efi/early_printk.c b/arch/x86/platform/efi/early_printk.c index 7476b3b097e1..7138bc7a265c 100644 --- a/arch/x86/platform/efi/early_printk.c +++ b/arch/x86/platform/efi/early_printk.c @@ -183,7 +183,7 @@ early_efi_write(struct console *con, const char *str, unsigned int num) num--; } - if (efi_x >= si->lfb_width) { + if (efi_x + font->width > si->lfb_width) { efi_x = 0; efi_y += font->height; } diff --git a/arch/x86/platform/efi/efi.c b/arch/x86/platform/efi/efi.c index 7ae939e353cd..e1cb01a22fa8 100644 --- a/arch/x86/platform/efi/efi.c +++ b/arch/x86/platform/efi/efi.c @@ -993,6 +993,8 @@ static void __init __efi_enter_virtual_mode(void) panic("EFI call to SetVirtualAddressMap() failed!"); } + efi_free_boot_services(); + /* * Now that EFI is in virtual mode, update the function * pointers in the runtime service table to the new virtual addresses. diff --git a/arch/x86/platform/efi/quirks.c b/arch/x86/platform/efi/quirks.c index 95e77a667ba5..17456a1d3f04 100644 --- a/arch/x86/platform/efi/quirks.c +++ b/arch/x86/platform/efi/quirks.c @@ -369,6 +369,40 @@ void __init efi_reserve_boot_services(void) } } +/* + * Apart from having VA mappings for EFI boot services code/data regions, + * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So, + * unmap both 1:1 and VA mappings. + */ +static void __init efi_unmap_pages(efi_memory_desc_t *md) +{ + pgd_t *pgd = efi_mm.pgd; + u64 pa = md->phys_addr; + u64 va = md->virt_addr; + + /* + * To Do: Remove this check after adding functionality to unmap EFI boot + * services code/data regions from direct mapping area because + * "efi=old_map" maps EFI regions in swapper_pg_dir. + */ + if (efi_enabled(EFI_OLD_MEMMAP)) + return; + + /* + * EFI mixed mode has all RAM mapped to access arguments while making + * EFI runtime calls, hence don't unmap EFI boot services code/data + * regions. + */ + if (!efi_is_native()) + return; + + if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages)) + pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa); + + if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages)) + pr_err("Failed to unmap VA mapping for 0x%llx\n", va); +} + void __init efi_free_boot_services(void) { phys_addr_t new_phys, new_size; @@ -394,6 +428,13 @@ void __init efi_free_boot_services(void) } /* + * Before calling set_virtual_address_map(), EFI boot services + * code/data regions were mapped as a quirk for buggy firmware. + * Unmap them from efi_pgd before freeing them up. + */ + efi_unmap_pages(md); + + /* * Nasty quirk: if all sub-1MB memory is used for boot * services, we can get here without having allocated the * real mode trampoline. It's too late to hand boot services diff --git a/arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c b/arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c index dbfc5cf2aa93..96f438d4b026 100644 --- a/arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c +++ b/arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c @@ -1,5 +1,5 @@ /* - * platform_bcm43xx.c: bcm43xx platform data initilization file + * platform_bcm43xx.c: bcm43xx platform data initialization file * * (C) Copyright 2016 Intel Corporation * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com> diff --git a/arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c b/arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c index 27186ad654c9..7a7fc54c449b 100644 --- a/arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c +++ b/arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c @@ -1,5 +1,5 @@ /* - * spidev platform data initilization file + * spidev platform data initialization file * * (C) Copyright 2014, 2016 Intel Corporation * Authors: Andy Shevchenko <andriy.shevchenko@linux.intel.com> diff --git a/arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c b/arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c index 429a94192671..8344d5a928c9 100644 --- a/arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c +++ b/arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c @@ -1,5 +1,5 @@ /* - * PCAL9555a platform data initilization file + * PCAL9555a platform data initialization file * * Copyright (C) 2016, Intel Corporation * diff --git a/arch/x86/platform/intel/iosf_mbi.c b/arch/x86/platform/intel/iosf_mbi.c index 2e569d10f2d0..a9f2e888e135 100644 --- a/arch/x86/platform/intel/iosf_mbi.c +++ b/arch/x86/platform/intel/iosf_mbi.c @@ -13,7 +13,7 @@ * * * The IOSF-SB is a fabric bus available on Atom based SOC's that uses a - * mailbox interface (MBI) to communicate with mutiple devices. This + * mailbox interface (MBI) to communicate with multiple devices. This * driver implements access to this interface for those platforms that can * enumerate the device using PCI. */ diff --git a/arch/x86/platform/olpc/olpc-xo1-sci.c b/arch/x86/platform/olpc/olpc-xo1-sci.c index 7fa8b3b53bc0..d9b8a1c1ab0f 100644 --- a/arch/x86/platform/olpc/olpc-xo1-sci.c +++ b/arch/x86/platform/olpc/olpc-xo1-sci.c @@ -109,7 +109,7 @@ static void detect_lid_state(void) * the edge detector hookup on the gpio inputs on the geode is * odd, to say the least. See http://dev.laptop.org/ticket/5703 * for details, but in a nutshell: we don't use the edge - * detectors. instead, we make use of an anomoly: with the both + * detectors. instead, we make use of an anomaly: with the both * edge detectors turned off, we still get an edge event on a * positive edge transition. to take advantage of this, we use the * front-end inverter to ensure that that's the edge we're always diff --git a/arch/x86/platform/olpc/olpc_dt.c b/arch/x86/platform/olpc/olpc_dt.c index 24d2175a9480..b4ab779f1d47 100644 --- a/arch/x86/platform/olpc/olpc_dt.c +++ b/arch/x86/platform/olpc/olpc_dt.c @@ -19,7 +19,6 @@ #include <linux/kernel.h> #include <linux/memblock.h> #include <linux/of.h> -#include <linux/of_platform.h> #include <linux/of_pdt.h> #include <asm/olpc.h> #include <asm/olpc_ofw.h> @@ -285,20 +284,3 @@ void __init olpc_dt_build_devicetree(void) pr_info("PROM DT: Built device tree with %u bytes of memory.\n", prom_early_allocated); } - -/* A list of DT node/bus matches that we want to expose as platform devices */ -static struct of_device_id __initdata of_ids[] = { - { .compatible = "olpc,xo1-battery" }, - { .compatible = "olpc,xo1-dcon" }, - { .compatible = "olpc,xo1-rtc" }, - {}, -}; - -static int __init olpc_create_platform_devices(void) -{ - if (machine_is_olpc()) - return of_platform_bus_probe(NULL, of_ids, NULL); - else - return 0; -} -device_initcall(olpc_create_platform_devices); diff --git a/arch/x86/platform/pvh/Makefile b/arch/x86/platform/pvh/Makefile new file mode 100644 index 000000000000..5dec5067c9fb --- /dev/null +++ b/arch/x86/platform/pvh/Makefile @@ -0,0 +1,5 @@ +# SPDX-License-Identifier: GPL-2.0 +OBJECT_FILES_NON_STANDARD_head.o := y + +obj-$(CONFIG_PVH) += enlighten.o +obj-$(CONFIG_PVH) += head.o diff --git a/arch/x86/platform/pvh/enlighten.c b/arch/x86/platform/pvh/enlighten.c new file mode 100644 index 000000000000..62f5c7045944 --- /dev/null +++ b/arch/x86/platform/pvh/enlighten.c @@ -0,0 +1,137 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <linux/acpi.h> + +#include <xen/hvc-console.h> + +#include <asm/io_apic.h> +#include <asm/hypervisor.h> +#include <asm/e820/api.h> +#include <asm/x86_init.h> + +#include <asm/xen/interface.h> + +#include <xen/xen.h> +#include <xen/interface/hvm/start_info.h> + +/* + * PVH variables. + * + * pvh_bootparams and pvh_start_info need to live in the data segment since + * they are used after startup_{32|64}, which clear .bss, are invoked. + */ +struct boot_params pvh_bootparams __attribute__((section(".data"))); +struct hvm_start_info pvh_start_info __attribute__((section(".data"))); + +unsigned int pvh_start_info_sz = sizeof(pvh_start_info); + +static u64 pvh_get_root_pointer(void) +{ + return pvh_start_info.rsdp_paddr; +} + +/* + * Xen guests are able to obtain the memory map from the hypervisor via the + * HYPERVISOR_memory_op hypercall. + * If we are trying to boot a Xen PVH guest, it is expected that the kernel + * will have been configured to provide an override for this routine to do + * just that. + */ +void __init __weak mem_map_via_hcall(struct boot_params *ptr __maybe_unused) +{ + xen_raw_printk("Error: Could not find memory map\n"); + BUG(); +} + +static void __init init_pvh_bootparams(bool xen_guest) +{ + memset(&pvh_bootparams, 0, sizeof(pvh_bootparams)); + + if ((pvh_start_info.version > 0) && (pvh_start_info.memmap_entries)) { + struct hvm_memmap_table_entry *ep; + int i; + + ep = __va(pvh_start_info.memmap_paddr); + pvh_bootparams.e820_entries = pvh_start_info.memmap_entries; + + for (i = 0; i < pvh_bootparams.e820_entries ; i++, ep++) { + pvh_bootparams.e820_table[i].addr = ep->addr; + pvh_bootparams.e820_table[i].size = ep->size; + pvh_bootparams.e820_table[i].type = ep->type; + } + } else if (xen_guest) { + mem_map_via_hcall(&pvh_bootparams); + } else { + /* Non-xen guests are not supported by version 0 */ + BUG(); + } + + if (pvh_bootparams.e820_entries < E820_MAX_ENTRIES_ZEROPAGE - 1) { + pvh_bootparams.e820_table[pvh_bootparams.e820_entries].addr = + ISA_START_ADDRESS; + pvh_bootparams.e820_table[pvh_bootparams.e820_entries].size = + ISA_END_ADDRESS - ISA_START_ADDRESS; + pvh_bootparams.e820_table[pvh_bootparams.e820_entries].type = + E820_TYPE_RESERVED; + pvh_bootparams.e820_entries++; + } else + xen_raw_printk("Warning: Can fit ISA range into e820\n"); + + pvh_bootparams.hdr.cmd_line_ptr = + pvh_start_info.cmdline_paddr; + + /* The first module is always ramdisk. */ + if (pvh_start_info.nr_modules) { + struct hvm_modlist_entry *modaddr = + __va(pvh_start_info.modlist_paddr); + pvh_bootparams.hdr.ramdisk_image = modaddr->paddr; + pvh_bootparams.hdr.ramdisk_size = modaddr->size; + } + + /* + * See Documentation/x86/boot.txt. + * + * Version 2.12 supports Xen entry point but we will use default x86/PC + * environment (i.e. hardware_subarch 0). + */ + pvh_bootparams.hdr.version = (2 << 8) | 12; + pvh_bootparams.hdr.type_of_loader = ((xen_guest ? 0x9 : 0xb) << 4) | 0; + + x86_init.acpi.get_root_pointer = pvh_get_root_pointer; +} + +/* + * If we are trying to boot a Xen PVH guest, it is expected that the kernel + * will have been configured to provide the required override for this routine. + */ +void __init __weak xen_pvh_init(void) +{ + xen_raw_printk("Error: Missing xen PVH initialization\n"); + BUG(); +} + +static void hypervisor_specific_init(bool xen_guest) +{ + if (xen_guest) + xen_pvh_init(); +} + +/* + * This routine (and those that it might call) should not use + * anything that lives in .bss since that segment will be cleared later. + */ +void __init xen_prepare_pvh(void) +{ + + u32 msr = xen_cpuid_base(); + bool xen_guest = !!msr; + + if (pvh_start_info.magic != XEN_HVM_START_MAGIC_VALUE) { + xen_raw_printk("Error: Unexpected magic value (0x%08x)\n", + pvh_start_info.magic); + BUG(); + } + + hypervisor_specific_init(xen_guest); + + init_pvh_bootparams(xen_guest); +} diff --git a/arch/x86/xen/xen-pvh.S b/arch/x86/platform/pvh/head.S index 1f8825bbaffb..1f8825bbaffb 100644 --- a/arch/x86/xen/xen-pvh.S +++ b/arch/x86/platform/pvh/head.S diff --git a/arch/x86/platform/uv/uv_nmi.c b/arch/x86/platform/uv/uv_nmi.c index 5f64f30873e2..b21a932c220c 100644 --- a/arch/x86/platform/uv/uv_nmi.c +++ b/arch/x86/platform/uv/uv_nmi.c @@ -560,7 +560,7 @@ static inline void uv_clear_nmi(int cpu) } } -/* Ping non-responding CPU's attemping to force them into the NMI handler */ +/* Ping non-responding CPU's attempting to force them into the NMI handler */ static void uv_nmi_nr_cpus_ping(void) { int cpu; diff --git a/arch/x86/um/vdso/Makefile b/arch/x86/um/vdso/Makefile index 822ccdba93ad..bf94060fc06f 100644 --- a/arch/x86/um/vdso/Makefile +++ b/arch/x86/um/vdso/Makefile @@ -26,7 +26,7 @@ targets += vdso.so vdso.so.dbg vdso.lds $(vobjs-y) CPPFLAGS_vdso.lds += -P -C VDSO_LDFLAGS_vdso.lds = -m64 -Wl,-soname=linux-vdso.so.1 \ - -Wl,-z,max-page-size=4096 -Wl,-z,common-page-size=4096 + -Wl,-z,max-page-size=4096 $(obj)/vdso.o: $(src)/vdso.S $(obj)/vdso.so diff --git a/arch/x86/xen/Kconfig b/arch/x86/xen/Kconfig index 1ef391aa184d..e07abefd3d26 100644 --- a/arch/x86/xen/Kconfig +++ b/arch/x86/xen/Kconfig @@ -74,6 +74,7 @@ config XEN_DEBUG_FS Enabling this option may incur a significant performance overhead. config XEN_PVH - bool "Support for running as a PVH guest" + bool "Support for running as a Xen PVH guest" depends on XEN && XEN_PVHVM && ACPI + select PVH def_bool n diff --git a/arch/x86/xen/Makefile b/arch/x86/xen/Makefile index dd2550d33b38..084de77a109e 100644 --- a/arch/x86/xen/Makefile +++ b/arch/x86/xen/Makefile @@ -1,6 +1,5 @@ # SPDX-License-Identifier: GPL-2.0 OBJECT_FILES_NON_STANDARD_xen-asm_$(BITS).o := y -OBJECT_FILES_NON_STANDARD_xen-pvh.o := y ifdef CONFIG_FUNCTION_TRACER # Do not profile debug and lowlevel utilities @@ -38,7 +37,6 @@ obj-$(CONFIG_XEN_PV) += xen-asm.o obj-$(CONFIG_XEN_PV) += xen-asm_$(BITS).o obj-$(CONFIG_XEN_PVH) += enlighten_pvh.o -obj-$(CONFIG_XEN_PVH) += xen-pvh.o obj-$(CONFIG_EVENT_TRACING) += trace.o diff --git a/arch/x86/xen/enlighten.c b/arch/x86/xen/enlighten.c index e996e8e744cb..750f46ad018a 100644 --- a/arch/x86/xen/enlighten.c +++ b/arch/x86/xen/enlighten.c @@ -10,7 +10,6 @@ #include <xen/xen.h> #include <xen/features.h> #include <xen/page.h> -#include <xen/interface/memory.h> #include <asm/xen/hypercall.h> #include <asm/xen/hypervisor.h> @@ -346,80 +345,3 @@ void xen_arch_unregister_cpu(int num) } EXPORT_SYMBOL(xen_arch_unregister_cpu); #endif - -#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG -void __init arch_xen_balloon_init(struct resource *hostmem_resource) -{ - struct xen_memory_map memmap; - int rc; - unsigned int i, last_guest_ram; - phys_addr_t max_addr = PFN_PHYS(max_pfn); - struct e820_table *xen_e820_table; - const struct e820_entry *entry; - struct resource *res; - - if (!xen_initial_domain()) - return; - - xen_e820_table = kmalloc(sizeof(*xen_e820_table), GFP_KERNEL); - if (!xen_e820_table) - return; - - memmap.nr_entries = ARRAY_SIZE(xen_e820_table->entries); - set_xen_guest_handle(memmap.buffer, xen_e820_table->entries); - rc = HYPERVISOR_memory_op(XENMEM_machine_memory_map, &memmap); - if (rc) { - pr_warn("%s: Can't read host e820 (%d)\n", __func__, rc); - goto out; - } - - last_guest_ram = 0; - for (i = 0; i < memmap.nr_entries; i++) { - if (xen_e820_table->entries[i].addr >= max_addr) - break; - if (xen_e820_table->entries[i].type == E820_TYPE_RAM) - last_guest_ram = i; - } - - entry = &xen_e820_table->entries[last_guest_ram]; - if (max_addr >= entry->addr + entry->size) - goto out; /* No unallocated host RAM. */ - - hostmem_resource->start = max_addr; - hostmem_resource->end = entry->addr + entry->size; - - /* - * Mark non-RAM regions between the end of dom0 RAM and end of host RAM - * as unavailable. The rest of that region can be used for hotplug-based - * ballooning. - */ - for (; i < memmap.nr_entries; i++) { - entry = &xen_e820_table->entries[i]; - - if (entry->type == E820_TYPE_RAM) - continue; - - if (entry->addr >= hostmem_resource->end) - break; - - res = kzalloc(sizeof(*res), GFP_KERNEL); - if (!res) - goto out; - - res->name = "Unavailable host RAM"; - res->start = entry->addr; - res->end = (entry->addr + entry->size < hostmem_resource->end) ? - entry->addr + entry->size : hostmem_resource->end; - rc = insert_resource(hostmem_resource, res); - if (rc) { - pr_warn("%s: Can't insert [%llx - %llx) (%d)\n", - __func__, res->start, res->end, rc); - kfree(res); - goto out; - } - } - - out: - kfree(xen_e820_table); -} -#endif /* CONFIG_XEN_BALLOON_MEMORY_HOTPLUG */ diff --git a/arch/x86/xen/enlighten_pvh.c b/arch/x86/xen/enlighten_pvh.c index 02e3ab7ff242..35b7599d2d0b 100644 --- a/arch/x86/xen/enlighten_pvh.c +++ b/arch/x86/xen/enlighten_pvh.c @@ -6,103 +6,45 @@ #include <asm/io_apic.h> #include <asm/hypervisor.h> #include <asm/e820/api.h> -#include <asm/x86_init.h> +#include <xen/xen.h> #include <asm/xen/interface.h> #include <asm/xen/hypercall.h> -#include <xen/xen.h> #include <xen/interface/memory.h> -#include <xen/interface/hvm/start_info.h> /* * PVH variables. * - * xen_pvh pvh_bootparams and pvh_start_info need to live in data segment - * since they are used after startup_{32|64}, which clear .bss, are invoked. + * The variable xen_pvh needs to live in the data segment since it is used + * after startup_{32|64} is invoked, which will clear the .bss segment. */ bool xen_pvh __attribute__((section(".data"))) = 0; -struct boot_params pvh_bootparams __attribute__((section(".data"))); -struct hvm_start_info pvh_start_info __attribute__((section(".data"))); - -unsigned int pvh_start_info_sz = sizeof(pvh_start_info); -static u64 pvh_get_root_pointer(void) +void __init xen_pvh_init(void) { - return pvh_start_info.rsdp_paddr; + u32 msr; + u64 pfn; + + xen_pvh = 1; + xen_start_flags = pvh_start_info.flags; + + msr = cpuid_ebx(xen_cpuid_base() + 2); + pfn = __pa(hypercall_page); + wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); } -static void __init init_pvh_bootparams(void) +void __init mem_map_via_hcall(struct boot_params *boot_params_p) { struct xen_memory_map memmap; int rc; - memset(&pvh_bootparams, 0, sizeof(pvh_bootparams)); - - memmap.nr_entries = ARRAY_SIZE(pvh_bootparams.e820_table); - set_xen_guest_handle(memmap.buffer, pvh_bootparams.e820_table); + memmap.nr_entries = ARRAY_SIZE(boot_params_p->e820_table); + set_xen_guest_handle(memmap.buffer, boot_params_p->e820_table); rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap); if (rc) { xen_raw_printk("XENMEM_memory_map failed (%d)\n", rc); BUG(); } - pvh_bootparams.e820_entries = memmap.nr_entries; - - if (pvh_bootparams.e820_entries < E820_MAX_ENTRIES_ZEROPAGE - 1) { - pvh_bootparams.e820_table[pvh_bootparams.e820_entries].addr = - ISA_START_ADDRESS; - pvh_bootparams.e820_table[pvh_bootparams.e820_entries].size = - ISA_END_ADDRESS - ISA_START_ADDRESS; - pvh_bootparams.e820_table[pvh_bootparams.e820_entries].type = - E820_TYPE_RESERVED; - pvh_bootparams.e820_entries++; - } else - xen_raw_printk("Warning: Can fit ISA range into e820\n"); - - pvh_bootparams.hdr.cmd_line_ptr = - pvh_start_info.cmdline_paddr; - - /* The first module is always ramdisk. */ - if (pvh_start_info.nr_modules) { - struct hvm_modlist_entry *modaddr = - __va(pvh_start_info.modlist_paddr); - pvh_bootparams.hdr.ramdisk_image = modaddr->paddr; - pvh_bootparams.hdr.ramdisk_size = modaddr->size; - } - - /* - * See Documentation/x86/boot.txt. - * - * Version 2.12 supports Xen entry point but we will use default x86/PC - * environment (i.e. hardware_subarch 0). - */ - pvh_bootparams.hdr.version = (2 << 8) | 12; - pvh_bootparams.hdr.type_of_loader = (9 << 4) | 0; /* Xen loader */ - - x86_init.acpi.get_root_pointer = pvh_get_root_pointer; -} - -/* - * This routine (and those that it might call) should not use - * anything that lives in .bss since that segment will be cleared later. - */ -void __init xen_prepare_pvh(void) -{ - u32 msr; - u64 pfn; - - if (pvh_start_info.magic != XEN_HVM_START_MAGIC_VALUE) { - xen_raw_printk("Error: Unexpected magic value (0x%08x)\n", - pvh_start_info.magic); - BUG(); - } - - xen_pvh = 1; - xen_start_flags = pvh_start_info.flags; - - msr = cpuid_ebx(xen_cpuid_base() + 2); - pfn = __pa(hypercall_page); - wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); - - init_pvh_bootparams(); + boot_params_p->e820_entries = memmap.nr_entries; } diff --git a/arch/x86/xen/mmu_pv.c b/arch/x86/xen/mmu_pv.c index 0d7b3ae4960b..0f4fe206dcc2 100644 --- a/arch/x86/xen/mmu_pv.c +++ b/arch/x86/xen/mmu_pv.c @@ -648,19 +648,20 @@ static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, unsigned long limit) { int i, nr, flush = 0; - unsigned hole_low, hole_high; + unsigned hole_low = 0, hole_high = 0; /* The limit is the last byte to be touched */ limit--; BUG_ON(limit >= FIXADDR_TOP); +#ifdef CONFIG_X86_64 /* * 64-bit has a great big hole in the middle of the address - * space, which contains the Xen mappings. On 32-bit these - * will end up making a zero-sized hole and so is a no-op. + * space, which contains the Xen mappings. */ - hole_low = pgd_index(USER_LIMIT); - hole_high = pgd_index(PAGE_OFFSET); + hole_low = pgd_index(GUARD_HOLE_BASE_ADDR); + hole_high = pgd_index(GUARD_HOLE_END_ADDR); +#endif nr = pgd_index(limit) + 1; for (i = 0; i < nr; i++) { @@ -1905,7 +1906,7 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) init_top_pgt[0] = __pgd(0); /* Pre-constructed entries are in pfn, so convert to mfn */ - /* L4[272] -> level3_ident_pgt */ + /* L4[273] -> level3_ident_pgt */ /* L4[511] -> level3_kernel_pgt */ convert_pfn_mfn(init_top_pgt); @@ -1925,8 +1926,8 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) addr[0] = (unsigned long)pgd; addr[1] = (unsigned long)l3; addr[2] = (unsigned long)l2; - /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: - * Both L4[272][0] and L4[511][510] have entries that point to the same + /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: + * Both L4[273][0] and L4[511][510] have entries that point to the same * L2 (PMD) tables. Meaning that if you modify it in __va space * it will be also modified in the __ka space! (But if you just * modify the PMD table to point to other PTE's or none, then you diff --git a/arch/x86/xen/multicalls.c b/arch/x86/xen/multicalls.c index 2bce7958ce8b..0766a08bdf45 100644 --- a/arch/x86/xen/multicalls.c +++ b/arch/x86/xen/multicalls.c @@ -69,6 +69,11 @@ void xen_mc_flush(void) trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx); +#if MC_DEBUG + memcpy(b->debug, b->entries, + b->mcidx * sizeof(struct multicall_entry)); +#endif + switch (b->mcidx) { case 0: /* no-op */ @@ -87,32 +92,34 @@ void xen_mc_flush(void) break; default: -#if MC_DEBUG - memcpy(b->debug, b->entries, - b->mcidx * sizeof(struct multicall_entry)); -#endif - if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0) BUG(); for (i = 0; i < b->mcidx; i++) if (b->entries[i].result < 0) ret++; + } + if (WARN_ON(ret)) { + pr_err("%d of %d multicall(s) failed: cpu %d\n", + ret, b->mcidx, smp_processor_id()); + for (i = 0; i < b->mcidx; i++) { + if (b->entries[i].result < 0) { #if MC_DEBUG - if (ret) { - printk(KERN_ERR "%d multicall(s) failed: cpu %d\n", - ret, smp_processor_id()); - dump_stack(); - for (i = 0; i < b->mcidx; i++) { - printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n", - i+1, b->mcidx, + pr_err(" call %2d: op=%lu arg=[%lx] result=%ld\t%pF\n", + i + 1, b->debug[i].op, b->debug[i].args[0], b->entries[i].result, b->caller[i]); +#else + pr_err(" call %2d: op=%lu arg=[%lx] result=%ld\n", + i + 1, + b->entries[i].op, + b->entries[i].args[0], + b->entries[i].result); +#endif } } -#endif } b->mcidx = 0; @@ -126,8 +133,6 @@ void xen_mc_flush(void) b->cbidx = 0; local_irq_restore(flags); - - WARN_ON(ret); } struct multicall_space __xen_mc_entry(size_t args) diff --git a/arch/x86/xen/p2m.c b/arch/x86/xen/p2m.c index b06731705529..055e37e43541 100644 --- a/arch/x86/xen/p2m.c +++ b/arch/x86/xen/p2m.c @@ -656,8 +656,7 @@ bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn) /* * The interface requires atomic updates on p2m elements. - * xen_safe_write_ulong() is using __put_user which does an atomic - * store via asm(). + * xen_safe_write_ulong() is using an atomic store via asm(). */ if (likely(!xen_safe_write_ulong(xen_p2m_addr + pfn, mfn))) return true; diff --git a/arch/x86/xen/setup.c b/arch/x86/xen/setup.c index 1163e33121fb..d5f303c0e656 100644 --- a/arch/x86/xen/setup.c +++ b/arch/x86/xen/setup.c @@ -493,7 +493,7 @@ static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages, * The remap information (which mfn remap to which pfn) is contained in the * to be remapped memory itself in a linked list anchored at xen_remap_mfn. * This scheme allows to remap the different chunks in arbitrary order while - * the resulting mapping will be independant from the order. + * the resulting mapping will be independent from the order. */ void __init xen_remap_memory(void) { @@ -808,6 +808,7 @@ char * __init xen_memory_setup(void) addr = xen_e820_table.entries[0].addr; size = xen_e820_table.entries[0].size; while (i < xen_e820_table.nr_entries) { + bool discard = false; chunk_size = size; type = xen_e820_table.entries[i].type; @@ -823,10 +824,11 @@ char * __init xen_memory_setup(void) xen_add_extra_mem(pfn_s, n_pfns); xen_max_p2m_pfn = pfn_s + n_pfns; } else - type = E820_TYPE_UNUSABLE; + discard = true; } - xen_align_and_add_e820_region(addr, chunk_size, type); + if (!discard) + xen_align_and_add_e820_region(addr, chunk_size, type); addr += chunk_size; size -= chunk_size; diff --git a/arch/x86/xen/spinlock.c b/arch/x86/xen/spinlock.c index 441c88262169..3776122c87cc 100644 --- a/arch/x86/xen/spinlock.c +++ b/arch/x86/xen/spinlock.c @@ -3,24 +3,21 @@ * Split spinlock implementation out into its own file, so it can be * compiled in a FTRACE-compatible way. */ -#include <linux/kernel_stat.h> +#include <linux/kernel.h> #include <linux/spinlock.h> -#include <linux/debugfs.h> -#include <linux/log2.h> -#include <linux/gfp.h> #include <linux/slab.h> +#include <linux/atomic.h> #include <asm/paravirt.h> #include <asm/qspinlock.h> -#include <xen/interface/xen.h> #include <xen/events.h> #include "xen-ops.h" -#include "debugfs.h" static DEFINE_PER_CPU(int, lock_kicker_irq) = -1; static DEFINE_PER_CPU(char *, irq_name); +static DEFINE_PER_CPU(atomic_t, xen_qlock_wait_nest); static bool xen_pvspin = true; static void xen_qlock_kick(int cpu) @@ -39,25 +36,25 @@ static void xen_qlock_kick(int cpu) */ static void xen_qlock_wait(u8 *byte, u8 val) { - unsigned long flags; int irq = __this_cpu_read(lock_kicker_irq); + atomic_t *nest_cnt = this_cpu_ptr(&xen_qlock_wait_nest); /* If kicker interrupts not initialized yet, just spin */ if (irq == -1 || in_nmi()) return; - /* Guard against reentry. */ - local_irq_save(flags); + /* Detect reentry. */ + atomic_inc(nest_cnt); - /* If irq pending already clear it. */ - if (xen_test_irq_pending(irq)) { + /* If irq pending already and no nested call clear it. */ + if (atomic_read(nest_cnt) == 1 && xen_test_irq_pending(irq)) { xen_clear_irq_pending(irq); } else if (READ_ONCE(*byte) == val) { /* Block until irq becomes pending (or a spurious wakeup) */ xen_poll_irq(irq); } - local_irq_restore(flags); + atomic_dec(nest_cnt); } static irqreturn_t dummy_handler(int irq, void *dev_id) diff --git a/arch/x86/xen/xen-asm_64.S b/arch/x86/xen/xen-asm_64.S index bb1c2da0381d..1e9ef0ba30a5 100644 --- a/arch/x86/xen/xen-asm_64.S +++ b/arch/x86/xen/xen-asm_64.S @@ -12,6 +12,7 @@ #include <asm/segment.h> #include <asm/asm-offsets.h> #include <asm/thread_info.h> +#include <asm/asm.h> #include <xen/interface/xen.h> @@ -24,6 +25,7 @@ ENTRY(xen_\name) pop %r11 jmp \name END(xen_\name) +_ASM_NOKPROBE(xen_\name) .endm xen_pv_trap divide_error |