diff options
Diffstat (limited to 'arch/arm64/include/asm')
-rw-r--r-- | arch/arm64/include/asm/cputype.h | 2 | ||||
-rw-r--r-- | arch/arm64/include/asm/elf.h | 4 | ||||
-rw-r--r-- | arch/arm64/include/asm/kgdb.h | 45 | ||||
-rw-r--r-- | arch/arm64/include/asm/memory.h | 3 | ||||
-rw-r--r-- | arch/arm64/include/asm/page.h | 12 | ||||
-rw-r--r-- | arch/arm64/include/asm/pgalloc.h | 2 | ||||
-rw-r--r-- | arch/arm64/include/asm/ptrace.h | 2 | ||||
-rw-r--r-- | arch/arm64/include/asm/smp.h | 12 | ||||
-rw-r--r-- | arch/arm64/include/asm/spinlock.h | 42 | ||||
-rw-r--r-- | arch/arm64/include/asm/uaccess.h | 13 | ||||
-rw-r--r-- | arch/arm64/include/asm/unistd.h | 2 | ||||
-rw-r--r-- | arch/arm64/include/asm/unistd32.h | 8 |
12 files changed, 106 insertions, 41 deletions
diff --git a/arch/arm64/include/asm/cputype.h b/arch/arm64/include/asm/cputype.h index 87e1985f3be8..9d9fd4b9a72e 100644 --- a/arch/arm64/include/asm/cputype.h +++ b/arch/arm64/include/asm/cputype.h @@ -80,12 +80,14 @@ #define APM_CPU_PART_POTENZA 0x000 #define CAVIUM_CPU_PART_THUNDERX 0x0A1 +#define CAVIUM_CPU_PART_THUNDERX_81XX 0x0A2 #define BRCM_CPU_PART_VULCAN 0x516 #define MIDR_CORTEX_A53 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A53) #define MIDR_CORTEX_A57 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A57) #define MIDR_THUNDERX MIDR_CPU_MODEL(ARM_CPU_IMP_CAVIUM, CAVIUM_CPU_PART_THUNDERX) +#define MIDR_THUNDERX_81XX MIDR_CPU_MODEL(ARM_CPU_IMP_CAVIUM, CAVIUM_CPU_PART_THUNDERX_81XX) #ifndef __ASSEMBLY__ diff --git a/arch/arm64/include/asm/elf.h b/arch/arm64/include/asm/elf.h index 7a09c48c0475..579b6e654f2d 100644 --- a/arch/arm64/include/asm/elf.h +++ b/arch/arm64/include/asm/elf.h @@ -160,14 +160,14 @@ extern int arch_setup_additional_pages(struct linux_binprm *bprm, #define STACK_RND_MASK (0x3ffff >> (PAGE_SHIFT - 12)) #endif -#ifdef CONFIG_COMPAT - #ifdef __AARCH64EB__ #define COMPAT_ELF_PLATFORM ("v8b") #else #define COMPAT_ELF_PLATFORM ("v8l") #endif +#ifdef CONFIG_COMPAT + #define COMPAT_ELF_ET_DYN_BASE (2 * TASK_SIZE_32 / 3) /* AArch32 registers. */ diff --git a/arch/arm64/include/asm/kgdb.h b/arch/arm64/include/asm/kgdb.h index f69f69c8120c..da84645525b9 100644 --- a/arch/arm64/include/asm/kgdb.h +++ b/arch/arm64/include/asm/kgdb.h @@ -38,25 +38,54 @@ extern int kgdb_fault_expected; #endif /* !__ASSEMBLY__ */ /* - * gdb is expecting the following registers layout. + * gdb remote procotol (well most versions of it) expects the following + * register layout. * * General purpose regs: * r0-r30: 64 bit * sp,pc : 64 bit - * pstate : 64 bit - * Total: 34 + * pstate : 32 bit + * Total: 33 + 1 * FPU regs: * f0-f31: 128 bit - * Total: 32 - * Extra regs * fpsr & fpcr: 32 bit - * Total: 2 + * Total: 32 + 2 * + * To expand a little on the "most versions of it"... when the gdb remote + * protocol for AArch64 was developed it depended on a statement in the + * Architecture Reference Manual that claimed "SPSR_ELx is a 32-bit register". + * and, as a result, allocated only 32-bits for the PSTATE in the remote + * protocol. In fact this statement is still present in ARM DDI 0487A.i. + * + * Unfortunately "is a 32-bit register" has a very special meaning for + * system registers. It means that "the upper bits, bits[63:32], are + * RES0.". RES0 is heavily used in the ARM architecture documents as a + * way to leave space for future architecture changes. So to translate a + * little for people who don't spend their spare time reading ARM architecture + * manuals, what "is a 32-bit register" actually means in this context is + * "is a 64-bit register but one with no meaning allocated to any of the + * upper 32-bits... *yet*". + * + * Perhaps then we should not be surprised that this has led to some + * confusion. Specifically a patch, influenced by the above translation, + * that extended PSTATE to 64-bit was accepted into gdb-7.7 but the patch + * was reverted in gdb-7.8.1 and all later releases, when this was + * discovered to be an undocumented protocol change. + * + * So... it is *not* wrong for us to only allocate 32-bits to PSTATE + * here even though the kernel itself allocates 64-bits for the same + * state. That is because this bit of code tells the kernel how the gdb + * remote protocol (well most versions of it) describes the register state. + * + * Note that if you are using one of the versions of gdb that supports + * the gdb-7.7 version of the protocol you cannot use kgdb directly + * without providing a custom register description (gdb can load new + * protocol descriptions at runtime). */ -#define _GP_REGS 34 +#define _GP_REGS 33 #define _FP_REGS 32 -#define _EXTRA_REGS 2 +#define _EXTRA_REGS 3 /* * general purpose registers size in bytes. * pstate is only 4 bytes. subtract 4 bytes diff --git a/arch/arm64/include/asm/memory.h b/arch/arm64/include/asm/memory.h index 72a3025bb583..31b73227b41f 100644 --- a/arch/arm64/include/asm/memory.h +++ b/arch/arm64/include/asm/memory.h @@ -55,8 +55,9 @@ #define VMEMMAP_SIZE (UL(1) << (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)) /* - * PAGE_OFFSET - the virtual address of the start of the kernel image (top + * PAGE_OFFSET - the virtual address of the start of the linear map (top * (VA_BITS - 1)) + * KIMAGE_VADDR - the virtual address of the start of the kernel image * VA_BITS - the maximum number of bits for virtual addresses. * VA_START - the first kernel virtual address. * TASK_SIZE - the maximum size of a user space task. diff --git a/arch/arm64/include/asm/page.h b/arch/arm64/include/asm/page.h index 17b45f7d96d3..8472c6def5ef 100644 --- a/arch/arm64/include/asm/page.h +++ b/arch/arm64/include/asm/page.h @@ -23,16 +23,8 @@ /* PAGE_SHIFT determines the page size */ /* CONT_SHIFT determines the number of pages which can be tracked together */ -#ifdef CONFIG_ARM64_64K_PAGES -#define PAGE_SHIFT 16 -#define CONT_SHIFT 5 -#elif defined(CONFIG_ARM64_16K_PAGES) -#define PAGE_SHIFT 14 -#define CONT_SHIFT 7 -#else -#define PAGE_SHIFT 12 -#define CONT_SHIFT 4 -#endif +#define PAGE_SHIFT CONFIG_ARM64_PAGE_SHIFT +#define CONT_SHIFT CONFIG_ARM64_CONT_SHIFT #define PAGE_SIZE (_AC(1, UL) << PAGE_SHIFT) #define PAGE_MASK (~(PAGE_SIZE-1)) diff --git a/arch/arm64/include/asm/pgalloc.h b/arch/arm64/include/asm/pgalloc.h index ff98585d085a..d25f4f137c2a 100644 --- a/arch/arm64/include/asm/pgalloc.h +++ b/arch/arm64/include/asm/pgalloc.h @@ -26,7 +26,7 @@ #define check_pgt_cache() do { } while (0) -#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO) +#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO) #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) #if CONFIG_PGTABLE_LEVELS > 2 diff --git a/arch/arm64/include/asm/ptrace.h b/arch/arm64/include/asm/ptrace.h index a307eb6e7fa8..7f94755089e2 100644 --- a/arch/arm64/include/asm/ptrace.h +++ b/arch/arm64/include/asm/ptrace.h @@ -117,6 +117,8 @@ struct pt_regs { }; u64 orig_x0; u64 syscallno; + u64 orig_addr_limit; + u64 unused; // maintain 16 byte alignment }; #define arch_has_single_step() (1) diff --git a/arch/arm64/include/asm/smp.h b/arch/arm64/include/asm/smp.h index 433e50405274..022644704a93 100644 --- a/arch/arm64/include/asm/smp.h +++ b/arch/arm64/include/asm/smp.h @@ -124,6 +124,18 @@ static inline void cpu_panic_kernel(void) cpu_park_loop(); } +/* + * If a secondary CPU enters the kernel but fails to come online, + * (e.g. due to mismatched features), and cannot exit the kernel, + * we increment cpus_stuck_in_kernel and leave the CPU in a + * quiesecent loop within the kernel text. The memory containing + * this loop must not be re-used for anything else as the 'stuck' + * core is executing it. + * + * This function is used to inhibit features like kexec and hibernate. + */ +bool cpus_are_stuck_in_kernel(void); + #endif /* ifndef __ASSEMBLY__ */ #endif /* ifndef __ASM_SMP_H */ diff --git a/arch/arm64/include/asm/spinlock.h b/arch/arm64/include/asm/spinlock.h index fc9682bfe002..e875a5a551d7 100644 --- a/arch/arm64/include/asm/spinlock.h +++ b/arch/arm64/include/asm/spinlock.h @@ -30,22 +30,53 @@ static inline void arch_spin_unlock_wait(arch_spinlock_t *lock) { unsigned int tmp; arch_spinlock_t lockval; + u32 owner; + + /* + * Ensure prior spin_lock operations to other locks have completed + * on this CPU before we test whether "lock" is locked. + */ + smp_mb(); + owner = READ_ONCE(lock->owner) << 16; asm volatile( " sevl\n" "1: wfe\n" "2: ldaxr %w0, %2\n" + /* Is the lock free? */ " eor %w1, %w0, %w0, ror #16\n" -" cbnz %w1, 1b\n" +" cbz %w1, 3f\n" + /* Lock taken -- has there been a subsequent unlock->lock transition? */ +" eor %w1, %w3, %w0, lsl #16\n" +" cbz %w1, 1b\n" + /* + * The owner has been updated, so there was an unlock->lock + * transition that we missed. That means we can rely on the + * store-release of the unlock operation paired with the + * load-acquire of the lock operation to publish any of our + * previous stores to the new lock owner and therefore don't + * need to bother with the writeback below. + */ +" b 4f\n" +"3:\n" + /* + * Serialise against any concurrent lockers by writing back the + * unlocked lock value + */ ARM64_LSE_ATOMIC_INSN( /* LL/SC */ " stxr %w1, %w0, %2\n" -" cbnz %w1, 2b\n", /* Serialise against any concurrent lockers */ - /* LSE atomics */ " nop\n" -" nop\n") +" nop\n", + /* LSE atomics */ +" mov %w1, %w0\n" +" cas %w0, %w0, %2\n" +" eor %w1, %w1, %w0\n") + /* Somebody else wrote to the lock, GOTO 10 and reload the value */ +" cbnz %w1, 2b\n" +"4:" : "=&r" (lockval), "=&r" (tmp), "+Q" (*lock) - : + : "r" (owner) : "memory"); } @@ -148,6 +179,7 @@ static inline int arch_spin_value_unlocked(arch_spinlock_t lock) static inline int arch_spin_is_locked(arch_spinlock_t *lock) { + smp_mb(); /* See arch_spin_unlock_wait */ return !arch_spin_value_unlocked(READ_ONCE(*lock)); } diff --git a/arch/arm64/include/asm/uaccess.h b/arch/arm64/include/asm/uaccess.h index 0685d74572af..9e397a542756 100644 --- a/arch/arm64/include/asm/uaccess.h +++ b/arch/arm64/include/asm/uaccess.h @@ -81,19 +81,6 @@ static inline void set_fs(mm_segment_t fs) #define segment_eq(a, b) ((a) == (b)) /* - * Return 1 if addr < current->addr_limit, 0 otherwise. - */ -#define __addr_ok(addr) \ -({ \ - unsigned long flag; \ - asm("cmp %1, %0; cset %0, lo" \ - : "=&r" (flag) \ - : "r" (addr), "0" (current_thread_info()->addr_limit) \ - : "cc"); \ - flag; \ -}) - -/* * Test whether a block of memory is a valid user space address. * Returns 1 if the range is valid, 0 otherwise. * diff --git a/arch/arm64/include/asm/unistd.h b/arch/arm64/include/asm/unistd.h index 41e58fe3c041..e78ac26324bd 100644 --- a/arch/arm64/include/asm/unistd.h +++ b/arch/arm64/include/asm/unistd.h @@ -44,7 +44,7 @@ #define __ARM_NR_compat_cacheflush (__ARM_NR_COMPAT_BASE+2) #define __ARM_NR_compat_set_tls (__ARM_NR_COMPAT_BASE+5) -#define __NR_compat_syscalls 390 +#define __NR_compat_syscalls 394 #endif #define __ARCH_WANT_SYS_CLONE diff --git a/arch/arm64/include/asm/unistd32.h b/arch/arm64/include/asm/unistd32.h index 5b925b761a2a..b7e8ef16ff0d 100644 --- a/arch/arm64/include/asm/unistd32.h +++ b/arch/arm64/include/asm/unistd32.h @@ -801,6 +801,14 @@ __SYSCALL(__NR_execveat, compat_sys_execveat) __SYSCALL(__NR_userfaultfd, sys_userfaultfd) #define __NR_membarrier 389 __SYSCALL(__NR_membarrier, sys_membarrier) +#define __NR_mlock2 390 +__SYSCALL(__NR_mlock2, sys_mlock2) +#define __NR_copy_file_range 391 +__SYSCALL(__NR_copy_file_range, sys_copy_file_range) +#define __NR_preadv2 392 +__SYSCALL(__NR_preadv2, compat_sys_preadv2) +#define __NR_pwritev2 393 +__SYSCALL(__NR_pwritev2, compat_sys_pwritev2) /* * Please add new compat syscalls above this comment and update |