diff options
Diffstat (limited to 'arch/arm/mm/dma-mapping.c')
| -rw-r--r-- | arch/arm/mm/dma-mapping.c | 1348 | 
1 files changed, 1149 insertions, 199 deletions
diff --git a/arch/arm/mm/dma-mapping.c b/arch/arm/mm/dma-mapping.c index db23ae4aaaab..ea6b43154090 100644 --- a/arch/arm/mm/dma-mapping.c +++ b/arch/arm/mm/dma-mapping.c @@ -17,8 +17,12 @@  #include <linux/init.h>  #include <linux/device.h>  #include <linux/dma-mapping.h> +#include <linux/dma-contiguous.h>  #include <linux/highmem.h> +#include <linux/memblock.h>  #include <linux/slab.h> +#include <linux/iommu.h> +#include <linux/vmalloc.h>  #include <asm/memory.h>  #include <asm/highmem.h> @@ -26,9 +30,112 @@  #include <asm/tlbflush.h>  #include <asm/sizes.h>  #include <asm/mach/arch.h> +#include <asm/dma-iommu.h> +#include <asm/mach/map.h> +#include <asm/system_info.h> +#include <asm/dma-contiguous.h>  #include "mm.h" +/* + * The DMA API is built upon the notion of "buffer ownership".  A buffer + * is either exclusively owned by the CPU (and therefore may be accessed + * by it) or exclusively owned by the DMA device.  These helper functions + * represent the transitions between these two ownership states. + * + * Note, however, that on later ARMs, this notion does not work due to + * speculative prefetches.  We model our approach on the assumption that + * the CPU does do speculative prefetches, which means we clean caches + * before transfers and delay cache invalidation until transfer completion. + * + */ +static void __dma_page_cpu_to_dev(struct page *, unsigned long, +		size_t, enum dma_data_direction); +static void __dma_page_dev_to_cpu(struct page *, unsigned long, +		size_t, enum dma_data_direction); + +/** + * arm_dma_map_page - map a portion of a page for streaming DMA + * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices + * @page: page that buffer resides in + * @offset: offset into page for start of buffer + * @size: size of buffer to map + * @dir: DMA transfer direction + * + * Ensure that any data held in the cache is appropriately discarded + * or written back. + * + * The device owns this memory once this call has completed.  The CPU + * can regain ownership by calling dma_unmap_page(). + */ +static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, +	     unsigned long offset, size_t size, enum dma_data_direction dir, +	     struct dma_attrs *attrs) +{ +	if (!arch_is_coherent()) +		__dma_page_cpu_to_dev(page, offset, size, dir); +	return pfn_to_dma(dev, page_to_pfn(page)) + offset; +} + +/** + * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() + * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices + * @handle: DMA address of buffer + * @size: size of buffer (same as passed to dma_map_page) + * @dir: DMA transfer direction (same as passed to dma_map_page) + * + * Unmap a page streaming mode DMA translation.  The handle and size + * must match what was provided in the previous dma_map_page() call. + * All other usages are undefined. + * + * After this call, reads by the CPU to the buffer are guaranteed to see + * whatever the device wrote there. + */ +static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, +		size_t size, enum dma_data_direction dir, +		struct dma_attrs *attrs) +{ +	if (!arch_is_coherent()) +		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), +				      handle & ~PAGE_MASK, size, dir); +} + +static void arm_dma_sync_single_for_cpu(struct device *dev, +		dma_addr_t handle, size_t size, enum dma_data_direction dir) +{ +	unsigned int offset = handle & (PAGE_SIZE - 1); +	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); +	if (!arch_is_coherent()) +		__dma_page_dev_to_cpu(page, offset, size, dir); +} + +static void arm_dma_sync_single_for_device(struct device *dev, +		dma_addr_t handle, size_t size, enum dma_data_direction dir) +{ +	unsigned int offset = handle & (PAGE_SIZE - 1); +	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); +	if (!arch_is_coherent()) +		__dma_page_cpu_to_dev(page, offset, size, dir); +} + +static int arm_dma_set_mask(struct device *dev, u64 dma_mask); + +struct dma_map_ops arm_dma_ops = { +	.alloc			= arm_dma_alloc, +	.free			= arm_dma_free, +	.mmap			= arm_dma_mmap, +	.map_page		= arm_dma_map_page, +	.unmap_page		= arm_dma_unmap_page, +	.map_sg			= arm_dma_map_sg, +	.unmap_sg		= arm_dma_unmap_sg, +	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu, +	.sync_single_for_device	= arm_dma_sync_single_for_device, +	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu, +	.sync_sg_for_device	= arm_dma_sync_sg_for_device, +	.set_dma_mask		= arm_dma_set_mask, +}; +EXPORT_SYMBOL(arm_dma_ops); +  static u64 get_coherent_dma_mask(struct device *dev)  {  	u64 mask = (u64)arm_dma_limit; @@ -56,6 +163,21 @@ static u64 get_coherent_dma_mask(struct device *dev)  	return mask;  } +static void __dma_clear_buffer(struct page *page, size_t size) +{ +	void *ptr; +	/* +	 * Ensure that the allocated pages are zeroed, and that any data +	 * lurking in the kernel direct-mapped region is invalidated. +	 */ +	ptr = page_address(page); +	if (ptr) { +		memset(ptr, 0, size); +		dmac_flush_range(ptr, ptr + size); +		outer_flush_range(__pa(ptr), __pa(ptr) + size); +	} +} +  /*   * Allocate a DMA buffer for 'dev' of size 'size' using the   * specified gfp mask.  Note that 'size' must be page aligned. @@ -64,23 +186,6 @@ static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gf  {  	unsigned long order = get_order(size);  	struct page *page, *p, *e; -	void *ptr; -	u64 mask = get_coherent_dma_mask(dev); - -#ifdef CONFIG_DMA_API_DEBUG -	u64 limit = (mask + 1) & ~mask; -	if (limit && size >= limit) { -		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", -			size, mask); -		return NULL; -	} -#endif - -	if (!mask) -		return NULL; - -	if (mask < 0xffffffffULL) -		gfp |= GFP_DMA;  	page = alloc_pages(gfp, order);  	if (!page) @@ -93,14 +198,7 @@ static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gf  	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)  		__free_page(p); -	/* -	 * Ensure that the allocated pages are zeroed, and that any data -	 * lurking in the kernel direct-mapped region is invalidated. -	 */ -	ptr = page_address(page); -	memset(ptr, 0, size); -	dmac_flush_range(ptr, ptr + size); -	outer_flush_range(__pa(ptr), __pa(ptr) + size); +	__dma_clear_buffer(page, size);  	return page;  } @@ -170,6 +268,11 @@ static int __init consistent_init(void)  	unsigned long base = consistent_base;  	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT; +#ifndef CONFIG_ARM_DMA_USE_IOMMU +	if (cpu_architecture() >= CPU_ARCH_ARMv6) +		return 0; +#endif +  	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);  	if (!consistent_pte) {  		pr_err("%s: no memory\n", __func__); @@ -184,14 +287,14 @@ static int __init consistent_init(void)  		pud = pud_alloc(&init_mm, pgd, base);  		if (!pud) { -			printk(KERN_ERR "%s: no pud tables\n", __func__); +			pr_err("%s: no pud tables\n", __func__);  			ret = -ENOMEM;  			break;  		}  		pmd = pmd_alloc(&init_mm, pud, base);  		if (!pmd) { -			printk(KERN_ERR "%s: no pmd tables\n", __func__); +			pr_err("%s: no pmd tables\n", __func__);  			ret = -ENOMEM;  			break;  		} @@ -199,7 +302,7 @@ static int __init consistent_init(void)  		pte = pte_alloc_kernel(pmd, base);  		if (!pte) { -			printk(KERN_ERR "%s: no pte tables\n", __func__); +			pr_err("%s: no pte tables\n", __func__);  			ret = -ENOMEM;  			break;  		} @@ -210,9 +313,101 @@ static int __init consistent_init(void)  	return ret;  } -  core_initcall(consistent_init); +static void *__alloc_from_contiguous(struct device *dev, size_t size, +				     pgprot_t prot, struct page **ret_page); + +static struct arm_vmregion_head coherent_head = { +	.vm_lock	= __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock), +	.vm_list	= LIST_HEAD_INIT(coherent_head.vm_list), +}; + +size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8; + +static int __init early_coherent_pool(char *p) +{ +	coherent_pool_size = memparse(p, &p); +	return 0; +} +early_param("coherent_pool", early_coherent_pool); + +/* + * Initialise the coherent pool for atomic allocations. + */ +static int __init coherent_init(void) +{ +	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); +	size_t size = coherent_pool_size; +	struct page *page; +	void *ptr; + +	if (cpu_architecture() < CPU_ARCH_ARMv6) +		return 0; + +	ptr = __alloc_from_contiguous(NULL, size, prot, &page); +	if (ptr) { +		coherent_head.vm_start = (unsigned long) ptr; +		coherent_head.vm_end = (unsigned long) ptr + size; +		printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n", +		       (unsigned)size / 1024); +		return 0; +	} +	printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", +	       (unsigned)size / 1024); +	return -ENOMEM; +} +/* + * CMA is activated by core_initcall, so we must be called after it. + */ +postcore_initcall(coherent_init); + +struct dma_contig_early_reserve { +	phys_addr_t base; +	unsigned long size; +}; + +static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; + +static int dma_mmu_remap_num __initdata; + +void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) +{ +	dma_mmu_remap[dma_mmu_remap_num].base = base; +	dma_mmu_remap[dma_mmu_remap_num].size = size; +	dma_mmu_remap_num++; +} + +void __init dma_contiguous_remap(void) +{ +	int i; +	for (i = 0; i < dma_mmu_remap_num; i++) { +		phys_addr_t start = dma_mmu_remap[i].base; +		phys_addr_t end = start + dma_mmu_remap[i].size; +		struct map_desc map; +		unsigned long addr; + +		if (end > arm_lowmem_limit) +			end = arm_lowmem_limit; +		if (start >= end) +			return; + +		map.pfn = __phys_to_pfn(start); +		map.virtual = __phys_to_virt(start); +		map.length = end - start; +		map.type = MT_MEMORY_DMA_READY; + +		/* +		 * Clear previous low-memory mapping +		 */ +		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); +		     addr += PMD_SIZE) +			pmd_clear(pmd_off_k(addr)); + +		iotable_init(&map, 1); +	} +} +  static void *  __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,  	const void *caller) @@ -222,7 +417,7 @@ __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,  	int bit;  	if (!consistent_pte) { -		printk(KERN_ERR "%s: not initialised\n", __func__); +		pr_err("%s: not initialised\n", __func__);  		dump_stack();  		return NULL;  	} @@ -249,7 +444,7 @@ __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,  		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);  		pte = consistent_pte[idx] + off; -		c->vm_pages = page; +		c->priv = page;  		do {  			BUG_ON(!pte_none(*pte)); @@ -281,14 +476,14 @@ static void __dma_free_remap(void *cpu_addr, size_t size)  	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);  	if (!c) { -		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", +		pr_err("%s: trying to free invalid coherent area: %p\n",  		       __func__, cpu_addr);  		dump_stack();  		return;  	}  	if ((c->vm_end - c->vm_start) != size) { -		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", +		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",  		       __func__, c->vm_end - c->vm_start, size);  		dump_stack();  		size = c->vm_end - c->vm_start; @@ -310,8 +505,8 @@ static void __dma_free_remap(void *cpu_addr, size_t size)  		}  		if (pte_none(pte) || !pte_present(pte)) -			printk(KERN_CRIT "%s: bad page in kernel page table\n", -			       __func__); +			pr_crit("%s: bad page in kernel page table\n", +				__func__);  	} while (size -= PAGE_SIZE);  	flush_tlb_kernel_range(c->vm_start, c->vm_end); @@ -319,20 +514,182 @@ static void __dma_free_remap(void *cpu_addr, size_t size)  	arm_vmregion_free(&consistent_head, c);  } +static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, +			    void *data) +{ +	struct page *page = virt_to_page(addr); +	pgprot_t prot = *(pgprot_t *)data; + +	set_pte_ext(pte, mk_pte(page, prot), 0); +	return 0; +} + +static void __dma_remap(struct page *page, size_t size, pgprot_t prot) +{ +	unsigned long start = (unsigned long) page_address(page); +	unsigned end = start + size; + +	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); +	dsb(); +	flush_tlb_kernel_range(start, end); +} + +static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, +				 pgprot_t prot, struct page **ret_page, +				 const void *caller) +{ +	struct page *page; +	void *ptr; +	page = __dma_alloc_buffer(dev, size, gfp); +	if (!page) +		return NULL; + +	ptr = __dma_alloc_remap(page, size, gfp, prot, caller); +	if (!ptr) { +		__dma_free_buffer(page, size); +		return NULL; +	} + +	*ret_page = page; +	return ptr; +} + +static void *__alloc_from_pool(struct device *dev, size_t size, +			       struct page **ret_page, const void *caller) +{ +	struct arm_vmregion *c; +	size_t align; + +	if (!coherent_head.vm_start) { +		printk(KERN_ERR "%s: coherent pool not initialised!\n", +		       __func__); +		dump_stack(); +		return NULL; +	} + +	/* +	 * Align the region allocation - allocations from pool are rather +	 * small, so align them to their order in pages, minimum is a page +	 * size. This helps reduce fragmentation of the DMA space. +	 */ +	align = PAGE_SIZE << get_order(size); +	c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller); +	if (c) { +		void *ptr = (void *)c->vm_start; +		struct page *page = virt_to_page(ptr); +		*ret_page = page; +		return ptr; +	} +	return NULL; +} + +static int __free_from_pool(void *cpu_addr, size_t size) +{ +	unsigned long start = (unsigned long)cpu_addr; +	unsigned long end = start + size; +	struct arm_vmregion *c; + +	if (start < coherent_head.vm_start || end > coherent_head.vm_end) +		return 0; + +	c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start); + +	if ((c->vm_end - c->vm_start) != size) { +		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", +		       __func__, c->vm_end - c->vm_start, size); +		dump_stack(); +		size = c->vm_end - c->vm_start; +	} + +	arm_vmregion_free(&coherent_head, c); +	return 1; +} + +static void *__alloc_from_contiguous(struct device *dev, size_t size, +				     pgprot_t prot, struct page **ret_page) +{ +	unsigned long order = get_order(size); +	size_t count = size >> PAGE_SHIFT; +	struct page *page; + +	page = dma_alloc_from_contiguous(dev, count, order); +	if (!page) +		return NULL; + +	__dma_clear_buffer(page, size); +	__dma_remap(page, size, prot); + +	*ret_page = page; +	return page_address(page); +} + +static void __free_from_contiguous(struct device *dev, struct page *page, +				   size_t size) +{ +	__dma_remap(page, size, pgprot_kernel); +	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); +} + +static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) +{ +	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? +			    pgprot_writecombine(prot) : +			    pgprot_dmacoherent(prot); +	return prot; +} + +#define nommu() 0 +  #else	/* !CONFIG_MMU */ -#define __dma_alloc_remap(page, size, gfp, prot, c)	page_address(page) -#define __dma_free_remap(addr, size)			do { } while (0) +#define nommu() 1 + +#define __get_dma_pgprot(attrs, prot)	__pgprot(0) +#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL +#define __alloc_from_pool(dev, size, ret_page, c)		NULL +#define __alloc_from_contiguous(dev, size, prot, ret)		NULL +#define __free_from_pool(cpu_addr, size)			0 +#define __free_from_contiguous(dev, page, size)			do { } while (0) +#define __dma_free_remap(cpu_addr, size)			do { } while (0)  #endif	/* CONFIG_MMU */ -static void * -__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, -	    pgprot_t prot, const void *caller) +static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, +				   struct page **ret_page) +{ +	struct page *page; +	page = __dma_alloc_buffer(dev, size, gfp); +	if (!page) +		return NULL; + +	*ret_page = page; +	return page_address(page); +} + + + +static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, +			 gfp_t gfp, pgprot_t prot, const void *caller)  { +	u64 mask = get_coherent_dma_mask(dev);  	struct page *page;  	void *addr; +#ifdef CONFIG_DMA_API_DEBUG +	u64 limit = (mask + 1) & ~mask; +	if (limit && size >= limit) { +		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", +			size, mask); +		return NULL; +	} +#endif + +	if (!mask) +		return NULL; + +	if (mask < 0xffffffffULL) +		gfp |= GFP_DMA; +  	/*  	 * Following is a work-around (a.k.a. hack) to prevent pages  	 * with __GFP_COMP being passed to split_page() which cannot @@ -342,22 +699,20 @@ __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,  	 */  	gfp &= ~(__GFP_COMP); -	*handle = ~0; +	*handle = DMA_ERROR_CODE;  	size = PAGE_ALIGN(size); -	page = __dma_alloc_buffer(dev, size, gfp); -	if (!page) -		return NULL; - -	if (!arch_is_coherent()) -		addr = __dma_alloc_remap(page, size, gfp, prot, caller); +	if (arch_is_coherent() || nommu()) +		addr = __alloc_simple_buffer(dev, size, gfp, &page); +	else if (cpu_architecture() < CPU_ARCH_ARMv6) +		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); +	else if (gfp & GFP_ATOMIC) +		addr = __alloc_from_pool(dev, size, &page, caller);  	else -		addr = page_address(page); +		addr = __alloc_from_contiguous(dev, size, prot, &page);  	if (addr)  		*handle = pfn_to_dma(dev, page_to_pfn(page)); -	else -		__dma_free_buffer(page, size);  	return addr;  } @@ -366,138 +721,71 @@ __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,   * Allocate DMA-coherent memory space and return both the kernel remapped   * virtual and bus address for that space.   */ -void * -dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) +void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, +		    gfp_t gfp, struct dma_attrs *attrs)  { +	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);  	void *memory;  	if (dma_alloc_from_coherent(dev, size, handle, &memory))  		return memory; -	return __dma_alloc(dev, size, handle, gfp, -			   pgprot_dmacoherent(pgprot_kernel), +	return __dma_alloc(dev, size, handle, gfp, prot,  			   __builtin_return_address(0));  } -EXPORT_SYMBOL(dma_alloc_coherent);  /* - * Allocate a writecombining region, in much the same way as - * dma_alloc_coherent above. + * Create userspace mapping for the DMA-coherent memory.   */ -void * -dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) -{ -	return __dma_alloc(dev, size, handle, gfp, -			   pgprot_writecombine(pgprot_kernel), -			   __builtin_return_address(0)); -} -EXPORT_SYMBOL(dma_alloc_writecombine); - -static int dma_mmap(struct device *dev, struct vm_area_struct *vma, -		    void *cpu_addr, dma_addr_t dma_addr, size_t size) +int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, +		 void *cpu_addr, dma_addr_t dma_addr, size_t size, +		 struct dma_attrs *attrs)  {  	int ret = -ENXIO;  #ifdef CONFIG_MMU -	unsigned long user_size, kern_size; -	struct arm_vmregion *c; +	unsigned long pfn = dma_to_pfn(dev, dma_addr); +	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); -	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; +	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) +		return ret; -	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); -	if (c) { -		unsigned long off = vma->vm_pgoff; - -		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; - -		if (off < kern_size && -		    user_size <= (kern_size - off)) { -			ret = remap_pfn_range(vma, vma->vm_start, -					      page_to_pfn(c->vm_pages) + off, -					      user_size << PAGE_SHIFT, -					      vma->vm_page_prot); -		} -	} +	ret = remap_pfn_range(vma, vma->vm_start, +			      pfn + vma->vm_pgoff, +			      vma->vm_end - vma->vm_start, +			      vma->vm_page_prot);  #endif	/* CONFIG_MMU */  	return ret;  } -int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, -		      void *cpu_addr, dma_addr_t dma_addr, size_t size) -{ -	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot); -	return dma_mmap(dev, vma, cpu_addr, dma_addr, size); -} -EXPORT_SYMBOL(dma_mmap_coherent); - -int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, -			  void *cpu_addr, dma_addr_t dma_addr, size_t size) -{ -	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); -	return dma_mmap(dev, vma, cpu_addr, dma_addr, size); -} -EXPORT_SYMBOL(dma_mmap_writecombine); -  /* - * free a page as defined by the above mapping. - * Must not be called with IRQs disabled. + * Free a buffer as defined by the above mapping.   */ -void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) +void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, +		  dma_addr_t handle, struct dma_attrs *attrs)  { -	WARN_ON(irqs_disabled()); +	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));  	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))  		return;  	size = PAGE_ALIGN(size); -	if (!arch_is_coherent()) +	if (arch_is_coherent() || nommu()) { +		__dma_free_buffer(page, size); +	} else if (cpu_architecture() < CPU_ARCH_ARMv6) {  		__dma_free_remap(cpu_addr, size); - -	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size); -} -EXPORT_SYMBOL(dma_free_coherent); - -/* - * Make an area consistent for devices. - * Note: Drivers should NOT use this function directly, as it will break - * platforms with CONFIG_DMABOUNCE. - * Use the driver DMA support - see dma-mapping.h (dma_sync_*) - */ -void ___dma_single_cpu_to_dev(const void *kaddr, size_t size, -	enum dma_data_direction dir) -{ -	unsigned long paddr; - -	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); - -	dmac_map_area(kaddr, size, dir); - -	paddr = __pa(kaddr); -	if (dir == DMA_FROM_DEVICE) { -		outer_inv_range(paddr, paddr + size); +		__dma_free_buffer(page, size);  	} else { -		outer_clean_range(paddr, paddr + size); -	} -	/* FIXME: non-speculating: flush on bidirectional mappings? */ -} -EXPORT_SYMBOL(___dma_single_cpu_to_dev); - -void ___dma_single_dev_to_cpu(const void *kaddr, size_t size, -	enum dma_data_direction dir) -{ -	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); - -	/* FIXME: non-speculating: not required */ -	/* don't bother invalidating if DMA to device */ -	if (dir != DMA_TO_DEVICE) { -		unsigned long paddr = __pa(kaddr); -		outer_inv_range(paddr, paddr + size); +		if (__free_from_pool(cpu_addr, size)) +			return; +		/* +		 * Non-atomic allocations cannot be freed with IRQs disabled +		 */ +		WARN_ON(irqs_disabled()); +		__free_from_contiguous(dev, page, size);  	} - -	dmac_unmap_area(kaddr, size, dir);  } -EXPORT_SYMBOL(___dma_single_dev_to_cpu);  static void dma_cache_maint_page(struct page *page, unsigned long offset,  	size_t size, enum dma_data_direction dir, @@ -543,7 +831,13 @@ static void dma_cache_maint_page(struct page *page, unsigned long offset,  	} while (left);  } -void ___dma_page_cpu_to_dev(struct page *page, unsigned long off, +/* + * Make an area consistent for devices. + * Note: Drivers should NOT use this function directly, as it will break + * platforms with CONFIG_DMABOUNCE. + * Use the driver DMA support - see dma-mapping.h (dma_sync_*) + */ +static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,  	size_t size, enum dma_data_direction dir)  {  	unsigned long paddr; @@ -558,9 +852,8 @@ void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,  	}  	/* FIXME: non-speculating: flush on bidirectional mappings? */  } -EXPORT_SYMBOL(___dma_page_cpu_to_dev); -void ___dma_page_dev_to_cpu(struct page *page, unsigned long off, +static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,  	size_t size, enum dma_data_direction dir)  {  	unsigned long paddr = page_to_phys(page) + off; @@ -578,10 +871,9 @@ void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,  	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)  		set_bit(PG_dcache_clean, &page->flags);  } -EXPORT_SYMBOL(___dma_page_dev_to_cpu);  /** - * dma_map_sg - map a set of SG buffers for streaming mode DMA + * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA   * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices   * @sg: list of buffers   * @nents: number of buffers to map @@ -596,32 +888,32 @@ EXPORT_SYMBOL(___dma_page_dev_to_cpu);   * Device ownership issues as mentioned for dma_map_single are the same   * here.   */ -int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, -		enum dma_data_direction dir) +int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, +		enum dma_data_direction dir, struct dma_attrs *attrs)  { +	struct dma_map_ops *ops = get_dma_ops(dev);  	struct scatterlist *s;  	int i, j; -	BUG_ON(!valid_dma_direction(dir)); -  	for_each_sg(sg, s, nents, i) { -		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset, -						s->length, dir); +#ifdef CONFIG_NEED_SG_DMA_LENGTH +		s->dma_length = s->length; +#endif +		s->dma_address = ops->map_page(dev, sg_page(s), s->offset, +						s->length, dir, attrs);  		if (dma_mapping_error(dev, s->dma_address))  			goto bad_mapping;  	} -	debug_dma_map_sg(dev, sg, nents, nents, dir);  	return nents;   bad_mapping:  	for_each_sg(sg, s, i, j) -		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); +		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);  	return 0;  } -EXPORT_SYMBOL(dma_map_sg);  /** - * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg + * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg   * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices   * @sg: list of buffers   * @nents: number of buffers to unmap (same as was passed to dma_map_sg) @@ -630,70 +922,55 @@ EXPORT_SYMBOL(dma_map_sg);   * Unmap a set of streaming mode DMA translations.  Again, CPU access   * rules concerning calls here are the same as for dma_unmap_single().   */ -void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, -		enum dma_data_direction dir) +void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, +		enum dma_data_direction dir, struct dma_attrs *attrs)  { +	struct dma_map_ops *ops = get_dma_ops(dev);  	struct scatterlist *s; -	int i; -	debug_dma_unmap_sg(dev, sg, nents, dir); +	int i;  	for_each_sg(sg, s, nents, i) -		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); +		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);  } -EXPORT_SYMBOL(dma_unmap_sg);  /** - * dma_sync_sg_for_cpu + * arm_dma_sync_sg_for_cpu   * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices   * @sg: list of buffers   * @nents: number of buffers to map (returned from dma_map_sg)   * @dir: DMA transfer direction (same as was passed to dma_map_sg)   */ -void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, +void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,  			int nents, enum dma_data_direction dir)  { +	struct dma_map_ops *ops = get_dma_ops(dev);  	struct scatterlist *s;  	int i; -	for_each_sg(sg, s, nents, i) { -		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, -					    sg_dma_len(s), dir)) -			continue; - -		__dma_page_dev_to_cpu(sg_page(s), s->offset, -				      s->length, dir); -	} - -	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir); +	for_each_sg(sg, s, nents, i) +		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, +					 dir);  } -EXPORT_SYMBOL(dma_sync_sg_for_cpu);  /** - * dma_sync_sg_for_device + * arm_dma_sync_sg_for_device   * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices   * @sg: list of buffers   * @nents: number of buffers to map (returned from dma_map_sg)   * @dir: DMA transfer direction (same as was passed to dma_map_sg)   */ -void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, +void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,  			int nents, enum dma_data_direction dir)  { +	struct dma_map_ops *ops = get_dma_ops(dev);  	struct scatterlist *s;  	int i; -	for_each_sg(sg, s, nents, i) { -		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, -					sg_dma_len(s), dir)) -			continue; - -		__dma_page_cpu_to_dev(sg_page(s), s->offset, -				      s->length, dir); -	} - -	debug_dma_sync_sg_for_device(dev, sg, nents, dir); +	for_each_sg(sg, s, nents, i) +		ops->sync_single_for_device(dev, sg_dma_address(s), s->length, +					    dir);  } -EXPORT_SYMBOL(dma_sync_sg_for_device);  /*   * Return whether the given device DMA address mask can be supported @@ -709,18 +986,15 @@ int dma_supported(struct device *dev, u64 mask)  }  EXPORT_SYMBOL(dma_supported); -int dma_set_mask(struct device *dev, u64 dma_mask) +static int arm_dma_set_mask(struct device *dev, u64 dma_mask)  {  	if (!dev->dma_mask || !dma_supported(dev, dma_mask))  		return -EIO; -#ifndef CONFIG_DMABOUNCE  	*dev->dma_mask = dma_mask; -#endif  	return 0;  } -EXPORT_SYMBOL(dma_set_mask);  #define PREALLOC_DMA_DEBUG_ENTRIES	4096 @@ -733,3 +1007,679 @@ static int __init dma_debug_do_init(void)  	return 0;  }  fs_initcall(dma_debug_do_init); + +#ifdef CONFIG_ARM_DMA_USE_IOMMU + +/* IOMMU */ + +static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, +				      size_t size) +{ +	unsigned int order = get_order(size); +	unsigned int align = 0; +	unsigned int count, start; +	unsigned long flags; + +	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + +		 (1 << mapping->order) - 1) >> mapping->order; + +	if (order > mapping->order) +		align = (1 << (order - mapping->order)) - 1; + +	spin_lock_irqsave(&mapping->lock, flags); +	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, +					   count, align); +	if (start > mapping->bits) { +		spin_unlock_irqrestore(&mapping->lock, flags); +		return DMA_ERROR_CODE; +	} + +	bitmap_set(mapping->bitmap, start, count); +	spin_unlock_irqrestore(&mapping->lock, flags); + +	return mapping->base + (start << (mapping->order + PAGE_SHIFT)); +} + +static inline void __free_iova(struct dma_iommu_mapping *mapping, +			       dma_addr_t addr, size_t size) +{ +	unsigned int start = (addr - mapping->base) >> +			     (mapping->order + PAGE_SHIFT); +	unsigned int count = ((size >> PAGE_SHIFT) + +			      (1 << mapping->order) - 1) >> mapping->order; +	unsigned long flags; + +	spin_lock_irqsave(&mapping->lock, flags); +	bitmap_clear(mapping->bitmap, start, count); +	spin_unlock_irqrestore(&mapping->lock, flags); +} + +static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) +{ +	struct page **pages; +	int count = size >> PAGE_SHIFT; +	int array_size = count * sizeof(struct page *); +	int i = 0; + +	if (array_size <= PAGE_SIZE) +		pages = kzalloc(array_size, gfp); +	else +		pages = vzalloc(array_size); +	if (!pages) +		return NULL; + +	while (count) { +		int j, order = __ffs(count); + +		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order); +		while (!pages[i] && order) +			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order); +		if (!pages[i]) +			goto error; + +		if (order) +			split_page(pages[i], order); +		j = 1 << order; +		while (--j) +			pages[i + j] = pages[i] + j; + +		__dma_clear_buffer(pages[i], PAGE_SIZE << order); +		i += 1 << order; +		count -= 1 << order; +	} + +	return pages; +error: +	while (--i) +		if (pages[i]) +			__free_pages(pages[i], 0); +	if (array_size < PAGE_SIZE) +		kfree(pages); +	else +		vfree(pages); +	return NULL; +} + +static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size) +{ +	int count = size >> PAGE_SHIFT; +	int array_size = count * sizeof(struct page *); +	int i; +	for (i = 0; i < count; i++) +		if (pages[i]) +			__free_pages(pages[i], 0); +	if (array_size < PAGE_SIZE) +		kfree(pages); +	else +		vfree(pages); +	return 0; +} + +/* + * Create a CPU mapping for a specified pages + */ +static void * +__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot) +{ +	struct arm_vmregion *c; +	size_t align; +	size_t count = size >> PAGE_SHIFT; +	int bit; + +	if (!consistent_pte[0]) { +		pr_err("%s: not initialised\n", __func__); +		dump_stack(); +		return NULL; +	} + +	/* +	 * Align the virtual region allocation - maximum alignment is +	 * a section size, minimum is a page size.  This helps reduce +	 * fragmentation of the DMA space, and also prevents allocations +	 * smaller than a section from crossing a section boundary. +	 */ +	bit = fls(size - 1); +	if (bit > SECTION_SHIFT) +		bit = SECTION_SHIFT; +	align = 1 << bit; + +	/* +	 * Allocate a virtual address in the consistent mapping region. +	 */ +	c = arm_vmregion_alloc(&consistent_head, align, size, +			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL); +	if (c) { +		pte_t *pte; +		int idx = CONSISTENT_PTE_INDEX(c->vm_start); +		int i = 0; +		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); + +		pte = consistent_pte[idx] + off; +		c->priv = pages; + +		do { +			BUG_ON(!pte_none(*pte)); + +			set_pte_ext(pte, mk_pte(pages[i], prot), 0); +			pte++; +			off++; +			i++; +			if (off >= PTRS_PER_PTE) { +				off = 0; +				pte = consistent_pte[++idx]; +			} +		} while (i < count); + +		dsb(); + +		return (void *)c->vm_start; +	} +	return NULL; +} + +/* + * Create a mapping in device IO address space for specified pages + */ +static dma_addr_t +__iommu_create_mapping(struct device *dev, struct page **pages, size_t size) +{ +	struct dma_iommu_mapping *mapping = dev->archdata.mapping; +	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; +	dma_addr_t dma_addr, iova; +	int i, ret = DMA_ERROR_CODE; + +	dma_addr = __alloc_iova(mapping, size); +	if (dma_addr == DMA_ERROR_CODE) +		return dma_addr; + +	iova = dma_addr; +	for (i = 0; i < count; ) { +		unsigned int next_pfn = page_to_pfn(pages[i]) + 1; +		phys_addr_t phys = page_to_phys(pages[i]); +		unsigned int len, j; + +		for (j = i + 1; j < count; j++, next_pfn++) +			if (page_to_pfn(pages[j]) != next_pfn) +				break; + +		len = (j - i) << PAGE_SHIFT; +		ret = iommu_map(mapping->domain, iova, phys, len, 0); +		if (ret < 0) +			goto fail; +		iova += len; +		i = j; +	} +	return dma_addr; +fail: +	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); +	__free_iova(mapping, dma_addr, size); +	return DMA_ERROR_CODE; +} + +static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) +{ +	struct dma_iommu_mapping *mapping = dev->archdata.mapping; + +	/* +	 * add optional in-page offset from iova to size and align +	 * result to page size +	 */ +	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); +	iova &= PAGE_MASK; + +	iommu_unmap(mapping->domain, iova, size); +	__free_iova(mapping, iova, size); +	return 0; +} + +static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, +	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) +{ +	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); +	struct page **pages; +	void *addr = NULL; + +	*handle = DMA_ERROR_CODE; +	size = PAGE_ALIGN(size); + +	pages = __iommu_alloc_buffer(dev, size, gfp); +	if (!pages) +		return NULL; + +	*handle = __iommu_create_mapping(dev, pages, size); +	if (*handle == DMA_ERROR_CODE) +		goto err_buffer; + +	addr = __iommu_alloc_remap(pages, size, gfp, prot); +	if (!addr) +		goto err_mapping; + +	return addr; + +err_mapping: +	__iommu_remove_mapping(dev, *handle, size); +err_buffer: +	__iommu_free_buffer(dev, pages, size); +	return NULL; +} + +static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, +		    void *cpu_addr, dma_addr_t dma_addr, size_t size, +		    struct dma_attrs *attrs) +{ +	struct arm_vmregion *c; + +	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); +	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); + +	if (c) { +		struct page **pages = c->priv; + +		unsigned long uaddr = vma->vm_start; +		unsigned long usize = vma->vm_end - vma->vm_start; +		int i = 0; + +		do { +			int ret; + +			ret = vm_insert_page(vma, uaddr, pages[i++]); +			if (ret) { +				pr_err("Remapping memory, error: %d\n", ret); +				return ret; +			} + +			uaddr += PAGE_SIZE; +			usize -= PAGE_SIZE; +		} while (usize > 0); +	} +	return 0; +} + +/* + * free a page as defined by the above mapping. + * Must not be called with IRQs disabled. + */ +void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, +			  dma_addr_t handle, struct dma_attrs *attrs) +{ +	struct arm_vmregion *c; +	size = PAGE_ALIGN(size); + +	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); +	if (c) { +		struct page **pages = c->priv; +		__dma_free_remap(cpu_addr, size); +		__iommu_remove_mapping(dev, handle, size); +		__iommu_free_buffer(dev, pages, size); +	} +} + +/* + * Map a part of the scatter-gather list into contiguous io address space + */ +static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, +			  size_t size, dma_addr_t *handle, +			  enum dma_data_direction dir) +{ +	struct dma_iommu_mapping *mapping = dev->archdata.mapping; +	dma_addr_t iova, iova_base; +	int ret = 0; +	unsigned int count; +	struct scatterlist *s; + +	size = PAGE_ALIGN(size); +	*handle = DMA_ERROR_CODE; + +	iova_base = iova = __alloc_iova(mapping, size); +	if (iova == DMA_ERROR_CODE) +		return -ENOMEM; + +	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { +		phys_addr_t phys = page_to_phys(sg_page(s)); +		unsigned int len = PAGE_ALIGN(s->offset + s->length); + +		if (!arch_is_coherent()) +			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); + +		ret = iommu_map(mapping->domain, iova, phys, len, 0); +		if (ret < 0) +			goto fail; +		count += len >> PAGE_SHIFT; +		iova += len; +	} +	*handle = iova_base; + +	return 0; +fail: +	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); +	__free_iova(mapping, iova_base, size); +	return ret; +} + +/** + * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA + * @dev: valid struct device pointer + * @sg: list of buffers + * @nents: number of buffers to map + * @dir: DMA transfer direction + * + * Map a set of buffers described by scatterlist in streaming mode for DMA. + * The scatter gather list elements are merged together (if possible) and + * tagged with the appropriate dma address and length. They are obtained via + * sg_dma_{address,length}. + */ +int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, +		     enum dma_data_direction dir, struct dma_attrs *attrs) +{ +	struct scatterlist *s = sg, *dma = sg, *start = sg; +	int i, count = 0; +	unsigned int offset = s->offset; +	unsigned int size = s->offset + s->length; +	unsigned int max = dma_get_max_seg_size(dev); + +	for (i = 1; i < nents; i++) { +		s = sg_next(s); + +		s->dma_address = DMA_ERROR_CODE; +		s->dma_length = 0; + +		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { +			if (__map_sg_chunk(dev, start, size, &dma->dma_address, +			    dir) < 0) +				goto bad_mapping; + +			dma->dma_address += offset; +			dma->dma_length = size - offset; + +			size = offset = s->offset; +			start = s; +			dma = sg_next(dma); +			count += 1; +		} +		size += s->length; +	} +	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0) +		goto bad_mapping; + +	dma->dma_address += offset; +	dma->dma_length = size - offset; + +	return count+1; + +bad_mapping: +	for_each_sg(sg, s, count, i) +		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); +	return 0; +} + +/** + * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg + * @dev: valid struct device pointer + * @sg: list of buffers + * @nents: number of buffers to unmap (same as was passed to dma_map_sg) + * @dir: DMA transfer direction (same as was passed to dma_map_sg) + * + * Unmap a set of streaming mode DMA translations.  Again, CPU access + * rules concerning calls here are the same as for dma_unmap_single(). + */ +void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, +			enum dma_data_direction dir, struct dma_attrs *attrs) +{ +	struct scatterlist *s; +	int i; + +	for_each_sg(sg, s, nents, i) { +		if (sg_dma_len(s)) +			__iommu_remove_mapping(dev, sg_dma_address(s), +					       sg_dma_len(s)); +		if (!arch_is_coherent()) +			__dma_page_dev_to_cpu(sg_page(s), s->offset, +					      s->length, dir); +	} +} + +/** + * arm_iommu_sync_sg_for_cpu + * @dev: valid struct device pointer + * @sg: list of buffers + * @nents: number of buffers to map (returned from dma_map_sg) + * @dir: DMA transfer direction (same as was passed to dma_map_sg) + */ +void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, +			int nents, enum dma_data_direction dir) +{ +	struct scatterlist *s; +	int i; + +	for_each_sg(sg, s, nents, i) +		if (!arch_is_coherent()) +			__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); + +} + +/** + * arm_iommu_sync_sg_for_device + * @dev: valid struct device pointer + * @sg: list of buffers + * @nents: number of buffers to map (returned from dma_map_sg) + * @dir: DMA transfer direction (same as was passed to dma_map_sg) + */ +void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, +			int nents, enum dma_data_direction dir) +{ +	struct scatterlist *s; +	int i; + +	for_each_sg(sg, s, nents, i) +		if (!arch_is_coherent()) +			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); +} + + +/** + * arm_iommu_map_page + * @dev: valid struct device pointer + * @page: page that buffer resides in + * @offset: offset into page for start of buffer + * @size: size of buffer to map + * @dir: DMA transfer direction + * + * IOMMU aware version of arm_dma_map_page() + */ +static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, +	     unsigned long offset, size_t size, enum dma_data_direction dir, +	     struct dma_attrs *attrs) +{ +	struct dma_iommu_mapping *mapping = dev->archdata.mapping; +	dma_addr_t dma_addr; +	int ret, len = PAGE_ALIGN(size + offset); + +	if (!arch_is_coherent()) +		__dma_page_cpu_to_dev(page, offset, size, dir); + +	dma_addr = __alloc_iova(mapping, len); +	if (dma_addr == DMA_ERROR_CODE) +		return dma_addr; + +	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0); +	if (ret < 0) +		goto fail; + +	return dma_addr + offset; +fail: +	__free_iova(mapping, dma_addr, len); +	return DMA_ERROR_CODE; +} + +/** + * arm_iommu_unmap_page + * @dev: valid struct device pointer + * @handle: DMA address of buffer + * @size: size of buffer (same as passed to dma_map_page) + * @dir: DMA transfer direction (same as passed to dma_map_page) + * + * IOMMU aware version of arm_dma_unmap_page() + */ +static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, +		size_t size, enum dma_data_direction dir, +		struct dma_attrs *attrs) +{ +	struct dma_iommu_mapping *mapping = dev->archdata.mapping; +	dma_addr_t iova = handle & PAGE_MASK; +	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); +	int offset = handle & ~PAGE_MASK; +	int len = PAGE_ALIGN(size + offset); + +	if (!iova) +		return; + +	if (!arch_is_coherent()) +		__dma_page_dev_to_cpu(page, offset, size, dir); + +	iommu_unmap(mapping->domain, iova, len); +	__free_iova(mapping, iova, len); +} + +static void arm_iommu_sync_single_for_cpu(struct device *dev, +		dma_addr_t handle, size_t size, enum dma_data_direction dir) +{ +	struct dma_iommu_mapping *mapping = dev->archdata.mapping; +	dma_addr_t iova = handle & PAGE_MASK; +	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); +	unsigned int offset = handle & ~PAGE_MASK; + +	if (!iova) +		return; + +	if (!arch_is_coherent()) +		__dma_page_dev_to_cpu(page, offset, size, dir); +} + +static void arm_iommu_sync_single_for_device(struct device *dev, +		dma_addr_t handle, size_t size, enum dma_data_direction dir) +{ +	struct dma_iommu_mapping *mapping = dev->archdata.mapping; +	dma_addr_t iova = handle & PAGE_MASK; +	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); +	unsigned int offset = handle & ~PAGE_MASK; + +	if (!iova) +		return; + +	__dma_page_cpu_to_dev(page, offset, size, dir); +} + +struct dma_map_ops iommu_ops = { +	.alloc		= arm_iommu_alloc_attrs, +	.free		= arm_iommu_free_attrs, +	.mmap		= arm_iommu_mmap_attrs, + +	.map_page		= arm_iommu_map_page, +	.unmap_page		= arm_iommu_unmap_page, +	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu, +	.sync_single_for_device	= arm_iommu_sync_single_for_device, + +	.map_sg			= arm_iommu_map_sg, +	.unmap_sg		= arm_iommu_unmap_sg, +	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu, +	.sync_sg_for_device	= arm_iommu_sync_sg_for_device, +}; + +/** + * arm_iommu_create_mapping + * @bus: pointer to the bus holding the client device (for IOMMU calls) + * @base: start address of the valid IO address space + * @size: size of the valid IO address space + * @order: accuracy of the IO addresses allocations + * + * Creates a mapping structure which holds information about used/unused + * IO address ranges, which is required to perform memory allocation and + * mapping with IOMMU aware functions. + * + * The client device need to be attached to the mapping with + * arm_iommu_attach_device function. + */ +struct dma_iommu_mapping * +arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, +			 int order) +{ +	unsigned int count = size >> (PAGE_SHIFT + order); +	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); +	struct dma_iommu_mapping *mapping; +	int err = -ENOMEM; + +	if (!count) +		return ERR_PTR(-EINVAL); + +	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); +	if (!mapping) +		goto err; + +	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); +	if (!mapping->bitmap) +		goto err2; + +	mapping->base = base; +	mapping->bits = BITS_PER_BYTE * bitmap_size; +	mapping->order = order; +	spin_lock_init(&mapping->lock); + +	mapping->domain = iommu_domain_alloc(bus); +	if (!mapping->domain) +		goto err3; + +	kref_init(&mapping->kref); +	return mapping; +err3: +	kfree(mapping->bitmap); +err2: +	kfree(mapping); +err: +	return ERR_PTR(err); +} + +static void release_iommu_mapping(struct kref *kref) +{ +	struct dma_iommu_mapping *mapping = +		container_of(kref, struct dma_iommu_mapping, kref); + +	iommu_domain_free(mapping->domain); +	kfree(mapping->bitmap); +	kfree(mapping); +} + +void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) +{ +	if (mapping) +		kref_put(&mapping->kref, release_iommu_mapping); +} + +/** + * arm_iommu_attach_device + * @dev: valid struct device pointer + * @mapping: io address space mapping structure (returned from + *	arm_iommu_create_mapping) + * + * Attaches specified io address space mapping to the provided device, + * this replaces the dma operations (dma_map_ops pointer) with the + * IOMMU aware version. More than one client might be attached to + * the same io address space mapping. + */ +int arm_iommu_attach_device(struct device *dev, +			    struct dma_iommu_mapping *mapping) +{ +	int err; + +	err = iommu_attach_device(mapping->domain, dev); +	if (err) +		return err; + +	kref_get(&mapping->kref); +	dev->archdata.mapping = mapping; +	set_dma_ops(dev, &iommu_ops); + +	pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev)); +	return 0; +} + +#endif  | 
