diff options
Diffstat (limited to 'Documentation')
72 files changed, 1759 insertions, 711 deletions
diff --git a/Documentation/ABI/stable/sysfs-class-udc b/Documentation/ABI/stable/sysfs-class-udc index 85d3dac2e204..d1e2f3ec1fc9 100644 --- a/Documentation/ABI/stable/sysfs-class-udc +++ b/Documentation/ABI/stable/sysfs-class-udc @@ -55,14 +55,6 @@ Description: Indicates the maximum USB speed supported by this port. Users: -What: /sys/class/udc/<udc>/maximum_speed -Date: June 2011 -KernelVersion: 3.1 -Contact: Felipe Balbi <balbi@kernel.org> -Description: - Indicates the maximum USB speed supported by this port. -Users: - What: /sys/class/udc/<udc>/soft_connect Date: June 2011 KernelVersion: 3.1 @@ -91,3 +83,11 @@ Description: 'configured', and 'suspended'; however not all USB Device Controllers support reporting all states. Users: + +What: /sys/class/udc/<udc>/function +Date: June 2017 +KernelVersion: 4.13 +Contact: Felipe Balbi <balbi@kernel.org> +Description: + Prints out name of currently running USB Gadget Driver. +Users: diff --git a/Documentation/ABI/stable/sysfs-driver-aspeed-vuart b/Documentation/ABI/stable/sysfs-driver-aspeed-vuart new file mode 100644 index 000000000000..8062953ce77b --- /dev/null +++ b/Documentation/ABI/stable/sysfs-driver-aspeed-vuart @@ -0,0 +1,15 @@ +What: /sys/bus/platform/drivers/aspeed-vuart/*/lpc_address +Date: April 2017 +Contact: Jeremy Kerr <jk@ozlabs.org> +Description: Configures which IO port the host side of the UART + will appear on the host <-> BMC LPC bus. +Users: OpenBMC. Proposed changes should be mailed to + openbmc@lists.ozlabs.org + +What: /sys/bus/platform/drivers/aspeed-vuart*/sirq +Date: April 2017 +Contact: Jeremy Kerr <jk@ozlabs.org> +Description: Configures which interrupt number the host side of + the UART will appear on the host <-> BMC LPC bus. +Users: OpenBMC. Proposed changes should be mailed to + openbmc@lists.ozlabs.org diff --git a/Documentation/ABI/testing/configfs-usb-gadget-uac1 b/Documentation/ABI/testing/configfs-usb-gadget-uac1 index 8ba9a123316e..abfe447c848f 100644 --- a/Documentation/ABI/testing/configfs-usb-gadget-uac1 +++ b/Documentation/ABI/testing/configfs-usb-gadget-uac1 @@ -1,12 +1,14 @@ What: /config/usb-gadget/gadget/functions/uac1.name -Date: Sep 2014 -KernelVersion: 3.18 +Date: June 2017 +KernelVersion: 4.14 Description: The attributes: - audio_buf_size - audio buffer size - fn_cap - capture pcm device file name - fn_cntl - control device file name - fn_play - playback pcm device file name - req_buf_size - ISO OUT endpoint request buffer size - req_count - ISO OUT endpoint request count + c_chmask - capture channel mask + c_srate - capture sampling rate + c_ssize - capture sample size (bytes) + p_chmask - playback channel mask + p_srate - playback sampling rate + p_ssize - playback sample size (bytes) + req_number - the number of pre-allocated request + for both capture and playback diff --git a/Documentation/ABI/testing/configfs-usb-gadget-uac1_legacy b/Documentation/ABI/testing/configfs-usb-gadget-uac1_legacy new file mode 100644 index 000000000000..b2eaefd9bc49 --- /dev/null +++ b/Documentation/ABI/testing/configfs-usb-gadget-uac1_legacy @@ -0,0 +1,12 @@ +What: /config/usb-gadget/gadget/functions/uac1_legacy.name +Date: Sep 2014 +KernelVersion: 3.18 +Description: + The attributes: + + audio_buf_size - audio buffer size + fn_cap - capture pcm device file name + fn_cntl - control device file name + fn_play - playback pcm device file name + req_buf_size - ISO OUT endpoint request buffer size + req_count - ISO OUT endpoint request count diff --git a/Documentation/ABI/testing/sysfs-bus-iio b/Documentation/ABI/testing/sysfs-bus-iio index 8c24d0892f61..2db2cdf42d54 100644 --- a/Documentation/ABI/testing/sysfs-bus-iio +++ b/Documentation/ABI/testing/sysfs-bus-iio @@ -1425,6 +1425,17 @@ Description: guarantees that the hardware fifo is flushed to the device buffer. +What: /sys/bus/iio/devices/iio:device*/buffer/hwfifo_timeout +KernelVersion: 4.12 +Contact: linux-iio@vger.kernel.org +Description: + A read/write property to provide capability to delay reporting of + samples till a timeout is reached. This allows host processors to + sleep, while the sensor is storing samples in its internal fifo. + The maximum timeout in seconds can be specified by setting + hwfifo_timeout.The current delay can be read by reading + hwfifo_timeout. A value of 0 means that there is no timeout. + What: /sys/bus/iio/devices/iio:deviceX/buffer/hwfifo_watermark KernelVersion: 4.2 Contact: linux-iio@vger.kernel.org diff --git a/Documentation/ABI/testing/sysfs-bus-iio-meas-spec b/Documentation/ABI/testing/sysfs-bus-iio-meas-spec index 1a6265e92e2f..6d47e548eee5 100644 --- a/Documentation/ABI/testing/sysfs-bus-iio-meas-spec +++ b/Documentation/ABI/testing/sysfs-bus-iio-meas-spec @@ -5,4 +5,3 @@ Description: Reading returns either '1' or '0'. '1' means that the battery level supplied to sensor is below 2.25V. This ABI is available for tsys02d, htu21, ms8607 - This ABI is available for htu21, ms8607 diff --git a/Documentation/ABI/testing/sysfs-bus-iio-timer-stm32 b/Documentation/ABI/testing/sysfs-bus-iio-timer-stm32 index 230020e06677..161c147d3c40 100644 --- a/Documentation/ABI/testing/sysfs-bus-iio-timer-stm32 +++ b/Documentation/ABI/testing/sysfs-bus-iio-timer-stm32 @@ -16,6 +16,54 @@ Description: - "OC2REF" : OC2REF signal is used as trigger output. - "OC3REF" : OC3REF signal is used as trigger output. - "OC4REF" : OC4REF signal is used as trigger output. + Additional modes (on TRGO2 only): + - "OC5REF" : OC5REF signal is used as trigger output. + - "OC6REF" : OC6REF signal is used as trigger output. + - "compare_pulse_OC4REF": + OC4REF rising or falling edges generate pulses. + - "compare_pulse_OC6REF": + OC6REF rising or falling edges generate pulses. + - "compare_pulse_OC4REF_r_or_OC6REF_r": + OC4REF or OC6REF rising edges generate pulses. + - "compare_pulse_OC4REF_r_or_OC6REF_f": + OC4REF rising or OC6REF falling edges generate pulses. + - "compare_pulse_OC5REF_r_or_OC6REF_r": + OC5REF or OC6REF rising edges generate pulses. + - "compare_pulse_OC5REF_r_or_OC6REF_f": + OC5REF rising or OC6REF falling edges generate pulses. + + +-----------+ +-------------+ +---------+ + | Prescaler +-> | Counter | +-> | Master | TRGO(2) + +-----------+ +--+--------+-+ |-> | Control +--> + | | || +---------+ + +--v--------+-+ OCxREF || +---------+ + | Chx compare +----------> | Output | ChX + +-----------+-+ | | Control +--> + . | | +---------+ + . | | . + +-----------v-+ OC6REF | . + | Ch6 compare +---------+> + +-------------+ + + Example with: "compare_pulse_OC4REF_r_or_OC6REF_r": + + X + X X + X . . X + X . . X + X . . X + count X . . . . X + . . . . + . . . . + +---------------+ + OC4REF | . . | + +-+ . . +-+ + . +---+ . + OC6REF . | | . + +-------+ +-------+ + +-+ +-+ + TRGO2 | | | | + +-+ +---+ +---------+ What: /sys/bus/iio/devices/triggerX/master_mode KernelVersion: 4.11 @@ -90,3 +138,18 @@ Description: Counting is enabled on rising edge of the connected trigger, and remains enabled for the duration of this selected mode. + +What: /sys/bus/iio/devices/iio:deviceX/in_count_trigger_mode_available +KernelVersion: 4.13 +Contact: benjamin.gaignard@st.com +Description: + Reading returns the list possible trigger modes. + +What: /sys/bus/iio/devices/iio:deviceX/in_count0_trigger_mode +KernelVersion: 4.13 +Contact: benjamin.gaignard@st.com +Description: + Configure the device counter trigger mode + counting direction is set by in_count0_count_direction + attribute and the counter is clocked by the connected trigger + rising edges. diff --git a/Documentation/ABI/testing/sysfs-class-typec b/Documentation/ABI/testing/sysfs-class-typec index d4a3d23eb09c..5be552e255e9 100644 --- a/Documentation/ABI/testing/sysfs-class-typec +++ b/Documentation/ABI/testing/sysfs-class-typec @@ -30,6 +30,21 @@ Description: Valid values: source, sink +What: /sys/class/typec/<port>/port_type +Date: May 2017 +Contact: Badhri Jagan Sridharan <Badhri@google.com> +Description: + Indicates the type of the port. This attribute can be used for + requesting a change in the port type. Port type change is + supported as a synchronous operation, so write(2) to the + attribute will not return until the operation has finished. + + Valid values: + - source (The port will behave as source only DFP port) + - sink (The port will behave as sink only UFP port) + - dual (The port will behave as dual-role-data and + dual-role-power port) + What: /sys/class/typec/<port>/vconn_source Date: April 2017 Contact: Heikki Krogerus <heikki.krogerus@linux.intel.com> diff --git a/Documentation/ABI/testing/sysfs-uevent b/Documentation/ABI/testing/sysfs-uevent new file mode 100644 index 000000000000..aa39f8d7bcdf --- /dev/null +++ b/Documentation/ABI/testing/sysfs-uevent @@ -0,0 +1,47 @@ +What: /sys/.../uevent +Date: May 2017 +KernelVersion: 4.13 +Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org> +Description: + Enable passing additional variables for synthetic uevents that + are generated by writing /sys/.../uevent file. + + Recognized extended format is ACTION [UUID [KEY=VALUE ...]. + + The ACTION is compulsory - it is the name of the uevent action + ("add", "change", "remove"). There is no change compared to + previous functionality here. The rest of the extended format + is optional. + + You need to pass UUID first before any KEY=VALUE pairs. + The UUID must be in "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" + format where 'x' is a hex digit. The UUID is considered to be + a transaction identifier so it's possible to use the same UUID + value for one or more synthetic uevents in which case we + logically group these uevents together for any userspace + listeners. The UUID value appears in uevent as + "SYNTH_UUID=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" environment + variable. + + If UUID is not passed in, the generated synthetic uevent gains + "SYNTH_UUID=0" environment variable automatically. + + The KEY=VALUE pairs can contain alphanumeric characters only. + It's possible to define zero or more pairs - each pair is then + delimited by a space character ' '. Each pair appears in + synthetic uevent as "SYNTH_ARG_KEY=VALUE". That means the KEY + name gains "SYNTH_ARG_" prefix to avoid possible collisions + with existing variables. + + Example of valid sequence written to the uevent file: + + add fe4d7c9d-b8c6-4a70-9ef1-3d8a58d18eed A=1 B=abc + + This generates synthetic uevent including these variables: + + ACTION=add + SYNTH_ARG_A=1 + SYNTH_ARG_B=abc + SYNTH_UUID=fe4d7c9d-b8c6-4a70-9ef1-3d8a58d18eed +Users: + udev, userspace tools generating synthetic uevents diff --git a/Documentation/DocBook/kernel-hacking.tmpl b/Documentation/DocBook/kernel-hacking.tmpl index da5c087462b1..c3c705591532 100644 --- a/Documentation/DocBook/kernel-hacking.tmpl +++ b/Documentation/DocBook/kernel-hacking.tmpl @@ -819,7 +819,7 @@ printk(KERN_INFO "my ip: %pI4\n", &ipaddress); certain condition is true. They must be used carefully to ensure there is no race condition. You declare a <type>wait_queue_head_t</type>, and then processes which want to - wait for that condition declare a <type>wait_queue_t</type> + wait for that condition declare a <type>wait_queue_entry_t</type> referring to themselves, and place that in the queue. </para> diff --git a/Documentation/IRQ-domain.txt b/Documentation/IRQ-domain.txt index 82001a25a14b..1f246eb25ca5 100644 --- a/Documentation/IRQ-domain.txt +++ b/Documentation/IRQ-domain.txt @@ -231,5 +231,42 @@ needs to: 4) No need to implement irq_domain_ops.map and irq_domain_ops.unmap, they are unused with hierarchy irq_domain. -Hierarchy irq_domain may also be used to support other architectures, -such as ARM, ARM64 etc. +Hierarchy irq_domain is in no way x86 specific, and is heavily used to +support other architectures, such as ARM, ARM64 etc. + +=== Debugging === + +If you switch on CONFIG_IRQ_DOMAIN_DEBUG (which depends on +CONFIG_IRQ_DOMAIN and CONFIG_DEBUG_FS), you will find a new file in +your debugfs mount point, called irq_domain_mapping. This file +contains a live snapshot of all the IRQ domains in the system: + + name mapped linear-max direct-max devtree-node + pl061 8 8 0 /smb/gpio@e0080000 + pl061 8 8 0 /smb/gpio@e1050000 + pMSI 0 0 0 /interrupt-controller@e1101000/v2m@e0080000 + MSI 37 0 0 /interrupt-controller@e1101000/v2m@e0080000 + GICv2m 37 0 0 /interrupt-controller@e1101000/v2m@e0080000 + GICv2 448 448 0 /interrupt-controller@e1101000 + +it also iterates over the interrupts to display their mapping in the +domains, and makes the domain stacking visible: + + +irq hwirq chip name chip data active type domain + 1 0x00019 GICv2 0xffff00000916bfd8 * LINEAR GICv2 + 2 0x0001d GICv2 0xffff00000916bfd8 LINEAR GICv2 + 3 0x0001e GICv2 0xffff00000916bfd8 * LINEAR GICv2 + 4 0x0001b GICv2 0xffff00000916bfd8 * LINEAR GICv2 + 5 0x0001a GICv2 0xffff00000916bfd8 LINEAR GICv2 +[...] + 96 0x81808 MSI 0x (null) RADIX MSI + 96+ 0x00063 GICv2m 0xffff8003ee116980 RADIX GICv2m + 96+ 0x00063 GICv2 0xffff00000916bfd8 LINEAR GICv2 + 97 0x08800 MSI 0x (null) * RADIX MSI + 97+ 0x00064 GICv2m 0xffff8003ee116980 * RADIX GICv2m + 97+ 0x00064 GICv2 0xffff00000916bfd8 * LINEAR GICv2 + +Here, interrupts 1-5 are only using a single domain, while 96 and 97 +are build out of a stack of three domain, each level performing a +particular function. diff --git a/Documentation/RCU/00-INDEX b/Documentation/RCU/00-INDEX index 1672573b037a..f46980c060aa 100644 --- a/Documentation/RCU/00-INDEX +++ b/Documentation/RCU/00-INDEX @@ -28,8 +28,6 @@ stallwarn.txt - RCU CPU stall warnings (module parameter rcu_cpu_stall_suppress) torture.txt - RCU Torture Test Operation (CONFIG_RCU_TORTURE_TEST) -trace.txt - - CONFIG_RCU_TRACE debugfs files and formats UP.txt - RCU on Uniprocessor Systems whatisRCU.txt diff --git a/Documentation/RCU/Design/Requirements/Requirements.html b/Documentation/RCU/Design/Requirements/Requirements.html index f60adf112663..95b30fa25d56 100644 --- a/Documentation/RCU/Design/Requirements/Requirements.html +++ b/Documentation/RCU/Design/Requirements/Requirements.html @@ -559,9 +559,7 @@ The <tt>rcu_access_pointer()</tt> on line 6 is similar to For <tt>remove_gp_synchronous()</tt>, as long as all modifications to <tt>gp</tt> are carried out while holding <tt>gp_lock</tt>, the above optimizations are harmless. - However, - with <tt>CONFIG_SPARSE_RCU_POINTER=y</tt>, - <tt>sparse</tt> will complain if you + However, <tt>sparse</tt> will complain if you define <tt>gp</tt> with <tt>__rcu</tt> and then access it without using either <tt>rcu_access_pointer()</tt> or <tt>rcu_dereference()</tt>. @@ -1849,7 +1847,8 @@ mass storage, or user patience, whichever comes first. If the nesting is not visible to the compiler, as is the case with mutually recursive functions each in its own translation unit, stack overflow will result. -If the nesting takes the form of loops, either the control variable +If the nesting takes the form of loops, perhaps in the guise of tail +recursion, either the control variable will overflow or (in the Linux kernel) you will get an RCU CPU stall warning. Nevertheless, this class of RCU implementations is one of the most composable constructs in existence. @@ -1977,9 +1976,8 @@ guard against mishaps and misuse: and <tt>rcu_dereference()</tt>, perhaps (incorrectly) substituting a simple assignment. To catch this sort of error, a given RCU-protected pointer may be - tagged with <tt>__rcu</tt>, after which running sparse - with <tt>CONFIG_SPARSE_RCU_POINTER=y</tt> will complain - about simple-assignment accesses to that pointer. + tagged with <tt>__rcu</tt>, after which sparse + will complain about simple-assignment accesses to that pointer. Arnd Bergmann made me aware of this requirement, and also supplied the needed <a href="https://lwn.net/Articles/376011/">patch series</a>. @@ -2036,7 +2034,7 @@ guard against mishaps and misuse: some other synchronization mechanism, for example, reference counting. <li> In kernels built with <tt>CONFIG_RCU_TRACE=y</tt>, RCU-related - information is provided via both debugfs and event tracing. + information is provided via event tracing. <li> Open-coded use of <tt>rcu_assign_pointer()</tt> and <tt>rcu_dereference()</tt> to create typical linked data structures can be surprisingly error-prone. @@ -2519,11 +2517,7 @@ It is similarly socially unacceptable to interrupt an <tt>nohz_full</tt> CPU running in userspace. RCU must therefore track <tt>nohz_full</tt> userspace execution. -And in -<a href="https://lwn.net/Articles/558284/"><tt>CONFIG_NO_HZ_FULL_SYSIDLE=y</tt></a> -kernels, RCU must separately track idle CPUs on the one hand and -CPUs that are either idle or executing in userspace on the other. -In both cases, RCU must be able to sample state at two points in +RCU must therefore be able to sample state at two points in time, and be able to determine whether or not some other CPU spent any time idle and/or executing in userspace. @@ -2936,6 +2930,20 @@ to whether or not a CPU is online, which means that <tt>srcu_barrier()</tt> need not exclude CPU-hotplug operations. <p> +SRCU also differs from other RCU flavors in that SRCU's expedited and +non-expedited grace periods are implemented by the same mechanism. +This means that in the current SRCU implementation, expediting a +future grace period has the side effect of expediting all prior +grace periods that have not yet completed. +(But please note that this is a property of the current implementation, +not necessarily of future implementations.) +In addition, if SRCU has been idle for longer than the interval +specified by the <tt>srcutree.exp_holdoff</tt> kernel boot parameter +(25 microseconds by default), +and if a <tt>synchronize_srcu()</tt> invocation ends this idle period, +that invocation will be automatically expedited. + +<p> As of v4.12, SRCU's callbacks are maintained per-CPU, eliminating a locking bottleneck present in prior kernel versions. Although this will allow users to put much heavier stress on diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt index 877947130ebe..6beda556faf3 100644 --- a/Documentation/RCU/checklist.txt +++ b/Documentation/RCU/checklist.txt @@ -413,11 +413,11 @@ over a rather long period of time, but improvements are always welcome! read-side critical sections. It is the responsibility of the RCU update-side primitives to deal with this. -17. Use CONFIG_PROVE_RCU, CONFIG_DEBUG_OBJECTS_RCU_HEAD, and the - __rcu sparse checks (enabled by CONFIG_SPARSE_RCU_POINTER) to - validate your RCU code. These can help find problems as follows: +17. Use CONFIG_PROVE_LOCKING, CONFIG_DEBUG_OBJECTS_RCU_HEAD, and the + __rcu sparse checks to validate your RCU code. These can help + find problems as follows: - CONFIG_PROVE_RCU: check that accesses to RCU-protected data + CONFIG_PROVE_LOCKING: check that accesses to RCU-protected data structures are carried out under the proper RCU read-side critical section, while holding the right combination of locks, or whatever other conditions diff --git a/Documentation/RCU/trace.txt b/Documentation/RCU/trace.txt deleted file mode 100644 index 6549012033f9..000000000000 --- a/Documentation/RCU/trace.txt +++ /dev/null @@ -1,535 +0,0 @@ -CONFIG_RCU_TRACE debugfs Files and Formats - - -The rcutree and rcutiny implementations of RCU provide debugfs trace -output that summarizes counters and state. This information is useful for -debugging RCU itself, and can sometimes also help to debug abuses of RCU. -The following sections describe the debugfs files and formats, first -for rcutree and next for rcutiny. - - -CONFIG_TREE_RCU and CONFIG_PREEMPT_RCU debugfs Files and Formats - -These implementations of RCU provide several debugfs directories under the -top-level directory "rcu": - -rcu/rcu_bh -rcu/rcu_preempt -rcu/rcu_sched - -Each directory contains files for the corresponding flavor of RCU. -Note that rcu/rcu_preempt is only present for CONFIG_PREEMPT_RCU. -For CONFIG_TREE_RCU, the RCU flavor maps onto the RCU-sched flavor, -so that activity for both appears in rcu/rcu_sched. - -In addition, the following file appears in the top-level directory: -rcu/rcutorture. This file displays rcutorture test progress. The output -of "cat rcu/rcutorture" looks as follows: - -rcutorture test sequence: 0 (test in progress) -rcutorture update version number: 615 - -The first line shows the number of rcutorture tests that have completed -since boot. If a test is currently running, the "(test in progress)" -string will appear as shown above. The second line shows the number of -update cycles that the current test has started, or zero if there is -no test in progress. - - -Within each flavor directory (rcu/rcu_bh, rcu/rcu_sched, and possibly -also rcu/rcu_preempt) the following files will be present: - -rcudata: - Displays fields in struct rcu_data. -rcuexp: - Displays statistics for expedited grace periods. -rcugp: - Displays grace-period counters. -rcuhier: - Displays the struct rcu_node hierarchy. -rcu_pending: - Displays counts of the reasons rcu_pending() decided that RCU had - work to do. -rcuboost: - Displays RCU boosting statistics. Only present if - CONFIG_RCU_BOOST=y. - -The output of "cat rcu/rcu_preempt/rcudata" looks as follows: - - 0!c=30455 g=30456 cnq=1/0:1 dt=126535/140000000000000/0 df=2002 of=4 ql=0/0 qs=N... b=10 ci=74572 nci=0 co=1131 ca=716 - 1!c=30719 g=30720 cnq=1/0:0 dt=132007/140000000000000/0 df=1874 of=10 ql=0/0 qs=N... b=10 ci=123209 nci=0 co=685 ca=982 - 2!c=30150 g=30151 cnq=1/1:1 dt=138537/140000000000000/0 df=1707 of=8 ql=0/0 qs=N... b=10 ci=80132 nci=0 co=1328 ca=1458 - 3 c=31249 g=31250 cnq=1/1:0 dt=107255/140000000000000/0 df=1749 of=6 ql=0/450 qs=NRW. b=10 ci=151700 nci=0 co=509 ca=622 - 4!c=29502 g=29503 cnq=1/0:1 dt=83647/140000000000000/0 df=965 of=5 ql=0/0 qs=N... b=10 ci=65643 nci=0 co=1373 ca=1521 - 5 c=31201 g=31202 cnq=1/0:1 dt=70422/0/0 df=535 of=7 ql=0/0 qs=.... b=10 ci=58500 nci=0 co=764 ca=698 - 6!c=30253 g=30254 cnq=1/0:1 dt=95363/140000000000000/0 df=780 of=5 ql=0/0 qs=N... b=10 ci=100607 nci=0 co=1414 ca=1353 - 7 c=31178 g=31178 cnq=1/0:0 dt=91536/0/0 df=547 of=4 ql=0/0 qs=.... b=10 ci=109819 nci=0 co=1115 ca=969 - -This file has one line per CPU, or eight for this 8-CPU system. -The fields are as follows: - -o The number at the beginning of each line is the CPU number. - CPUs numbers followed by an exclamation mark are offline, - but have been online at least once since boot. There will be - no output for CPUs that have never been online, which can be - a good thing in the surprisingly common case where NR_CPUS is - substantially larger than the number of actual CPUs. - -o "c" is the count of grace periods that this CPU believes have - completed. Offlined CPUs and CPUs in dynticks idle mode may lag - quite a ways behind, for example, CPU 4 under "rcu_sched" above, - which has been offline through 16 RCU grace periods. It is not - unusual to see offline CPUs lagging by thousands of grace periods. - Note that although the grace-period number is an unsigned long, - it is printed out as a signed long to allow more human-friendly - representation near boot time. - -o "g" is the count of grace periods that this CPU believes have - started. Again, offlined CPUs and CPUs in dynticks idle mode - may lag behind. If the "c" and "g" values are equal, this CPU - has already reported a quiescent state for the last RCU grace - period that it is aware of, otherwise, the CPU believes that it - owes RCU a quiescent state. - -o "pq" indicates that this CPU has passed through a quiescent state - for the current grace period. It is possible for "pq" to be - "1" and "c" different than "g", which indicates that although - the CPU has passed through a quiescent state, either (1) this - CPU has not yet reported that fact, (2) some other CPU has not - yet reported for this grace period, or (3) both. - -o "qp" indicates that RCU still expects a quiescent state from - this CPU. Offlined CPUs and CPUs in dyntick idle mode might - well have qp=1, which is OK: RCU is still ignoring them. - -o "dt" is the current value of the dyntick counter that is incremented - when entering or leaving idle, either due to a context switch or - due to an interrupt. This number is even if the CPU is in idle - from RCU's viewpoint and odd otherwise. The number after the - first "/" is the interrupt nesting depth when in idle state, - or a large number added to the interrupt-nesting depth when - running a non-idle task. Some architectures do not accurately - count interrupt nesting when running in non-idle kernel context, - which can result in interesting anomalies such as negative - interrupt-nesting levels. The number after the second "/" - is the NMI nesting depth. - -o "df" is the number of times that some other CPU has forced a - quiescent state on behalf of this CPU due to this CPU being in - idle state. - -o "of" is the number of times that some other CPU has forced a - quiescent state on behalf of this CPU due to this CPU being - offline. In a perfect world, this might never happen, but it - turns out that offlining and onlining a CPU can take several grace - periods, and so there is likely to be an extended period of time - when RCU believes that the CPU is online when it really is not. - Please note that erring in the other direction (RCU believing a - CPU is offline when it is really alive and kicking) is a fatal - error, so it makes sense to err conservatively. - -o "ql" is the number of RCU callbacks currently residing on - this CPU. The first number is the number of "lazy" callbacks - that are known to RCU to only be freeing memory, and the number - after the "/" is the total number of callbacks, lazy or not. - These counters count callbacks regardless of what phase of - grace-period processing that they are in (new, waiting for - grace period to start, waiting for grace period to end, ready - to invoke). - -o "qs" gives an indication of the state of the callback queue - with four characters: - - "N" Indicates that there are callbacks queued that are not - ready to be handled by the next grace period, and thus - will be handled by the grace period following the next - one. - - "R" Indicates that there are callbacks queued that are - ready to be handled by the next grace period. - - "W" Indicates that there are callbacks queued that are - waiting on the current grace period. - - "D" Indicates that there are callbacks queued that have - already been handled by a prior grace period, and are - thus waiting to be invoked. Note that callbacks in - the process of being invoked are not counted here. - Callbacks in the process of being invoked are those - that have been removed from the rcu_data structures - queues by rcu_do_batch(), but which have not yet been - invoked. - - If there are no callbacks in a given one of the above states, - the corresponding character is replaced by ".". - -o "b" is the batch limit for this CPU. If more than this number - of RCU callbacks is ready to invoke, then the remainder will - be deferred. - -o "ci" is the number of RCU callbacks that have been invoked for - this CPU. Note that ci+nci+ql is the number of callbacks that have - been registered in absence of CPU-hotplug activity. - -o "nci" is the number of RCU callbacks that have been offloaded from - this CPU. This will always be zero unless the kernel was built - with CONFIG_RCU_NOCB_CPU=y and the "rcu_nocbs=" kernel boot - parameter was specified. - -o "co" is the number of RCU callbacks that have been orphaned due to - this CPU going offline. These orphaned callbacks have been moved - to an arbitrarily chosen online CPU. - -o "ca" is the number of RCU callbacks that have been adopted by this - CPU due to other CPUs going offline. Note that ci+co-ca+ql is - the number of RCU callbacks registered on this CPU. - - -Kernels compiled with CONFIG_RCU_BOOST=y display the following from -/debug/rcu/rcu_preempt/rcudata: - - 0!c=12865 g=12866 cnq=1/0:1 dt=83113/140000000000000/0 df=288 of=11 ql=0/0 qs=N... kt=0/O ktl=944 b=10 ci=60709 nci=0 co=748 ca=871 - 1 c=14407 g=14408 cnq=1/0:0 dt=100679/140000000000000/0 df=378 of=7 ql=0/119 qs=NRW. kt=0/W ktl=9b6 b=10 ci=109740 nci=0 co=589 ca=485 - 2 c=14407 g=14408 cnq=1/0:0 dt=105486/0/0 df=90 of=9 ql=0/89 qs=NRW. kt=0/W ktl=c0c b=10 ci=83113 nci=0 co=533 ca=490 - 3 c=14407 g=14408 cnq=1/0:0 dt=107138/0/0 df=142 of=8 ql=0/188 qs=NRW. kt=0/W ktl=b96 b=10 ci=121114 nci=0 co=426 ca=290 - 4 c=14405 g=14406 cnq=1/0:1 dt=50238/0/0 df=706 of=7 ql=0/0 qs=.... kt=0/W ktl=812 b=10 ci=34929 nci=0 co=643 ca=114 - 5!c=14168 g=14169 cnq=1/0:0 dt=45465/140000000000000/0 df=161 of=11 ql=0/0 qs=N... kt=0/O ktl=b4d b=10 ci=47712 nci=0 co=677 ca=722 - 6 c=14404 g=14405 cnq=1/0:0 dt=59454/0/0 df=94 of=6 ql=0/0 qs=.... kt=0/W ktl=e57 b=10 ci=55597 nci=0 co=701 ca=811 - 7 c=14407 g=14408 cnq=1/0:1 dt=68850/0/0 df=31 of=8 ql=0/0 qs=.... kt=0/W ktl=14bd b=10 ci=77475 nci=0 co=508 ca=1042 - -This is similar to the output discussed above, but contains the following -additional fields: - -o "kt" is the per-CPU kernel-thread state. The digit preceding - the first slash is zero if there is no work pending and 1 - otherwise. The character between the first pair of slashes is - as follows: - - "S" The kernel thread is stopped, in other words, all - CPUs corresponding to this rcu_node structure are - offline. - - "R" The kernel thread is running. - - "W" The kernel thread is waiting because there is no work - for it to do. - - "O" The kernel thread is waiting because it has been - forced off of its designated CPU or because its - ->cpus_allowed mask permits it to run on other than - its designated CPU. - - "Y" The kernel thread is yielding to avoid hogging CPU. - - "?" Unknown value, indicates a bug. - - The number after the final slash is the CPU that the kthread - is actually running on. - - This field is displayed only for CONFIG_RCU_BOOST kernels. - -o "ktl" is the low-order 16 bits (in hexadecimal) of the count of - the number of times that this CPU's per-CPU kthread has gone - through its loop servicing invoke_rcu_cpu_kthread() requests. - - This field is displayed only for CONFIG_RCU_BOOST kernels. - - -The output of "cat rcu/rcu_preempt/rcuexp" looks as follows: - -s=21872 wd1=0 wd2=0 wd3=5 enq=0 sc=21872 - -These fields are as follows: - -o "s" is the sequence number, with an odd number indicating that - an expedited grace period is in progress. - -o "wd1", "wd2", and "wd3" are the number of times that an attempt - to start an expedited grace period found that someone else had - completed an expedited grace period that satisfies the attempted - request. "Our work is done." - -o "enq" is the number of quiescent states still outstanding. - -o "sc" is the number of times that the attempt to start a - new expedited grace period succeeded. - - -The output of "cat rcu/rcu_preempt/rcugp" looks as follows: - -completed=31249 gpnum=31250 age=1 max=18 - -These fields are taken from the rcu_state structure, and are as follows: - -o "completed" is the number of grace periods that have completed. - It is comparable to the "c" field from rcu/rcudata in that a - CPU whose "c" field matches the value of "completed" is aware - that the corresponding RCU grace period has completed. - -o "gpnum" is the number of grace periods that have started. It is - similarly comparable to the "g" field from rcu/rcudata in that - a CPU whose "g" field matches the value of "gpnum" is aware that - the corresponding RCU grace period has started. - - If these two fields are equal, then there is no grace period - in progress, in other words, RCU is idle. On the other hand, - if the two fields differ (as they are above), then an RCU grace - period is in progress. - -o "age" is the number of jiffies that the current grace period - has extended for, or zero if there is no grace period currently - in effect. - -o "max" is the age in jiffies of the longest-duration grace period - thus far. - -The output of "cat rcu/rcu_preempt/rcuhier" looks as follows: - -c=14407 g=14408 s=0 jfq=2 j=c863 nfqs=12040/nfqsng=0(12040) fqlh=1051 oqlen=0/0 -3/3 ..>. 0:7 ^0 -e/e ..>. 0:3 ^0 d/d ..>. 4:7 ^1 - -The fields are as follows: - -o "c" is exactly the same as "completed" under rcu/rcu_preempt/rcugp. - -o "g" is exactly the same as "gpnum" under rcu/rcu_preempt/rcugp. - -o "s" is the current state of the force_quiescent_state() - state machine. - -o "jfq" is the number of jiffies remaining for this grace period - before force_quiescent_state() is invoked to help push things - along. Note that CPUs in idle mode throughout the grace period - will not report on their own, but rather must be check by some - other CPU via force_quiescent_state(). - -o "j" is the low-order four hex digits of the jiffies counter. - Yes, Paul did run into a number of problems that turned out to - be due to the jiffies counter no longer counting. Why do you ask? - -o "nfqs" is the number of calls to force_quiescent_state() since - boot. - -o "nfqsng" is the number of useless calls to force_quiescent_state(), - where there wasn't actually a grace period active. This can - no longer happen due to grace-period processing being pushed - into a kthread. The number in parentheses is the difference - between "nfqs" and "nfqsng", or the number of times that - force_quiescent_state() actually did some real work. - -o "fqlh" is the number of calls to force_quiescent_state() that - exited immediately (without even being counted in nfqs above) - due to contention on ->fqslock. - -o Each element of the form "3/3 ..>. 0:7 ^0" represents one rcu_node - structure. Each line represents one level of the hierarchy, - from root to leaves. It is best to think of the rcu_data - structures as forming yet another level after the leaves. - Note that there might be either one, two, three, or even four - levels of rcu_node structures, depending on the relationship - between CONFIG_RCU_FANOUT, CONFIG_RCU_FANOUT_LEAF (possibly - adjusted using the rcu_fanout_leaf kernel boot parameter), and - CONFIG_NR_CPUS (possibly adjusted using the nr_cpu_ids count of - possible CPUs for the booting hardware). - - o The numbers separated by the "/" are the qsmask followed - by the qsmaskinit. The qsmask will have one bit - set for each entity in the next lower level that has - not yet checked in for the current grace period ("e" - indicating CPUs 5, 6, and 7 in the example above). - The qsmaskinit will have one bit for each entity that is - currently expected to check in during each grace period. - The value of qsmaskinit is assigned to that of qsmask - at the beginning of each grace period. - - o The characters separated by the ">" indicate the state - of the blocked-tasks lists. A "G" preceding the ">" - indicates that at least one task blocked in an RCU - read-side critical section blocks the current grace - period, while a "E" preceding the ">" indicates that - at least one task blocked in an RCU read-side critical - section blocks the current expedited grace period. - A "T" character following the ">" indicates that at - least one task is blocked within an RCU read-side - critical section, regardless of whether any current - grace period (expedited or normal) is inconvenienced. - A "." character appears if the corresponding condition - does not hold, so that "..>." indicates that no tasks - are blocked. In contrast, "GE>T" indicates maximal - inconvenience from blocked tasks. CONFIG_TREE_RCU - builds of the kernel will always show "..>.". - - o The numbers separated by the ":" are the range of CPUs - served by this struct rcu_node. This can be helpful - in working out how the hierarchy is wired together. - - For example, the example rcu_node structure shown above - has "0:7", indicating that it covers CPUs 0 through 7. - - o The number after the "^" indicates the bit in the - next higher level rcu_node structure that this rcu_node - structure corresponds to. For example, the "d/d ..>. 4:7 - ^1" has a "1" in this position, indicating that it - corresponds to the "1" bit in the "3" shown in the - "3/3 ..>. 0:7 ^0" entry on the next level up. - - -The output of "cat rcu/rcu_sched/rcu_pending" looks as follows: - - 0!np=26111 qsp=29 rpq=5386 cbr=1 cng=570 gpc=3674 gps=577 nn=15903 ndw=0 - 1!np=28913 qsp=35 rpq=6097 cbr=1 cng=448 gpc=3700 gps=554 nn=18113 ndw=0 - 2!np=32740 qsp=37 rpq=6202 cbr=0 cng=476 gpc=4627 gps=546 nn=20889 ndw=0 - 3 np=23679 qsp=22 rpq=5044 cbr=1 cng=415 gpc=3403 gps=347 nn=14469 ndw=0 - 4!np=30714 qsp=4 rpq=5574 cbr=0 cng=528 gpc=3931 gps=639 nn=20042 ndw=0 - 5 np=28910 qsp=2 rpq=5246 cbr=0 cng=428 gpc=4105 gps=709 nn=18422 ndw=0 - 6!np=38648 qsp=5 rpq=7076 cbr=0 cng=840 gpc=4072 gps=961 nn=25699 ndw=0 - 7 np=37275 qsp=2 rpq=6873 cbr=0 cng=868 gpc=3416 gps=971 nn=25147 ndw=0 - -The fields are as follows: - -o The leading number is the CPU number, with "!" indicating - an offline CPU. - -o "np" is the number of times that __rcu_pending() has been invoked - for the corresponding flavor of RCU. - -o "qsp" is the number of times that the RCU was waiting for a - quiescent state from this CPU. - -o "rpq" is the number of times that the CPU had passed through - a quiescent state, but not yet reported it to RCU. - -o "cbr" is the number of times that this CPU had RCU callbacks - that had passed through a grace period, and were thus ready - to be invoked. - -o "cng" is the number of times that this CPU needed another - grace period while RCU was idle. - -o "gpc" is the number of times that an old grace period had - completed, but this CPU was not yet aware of it. - -o "gps" is the number of times that a new grace period had started, - but this CPU was not yet aware of it. - -o "ndw" is the number of times that a wakeup of an rcuo - callback-offload kthread had to be deferred in order to avoid - deadlock. - -o "nn" is the number of times that this CPU needed nothing. - - -The output of "cat rcu/rcuboost" looks as follows: - -0:3 tasks=.... kt=W ntb=0 neb=0 nnb=0 j=c864 bt=c894 - balk: nt=0 egt=4695 bt=0 nb=0 ny=56 nos=0 -4:7 tasks=.... kt=W ntb=0 neb=0 nnb=0 j=c864 bt=c894 - balk: nt=0 egt=6541 bt=0 nb=0 ny=126 nos=0 - -This information is output only for rcu_preempt. Each two-line entry -corresponds to a leaf rcu_node structure. The fields are as follows: - -o "n:m" is the CPU-number range for the corresponding two-line - entry. In the sample output above, the first entry covers - CPUs zero through three and the second entry covers CPUs four - through seven. - -o "tasks=TNEB" gives the state of the various segments of the - rnp->blocked_tasks list: - - "T" This indicates that there are some tasks that blocked - while running on one of the corresponding CPUs while - in an RCU read-side critical section. - - "N" This indicates that some of the blocked tasks are preventing - the current normal (non-expedited) grace period from - completing. - - "E" This indicates that some of the blocked tasks are preventing - the current expedited grace period from completing. - - "B" This indicates that some of the blocked tasks are in - need of RCU priority boosting. - - Each character is replaced with "." if the corresponding - condition does not hold. - -o "kt" is the state of the RCU priority-boosting kernel - thread associated with the corresponding rcu_node structure. - The state can be one of the following: - - "S" The kernel thread is stopped, in other words, all - CPUs corresponding to this rcu_node structure are - offline. - - "R" The kernel thread is running. - - "W" The kernel thread is waiting because there is no work - for it to do. - - "Y" The kernel thread is yielding to avoid hogging CPU. - - "?" Unknown value, indicates a bug. - -o "ntb" is the number of tasks boosted. - -o "neb" is the number of tasks boosted in order to complete an - expedited grace period. - -o "nnb" is the number of tasks boosted in order to complete a - normal (non-expedited) grace period. When boosting a task - that was blocking both an expedited and a normal grace period, - it is counted against the expedited total above. - -o "j" is the low-order 16 bits of the jiffies counter in - hexadecimal. - -o "bt" is the low-order 16 bits of the value that the jiffies - counter will have when we next start boosting, assuming that - the current grace period does not end beforehand. This is - also in hexadecimal. - -o "balk: nt" counts the number of times we didn't boost (in - other words, we balked) even though it was time to boost because - there were no blocked tasks to boost. This situation occurs - when there is one blocked task on one rcu_node structure and - none on some other rcu_node structure. - -o "egt" counts the number of times we balked because although - there were blocked tasks, none of them were blocking the - current grace period, whether expedited or otherwise. - -o "bt" counts the number of times we balked because boosting - had already been initiated for the current grace period. - -o "nb" counts the number of times we balked because there - was at least one task blocking the current non-expedited grace - period that never had blocked. If it is already running, it - just won't help to boost its priority! - -o "ny" counts the number of times we balked because it was - not yet time to start boosting. - -o "nos" counts the number of times we balked for other - reasons, e.g., the grace period ended first. - - -CONFIG_TINY_RCU debugfs Files and Formats - -These implementations of RCU provides a single debugfs file under the -top-level directory RCU, namely rcu/rcudata, which displays fields in -rcu_bh_ctrlblk and rcu_sched_ctrlblk. - -The output of "cat rcu/rcudata" is as follows: - -rcu_sched: qlen: 0 -rcu_bh: qlen: 0 - -This is split into rcu_sched and rcu_bh sections. The field is as -follows: - -o "qlen" is the number of RCU callbacks currently waiting either - for an RCU grace period or waiting to be invoked. This is the - only field present for rcu_sched and rcu_bh, due to the - short-circuiting of grace period in those two cases. diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index b83107a1b3fe..783010e95f51 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -961,6 +961,12 @@ must already be setup and configured. Options are not yet supported. + owl,<addr> + Start an early, polled-mode console on a serial port + of an Actions Semi SoC, such as S500 or S900, at the + specified address. The serial port must already be + setup and configured. Options are not yet supported. + smh Use ARM semihosting calls for early console. s3c2410,<addr> @@ -2143,6 +2149,12 @@ memmap=nn[KMG]@ss[KMG] [KNL] Force usage of a specific region of memory. Region of memory to be used is from ss to ss+nn. + If @ss[KMG] is omitted, it is equivalent to mem=nn[KMG], + which limits max address to nn[KMG]. + Multiple different regions can be specified, + comma delimited. + Example: + memmap=100M@2G,100M#3G,1G!1024G memmap=nn[KMG]#ss[KMG] [KNL,ACPI] Mark specific memory as ACPI data. @@ -2155,6 +2167,9 @@ memmap=64K$0x18690000 or memmap=0x10000$0x18690000 + Some bootloaders may need an escape character before '$', + like Grub2, otherwise '$' and the following number + will be eaten. memmap=nn[KMG]!ss[KMG] [KNL,X86] Mark specific memory as protected. @@ -3245,21 +3260,17 @@ rcutree.gp_cleanup_delay= [KNL] Set the number of jiffies to delay each step of - RCU grace-period cleanup. This only has effect - when CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP is set. + RCU grace-period cleanup. rcutree.gp_init_delay= [KNL] Set the number of jiffies to delay each step of - RCU grace-period initialization. This only has - effect when CONFIG_RCU_TORTURE_TEST_SLOW_INIT - is set. + RCU grace-period initialization. rcutree.gp_preinit_delay= [KNL] Set the number of jiffies to delay each step of RCU grace-period pre-initialization, that is, the propagation of recent CPU-hotplug changes up - the rcu_node combining tree. This only has effect - when CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT is set. + the rcu_node combining tree. rcutree.rcu_fanout_exact= [KNL] Disable autobalancing of the rcu_node combining @@ -3335,6 +3346,17 @@ This wake_up() will be accompanied by a WARN_ONCE() splat and an ftrace_dump(). + rcuperf.gp_async= [KNL] + Measure performance of asynchronous + grace-period primitives such as call_rcu(). + + rcuperf.gp_async_max= [KNL] + Specify the maximum number of outstanding + callbacks per writer thread. When a writer + thread exceeds this limit, it invokes the + corresponding flavor of rcu_barrier() to allow + previously posted callbacks to drain. + rcuperf.gp_exp= [KNL] Measure performance of expedited synchronous grace-period primitives. @@ -3362,17 +3384,22 @@ rcuperf.perf_runnable= [BOOT] Start rcuperf running at boot time. + rcuperf.perf_type= [KNL] + Specify the RCU implementation to test. + rcuperf.shutdown= [KNL] Shut the system down after performance tests complete. This is useful for hands-off automated testing. - rcuperf.perf_type= [KNL] - Specify the RCU implementation to test. - rcuperf.verbose= [KNL] Enable additional printk() statements. + rcuperf.writer_holdoff= [KNL] + Write-side holdoff between grace periods, + in microseconds. The default of zero says + no holdoff. + rcutorture.cbflood_inter_holdoff= [KNL] Set holdoff time (jiffies) between successive callback-flood tests. @@ -3810,6 +3837,15 @@ spia_pedr= spia_peddr= + srcutree.counter_wrap_check [KNL] + Specifies how frequently to check for + grace-period sequence counter wrap for the + srcu_data structure's ->srcu_gp_seq_needed field. + The greater the number of bits set in this kernel + parameter, the less frequently counter wrap will + be checked for. Note that the bottom two bits + are ignored. + srcutree.exp_holdoff [KNL] Specifies how many nanoseconds must elapse since the end of the last SRCU grace period for @@ -3818,6 +3854,13 @@ expediting. Set to zero to disable automatic expediting. + stack_guard_gap= [MM] + override the default stack gap protection. The value + is in page units and it defines how many pages prior + to (for stacks growing down) resp. after (for stacks + growing up) the main stack are reserved for no other + mapping. Default value is 256 pages. + stacktrace [FTRACE] Enabled the stack tracer on boot up. diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt index 01ddeaf64b0f..9490f2845f06 100644 --- a/Documentation/block/biodoc.txt +++ b/Documentation/block/biodoc.txt @@ -632,7 +632,7 @@ to i/o submission, if the bio fields are likely to be accessed after the i/o is issued (since the bio may otherwise get freed in case i/o completion happens in the meantime). -The bio_clone() routine may be used to duplicate a bio, where the clone +The bio_clone_fast() routine may be used to duplicate a bio, where the clone shares the bio_vec_list with the original bio (i.e. both point to the same bio_vec_list). This would typically be used for splitting i/o requests in lvm or md. diff --git a/Documentation/core-api/atomic_ops.rst b/Documentation/core-api/atomic_ops.rst index 55e43f1c80de..fce929144ccd 100644 --- a/Documentation/core-api/atomic_ops.rst +++ b/Documentation/core-api/atomic_ops.rst @@ -303,6 +303,11 @@ defined which accomplish this:: void smp_mb__before_atomic(void); void smp_mb__after_atomic(void); +Preceding a non-value-returning read-modify-write atomic operation with +smp_mb__before_atomic() and following it with smp_mb__after_atomic() +provides the same full ordering that is provided by value-returning +read-modify-write atomic operations. + For example, smp_mb__before_atomic() can be used like so:: obj->dead = 1; diff --git a/Documentation/dev-tools/sparse.rst b/Documentation/dev-tools/sparse.rst index ffdcc97f6f5a..78aa00a604a0 100644 --- a/Documentation/dev-tools/sparse.rst +++ b/Documentation/dev-tools/sparse.rst @@ -103,9 +103,3 @@ have already built it. The optional make variable CF can be used to pass arguments to sparse. The build system passes -Wbitwise to sparse automatically. - -Checking RCU annotations -~~~~~~~~~~~~~~~~~~~~~~~~ - -RCU annotations are not checked by default. To enable RCU annotation -checks, include -DCONFIG_SPARSE_RCU_POINTER in your CF flags. diff --git a/Documentation/devicetree/bindings/arm/cpus.txt b/Documentation/devicetree/bindings/arm/cpus.txt index 1030f5f50207..2713aadb7411 100644 --- a/Documentation/devicetree/bindings/arm/cpus.txt +++ b/Documentation/devicetree/bindings/arm/cpus.txt @@ -249,7 +249,7 @@ nodes to be present and contain the properties described below. Usage: Optional Value type: <u32> Definition: - # u32 value representing CPU capacity [3] in + # u32 value representing CPU capacity [4] in DMIPS/MHz, relative to highest capacity-dmips-mhz in the system. @@ -476,5 +476,5 @@ cpus { [2] arm/msm/qcom,kpss-acc.txt [3] ARM Linux kernel documentation - idle states bindings Documentation/devicetree/bindings/arm/idle-states.txt -[3] ARM Linux kernel documentation - cpu capacity bindings +[4] ARM Linux kernel documentation - cpu capacity bindings Documentation/devicetree/bindings/arm/cpu-capacity.txt diff --git a/Documentation/devicetree/bindings/clock/sunxi-ccu.txt b/Documentation/devicetree/bindings/clock/sunxi-ccu.txt index e9c5a1d9834a..f465647a4dd2 100644 --- a/Documentation/devicetree/bindings/clock/sunxi-ccu.txt +++ b/Documentation/devicetree/bindings/clock/sunxi-ccu.txt @@ -22,7 +22,8 @@ Required properties : - #clock-cells : must contain 1 - #reset-cells : must contain 1 -For the PRCM CCUs on H3/A64, one more clock is needed: +For the PRCM CCUs on H3/A64, two more clocks are needed: +- "pll-periph": the SoC's peripheral PLL from the main CCU - "iosc": the SoC's internal frequency oscillator Example for generic CCU: @@ -39,8 +40,8 @@ Example for PRCM CCU: r_ccu: clock@01f01400 { compatible = "allwinner,sun50i-a64-r-ccu"; reg = <0x01f01400 0x100>; - clocks = <&osc24M>, <&osc32k>, <&iosc>; - clock-names = "hosc", "losc", "iosc"; + clocks = <&osc24M>, <&osc32k>, <&iosc>, <&ccu CLK_PLL_PERIPH0>; + clock-names = "hosc", "losc", "iosc", "pll-periph"; #clock-cells = <1>; #reset-cells = <1>; }; diff --git a/Documentation/devicetree/bindings/gpio/gpio-mvebu.txt b/Documentation/devicetree/bindings/gpio/gpio-mvebu.txt index 42c3bb2d53e8..01e331a5f3e7 100644 --- a/Documentation/devicetree/bindings/gpio/gpio-mvebu.txt +++ b/Documentation/devicetree/bindings/gpio/gpio-mvebu.txt @@ -41,9 +41,9 @@ Required properties: Optional properties: In order to use the GPIO lines in PWM mode, some additional optional -properties are required. Only Armada 370 and XP support these properties. +properties are required. -- compatible: Must contain "marvell,armada-370-xp-gpio" +- compatible: Must contain "marvell,armada-370-gpio" - reg: an additional register set is needed, for the GPIO Blink Counter on/off registers. @@ -71,7 +71,7 @@ Example: }; gpio1: gpio@18140 { - compatible = "marvell,armada-370-xp-gpio"; + compatible = "marvell,armada-370-gpio"; reg = <0x18140 0x40>, <0x181c8 0x08>; reg-names = "gpio", "pwm"; ngpios = <17>; diff --git a/Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt b/Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt index 047189192aec..f413e82c8b83 100644 --- a/Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt +++ b/Documentation/devicetree/bindings/iio/adc/amlogic,meson-saradc.txt @@ -2,6 +2,8 @@ Required properties: - compatible: depending on the SoC this should be one of: + - "amlogic,meson8-saradc" for Meson8 + - "amlogic,meson8b-saradc" for Meson8b - "amlogic,meson-gxbb-saradc" for GXBB - "amlogic,meson-gxl-saradc" for GXL - "amlogic,meson-gxm-saradc" for GXM diff --git a/Documentation/devicetree/bindings/iio/adc/renesas,gyroadc.txt b/Documentation/devicetree/bindings/iio/adc/renesas,gyroadc.txt index f5b0adae6010..df5b9f2ad8d8 100644 --- a/Documentation/devicetree/bindings/iio/adc/renesas,gyroadc.txt +++ b/Documentation/devicetree/bindings/iio/adc/renesas,gyroadc.txt @@ -1,4 +1,4 @@ -* Renesas RCar GyroADC device driver +* Renesas R-Car GyroADC device driver The GyroADC block is a reduced SPI block with up to 8 chipselect lines, which supports the SPI protocol of a selected few SPI ADCs. The SPI ADCs @@ -16,8 +16,7 @@ Required properties: - clocks: References to all the clocks specified in the clock-names property as specified in Documentation/devicetree/bindings/clock/clock-bindings.txt. -- clock-names: Shall contain "fck" and "if". The "fck" is the GyroADC block - clock, the "if" is the interface clock. +- clock-names: Shall contain "fck". The "fck" is the GyroADC block clock. - power-domains: Must contain a reference to the PM domain, if available. - #address-cells: Should be <1> (setting for the subnodes) for all ADCs except for "fujitsu,mb88101a". Should be <0> (setting for @@ -75,8 +74,8 @@ Example: adc@e6e54000 { compatible = "renesas,r8a7791-gyroadc", "renesas,rcar-gyroadc"; reg = <0 0xe6e54000 0 64>; - clocks = <&mstp9_clks R8A7791_CLK_GYROADC>, <&clk_65m>; - clock-names = "fck", "if"; + clocks = <&mstp9_clks R8A7791_CLK_GYROADC>; + clock-names = "fck"; power-domains = <&sysc R8A7791_PD_ALWAYS_ON>; pinctrl-0 = <&adc_pins>; diff --git a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt index e35f9f1b3200..8310073f14e1 100644 --- a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt +++ b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt @@ -21,11 +21,19 @@ own configurable sequence and trigger: Contents of a stm32 adc root node: ----------------------------------- Required properties: -- compatible: Should be "st,stm32f4-adc-core". +- compatible: Should be one of: + "st,stm32f4-adc-core" + "st,stm32h7-adc-core" - reg: Offset and length of the ADC block register set. - interrupts: Must contain the interrupt for ADC block. -- clocks: Clock for the analog circuitry (common to all ADCs). -- clock-names: Must be "adc". +- clocks: Core can use up to two clocks, depending on part used: + - "adc" clock: for the analog circuitry, common to all ADCs. + It's required on stm32f4. + It's optional on stm32h7. + - "bus" clock: for registers access, common to all ADCs. + It's not present on stm32f4. + It's required on stm32h7. +- clock-names: Must be "adc" and/or "bus" depending on part used. - interrupt-controller: Identifies the controller node as interrupt-parent - vref-supply: Phandle to the vref input analog reference voltage. - #interrupt-cells = <1>; @@ -42,14 +50,18 @@ An ADC block node should contain at least one subnode, representing an ADC instance available on the machine. Required properties: -- compatible: Should be "st,stm32f4-adc". +- compatible: Should be one of: + "st,stm32f4-adc" + "st,stm32h7-adc" - reg: Offset of ADC instance in ADC block (e.g. may be 0x0, 0x100, 0x200). -- clocks: Input clock private to this ADC instance. +- clocks: Input clock private to this ADC instance. It's required only on + stm32f4, that has per instance clock input for registers access. - interrupt-parent: Phandle to the parent interrupt controller. - interrupts: IRQ Line for the ADC (e.g. may be 0 for adc@0, 1 for adc@100 or 2 for adc@200). - st,adc-channels: List of single-ended channels muxed for this ADC. - It can have up to 16 channels, numbered from 0 to 15 (resp. for in0..in15). + It can have up to 16 channels on stm32f4 or 20 channels on stm32h7, numbered + from 0 to 15 or 19 (resp. for in0..in15 or in0..in19). - #io-channel-cells = <1>: See the IIO bindings section "IIO consumers" in Documentation/devicetree/bindings/iio/iio-bindings.txt @@ -58,7 +70,9 @@ Optional properties: See ../../dma/dma.txt for details. - dma-names: Must be "rx" when dmas property is being used. - assigned-resolution-bits: Resolution (bits) to use for conversions. Must - match device available resolutions (e.g. can be 6, 8, 10 or 12 on stm32f4). + match device available resolutions: + * can be 6, 8, 10 or 12 on stm32f4 + * can be 8, 10, 12, 14 or 16 on stm32h7 Default is maximum resolution if unset. Example: diff --git a/Documentation/devicetree/bindings/iio/adc/ti-adc084s021.txt b/Documentation/devicetree/bindings/iio/adc/ti-adc084s021.txt new file mode 100644 index 000000000000..4259e50620bc --- /dev/null +++ b/Documentation/devicetree/bindings/iio/adc/ti-adc084s021.txt @@ -0,0 +1,19 @@ +* Texas Instruments' ADC084S021 + +Required properties: + - compatible : Must be "ti,adc084s021" + - reg : SPI chip select number for the device + - vref-supply : The regulator supply for ADC reference voltage + - spi-cpol : Per spi-bus bindings + - spi-cpha : Per spi-bus bindings + - spi-max-frequency : Per spi-bus bindings + +Example: +adc@0 { + compatible = "ti,adc084s021"; + reg = <0>; + vref-supply = <&adc_vref>; + spi-cpol; + spi-cpha; + spi-max-frequency = <16000000>; +}; diff --git a/Documentation/devicetree/bindings/iio/adc/ti-adc108s102.txt b/Documentation/devicetree/bindings/iio/adc/ti-adc108s102.txt new file mode 100644 index 000000000000..bbbbb4a9f58f --- /dev/null +++ b/Documentation/devicetree/bindings/iio/adc/ti-adc108s102.txt @@ -0,0 +1,18 @@ +* Texas Instruments' ADC108S102 and ADC128S102 ADC chip + +Required properties: + - compatible: Should be "ti,adc108s102" + - reg: spi chip select number for the device + - vref-supply: The regulator supply for ADC reference voltage + +Recommended properties: + - spi-max-frequency: Definition as per + Documentation/devicetree/bindings/spi/spi-bus.txt + +Example: +adc@0 { + compatible = "ti,adc108s102"; + reg = <0>; + vref-supply = <&vdd_supply>; + spi-max-frequency = <1000000>; +}; diff --git a/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt b/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt index 8305fb05ffda..6f28ff55f3ec 100644 --- a/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt +++ b/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt @@ -13,7 +13,8 @@ Optional properties: "data ready" (valid values: 1 or 2). - interrupt-parent: should be the phandle for the interrupt controller - interrupts: interrupt mapping for IRQ. It should be configured with - flags IRQ_TYPE_LEVEL_HIGH or IRQ_TYPE_EDGE_RISING. + flags IRQ_TYPE_LEVEL_HIGH, IRQ_TYPE_EDGE_RISING, IRQ_TYPE_LEVEL_LOW or + IRQ_TYPE_EDGE_FALLING. Refer to interrupt-controller/interrupts.txt for generic interrupt client node bindings. diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sunxi-nmi.txt b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sunxi-nmi.txt index 81cd3692405e..4ae553eb333d 100644 --- a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sunxi-nmi.txt +++ b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sunxi-nmi.txt @@ -3,8 +3,11 @@ Allwinner Sunxi NMI Controller Required properties: -- compatible : should be "allwinner,sun7i-a20-sc-nmi" or - "allwinner,sun6i-a31-sc-nmi" or "allwinner,sun9i-a80-nmi" +- compatible : should be one of the following: + - "allwinner,sun7i-a20-sc-nmi" + - "allwinner,sun6i-a31-sc-nmi" (deprecated) + - "allwinner,sun6i-a31-r-intc" + - "allwinner,sun9i-a80-nmi" - reg : Specifies base physical address and size of the registers. - interrupt-controller : Identifies the node as an interrupt controller - #interrupt-cells : Specifies the number of cells needed to encode an diff --git a/Documentation/devicetree/bindings/interrupt-controller/aspeed,ast2400-i2c-ic.txt b/Documentation/devicetree/bindings/interrupt-controller/aspeed,ast2400-i2c-ic.txt new file mode 100644 index 000000000000..033cc82e5684 --- /dev/null +++ b/Documentation/devicetree/bindings/interrupt-controller/aspeed,ast2400-i2c-ic.txt @@ -0,0 +1,25 @@ +Device tree configuration for the I2C Interrupt Controller on the AST24XX and +AST25XX SoCs. + +Required Properties: +- #address-cells : should be 1 +- #size-cells : should be 1 +- #interrupt-cells : should be 1 +- compatible : should be "aspeed,ast2400-i2c-ic" + or "aspeed,ast2500-i2c-ic" +- reg : address start and range of controller +- interrupts : interrupt number +- interrupt-controller : denotes that the controller receives and fires + new interrupts for child busses + +Example: + +i2c_ic: interrupt-controller@0 { + #address-cells = <1>; + #size-cells = <1>; + #interrupt-cells = <1>; + compatible = "aspeed,ast2400-i2c-ic"; + reg = <0x0 0x40>; + interrupts = <12>; + interrupt-controller; +}; diff --git a/Documentation/devicetree/bindings/interrupt-controller/aspeed,ast2400-vic.txt b/Documentation/devicetree/bindings/interrupt-controller/aspeed,ast2400-vic.txt index 6c6e85324b9d..e3fea0758d25 100644 --- a/Documentation/devicetree/bindings/interrupt-controller/aspeed,ast2400-vic.txt +++ b/Documentation/devicetree/bindings/interrupt-controller/aspeed,ast2400-vic.txt @@ -1,12 +1,13 @@ Aspeed Vectored Interrupt Controller -These bindings are for the Aspeed AST2400 interrupt controller register layout. -The SoC has an legacy register layout, but this driver does not support that -mode of operation. +These bindings are for the Aspeed interrupt controller. The AST2400 and +AST2500 SoC families include a legacy register layout before a re-designed +layout, but the bindings do not prescribe the use of one or the other. Required properties: -- compatible : should be "aspeed,ast2400-vic". +- compatible : "aspeed,ast2400-vic" + "aspeed,ast2500-vic" - interrupt-controller : Identifies the node as an interrupt controller - #interrupt-cells : Specifies the number of cells needed to encode an diff --git a/Documentation/devicetree/bindings/interrupt-controller/marvell,gicp.txt b/Documentation/devicetree/bindings/interrupt-controller/marvell,gicp.txt new file mode 100644 index 000000000000..64a00ceb7da4 --- /dev/null +++ b/Documentation/devicetree/bindings/interrupt-controller/marvell,gicp.txt @@ -0,0 +1,27 @@ +Marvell GICP Controller +----------------------- + +GICP is a Marvell extension of the GIC that allows to trigger GIC SPI +interrupts by doing a memory transaction. It is used by the ICU +located in the Marvell CP110 to turn wired interrupts inside the CP +into GIC SPI interrupts. + +Required properties: + +- compatible: Must be "marvell,ap806-gicp" + +- reg: Must be the address and size of the GICP SPI registers + +- marvell,spi-ranges: tuples of GIC SPI interrupts ranges available + for this GICP + +- msi-controller: indicates that this is an MSI controller + +Example: + +gicp_spi: gicp-spi@3f0040 { + compatible = "marvell,ap806-gicp"; + reg = <0x3f0040 0x10>; + marvell,spi-ranges = <64 64>, <288 64>; + msi-controller; +}; diff --git a/Documentation/devicetree/bindings/interrupt-controller/marvell,icu.txt b/Documentation/devicetree/bindings/interrupt-controller/marvell,icu.txt new file mode 100644 index 000000000000..aa8bf2ec8905 --- /dev/null +++ b/Documentation/devicetree/bindings/interrupt-controller/marvell,icu.txt @@ -0,0 +1,51 @@ +Marvell ICU Interrupt Controller +-------------------------------- + +The Marvell ICU (Interrupt Consolidation Unit) controller is +responsible for collecting all wired-interrupt sources in the CP and +communicating them to the GIC in the AP, the unit translates interrupt +requests on input wires to MSG memory mapped transactions to the GIC. + +Required properties: + +- compatible: Should be "marvell,cp110-icu" + +- reg: Should contain ICU registers location and length. + +- #interrupt-cells: Specifies the number of cells needed to encode an + interrupt source. The value shall be 3. + + The 1st cell is the group type of the ICU interrupt. Possible group + types are: + + ICU_GRP_NSR (0x0) : Shared peripheral interrupt, non-secure + ICU_GRP_SR (0x1) : Shared peripheral interrupt, secure + ICU_GRP_SEI (0x4) : System error interrupt + ICU_GRP_REI (0x5) : RAM error interrupt + + The 2nd cell is the index of the interrupt in the ICU unit. + + The 3rd cell is the type of the interrupt. See arm,gic.txt for + details. + +- interrupt-controller: Identifies the node as an interrupt + controller. + +- msi-parent: Should point to the GICP controller, the GIC extension + that allows to trigger interrupts using MSG memory mapped + transactions. + +Example: + +icu: interrupt-controller@1e0000 { + compatible = "marvell,cp110-icu"; + reg = <0x1e0000 0x10>; + #interrupt-cells = <3>; + interrupt-controller; + msi-parent = <&gicp>; +}; + +usb3h0: usb3@500000 { + interrupt-parent = <&icu>; + interrupts = <ICU_GRP_NSR 106 IRQ_TYPE_LEVEL_HIGH>; +}; diff --git a/Documentation/devicetree/bindings/leds/common.txt b/Documentation/devicetree/bindings/leds/common.txt index 24b656014089..1d4afe9644b6 100644 --- a/Documentation/devicetree/bindings/leds/common.txt +++ b/Documentation/devicetree/bindings/leds/common.txt @@ -1,4 +1,4 @@ -Common leds properties. +* Common leds properties. LED and flash LED devices provide the same basic functionality as current regulators, but extended with LED and flash LED specific features like @@ -49,6 +49,22 @@ Optional properties for child nodes: - panic-indicator : This property specifies that the LED should be used, if at all possible, as a panic indicator. +- trigger-sources : List of devices which should be used as a source triggering + this LED activity. Some LEDs can be related to a specific + device and should somehow indicate its state. E.g. USB 2.0 + LED may react to device(s) in a USB 2.0 port(s). + Another common example is switch or router with multiple + Ethernet ports each of them having its own LED assigned + (assuming they are not hardwired). In such cases this + property should contain phandle(s) of related source + device(s). + In many cases LED can be related to more than one device + (e.g. one USB LED vs. multiple USB ports). Each source + should be represented by a node in the device tree and be + referenced by a phandle and a set of phandle arguments. A + length of arguments should be specified by the + #trigger-source-cells property in the source node. + Required properties for flash LED child nodes: - flash-max-microamp : Maximum flash LED supply current in microamperes. - flash-max-timeout-us : Maximum timeout in microseconds after which the flash @@ -59,7 +75,17 @@ property can be omitted. For controllers that have no configurable timeout the flash-max-timeout-us property can be omitted. -Examples: +* Trigger source providers + +Each trigger source should be represented by a device tree node. It may be e.g. +a USB port or an Ethernet device. + +Required properties for trigger source: +- #trigger-source-cells : Number of cells in a source trigger. Typically 0 for + nodes of simple trigger sources (e.g. a specific USB + port). + +* Examples gpio-leds { compatible = "gpio-leds"; @@ -69,6 +95,11 @@ gpio-leds { linux,default-trigger = "heartbeat"; gpios = <&gpio0 0 GPIO_ACTIVE_HIGH>; }; + + usb { + gpios = <&gpio0 1 GPIO_ACTIVE_HIGH>; + trigger-sources = <&ohci_port1>, <&ehci_port1>; + }; }; max77693-led { diff --git a/Documentation/devicetree/bindings/mfd/stm32-timers.txt b/Documentation/devicetree/bindings/mfd/stm32-timers.txt index bbd083f5600a..1db6e0057a63 100644 --- a/Documentation/devicetree/bindings/mfd/stm32-timers.txt +++ b/Documentation/devicetree/bindings/mfd/stm32-timers.txt @@ -31,7 +31,7 @@ Example: compatible = "st,stm32-timers"; reg = <0x40010000 0x400>; clocks = <&rcc 0 160>; - clock-names = "clk_int"; + clock-names = "int"; pwm { compatible = "st,stm32-pwm"; diff --git a/Documentation/devicetree/bindings/net/dsa/b53.txt b/Documentation/devicetree/bindings/net/dsa/b53.txt index d6c6e41648d4..8ec2ca21adeb 100644 --- a/Documentation/devicetree/bindings/net/dsa/b53.txt +++ b/Documentation/devicetree/bindings/net/dsa/b53.txt @@ -34,7 +34,7 @@ Required properties: "brcm,bcm6328-switch" "brcm,bcm6368-switch" and the mandatory "brcm,bcm63xx-switch" -See Documentation/devicetree/bindings/dsa/dsa.txt for a list of additional +See Documentation/devicetree/bindings/net/dsa/dsa.txt for a list of additional required and optional properties. Examples: diff --git a/Documentation/devicetree/bindings/net/smsc911x.txt b/Documentation/devicetree/bindings/net/smsc911x.txt index 16c3a9501f5d..acfafc8e143c 100644 --- a/Documentation/devicetree/bindings/net/smsc911x.txt +++ b/Documentation/devicetree/bindings/net/smsc911x.txt @@ -27,6 +27,7 @@ Optional properties: of the device. On many systems this is wired high so the device goes out of reset at power-on, but if it is under program control, this optional GPIO can wake up in response to it. +- vdd33a-supply, vddvario-supply : 3.3V analog and IO logic power supplies Examples: diff --git a/Documentation/devicetree/bindings/phy/bcm-ns-usb3-phy.txt b/Documentation/devicetree/bindings/phy/bcm-ns-usb3-phy.txt index 09aeba94538d..32f057260351 100644 --- a/Documentation/devicetree/bindings/phy/bcm-ns-usb3-phy.txt +++ b/Documentation/devicetree/bindings/phy/bcm-ns-usb3-phy.txt @@ -3,9 +3,10 @@ Driver for Broadcom Northstar USB 3.0 PHY Required properties: - compatible: one of: "brcm,ns-ax-usb3-phy", "brcm,ns-bx-usb3-phy". -- reg: register mappings for DMP (Device Management Plugin) and ChipCommon B - MMI. -- reg-names: "dmp" and "ccb-mii" +- reg: address of MDIO bus device +- usb3-dmp-syscon: phandle to syscon with DMP (Device Management Plugin) + registers +- #phy-cells: must be 0 Initialization of USB 3.0 PHY depends on Northstar version. There are currently three known series: Ax, Bx and Cx. @@ -15,9 +16,19 @@ Known B1: BCM4707 rev 6 Known C0: BCM47094 rev 0 Example: - usb3-phy { - compatible = "brcm,ns-ax-usb3-phy"; - reg = <0x18105000 0x1000>, <0x18003000 0x1000>; - reg-names = "dmp", "ccb-mii"; - #phy-cells = <0>; + mdio: mdio@0 { + reg = <0x0>; + #size-cells = <1>; + #address-cells = <0>; + + usb3-phy@10 { + compatible = "brcm,ns-ax-usb3-phy"; + reg = <0x10>; + usb3-dmp-syscon = <&usb3_dmp>; + #phy-cells = <0>; + }; + }; + + usb3_dmp: syscon@18105000 { + reg = <0x18105000 0x1000>; }; diff --git a/Documentation/devicetree/bindings/phy/brcm,ns2-drd-phy.txt b/Documentation/devicetree/bindings/phy/brcm,ns2-drd-phy.txt new file mode 100644 index 000000000000..04f063aa7883 --- /dev/null +++ b/Documentation/devicetree/bindings/phy/brcm,ns2-drd-phy.txt @@ -0,0 +1,30 @@ +BROADCOM NORTHSTAR2 USB2 (DUAL ROLE DEVICE) PHY + +Required properties: + - compatible: brcm,ns2-drd-phy + - reg: offset and length of the NS2 PHY related registers. + - reg-names + The below registers must be provided. + icfg - for DRD ICFG configurations + rst-ctrl - for DRD IDM reset + crmu-ctrl - for CRMU core vdd, PHY and PHY PLL reset + usb2-strap - for port over current polarity reversal + - #phy-cells: Must be 0. No args required. + - vbus-gpios: vbus gpio binding + - id-gpios: id gpio binding + +Refer to phy/phy-bindings.txt for the generic PHY binding properties + +Example: + usbdrd_phy: phy@66000960 { + #phy-cells = <0>; + compatible = "brcm,ns2-drd-phy"; + reg = <0x66000960 0x24>, + <0x67012800 0x4>, + <0x6501d148 0x4>, + <0x664d0700 0x4>; + reg-names = "icfg", "rst-ctrl", + "crmu-ctrl", "usb2-strap"; + id-gpios = <&gpio_g 30 0>; + vbus-gpios = <&gpio_g 31 0>; + }; diff --git a/Documentation/devicetree/bindings/phy/brcm-sata-phy.txt b/Documentation/devicetree/bindings/phy/brcm-sata-phy.txt index 6ccce09d8bbf..97977cd29a98 100644 --- a/Documentation/devicetree/bindings/phy/brcm-sata-phy.txt +++ b/Documentation/devicetree/bindings/phy/brcm-sata-phy.txt @@ -7,12 +7,13 @@ Required properties: "brcm,iproc-ns2-sata-phy" "brcm,iproc-nsp-sata-phy" "brcm,phy-sata3" + "brcm,iproc-sr-sata-phy" - address-cells: should be 1 - size-cells: should be 0 - reg: register ranges for the PHY PCB interface - reg-names: should be "phy" and "phy-ctrl" The "phy-ctrl" registers are only required for - "brcm,iproc-ns2-sata-phy". + "brcm,iproc-ns2-sata-phy" and "brcm,iproc-sr-sata-phy". Sub-nodes: Each port's PHY should be represented as a sub-node. @@ -23,8 +24,8 @@ Sub-nodes required properties: Sub-nodes optional properties: - brcm,enable-ssc: use spread spectrum clocking (SSC) on this port - This property is not applicable for "brcm,iproc-ns2-sata-phy" and - "brcm,iproc-nsp-sata-phy". + This property is not applicable for "brcm,iproc-ns2-sata-phy", + "brcm,iproc-nsp-sata-phy" and "brcm,iproc-sr-sata-phy". Example: sata-phy@f0458100 { diff --git a/Documentation/devicetree/bindings/phy/meson-gxl-usb2-phy.txt b/Documentation/devicetree/bindings/phy/meson-gxl-usb2-phy.txt new file mode 100644 index 000000000000..a105494a0fc9 --- /dev/null +++ b/Documentation/devicetree/bindings/phy/meson-gxl-usb2-phy.txt @@ -0,0 +1,17 @@ +* Amlogic Meson GXL and GXM USB2 PHY binding + +Required properties: +- compatible: Should be "amlogic,meson-gxl-usb2-phy" +- reg: The base address and length of the registers +- #phys-cells: must be 0 (see phy-bindings.txt in this directory) + +Optional properties: +- phy-supply: see phy-bindings.txt in this directory + + +Example: + usb2_phy0: phy@78000 { + compatible = "amlogic,meson-gxl-usb2-phy"; + #phy-cells = <0>; + reg = <0x0 0x78000 0x0 0x20>; + }; diff --git a/Documentation/devicetree/bindings/phy/meson8b-usb2-phy.txt b/Documentation/devicetree/bindings/phy/meson8b-usb2-phy.txt index 5fa73b9d20f5..d81d73aea608 100644 --- a/Documentation/devicetree/bindings/phy/meson8b-usb2-phy.txt +++ b/Documentation/devicetree/bindings/phy/meson8b-usb2-phy.txt @@ -1,7 +1,8 @@ -* Amlogic Meson8b and GXBB USB2 PHY +* Amlogic Meson8, Meson8b and GXBB USB2 PHY Required properties: - compatible: Depending on the platform this should be one of: + "amlogic,meson8-usb2-phy" "amlogic,meson8b-usb2-phy" "amlogic,meson-gxbb-usb2-phy" - reg: The base address and length of the registers diff --git a/Documentation/devicetree/bindings/phy/phy-cpcap-usb.txt b/Documentation/devicetree/bindings/phy/phy-cpcap-usb.txt new file mode 100644 index 000000000000..2eb9b2b69037 --- /dev/null +++ b/Documentation/devicetree/bindings/phy/phy-cpcap-usb.txt @@ -0,0 +1,40 @@ +Motorola CPCAP PMIC USB PHY binding + +Required properties: +compatible: Shall be either "motorola,cpcap-usb-phy" or + "motorola,mapphone-cpcap-usb-phy" +#phy-cells: Shall be 0 +interrupts: CPCAP PMIC interrupts used by the USB PHY +interrupt-names: Interrupt names +io-channels: IIO ADC channels used by the USB PHY +io-channel-names: IIO ADC channel names +vusb-supply: Regulator for the PHY + +Optional properties: +pinctrl: Optional alternate pin modes for the PHY +pinctrl-names: Names for optional pin modes +mode-gpios: Optional GPIOs for configuring alternate modes + +Example: +cpcap_usb2_phy: phy { + compatible = "motorola,mapphone-cpcap-usb-phy"; + pinctrl-0 = <&usb_gpio_mux_sel1 &usb_gpio_mux_sel2>; + pinctrl-1 = <&usb_ulpi_pins>; + pinctrl-2 = <&usb_utmi_pins>; + pinctrl-3 = <&uart3_pins>; + pinctrl-names = "default", "ulpi", "utmi", "uart"; + #phy-cells = <0>; + interrupts-extended = < + &cpcap 15 0 &cpcap 14 0 &cpcap 28 0 &cpcap 19 0 + &cpcap 18 0 &cpcap 17 0 &cpcap 16 0 &cpcap 49 0 + &cpcap 48 1 + >; + interrupt-names = + "id_ground", "id_float", "se0conn", "vbusvld", + "sessvld", "sessend", "se1", "dm", "dp"; + mode-gpios = <&gpio2 28 GPIO_ACTIVE_HIGH + &gpio1 0 GPIO_ACTIVE_HIGH>; + io-channels = <&cpcap_adc 2>, <&cpcap_adc 7>; + io-channel-names = "vbus", "id"; + vusb-supply = <&vusb>; +}; diff --git a/Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb2.txt b/Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb2.txt index e71a8d23f4a8..84d59b0db8df 100644 --- a/Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb2.txt +++ b/Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb2.txt @@ -2,6 +2,7 @@ ROCKCHIP USB2.0 PHY WITH INNO IP BLOCK Required properties (phy (parent) node): - compatible : should be one of the listed compatibles: + * "rockchip,rk3228-usb2phy" * "rockchip,rk3328-usb2phy" * "rockchip,rk3366-usb2phy" * "rockchip,rk3399-usb2phy" diff --git a/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb3.txt b/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb3.txt new file mode 100644 index 000000000000..f94cea48f6b1 --- /dev/null +++ b/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb3.txt @@ -0,0 +1,46 @@ +* Renesas R-Car generation 3 USB 3.0 PHY + +This file provides information on what the device node for the R-Car generation +3 USB 3.0 PHY contains. +If you want to enable spread spectrum clock (ssc), you should use USB_EXTAL +instead of USB3_CLK. However, if you don't want to these features, you don't +need this driver. + +Required properties: +- compatible: "renesas,r8a7795-usb3-phy" if the device is a part of an R8A7795 + SoC. + "renesas,r8a7796-usb3-phy" if the device is a part of an R8A7796 + SoC. + "renesas,rcar-gen3-usb3-phy" for a generic R-Car Gen3 compatible + device. + + When compatible with the generic version, nodes must list the + SoC-specific version corresponding to the platform first + followed by the generic version. + +- reg: offset and length of the USB 3.0 PHY register block. +- clocks: A list of phandles and clock-specifier pairs. +- clock-names: Name of the clocks. + - The funcional clock must be "usb3-if". + - The usb3's external clock must be "usb3s_clk". + - The usb2's external clock must be "usb_extal". If you want to use the ssc, + the clock-frequency must not be 0. +- #phy-cells: see phy-bindings.txt in the same directory, must be <0>. + +Optional properties: +- renesas,ssc-range: Enable/disable spread spectrum clock (ssc) by using + the following values as u32: + - 0 (or the property doesn't exist): disable the ssc + - 4980: enable the ssc as -4980 ppm + - 4492: enable the ssc as -4492 ppm + - 4003: enable the ssc as -4003 ppm + +Example (R-Car H3): + + usb-phy@e65ee000 { + compatible = "renesas,r8a7795-usb3-phy", + "renesas,rcar-gen3-usb3-phy"; + reg = <0 0xe65ee000 0 0x90>; + clocks = <&cpg CPG_MOD 328>, <&usb3s0_clk>, <&usb_extal>; + clock-names = "usb3-if", "usb3s_clk", "usb_extal"; + }; diff --git a/Documentation/devicetree/bindings/serial/8250.txt b/Documentation/devicetree/bindings/serial/8250.txt index 10276a46ecef..419ff6c0a47f 100644 --- a/Documentation/devicetree/bindings/serial/8250.txt +++ b/Documentation/devicetree/bindings/serial/8250.txt @@ -20,6 +20,8 @@ Required properties: - "fsl,16550-FIFO64" - "fsl,ns16550" - "ti,da830-uart" + - "aspeed,ast2400-vuart" + - "aspeed,ast2500-vuart" - "serial" if the port type is unknown. - reg : offset and length of the register set for the device. - interrupts : should contain uart interrupt. @@ -45,6 +47,7 @@ Optional properties: property. - tx-threshold: Specify the TX FIFO low water indication for parts with programmable TX FIFO thresholds. +- resets : phandle + reset specifier pairs Note: * fsl,ns16550: diff --git a/Documentation/devicetree/bindings/serial/actions,owl-uart.txt b/Documentation/devicetree/bindings/serial/actions,owl-uart.txt new file mode 100644 index 000000000000..aa873eada02d --- /dev/null +++ b/Documentation/devicetree/bindings/serial/actions,owl-uart.txt @@ -0,0 +1,16 @@ +Actions Semi Owl UART + +Required properties: +- compatible : "actions,s500-uart", "actions,owl-uart" for S500 + "actions,s900-uart", "actions,owl-uart" for S900 +- reg : Offset and length of the register set for the device. +- interrupts : Should contain UART interrupt. + + +Example: + + uart3: serial@b0126000 { + compatible = "actions,s500-uart", "actions,owl-uart"; + reg = <0xb0126000 0x1000>; + interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>; + }; diff --git a/Documentation/devicetree/bindings/serial/amlogic,meson-uart.txt b/Documentation/devicetree/bindings/serial/amlogic,meson-uart.txt new file mode 100644 index 000000000000..8ff65fa632fd --- /dev/null +++ b/Documentation/devicetree/bindings/serial/amlogic,meson-uart.txt @@ -0,0 +1,38 @@ +Amlogic Meson SoC UART Serial Interface +======================================= + +The Amlogic Meson SoC UART Serial Interface is present on a large range +of SoCs, and can be present either in the "Always-On" power domain or the +"Everything-Else" power domain. + +The particularity of the "Always-On" Serial Interface is that the hardware +is active since power-on and does not need any clock gating and is usable +as very early serial console. + +Required properties: +- compatible : compatible: value should be different for each SoC family as : + - Meson6 : "amlogic,meson6-uart" + - Meson8 : "amlogic,meson8-uart" + - Meson8b : "amlogic,meson8b-uart" + - GX (GXBB, GXL, GXM) : "amlogic,meson-gx-uart" + eventually followed by : "amlogic,meson-ao-uart" if this UART interface + is in the "Always-On" power domain. +- reg : offset and length of the register set for the device. +- interrupts : identifier to the device interrupt +- clocks : a list of phandle + clock-specifier pairs, one for each + entry in clock names. +- clocks-names : + * "xtal" for external xtal clock identifier + * "pclk" for the bus core clock, either the clk81 clock or the gate clock + * "baud" for the source of the baudrate generator, can be either the xtal + or the pclk. + +e.g. +uart_A: serial@84c0 { + compatible = "amlogic,meson-gx-uart"; + reg = <0x0 0x84c0 0x0 0x14>; + interrupts = <GIC_SPI 26 IRQ_TYPE_EDGE_RISING>; + /* Use xtal as baud rate clock source */ + clocks = <&xtal>, <&clkc CLKID_UART0>, <&xtal>; + clock-names = "xtal", "pclk", "baud"; +}; diff --git a/Documentation/devicetree/bindings/serial/fsl-imx-uart.txt b/Documentation/devicetree/bindings/serial/fsl-imx-uart.txt index 574c3a2c77d5..e6b572409cf5 100644 --- a/Documentation/devicetree/bindings/serial/fsl-imx-uart.txt +++ b/Documentation/devicetree/bindings/serial/fsl-imx-uart.txt @@ -9,6 +9,7 @@ Optional properties: - fsl,irda-mode : Indicate the uart supports irda mode - fsl,dte-mode : Indicate the uart works in DTE mode. The uart works in DCE mode by default. +- fsl,dma-size : Indicate the size of the DMA buffer and its periods Please check Documentation/devicetree/bindings/serial/serial.txt for the complete list of generic properties. @@ -28,4 +29,5 @@ uart1: serial@73fbc000 { interrupts = <31>; uart-has-rtscts; fsl,dte-mode; + fsl,dma-size = <1024 4>; }; diff --git a/Documentation/devicetree/bindings/serial/fsl-lpuart.txt b/Documentation/devicetree/bindings/serial/fsl-lpuart.txt index c95005efbcb8..a1252a047f78 100644 --- a/Documentation/devicetree/bindings/serial/fsl-lpuart.txt +++ b/Documentation/devicetree/bindings/serial/fsl-lpuart.txt @@ -6,6 +6,8 @@ Required properties: on Vybrid vf610 SoC with 8-bit register organization - "fsl,ls1021a-lpuart" for lpuart compatible with the one integrated on LS1021A SoC with 32-bit big-endian register organization + - "fsl,imx7ulp-lpuart" for lpuart compatible with the one integrated + on i.MX7ULP SoC with 32-bit little-endian register organization - reg : Address and length of the register set for the device - interrupts : Should contain uart interrupt - clocks : phandle + clock specifier pairs, one for each entry in clock-names diff --git a/Documentation/devicetree/bindings/timer/faraday,fttmr010.txt b/Documentation/devicetree/bindings/timer/faraday,fttmr010.txt index b73ca6cd07f8..195792270414 100644 --- a/Documentation/devicetree/bindings/timer/faraday,fttmr010.txt +++ b/Documentation/devicetree/bindings/timer/faraday,fttmr010.txt @@ -7,7 +7,11 @@ Required properties: - compatible : Must be one of "faraday,fttmr010" - "cortina,gemini-timer" + "cortina,gemini-timer", "faraday,fttmr010" + "moxa,moxart-timer", "faraday,fttmr010" + "aspeed,ast2400-timer" + "aspeed,ast2500-timer" + - reg : Should contain registers location and length - interrupts : Should contain the three timer interrupts usually with flags for falling edge diff --git a/Documentation/devicetree/bindings/timer/moxa,moxart-timer.txt b/Documentation/devicetree/bindings/timer/moxa,moxart-timer.txt deleted file mode 100644 index e207c11630af..000000000000 --- a/Documentation/devicetree/bindings/timer/moxa,moxart-timer.txt +++ /dev/null @@ -1,19 +0,0 @@ -MOXA ART timer - -Required properties: - -- compatible : Must be one of: - - "moxa,moxart-timer" - - "aspeed,ast2400-timer" -- reg : Should contain registers location and length -- interrupts : Should contain the timer interrupt number -- clocks : Should contain phandle for the clock that drives the counter - -Example: - - timer: timer@98400000 { - compatible = "moxa,moxart-timer"; - reg = <0x98400000 0x42>; - interrupts = <19 1>; - clocks = <&coreclk>; - }; diff --git a/Documentation/devicetree/bindings/trivial-devices.txt b/Documentation/devicetree/bindings/trivial-devices.txt index 3e0a34c88e07..35f406dd86b6 100644 --- a/Documentation/devicetree/bindings/trivial-devices.txt +++ b/Documentation/devicetree/bindings/trivial-devices.txt @@ -55,6 +55,7 @@ gmt,g751 G751: Digital Temperature Sensor and Thermal Watchdog with Two-Wire In infineon,slb9635tt Infineon SLB9635 (Soft-) I2C TPM (old protocol, max 100khz) infineon,slb9645tt Infineon SLB9645 I2C TPM (new protocol, max 400khz) isil,isl29028 Intersil ISL29028 Ambient Light and Proximity Sensor +isil,isl29030 Intersil ISL29030 Ambient Light and Proximity Sensor maxim,ds1050 5 Bit Programmable, Pulse-Width Modulator maxim,max1237 Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs maxim,max6625 9-Bit/12-Bit Temperature Sensors with I²C-Compatible Serial Interface diff --git a/Documentation/devicetree/bindings/usb/dwc3.txt b/Documentation/devicetree/bindings/usb/dwc3.txt index f658f394c2d3..52fb41046b34 100644 --- a/Documentation/devicetree/bindings/usb/dwc3.txt +++ b/Documentation/devicetree/bindings/usb/dwc3.txt @@ -45,6 +45,8 @@ Optional properties: a free-running PHY clock. - snps,dis-del-phy-power-chg-quirk: when set core will change PHY power from P0 to P1/P2/P3 without delay. + - snps,dis-tx-ipgap-linecheck-quirk: when set, disable u2mac linestate check + during HS transmit. - snps,is-utmi-l1-suspend: true when DWC3 asserts output signal utmi_l1_suspend_n, false when asserts utmi_sleep_n - snps,hird-threshold: HIRD threshold diff --git a/Documentation/devicetree/bindings/usb/iproc-udc.txt b/Documentation/devicetree/bindings/usb/iproc-udc.txt new file mode 100644 index 000000000000..272d7faf1a97 --- /dev/null +++ b/Documentation/devicetree/bindings/usb/iproc-udc.txt @@ -0,0 +1,21 @@ +Broadcom IPROC USB Device controller. + +The device node is used for UDCs integrated into Broadcom's +iProc family (Northstar2, Cygnus) of SoCs'. The UDC is based +on Synopsys Designware Cores AHB Subsystem Device Controller +IP. + +Required properties: + - compatible: Add the compatibility strings for supported platforms. + For Broadcom NS2 platform, add "brcm,ns2-udc","brcm,iproc-udc". + For Broadcom Cygnus platform, add "brcm,cygnus-udc", "brcm,iproc-udc". + - reg: Offset and length of UDC register set + - interrupts: description of interrupt line + - phys: phandle to phy node. + +Example: + udc_dwc: usb@664e0000 { + compatible = "brcm,ns2-udc", "brcm,iproc-udc"; + reg = <0x664e0000 0x2000>; + interrupts = <GIC_SPI 424 IRQ_TYPE_LEVEL_HIGH>; + phys = <&usbdrd_phy>; diff --git a/Documentation/devicetree/bindings/usb/usb-ohci.txt b/Documentation/devicetree/bindings/usb/usb-ohci.txt index 9df456968596..e8766b08c93b 100644 --- a/Documentation/devicetree/bindings/usb/usb-ohci.txt +++ b/Documentation/devicetree/bindings/usb/usb-ohci.txt @@ -10,6 +10,7 @@ Optional properties: - big-endian-desc : boolean, set this for hcds with big-endian descriptors - big-endian : boolean, for hcds with big-endian-regs + big-endian-desc - no-big-frame-no : boolean, set if frame_no lives in bits [15:0] of HCCA +- remote-wakeup-connected: remote wakeup is wired on the platform - num-ports : u32, to override the detected port count - clocks : a list of phandle + clock specifier pairs - phys : phandle + phy specifier pair diff --git a/Documentation/driver-api/firmware/request_firmware.rst b/Documentation/driver-api/firmware/request_firmware.rst index cc0aea880824..1c2c4967cd43 100644 --- a/Documentation/driver-api/firmware/request_firmware.rst +++ b/Documentation/driver-api/firmware/request_firmware.rst @@ -44,6 +44,17 @@ request_firmware_nowait .. kernel-doc:: drivers/base/firmware_class.c :functions: request_firmware_nowait +Considerations for suspend and resume +===================================== + +During suspend and resume only the built-in firmware and the firmware cache +elements of the firmware API can be used. This is managed by fw_pm_notify(). + +fw_pm_notify +------------ +.. kernel-doc:: drivers/base/firmware_class.c + :functions: fw_pm_notify + request firmware API expected driver use ======================================== diff --git a/Documentation/driver-api/usb/dwc3.rst b/Documentation/driver-api/usb/dwc3.rst new file mode 100644 index 000000000000..c3dc84a50ce5 --- /dev/null +++ b/Documentation/driver-api/usb/dwc3.rst @@ -0,0 +1,712 @@ +=============================================================== +Synopsys DesignWare Core SuperSpeed USB 3.0 Controller +=============================================================== + +:Author: Felipe Balbi <felipe.balbi@linux.intel.com> +:Date: April 2017 + +Introduction +============ + +The *Synopsys DesignWare Core SuperSpeed USB 3.0 Controller* +(hereinafter referred to as *DWC3*) is a USB SuperSpeed compliant +controller which can be configured in one of 4 ways: + + 1. Peripheral-only configuration + 2. Host-only configuration + 3. Dual-Role configuration + 4. Hub configuration + +Linux currently supports several versions of this controller. In all +likelyhood, the version in your SoC is already supported. At the time +of this writing, known tested versions range from 2.02a to 3.10a. As a +rule of thumb, anything above 2.02a should work reliably well. + +Currently, we have many known users for this driver. In alphabetical +order: + + 1. Cavium + 2. Intel Corporation + 3. Qualcomm + 4. Rockchip + 5. ST + 6. Samsung + 7. Texas Instruments + 8. Xilinx + +Summary of Features +====================== + +For details about features supported by your version of DWC3, consult +your IP team and/or *Synopsys DesignWare Core SuperSpeed USB 3.0 +Controller Databook*. Following is a list of features supported by the +driver at the time of this writing: + + 1. Up to 16 bidirectional endpoints (including the control + pipe - ep0) + 2. Flexible endpoint configuration + 3. Simultaneous IN and OUT transfer support + 4. Scatter-list support + 5. Up to 256 TRBs [#trb]_ per endpoint + 6. Support for all transfer types (*Control*, *Bulk*, + *Interrupt*, and *Isochronous*) + 7. SuperSpeed Bulk Streams + 8. Link Power Management + 9. Trace Events for debugging + 10. DebugFS [#debugfs]_ interface + +These features have all been exercised with many of the **in-tree** +gadget drivers. We have verified both *ConfigFS* [#configfs]_ and +legacy gadget drivers. + +Driver Design +============== + +The DWC3 driver sits on the *drivers/usb/dwc3/* directory. All files +related to this driver are in this one directory. This makes it easy +for new-comers to read the code and understand how it behaves. + +Because of DWC3's configuration flexibility, the driver is a little +complex in some places but it should be rather straightforward to +understand. + +The biggest part of the driver refers to the Gadget API. + +Known Limitations +=================== + +Like any other HW, DWC3 has its own set of limitations. To avoid +constant questions about such problems, we decided to document them +here and have a single location to where we could point users. + +OUT Transfer Size Requirements +--------------------------------- + +According to Synopsys Databook, all OUT transfer TRBs [#trb]_ must +have their *size* field set to a value which is integer divisible by +the endpoint's *wMaxPacketSize*. This means that *e.g.* in order to +receive a Mass Storage *CBW* [#cbw]_, req->length must either be set +to a value that's divisible by *wMaxPacketSize* (1024 on SuperSpeed, +512 on HighSpeed, etc), or DWC3 driver must add a Chained TRB pointing +to a throw-away buffer for the remaining length. Without this, OUT +transfers will **NOT** start. + +Note that as of this writing, this won't be a problem because DWC3 is +fully capable of appending a chained TRB for the remaining length and +completely hide this detail from the gadget driver. It's still worth +mentioning because this seems to be the largest source of queries +about DWC3 and *non-working transfers*. + +TRB Ring Size Limitation +------------------------- + +We, currently, have a hard limit of 256 TRBs [#trb]_ per endpoint, +with the last TRB being a Link TRB [#link_trb]_ pointing back to the +first. This limit is arbitrary but it has the benefit of adding up to +exactly 4096 bytes, or 1 Page. + +DWC3 driver will try its best to cope with more than 255 requests and, +for the most part, it should work normally. However this is not +something that has been exercised very frequently. If you experience +any problems, see section **Reporting Bugs** below. + +Reporting Bugs +================ + +Whenever you encounter a problem with DWC3, first and foremost you +should make sure that: + + 1. You're running latest tag from `Linus' tree`_ + 2. You can reproduce the error without any out-of-tree changes + to DWC3 + 3. You have checked that it's not a fault on the host machine + +After all these are verified, then here's how to capture enough +information so we can be of any help to you. + +Required Information +--------------------- + +DWC3 relies exclusively on Trace Events for debugging. Everything is +exposed there, with some extra bits being exposed to DebugFS +[#debugfs]_. + +In order to capture DWC3's Trace Events you should run the following +commands **before** plugging the USB cable to a host machine: + +.. code-block:: sh + + # mkdir -p /d + # mkdir -p /t + # mount -t debugfs none /d + # mount -t tracefs none /t + # echo 81920 > /t/buffer_size_kb + # echo 1 > /t/events/dwc3/enable + +After this is done, you can connect your USB cable and reproduce the +problem. As soon as the fault is reproduced, make a copy of files +``trace`` and ``regdump``, like so: + +.. code-block:: sh + + # cp /t/trace /root/trace.txt + # cat /d/*dwc3*/regdump > /root/regdump.txt + +Make sure to compress ``trace.txt`` and ``regdump.txt`` in a tarball +and email it to `me`_ with `linux-usb`_ in Cc. If you want to be extra +sure that I'll help you, write your subject line in the following +format: + + **[BUG REPORT] usb: dwc3: Bug while doing XYZ** + +On the email body, make sure to detail what you doing, which gadget +driver you were using, how to reproduce the problem, what SoC you're +using, which OS (and its version) was running on the Host machine. + +With all this information, we should be able to understand what's +going on and be helpful to you. + +Debugging +=========== + +First and foremost a disclaimer:: + + DISCLAIMER: The information available on DebugFS and/or TraceFS can + change at any time at any Major Linux Kernel Release. If writing + scripts, do **NOT** assume information to be available in the + current format. + +With that out of the way, let's carry on. + +If you're willing to debug your own problem, you deserve a round of +applause :-) + +Anyway, there isn't much to say here other than Trace Events will be +really helpful in figuring out issues with DWC3. Also, access to +Synopsys Databook will be **really** valuable in this case. + +A USB Sniffer can be helpful at times but it's not entirely required, +there's a lot that can be understood without looking at the wire. + +Feel free to email `me`_ and Cc `linux-usb`_ if you need any help. + +``DebugFS`` +------------- + +``DebugFS`` is very good for gathering snapshots of what's going on +with DWC3 and/or any endpoint. + +On DWC3's ``DebugFS`` directory, you will find the following files and +directories: + +``ep[0..15]{in,out}/`` +``link_state`` +``regdump`` +``testmode`` + +``link_state`` +`````````````` + +When read, ``link_state`` will print out one of ``U0``, ``U1``, +``U2``, ``U3``, ``SS.Disabled``, ``RX.Detect``, ``SS.Inactive``, +``Polling``, ``Recovery``, ``Hot Reset``, ``Compliance``, +``Loopback``, ``Reset``, ``Resume`` or ``UNKNOWN link state``. + +This file can also be written to in order to force link to one of the +states above. + +``regdump`` +````````````` + +File name is self-explanatory. When read, ``regdump`` will print out a +register dump of DWC3. Note that this file can be grepped to find the +information you want. + +``testmode`` +`````````````` + +When read, ``testmode`` will print out a name of one of the specified +USB 2.0 Testmodes (``test_j``, ``test_k``, ``test_se0_nak``, +``test_packet``, ``test_force_enable``) or the string ``no test`` in +case no tests are currently being executed. + +In order to start any of these test modes, the same strings can be +written to the file and DWC3 will enter the requested test mode. + + +``ep[0..15]{in,out}`` +`````````````````````` + +For each endpoint we expose one directory following the naming +convention ``ep$num$dir`` *(ep0in, ep0out, ep1in, ...)*. Inside each +of these directories you will find the following files: + +``descriptor_fetch_queue`` +``event_queue`` +``rx_fifo_queue`` +``rx_info_queue`` +``rx_request_queue`` +``transfer_type`` +``trb_ring`` +``tx_fifo_queue`` +``tx_request_queue`` + +With access to Synopsys Databook, you can decode the information on +them. + +``transfer_type`` +~~~~~~~~~~~~~~~~~~ + +When read, ``transfer_type`` will print out one of ``control``, +``bulk``, ``interrupt`` or ``isochronous`` depending on what the +endpoint descriptor says. If the endpoint hasn't been enabled yet, it +will print ``--``. + +``trb_ring`` +~~~~~~~~~~~~~ + +When read, ``trb_ring`` will print out details about all TRBs on the +ring. It will also tell you where our enqueue and dequeue pointers are +located in the ring: + +.. code-block:: sh + + buffer_addr,size,type,ioc,isp_imi,csp,chn,lst,hwo + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c75c000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c75c000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c75c000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c75c000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c75c000,512,normal,1,0,1,0,0,1 D + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 E + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 00000000381ab000,0,link,0,0,0,0,0,1 + + +Trace Events +------------- + +DWC3 also provides several trace events which help us gathering +information about the behavior of the driver during runtime. + +In order to use these events, you must enable ``CONFIG_FTRACE`` in +your kernel config. + +For details about how enable DWC3 events, see section **Reporting +Bugs**. + +The following subsections will give details about each Event Class and +each Event defined by DWC3. + +MMIO +``````` + +It is sometimes useful to look at every MMIO access when looking for +bugs. Because of that, DWC3 offers two Trace Events (one for +dwc3_readl() and one for dwc3_writel()). ``TP_printk`` follows:: + + TP_printk("addr %p value %08x", __entry->base + __entry->offset, + __entry->value) + +Interrupt Events +```````````````` + +Every IRQ event can be logged and decoded into a human readable +string. Because every event will be different, we don't give an +example other than the ``TP_printk`` format used:: + + TP_printk("event (%08x): %s", __entry->event, + dwc3_decode_event(__entry->event, __entry->ep0state)) + +Control Request +````````````````` + +Every USB Control Request can be logged to the trace buffer. The +output format is:: + + TP_printk("%s", dwc3_decode_ctrl(__entry->bRequestType, + __entry->bRequest, __entry->wValue, + __entry->wIndex, __entry->wLength) + ) + +Note that Standard Control Requests will be decoded into +human-readable strings with their respective arguments. Class and +Vendor requests will be printed out a sequence of 8 bytes in hex +format. + +Lifetime of a ``struct usb_request`` +``````````````````````````````````````` + +The entire lifetime of a ``struct usb_request`` can be tracked on the +trace buffer. We have one event for each of allocation, free, +queueing, dequeueing, and giveback. Output format is:: + + TP_printk("%s: req %p length %u/%u %s%s%s ==> %d", + __get_str(name), __entry->req, __entry->actual, __entry->length, + __entry->zero ? "Z" : "z", + __entry->short_not_ok ? "S" : "s", + __entry->no_interrupt ? "i" : "I", + __entry->status + ) + +Generic Commands +```````````````````` + +We can log and decode every Generic Command with its completion +code. Format is:: + + TP_printk("cmd '%s' [%x] param %08x --> status: %s", + dwc3_gadget_generic_cmd_string(__entry->cmd), + __entry->cmd, __entry->param, + dwc3_gadget_generic_cmd_status_string(__entry->status) + ) + +Endpoint Commands +```````````````````` + +Endpoints commands can also be logged together with completion +code. Format is:: + + TP_printk("%s: cmd '%s' [%d] params %08x %08x %08x --> status: %s", + __get_str(name), dwc3_gadget_ep_cmd_string(__entry->cmd), + __entry->cmd, __entry->param0, + __entry->param1, __entry->param2, + dwc3_ep_cmd_status_string(__entry->cmd_status) + ) + +Lifetime of a ``TRB`` +`````````````````````` + +A ``TRB`` Lifetime is simple. We are either preparing a ``TRB`` or +completing it. With these two events, we can see how a ``TRB`` changes +over time. Format is:: + + TP_printk("%s: %d/%d trb %p buf %08x%08x size %s%d ctrl %08x (%c%c%c%c:%c%c:%s)", + __get_str(name), __entry->queued, __entry->allocated, + __entry->trb, __entry->bph, __entry->bpl, + ({char *s; + int pcm = ((__entry->size >> 24) & 3) + 1; + switch (__entry->type) { + case USB_ENDPOINT_XFER_INT: + case USB_ENDPOINT_XFER_ISOC: + switch (pcm) { + case 1: + s = "1x "; + break; + case 2: + s = "2x "; + break; + case 3: + s = "3x "; + break; + } + default: + s = ""; + } s; }), + DWC3_TRB_SIZE_LENGTH(__entry->size), __entry->ctrl, + __entry->ctrl & DWC3_TRB_CTRL_HWO ? 'H' : 'h', + __entry->ctrl & DWC3_TRB_CTRL_LST ? 'L' : 'l', + __entry->ctrl & DWC3_TRB_CTRL_CHN ? 'C' : 'c', + __entry->ctrl & DWC3_TRB_CTRL_CSP ? 'S' : 's', + __entry->ctrl & DWC3_TRB_CTRL_ISP_IMI ? 'S' : 's', + __entry->ctrl & DWC3_TRB_CTRL_IOC ? 'C' : 'c', + dwc3_trb_type_string(DWC3_TRBCTL_TYPE(__entry->ctrl)) + ) + +Lifetime of an Endpoint +``````````````````````` + +And endpoint's lifetime is summarized with enable and disable +operations, both of which can be traced. Format is:: + + TP_printk("%s: mps %d/%d streams %d burst %d ring %d/%d flags %c:%c%c%c%c%c:%c:%c", + __get_str(name), __entry->maxpacket, + __entry->maxpacket_limit, __entry->max_streams, + __entry->maxburst, __entry->trb_enqueue, + __entry->trb_dequeue, + __entry->flags & DWC3_EP_ENABLED ? 'E' : 'e', + __entry->flags & DWC3_EP_STALL ? 'S' : 's', + __entry->flags & DWC3_EP_WEDGE ? 'W' : 'w', + __entry->flags & DWC3_EP_BUSY ? 'B' : 'b', + __entry->flags & DWC3_EP_PENDING_REQUEST ? 'P' : 'p', + __entry->flags & DWC3_EP_MISSED_ISOC ? 'M' : 'm', + __entry->flags & DWC3_EP_END_TRANSFER_PENDING ? 'E' : 'e', + __entry->direction ? '<' : '>' + ) + + +Structures, Methods and Definitions +==================================== + +.. kernel-doc:: drivers/usb/dwc3/core.h + :doc: main data structures + :internal: + +.. kernel-doc:: drivers/usb/dwc3/gadget.h + :doc: gadget-only helpers + :internal: + +.. kernel-doc:: drivers/usb/dwc3/gadget.c + :doc: gadget-side implementation + :internal: + +.. kernel-doc:: drivers/usb/dwc3/core.c + :doc: core driver (probe, PM, etc) + :internal: + +.. [#trb] Transfer Request Block +.. [#link_trb] Transfer Request Block pointing to another Transfer + Request Block. +.. [#debugfs] The Debug File System +.. [#configfs] The Config File System +.. [#cbw] Command Block Wrapper +.. _Linus' tree: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/ +.. _me: felipe.balbi@linux.intel.com +.. _linux-usb: linux-usb@vger.kernel.org diff --git a/Documentation/driver-api/usb/index.rst b/Documentation/driver-api/usb/index.rst index 1bf64edc8c8a..8fe995a1ec94 100644 --- a/Documentation/driver-api/usb/index.rst +++ b/Documentation/driver-api/usb/index.rst @@ -16,7 +16,10 @@ Linux USB API persist error-codes writing_usb_driver + dwc3 writing_musb_glue_layer + typec + usb3-debug-port .. only:: subproject and html diff --git a/Documentation/usb/typec.rst b/Documentation/driver-api/usb/typec.rst index 8a7249f2ff04..8a7249f2ff04 100644 --- a/Documentation/usb/typec.rst +++ b/Documentation/driver-api/usb/typec.rst diff --git a/Documentation/usb/usb3-debug-port.rst b/Documentation/driver-api/usb/usb3-debug-port.rst index feb1a36a65b7..feb1a36a65b7 100644 --- a/Documentation/usb/usb3-debug-port.rst +++ b/Documentation/driver-api/usb/usb3-debug-port.rst diff --git a/Documentation/driver-model/devres.txt b/Documentation/driver-model/devres.txt index 40e4787c399c..2d132fcea0f8 100644 --- a/Documentation/driver-model/devres.txt +++ b/Documentation/driver-model/devres.txt @@ -311,6 +311,8 @@ IRQ devm_irq_alloc_desc_at() devm_irq_alloc_desc_from() devm_irq_alloc_descs_from() + devm_irq_alloc_generic_chip() + devm_irq_setup_generic_chip() LED devm_led_classdev_register() diff --git a/Documentation/filesystems/autofs4.txt b/Documentation/filesystems/autofs4.txt index f10dd590f69f..8444dc3d57e8 100644 --- a/Documentation/filesystems/autofs4.txt +++ b/Documentation/filesystems/autofs4.txt @@ -316,7 +316,7 @@ For version 5, the format of the message is: struct autofs_v5_packet { int proto_version; /* Protocol version */ int type; /* Type of packet */ - autofs_wqt_t wait_queue_token; + autofs_wqt_t wait_queue_entry_token; __u32 dev; __u64 ino; __u32 uid; @@ -341,12 +341,12 @@ The pipe will be set to "packet mode" (equivalent to passing `O_DIRECT`) to _pipe2(2)_ so that a read from the pipe will return at most one packet, and any unread portion of a packet will be discarded. -The `wait_queue_token` is a unique number which can identify a +The `wait_queue_entry_token` is a unique number which can identify a particular request to be acknowledged. When a message is sent over the pipe the affected dentry is marked as either "active" or "expiring" and other accesses to it block until the message is acknowledged using one of the ioctls below and the relevant -`wait_queue_token`. +`wait_queue_entry_token`. Communicating with autofs: root directory ioctls ------------------------------------------------ @@ -358,7 +358,7 @@ capability, or must be the automount daemon. The available ioctl commands are: - **AUTOFS_IOC_READY**: a notification has been handled. The argument - to the ioctl command is the "wait_queue_token" number + to the ioctl command is the "wait_queue_entry_token" number corresponding to the notification being acknowledged. - **AUTOFS_IOC_FAIL**: similar to above, but indicates failure with the error code `ENOENT`. @@ -382,14 +382,14 @@ The available ioctl commands are: struct autofs_packet_expire_multi { int proto_version; /* Protocol version */ int type; /* Type of packet */ - autofs_wqt_t wait_queue_token; + autofs_wqt_t wait_queue_entry_token; int len; char name[NAME_MAX+1]; }; is required. This is filled in with the name of something that can be unmounted or removed. If nothing can be expired, - `errno` is set to `EAGAIN`. Even though a `wait_queue_token` + `errno` is set to `EAGAIN`. Even though a `wait_queue_entry_token` is present in the structure, no "wait queue" is established and no acknowledgment is needed. - **AUTOFS_IOC_EXPIRE_MULTI**: This is similar to diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/kernel-per-CPU-kthreads.txt index df31e30b6a02..2cb7dc5c0e0d 100644 --- a/Documentation/kernel-per-CPU-kthreads.txt +++ b/Documentation/kernel-per-CPU-kthreads.txt @@ -109,13 +109,12 @@ SCHED_SOFTIRQ: Do all of the following: on that CPU. If a thread that expects to run on the de-jittered CPU awakens, the scheduler will send an IPI that can result in a subsequent SCHED_SOFTIRQ. -2. Build with CONFIG_RCU_NOCB_CPU=y, CONFIG_RCU_NOCB_CPU_ALL=y, - CONFIG_NO_HZ_FULL=y, and, in addition, ensure that the CPU - to be de-jittered is marked as an adaptive-ticks CPU using the - "nohz_full=" boot parameter. This reduces the number of - scheduler-clock interrupts that the de-jittered CPU receives, - minimizing its chances of being selected to do the load balancing - work that runs in SCHED_SOFTIRQ context. +2. CONFIG_NO_HZ_FULL=y and ensure that the CPU to be de-jittered + is marked as an adaptive-ticks CPU using the "nohz_full=" + boot parameter. This reduces the number of scheduler-clock + interrupts that the de-jittered CPU receives, minimizing its + chances of being selected to do the load balancing work that + runs in SCHED_SOFTIRQ context. 3. To the extent possible, keep the CPU out of the kernel when it is non-idle, for example, by avoiding system calls and by forcing both kernel threads and interrupts to execute elsewhere. @@ -135,11 +134,10 @@ HRTIMER_SOFTIRQ: Do all of the following: RCU_SOFTIRQ: Do at least one of the following: 1. Offload callbacks and keep the CPU in either dyntick-idle or adaptive-ticks state by doing all of the following: - a. Build with CONFIG_RCU_NOCB_CPU=y, CONFIG_RCU_NOCB_CPU_ALL=y, - CONFIG_NO_HZ_FULL=y, and, in addition ensure that the CPU - to be de-jittered is marked as an adaptive-ticks CPU using - the "nohz_full=" boot parameter. Bind the rcuo kthreads - to housekeeping CPUs, which can tolerate OS jitter. + a. CONFIG_NO_HZ_FULL=y and ensure that the CPU to be + de-jittered is marked as an adaptive-ticks CPU using the + "nohz_full=" boot parameter. Bind the rcuo kthreads to + housekeeping CPUs, which can tolerate OS jitter. b. To the extent possible, keep the CPU out of the kernel when it is non-idle, for example, by avoiding system calls and by forcing both kernel threads and interrupts @@ -236,11 +234,10 @@ To reduce its OS jitter, do at least one of the following: is feasible only if your workload never requires RCU priority boosting, for example, if you ensure frequent idle time on all CPUs that might execute within the kernel. -3. Build with CONFIG_RCU_NOCB_CPU=y and CONFIG_RCU_NOCB_CPU_ALL=y, - which offloads all RCU callbacks to kthreads that can be moved - off of CPUs susceptible to OS jitter. This approach prevents the - rcuc/%u kthreads from having any work to do, so that they are - never awakened. +3. Build with CONFIG_RCU_NOCB_CPU=y and boot with the rcu_nocbs= + boot parameter offloading RCU callbacks from all CPUs susceptible + to OS jitter. This approach prevents the rcuc/%u kthreads from + having any work to do, so that they are never awakened. 4. Ensure that the CPU never enters the kernel, and, in particular, avoid initiating any CPU hotplug operations on this CPU. This is another way of preventing any callbacks from being queued on the diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt index 732f10ea382e..9d5e0f853f08 100644 --- a/Documentation/memory-barriers.txt +++ b/Documentation/memory-barriers.txt @@ -27,7 +27,7 @@ The purpose of this document is twofold: (2) to provide a guide as to how to use the barriers that are available. Note that an architecture can provide more than the minimum requirement -for any particular barrier, but if the architecure provides less than +for any particular barrier, but if the architecture provides less than that, that architecture is incorrect. Note also that it is possible that a barrier may be a no-op for an diff --git a/Documentation/networking/scaling.txt b/Documentation/networking/scaling.txt index 59f4db2a0c85..f55639d71d35 100644 --- a/Documentation/networking/scaling.txt +++ b/Documentation/networking/scaling.txt @@ -122,7 +122,7 @@ associated flow of the packet. The hash is either provided by hardware or will be computed in the stack. Capable hardware can pass the hash in the receive descriptor for the packet; this would usually be the same hash used for RSS (e.g. computed Toeplitz hash). The hash is saved in -skb->rx_hash and can be used elsewhere in the stack as a hash of the +skb->hash and can be used elsewhere in the stack as a hash of the packet’s flow. Each receive hardware queue has an associated list of CPUs to which diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.txt index cbc1b46cbf70..e89e36ec15a5 100644 --- a/Documentation/scheduler/sched-deadline.txt +++ b/Documentation/scheduler/sched-deadline.txt @@ -7,6 +7,8 @@ CONTENTS 0. WARNING 1. Overview 2. Scheduling algorithm + 2.1 Main algorithm + 2.2 Bandwidth reclaiming 3. Scheduling Real-Time Tasks 3.1 Definitions 3.2 Schedulability Analysis for Uniprocessor Systems @@ -44,6 +46,9 @@ CONTENTS 2. Scheduling algorithm ================== +2.1 Main algorithm +------------------ + SCHED_DEADLINE uses three parameters, named "runtime", "period", and "deadline", to schedule tasks. A SCHED_DEADLINE task should receive "runtime" microseconds of execution time every "period" microseconds, and @@ -113,6 +118,160 @@ CONTENTS remaining runtime = remaining runtime + runtime +2.2 Bandwidth reclaiming +------------------------ + + Bandwidth reclaiming for deadline tasks is based on the GRUB (Greedy + Reclamation of Unused Bandwidth) algorithm [15, 16, 17] and it is enabled + when flag SCHED_FLAG_RECLAIM is set. + + The following diagram illustrates the state names for tasks handled by GRUB: + + ------------ + (d) | Active | + ------------->| | + | | Contending | + | ------------ + | A | + ---------- | | + | | | | + | Inactive | |(b) | (a) + | | | | + ---------- | | + A | V + | ------------ + | | Active | + --------------| Non | + (c) | Contending | + ------------ + + A task can be in one of the following states: + + - ActiveContending: if it is ready for execution (or executing); + + - ActiveNonContending: if it just blocked and has not yet surpassed the 0-lag + time; + + - Inactive: if it is blocked and has surpassed the 0-lag time. + + State transitions: + + (a) When a task blocks, it does not become immediately inactive since its + bandwidth cannot be immediately reclaimed without breaking the + real-time guarantees. It therefore enters a transitional state called + ActiveNonContending. The scheduler arms the "inactive timer" to fire at + the 0-lag time, when the task's bandwidth can be reclaimed without + breaking the real-time guarantees. + + The 0-lag time for a task entering the ActiveNonContending state is + computed as + + (runtime * dl_period) + deadline - --------------------- + dl_runtime + + where runtime is the remaining runtime, while dl_runtime and dl_period + are the reservation parameters. + + (b) If the task wakes up before the inactive timer fires, the task re-enters + the ActiveContending state and the "inactive timer" is canceled. + In addition, if the task wakes up on a different runqueue, then + the task's utilization must be removed from the previous runqueue's active + utilization and must be added to the new runqueue's active utilization. + In order to avoid races between a task waking up on a runqueue while the + "inactive timer" is running on a different CPU, the "dl_non_contending" + flag is used to indicate that a task is not on a runqueue but is active + (so, the flag is set when the task blocks and is cleared when the + "inactive timer" fires or when the task wakes up). + + (c) When the "inactive timer" fires, the task enters the Inactive state and + its utilization is removed from the runqueue's active utilization. + + (d) When an inactive task wakes up, it enters the ActiveContending state and + its utilization is added to the active utilization of the runqueue where + it has been enqueued. + + For each runqueue, the algorithm GRUB keeps track of two different bandwidths: + + - Active bandwidth (running_bw): this is the sum of the bandwidths of all + tasks in active state (i.e., ActiveContending or ActiveNonContending); + + - Total bandwidth (this_bw): this is the sum of all tasks "belonging" to the + runqueue, including the tasks in Inactive state. + + + The algorithm reclaims the bandwidth of the tasks in Inactive state. + It does so by decrementing the runtime of the executing task Ti at a pace equal + to + + dq = -max{ Ui, (1 - Uinact) } dt + + where Uinact is the inactive utilization, computed as (this_bq - running_bw), + and Ui is the bandwidth of task Ti. + + + Let's now see a trivial example of two deadline tasks with runtime equal + to 4 and period equal to 8 (i.e., bandwidth equal to 0.5): + + A Task T1 + | + | | + | | + |-------- |---- + | | V + |---|---|---|---|---|---|---|---|--------->t + 0 1 2 3 4 5 6 7 8 + + + A Task T2 + | + | | + | | + | ------------------------| + | | V + |---|---|---|---|---|---|---|---|--------->t + 0 1 2 3 4 5 6 7 8 + + + A running_bw + | + 1 ----------------- ------ + | | | + 0.5- ----------------- + | | + |---|---|---|---|---|---|---|---|--------->t + 0 1 2 3 4 5 6 7 8 + + + - Time t = 0: + + Both tasks are ready for execution and therefore in ActiveContending state. + Suppose Task T1 is the first task to start execution. + Since there are no inactive tasks, its runtime is decreased as dq = -1 dt. + + - Time t = 2: + + Suppose that task T1 blocks + Task T1 therefore enters the ActiveNonContending state. Since its remaining + runtime is equal to 2, its 0-lag time is equal to t = 4. + Task T2 start execution, with runtime still decreased as dq = -1 dt since + there are no inactive tasks. + + - Time t = 4: + + This is the 0-lag time for Task T1. Since it didn't woken up in the + meantime, it enters the Inactive state. Its bandwidth is removed from + running_bw. + Task T2 continues its execution. However, its runtime is now decreased as + dq = - 0.5 dt because Uinact = 0.5. + Task T2 therefore reclaims the bandwidth unused by Task T1. + + - Time t = 8: + + Task T1 wakes up. It enters the ActiveContending state again, and the + running_bw is incremented. + + 3. Scheduling Real-Time Tasks ============================= @@ -330,6 +489,15 @@ CONTENTS 14 - J. Erickson, U. Devi and S. Baruah. Improved tardiness bounds for Global EDF. Proceedings of the 22nd Euromicro Conference on Real-Time Systems, 2010. + 15 - G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in + constant-bandwidth servers, 12th IEEE Euromicro Conference on Real-Time + Systems, 2000. + 16 - L. Abeni, J. Lelli, C. Scordino, L. Palopoli, Greedy CPU reclaiming for + SCHED DEADLINE. In Proceedings of the Real-Time Linux Workshop (RTLWS), + Dusseldorf, Germany, 2014. + 17 - L. Abeni, G. Lipari, A. Parri, Y. Sun, Multicore CPU reclaiming: parallel + or sequential?. In Proceedings of the 31st Annual ACM Symposium on Applied + Computing, 2016. 4. Bandwidth management diff --git a/Documentation/serial/n_gsm.txt b/Documentation/serial/n_gsm.txt index a5d91126a8f7..875361bb7cb4 100644 --- a/Documentation/serial/n_gsm.txt +++ b/Documentation/serial/n_gsm.txt @@ -77,6 +77,13 @@ for example, it's possible : 6- first close all virtual ports before closing the physical port. +Note that after closing the physical port the modem is still in multiplexing +mode. This may prevent a successful re-opening of the port later. To avoid +this situation either reset the modem if your hardware allows that or send +a disconnect command frame manually before initializing the multiplexing mode +for the second time. The byte sequence for the disconnect command frame is: +0xf9, 0x03, 0xef, 0x03, 0xc3, 0x16, 0xf9. + Additional Documentation ------------------------ More practical details on the protocol and how it's supported by industrial diff --git a/Documentation/timers/NO_HZ.txt b/Documentation/timers/NO_HZ.txt index 6eaf576294f3..2dcaf9adb7a7 100644 --- a/Documentation/timers/NO_HZ.txt +++ b/Documentation/timers/NO_HZ.txt @@ -194,32 +194,9 @@ that the RCU callbacks are processed in a timely fashion. Another approach is to offload RCU callback processing to "rcuo" kthreads using the CONFIG_RCU_NOCB_CPU=y Kconfig option. The specific CPUs to -offload may be selected via several methods: - -1. One of three mutually exclusive Kconfig options specify a - build-time default for the CPUs to offload: - - a. The CONFIG_RCU_NOCB_CPU_NONE=y Kconfig option results in - no CPUs being offloaded. - - b. The CONFIG_RCU_NOCB_CPU_ZERO=y Kconfig option causes - CPU 0 to be offloaded. - - c. The CONFIG_RCU_NOCB_CPU_ALL=y Kconfig option causes all - CPUs to be offloaded. Note that the callbacks will be - offloaded to "rcuo" kthreads, and that those kthreads - will in fact run on some CPU. However, this approach - gives fine-grained control on exactly which CPUs the - callbacks run on, along with their scheduling priority - (including the default of SCHED_OTHER), and it further - allows this control to be varied dynamically at runtime. - -2. The "rcu_nocbs=" kernel boot parameter, which takes a comma-separated - list of CPUs and CPU ranges, for example, "1,3-5" selects CPUs 1, - 3, 4, and 5. The specified CPUs will be offloaded in addition to - any CPUs specified as offloaded by CONFIG_RCU_NOCB_CPU_ZERO=y or - CONFIG_RCU_NOCB_CPU_ALL=y. This means that the "rcu_nocbs=" boot - parameter has no effect for kernels built with RCU_NOCB_CPU_ALL=y. +offload may be selected using The "rcu_nocbs=" kernel boot parameter, +which takes a comma-separated list of CPUs and CPU ranges, for example, +"1,3-5" selects CPUs 1, 3, 4, and 5. The offloaded CPUs will never queue RCU callbacks, and therefore RCU never prevents offloaded CPUs from entering either dyntick-idle mode diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt index 94a987bd2bc5..fff8ff6d4893 100644 --- a/Documentation/trace/ftrace.txt +++ b/Documentation/trace/ftrace.txt @@ -1609,7 +1609,7 @@ Doing the same with chrt -r 5 and function-trace set. <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock - <idle>-0 3dN.1 15us : calc_load_exit_idle <-tick_nohz_idle_exit + <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel diff --git a/Documentation/usb/gadget-testing.txt b/Documentation/usb/gadget-testing.txt index fb0cc4df1765..fbc397d17e98 100644 --- a/Documentation/usb/gadget-testing.txt +++ b/Documentation/usb/gadget-testing.txt @@ -16,10 +16,11 @@ provided by gadgets. 13. RNDIS function 14. SERIAL function 15. SOURCESINK function -16. UAC1 function +16. UAC1 function (legacy implementation) 17. UAC2 function 18. UVC function 19. PRINTER function +20. UAC1 function (new API) 1. ACM function @@ -589,15 +590,16 @@ device: run the gadget host: test-usb (tools/usb/testusb.c) -16. UAC1 function +16. UAC1 function (legacy implementation) ================= -The function is provided by usb_f_uac1.ko module. +The function is provided by usb_f_uac1_legacy.ko module. Function-specific configfs interface ------------------------------------ -The function name to use when creating the function directory is "uac1". +The function name to use when creating the function directory +is "uac1_legacy". The uac1 function provides these attributes in its function directory: audio_buf_size - audio buffer size @@ -772,3 +774,46 @@ host: More advanced testing can be done with the prn_example described in Documentation/usb/gadget-printer.txt. + + +20. UAC1 function (virtual ALSA card, using u_audio API) +================= + +The function is provided by usb_f_uac1.ko module. +It will create a virtual ALSA card and the audio streams are simply +sinked to and sourced from it. + +Function-specific configfs interface +------------------------------------ + +The function name to use when creating the function directory is "uac1". +The uac1 function provides these attributes in its function directory: + + c_chmask - capture channel mask + c_srate - capture sampling rate + c_ssize - capture sample size (bytes) + p_chmask - playback channel mask + p_srate - playback sampling rate + p_ssize - playback sample size (bytes) + req_number - the number of pre-allocated request for both capture + and playback + +The attributes have sane default values. + +Testing the UAC1 function +------------------------- + +device: run the gadget +host: aplay -l # should list our USB Audio Gadget + +This function does not require real hardware support, it just +sends a stream of audio data to/from the host. In order to +actually hear something at the device side, a command similar +to this must be used at the device side: + +$ arecord -f dat -t wav -D hw:2,0 | aplay -D hw:0,0 & + +e.g.: + +$ arecord -f dat -t wav -D hw:CARD=UAC1Gadget,DEV=0 | \ +aplay -D default:CARD=OdroidU3 diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt index 61b611e9eeaf..b297c48389b9 100644 --- a/Documentation/x86/x86_64/boot-options.txt +++ b/Documentation/x86/x86_64/boot-options.txt @@ -36,7 +36,8 @@ Machine check to broadcast MCEs. mce=bootlog Enable logging of machine checks left over from booting. - Disabled by default on AMD because some BIOS leave bogus ones. + Disabled by default on AMD Fam10h and older because some BIOS + leave bogus ones. If your BIOS doesn't do that it's a good idea to enable though to make sure you log even machine check events that result in a reboot. On Intel systems it is enabled by default. |