summaryrefslogtreecommitdiff
path: root/arch/parisc/lib/milli
diff options
context:
space:
mode:
Diffstat (limited to 'arch/parisc/lib/milli')
-rw-r--r--arch/parisc/lib/milli/Makefile1
-rw-r--r--arch/parisc/lib/milli/divI.S254
-rw-r--r--arch/parisc/lib/milli/divU.S235
-rw-r--r--arch/parisc/lib/milli/div_const.S682
-rw-r--r--arch/parisc/lib/milli/dyncall.S32
-rw-r--r--arch/parisc/lib/milli/milli.S2071
-rw-r--r--arch/parisc/lib/milli/milli.h165
-rw-r--r--arch/parisc/lib/milli/mulI.S474
-rw-r--r--arch/parisc/lib/milli/remI.S185
-rw-r--r--arch/parisc/lib/milli/remU.S148
10 files changed, 0 insertions, 4247 deletions
diff --git a/arch/parisc/lib/milli/Makefile b/arch/parisc/lib/milli/Makefile
deleted file mode 100644
index 9b24e9b1f3cb..000000000000
--- a/arch/parisc/lib/milli/Makefile
+++ /dev/null
@@ -1 +0,0 @@
-obj-y := dyncall.o divI.o divU.o remI.o remU.o div_const.o mulI.o
diff --git a/arch/parisc/lib/milli/divI.S b/arch/parisc/lib/milli/divI.S
deleted file mode 100644
index ac106b7b6f24..000000000000
--- a/arch/parisc/lib/milli/divI.S
+++ /dev/null
@@ -1,254 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#include "milli.h"
-
-#ifdef L_divI
-/* ROUTINES: $$divI, $$divoI
-
- Single precision divide for signed binary integers.
-
- The quotient is truncated towards zero.
- The sign of the quotient is the XOR of the signs of the dividend and
- divisor.
- Divide by zero is trapped.
- Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
-
- INPUT REGISTERS:
- . arg0 == dividend
- . arg1 == divisor
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = undefined
- . arg1 = undefined
- . ret1 = quotient
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions:
- . divisor is zero (traps with ADDIT,= 0,25,0)
- . dividend==-2**31 and divisor==-1 and routine is $$divoI
- . (traps with ADDO 26,25,0)
- . Changes memory at the following places:
- . NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable.
- . Suitable for internal or external millicode.
- . Assumes the special millicode register conventions.
-
- DISCUSSION:
- . Branchs to other millicode routines using BE
- . $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
- .
- . For selected divisors, calls a divide by constant routine written by
- . Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13.
- .
- . The only overflow case is -2**31 divided by -1.
- . Both routines return -2**31 but only $$divoI traps. */
-
-RDEFINE(temp,r1)
-RDEFINE(retreg,ret1) /* r29 */
-RDEFINE(temp1,arg0)
- SUBSPA_MILLI_DIV
- ATTR_MILLI
- .import $$divI_2,millicode
- .import $$divI_3,millicode
- .import $$divI_4,millicode
- .import $$divI_5,millicode
- .import $$divI_6,millicode
- .import $$divI_7,millicode
- .import $$divI_8,millicode
- .import $$divI_9,millicode
- .import $$divI_10,millicode
- .import $$divI_12,millicode
- .import $$divI_14,millicode
- .import $$divI_15,millicode
- .export $$divI,millicode
- .export $$divoI,millicode
- .proc
- .callinfo millicode
- .entry
-GSYM($$divoI)
- comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */
-GSYM($$divI)
- ldo -1(arg1),temp /* is there at most one bit set ? */
- and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */
- addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */
- b,n LREF(neg_denom)
-LSYM(pow2)
- addi,>= 0,arg0,retreg /* if numerator is negative, add the */
- add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */
- extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
- extrs retreg,15,16,retreg /* retreg = retreg >> 16 */
- or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
- ldi 0xcc,temp1 /* setup 0xcc in temp1 */
- extru,= arg1,23,8,temp /* test denominator with 0xff00 */
- extrs retreg,23,24,retreg /* retreg = retreg >> 8 */
- or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
- ldi 0xaa,temp /* setup 0xaa in temp */
- extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
- extrs retreg,27,28,retreg /* retreg = retreg >> 4 */
- and,= arg1,temp1,r0 /* test denominator with 0xcc */
- extrs retreg,29,30,retreg /* retreg = retreg >> 2 */
- and,= arg1,temp,r0 /* test denominator with 0xaa */
- extrs retreg,30,31,retreg /* retreg = retreg >> 1 */
- MILLIRETN
-LSYM(neg_denom)
- addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */
- b,n LREF(regular_seq)
- sub r0,arg1,temp /* make denominator positive */
- comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */
- ldo -1(temp),retreg /* is there at most one bit set ? */
- and,= temp,retreg,r0 /* if so, the denominator is power of 2 */
- b,n LREF(regular_seq)
- sub r0,arg0,retreg /* negate numerator */
- comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */
- copy retreg,arg0 /* set up arg0, arg1 and temp */
- copy temp,arg1 /* before branching to pow2 */
- b LREF(pow2)
- ldo -1(arg1),temp
-LSYM(regular_seq)
- comib,>>=,n 15,arg1,LREF(small_divisor)
- add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
-LSYM(normal)
- subi 0,retreg,retreg /* make it positive */
- sub 0,arg1,temp /* clear carry, */
- /* negate the divisor */
- ds 0,temp,0 /* set V-bit to the comple- */
- /* ment of the divisor sign */
- add retreg,retreg,retreg /* shift msb bit into carry */
- ds r0,arg1,temp /* 1st divide step, if no carry */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 2nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 3rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 4th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 5th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 6th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 7th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 8th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 9th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 10th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 11th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 12th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 13th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 14th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 15th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 16th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 17th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 18th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 19th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 20th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 21st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 22nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 23rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 24th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 25th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 26th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 27th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 28th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 29th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 30th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 31st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 32nd divide step, */
- addc retreg,retreg,retreg /* shift last retreg bit into retreg */
- xor,>= arg0,arg1,0 /* get correct sign of quotient */
- sub 0,retreg,retreg /* based on operand signs */
- MILLIRETN
- nop
-
-LSYM(small_divisor)
-
-#if defined(CONFIG_64BIT)
-/* Clear the upper 32 bits of the arg1 register. We are working with */
-/* small divisors (and 32-bit integers) We must not be mislead */
-/* by "1" bits left in the upper 32 bits. */
- depd %r0,31,32,%r25
-#endif
- blr,n arg1,r0
- nop
-/* table for divisor == 0,1, ... ,15 */
- addit,= 0,arg1,r0 /* trap if divisor == 0 */
- nop
- MILLIRET /* divisor == 1 */
- copy arg0,retreg
- MILLI_BEN($$divI_2) /* divisor == 2 */
- nop
- MILLI_BEN($$divI_3) /* divisor == 3 */
- nop
- MILLI_BEN($$divI_4) /* divisor == 4 */
- nop
- MILLI_BEN($$divI_5) /* divisor == 5 */
- nop
- MILLI_BEN($$divI_6) /* divisor == 6 */
- nop
- MILLI_BEN($$divI_7) /* divisor == 7 */
- nop
- MILLI_BEN($$divI_8) /* divisor == 8 */
- nop
- MILLI_BEN($$divI_9) /* divisor == 9 */
- nop
- MILLI_BEN($$divI_10) /* divisor == 10 */
- nop
- b LREF(normal) /* divisor == 11 */
- add,>= 0,arg0,retreg
- MILLI_BEN($$divI_12) /* divisor == 12 */
- nop
- b LREF(normal) /* divisor == 13 */
- add,>= 0,arg0,retreg
- MILLI_BEN($$divI_14) /* divisor == 14 */
- nop
- MILLI_BEN($$divI_15) /* divisor == 15 */
- nop
-
-LSYM(negative1)
- sub 0,arg0,retreg /* result is negation of dividend */
- MILLIRET
- addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */
- .exit
- .procend
- .end
-#endif
diff --git a/arch/parisc/lib/milli/divU.S b/arch/parisc/lib/milli/divU.S
deleted file mode 100644
index 9287fe2546fa..000000000000
--- a/arch/parisc/lib/milli/divU.S
+++ /dev/null
@@ -1,235 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#include "milli.h"
-
-#ifdef L_divU
-/* ROUTINE: $$divU
- .
- . Single precision divide for unsigned integers.
- .
- . Quotient is truncated towards zero.
- . Traps on divide by zero.
-
- INPUT REGISTERS:
- . arg0 == dividend
- . arg1 == divisor
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = undefined
- . arg1 = undefined
- . ret1 = quotient
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions:
- . divisor is zero
- . Changes memory at the following places:
- . NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable.
- . Does not create a stack frame.
- . Suitable for internal or external millicode.
- . Assumes the special millicode register conventions.
-
- DISCUSSION:
- . Branchs to other millicode routines using BE:
- . $$divU_# for 3,5,6,7,9,10,12,14,15
- .
- . For selected small divisors calls the special divide by constant
- . routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */
-
-RDEFINE(temp,r1)
-RDEFINE(retreg,ret1) /* r29 */
-RDEFINE(temp1,arg0)
- SUBSPA_MILLI_DIV
- ATTR_MILLI
- .export $$divU,millicode
- .import $$divU_3,millicode
- .import $$divU_5,millicode
- .import $$divU_6,millicode
- .import $$divU_7,millicode
- .import $$divU_9,millicode
- .import $$divU_10,millicode
- .import $$divU_12,millicode
- .import $$divU_14,millicode
- .import $$divU_15,millicode
- .proc
- .callinfo millicode
- .entry
-GSYM($$divU)
-/* The subtract is not nullified since it does no harm and can be used
- by the two cases that branch back to "normal". */
- ldo -1(arg1),temp /* is there at most one bit set ? */
- and,= arg1,temp,r0 /* if so, denominator is power of 2 */
- b LREF(regular_seq)
- addit,= 0,arg1,0 /* trap for zero dvr */
- copy arg0,retreg
- extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
- extru retreg,15,16,retreg /* retreg = retreg >> 16 */
- or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
- ldi 0xcc,temp1 /* setup 0xcc in temp1 */
- extru,= arg1,23,8,temp /* test denominator with 0xff00 */
- extru retreg,23,24,retreg /* retreg = retreg >> 8 */
- or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
- ldi 0xaa,temp /* setup 0xaa in temp */
- extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
- extru retreg,27,28,retreg /* retreg = retreg >> 4 */
- and,= arg1,temp1,r0 /* test denominator with 0xcc */
- extru retreg,29,30,retreg /* retreg = retreg >> 2 */
- and,= arg1,temp,r0 /* test denominator with 0xaa */
- extru retreg,30,31,retreg /* retreg = retreg >> 1 */
- MILLIRETN
- nop
-LSYM(regular_seq)
- comib,>= 15,arg1,LREF(special_divisor)
- subi 0,arg1,temp /* clear carry, negate the divisor */
- ds r0,temp,r0 /* set V-bit to 1 */
-LSYM(normal)
- add arg0,arg0,retreg /* shift msb bit into carry */
- ds r0,arg1,temp /* 1st divide step, if no carry */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 2nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 3rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 4th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 5th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 6th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 7th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 8th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 9th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 10th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 11th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 12th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 13th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 14th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 15th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 16th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 17th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 18th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 19th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 20th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 21st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 22nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 23rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 24th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 25th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 26th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 27th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 28th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 29th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 30th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 31st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 32nd divide step, */
- MILLIRET
- addc retreg,retreg,retreg /* shift last retreg bit into retreg */
-
-/* Handle the cases where divisor is a small constant or has high bit on. */
-LSYM(special_divisor)
-/* blr arg1,r0 */
-/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */
-
-/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
- generating such a blr, comib sequence. A problem in nullification. So I
- rewrote this code. */
-
-#if defined(CONFIG_64BIT)
-/* Clear the upper 32 bits of the arg1 register. We are working with
- small divisors (and 32-bit unsigned integers) We must not be mislead
- by "1" bits left in the upper 32 bits. */
- depd %r0,31,32,%r25
-#endif
- comib,> 0,arg1,LREF(big_divisor)
- nop
- blr arg1,r0
- nop
-
-LSYM(zero_divisor) /* this label is here to provide external visibility */
- addit,= 0,arg1,0 /* trap for zero dvr */
- nop
- MILLIRET /* divisor == 1 */
- copy arg0,retreg
- MILLIRET /* divisor == 2 */
- extru arg0,30,31,retreg
- MILLI_BEN($$divU_3) /* divisor == 3 */
- nop
- MILLIRET /* divisor == 4 */
- extru arg0,29,30,retreg
- MILLI_BEN($$divU_5) /* divisor == 5 */
- nop
- MILLI_BEN($$divU_6) /* divisor == 6 */
- nop
- MILLI_BEN($$divU_7) /* divisor == 7 */
- nop
- MILLIRET /* divisor == 8 */
- extru arg0,28,29,retreg
- MILLI_BEN($$divU_9) /* divisor == 9 */
- nop
- MILLI_BEN($$divU_10) /* divisor == 10 */
- nop
- b LREF(normal) /* divisor == 11 */
- ds r0,temp,r0 /* set V-bit to 1 */
- MILLI_BEN($$divU_12) /* divisor == 12 */
- nop
- b LREF(normal) /* divisor == 13 */
- ds r0,temp,r0 /* set V-bit to 1 */
- MILLI_BEN($$divU_14) /* divisor == 14 */
- nop
- MILLI_BEN($$divU_15) /* divisor == 15 */
- nop
-
-/* Handle the case where the high bit is on in the divisor.
- Compute: if( dividend>=divisor) quotient=1; else quotient=0;
- Note: dividend>==divisor iff dividend-divisor does not borrow
- and not borrow iff carry. */
-LSYM(big_divisor)
- sub arg0,arg1,r0
- MILLIRET
- addc r0,r0,retreg
- .exit
- .procend
- .end
-#endif
diff --git a/arch/parisc/lib/milli/div_const.S b/arch/parisc/lib/milli/div_const.S
deleted file mode 100644
index dd660076e944..000000000000
--- a/arch/parisc/lib/milli/div_const.S
+++ /dev/null
@@ -1,682 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#include "milli.h"
-
-#ifdef L_div_const
-/* ROUTINE: $$divI_2
- . $$divI_3 $$divU_3
- . $$divI_4
- . $$divI_5 $$divU_5
- . $$divI_6 $$divU_6
- . $$divI_7 $$divU_7
- . $$divI_8
- . $$divI_9 $$divU_9
- . $$divI_10 $$divU_10
- .
- . $$divI_12 $$divU_12
- .
- . $$divI_14 $$divU_14
- . $$divI_15 $$divU_15
- . $$divI_16
- . $$divI_17 $$divU_17
- .
- . Divide by selected constants for single precision binary integers.
-
- INPUT REGISTERS:
- . arg0 == dividend
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = undefined
- . arg1 = undefined
- . ret1 = quotient
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions: NONE
- . Changes memory at the following places: NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable.
- . Does not create a stack frame.
- . Suitable for internal or external millicode.
- . Assumes the special millicode register conventions.
-
- DISCUSSION:
- . Calls other millicode routines using mrp: NONE
- . Calls other millicode routines: NONE */
-
-
-/* TRUNCATED DIVISION BY SMALL INTEGERS
-
- We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
- (with y fixed).
-
- Let a = floor(z/y), for some choice of z. Note that z will be
- chosen so that division by z is cheap.
-
- Let r be the remainder(z/y). In other words, r = z - ay.
-
- Now, our method is to choose a value for b such that
-
- q'(x) = floor((ax+b)/z)
-
- is equal to q(x) over as large a range of x as possible. If the
- two are equal over a sufficiently large range, and if it is easy to
- form the product (ax), and it is easy to divide by z, then we can
- perform the division much faster than the general division algorithm.
-
- So, we want the following to be true:
-
- . For x in the following range:
- .
- . ky <= x < (k+1)y
- .
- . implies that
- .
- . k <= (ax+b)/z < (k+1)
-
- We want to determine b such that this is true for all k in the
- range {0..K} for some maximum K.
-
- Since (ax+b) is an increasing function of x, we can take each
- bound separately to determine the "best" value for b.
-
- (ax+b)/z < (k+1) implies
-
- (a((k+1)y-1)+b < (k+1)z implies
-
- b < a + (k+1)(z-ay) implies
-
- b < a + (k+1)r
-
- This needs to be true for all k in the range {0..K}. In
- particular, it is true for k = 0 and this leads to a maximum
- acceptable value for b.
-
- b < a+r or b <= a+r-1
-
- Taking the other bound, we have
-
- k <= (ax+b)/z implies
-
- k <= (aky+b)/z implies
-
- k(z-ay) <= b implies
-
- kr <= b
-
- Clearly, the largest range for k will be achieved by maximizing b,
- when r is not zero. When r is zero, then the simplest choice for b
- is 0. When r is not 0, set
-
- . b = a+r-1
-
- Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
- for all x in the range:
-
- . 0 <= x < (K+1)y
-
- We need to determine what K is. Of our two bounds,
-
- . b < a+(k+1)r is satisfied for all k >= 0, by construction.
-
- The other bound is
-
- . kr <= b
-
- This is always true if r = 0. If r is not 0 (the usual case), then
- K = floor((a+r-1)/r), is the maximum value for k.
-
- Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
- answer for q(x) = floor(x/y) when x is in the range
-
- (0,(K+1)y-1) K = floor((a+r-1)/r)
-
- To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
- the formula for q'(x) yields the correct value of q(x) for all x
- representable by a single word in HPPA.
-
- We are also constrained in that computing the product (ax), adding
- b, and dividing by z must all be done quickly, otherwise we will be
- better off going through the general algorithm using the DS
- instruction, which uses approximately 70 cycles.
-
- For each y, there is a choice of z which satisfies the constraints
- for (K+1)y >= 2**32. We may not, however, be able to satisfy the
- timing constraints for arbitrary y. It seems that z being equal to
- a power of 2 or a power of 2 minus 1 is as good as we can do, since
- it minimizes the time to do division by z. We want the choice of z
- to also result in a value for (a) that minimizes the computation of
- the product (ax). This is best achieved if (a) has a regular bit
- pattern (so the multiplication can be done with shifts and adds).
- The value of (a) also needs to be less than 2**32 so the product is
- always guaranteed to fit in 2 words.
-
- In actual practice, the following should be done:
-
- 1) For negative x, you should take the absolute value and remember
- . the fact so that the result can be negated. This obviously does
- . not apply in the unsigned case.
- 2) For even y, you should factor out the power of 2 that divides y
- . and divide x by it. You can then proceed by dividing by the
- . odd factor of y.
-
- Here is a table of some odd values of y, and corresponding choices
- for z which are "good".
-
- y z r a (hex) max x (hex)
-
- 3 2**32 1 55555555 100000001
- 5 2**32 1 33333333 100000003
- 7 2**24-1 0 249249 (infinite)
- 9 2**24-1 0 1c71c7 (infinite)
- 11 2**20-1 0 1745d (infinite)
- 13 2**24-1 0 13b13b (infinite)
- 15 2**32 1 11111111 10000000d
- 17 2**32 1 f0f0f0f 10000000f
-
- If r is 1, then b = a+r-1 = a. This simplifies the computation
- of (ax+b), since you can compute (x+1)(a) instead. If r is 0,
- then b = 0 is ok to use which simplifies (ax+b).
-
- The bit patterns for 55555555, 33333333, and 11111111 are obviously
- very regular. The bit patterns for the other values of a above are:
-
- y (hex) (binary)
-
- 7 249249 001001001001001001001001 << regular >>
- 9 1c71c7 000111000111000111000111 << regular >>
- 11 1745d 000000010111010001011101 << irregular >>
- 13 13b13b 000100111011000100111011 << irregular >>
-
- The bit patterns for (a) corresponding to (y) of 11 and 13 may be
- too irregular to warrant using this method.
-
- When z is a power of 2 minus 1, then the division by z is slightly
- more complicated, involving an iterative solution.
-
- The code presented here solves division by 1 through 17, except for
- 11 and 13. There are algorithms for both signed and unsigned
- quantities given.
-
- TIMINGS (cycles)
-
- divisor positive negative unsigned
-
- . 1 2 2 2
- . 2 4 4 2
- . 3 19 21 19
- . 4 4 4 2
- . 5 18 22 19
- . 6 19 22 19
- . 8 4 4 2
- . 10 18 19 17
- . 12 18 20 18
- . 15 16 18 16
- . 16 4 4 2
- . 17 16 18 16
-
- Now, the algorithm for 7, 9, and 14 is an iterative one. That is,
- a loop body is executed until the tentative quotient is 0. The
- number of times the loop body is executed varies depending on the
- dividend, but is never more than two times. If the dividend is
- less than the divisor, then the loop body is not executed at all.
- Each iteration adds 4 cycles to the timings.
-
- divisor positive negative unsigned
-
- . 7 19+4n 20+4n 20+4n n = number of iterations
- . 9 21+4n 22+4n 21+4n
- . 14 21+4n 22+4n 20+4n
-
- To give an idea of how the number of iterations varies, here is a
- table of dividend versus number of iterations when dividing by 7.
-
- smallest largest required
- dividend dividend iterations
-
- . 0 6 0
- . 7 0x6ffffff 1
- 0x1000006 0xffffffff 2
-
- There is some overlap in the range of numbers requiring 1 and 2
- iterations. */
-
-RDEFINE(t2,r1)
-RDEFINE(x2,arg0) /* r26 */
-RDEFINE(t1,arg1) /* r25 */
-RDEFINE(x1,ret1) /* r29 */
-
- SUBSPA_MILLI_DIV
- ATTR_MILLI
-
- .proc
- .callinfo millicode
- .entry
-/* NONE of these routines require a stack frame
- ALL of these routines are unwindable from millicode */
-
-GSYM($$divide_by_constant)
- .export $$divide_by_constant,millicode
-/* Provides a "nice" label for the code covered by the unwind descriptor
- for things like gprof. */
-
-/* DIVISION BY 2 (shift by 1) */
-GSYM($$divI_2)
- .export $$divI_2,millicode
- comclr,>= arg0,0,0
- addi 1,arg0,arg0
- MILLIRET
- extrs arg0,30,31,ret1
-
-
-/* DIVISION BY 4 (shift by 2) */
-GSYM($$divI_4)
- .export $$divI_4,millicode
- comclr,>= arg0,0,0
- addi 3,arg0,arg0
- MILLIRET
- extrs arg0,29,30,ret1
-
-
-/* DIVISION BY 8 (shift by 3) */
-GSYM($$divI_8)
- .export $$divI_8,millicode
- comclr,>= arg0,0,0
- addi 7,arg0,arg0
- MILLIRET
- extrs arg0,28,29,ret1
-
-/* DIVISION BY 16 (shift by 4) */
-GSYM($$divI_16)
- .export $$divI_16,millicode
- comclr,>= arg0,0,0
- addi 15,arg0,arg0
- MILLIRET
- extrs arg0,27,28,ret1
-
-/****************************************************************************
-*
-* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
-*
-* includes 3,5,15,17 and also 6,10,12
-*
-****************************************************************************/
-
-/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
-
-GSYM($$divI_3)
- .export $$divI_3,millicode
- comb,<,N x2,0,LREF(neg3)
-
- addi 1,x2,x2 /* this cannot overflow */
- extru x2,1,2,x1 /* multiply by 5 to get started */
- sh2add x2,x2,x2
- b LREF(pos)
- addc x1,0,x1
-
-LSYM(neg3)
- subi 1,x2,x2 /* this cannot overflow */
- extru x2,1,2,x1 /* multiply by 5 to get started */
- sh2add x2,x2,x2
- b LREF(neg)
- addc x1,0,x1
-
-GSYM($$divU_3)
- .export $$divU_3,millicode
- addi 1,x2,x2 /* this CAN overflow */
- addc 0,0,x1
- shd x1,x2,30,t1 /* multiply by 5 to get started */
- sh2add x2,x2,x2
- b LREF(pos)
- addc x1,t1,x1
-
-/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
-
-GSYM($$divI_5)
- .export $$divI_5,millicode
- comb,<,N x2,0,LREF(neg5)
-
- addi 3,x2,t1 /* this cannot overflow */
- sh1add x2,t1,x2 /* multiply by 3 to get started */
- b LREF(pos)
- addc 0,0,x1
-
-LSYM(neg5)
- sub 0,x2,x2 /* negate x2 */
- addi 1,x2,x2 /* this cannot overflow */
- shd 0,x2,31,x1 /* get top bit (can be 1) */
- sh1add x2,x2,x2 /* multiply by 3 to get started */
- b LREF(neg)
- addc x1,0,x1
-
-GSYM($$divU_5)
- .export $$divU_5,millicode
- addi 1,x2,x2 /* this CAN overflow */
- addc 0,0,x1
- shd x1,x2,31,t1 /* multiply by 3 to get started */
- sh1add x2,x2,x2
- b LREF(pos)
- addc t1,x1,x1
-
-/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */
-GSYM($$divI_6)
- .export $$divI_6,millicode
- comb,<,N x2,0,LREF(neg6)
- extru x2,30,31,x2 /* divide by 2 */
- addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */
- sh2add x2,t1,x2 /* multiply by 5 to get started */
- b LREF(pos)
- addc 0,0,x1
-
-LSYM(neg6)
- subi 2,x2,x2 /* negate, divide by 2, and add 1 */
- /* negation and adding 1 are done */
- /* at the same time by the SUBI */
- extru x2,30,31,x2
- shd 0,x2,30,x1
- sh2add x2,x2,x2 /* multiply by 5 to get started */
- b LREF(neg)
- addc x1,0,x1
-
-GSYM($$divU_6)
- .export $$divU_6,millicode
- extru x2,30,31,x2 /* divide by 2 */
- addi 1,x2,x2 /* cannot carry */
- shd 0,x2,30,x1 /* multiply by 5 to get started */
- sh2add x2,x2,x2
- b LREF(pos)
- addc x1,0,x1
-
-/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
-GSYM($$divU_10)
- .export $$divU_10,millicode
- extru x2,30,31,x2 /* divide by 2 */
- addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */
- sh1add x2,t1,x2 /* multiply by 3 to get started */
- addc 0,0,x1
-LSYM(pos)
- shd x1,x2,28,t1 /* multiply by 0x11 */
- shd x2,0,28,t2
- add x2,t2,x2
- addc x1,t1,x1
-LSYM(pos_for_17)
- shd x1,x2,24,t1 /* multiply by 0x101 */
- shd x2,0,24,t2
- add x2,t2,x2
- addc x1,t1,x1
-
- shd x1,x2,16,t1 /* multiply by 0x10001 */
- shd x2,0,16,t2
- add x2,t2,x2
- MILLIRET
- addc x1,t1,x1
-
-GSYM($$divI_10)
- .export $$divI_10,millicode
- comb,< x2,0,LREF(neg10)
- copy 0,x1
- extru x2,30,31,x2 /* divide by 2 */
- addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */
- sh1add x2,x2,x2 /* multiply by 3 to get started */
-
-LSYM(neg10)
- subi 2,x2,x2 /* negate, divide by 2, and add 1 */
- /* negation and adding 1 are done */
- /* at the same time by the SUBI */
- extru x2,30,31,x2
- sh1add x2,x2,x2 /* multiply by 3 to get started */
-LSYM(neg)
- shd x1,x2,28,t1 /* multiply by 0x11 */
- shd x2,0,28,t2
- add x2,t2,x2
- addc x1,t1,x1
-LSYM(neg_for_17)
- shd x1,x2,24,t1 /* multiply by 0x101 */
- shd x2,0,24,t2
- add x2,t2,x2
- addc x1,t1,x1
-
- shd x1,x2,16,t1 /* multiply by 0x10001 */
- shd x2,0,16,t2
- add x2,t2,x2
- addc x1,t1,x1
- MILLIRET
- sub 0,x1,x1
-
-/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
-GSYM($$divI_12)
- .export $$divI_12,millicode
- comb,< x2,0,LREF(neg12)
- copy 0,x1
- extru x2,29,30,x2 /* divide by 4 */
- addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */
- sh2add x2,x2,x2 /* multiply by 5 to get started */
-
-LSYM(neg12)
- subi 4,x2,x2 /* negate, divide by 4, and add 1 */
- /* negation and adding 1 are done */
- /* at the same time by the SUBI */
- extru x2,29,30,x2
- b LREF(neg)
- sh2add x2,x2,x2 /* multiply by 5 to get started */
-
-GSYM($$divU_12)
- .export $$divU_12,millicode
- extru x2,29,30,x2 /* divide by 4 */
- addi 5,x2,t1 /* cannot carry */
- sh2add x2,t1,x2 /* multiply by 5 to get started */
- b LREF(pos)
- addc 0,0,x1
-
-/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
-GSYM($$divI_15)
- .export $$divI_15,millicode
- comb,< x2,0,LREF(neg15)
- copy 0,x1
- addib,tr 1,x2,LREF(pos)+4
- shd x1,x2,28,t1
-
-LSYM(neg15)
- b LREF(neg)
- subi 1,x2,x2
-
-GSYM($$divU_15)
- .export $$divU_15,millicode
- addi 1,x2,x2 /* this CAN overflow */
- b LREF(pos)
- addc 0,0,x1
-
-/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */
-GSYM($$divI_17)
- .export $$divI_17,millicode
- comb,<,n x2,0,LREF(neg17)
- addi 1,x2,x2 /* this cannot overflow */
- shd 0,x2,28,t1 /* multiply by 0xf to get started */
- shd x2,0,28,t2
- sub t2,x2,x2
- b LREF(pos_for_17)
- subb t1,0,x1
-
-LSYM(neg17)
- subi 1,x2,x2 /* this cannot overflow */
- shd 0,x2,28,t1 /* multiply by 0xf to get started */
- shd x2,0,28,t2
- sub t2,x2,x2
- b LREF(neg_for_17)
- subb t1,0,x1
-
-GSYM($$divU_17)
- .export $$divU_17,millicode
- addi 1,x2,x2 /* this CAN overflow */
- addc 0,0,x1
- shd x1,x2,28,t1 /* multiply by 0xf to get started */
-LSYM(u17)
- shd x2,0,28,t2
- sub t2,x2,x2
- b LREF(pos_for_17)
- subb t1,x1,x1
-
-
-/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
- includes 7,9 and also 14
-
-
- z = 2**24-1
- r = z mod x = 0
-
- so choose b = 0
-
- Also, in order to divide by z = 2**24-1, we approximate by dividing
- by (z+1) = 2**24 (which is easy), and then correcting.
-
- (ax) = (z+1)q' + r
- . = zq' + (q'+r)
-
- So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
- Then the true remainder of (ax)/z is (q'+r). Repeat the process
- with this new remainder, adding the tentative quotients together,
- until a tentative quotient is 0 (and then we are done). There is
- one last correction to be done. It is possible that (q'+r) = z.
- If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But,
- in fact, we need to add 1 more to the quotient. Now, it turns
- out that this happens if and only if the original value x is
- an exact multiple of y. So, to avoid a three instruction test at
- the end, instead use 1 instruction to add 1 to x at the beginning. */
-
-/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
-GSYM($$divI_7)
- .export $$divI_7,millicode
- comb,<,n x2,0,LREF(neg7)
-LSYM(7)
- addi 1,x2,x2 /* cannot overflow */
- shd 0,x2,29,x1
- sh3add x2,x2,x2
- addc x1,0,x1
-LSYM(pos7)
- shd x1,x2,26,t1
- shd x2,0,26,t2
- add x2,t2,x2
- addc x1,t1,x1
-
- shd x1,x2,20,t1
- shd x2,0,20,t2
- add x2,t2,x2
- addc x1,t1,t1
-
- /* computed <t1,x2>. Now divide it by (2**24 - 1) */
-
- copy 0,x1
- shd,= t1,x2,24,t1 /* tentative quotient */
-LSYM(1)
- addb,tr t1,x1,LREF(2) /* add to previous quotient */
- extru x2,31,24,x2 /* new remainder (unadjusted) */
-
- MILLIRETN
-
-LSYM(2)
- addb,tr t1,x2,LREF(1) /* adjust remainder */
- extru,= x2,7,8,t1 /* new quotient */
-
-LSYM(neg7)
- subi 1,x2,x2 /* negate x2 and add 1 */
-LSYM(8)
- shd 0,x2,29,x1
- sh3add x2,x2,x2
- addc x1,0,x1
-
-LSYM(neg7_shift)
- shd x1,x2,26,t1
- shd x2,0,26,t2
- add x2,t2,x2
- addc x1,t1,x1
-
- shd x1,x2,20,t1
- shd x2,0,20,t2
- add x2,t2,x2
- addc x1,t1,t1
-
- /* computed <t1,x2>. Now divide it by (2**24 - 1) */
-
- copy 0,x1
- shd,= t1,x2,24,t1 /* tentative quotient */
-LSYM(3)
- addb,tr t1,x1,LREF(4) /* add to previous quotient */
- extru x2,31,24,x2 /* new remainder (unadjusted) */
-
- MILLIRET
- sub 0,x1,x1 /* negate result */
-
-LSYM(4)
- addb,tr t1,x2,LREF(3) /* adjust remainder */
- extru,= x2,7,8,t1 /* new quotient */
-
-GSYM($$divU_7)
- .export $$divU_7,millicode
- addi 1,x2,x2 /* can carry */
- addc 0,0,x1
- shd x1,x2,29,t1
- sh3add x2,x2,x2
- b LREF(pos7)
- addc t1,x1,x1
-
-/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
-GSYM($$divI_9)
- .export $$divI_9,millicode
- comb,<,n x2,0,LREF(neg9)
- addi 1,x2,x2 /* cannot overflow */
- shd 0,x2,29,t1
- shd x2,0,29,t2
- sub t2,x2,x2
- b LREF(pos7)
- subb t1,0,x1
-
-LSYM(neg9)
- subi 1,x2,x2 /* negate and add 1 */
- shd 0,x2,29,t1
- shd x2,0,29,t2
- sub t2,x2,x2
- b LREF(neg7_shift)
- subb t1,0,x1
-
-GSYM($$divU_9)
- .export $$divU_9,millicode
- addi 1,x2,x2 /* can carry */
- addc 0,0,x1
- shd x1,x2,29,t1
- shd x2,0,29,t2
- sub t2,x2,x2
- b LREF(pos7)
- subb t1,x1,x1
-
-/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
-GSYM($$divI_14)
- .export $$divI_14,millicode
- comb,<,n x2,0,LREF(neg14)
-GSYM($$divU_14)
- .export $$divU_14,millicode
- b LREF(7) /* go to 7 case */
- extru x2,30,31,x2 /* divide by 2 */
-
-LSYM(neg14)
- subi 2,x2,x2 /* negate (and add 2) */
- b LREF(8)
- extru x2,30,31,x2 /* divide by 2 */
- .exit
- .procend
- .end
-#endif
diff --git a/arch/parisc/lib/milli/dyncall.S b/arch/parisc/lib/milli/dyncall.S
deleted file mode 100644
index 27f9ca558d0a..000000000000
--- a/arch/parisc/lib/milli/dyncall.S
+++ /dev/null
@@ -1,32 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#include "milli.h"
-
-#ifdef L_dyncall
- SUBSPA_MILLI
- ATTR_DATA
-GSYM($$dyncall)
- .export $$dyncall,millicode
- .proc
- .callinfo millicode
- .entry
- bb,>=,n %r22,30,LREF(1) ; branch if not plabel address
- depi 0,31,2,%r22 ; clear the two least significant bits
- ldw 4(%r22),%r19 ; load new LTP value
- ldw 0(%r22),%r22 ; load address of target
-LSYM(1)
- bv %r0(%r22) ; branch to the real target
- stw %r2,-24(%r30) ; save return address into frame marker
- .exit
- .procend
-#endif
diff --git a/arch/parisc/lib/milli/milli.S b/arch/parisc/lib/milli/milli.S
deleted file mode 100644
index 47c6cde712e3..000000000000
--- a/arch/parisc/lib/milli/milli.S
+++ /dev/null
@@ -1,2071 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#ifdef CONFIG_64BIT
- .level 2.0w
-#endif
-
-/* Hardware General Registers. */
-r0: .reg %r0
-r1: .reg %r1
-r2: .reg %r2
-r3: .reg %r3
-r4: .reg %r4
-r5: .reg %r5
-r6: .reg %r6
-r7: .reg %r7
-r8: .reg %r8
-r9: .reg %r9
-r10: .reg %r10
-r11: .reg %r11
-r12: .reg %r12
-r13: .reg %r13
-r14: .reg %r14
-r15: .reg %r15
-r16: .reg %r16
-r17: .reg %r17
-r18: .reg %r18
-r19: .reg %r19
-r20: .reg %r20
-r21: .reg %r21
-r22: .reg %r22
-r23: .reg %r23
-r24: .reg %r24
-r25: .reg %r25
-r26: .reg %r26
-r27: .reg %r27
-r28: .reg %r28
-r29: .reg %r29
-r30: .reg %r30
-r31: .reg %r31
-
-/* Hardware Space Registers. */
-sr0: .reg %sr0
-sr1: .reg %sr1
-sr2: .reg %sr2
-sr3: .reg %sr3
-sr4: .reg %sr4
-sr5: .reg %sr5
-sr6: .reg %sr6
-sr7: .reg %sr7
-
-/* Hardware Floating Point Registers. */
-fr0: .reg %fr0
-fr1: .reg %fr1
-fr2: .reg %fr2
-fr3: .reg %fr3
-fr4: .reg %fr4
-fr5: .reg %fr5
-fr6: .reg %fr6
-fr7: .reg %fr7
-fr8: .reg %fr8
-fr9: .reg %fr9
-fr10: .reg %fr10
-fr11: .reg %fr11
-fr12: .reg %fr12
-fr13: .reg %fr13
-fr14: .reg %fr14
-fr15: .reg %fr15
-
-/* Hardware Control Registers. */
-cr11: .reg %cr11
-sar: .reg %cr11 /* Shift Amount Register */
-
-/* Software Architecture General Registers. */
-rp: .reg r2 /* return pointer */
-#ifdef CONFIG_64BIT
-mrp: .reg r2 /* millicode return pointer */
-#else
-mrp: .reg r31 /* millicode return pointer */
-#endif
-ret0: .reg r28 /* return value */
-ret1: .reg r29 /* return value (high part of double) */
-sp: .reg r30 /* stack pointer */
-dp: .reg r27 /* data pointer */
-arg0: .reg r26 /* argument */
-arg1: .reg r25 /* argument or high part of double argument */
-arg2: .reg r24 /* argument */
-arg3: .reg r23 /* argument or high part of double argument */
-
-/* Software Architecture Space Registers. */
-/* sr0 ; return link from BLE */
-sret: .reg sr1 /* return value */
-sarg: .reg sr1 /* argument */
-/* sr4 ; PC SPACE tracker */
-/* sr5 ; process private data */
-
-/* Frame Offsets (millicode convention!) Used when calling other
- millicode routines. Stack unwinding is dependent upon these
- definitions. */
-r31_slot: .equ -20 /* "current RP" slot */
-sr0_slot: .equ -16 /* "static link" slot */
-#if defined(CONFIG_64BIT)
-mrp_slot: .equ -16 /* "current RP" slot */
-psp_slot: .equ -8 /* "previous SP" slot */
-#else
-mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */
-#endif
-
-
-#define DEFINE(name,value)name: .EQU value
-#define RDEFINE(name,value)name: .REG value
-#ifdef milliext
-#define MILLI_BE(lbl) BE lbl(sr7,r0)
-#define MILLI_BEN(lbl) BE,n lbl(sr7,r0)
-#define MILLI_BLE(lbl) BLE lbl(sr7,r0)
-#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0)
-#define MILLIRETN BE,n 0(sr0,mrp)
-#define MILLIRET BE 0(sr0,mrp)
-#define MILLI_RETN BE,n 0(sr0,mrp)
-#define MILLI_RET BE 0(sr0,mrp)
-#else
-#define MILLI_BE(lbl) B lbl
-#define MILLI_BEN(lbl) B,n lbl
-#define MILLI_BLE(lbl) BL lbl,mrp
-#define MILLI_BLEN(lbl) BL,n lbl,mrp
-#define MILLIRETN BV,n 0(mrp)
-#define MILLIRET BV 0(mrp)
-#define MILLI_RETN BV,n 0(mrp)
-#define MILLI_RET BV 0(mrp)
-#endif
-
-#define CAT(a,b) a##b
-
-#define SUBSPA_MILLI .section .text
-#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
-#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
-#define ATTR_MILLI
-#define SUBSPA_DATA .section .data
-#define ATTR_DATA
-#define GLOBAL $global$
-#define GSYM(sym) !sym:
-#define LSYM(sym) !CAT(.L,sym:)
-#define LREF(sym) CAT(.L,sym)
-
-#ifdef L_dyncall
- SUBSPA_MILLI
- ATTR_DATA
-GSYM($$dyncall)
- .export $$dyncall,millicode
- .proc
- .callinfo millicode
- .entry
- bb,>=,n %r22,30,LREF(1) ; branch if not plabel address
- depi 0,31,2,%r22 ; clear the two least significant bits
- ldw 4(%r22),%r19 ; load new LTP value
- ldw 0(%r22),%r22 ; load address of target
-LSYM(1)
- bv %r0(%r22) ; branch to the real target
- stw %r2,-24(%r30) ; save return address into frame marker
- .exit
- .procend
-#endif
-
-#ifdef L_divI
-/* ROUTINES: $$divI, $$divoI
-
- Single precision divide for signed binary integers.
-
- The quotient is truncated towards zero.
- The sign of the quotient is the XOR of the signs of the dividend and
- divisor.
- Divide by zero is trapped.
- Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
-
- INPUT REGISTERS:
- . arg0 == dividend
- . arg1 == divisor
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = undefined
- . arg1 = undefined
- . ret1 = quotient
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions:
- . divisor is zero (traps with ADDIT,= 0,25,0)
- . dividend==-2**31 and divisor==-1 and routine is $$divoI
- . (traps with ADDO 26,25,0)
- . Changes memory at the following places:
- . NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable.
- . Suitable for internal or external millicode.
- . Assumes the special millicode register conventions.
-
- DISCUSSION:
- . Branchs to other millicode routines using BE
- . $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
- .
- . For selected divisors, calls a divide by constant routine written by
- . Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13.
- .
- . The only overflow case is -2**31 divided by -1.
- . Both routines return -2**31 but only $$divoI traps. */
-
-RDEFINE(temp,r1)
-RDEFINE(retreg,ret1) /* r29 */
-RDEFINE(temp1,arg0)
- SUBSPA_MILLI_DIV
- ATTR_MILLI
- .import $$divI_2,millicode
- .import $$divI_3,millicode
- .import $$divI_4,millicode
- .import $$divI_5,millicode
- .import $$divI_6,millicode
- .import $$divI_7,millicode
- .import $$divI_8,millicode
- .import $$divI_9,millicode
- .import $$divI_10,millicode
- .import $$divI_12,millicode
- .import $$divI_14,millicode
- .import $$divI_15,millicode
- .export $$divI,millicode
- .export $$divoI,millicode
- .proc
- .callinfo millicode
- .entry
-GSYM($$divoI)
- comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */
-GSYM($$divI)
- ldo -1(arg1),temp /* is there at most one bit set ? */
- and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */
- addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */
- b,n LREF(neg_denom)
-LSYM(pow2)
- addi,>= 0,arg0,retreg /* if numerator is negative, add the */
- add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */
- extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
- extrs retreg,15,16,retreg /* retreg = retreg >> 16 */
- or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
- ldi 0xcc,temp1 /* setup 0xcc in temp1 */
- extru,= arg1,23,8,temp /* test denominator with 0xff00 */
- extrs retreg,23,24,retreg /* retreg = retreg >> 8 */
- or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
- ldi 0xaa,temp /* setup 0xaa in temp */
- extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
- extrs retreg,27,28,retreg /* retreg = retreg >> 4 */
- and,= arg1,temp1,r0 /* test denominator with 0xcc */
- extrs retreg,29,30,retreg /* retreg = retreg >> 2 */
- and,= arg1,temp,r0 /* test denominator with 0xaa */
- extrs retreg,30,31,retreg /* retreg = retreg >> 1 */
- MILLIRETN
-LSYM(neg_denom)
- addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */
- b,n LREF(regular_seq)
- sub r0,arg1,temp /* make denominator positive */
- comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */
- ldo -1(temp),retreg /* is there at most one bit set ? */
- and,= temp,retreg,r0 /* if so, the denominator is power of 2 */
- b,n LREF(regular_seq)
- sub r0,arg0,retreg /* negate numerator */
- comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */
- copy retreg,arg0 /* set up arg0, arg1 and temp */
- copy temp,arg1 /* before branching to pow2 */
- b LREF(pow2)
- ldo -1(arg1),temp
-LSYM(regular_seq)
- comib,>>=,n 15,arg1,LREF(small_divisor)
- add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
-LSYM(normal)
- subi 0,retreg,retreg /* make it positive */
- sub 0,arg1,temp /* clear carry, */
- /* negate the divisor */
- ds 0,temp,0 /* set V-bit to the comple- */
- /* ment of the divisor sign */
- add retreg,retreg,retreg /* shift msb bit into carry */
- ds r0,arg1,temp /* 1st divide step, if no carry */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 2nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 3rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 4th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 5th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 6th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 7th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 8th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 9th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 10th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 11th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 12th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 13th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 14th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 15th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 16th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 17th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 18th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 19th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 20th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 21st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 22nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 23rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 24th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 25th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 26th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 27th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 28th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 29th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 30th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 31st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 32nd divide step, */
- addc retreg,retreg,retreg /* shift last retreg bit into retreg */
- xor,>= arg0,arg1,0 /* get correct sign of quotient */
- sub 0,retreg,retreg /* based on operand signs */
- MILLIRETN
- nop
-
-LSYM(small_divisor)
-
-#if defined(CONFIG_64BIT)
-/* Clear the upper 32 bits of the arg1 register. We are working with */
-/* small divisors (and 32-bit integers) We must not be mislead */
-/* by "1" bits left in the upper 32 bits. */
- depd %r0,31,32,%r25
-#endif
- blr,n arg1,r0
- nop
-/* table for divisor == 0,1, ... ,15 */
- addit,= 0,arg1,r0 /* trap if divisor == 0 */
- nop
- MILLIRET /* divisor == 1 */
- copy arg0,retreg
- MILLI_BEN($$divI_2) /* divisor == 2 */
- nop
- MILLI_BEN($$divI_3) /* divisor == 3 */
- nop
- MILLI_BEN($$divI_4) /* divisor == 4 */
- nop
- MILLI_BEN($$divI_5) /* divisor == 5 */
- nop
- MILLI_BEN($$divI_6) /* divisor == 6 */
- nop
- MILLI_BEN($$divI_7) /* divisor == 7 */
- nop
- MILLI_BEN($$divI_8) /* divisor == 8 */
- nop
- MILLI_BEN($$divI_9) /* divisor == 9 */
- nop
- MILLI_BEN($$divI_10) /* divisor == 10 */
- nop
- b LREF(normal) /* divisor == 11 */
- add,>= 0,arg0,retreg
- MILLI_BEN($$divI_12) /* divisor == 12 */
- nop
- b LREF(normal) /* divisor == 13 */
- add,>= 0,arg0,retreg
- MILLI_BEN($$divI_14) /* divisor == 14 */
- nop
- MILLI_BEN($$divI_15) /* divisor == 15 */
- nop
-
-LSYM(negative1)
- sub 0,arg0,retreg /* result is negation of dividend */
- MILLIRET
- addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */
- .exit
- .procend
- .end
-#endif
-
-#ifdef L_divU
-/* ROUTINE: $$divU
- .
- . Single precision divide for unsigned integers.
- .
- . Quotient is truncated towards zero.
- . Traps on divide by zero.
-
- INPUT REGISTERS:
- . arg0 == dividend
- . arg1 == divisor
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = undefined
- . arg1 = undefined
- . ret1 = quotient
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions:
- . divisor is zero
- . Changes memory at the following places:
- . NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable.
- . Does not create a stack frame.
- . Suitable for internal or external millicode.
- . Assumes the special millicode register conventions.
-
- DISCUSSION:
- . Branchs to other millicode routines using BE:
- . $$divU_# for 3,5,6,7,9,10,12,14,15
- .
- . For selected small divisors calls the special divide by constant
- . routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */
-
-RDEFINE(temp,r1)
-RDEFINE(retreg,ret1) /* r29 */
-RDEFINE(temp1,arg0)
- SUBSPA_MILLI_DIV
- ATTR_MILLI
- .export $$divU,millicode
- .import $$divU_3,millicode
- .import $$divU_5,millicode
- .import $$divU_6,millicode
- .import $$divU_7,millicode
- .import $$divU_9,millicode
- .import $$divU_10,millicode
- .import $$divU_12,millicode
- .import $$divU_14,millicode
- .import $$divU_15,millicode
- .proc
- .callinfo millicode
- .entry
-GSYM($$divU)
-/* The subtract is not nullified since it does no harm and can be used
- by the two cases that branch back to "normal". */
- ldo -1(arg1),temp /* is there at most one bit set ? */
- and,= arg1,temp,r0 /* if so, denominator is power of 2 */
- b LREF(regular_seq)
- addit,= 0,arg1,0 /* trap for zero dvr */
- copy arg0,retreg
- extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
- extru retreg,15,16,retreg /* retreg = retreg >> 16 */
- or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
- ldi 0xcc,temp1 /* setup 0xcc in temp1 */
- extru,= arg1,23,8,temp /* test denominator with 0xff00 */
- extru retreg,23,24,retreg /* retreg = retreg >> 8 */
- or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
- ldi 0xaa,temp /* setup 0xaa in temp */
- extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
- extru retreg,27,28,retreg /* retreg = retreg >> 4 */
- and,= arg1,temp1,r0 /* test denominator with 0xcc */
- extru retreg,29,30,retreg /* retreg = retreg >> 2 */
- and,= arg1,temp,r0 /* test denominator with 0xaa */
- extru retreg,30,31,retreg /* retreg = retreg >> 1 */
- MILLIRETN
- nop
-LSYM(regular_seq)
- comib,>= 15,arg1,LREF(special_divisor)
- subi 0,arg1,temp /* clear carry, negate the divisor */
- ds r0,temp,r0 /* set V-bit to 1 */
-LSYM(normal)
- add arg0,arg0,retreg /* shift msb bit into carry */
- ds r0,arg1,temp /* 1st divide step, if no carry */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 2nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 3rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 4th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 5th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 6th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 7th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 8th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 9th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 10th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 11th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 12th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 13th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 14th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 15th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 16th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 17th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 18th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 19th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 20th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 21st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 22nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 23rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 24th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 25th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 26th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 27th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 28th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 29th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 30th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 31st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds temp,arg1,temp /* 32nd divide step, */
- MILLIRET
- addc retreg,retreg,retreg /* shift last retreg bit into retreg */
-
-/* Handle the cases where divisor is a small constant or has high bit on. */
-LSYM(special_divisor)
-/* blr arg1,r0 */
-/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */
-
-/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
- generating such a blr, comib sequence. A problem in nullification. So I
- rewrote this code. */
-
-#if defined(CONFIG_64BIT)
-/* Clear the upper 32 bits of the arg1 register. We are working with
- small divisors (and 32-bit unsigned integers) We must not be mislead
- by "1" bits left in the upper 32 bits. */
- depd %r0,31,32,%r25
-#endif
- comib,> 0,arg1,LREF(big_divisor)
- nop
- blr arg1,r0
- nop
-
-LSYM(zero_divisor) /* this label is here to provide external visibility */
- addit,= 0,arg1,0 /* trap for zero dvr */
- nop
- MILLIRET /* divisor == 1 */
- copy arg0,retreg
- MILLIRET /* divisor == 2 */
- extru arg0,30,31,retreg
- MILLI_BEN($$divU_3) /* divisor == 3 */
- nop
- MILLIRET /* divisor == 4 */
- extru arg0,29,30,retreg
- MILLI_BEN($$divU_5) /* divisor == 5 */
- nop
- MILLI_BEN($$divU_6) /* divisor == 6 */
- nop
- MILLI_BEN($$divU_7) /* divisor == 7 */
- nop
- MILLIRET /* divisor == 8 */
- extru arg0,28,29,retreg
- MILLI_BEN($$divU_9) /* divisor == 9 */
- nop
- MILLI_BEN($$divU_10) /* divisor == 10 */
- nop
- b LREF(normal) /* divisor == 11 */
- ds r0,temp,r0 /* set V-bit to 1 */
- MILLI_BEN($$divU_12) /* divisor == 12 */
- nop
- b LREF(normal) /* divisor == 13 */
- ds r0,temp,r0 /* set V-bit to 1 */
- MILLI_BEN($$divU_14) /* divisor == 14 */
- nop
- MILLI_BEN($$divU_15) /* divisor == 15 */
- nop
-
-/* Handle the case where the high bit is on in the divisor.
- Compute: if( dividend>=divisor) quotient=1; else quotient=0;
- Note: dividend>==divisor iff dividend-divisor does not borrow
- and not borrow iff carry. */
-LSYM(big_divisor)
- sub arg0,arg1,r0
- MILLIRET
- addc r0,r0,retreg
- .exit
- .procend
- .end
-#endif
-
-#ifdef L_remI
-/* ROUTINE: $$remI
-
- DESCRIPTION:
- . $$remI returns the remainder of the division of two signed 32-bit
- . integers. The sign of the remainder is the same as the sign of
- . the dividend.
-
-
- INPUT REGISTERS:
- . arg0 == dividend
- . arg1 == divisor
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = destroyed
- . arg1 = destroyed
- . ret1 = remainder
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions: DIVIDE BY ZERO
- . Changes memory at the following places: NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable
- . Does not create a stack frame
- . Is usable for internal or external microcode
-
- DISCUSSION:
- . Calls other millicode routines via mrp: NONE
- . Calls other millicode routines: NONE */
-
-RDEFINE(tmp,r1)
-RDEFINE(retreg,ret1)
-
- SUBSPA_MILLI
- ATTR_MILLI
- .proc
- .callinfo millicode
- .entry
-GSYM($$remI)
-GSYM($$remoI)
- .export $$remI,MILLICODE
- .export $$remoI,MILLICODE
- ldo -1(arg1),tmp /* is there at most one bit set ? */
- and,<> arg1,tmp,r0 /* if not, don't use power of 2 */
- addi,> 0,arg1,r0 /* if denominator > 0, use power */
- /* of 2 */
- b,n LREF(neg_denom)
-LSYM(pow2)
- comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */
- and arg0,tmp,retreg /* get the result */
- MILLIRETN
-LSYM(neg_num)
- subi 0,arg0,arg0 /* negate numerator */
- and arg0,tmp,retreg /* get the result */
- subi 0,retreg,retreg /* negate result */
- MILLIRETN
-LSYM(neg_denom)
- addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */
- /* of 2 */
- b,n LREF(regular_seq)
- sub r0,arg1,tmp /* make denominator positive */
- comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */
- ldo -1(tmp),retreg /* is there at most one bit set ? */
- and,= tmp,retreg,r0 /* if not, go to regular_seq */
- b,n LREF(regular_seq)
- comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */
- and arg0,retreg,retreg
- MILLIRETN
-LSYM(neg_num_2)
- subi 0,arg0,tmp /* test against 0x80000000 */
- and tmp,retreg,retreg
- subi 0,retreg,retreg
- MILLIRETN
-LSYM(regular_seq)
- addit,= 0,arg1,0 /* trap if div by zero */
- add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
- sub 0,retreg,retreg /* make it positive */
- sub 0,arg1, tmp /* clear carry, */
- /* negate the divisor */
- ds 0, tmp,0 /* set V-bit to the comple- */
- /* ment of the divisor sign */
- or 0,0, tmp /* clear tmp */
- add retreg,retreg,retreg /* shift msb bit into carry */
- ds tmp,arg1, tmp /* 1st divide step, if no carry */
- /* out, msb of quotient = 0 */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
-LSYM(t1)
- ds tmp,arg1, tmp /* 2nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 3rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 4th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 5th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 6th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 7th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 8th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 9th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 10th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 11th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 12th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 13th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 14th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 15th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 16th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 17th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 18th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 19th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 20th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 21st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 22nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 23rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 24th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 25th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 26th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 27th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 28th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 29th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 30th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 31st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 32nd divide step, */
- addc retreg,retreg,retreg /* shift last bit into retreg */
- movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */
- add,< arg1,0,0 /* if arg1 > 0, add arg1 */
- add,tr tmp,arg1,retreg /* for correcting remainder tmp */
- sub tmp,arg1,retreg /* else add absolute value arg1 */
-LSYM(finish)
- add,>= arg0,0,0 /* set sign of remainder */
- sub 0,retreg,retreg /* to sign of dividend */
- MILLIRET
- nop
- .exit
- .procend
-#ifdef milliext
- .origin 0x00000200
-#endif
- .end
-#endif
-
-#ifdef L_remU
-/* ROUTINE: $$remU
- . Single precision divide for remainder with unsigned binary integers.
- .
- . The remainder must be dividend-(dividend/divisor)*divisor.
- . Divide by zero is trapped.
-
- INPUT REGISTERS:
- . arg0 == dividend
- . arg1 == divisor
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = undefined
- . arg1 = undefined
- . ret1 = remainder
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions: DIVIDE BY ZERO
- . Changes memory at the following places: NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable.
- . Does not create a stack frame.
- . Suitable for internal or external millicode.
- . Assumes the special millicode register conventions.
-
- DISCUSSION:
- . Calls other millicode routines using mrp: NONE
- . Calls other millicode routines: NONE */
-
-
-RDEFINE(temp,r1)
-RDEFINE(rmndr,ret1) /* r29 */
- SUBSPA_MILLI
- ATTR_MILLI
- .export $$remU,millicode
- .proc
- .callinfo millicode
- .entry
-GSYM($$remU)
- ldo -1(arg1),temp /* is there at most one bit set ? */
- and,= arg1,temp,r0 /* if not, don't use power of 2 */
- b LREF(regular_seq)
- addit,= 0,arg1,r0 /* trap on div by zero */
- and arg0,temp,rmndr /* get the result for power of 2 */
- MILLIRETN
-LSYM(regular_seq)
- comib,>=,n 0,arg1,LREF(special_case)
- subi 0,arg1,rmndr /* clear carry, negate the divisor */
- ds r0,rmndr,r0 /* set V-bit to 1 */
- add arg0,arg0,temp /* shift msb bit into carry */
- ds r0,arg1,rmndr /* 1st divide step, if no carry */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 2nd divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 3rd divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 4th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 5th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 6th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 7th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 8th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 9th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 10th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 11th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 12th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 13th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 14th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 15th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 16th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 17th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 18th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 19th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 20th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 21st divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 22nd divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 23rd divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 24th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 25th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 26th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 27th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 28th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 29th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 30th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 31st divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 32nd divide step, */
- comiclr,<= 0,rmndr,r0
- add rmndr,arg1,rmndr /* correction */
- MILLIRETN
- nop
-
-/* Putting >= on the last DS and deleting COMICLR does not work! */
-LSYM(special_case)
- sub,>>= arg0,arg1,rmndr
- copy arg0,rmndr
- MILLIRETN
- nop
- .exit
- .procend
- .end
-#endif
-
-#ifdef L_div_const
-/* ROUTINE: $$divI_2
- . $$divI_3 $$divU_3
- . $$divI_4
- . $$divI_5 $$divU_5
- . $$divI_6 $$divU_6
- . $$divI_7 $$divU_7
- . $$divI_8
- . $$divI_9 $$divU_9
- . $$divI_10 $$divU_10
- .
- . $$divI_12 $$divU_12
- .
- . $$divI_14 $$divU_14
- . $$divI_15 $$divU_15
- . $$divI_16
- . $$divI_17 $$divU_17
- .
- . Divide by selected constants for single precision binary integers.
-
- INPUT REGISTERS:
- . arg0 == dividend
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = undefined
- . arg1 = undefined
- . ret1 = quotient
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions: NONE
- . Changes memory at the following places: NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable.
- . Does not create a stack frame.
- . Suitable for internal or external millicode.
- . Assumes the special millicode register conventions.
-
- DISCUSSION:
- . Calls other millicode routines using mrp: NONE
- . Calls other millicode routines: NONE */
-
-
-/* TRUNCATED DIVISION BY SMALL INTEGERS
-
- We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
- (with y fixed).
-
- Let a = floor(z/y), for some choice of z. Note that z will be
- chosen so that division by z is cheap.
-
- Let r be the remainder(z/y). In other words, r = z - ay.
-
- Now, our method is to choose a value for b such that
-
- q'(x) = floor((ax+b)/z)
-
- is equal to q(x) over as large a range of x as possible. If the
- two are equal over a sufficiently large range, and if it is easy to
- form the product (ax), and it is easy to divide by z, then we can
- perform the division much faster than the general division algorithm.
-
- So, we want the following to be true:
-
- . For x in the following range:
- .
- . ky <= x < (k+1)y
- .
- . implies that
- .
- . k <= (ax+b)/z < (k+1)
-
- We want to determine b such that this is true for all k in the
- range {0..K} for some maximum K.
-
- Since (ax+b) is an increasing function of x, we can take each
- bound separately to determine the "best" value for b.
-
- (ax+b)/z < (k+1) implies
-
- (a((k+1)y-1)+b < (k+1)z implies
-
- b < a + (k+1)(z-ay) implies
-
- b < a + (k+1)r
-
- This needs to be true for all k in the range {0..K}. In
- particular, it is true for k = 0 and this leads to a maximum
- acceptable value for b.
-
- b < a+r or b <= a+r-1
-
- Taking the other bound, we have
-
- k <= (ax+b)/z implies
-
- k <= (aky+b)/z implies
-
- k(z-ay) <= b implies
-
- kr <= b
-
- Clearly, the largest range for k will be achieved by maximizing b,
- when r is not zero. When r is zero, then the simplest choice for b
- is 0. When r is not 0, set
-
- . b = a+r-1
-
- Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
- for all x in the range:
-
- . 0 <= x < (K+1)y
-
- We need to determine what K is. Of our two bounds,
-
- . b < a+(k+1)r is satisfied for all k >= 0, by construction.
-
- The other bound is
-
- . kr <= b
-
- This is always true if r = 0. If r is not 0 (the usual case), then
- K = floor((a+r-1)/r), is the maximum value for k.
-
- Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
- answer for q(x) = floor(x/y) when x is in the range
-
- (0,(K+1)y-1) K = floor((a+r-1)/r)
-
- To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
- the formula for q'(x) yields the correct value of q(x) for all x
- representable by a single word in HPPA.
-
- We are also constrained in that computing the product (ax), adding
- b, and dividing by z must all be done quickly, otherwise we will be
- better off going through the general algorithm using the DS
- instruction, which uses approximately 70 cycles.
-
- For each y, there is a choice of z which satisfies the constraints
- for (K+1)y >= 2**32. We may not, however, be able to satisfy the
- timing constraints for arbitrary y. It seems that z being equal to
- a power of 2 or a power of 2 minus 1 is as good as we can do, since
- it minimizes the time to do division by z. We want the choice of z
- to also result in a value for (a) that minimizes the computation of
- the product (ax). This is best achieved if (a) has a regular bit
- pattern (so the multiplication can be done with shifts and adds).
- The value of (a) also needs to be less than 2**32 so the product is
- always guaranteed to fit in 2 words.
-
- In actual practice, the following should be done:
-
- 1) For negative x, you should take the absolute value and remember
- . the fact so that the result can be negated. This obviously does
- . not apply in the unsigned case.
- 2) For even y, you should factor out the power of 2 that divides y
- . and divide x by it. You can then proceed by dividing by the
- . odd factor of y.
-
- Here is a table of some odd values of y, and corresponding choices
- for z which are "good".
-
- y z r a (hex) max x (hex)
-
- 3 2**32 1 55555555 100000001
- 5 2**32 1 33333333 100000003
- 7 2**24-1 0 249249 (infinite)
- 9 2**24-1 0 1c71c7 (infinite)
- 11 2**20-1 0 1745d (infinite)
- 13 2**24-1 0 13b13b (infinite)
- 15 2**32 1 11111111 10000000d
- 17 2**32 1 f0f0f0f 10000000f
-
- If r is 1, then b = a+r-1 = a. This simplifies the computation
- of (ax+b), since you can compute (x+1)(a) instead. If r is 0,
- then b = 0 is ok to use which simplifies (ax+b).
-
- The bit patterns for 55555555, 33333333, and 11111111 are obviously
- very regular. The bit patterns for the other values of a above are:
-
- y (hex) (binary)
-
- 7 249249 001001001001001001001001 << regular >>
- 9 1c71c7 000111000111000111000111 << regular >>
- 11 1745d 000000010111010001011101 << irregular >>
- 13 13b13b 000100111011000100111011 << irregular >>
-
- The bit patterns for (a) corresponding to (y) of 11 and 13 may be
- too irregular to warrant using this method.
-
- When z is a power of 2 minus 1, then the division by z is slightly
- more complicated, involving an iterative solution.
-
- The code presented here solves division by 1 through 17, except for
- 11 and 13. There are algorithms for both signed and unsigned
- quantities given.
-
- TIMINGS (cycles)
-
- divisor positive negative unsigned
-
- . 1 2 2 2
- . 2 4 4 2
- . 3 19 21 19
- . 4 4 4 2
- . 5 18 22 19
- . 6 19 22 19
- . 8 4 4 2
- . 10 18 19 17
- . 12 18 20 18
- . 15 16 18 16
- . 16 4 4 2
- . 17 16 18 16
-
- Now, the algorithm for 7, 9, and 14 is an iterative one. That is,
- a loop body is executed until the tentative quotient is 0. The
- number of times the loop body is executed varies depending on the
- dividend, but is never more than two times. If the dividend is
- less than the divisor, then the loop body is not executed at all.
- Each iteration adds 4 cycles to the timings.
-
- divisor positive negative unsigned
-
- . 7 19+4n 20+4n 20+4n n = number of iterations
- . 9 21+4n 22+4n 21+4n
- . 14 21+4n 22+4n 20+4n
-
- To give an idea of how the number of iterations varies, here is a
- table of dividend versus number of iterations when dividing by 7.
-
- smallest largest required
- dividend dividend iterations
-
- . 0 6 0
- . 7 0x6ffffff 1
- 0x1000006 0xffffffff 2
-
- There is some overlap in the range of numbers requiring 1 and 2
- iterations. */
-
-RDEFINE(t2,r1)
-RDEFINE(x2,arg0) /* r26 */
-RDEFINE(t1,arg1) /* r25 */
-RDEFINE(x1,ret1) /* r29 */
-
- SUBSPA_MILLI_DIV
- ATTR_MILLI
-
- .proc
- .callinfo millicode
- .entry
-/* NONE of these routines require a stack frame
- ALL of these routines are unwindable from millicode */
-
-GSYM($$divide_by_constant)
- .export $$divide_by_constant,millicode
-/* Provides a "nice" label for the code covered by the unwind descriptor
- for things like gprof. */
-
-/* DIVISION BY 2 (shift by 1) */
-GSYM($$divI_2)
- .export $$divI_2,millicode
- comclr,>= arg0,0,0
- addi 1,arg0,arg0
- MILLIRET
- extrs arg0,30,31,ret1
-
-
-/* DIVISION BY 4 (shift by 2) */
-GSYM($$divI_4)
- .export $$divI_4,millicode
- comclr,>= arg0,0,0
- addi 3,arg0,arg0
- MILLIRET
- extrs arg0,29,30,ret1
-
-
-/* DIVISION BY 8 (shift by 3) */
-GSYM($$divI_8)
- .export $$divI_8,millicode
- comclr,>= arg0,0,0
- addi 7,arg0,arg0
- MILLIRET
- extrs arg0,28,29,ret1
-
-/* DIVISION BY 16 (shift by 4) */
-GSYM($$divI_16)
- .export $$divI_16,millicode
- comclr,>= arg0,0,0
- addi 15,arg0,arg0
- MILLIRET
- extrs arg0,27,28,ret1
-
-/****************************************************************************
-*
-* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
-*
-* includes 3,5,15,17 and also 6,10,12
-*
-****************************************************************************/
-
-/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
-
-GSYM($$divI_3)
- .export $$divI_3,millicode
- comb,<,N x2,0,LREF(neg3)
-
- addi 1,x2,x2 /* this cannot overflow */
- extru x2,1,2,x1 /* multiply by 5 to get started */
- sh2add x2,x2,x2
- b LREF(pos)
- addc x1,0,x1
-
-LSYM(neg3)
- subi 1,x2,x2 /* this cannot overflow */
- extru x2,1,2,x1 /* multiply by 5 to get started */
- sh2add x2,x2,x2
- b LREF(neg)
- addc x1,0,x1
-
-GSYM($$divU_3)
- .export $$divU_3,millicode
- addi 1,x2,x2 /* this CAN overflow */
- addc 0,0,x1
- shd x1,x2,30,t1 /* multiply by 5 to get started */
- sh2add x2,x2,x2
- b LREF(pos)
- addc x1,t1,x1
-
-/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
-
-GSYM($$divI_5)
- .export $$divI_5,millicode
- comb,<,N x2,0,LREF(neg5)
-
- addi 3,x2,t1 /* this cannot overflow */
- sh1add x2,t1,x2 /* multiply by 3 to get started */
- b LREF(pos)
- addc 0,0,x1
-
-LSYM(neg5)
- sub 0,x2,x2 /* negate x2 */
- addi 1,x2,x2 /* this cannot overflow */
- shd 0,x2,31,x1 /* get top bit (can be 1) */
- sh1add x2,x2,x2 /* multiply by 3 to get started */
- b LREF(neg)
- addc x1,0,x1
-
-GSYM($$divU_5)
- .export $$divU_5,millicode
- addi 1,x2,x2 /* this CAN overflow */
- addc 0,0,x1
- shd x1,x2,31,t1 /* multiply by 3 to get started */
- sh1add x2,x2,x2
- b LREF(pos)
- addc t1,x1,x1
-
-/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */
-GSYM($$divI_6)
- .export $$divI_6,millicode
- comb,<,N x2,0,LREF(neg6)
- extru x2,30,31,x2 /* divide by 2 */
- addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */
- sh2add x2,t1,x2 /* multiply by 5 to get started */
- b LREF(pos)
- addc 0,0,x1
-
-LSYM(neg6)
- subi 2,x2,x2 /* negate, divide by 2, and add 1 */
- /* negation and adding 1 are done */
- /* at the same time by the SUBI */
- extru x2,30,31,x2
- shd 0,x2,30,x1
- sh2add x2,x2,x2 /* multiply by 5 to get started */
- b LREF(neg)
- addc x1,0,x1
-
-GSYM($$divU_6)
- .export $$divU_6,millicode
- extru x2,30,31,x2 /* divide by 2 */
- addi 1,x2,x2 /* cannot carry */
- shd 0,x2,30,x1 /* multiply by 5 to get started */
- sh2add x2,x2,x2
- b LREF(pos)
- addc x1,0,x1
-
-/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
-GSYM($$divU_10)
- .export $$divU_10,millicode
- extru x2,30,31,x2 /* divide by 2 */
- addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */
- sh1add x2,t1,x2 /* multiply by 3 to get started */
- addc 0,0,x1
-LSYM(pos)
- shd x1,x2,28,t1 /* multiply by 0x11 */
- shd x2,0,28,t2
- add x2,t2,x2
- addc x1,t1,x1
-LSYM(pos_for_17)
- shd x1,x2,24,t1 /* multiply by 0x101 */
- shd x2,0,24,t2
- add x2,t2,x2
- addc x1,t1,x1
-
- shd x1,x2,16,t1 /* multiply by 0x10001 */
- shd x2,0,16,t2
- add x2,t2,x2
- MILLIRET
- addc x1,t1,x1
-
-GSYM($$divI_10)
- .export $$divI_10,millicode
- comb,< x2,0,LREF(neg10)
- copy 0,x1
- extru x2,30,31,x2 /* divide by 2 */
- addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */
- sh1add x2,x2,x2 /* multiply by 3 to get started */
-
-LSYM(neg10)
- subi 2,x2,x2 /* negate, divide by 2, and add 1 */
- /* negation and adding 1 are done */
- /* at the same time by the SUBI */
- extru x2,30,31,x2
- sh1add x2,x2,x2 /* multiply by 3 to get started */
-LSYM(neg)
- shd x1,x2,28,t1 /* multiply by 0x11 */
- shd x2,0,28,t2
- add x2,t2,x2
- addc x1,t1,x1
-LSYM(neg_for_17)
- shd x1,x2,24,t1 /* multiply by 0x101 */
- shd x2,0,24,t2
- add x2,t2,x2
- addc x1,t1,x1
-
- shd x1,x2,16,t1 /* multiply by 0x10001 */
- shd x2,0,16,t2
- add x2,t2,x2
- addc x1,t1,x1
- MILLIRET
- sub 0,x1,x1
-
-/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
-GSYM($$divI_12)
- .export $$divI_12,millicode
- comb,< x2,0,LREF(neg12)
- copy 0,x1
- extru x2,29,30,x2 /* divide by 4 */
- addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */
- sh2add x2,x2,x2 /* multiply by 5 to get started */
-
-LSYM(neg12)
- subi 4,x2,x2 /* negate, divide by 4, and add 1 */
- /* negation and adding 1 are done */
- /* at the same time by the SUBI */
- extru x2,29,30,x2
- b LREF(neg)
- sh2add x2,x2,x2 /* multiply by 5 to get started */
-
-GSYM($$divU_12)
- .export $$divU_12,millicode
- extru x2,29,30,x2 /* divide by 4 */
- addi 5,x2,t1 /* cannot carry */
- sh2add x2,t1,x2 /* multiply by 5 to get started */
- b LREF(pos)
- addc 0,0,x1
-
-/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
-GSYM($$divI_15)
- .export $$divI_15,millicode
- comb,< x2,0,LREF(neg15)
- copy 0,x1
- addib,tr 1,x2,LREF(pos)+4
- shd x1,x2,28,t1
-
-LSYM(neg15)
- b LREF(neg)
- subi 1,x2,x2
-
-GSYM($$divU_15)
- .export $$divU_15,millicode
- addi 1,x2,x2 /* this CAN overflow */
- b LREF(pos)
- addc 0,0,x1
-
-/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */
-GSYM($$divI_17)
- .export $$divI_17,millicode
- comb,<,n x2,0,LREF(neg17)
- addi 1,x2,x2 /* this cannot overflow */
- shd 0,x2,28,t1 /* multiply by 0xf to get started */
- shd x2,0,28,t2
- sub t2,x2,x2
- b LREF(pos_for_17)
- subb t1,0,x1
-
-LSYM(neg17)
- subi 1,x2,x2 /* this cannot overflow */
- shd 0,x2,28,t1 /* multiply by 0xf to get started */
- shd x2,0,28,t2
- sub t2,x2,x2
- b LREF(neg_for_17)
- subb t1,0,x1
-
-GSYM($$divU_17)
- .export $$divU_17,millicode
- addi 1,x2,x2 /* this CAN overflow */
- addc 0,0,x1
- shd x1,x2,28,t1 /* multiply by 0xf to get started */
-LSYM(u17)
- shd x2,0,28,t2
- sub t2,x2,x2
- b LREF(pos_for_17)
- subb t1,x1,x1
-
-
-/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
- includes 7,9 and also 14
-
-
- z = 2**24-1
- r = z mod x = 0
-
- so choose b = 0
-
- Also, in order to divide by z = 2**24-1, we approximate by dividing
- by (z+1) = 2**24 (which is easy), and then correcting.
-
- (ax) = (z+1)q' + r
- . = zq' + (q'+r)
-
- So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
- Then the true remainder of (ax)/z is (q'+r). Repeat the process
- with this new remainder, adding the tentative quotients together,
- until a tentative quotient is 0 (and then we are done). There is
- one last correction to be done. It is possible that (q'+r) = z.
- If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But,
- in fact, we need to add 1 more to the quotient. Now, it turns
- out that this happens if and only if the original value x is
- an exact multiple of y. So, to avoid a three instruction test at
- the end, instead use 1 instruction to add 1 to x at the beginning. */
-
-/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
-GSYM($$divI_7)
- .export $$divI_7,millicode
- comb,<,n x2,0,LREF(neg7)
-LSYM(7)
- addi 1,x2,x2 /* cannot overflow */
- shd 0,x2,29,x1
- sh3add x2,x2,x2
- addc x1,0,x1
-LSYM(pos7)
- shd x1,x2,26,t1
- shd x2,0,26,t2
- add x2,t2,x2
- addc x1,t1,x1
-
- shd x1,x2,20,t1
- shd x2,0,20,t2
- add x2,t2,x2
- addc x1,t1,t1
-
- /* computed <t1,x2>. Now divide it by (2**24 - 1) */
-
- copy 0,x1
- shd,= t1,x2,24,t1 /* tentative quotient */
-LSYM(1)
- addb,tr t1,x1,LREF(2) /* add to previous quotient */
- extru x2,31,24,x2 /* new remainder (unadjusted) */
-
- MILLIRETN
-
-LSYM(2)
- addb,tr t1,x2,LREF(1) /* adjust remainder */
- extru,= x2,7,8,t1 /* new quotient */
-
-LSYM(neg7)
- subi 1,x2,x2 /* negate x2 and add 1 */
-LSYM(8)
- shd 0,x2,29,x1
- sh3add x2,x2,x2
- addc x1,0,x1
-
-LSYM(neg7_shift)
- shd x1,x2,26,t1
- shd x2,0,26,t2
- add x2,t2,x2
- addc x1,t1,x1
-
- shd x1,x2,20,t1
- shd x2,0,20,t2
- add x2,t2,x2
- addc x1,t1,t1
-
- /* computed <t1,x2>. Now divide it by (2**24 - 1) */
-
- copy 0,x1
- shd,= t1,x2,24,t1 /* tentative quotient */
-LSYM(3)
- addb,tr t1,x1,LREF(4) /* add to previous quotient */
- extru x2,31,24,x2 /* new remainder (unadjusted) */
-
- MILLIRET
- sub 0,x1,x1 /* negate result */
-
-LSYM(4)
- addb,tr t1,x2,LREF(3) /* adjust remainder */
- extru,= x2,7,8,t1 /* new quotient */
-
-GSYM($$divU_7)
- .export $$divU_7,millicode
- addi 1,x2,x2 /* can carry */
- addc 0,0,x1
- shd x1,x2,29,t1
- sh3add x2,x2,x2
- b LREF(pos7)
- addc t1,x1,x1
-
-/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
-GSYM($$divI_9)
- .export $$divI_9,millicode
- comb,<,n x2,0,LREF(neg9)
- addi 1,x2,x2 /* cannot overflow */
- shd 0,x2,29,t1
- shd x2,0,29,t2
- sub t2,x2,x2
- b LREF(pos7)
- subb t1,0,x1
-
-LSYM(neg9)
- subi 1,x2,x2 /* negate and add 1 */
- shd 0,x2,29,t1
- shd x2,0,29,t2
- sub t2,x2,x2
- b LREF(neg7_shift)
- subb t1,0,x1
-
-GSYM($$divU_9)
- .export $$divU_9,millicode
- addi 1,x2,x2 /* can carry */
- addc 0,0,x1
- shd x1,x2,29,t1
- shd x2,0,29,t2
- sub t2,x2,x2
- b LREF(pos7)
- subb t1,x1,x1
-
-/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
-GSYM($$divI_14)
- .export $$divI_14,millicode
- comb,<,n x2,0,LREF(neg14)
-GSYM($$divU_14)
- .export $$divU_14,millicode
- b LREF(7) /* go to 7 case */
- extru x2,30,31,x2 /* divide by 2 */
-
-LSYM(neg14)
- subi 2,x2,x2 /* negate (and add 2) */
- b LREF(8)
- extru x2,30,31,x2 /* divide by 2 */
- .exit
- .procend
- .end
-#endif
-
-#ifdef L_mulI
-/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
-/******************************************************************************
-This routine is used on PA2.0 processors when gcc -mno-fpregs is used
-
-ROUTINE: $$mulI
-
-
-DESCRIPTION:
-
- $$mulI multiplies two single word integers, giving a single
- word result.
-
-
-INPUT REGISTERS:
-
- arg0 = Operand 1
- arg1 = Operand 2
- r31 == return pc
- sr0 == return space when called externally
-
-
-OUTPUT REGISTERS:
-
- arg0 = undefined
- arg1 = undefined
- ret1 = result
-
-OTHER REGISTERS AFFECTED:
-
- r1 = undefined
-
-SIDE EFFECTS:
-
- Causes a trap under the following conditions: NONE
- Changes memory at the following places: NONE
-
-PERMISSIBLE CONTEXT:
-
- Unwindable
- Does not create a stack frame
- Is usable for internal or external microcode
-
-DISCUSSION:
-
- Calls other millicode routines via mrp: NONE
- Calls other millicode routines: NONE
-
-***************************************************************************/
-
-
-#define a0 %arg0
-#define a1 %arg1
-#define t0 %r1
-#define r %ret1
-
-#define a0__128a0 zdep a0,24,25,a0
-#define a0__256a0 zdep a0,23,24,a0
-#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
-#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
-#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
-#define b_n_ret_t0 b,n LREF(ret_t0)
-#define b_e_shift b LREF(e_shift)
-#define b_e_t0ma0 b LREF(e_t0ma0)
-#define b_e_t0 b LREF(e_t0)
-#define b_e_t0a0 b LREF(e_t0a0)
-#define b_e_t02a0 b LREF(e_t02a0)
-#define b_e_t04a0 b LREF(e_t04a0)
-#define b_e_2t0 b LREF(e_2t0)
-#define b_e_2t0a0 b LREF(e_2t0a0)
-#define b_e_2t04a0 b LREF(e2t04a0)
-#define b_e_3t0 b LREF(e_3t0)
-#define b_e_4t0 b LREF(e_4t0)
-#define b_e_4t0a0 b LREF(e_4t0a0)
-#define b_e_4t08a0 b LREF(e4t08a0)
-#define b_e_5t0 b LREF(e_5t0)
-#define b_e_8t0 b LREF(e_8t0)
-#define b_e_8t0a0 b LREF(e_8t0a0)
-#define r__r_a0 add r,a0,r
-#define r__r_2a0 sh1add a0,r,r
-#define r__r_4a0 sh2add a0,r,r
-#define r__r_8a0 sh3add a0,r,r
-#define r__r_t0 add r,t0,r
-#define r__r_2t0 sh1add t0,r,r
-#define r__r_4t0 sh2add t0,r,r
-#define r__r_8t0 sh3add t0,r,r
-#define t0__3a0 sh1add a0,a0,t0
-#define t0__4a0 sh2add a0,0,t0
-#define t0__5a0 sh2add a0,a0,t0
-#define t0__8a0 sh3add a0,0,t0
-#define t0__9a0 sh3add a0,a0,t0
-#define t0__16a0 zdep a0,27,28,t0
-#define t0__32a0 zdep a0,26,27,t0
-#define t0__64a0 zdep a0,25,26,t0
-#define t0__128a0 zdep a0,24,25,t0
-#define t0__t0ma0 sub t0,a0,t0
-#define t0__t0_a0 add t0,a0,t0
-#define t0__t0_2a0 sh1add a0,t0,t0
-#define t0__t0_4a0 sh2add a0,t0,t0
-#define t0__t0_8a0 sh3add a0,t0,t0
-#define t0__2t0_a0 sh1add t0,a0,t0
-#define t0__3t0 sh1add t0,t0,t0
-#define t0__4t0 sh2add t0,0,t0
-#define t0__4t0_a0 sh2add t0,a0,t0
-#define t0__5t0 sh2add t0,t0,t0
-#define t0__8t0 sh3add t0,0,t0
-#define t0__8t0_a0 sh3add t0,a0,t0
-#define t0__9t0 sh3add t0,t0,t0
-#define t0__16t0 zdep t0,27,28,t0
-#define t0__32t0 zdep t0,26,27,t0
-#define t0__256a0 zdep a0,23,24,t0
-
-
- SUBSPA_MILLI
- ATTR_MILLI
- .align 16
- .proc
- .callinfo millicode
- .export $$mulI,millicode
-GSYM($$mulI)
- combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
- copy 0,r /* zero out the result */
- xor a0,a1,a0 /* swap a0 & a1 using the */
- xor a0,a1,a1 /* old xor trick */
- xor a0,a1,a0
-LSYM(l4)
- combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
- zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
- sub,> 0,a1,t0 /* otherwise negate both and */
- combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
- sub 0,a0,a1
- movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
-
-LSYM(l0) r__r_t0 /* add in this partial product */
-LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
-LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
-LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
- extru a1,23,24,a1 /* a1 >>= 8 ****************** */
-
-/*16 insts before this. */
-/* a0 <<= 8 ************************** */
-LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
-LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
-LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
-LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
-LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
-LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
-LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
-LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
-LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
-LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
-LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
-LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
-LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
-LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
-LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
-LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
-LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
-LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
-LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
-LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
-LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
-LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
-LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
-LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
-LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
-LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
-LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
-LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
-LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
-LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
-LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
-LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
-LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
-LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
-LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
-LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
-LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
-LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
-LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
-LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
-LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
-LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
-LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
-LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
-LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
-LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
-LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
-LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
-LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
-LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
-LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
-LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
-LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
-LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
-LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
-LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
-LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
-LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
-LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
-LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
-LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
-LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
-LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
-LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
-LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
-LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
-LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
-LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
-LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
-LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
-LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
-LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
-LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
-LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
-LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
-LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
-LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
-LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
-LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
-LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
-LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
-LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
-LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
-LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
-LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
-LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
-LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
-LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
-LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
-LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
-LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
-LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
-LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
-LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
-LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
-LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
-LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
-LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
-LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
-LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
-LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
-LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
-LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
-LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
-LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
-LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
-LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
-LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
-LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
-LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
-LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
-LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
-LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
-LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
-LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
-LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
-LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
-LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
-LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
-LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
-LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
-LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
-LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
-LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
-LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
-LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
-LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
-LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
-LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
-LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
-LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
-LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
-LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
-LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
-LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
-LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
-LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
-LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
-LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
-LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
-LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
-LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
-LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
-LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
-LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
-LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
-LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
-LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
-LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
-LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
-LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
-LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
-LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
-LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
-LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
-LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
-LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
-LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
-LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
-/*1040 insts before this. */
-LSYM(ret_t0) MILLIRET
-LSYM(e_t0) r__r_t0
-LSYM(e_shift) a1_ne_0_b_l2
- a0__256a0 /* a0 <<= 8 *********** */
- MILLIRETN
-LSYM(e_t0ma0) a1_ne_0_b_l0
- t0__t0ma0
- MILLIRET
- r__r_t0
-LSYM(e_t0a0) a1_ne_0_b_l0
- t0__t0_a0
- MILLIRET
- r__r_t0
-LSYM(e_t02a0) a1_ne_0_b_l0
- t0__t0_2a0
- MILLIRET
- r__r_t0
-LSYM(e_t04a0) a1_ne_0_b_l0
- t0__t0_4a0
- MILLIRET
- r__r_t0
-LSYM(e_2t0) a1_ne_0_b_l1
- r__r_2t0
- MILLIRETN
-LSYM(e_2t0a0) a1_ne_0_b_l0
- t0__2t0_a0
- MILLIRET
- r__r_t0
-LSYM(e2t04a0) t0__t0_2a0
- a1_ne_0_b_l1
- r__r_2t0
- MILLIRETN
-LSYM(e_3t0) a1_ne_0_b_l0
- t0__3t0
- MILLIRET
- r__r_t0
-LSYM(e_4t0) a1_ne_0_b_l1
- r__r_4t0
- MILLIRETN
-LSYM(e_4t0a0) a1_ne_0_b_l0
- t0__4t0_a0
- MILLIRET
- r__r_t0
-LSYM(e4t08a0) t0__t0_2a0
- a1_ne_0_b_l1
- r__r_4t0
- MILLIRETN
-LSYM(e_5t0) a1_ne_0_b_l0
- t0__5t0
- MILLIRET
- r__r_t0
-LSYM(e_8t0) a1_ne_0_b_l1
- r__r_8t0
- MILLIRETN
-LSYM(e_8t0a0) a1_ne_0_b_l0
- t0__8t0_a0
- MILLIRET
- r__r_t0
-
- .procend
- .end
-#endif
diff --git a/arch/parisc/lib/milli/milli.h b/arch/parisc/lib/milli/milli.h
deleted file mode 100644
index 19ac79f336de..000000000000
--- a/arch/parisc/lib/milli/milli.h
+++ /dev/null
@@ -1,165 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#ifndef _PA_MILLI_H_
-#define _PA_MILLI_H_
-
-#define L_dyncall
-#define L_divI
-#define L_divU
-#define L_remI
-#define L_remU
-#define L_div_const
-#define L_mulI
-
-#ifdef CONFIG_64BIT
- .level 2.0w
-#endif
-
-/* Hardware General Registers. */
-r0: .reg %r0
-r1: .reg %r1
-r2: .reg %r2
-r3: .reg %r3
-r4: .reg %r4
-r5: .reg %r5
-r6: .reg %r6
-r7: .reg %r7
-r8: .reg %r8
-r9: .reg %r9
-r10: .reg %r10
-r11: .reg %r11
-r12: .reg %r12
-r13: .reg %r13
-r14: .reg %r14
-r15: .reg %r15
-r16: .reg %r16
-r17: .reg %r17
-r18: .reg %r18
-r19: .reg %r19
-r20: .reg %r20
-r21: .reg %r21
-r22: .reg %r22
-r23: .reg %r23
-r24: .reg %r24
-r25: .reg %r25
-r26: .reg %r26
-r27: .reg %r27
-r28: .reg %r28
-r29: .reg %r29
-r30: .reg %r30
-r31: .reg %r31
-
-/* Hardware Space Registers. */
-sr0: .reg %sr0
-sr1: .reg %sr1
-sr2: .reg %sr2
-sr3: .reg %sr3
-sr4: .reg %sr4
-sr5: .reg %sr5
-sr6: .reg %sr6
-sr7: .reg %sr7
-
-/* Hardware Floating Point Registers. */
-fr0: .reg %fr0
-fr1: .reg %fr1
-fr2: .reg %fr2
-fr3: .reg %fr3
-fr4: .reg %fr4
-fr5: .reg %fr5
-fr6: .reg %fr6
-fr7: .reg %fr7
-fr8: .reg %fr8
-fr9: .reg %fr9
-fr10: .reg %fr10
-fr11: .reg %fr11
-fr12: .reg %fr12
-fr13: .reg %fr13
-fr14: .reg %fr14
-fr15: .reg %fr15
-
-/* Hardware Control Registers. */
-cr11: .reg %cr11
-sar: .reg %cr11 /* Shift Amount Register */
-
-/* Software Architecture General Registers. */
-rp: .reg r2 /* return pointer */
-#ifdef CONFIG_64BIT
-mrp: .reg r2 /* millicode return pointer */
-#else
-mrp: .reg r31 /* millicode return pointer */
-#endif
-ret0: .reg r28 /* return value */
-ret1: .reg r29 /* return value (high part of double) */
-sp: .reg r30 /* stack pointer */
-dp: .reg r27 /* data pointer */
-arg0: .reg r26 /* argument */
-arg1: .reg r25 /* argument or high part of double argument */
-arg2: .reg r24 /* argument */
-arg3: .reg r23 /* argument or high part of double argument */
-
-/* Software Architecture Space Registers. */
-/* sr0 ; return link from BLE */
-sret: .reg sr1 /* return value */
-sarg: .reg sr1 /* argument */
-/* sr4 ; PC SPACE tracker */
-/* sr5 ; process private data */
-
-/* Frame Offsets (millicode convention!) Used when calling other
- millicode routines. Stack unwinding is dependent upon these
- definitions. */
-r31_slot: .equ -20 /* "current RP" slot */
-sr0_slot: .equ -16 /* "static link" slot */
-#if defined(CONFIG_64BIT)
-mrp_slot: .equ -16 /* "current RP" slot */
-psp_slot: .equ -8 /* "previous SP" slot */
-#else
-mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */
-#endif
-
-
-#define DEFINE(name,value)name: .EQU value
-#define RDEFINE(name,value)name: .REG value
-#ifdef milliext
-#define MILLI_BE(lbl) BE lbl(sr7,r0)
-#define MILLI_BEN(lbl) BE,n lbl(sr7,r0)
-#define MILLI_BLE(lbl) BLE lbl(sr7,r0)
-#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0)
-#define MILLIRETN BE,n 0(sr0,mrp)
-#define MILLIRET BE 0(sr0,mrp)
-#define MILLI_RETN BE,n 0(sr0,mrp)
-#define MILLI_RET BE 0(sr0,mrp)
-#else
-#define MILLI_BE(lbl) B lbl
-#define MILLI_BEN(lbl) B,n lbl
-#define MILLI_BLE(lbl) BL lbl,mrp
-#define MILLI_BLEN(lbl) BL,n lbl,mrp
-#define MILLIRETN BV,n 0(mrp)
-#define MILLIRET BV 0(mrp)
-#define MILLI_RETN BV,n 0(mrp)
-#define MILLI_RET BV 0(mrp)
-#endif
-
-#define CAT(a,b) a##b
-
-#define SUBSPA_MILLI .section .text
-#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
-#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
-#define ATTR_MILLI
-#define SUBSPA_DATA .section .data
-#define ATTR_DATA
-#define GLOBAL $global$
-#define GSYM(sym) !sym:
-#define LSYM(sym) !CAT(.L,sym:)
-#define LREF(sym) CAT(.L,sym)
-
-#endif /*_PA_MILLI_H_*/
diff --git a/arch/parisc/lib/milli/mulI.S b/arch/parisc/lib/milli/mulI.S
deleted file mode 100644
index 4c7e0c36d15e..000000000000
--- a/arch/parisc/lib/milli/mulI.S
+++ /dev/null
@@ -1,474 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#include "milli.h"
-
-#ifdef L_mulI
-/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
-/******************************************************************************
-This routine is used on PA2.0 processors when gcc -mno-fpregs is used
-
-ROUTINE: $$mulI
-
-
-DESCRIPTION:
-
- $$mulI multiplies two single word integers, giving a single
- word result.
-
-
-INPUT REGISTERS:
-
- arg0 = Operand 1
- arg1 = Operand 2
- r31 == return pc
- sr0 == return space when called externally
-
-
-OUTPUT REGISTERS:
-
- arg0 = undefined
- arg1 = undefined
- ret1 = result
-
-OTHER REGISTERS AFFECTED:
-
- r1 = undefined
-
-SIDE EFFECTS:
-
- Causes a trap under the following conditions: NONE
- Changes memory at the following places: NONE
-
-PERMISSIBLE CONTEXT:
-
- Unwindable
- Does not create a stack frame
- Is usable for internal or external microcode
-
-DISCUSSION:
-
- Calls other millicode routines via mrp: NONE
- Calls other millicode routines: NONE
-
-***************************************************************************/
-
-
-#define a0 %arg0
-#define a1 %arg1
-#define t0 %r1
-#define r %ret1
-
-#define a0__128a0 zdep a0,24,25,a0
-#define a0__256a0 zdep a0,23,24,a0
-#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
-#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
-#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
-#define b_n_ret_t0 b,n LREF(ret_t0)
-#define b_e_shift b LREF(e_shift)
-#define b_e_t0ma0 b LREF(e_t0ma0)
-#define b_e_t0 b LREF(e_t0)
-#define b_e_t0a0 b LREF(e_t0a0)
-#define b_e_t02a0 b LREF(e_t02a0)
-#define b_e_t04a0 b LREF(e_t04a0)
-#define b_e_2t0 b LREF(e_2t0)
-#define b_e_2t0a0 b LREF(e_2t0a0)
-#define b_e_2t04a0 b LREF(e2t04a0)
-#define b_e_3t0 b LREF(e_3t0)
-#define b_e_4t0 b LREF(e_4t0)
-#define b_e_4t0a0 b LREF(e_4t0a0)
-#define b_e_4t08a0 b LREF(e4t08a0)
-#define b_e_5t0 b LREF(e_5t0)
-#define b_e_8t0 b LREF(e_8t0)
-#define b_e_8t0a0 b LREF(e_8t0a0)
-#define r__r_a0 add r,a0,r
-#define r__r_2a0 sh1add a0,r,r
-#define r__r_4a0 sh2add a0,r,r
-#define r__r_8a0 sh3add a0,r,r
-#define r__r_t0 add r,t0,r
-#define r__r_2t0 sh1add t0,r,r
-#define r__r_4t0 sh2add t0,r,r
-#define r__r_8t0 sh3add t0,r,r
-#define t0__3a0 sh1add a0,a0,t0
-#define t0__4a0 sh2add a0,0,t0
-#define t0__5a0 sh2add a0,a0,t0
-#define t0__8a0 sh3add a0,0,t0
-#define t0__9a0 sh3add a0,a0,t0
-#define t0__16a0 zdep a0,27,28,t0
-#define t0__32a0 zdep a0,26,27,t0
-#define t0__64a0 zdep a0,25,26,t0
-#define t0__128a0 zdep a0,24,25,t0
-#define t0__t0ma0 sub t0,a0,t0
-#define t0__t0_a0 add t0,a0,t0
-#define t0__t0_2a0 sh1add a0,t0,t0
-#define t0__t0_4a0 sh2add a0,t0,t0
-#define t0__t0_8a0 sh3add a0,t0,t0
-#define t0__2t0_a0 sh1add t0,a0,t0
-#define t0__3t0 sh1add t0,t0,t0
-#define t0__4t0 sh2add t0,0,t0
-#define t0__4t0_a0 sh2add t0,a0,t0
-#define t0__5t0 sh2add t0,t0,t0
-#define t0__8t0 sh3add t0,0,t0
-#define t0__8t0_a0 sh3add t0,a0,t0
-#define t0__9t0 sh3add t0,t0,t0
-#define t0__16t0 zdep t0,27,28,t0
-#define t0__32t0 zdep t0,26,27,t0
-#define t0__256a0 zdep a0,23,24,t0
-
-
- SUBSPA_MILLI
- ATTR_MILLI
- .align 16
- .proc
- .callinfo millicode
- .export $$mulI,millicode
-GSYM($$mulI)
- combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
- copy 0,r /* zero out the result */
- xor a0,a1,a0 /* swap a0 & a1 using the */
- xor a0,a1,a1 /* old xor trick */
- xor a0,a1,a0
-LSYM(l4)
- combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
- zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
- sub,> 0,a1,t0 /* otherwise negate both and */
- combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
- sub 0,a0,a1
- movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
-
-LSYM(l0) r__r_t0 /* add in this partial product */
-LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
-LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
-LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
- extru a1,23,24,a1 /* a1 >>= 8 ****************** */
-
-/*16 insts before this. */
-/* a0 <<= 8 ************************** */
-LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
-LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
-LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
-LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
-LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
-LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
-LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
-LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
-LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
-LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
-LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
-LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
-LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
-LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
-LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
-LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
-LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
-LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
-LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
-LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
-LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
-LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
-LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
-LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
-LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
-LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
-LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
-LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
-LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
-LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
-LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
-LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
-LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
-LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
-LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
-LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
-LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
-LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
-LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
-LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
-LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
-LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
-LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
-LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
-LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
-LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
-LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
-LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
-LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
-LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
-LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
-LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
-LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
-LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
-LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
-LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
-LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
-LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
-LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
-LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
-LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
-LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
-LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
-LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
-LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
-LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
-LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
-LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
-LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
-LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
-LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
-LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
-LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
-LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
-LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
-LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
-LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
-LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
-LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
-LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
-LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
-LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
-LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
-LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
-LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
-LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
-LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
-LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
-LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
-LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
-LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
-LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
-LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
-LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
-LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
-LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
-LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
-LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
-LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
-LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
-LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
-LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
-LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
-LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
-LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
-LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
-LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
-LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
-LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
-LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
-LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
-LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
-LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
-LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
-LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
-LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
-LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
-LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
-LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
-LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
-LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
-LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
-LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
-LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
-LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
-LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
-LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
-LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
-LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
-LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
-LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
-LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
-LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
-LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
-LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
-LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
-LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
-LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
-LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
-LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
-LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
-LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
-LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
-LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
-LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
-LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
-LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
-LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
-LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
-LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
-LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
-LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
-LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
-LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
-LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
-LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
-LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
-LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
-LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
-LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
-LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
-LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
-LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
-LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
-LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
-LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
-LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
-LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
-LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
-LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
-LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
-/*1040 insts before this. */
-LSYM(ret_t0) MILLIRET
-LSYM(e_t0) r__r_t0
-LSYM(e_shift) a1_ne_0_b_l2
- a0__256a0 /* a0 <<= 8 *********** */
- MILLIRETN
-LSYM(e_t0ma0) a1_ne_0_b_l0
- t0__t0ma0
- MILLIRET
- r__r_t0
-LSYM(e_t0a0) a1_ne_0_b_l0
- t0__t0_a0
- MILLIRET
- r__r_t0
-LSYM(e_t02a0) a1_ne_0_b_l0
- t0__t0_2a0
- MILLIRET
- r__r_t0
-LSYM(e_t04a0) a1_ne_0_b_l0
- t0__t0_4a0
- MILLIRET
- r__r_t0
-LSYM(e_2t0) a1_ne_0_b_l1
- r__r_2t0
- MILLIRETN
-LSYM(e_2t0a0) a1_ne_0_b_l0
- t0__2t0_a0
- MILLIRET
- r__r_t0
-LSYM(e2t04a0) t0__t0_2a0
- a1_ne_0_b_l1
- r__r_2t0
- MILLIRETN
-LSYM(e_3t0) a1_ne_0_b_l0
- t0__3t0
- MILLIRET
- r__r_t0
-LSYM(e_4t0) a1_ne_0_b_l1
- r__r_4t0
- MILLIRETN
-LSYM(e_4t0a0) a1_ne_0_b_l0
- t0__4t0_a0
- MILLIRET
- r__r_t0
-LSYM(e4t08a0) t0__t0_2a0
- a1_ne_0_b_l1
- r__r_4t0
- MILLIRETN
-LSYM(e_5t0) a1_ne_0_b_l0
- t0__5t0
- MILLIRET
- r__r_t0
-LSYM(e_8t0) a1_ne_0_b_l1
- r__r_8t0
- MILLIRETN
-LSYM(e_8t0a0) a1_ne_0_b_l0
- t0__8t0_a0
- MILLIRET
- r__r_t0
-
- .procend
- .end
-#endif
diff --git a/arch/parisc/lib/milli/remI.S b/arch/parisc/lib/milli/remI.S
deleted file mode 100644
index 63bc094471e2..000000000000
--- a/arch/parisc/lib/milli/remI.S
+++ /dev/null
@@ -1,185 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#include "milli.h"
-
-#ifdef L_remI
-/* ROUTINE: $$remI
-
- DESCRIPTION:
- . $$remI returns the remainder of the division of two signed 32-bit
- . integers. The sign of the remainder is the same as the sign of
- . the dividend.
-
-
- INPUT REGISTERS:
- . arg0 == dividend
- . arg1 == divisor
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = destroyed
- . arg1 = destroyed
- . ret1 = remainder
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions: DIVIDE BY ZERO
- . Changes memory at the following places: NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable
- . Does not create a stack frame
- . Is usable for internal or external microcode
-
- DISCUSSION:
- . Calls other millicode routines via mrp: NONE
- . Calls other millicode routines: NONE */
-
-RDEFINE(tmp,r1)
-RDEFINE(retreg,ret1)
-
- SUBSPA_MILLI
- ATTR_MILLI
- .proc
- .callinfo millicode
- .entry
-GSYM($$remI)
-GSYM($$remoI)
- .export $$remI,MILLICODE
- .export $$remoI,MILLICODE
- ldo -1(arg1),tmp /* is there at most one bit set ? */
- and,<> arg1,tmp,r0 /* if not, don't use power of 2 */
- addi,> 0,arg1,r0 /* if denominator > 0, use power */
- /* of 2 */
- b,n LREF(neg_denom)
-LSYM(pow2)
- comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */
- and arg0,tmp,retreg /* get the result */
- MILLIRETN
-LSYM(neg_num)
- subi 0,arg0,arg0 /* negate numerator */
- and arg0,tmp,retreg /* get the result */
- subi 0,retreg,retreg /* negate result */
- MILLIRETN
-LSYM(neg_denom)
- addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */
- /* of 2 */
- b,n LREF(regular_seq)
- sub r0,arg1,tmp /* make denominator positive */
- comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */
- ldo -1(tmp),retreg /* is there at most one bit set ? */
- and,= tmp,retreg,r0 /* if not, go to regular_seq */
- b,n LREF(regular_seq)
- comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */
- and arg0,retreg,retreg
- MILLIRETN
-LSYM(neg_num_2)
- subi 0,arg0,tmp /* test against 0x80000000 */
- and tmp,retreg,retreg
- subi 0,retreg,retreg
- MILLIRETN
-LSYM(regular_seq)
- addit,= 0,arg1,0 /* trap if div by zero */
- add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
- sub 0,retreg,retreg /* make it positive */
- sub 0,arg1, tmp /* clear carry, */
- /* negate the divisor */
- ds 0, tmp,0 /* set V-bit to the comple- */
- /* ment of the divisor sign */
- or 0,0, tmp /* clear tmp */
- add retreg,retreg,retreg /* shift msb bit into carry */
- ds tmp,arg1, tmp /* 1st divide step, if no carry */
- /* out, msb of quotient = 0 */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
-LSYM(t1)
- ds tmp,arg1, tmp /* 2nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 3rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 4th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 5th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 6th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 7th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 8th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 9th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 10th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 11th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 12th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 13th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 14th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 15th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 16th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 17th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 18th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 19th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 20th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 21st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 22nd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 23rd divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 24th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 25th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 26th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 27th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 28th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 29th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 30th divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 31st divide step */
- addc retreg,retreg,retreg /* shift retreg with/into carry */
- ds tmp,arg1, tmp /* 32nd divide step, */
- addc retreg,retreg,retreg /* shift last bit into retreg */
- movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */
- add,< arg1,0,0 /* if arg1 > 0, add arg1 */
- add,tr tmp,arg1,retreg /* for correcting remainder tmp */
- sub tmp,arg1,retreg /* else add absolute value arg1 */
-LSYM(finish)
- add,>= arg0,0,0 /* set sign of remainder */
- sub 0,retreg,retreg /* to sign of dividend */
- MILLIRET
- nop
- .exit
- .procend
-#ifdef milliext
- .origin 0x00000200
-#endif
- .end
-#endif
diff --git a/arch/parisc/lib/milli/remU.S b/arch/parisc/lib/milli/remU.S
deleted file mode 100644
index c0a2d6e247c3..000000000000
--- a/arch/parisc/lib/milli/remU.S
+++ /dev/null
@@ -1,148 +0,0 @@
-/* 32 and 64-bit millicode, original author Hewlett-Packard
- adapted for gcc by Paul Bame <bame@debian.org>
- and Alan Modra <alan@linuxcare.com.au>.
-
- Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
-
- This file is part of GCC and is released under the terms of
- of the GNU General Public License as published by the Free Software
- Foundation; either version 2, or (at your option) any later version.
- See the file COPYING in the top-level GCC source directory for a copy
- of the license. */
-
-#include "milli.h"
-
-#ifdef L_remU
-/* ROUTINE: $$remU
- . Single precision divide for remainder with unsigned binary integers.
- .
- . The remainder must be dividend-(dividend/divisor)*divisor.
- . Divide by zero is trapped.
-
- INPUT REGISTERS:
- . arg0 == dividend
- . arg1 == divisor
- . mrp == return pc
- . sr0 == return space when called externally
-
- OUTPUT REGISTERS:
- . arg0 = undefined
- . arg1 = undefined
- . ret1 = remainder
-
- OTHER REGISTERS AFFECTED:
- . r1 = undefined
-
- SIDE EFFECTS:
- . Causes a trap under the following conditions: DIVIDE BY ZERO
- . Changes memory at the following places: NONE
-
- PERMISSIBLE CONTEXT:
- . Unwindable.
- . Does not create a stack frame.
- . Suitable for internal or external millicode.
- . Assumes the special millicode register conventions.
-
- DISCUSSION:
- . Calls other millicode routines using mrp: NONE
- . Calls other millicode routines: NONE */
-
-
-RDEFINE(temp,r1)
-RDEFINE(rmndr,ret1) /* r29 */
- SUBSPA_MILLI
- ATTR_MILLI
- .export $$remU,millicode
- .proc
- .callinfo millicode
- .entry
-GSYM($$remU)
- ldo -1(arg1),temp /* is there at most one bit set ? */
- and,= arg1,temp,r0 /* if not, don't use power of 2 */
- b LREF(regular_seq)
- addit,= 0,arg1,r0 /* trap on div by zero */
- and arg0,temp,rmndr /* get the result for power of 2 */
- MILLIRETN
-LSYM(regular_seq)
- comib,>=,n 0,arg1,LREF(special_case)
- subi 0,arg1,rmndr /* clear carry, negate the divisor */
- ds r0,rmndr,r0 /* set V-bit to 1 */
- add arg0,arg0,temp /* shift msb bit into carry */
- ds r0,arg1,rmndr /* 1st divide step, if no carry */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 2nd divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 3rd divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 4th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 5th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 6th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 7th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 8th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 9th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 10th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 11th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 12th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 13th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 14th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 15th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 16th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 17th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 18th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 19th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 20th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 21st divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 22nd divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 23rd divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 24th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 25th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 26th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 27th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 28th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 29th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 30th divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 31st divide step */
- addc temp,temp,temp /* shift temp with/into carry */
- ds rmndr,arg1,rmndr /* 32nd divide step, */
- comiclr,<= 0,rmndr,r0
- add rmndr,arg1,rmndr /* correction */
- MILLIRETN
- nop
-
-/* Putting >= on the last DS and deleting COMICLR does not work! */
-LSYM(special_case)
- sub,>>= arg0,arg1,rmndr
- copy arg0,rmndr
- MILLIRETN
- nop
- .exit
- .procend
- .end
-#endif