summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/debugfs-cec-error-inj2
-rw-r--r--Documentation/ABI/testing/debugfs-cros-ec56
-rw-r--r--Documentation/ABI/testing/debugfs-driver-habanalabs18
-rw-r--r--Documentation/ABI/testing/debugfs-wilco-ec16
-rw-r--r--Documentation/ABI/testing/ima_policy6
-rw-r--r--Documentation/ABI/testing/procfs-smaps_rollup14
-rw-r--r--Documentation/ABI/testing/sysfs-bus-css23
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio7
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-cros-ec10
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-frequency-adf437144
-rw-r--r--Documentation/ABI/testing/sysfs-bus-siox22
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-phydev8
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-qmi4
-rw-r--r--Documentation/ABI/testing/sysfs-devices-system-cpu26
-rw-r--r--Documentation/ABI/testing/sysfs-driver-habanalabs42
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-iommu_groups9
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-uids2
-rw-r--r--Documentation/ABI/testing/sysfs-platform-wilco-ec40
-rw-r--r--Documentation/ABI/testing/sysfs-power2
-rw-r--r--Documentation/DMA-API.txt2
-rw-r--r--Documentation/EDID/howto.rst (renamed from Documentation/EDID/HOWTO.txt)35
-rw-r--r--Documentation/Kconfig13
-rw-r--r--Documentation/Makefile14
-rw-r--r--Documentation/RCU/UP.rst (renamed from Documentation/RCU/UP.txt)50
-rw-r--r--Documentation/RCU/index.rst19
-rw-r--r--Documentation/RCU/listRCU.rst (renamed from Documentation/RCU/listRCU.txt)38
-rw-r--r--Documentation/RCU/rcu.rst92
-rw-r--r--Documentation/RCU/rcu.txt89
-rw-r--r--Documentation/RCU/rcuref.txt21
-rw-r--r--Documentation/RCU/stallwarn.txt2
-rw-r--r--Documentation/RCU/whatisRCU.txt8
-rw-r--r--Documentation/accelerators/ocxl.rst2
-rw-r--r--Documentation/acpi/dsd/leds.txt2
-rw-r--r--Documentation/admin-guide/LSM/LoadPin.rst10
-rw-r--r--Documentation/admin-guide/README.rst2
-rw-r--r--Documentation/admin-guide/binderfs.rst (renamed from Documentation/filesystems/binderfs.rst)0
-rw-r--r--Documentation/admin-guide/bug-hunting.rst2
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst16
-rw-r--r--Documentation/admin-guide/devices.txt4
-rw-r--r--Documentation/admin-guide/hw-vuln/index.rst1
-rw-r--r--Documentation/admin-guide/hw-vuln/l1tf.rst2
-rw-r--r--Documentation/admin-guide/hw-vuln/spectre.rst697
-rw-r--r--Documentation/admin-guide/index.rst1
-rw-r--r--Documentation/admin-guide/kernel-parameters.rst10
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt82
-rw-r--r--Documentation/admin-guide/mm/numa_memory_policy.rst2
-rw-r--r--Documentation/admin-guide/mm/numaperf.rst5
-rw-r--r--Documentation/admin-guide/ras.rst2
-rw-r--r--Documentation/aoe/aoe.rst (renamed from Documentation/aoe/aoe.txt)65
-rw-r--r--Documentation/aoe/examples.rst23
-rw-r--r--Documentation/aoe/index.rst19
-rw-r--r--Documentation/aoe/todo.rst (renamed from Documentation/aoe/todo.txt)3
-rw-r--r--Documentation/aoe/udev.txt2
-rw-r--r--Documentation/arm/mem_alignment2
-rw-r--r--Documentation/arm/stm32/overview.rst2
-rw-r--r--Documentation/arm/stm32/stm32f429-overview.rst2
-rw-r--r--Documentation/arm/stm32/stm32f746-overview.rst2
-rw-r--r--Documentation/arm/stm32/stm32f769-overview.rst2
-rw-r--r--Documentation/arm/stm32/stm32h743-overview.rst2
-rw-r--r--Documentation/arm/stm32/stm32mp157-overview.rst2
-rw-r--r--Documentation/arm64/acpi_object_usage.rst (renamed from Documentation/arm64/acpi_object_usage.txt)288
-rw-r--r--Documentation/arm64/arm-acpi.rst (renamed from Documentation/arm64/arm-acpi.txt)163
-rw-r--r--Documentation/arm64/booting.rst (renamed from Documentation/arm64/booting.txt)93
-rw-r--r--Documentation/arm64/cpu-feature-registers.rst (renamed from Documentation/arm64/cpu-feature-registers.txt)210
-rw-r--r--Documentation/arm64/elf_hwcaps.rst (renamed from Documentation/arm64/elf_hwcaps.txt)64
-rw-r--r--Documentation/arm64/hugetlbpage.rst (renamed from Documentation/arm64/hugetlbpage.txt)7
-rw-r--r--Documentation/arm64/index.rst28
-rw-r--r--Documentation/arm64/legacy_instructions.rst (renamed from Documentation/arm64/legacy_instructions.txt)43
-rw-r--r--Documentation/arm64/memory.rst98
-rw-r--r--Documentation/arm64/memory.txt97
-rw-r--r--Documentation/arm64/pointer-authentication.rst (renamed from Documentation/arm64/pointer-authentication.txt)2
-rw-r--r--Documentation/arm64/silicon-errata.rst (renamed from Documentation/arm64/silicon-errata.txt)65
-rw-r--r--Documentation/arm64/sve.rst (renamed from Documentation/arm64/sve.txt)28
-rw-r--r--Documentation/arm64/tagged-pointers.rst (renamed from Documentation/arm64/tagged-pointers.txt)6
-rw-r--r--Documentation/atomic_t.txt26
-rw-r--r--Documentation/block/bfq-iosched.txt14
-rw-r--r--Documentation/block/biodoc.txt1
-rw-r--r--Documentation/block/queue-sysfs.txt64
-rw-r--r--Documentation/block/switching-sched.txt18
-rw-r--r--Documentation/bpf/bpf_design_QA.rst30
-rw-r--r--Documentation/bpf/btf.rst2
-rw-r--r--Documentation/bpf/index.rst1
-rw-r--r--Documentation/bpf/prog_cgroup_sockopt.rst93
-rw-r--r--Documentation/cdrom/Makefile21
-rw-r--r--Documentation/cdrom/cdrom-standard.rst1063
-rw-r--r--Documentation/cdrom/cdrom-standard.tex1026
-rw-r--r--Documentation/cdrom/ide-cd.rst (renamed from Documentation/cdrom/ide-cd)202
-rw-r--r--Documentation/cdrom/index.rst19
-rw-r--r--Documentation/cdrom/packet-writing.rst (renamed from Documentation/cdrom/packet-writing.txt)27
-rw-r--r--Documentation/cgroup-v1/blkio-controller.rst (renamed from Documentation/cgroup-v1/blkio-controller.txt)187
-rw-r--r--Documentation/cgroup-v1/cgroups.rst (renamed from Documentation/cgroup-v1/cgroups.txt)186
-rw-r--r--Documentation/cgroup-v1/cpuacct.rst (renamed from Documentation/cgroup-v1/cpuacct.txt)15
-rw-r--r--Documentation/cgroup-v1/cpusets.rst (renamed from Documentation/cgroup-v1/cpusets.txt)209
-rw-r--r--Documentation/cgroup-v1/devices.rst (renamed from Documentation/cgroup-v1/devices.txt)40
-rw-r--r--Documentation/cgroup-v1/freezer-subsystem.rst (renamed from Documentation/cgroup-v1/freezer-subsystem.txt)14
-rw-r--r--Documentation/cgroup-v1/hugetlb.rst (renamed from Documentation/cgroup-v1/hugetlb.txt)39
-rw-r--r--Documentation/cgroup-v1/index.rst30
-rw-r--r--Documentation/cgroup-v1/memcg_test.rst (renamed from Documentation/cgroup-v1/memcg_test.txt)265
-rw-r--r--Documentation/cgroup-v1/memory.rst (renamed from Documentation/cgroup-v1/memory.txt)463
-rw-r--r--Documentation/cgroup-v1/net_cls.rst (renamed from Documentation/cgroup-v1/net_cls.txt)37
-rw-r--r--Documentation/cgroup-v1/net_prio.rst (renamed from Documentation/cgroup-v1/net_prio.txt)24
-rw-r--r--Documentation/cgroup-v1/pids.rst (renamed from Documentation/cgroup-v1/pids.txt)82
-rw-r--r--Documentation/cgroup-v1/rdma.rst (renamed from Documentation/cgroup-v1/rdma.txt)66
-rw-r--r--Documentation/conf.py5
-rw-r--r--Documentation/core-api/circular-buffers.rst2
-rw-r--r--Documentation/core-api/index.rst2
-rw-r--r--Documentation/core-api/kernel-api.rst16
-rw-r--r--Documentation/core-api/protection-keys.rst (renamed from Documentation/x86/protection-keys.rst)0
-rw-r--r--Documentation/core-api/timekeeping.rst14
-rw-r--r--Documentation/core-api/xarray.rst270
-rw-r--r--Documentation/cputopology.txt48
-rw-r--r--Documentation/crypto/api-samples.rst176
-rw-r--r--Documentation/crypto/api-skcipher.rst2
-rw-r--r--Documentation/crypto/architecture.rst4
-rw-r--r--Documentation/crypto/crypto_engine.rst111
-rw-r--r--Documentation/dev-tools/kmemleak.rst48
-rw-r--r--Documentation/device-mapper/cache-policies.rst (renamed from Documentation/device-mapper/cache-policies.txt)24
-rw-r--r--Documentation/device-mapper/cache.rst (renamed from Documentation/device-mapper/cache.txt)214
-rw-r--r--Documentation/device-mapper/delay.rst (renamed from Documentation/device-mapper/delay.txt)29
-rw-r--r--Documentation/device-mapper/dm-crypt.rst (renamed from Documentation/device-mapper/dm-crypt.txt)61
-rw-r--r--Documentation/device-mapper/dm-flakey.rst (renamed from Documentation/device-mapper/dm-flakey.txt)45
-rw-r--r--Documentation/device-mapper/dm-init.rst (renamed from Documentation/device-mapper/dm-init.txt)89
-rw-r--r--Documentation/device-mapper/dm-integrity.rst (renamed from Documentation/device-mapper/dm-integrity.txt)62
-rw-r--r--Documentation/device-mapper/dm-io.rst (renamed from Documentation/device-mapper/dm-io.txt)14
-rw-r--r--Documentation/device-mapper/dm-log.rst (renamed from Documentation/device-mapper/dm-log.txt)5
-rw-r--r--Documentation/device-mapper/dm-queue-length.rst (renamed from Documentation/device-mapper/dm-queue-length.txt)25
-rw-r--r--Documentation/device-mapper/dm-raid.rst (renamed from Documentation/device-mapper/dm-raid.txt)225
-rw-r--r--Documentation/device-mapper/dm-service-time.rst (renamed from Documentation/device-mapper/dm-service-time.txt)76
-rw-r--r--Documentation/device-mapper/dm-uevent.rst110
-rw-r--r--Documentation/device-mapper/dm-uevent.txt97
-rw-r--r--Documentation/device-mapper/dm-zoned.rst (renamed from Documentation/device-mapper/dm-zoned.txt)10
-rw-r--r--Documentation/device-mapper/era.rst (renamed from Documentation/device-mapper/era.txt)36
-rw-r--r--Documentation/device-mapper/index.rst44
-rw-r--r--Documentation/device-mapper/kcopyd.rst (renamed from Documentation/device-mapper/kcopyd.txt)10
-rw-r--r--Documentation/device-mapper/linear.rst63
-rw-r--r--Documentation/device-mapper/linear.txt61
-rw-r--r--Documentation/device-mapper/log-writes.rst (renamed from Documentation/device-mapper/log-writes.txt)105
-rw-r--r--Documentation/device-mapper/persistent-data.rst (renamed from Documentation/device-mapper/persistent-data.txt)4
-rw-r--r--Documentation/device-mapper/snapshot.rst (renamed from Documentation/device-mapper/snapshot.txt)116
-rw-r--r--Documentation/device-mapper/statistics.rst (renamed from Documentation/device-mapper/statistics.txt)62
-rw-r--r--Documentation/device-mapper/striped.rst61
-rw-r--r--Documentation/device-mapper/striped.txt57
-rw-r--r--Documentation/device-mapper/switch.rst (renamed from Documentation/device-mapper/switch.txt)47
-rw-r--r--Documentation/device-mapper/thin-provisioning.rst (renamed from Documentation/device-mapper/thin-provisioning.txt)68
-rw-r--r--Documentation/device-mapper/unstriped.rst (renamed from Documentation/device-mapper/unstriped.txt)93
-rw-r--r--Documentation/device-mapper/verity.rst (renamed from Documentation/device-mapper/verity.txt)20
-rw-r--r--Documentation/device-mapper/writecache.rst (renamed from Documentation/device-mapper/writecache.txt)13
-rw-r--r--Documentation/device-mapper/zero.rst (renamed from Documentation/device-mapper/zero.txt)14
-rw-r--r--Documentation/devicetree/bindings/Makefile2
-rw-r--r--Documentation/devicetree/bindings/arm/al,alpine.txt16
-rw-r--r--Documentation/devicetree/bindings/arm/al,alpine.yaml21
-rw-r--r--Documentation/devicetree/bindings/arm/arm-boards2
-rw-r--r--Documentation/devicetree/bindings/arm/axxia.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/axxia.yaml19
-rw-r--r--Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt4
-rw-r--r--Documentation/devicetree/bindings/arm/coresight.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/cpus.yaml487
-rw-r--r--Documentation/devicetree/bindings/arm/digicolor.txt6
-rw-r--r--Documentation/devicetree/bindings/arm/digicolor.yaml16
-rw-r--r--Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt22
-rw-r--r--Documentation/devicetree/bindings/arm/idle-states.txt15
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,sgmiisys.txt2
-rw-r--r--Documentation/devicetree/bindings/arm/moxart.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/moxart.yaml19
-rw-r--r--Documentation/devicetree/bindings/arm/nxp/lpc32xx.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/nxp/lpc32xx.yaml25
-rw-r--r--Documentation/devicetree/bindings/arm/psci.txt111
-rw-r--r--Documentation/devicetree/bindings/arm/psci.yaml163
-rw-r--r--Documentation/devicetree/bindings/arm/qcom.yaml14
-rw-r--r--Documentation/devicetree/bindings/arm/rda.txt17
-rw-r--r--Documentation/devicetree/bindings/arm/rda.yaml20
-rw-r--r--Documentation/devicetree/bindings/common-properties.txt17
-rw-r--r--Documentation/devicetree/bindings/cpufreq/imx-cpufreq-dt.txt37
-rw-r--r--Documentation/devicetree/bindings/crypto/atmel-crypto.txt13
-rw-r--r--Documentation/devicetree/bindings/display/simple-framebuffer.yaml25
-rw-r--r--Documentation/devicetree/bindings/extcon/extcon-fsa9480.txt19
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-davinci.txt18
-rw-r--r--Documentation/devicetree/bindings/gpio/pl061-gpio.txt10
-rw-r--r--Documentation/devicetree/bindings/gpio/pl061-gpio.yaml69
-rw-r--r--Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt2
-rw-r--r--Documentation/devicetree/bindings/i3c/i3c.txt4
-rw-r--r--Documentation/devicetree/bindings/iio/accel/adi,adxl345.yaml72
-rw-r--r--Documentation/devicetree/bindings/iio/accel/adi,adxl372.yaml63
-rw-r--r--Documentation/devicetree/bindings/iio/accel/adxl345.txt39
-rw-r--r--Documentation/devicetree/bindings/iio/accel/adxl372.txt33
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7124.txt75
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7124.yaml155
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7780.txt48
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7780.yaml87
-rw-r--r--Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt2
-rw-r--r--Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt1
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.txt12
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.yaml39
-rw-r--r--Documentation/devicetree/bindings/iio/frequency/adf4371.yaml63
-rw-r--r--Documentation/devicetree/bindings/iio/light/isl29018.txt27
-rw-r--r--Documentation/devicetree/bindings/iio/light/isl29018.yaml56
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2583.txt25
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2583.yaml46
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2772.txt42
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2772.yaml83
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt29
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt1
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt20
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt43
-rw-r--r--Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt2
-rw-r--r--Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml21
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm36274.txt85
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm3697.txt73
-rw-r--r--Documentation/devicetree/bindings/leds/leds-spi-byte.txt44
-rw-r--r--Documentation/devicetree/bindings/media/allegro.txt43
-rw-r--r--Documentation/devicetree/bindings/media/amlogic,vdec.txt71
-rw-r--r--Documentation/devicetree/bindings/media/imx7-csi.txt9
-rw-r--r--Documentation/devicetree/bindings/media/marvell,mmp2-ccic.txt50
-rw-r--r--Documentation/devicetree/bindings/media/st,stm32-dcmi.txt2
-rw-r--r--Documentation/devicetree/bindings/media/sun6i-csi.txt1
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt1
-rw-r--r--Documentation/devicetree/bindings/mfd/atmel-usart.txt20
-rw-r--r--Documentation/devicetree/bindings/mfd/ti-lmu.txt88
-rw-r--r--Documentation/devicetree/bindings/misc/xlnx,sd-fec.txt58
-rw-r--r--Documentation/devicetree/bindings/mmc/allwinner,sun4i-a10-mmc.yaml98
-rw-r--r--Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt4
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc-controller.yaml374
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc.txt178
-rw-r--r--Documentation/devicetree/bindings/mmc/renesas,sdhi.txt (renamed from Documentation/devicetree/bindings/mmc/tmio_mmc.txt)11
-rw-r--r--Documentation/devicetree/bindings/mmc/sdhci-am654.txt9
-rw-r--r--Documentation/devicetree/bindings/mmc/sdhci-sprd.txt26
-rw-r--r--Documentation/devicetree/bindings/mmc/sunxi-mmc.txt52
-rw-r--r--Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml1
-rw-r--r--Documentation/devicetree/bindings/mux/mmio-mux.txt60
-rw-r--r--Documentation/devicetree/bindings/mux/reg-mux.txt129
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-a10-emac.yaml56
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-a10-mdio.yaml70
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt19
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt27
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt27
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.yaml65
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun8i-a83t-emac.yaml321
-rw-r--r--Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt1
-rw-r--r--Documentation/devicetree/bindings/net/dsa/ksz.txt2
-rw-r--r--Documentation/devicetree/bindings/net/dsa/marvell.txt7
-rw-r--r--Documentation/devicetree/bindings/net/dsa/qca8k.txt6
-rw-r--r--Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt58
-rw-r--r--Documentation/devicetree/bindings/net/dwmac-sun8i.txt201
-rw-r--r--Documentation/devicetree/bindings/net/ethernet-controller.yaml206
-rw-r--r--Documentation/devicetree/bindings/net/ethernet-phy.yaml177
-rw-r--r--Documentation/devicetree/bindings/net/ethernet.txt68
-rw-r--r--Documentation/devicetree/bindings/net/fixed-link.txt55
-rw-r--r--Documentation/devicetree/bindings/net/fsl-enetc.txt7
-rw-r--r--Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt7
-rw-r--r--Documentation/devicetree/bindings/net/keystone-netcp.txt44
-rw-r--r--Documentation/devicetree/bindings/net/macb.txt3
-rw-r--r--Documentation/devicetree/bindings/net/marvell-bluetooth.txt25
-rw-r--r--Documentation/devicetree/bindings/net/marvell-orion-mdio.txt2
-rw-r--r--Documentation/devicetree/bindings/net/mdio.txt38
-rw-r--r--Documentation/devicetree/bindings/net/mdio.yaml74
-rw-r--r--Documentation/devicetree/bindings/net/mediatek-bluetooth.txt17
-rw-r--r--Documentation/devicetree/bindings/net/mediatek-net.txt14
-rw-r--r--Documentation/devicetree/bindings/net/phy.txt80
-rw-r--r--Documentation/devicetree/bindings/net/qca,ar71xx.txt45
-rw-r--r--Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt4
-rw-r--r--Documentation/devicetree/bindings/net/snps,dwmac.yaml411
-rw-r--r--Documentation/devicetree/bindings/net/socfpga-dwmac.txt10
-rw-r--r--Documentation/devicetree/bindings/net/stmmac.txt179
-rw-r--r--Documentation/devicetree/bindings/net/ti,dp83867.txt14
-rw-r--r--Documentation/devicetree/bindings/net/wiznet,w5x00.txt50
-rw-r--r--Documentation/devicetree/bindings/net/xilinx_axienet.txt29
-rw-r--r--Documentation/devicetree/bindings/nvmem/allwinner,sun4i-a10-sid.yaml51
-rw-r--r--Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt29
-rw-r--r--Documentation/devicetree/bindings/nvmem/imx-ocotp.txt1
-rw-r--r--Documentation/devicetree/bindings/pci/83xx-512x-pci.txt1
-rw-r--r--Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt2
-rw-r--r--Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt21
-rw-r--r--Documentation/devicetree/bindings/phy/mixel,mipi-dsi-phy.txt29
-rw-r--r--Documentation/devicetree/bindings/phy/mxs-usb-phy.txt3
-rw-r--r--Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt12
-rw-r--r--Documentation/devicetree/bindings/phy/phy-pxa-usb.txt18
-rw-r--r--Documentation/devicetree/bindings/phy/qcom-pcie2-phy.txt42
-rw-r--r--Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt13
-rw-r--r--Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/property-units.txt34
-rw-r--r--Documentation/devicetree/bindings/ptp/ptp-qoriq.txt2
-rw-r--r--Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt5
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-sifive.txt33
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt9
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-stm32.txt3
-rw-r--r--Documentation/devicetree/bindings/regulator/arizona-regulator.txt3
-rw-r--r--Documentation/devicetree/bindings/regulator/fixed-regulator.yaml5
-rw-r--r--Documentation/devicetree/bindings/regulator/gpio-regulator.txt57
-rw-r--r--Documentation/devicetree/bindings/regulator/gpio-regulator.yaml118
-rw-r--r--Documentation/devicetree/bindings/regulator/max8660.txt47
-rw-r--r--Documentation/devicetree/bindings/regulator/max8660.yaml77
-rw-r--r--Documentation/devicetree/bindings/regulator/pv88060.txt2
-rw-r--r--Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt2
-rw-r--r--Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt22
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator.txt140
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator.yaml200
-rw-r--r--Documentation/devicetree/bindings/regulator/slg51000.txt88
-rw-r--r--Documentation/devicetree/bindings/regulator/st,stm32-booster.txt18
-rw-r--r--Documentation/devicetree/bindings/riscv/cpus.yaml170
-rw-r--r--Documentation/devicetree/bindings/riscv/sifive.yaml25
-rw-r--r--Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt1
-rw-r--r--Documentation/devicetree/bindings/serial/8250.txt19
-rw-r--r--Documentation/devicetree/bindings/serial/mtk-uart.txt13
-rw-r--r--Documentation/devicetree/bindings/serial/st,stm32-usart.txt1
-rw-r--r--Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-i2s.yaml132
-rw-r--r--Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-spdif.yaml120
-rw-r--r--Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt6
-rw-r--r--Documentation/devicetree/bindings/sound/amlogic,g12a-tohdmitx.txt55
-rw-r--r--Documentation/devicetree/bindings/sound/cs42l73.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/cs42xx8.txt6
-rw-r--r--Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt3
-rw-r--r--Documentation/devicetree/bindings/sound/madera.txt67
-rw-r--r--Documentation/devicetree/bindings/sound/max98357a.txt4
-rw-r--r--Documentation/devicetree/bindings/sound/rt1011.txt32
-rwxr-xr-xDocumentation/devicetree/bindings/sound/rt1308.txt17
-rw-r--r--Documentation/devicetree/bindings/sound/st,stm32-i2s.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/st,stm32-sai.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/sun4i-i2s.txt45
-rw-r--r--Documentation/devicetree/bindings/sound/sunxi,sun4i-spdif.txt42
-rw-r--r--Documentation/devicetree/bindings/spi/allwinner,sun4i-a10-spi.yaml86
-rw-r--r--Documentation/devicetree/bindings/spi/allwinner,sun6i-a31-spi.yaml106
-rw-r--r--Documentation/devicetree/bindings/spi/spi-bus.txt112
-rw-r--r--Documentation/devicetree/bindings/spi/spi-controller.yaml161
-rw-r--r--Documentation/devicetree/bindings/spi/spi-gpio.txt43
-rw-r--r--Documentation/devicetree/bindings/spi/spi-gpio.yaml72
-rw-r--r--Documentation/devicetree/bindings/spi/spi-pl022.yaml165
-rw-r--r--Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt5
-rw-r--r--Documentation/devicetree/bindings/spi/spi-sun4i.txt23
-rw-r--r--Documentation/devicetree/bindings/spi/spi-sun6i.txt44
-rw-r--r--Documentation/devicetree/bindings/spi/spi-synquacer.txt27
-rw-r--r--Documentation/devicetree/bindings/spi/spi_pl022.txt70
-rw-r--r--Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt25
-rw-r--r--Documentation/devicetree/bindings/trivial-devices.yaml4
-rw-r--r--Documentation/devicetree/bindings/usb/dwc2.txt3
-rw-r--r--Documentation/devicetree/bindings/usb/dwc3.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/generic-ehci.yaml3
-rw-r--r--Documentation/devicetree/bindings/usb/renesas,usb3.txt (renamed from Documentation/devicetree/bindings/usb/renesas_usb3.txt)0
-rw-r--r--Documentation/devicetree/bindings/usb/renesas,usbhs.txt (renamed from Documentation/devicetree/bindings/usb/renesas_usbhs.txt)2
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.yaml78
-rw-r--r--Documentation/devicetree/booting-without-of.txt2
-rw-r--r--Documentation/doc-guide/kernel-doc.rst2
-rw-r--r--Documentation/doc-guide/sphinx.rst32
-rw-r--r--Documentation/docutils.conf2
-rw-r--r--Documentation/driver-api/80211/mac80211-advanced.rst3
-rw-r--r--Documentation/driver-api/basics.rst3
-rw-r--r--Documentation/driver-api/clk.rst6
-rw-r--r--Documentation/driver-api/firmware/other_interfaces.rst2
-rw-r--r--Documentation/driver-api/gpio/board.rst2
-rw-r--r--Documentation/driver-api/gpio/consumer.rst6
-rw-r--r--Documentation/driver-api/gpio/driver.rst16
-rw-r--r--Documentation/driver-api/iio/hw-consumer.rst1
-rw-r--r--Documentation/driver-api/index.rst1
-rw-r--r--Documentation/driver-api/mei/hdcp.rst32
-rw-r--r--Documentation/driver-api/mei/iamt.rst101
-rw-r--r--Documentation/driver-api/mei/index.rst23
-rw-r--r--Documentation/driver-api/mei/mei-client-bus.rst168
-rw-r--r--Documentation/driver-api/mei/mei.rst176
-rw-r--r--Documentation/driver-api/mei/nfc.rst28
-rw-r--r--Documentation/driver-api/pps.rst (renamed from Documentation/pps/pps.txt)67
-rw-r--r--Documentation/driver-api/ptp.rst (renamed from Documentation/ptp/ptp.txt)26
-rw-r--r--Documentation/driver-api/s390-drivers.rst4
-rw-r--r--Documentation/driver-api/soundwire/locking.rst4
-rw-r--r--Documentation/driver-api/target.rst4
-rw-r--r--Documentation/driver-api/uio-howto.rst4
-rw-r--r--Documentation/fault-injection/fault-injection.rst (renamed from Documentation/fault-injection/fault-injection.txt)281
-rw-r--r--Documentation/fault-injection/index.rst20
-rw-r--r--Documentation/fault-injection/notifier-error-inject.rst (renamed from Documentation/fault-injection/notifier-error-inject.txt)18
-rw-r--r--Documentation/fault-injection/nvme-fault-injection.rst178
-rw-r--r--Documentation/fault-injection/nvme-fault-injection.txt116
-rw-r--r--Documentation/fault-injection/provoke-crashes.rst48
-rw-r--r--Documentation/fault-injection/provoke-crashes.txt38
-rw-r--r--Documentation/fb/api.rst (renamed from Documentation/fb/api.txt)29
-rw-r--r--Documentation/fb/arkfb.rst (renamed from Documentation/fb/arkfb.txt)8
-rw-r--r--Documentation/fb/aty128fb.rst (renamed from Documentation/fb/aty128fb.txt)35
-rw-r--r--Documentation/fb/cirrusfb.rst (renamed from Documentation/fb/cirrusfb.txt)47
-rw-r--r--Documentation/fb/cmap_xfbdev.rst (renamed from Documentation/fb/cmap_xfbdev.txt)57
-rw-r--r--Documentation/fb/deferred_io.rst (renamed from Documentation/fb/deferred_io.txt)28
-rw-r--r--Documentation/fb/efifb.rst (renamed from Documentation/fb/efifb.txt)18
-rw-r--r--Documentation/fb/ep93xx-fb.rst (renamed from Documentation/fb/ep93xx-fb.txt)27
-rw-r--r--Documentation/fb/fbcon.rst (renamed from Documentation/fb/fbcon.txt)179
-rw-r--r--Documentation/fb/framebuffer.rst (renamed from Documentation/fb/framebuffer.txt)80
-rw-r--r--Documentation/fb/gxfb.rst (renamed from Documentation/fb/gxfb.txt)24
-rw-r--r--Documentation/fb/index.rst50
-rw-r--r--Documentation/fb/intel810.rst (renamed from Documentation/fb/intel810.txt)79
-rw-r--r--Documentation/fb/intelfb.rst (renamed from Documentation/fb/intelfb.txt)62
-rw-r--r--Documentation/fb/internals.rst (renamed from Documentation/fb/internals.txt)24
-rw-r--r--Documentation/fb/lxfb.rst (renamed from Documentation/fb/lxfb.txt)25
-rw-r--r--Documentation/fb/matroxfb.rst443
-rw-r--r--Documentation/fb/matroxfb.txt413
-rw-r--r--Documentation/fb/metronomefb.rst (renamed from Documentation/fb/metronomefb.txt)8
-rw-r--r--Documentation/fb/modedb.rst (renamed from Documentation/fb/modedb.txt)44
-rw-r--r--Documentation/fb/pvr2fb.rst66
-rw-r--r--Documentation/fb/pvr2fb.txt65
-rw-r--r--Documentation/fb/pxafb.rst (renamed from Documentation/fb/pxafb.txt)81
-rw-r--r--Documentation/fb/s3fb.rst (renamed from Documentation/fb/s3fb.txt)8
-rw-r--r--Documentation/fb/sa1100fb.rst (renamed from Documentation/fb/sa1100fb.txt)23
-rw-r--r--Documentation/fb/sh7760fb.rst130
-rw-r--r--Documentation/fb/sh7760fb.txt131
-rw-r--r--Documentation/fb/sisfb.rst (renamed from Documentation/fb/sisfb.txt)40
-rw-r--r--Documentation/fb/sm501.rst (renamed from Documentation/fb/sm501.txt)7
-rw-r--r--Documentation/fb/sm712fb.rst (renamed from Documentation/fb/sm712fb.txt)18
-rw-r--r--Documentation/fb/sstfb.rst207
-rw-r--r--Documentation/fb/sstfb.txt174
-rw-r--r--Documentation/fb/tgafb.rst (renamed from Documentation/fb/tgafb.txt)30
-rw-r--r--Documentation/fb/tridentfb.rst (renamed from Documentation/fb/tridentfb.txt)36
-rw-r--r--Documentation/fb/udlfb.rst (renamed from Documentation/fb/udlfb.txt)55
-rw-r--r--Documentation/fb/uvesafb.rst (renamed from Documentation/fb/uvesafb.txt)142
-rw-r--r--Documentation/fb/vesafb.rst (renamed from Documentation/fb/vesafb.txt)121
-rw-r--r--Documentation/fb/viafb.rst297
-rw-r--r--Documentation/fb/viafb.txt252
-rw-r--r--Documentation/fb/vt8623fb.rst (renamed from Documentation/fb/vt8623fb.txt)10
-rw-r--r--Documentation/features/debug/stackprotector/arch-support.txt2
-rw-r--r--Documentation/filesystems/Locking14
-rw-r--r--Documentation/filesystems/api-summary.rst3
-rw-r--r--Documentation/filesystems/ext2.txt8
-rw-r--r--Documentation/filesystems/ext4/index.rst8
-rw-r--r--Documentation/filesystems/fscrypt.rst43
-rw-r--r--Documentation/filesystems/index.rst13
-rw-r--r--Documentation/filesystems/overlayfs.txt16
-rw-r--r--Documentation/filesystems/porting10
-rw-r--r--Documentation/filesystems/proc.txt81
-rw-r--r--Documentation/filesystems/tmpfs.txt2
-rw-r--r--Documentation/filesystems/ubifs-authentication.md4
-rw-r--r--Documentation/filesystems/vfs.rst1428
-rw-r--r--Documentation/filesystems/vfs.txt1268
-rw-r--r--Documentation/filesystems/xfs-delayed-logging-design.txt2
-rw-r--r--Documentation/firmware-guide/acpi/enumeration.rst2
-rw-r--r--Documentation/firmware-guide/acpi/extcon-intel-int3496.rst (renamed from Documentation/extcon/intel-int3496.txt)14
-rw-r--r--Documentation/firmware-guide/acpi/index.rst1
-rw-r--r--Documentation/firmware-guide/acpi/method-tracing.rst2
-rw-r--r--Documentation/fmc/API.txt47
-rw-r--r--Documentation/fmc/FMC-and-SDB.txt88
-rw-r--r--Documentation/fmc/carrier.txt311
-rw-r--r--Documentation/fmc/fmc-chardev.txt64
-rw-r--r--Documentation/fmc/fmc-fakedev.txt36
-rw-r--r--Documentation/fmc/fmc-trivial.txt17
-rw-r--r--Documentation/fmc/fmc-write-eeprom.txt98
-rw-r--r--Documentation/fmc/identifiers.txt168
-rw-r--r--Documentation/fmc/mezzanine.txt123
-rw-r--r--Documentation/fmc/parameters.txt56
-rw-r--r--Documentation/fpga/dfl.rst (renamed from Documentation/fpga/dfl.txt)58
-rw-r--r--Documentation/fpga/index.rst17
-rw-r--r--Documentation/gpu/msm-crash-dump.rst2
-rw-r--r--Documentation/hid/hid-alps.rst (renamed from Documentation/hid/hid-alps.txt)87
-rw-r--r--Documentation/hid/hid-sensor.rst (renamed from Documentation/hid/hid-sensor.txt)194
-rw-r--r--Documentation/hid/hid-transport.rst (renamed from Documentation/hid/hid-transport.txt)88
-rw-r--r--Documentation/hid/hiddev.rst (renamed from Documentation/hid/hiddev.txt)154
-rw-r--r--Documentation/hid/hidraw.rst (renamed from Documentation/hid/hidraw.txt)53
-rw-r--r--Documentation/hid/index.rst18
-rw-r--r--Documentation/hid/intel-ish-hid.rst485
-rw-r--r--Documentation/hid/intel-ish-hid.txt454
-rw-r--r--Documentation/hid/uhid.rst (renamed from Documentation/hid/uhid.txt)46
-rw-r--r--Documentation/hwmon/pxe161090
-rw-r--r--Documentation/i2c/instantiating-devices4
-rw-r--r--Documentation/i2c/upgrading-clients4
-rw-r--r--Documentation/ide/changelogs.rst17
-rw-r--r--Documentation/ide/ide-tape.rst (renamed from Documentation/ide/ide-tape.txt)23
-rw-r--r--Documentation/ide/ide.rst (renamed from Documentation/ide/ide.txt)147
-rw-r--r--Documentation/ide/index.rst21
-rw-r--r--Documentation/ide/warm-plug-howto.rst (renamed from Documentation/ide/warm-plug-howto.txt)10
-rw-r--r--Documentation/iio/ep93xx_adc.rst (renamed from Documentation/iio/ep93xx_adc.txt)15
-rw-r--r--Documentation/iio/iio_configfs.rst (renamed from Documentation/iio/iio_configfs.txt)52
-rw-r--r--Documentation/iio/index.rst12
-rw-r--r--Documentation/index.rst2
-rw-r--r--Documentation/input/input.rst2
-rw-r--r--Documentation/interconnect/interconnect.rst7
-rw-r--r--Documentation/iostats.txt4
-rw-r--r--Documentation/isdn/HiSax.cert96
-rw-r--r--Documentation/isdn/INTERFACE759
-rw-r--r--Documentation/isdn/INTERFACE.fax163
-rw-r--r--Documentation/isdn/README599
-rw-r--r--Documentation/isdn/README.FAQ26
-rw-r--r--Documentation/isdn/README.HiSax659
-rw-r--r--Documentation/isdn/README.audio138
-rw-r--r--Documentation/isdn/README.concap259
-rw-r--r--Documentation/isdn/README.diversion127
-rw-r--r--Documentation/isdn/README.fax45
-rw-r--r--Documentation/isdn/README.gigaset36
-rw-r--r--Documentation/isdn/README.hfc-pci41
-rw-r--r--Documentation/isdn/README.syncppp58
-rw-r--r--Documentation/isdn/README.x25184
-rw-r--r--Documentation/isdn/syncPPP.FAQ224
-rw-r--r--Documentation/kbuild/headers_install.rst (renamed from Documentation/kbuild/headers_install.txt)5
-rw-r--r--Documentation/kbuild/index.rst27
-rw-r--r--Documentation/kbuild/issues.rst11
-rw-r--r--Documentation/kbuild/kbuild.rst (renamed from Documentation/kbuild/kbuild.txt)119
-rw-r--r--Documentation/kbuild/kconfig-language.rst (renamed from Documentation/kbuild/kconfig-language.txt)242
-rw-r--r--Documentation/kbuild/kconfig-macro-language.rst (renamed from Documentation/kbuild/kconfig-macro-language.txt)37
-rw-r--r--Documentation/kbuild/kconfig.rst (renamed from Documentation/kbuild/kconfig.txt)136
-rw-r--r--Documentation/kbuild/makefiles.rst (renamed from Documentation/kbuild/makefiles.txt)530
-rw-r--r--Documentation/kbuild/modules.rst (renamed from Documentation/kbuild/modules.txt)170
-rw-r--r--Documentation/kdump/index.rst21
-rw-r--r--Documentation/kdump/kdump.rst (renamed from Documentation/kdump/kdump.txt)131
-rw-r--r--Documentation/kdump/vmcoreinfo.rst (renamed from Documentation/kdump/vmcoreinfo.txt)59
-rw-r--r--Documentation/kernel-hacking/hacking.rst4
-rw-r--r--Documentation/kernel-hacking/locking.rst6
-rw-r--r--Documentation/kernel-per-CPU-kthreads.txt2
-rw-r--r--Documentation/laptops/lg-laptop.rst2
-rw-r--r--Documentation/laptops/thinkpad-acpi.txt4
-rw-r--r--Documentation/leds/index.rst25
-rw-r--r--Documentation/leds/leds-blinkm.rst (renamed from Documentation/leds/leds-blinkm.txt)64
-rw-r--r--Documentation/leds/leds-class-flash.rst (renamed from Documentation/leds/leds-class-flash.txt)49
-rw-r--r--Documentation/leds/leds-class.rst (renamed from Documentation/leds/leds-class.txt)15
-rw-r--r--Documentation/leds/leds-lm3556.rst (renamed from Documentation/leds/leds-lm3556.txt)100
-rw-r--r--Documentation/leds/leds-lp3944.rst (renamed from Documentation/leds/leds-lp3944.txt)23
-rw-r--r--Documentation/leds/leds-lp5521.rst115
-rw-r--r--Documentation/leds/leds-lp5521.txt101
-rw-r--r--Documentation/leds/leds-lp5523.rst147
-rw-r--r--Documentation/leds/leds-lp5523.txt130
-rw-r--r--Documentation/leds/leds-lp5562.rst137
-rw-r--r--Documentation/leds/leds-lp5562.txt120
-rw-r--r--Documentation/leds/leds-lp55xx.rst224
-rw-r--r--Documentation/leds/leds-lp55xx.txt194
-rw-r--r--Documentation/leds/leds-mlxcpld.rst118
-rw-r--r--Documentation/leds/leds-mlxcpld.txt110
-rw-r--r--Documentation/leds/ledtrig-oneshot.rst (renamed from Documentation/leds/ledtrig-oneshot.txt)11
-rw-r--r--Documentation/leds/ledtrig-transient.rst (renamed from Documentation/leds/ledtrig-transient.txt)65
-rw-r--r--Documentation/leds/ledtrig-usbport.rst (renamed from Documentation/leds/ledtrig-usbport.txt)11
-rw-r--r--Documentation/leds/uleds.rst (renamed from Documentation/leds/uleds.txt)5
-rw-r--r--Documentation/locking/lockdep-design.txt112
-rw-r--r--Documentation/maintainer/index.rst1
-rw-r--r--Documentation/maintainer/rebasing-and-merging.rst226
-rw-r--r--Documentation/media/kapi/dtv-core.rst6
-rw-r--r--Documentation/media/kapi/v4l2-controls.rst206
-rw-r--r--Documentation/media/uapi/cec/cec-api.rst2
-rw-r--r--Documentation/media/uapi/cec/cec-ioc-g-mode.rst3
-rw-r--r--Documentation/media/uapi/cec/cec-ioc-receive.rst15
-rw-r--r--Documentation/media/uapi/mediactl/media-ioc-enum-links.rst7
-rw-r--r--Documentation/media/uapi/rc/rc-tables.rst30
-rw-r--r--Documentation/media/uapi/v4l/biblio.rst9
-rw-r--r--Documentation/media/uapi/v4l/ext-ctrls-codec.rst625
-rw-r--r--Documentation/media/uapi/v4l/extended-controls.rst15
-rw-r--r--Documentation/media/uapi/v4l/field-order.rst17
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-compressed.rst25
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst15
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-v4l2.rst13
-rw-r--r--Documentation/media/uapi/v4l/vidioc-qbuf.rst8
-rw-r--r--Documentation/media/uapi/v4l/vidioc-queryctrl.rst30
-rw-r--r--Documentation/media/v4l-drivers/index.rst1
-rw-r--r--Documentation/media/v4l-drivers/vimc.dot22
-rw-r--r--Documentation/media/v4l-drivers/vimc.rst98
-rw-r--r--Documentation/media/v4l-drivers/vivid.rst5
-rw-r--r--Documentation/media/videodev2.h.rst.exceptions5
-rw-r--r--Documentation/memory-barriers.txt4
-rw-r--r--Documentation/mic/index.rst18
-rw-r--r--Documentation/mic/mic_overview.rst (renamed from Documentation/mic/mic_overview.txt)6
-rw-r--r--Documentation/mic/scif_overview.rst (renamed from Documentation/mic/scif_overview.txt)58
-rw-r--r--Documentation/misc-devices/eeprom.rst (renamed from Documentation/misc-devices/eeprom)43
-rw-r--r--Documentation/misc-devices/ics932s401.rst (renamed from Documentation/misc-devices/ics932s401)7
-rw-r--r--Documentation/misc-devices/index.rst5
-rw-r--r--Documentation/misc-devices/isl29003.rst (renamed from Documentation/misc-devices/isl29003)15
-rw-r--r--Documentation/misc-devices/lis3lv02d.rst (renamed from Documentation/misc-devices/lis3lv02d)20
-rw-r--r--Documentation/misc-devices/max6875.rst (renamed from Documentation/misc-devices/max6875)52
-rw-r--r--Documentation/misc-devices/mei/mei-client-bus.txt141
-rw-r--r--Documentation/misc-devices/mei/mei.txt266
-rw-r--r--Documentation/netlabel/cipso_ipv4.rst (renamed from Documentation/netlabel/cipso_ipv4.txt)19
-rw-r--r--Documentation/netlabel/draft_ietf.rst5
-rw-r--r--Documentation/netlabel/index.rst21
-rw-r--r--Documentation/netlabel/introduction.rst (renamed from Documentation/netlabel/introduction.txt)16
-rw-r--r--Documentation/netlabel/lsm_interface.rst (renamed from Documentation/netlabel/lsm_interface.txt)16
-rw-r--r--Documentation/networking/af_xdp.rst24
-rw-r--r--Documentation/networking/device_drivers/amazon/ena.txt5
-rw-r--r--Documentation/networking/device_drivers/aquantia/atlantic.txt439
-rw-r--r--Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst4
-rw-r--r--Documentation/networking/device_drivers/google/gve.rst123
-rw-r--r--Documentation/networking/device_drivers/index.rst2
-rw-r--r--Documentation/networking/device_drivers/mellanox/mlx5.rst192
-rw-r--r--Documentation/networking/dsa/b53.rst183
-rw-r--r--Documentation/networking/dsa/configuration.rst292
-rw-r--r--Documentation/networking/dsa/dsa.rst4
-rw-r--r--Documentation/networking/dsa/index.rst2
-rw-r--r--Documentation/networking/dsa/sja1105.rst6
-rw-r--r--Documentation/networking/ip-sysctl.txt60
-rw-r--r--Documentation/networking/mpls-sysctl.txt2
-rw-r--r--Documentation/networking/phy.rst45
-rw-r--r--Documentation/networking/rds.txt2
-rw-r--r--Documentation/networking/sfp-phylink.rst5
-rw-r--r--Documentation/networking/timestamping.txt2
-rw-r--r--Documentation/networking/tls-offload.rst73
-rw-r--r--Documentation/nvdimm/nvdimm.txt4
-rw-r--r--Documentation/pcmcia/devicetable.rst (renamed from Documentation/pcmcia/devicetable.txt)4
-rw-r--r--Documentation/pcmcia/driver-changes.rst (renamed from Documentation/pcmcia/driver-changes.txt)35
-rw-r--r--Documentation/pcmcia/driver.rst (renamed from Documentation/pcmcia/driver.txt)18
-rw-r--r--Documentation/pcmcia/index.rst20
-rw-r--r--Documentation/pcmcia/locking.rst (renamed from Documentation/pcmcia/locking.txt)39
-rw-r--r--Documentation/platform/x86-laptop-drivers.txt18
-rw-r--r--Documentation/powerpc/firmware-assisted-dump.txt2
-rw-r--r--Documentation/powerpc/isa-versions.rst2
-rw-r--r--Documentation/process/4.Coding.rst2
-rw-r--r--Documentation/process/changes.rst22
-rw-r--r--Documentation/process/coding-style.rst2
-rw-r--r--Documentation/process/maintainer-pgp-guide.rst31
-rw-r--r--Documentation/process/submit-checklist.rst2
-rw-r--r--Documentation/pwm.txt7
-rw-r--r--Documentation/riscv/index.rst17
-rw-r--r--Documentation/riscv/pmu.rst (renamed from Documentation/riscv/pmu.txt)98
-rw-r--r--Documentation/s390/3270.rst (renamed from Documentation/s390/3270.txt)85
-rw-r--r--Documentation/s390/Debugging390.txt2142
-rw-r--r--Documentation/s390/cds.rst (renamed from Documentation/s390/cds.txt)368
-rw-r--r--Documentation/s390/common_io.rst (renamed from Documentation/s390/CommonIO)49
-rw-r--r--Documentation/s390/dasd.rst (renamed from Documentation/s390/DASD)33
-rw-r--r--Documentation/s390/debugging390.rst2613
-rw-r--r--Documentation/s390/driver-model.rst (renamed from Documentation/s390/driver-model.txt)179
-rw-r--r--Documentation/s390/index.rst30
-rw-r--r--Documentation/s390/monreader.rst (renamed from Documentation/s390/monreader.txt)85
-rw-r--r--Documentation/s390/qeth.rst (renamed from Documentation/s390/qeth.txt)36
-rw-r--r--Documentation/s390/s390dbf.rst487
-rw-r--r--Documentation/s390/s390dbf.txt667
-rw-r--r--Documentation/s390/text_files.rst11
-rw-r--r--Documentation/s390/vfio-ap.rst (renamed from Documentation/s390/vfio-ap.txt)499
-rw-r--r--Documentation/s390/vfio-ccw.rst (renamed from Documentation/s390/vfio-ccw.txt)92
-rw-r--r--Documentation/s390/zfcpdump.rst (renamed from Documentation/s390/zfcpdump.txt)2
-rw-r--r--Documentation/scheduler/completion.rst (renamed from Documentation/scheduler/completion.txt)38
-rw-r--r--Documentation/scheduler/index.rst29
-rw-r--r--Documentation/scheduler/sched-arch.rst (renamed from Documentation/scheduler/sched-arch.txt)18
-rw-r--r--Documentation/scheduler/sched-bwc.rst (renamed from Documentation/scheduler/sched-bwc.txt)30
-rw-r--r--Documentation/scheduler/sched-deadline.rst (renamed from Documentation/scheduler/sched-deadline.txt)313
-rw-r--r--Documentation/scheduler/sched-design-CFS.rst (renamed from Documentation/scheduler/sched-design-CFS.txt)17
-rw-r--r--Documentation/scheduler/sched-domains.rst (renamed from Documentation/scheduler/sched-domains.txt)8
-rw-r--r--Documentation/scheduler/sched-energy.rst (renamed from Documentation/scheduler/sched-energy.txt)47
-rw-r--r--Documentation/scheduler/sched-nice-design.rst (renamed from Documentation/scheduler/sched-nice-design.txt)6
-rw-r--r--Documentation/scheduler/sched-pelt.c3
-rw-r--r--Documentation/scheduler/sched-rt-group.rst (renamed from Documentation/scheduler/sched-rt-group.txt)30
-rw-r--r--Documentation/scheduler/sched-stats.rst (renamed from Documentation/scheduler/sched-stats.txt)35
-rw-r--r--Documentation/scheduler/text_files.rst5
-rw-r--r--Documentation/scsi/osst.txt218
-rw-r--r--Documentation/scsi/ufs.txt7
-rw-r--r--Documentation/security/IMA-templates.rst7
-rw-r--r--Documentation/security/keys/core.rst107
-rw-r--r--Documentation/security/keys/request-key.rst50
-rw-r--r--Documentation/security/keys/trusted-encrypted.rst4
-rw-r--r--Documentation/sphinx/automarkup.py101
-rw-r--r--Documentation/sphinx/cdomain.py5
-rw-r--r--Documentation/sphinx/requirements.txt4
-rw-r--r--Documentation/sysctl/kernel.txt20
-rw-r--r--Documentation/target/index.rst19
-rw-r--r--Documentation/target/scripts.rst11
-rw-r--r--Documentation/target/tcm_mod_builder.rst149
-rw-r--r--Documentation/target/tcm_mod_builder.txt145
-rw-r--r--Documentation/target/tcmu-design.rst (renamed from Documentation/target/tcmu-design.txt)272
-rw-r--r--Documentation/tee.txt2
-rw-r--r--Documentation/timers/highres.rst (renamed from Documentation/timers/highres.txt)13
-rw-r--r--Documentation/timers/hpet.rst (renamed from Documentation/timers/hpet.txt)4
-rw-r--r--Documentation/timers/hrtimers.rst (renamed from Documentation/timers/hrtimers.txt)6
-rw-r--r--Documentation/timers/index.rst22
-rw-r--r--Documentation/timers/no_hz.rst (renamed from Documentation/timers/NO_HZ.txt)40
-rw-r--r--Documentation/timers/timekeeping.rst (renamed from Documentation/timers/timekeeping.txt)3
-rw-r--r--Documentation/timers/timers-howto.rst (renamed from Documentation/timers/timers-howto.txt)15
-rw-r--r--Documentation/trace/coresight.txt82
-rw-r--r--Documentation/trace/histogram.rst10
-rw-r--r--Documentation/trace/kprobetrace.rst7
-rw-r--r--Documentation/trace/uprobetracer.rst7
-rw-r--r--Documentation/translations/it_IT/admin-guide/kernel-parameters.rst12
-rw-r--r--Documentation/translations/it_IT/doc-guide/sphinx.rst17
-rw-r--r--Documentation/translations/it_IT/kernel-hacking/hacking.rst4
-rw-r--r--Documentation/translations/it_IT/kernel-hacking/locking.rst6
-rw-r--r--Documentation/translations/it_IT/process/4.Coding.rst2
-rw-r--r--Documentation/translations/it_IT/process/adding-syscalls.rst2
-rw-r--r--Documentation/translations/it_IT/process/coding-style.rst2
-rw-r--r--Documentation/translations/it_IT/process/howto.rst2
-rw-r--r--Documentation/translations/it_IT/process/license-rules.rst28
-rw-r--r--Documentation/translations/it_IT/process/magic-number.rst2
-rw-r--r--Documentation/translations/it_IT/process/stable-kernel-rules.rst4
-rw-r--r--Documentation/translations/it_IT/process/submit-checklist.rst2
-rw-r--r--Documentation/translations/ko_KR/memory-barriers.txt4
-rw-r--r--Documentation/translations/zh_CN/arm64/booting.txt6
-rw-r--r--Documentation/translations/zh_CN/arm64/legacy_instructions.txt4
-rw-r--r--Documentation/translations/zh_CN/arm64/memory.txt4
-rw-r--r--Documentation/translations/zh_CN/arm64/silicon-errata.txt4
-rw-r--r--Documentation/translations/zh_CN/arm64/tagged-pointers.txt4
-rw-r--r--Documentation/translations/zh_CN/basic_profiling.txt71
-rw-r--r--Documentation/translations/zh_CN/oops-tracing.txt2
-rw-r--r--Documentation/translations/zh_CN/process/4.Coding.rst4
-rw-r--r--Documentation/translations/zh_CN/process/coding-style.rst2
-rw-r--r--Documentation/translations/zh_CN/process/management-style.rst4
-rw-r--r--Documentation/translations/zh_CN/process/programming-language.rst59
-rw-r--r--Documentation/translations/zh_CN/process/submit-checklist.rst2
-rw-r--r--Documentation/translations/zh_CN/process/submitting-drivers.rst2
-rw-r--r--Documentation/usb/acm.rst (renamed from Documentation/usb/acm.txt)0
-rw-r--r--Documentation/usb/authorization.rst (renamed from Documentation/usb/authorization.txt)0
-rw-r--r--Documentation/usb/chipidea.rst (renamed from Documentation/usb/chipidea.txt)0
-rw-r--r--Documentation/usb/dwc3.rst (renamed from Documentation/usb/dwc3.txt)0
-rw-r--r--Documentation/usb/ehci.rst (renamed from Documentation/usb/ehci.txt)0
-rw-r--r--Documentation/usb/functionfs.rst (renamed from Documentation/usb/functionfs.txt)0
-rw-r--r--Documentation/usb/gadget-testing.rst (renamed from Documentation/usb/gadget-testing.txt)4
-rw-r--r--Documentation/usb/gadget_configfs.rst (renamed from Documentation/usb/gadget_configfs.txt)0
-rw-r--r--Documentation/usb/gadget_hid.rst (renamed from Documentation/usb/gadget_hid.txt)0
-rw-r--r--Documentation/usb/gadget_multi.rst (renamed from Documentation/usb/gadget_multi.txt)0
-rw-r--r--Documentation/usb/gadget_printer.rst (renamed from Documentation/usb/gadget_printer.txt)0
-rw-r--r--Documentation/usb/gadget_serial.rst (renamed from Documentation/usb/gadget_serial.txt)0
-rw-r--r--Documentation/usb/index.rst39
-rw-r--r--Documentation/usb/iuu_phoenix.rst (renamed from Documentation/usb/iuu_phoenix.txt)0
-rw-r--r--Documentation/usb/mass-storage.rst (renamed from Documentation/usb/mass-storage.txt)0
-rw-r--r--Documentation/usb/misc_usbsevseg.rst (renamed from Documentation/usb/misc_usbsevseg.txt)0
-rw-r--r--Documentation/usb/mtouchusb.rst (renamed from Documentation/usb/mtouchusb.txt)0
-rw-r--r--Documentation/usb/ohci.rst (renamed from Documentation/usb/ohci.txt)0
-rw-r--r--Documentation/usb/rio.rst (renamed from Documentation/usb/rio.txt)0
-rw-r--r--Documentation/usb/text_files.rst29
-rw-r--r--Documentation/usb/usb-help.rst (renamed from Documentation/usb/usb-help.txt)0
-rw-r--r--Documentation/usb/usb-serial.rst (renamed from Documentation/usb/usb-serial.txt)0
-rw-r--r--Documentation/usb/usbip_protocol.rst (renamed from Documentation/usb/usbip_protocol.txt)0
-rw-r--r--Documentation/usb/usbmon.rst (renamed from Documentation/usb/usbmon.txt)0
-rw-r--r--Documentation/usb/wusb-design-overview.rst (renamed from Documentation/usb/WUSB-Design-overview.txt)0
-rw-r--r--Documentation/userspace-api/spec_ctrl.rst2
-rw-r--r--Documentation/virtual/kvm/amd-memory-encryption.rst3
-rw-r--r--Documentation/virtual/kvm/api.txt50
-rw-r--r--Documentation/virtual/kvm/devices/arm-vgic-its.txt2
-rw-r--r--Documentation/vm/hwpoison.rst52
-rw-r--r--Documentation/vm/numa.rst6
-rw-r--r--Documentation/vm/page_migration.rst2
-rw-r--r--Documentation/vm/unevictable-lru.rst2
-rw-r--r--Documentation/watchdog/convert_drivers_to_kernel_api.rst (renamed from Documentation/watchdog/convert_drivers_to_kernel_api.txt)109
-rw-r--r--Documentation/watchdog/hpwdt.rst (renamed from Documentation/watchdog/hpwdt.txt)27
-rw-r--r--Documentation/watchdog/index.rst25
-rw-r--r--Documentation/watchdog/mlx-wdt.rst (renamed from Documentation/watchdog/mlx-wdt.txt)24
-rw-r--r--Documentation/watchdog/pcwd-watchdog.rst (renamed from Documentation/watchdog/pcwd-watchdog.txt)13
-rw-r--r--Documentation/watchdog/watchdog-api.rst (renamed from Documentation/watchdog/watchdog-api.txt)76
-rw-r--r--Documentation/watchdog/watchdog-kernel-api.rst (renamed from Documentation/watchdog/watchdog-kernel-api.txt)91
-rw-r--r--Documentation/watchdog/watchdog-parameters.rst736
-rw-r--r--Documentation/watchdog/watchdog-parameters.txt410
-rw-r--r--Documentation/watchdog/watchdog-pm.rst (renamed from Documentation/watchdog/watchdog-pm.txt)3
-rw-r--r--Documentation/watchdog/wdt.rst (renamed from Documentation/watchdog/wdt.txt)31
-rw-r--r--Documentation/x86/exception-tables.rst2
-rw-r--r--Documentation/x86/index.rst1
-rw-r--r--Documentation/x86/resctrl_ui.rst30
-rw-r--r--Documentation/x86/topology.rst4
-rw-r--r--Documentation/x86/x86_64/5level-paging.rst2
-rw-r--r--Documentation/x86/x86_64/boot-options.rst4
-rw-r--r--Documentation/x86/x86_64/fake-numa-for-cpusets.rst6
-rw-r--r--Documentation/xilinx/eemi.rst (renamed from Documentation/xilinx/eemi.txt)8
-rw-r--r--Documentation/xilinx/index.rst17
731 files changed, 29757 insertions, 22180 deletions
diff --git a/Documentation/ABI/testing/debugfs-cec-error-inj b/Documentation/ABI/testing/debugfs-cec-error-inj
index 122b65c5fe62..4c3596c6d25b 100644
--- a/Documentation/ABI/testing/debugfs-cec-error-inj
+++ b/Documentation/ABI/testing/debugfs-cec-error-inj
@@ -1,6 +1,6 @@
What: /sys/kernel/debug/cec/*/error-inj
Date: March 2018
-Contact: Hans Verkuil <hans.verkuil@cisco.com>
+Contact: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Description:
The CEC Framework allows for CEC error injection commands through
diff --git a/Documentation/ABI/testing/debugfs-cros-ec b/Documentation/ABI/testing/debugfs-cros-ec
new file mode 100644
index 000000000000..1fe0add99a2a
--- /dev/null
+++ b/Documentation/ABI/testing/debugfs-cros-ec
@@ -0,0 +1,56 @@
+What: /sys/kernel/debug/<cros-ec-device>/console_log
+Date: September 2017
+KernelVersion: 4.13
+Description:
+ If the EC supports the CONSOLE_READ command type, this file
+ can be used to grab the EC logs. The kernel polls for the log
+ and keeps its own buffer but userspace should grab this and
+ write it out to some logs.
+
+What: /sys/kernel/debug/<cros-ec-device>/panicinfo
+Date: September 2017
+KernelVersion: 4.13
+Description:
+ This file dumps the EC panic information from the previous
+ reboot. This file will only exist if the PANIC_INFO command
+ type is supported by the EC.
+
+What: /sys/kernel/debug/<cros-ec-device>/pdinfo
+Date: June 2018
+KernelVersion: 4.17
+Description:
+ This file provides the port role, muxes and power debug
+ information for all the USB PD/type-C ports available. If
+ the are no ports available, this file will be just an empty
+ file.
+
+What: /sys/kernel/debug/<cros-ec-device>/uptime
+Date: June 2019
+KernelVersion: 5.3
+Description:
+ A u32 providing the time since EC booted in ms. This is
+ is used for synchronizing the AP host time with the EC
+ log. An error is returned if the command is not supported
+ by the EC or there is a communication problem.
+
+What: /sys/kernel/debug/<cros-ec-device>/last_resume_result
+Date: June 2019
+KernelVersion: 5.3
+Description:
+ Some ECs have a feature where they will track transitions to
+ the (Intel) processor's SLP_S0 line, in order to detect cases
+ where a system failed to go into S0ix. When the system resumes,
+ an EC with this feature will return a summary of SLP_S0
+ transitions that occurred. The last_resume_result file returns
+ the most recent response from the AP's resume message to the EC.
+
+ The bottom 31 bits contain a count of the number of SLP_S0
+ transitions that occurred since the suspend message was
+ received. Bit 31 is set if the EC attempted to wake the
+ system due to a timeout when watching for SLP_S0 transitions.
+ Callers can use this to detect a wake from the EC due to
+ S0ix timeouts. The result will be zero if no suspend
+ transitions have been attempted, or the EC does not support
+ this feature.
+
+ Output will be in the format: "0x%08x\n".
diff --git a/Documentation/ABI/testing/debugfs-driver-habanalabs b/Documentation/ABI/testing/debugfs-driver-habanalabs
index 2f5b80be07a3..f0ac14b70ecb 100644
--- a/Documentation/ABI/testing/debugfs-driver-habanalabs
+++ b/Documentation/ABI/testing/debugfs-driver-habanalabs
@@ -3,7 +3,10 @@ Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
Description: Sets the device address to be used for read or write through
- PCI bar. The acceptable value is a string that starts with "0x"
+ PCI bar, or the device VA of a host mapped memory to be read or
+ written directly from the host. The latter option is allowed
+ only when the IOMMU is disabled.
+ The acceptable value is a string that starts with "0x"
What: /sys/kernel/debug/habanalabs/hl<n>/command_buffers
Date: Jan 2019
@@ -33,10 +36,12 @@ Contact: oded.gabbay@gmail.com
Description: Allows the root user to read or write directly through the
device's PCI bar. Writing to this file generates a write
transaction while reading from the file generates a read
- transcation. This custom interface is needed (instead of using
+ transaction. This custom interface is needed (instead of using
the generic Linux user-space PCI mapping) because the DDR bar
is very small compared to the DDR memory and only the driver can
- move the bar before and after the transaction
+ move the bar before and after the transaction.
+ If the IOMMU is disabled, it also allows the root user to read
+ or write from the host a device VA of a host mapped memory
What: /sys/kernel/debug/habanalabs/hl<n>/device
Date: Jan 2019
@@ -46,6 +51,13 @@ Description: Enables the root user to set the device to specific state.
Valid values are "disable", "enable", "suspend", "resume".
User can read this property to see the valid values
+What: /sys/kernel/debug/habanalabs/hl<n>/engines
+Date: Jul 2019
+KernelVersion: 5.3
+Contact: oded.gabbay@gmail.com
+Description: Displays the status registers values of the device engines and
+ their derived idle status
+
What: /sys/kernel/debug/habanalabs/hl<n>/i2c_addr
Date: Jan 2019
KernelVersion: 5.1
diff --git a/Documentation/ABI/testing/debugfs-wilco-ec b/Documentation/ABI/testing/debugfs-wilco-ec
index 73a5a66ddca6..9d8d9d2def5b 100644
--- a/Documentation/ABI/testing/debugfs-wilco-ec
+++ b/Documentation/ABI/testing/debugfs-wilco-ec
@@ -23,11 +23,9 @@ Description:
For writing, bytes 0-1 indicate the message type, one of enum
wilco_ec_msg_type. Byte 2+ consist of the data passed in the
- request, starting at MBOX[0]
-
- At least three bytes are required for writing, two for the type
- and at least a single byte of data. Only the first
- EC_MAILBOX_DATA_SIZE bytes of MBOX will be used.
+ request, starting at MBOX[0]. At least three bytes are required
+ for writing, two for the type and at least a single byte of
+ data.
Example:
// Request EC info type 3 (EC firmware build date)
@@ -40,7 +38,7 @@ Description:
$ cat /sys/kernel/debug/wilco_ec/raw
00 00 31 32 2f 32 31 2f 31 38 00 38 00 01 00 2f 00 ..12/21/18.8...
- Note that the first 32 bytes of the received MBOX[] will be
- printed, even if some of the data is junk. It is up to you to
- know how many of the first bytes of data are the actual
- response.
+ Note that the first 16 bytes of the received MBOX[] will be
+ printed, even if some of the data is junk, and skipping bytes
+ 17 to 32. It is up to you to know how many of the first bytes of
+ data are the actual response.
diff --git a/Documentation/ABI/testing/ima_policy b/Documentation/ABI/testing/ima_policy
index 74c6702de74e..fc376a323908 100644
--- a/Documentation/ABI/testing/ima_policy
+++ b/Documentation/ABI/testing/ima_policy
@@ -24,11 +24,11 @@ Description:
[euid=] [fowner=] [fsname=]]
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
- option: [[appraise_type=]] [permit_directio]
-
+ option: [[appraise_type=]] [template=] [permit_directio]
base: func:= [BPRM_CHECK][MMAP_CHECK][CREDS_CHECK][FILE_CHECK][MODULE_CHECK]
[FIRMWARE_CHECK]
[KEXEC_KERNEL_CHECK] [KEXEC_INITRAMFS_CHECK]
+ [KEXEC_CMDLINE]
mask:= [[^]MAY_READ] [[^]MAY_WRITE] [[^]MAY_APPEND]
[[^]MAY_EXEC]
fsmagic:= hex value
@@ -38,6 +38,8 @@ Description:
fowner:= decimal value
lsm: are LSM specific
option: appraise_type:= [imasig]
+ template:= name of a defined IMA template type
+ (eg, ima-ng). Only valid when action is "measure".
pcr:= decimal value
default policy:
diff --git a/Documentation/ABI/testing/procfs-smaps_rollup b/Documentation/ABI/testing/procfs-smaps_rollup
index 0a54ed0d63c9..274df44d8b1b 100644
--- a/Documentation/ABI/testing/procfs-smaps_rollup
+++ b/Documentation/ABI/testing/procfs-smaps_rollup
@@ -3,18 +3,28 @@ Date: August 2017
Contact: Daniel Colascione <dancol@google.com>
Description:
This file provides pre-summed memory information for a
- process. The format is identical to /proc/pid/smaps,
+ process. The format is almost identical to /proc/pid/smaps,
except instead of an entry for each VMA in a process,
smaps_rollup has a single entry (tagged "[rollup]")
for which each field is the sum of the corresponding
fields from all the maps in /proc/pid/smaps.
- For more details, see the procfs man page.
+ Additionally, the fields Pss_Anon, Pss_File and Pss_Shmem
+ are not present in /proc/pid/smaps. These fields represent
+ the sum of the Pss field of each type (anon, file, shmem).
+ For more details, see Documentation/filesystems/proc.txt
+ and the procfs man page.
Typical output looks like this:
00100000-ff709000 ---p 00000000 00:00 0 [rollup]
+ Size: 1192 kB
+ KernelPageSize: 4 kB
+ MMUPageSize: 4 kB
Rss: 884 kB
Pss: 385 kB
+ Pss_Anon: 301 kB
+ Pss_File: 80 kB
+ Pss_Shmem: 4 kB
Shared_Clean: 696 kB
Shared_Dirty: 0 kB
Private_Clean: 120 kB
diff --git a/Documentation/ABI/testing/sysfs-bus-css b/Documentation/ABI/testing/sysfs-bus-css
index 2979c40c10e9..966f8504bd7b 100644
--- a/Documentation/ABI/testing/sysfs-bus-css
+++ b/Documentation/ABI/testing/sysfs-bus-css
@@ -33,3 +33,26 @@ Description: Contains the PIM/PAM/POM values, as reported by the
in sync with the values current in the channel subsystem).
Note: This is an I/O-subchannel specific attribute.
Users: s390-tools, HAL
+
+What: /sys/bus/css/devices/.../driver_override
+Date: June 2019
+Contact: Cornelia Huck <cohuck@redhat.com>
+ linux-s390@vger.kernel.org
+Description: This file allows the driver for a device to be specified. When
+ specified, only a driver with a name matching the value written
+ to driver_override will have an opportunity to bind to the
+ device. The override is specified by writing a string to the
+ driver_override file (echo vfio-ccw > driver_override) and
+ may be cleared with an empty string (echo > driver_override).
+ This returns the device to standard matching rules binding.
+ Writing to driver_override does not automatically unbind the
+ device from its current driver or make any attempt to
+ automatically load the specified driver. If no driver with a
+ matching name is currently loaded in the kernel, the device
+ will not bind to any driver. This also allows devices to
+ opt-out of driver binding using a driver_override name such as
+ "none". Only a single driver may be specified in the override,
+ there is no support for parsing delimiters.
+ Note that unlike the mechanism of the same name for pci, this
+ file does not allow to override basic matching rules. I.e.,
+ the driver must still match the subchannel type of the device.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio b/Documentation/ABI/testing/sysfs-bus-iio
index 6aef7dbbde44..680451695422 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio
+++ b/Documentation/ABI/testing/sysfs-bus-iio
@@ -61,8 +61,11 @@ What: /sys/bus/iio/devices/triggerX/sampling_frequency_available
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
- When the internal sampling clock can only take a small
- discrete set of values, this file lists those available.
+ When the internal sampling clock can only take a specific set of
+ frequencies, we can specify the available values with:
+ - a small discrete set of values like "0 2 4 6 8"
+ - a range with minimum, step and maximum frequencies like
+ "[min step max]"
What: /sys/bus/iio/devices/iio:deviceX/oversampling_ratio
KernelVersion: 2.6.38
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-cros-ec b/Documentation/ABI/testing/sysfs-bus-iio-cros-ec
index 0e95c2ca105c..6158f831c761 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-cros-ec
+++ b/Documentation/ABI/testing/sysfs-bus-iio-cros-ec
@@ -18,11 +18,11 @@ Description:
values are 'base' and 'lid'.
What: /sys/bus/iio/devices/iio:deviceX/id
-Date: Septembre 2017
+Date: September 2017
KernelVersion: 4.14
Contact: linux-iio@vger.kernel.org
Description:
- This attribute is exposed by the CrOS EC legacy accelerometer
- driver and represents the sensor ID as exposed by the EC. This
- ID is used by the Android sensor service hardware abstraction
- layer (sensor HAL) through the Android container on ChromeOS.
+ This attribute is exposed by the CrOS EC sensors driver and
+ represents the sensor ID as exposed by the EC. This ID is used
+ by the Android sensor service hardware abstraction layer (sensor
+ HAL) through the Android container on ChromeOS.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-frequency-adf4371 b/Documentation/ABI/testing/sysfs-bus-iio-frequency-adf4371
new file mode 100644
index 000000000000..302de64cb424
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-iio-frequency-adf4371
@@ -0,0 +1,44 @@
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_frequency
+KernelVersion:
+Contact: linux-iio@vger.kernel.org
+Description:
+ Stores the PLL frequency in Hz for channel Y.
+ Reading returns the actual frequency in Hz.
+ The ADF4371 has an integrated VCO with fundamendal output
+ frequency ranging from 4000000000 Hz 8000000000 Hz.
+
+ out_altvoltage0_frequency:
+ A divide by 1, 2, 4, 8, 16, 32 or circuit generates
+ frequencies from 62500000 Hz to 8000000000 Hz.
+ out_altvoltage1_frequency:
+ This channel duplicates the channel 0 frequency
+ out_altvoltage2_frequency:
+ A frequency doubler generates frequencies from
+ 8000000000 Hz to 16000000000 Hz.
+ out_altvoltage3_frequency:
+ A frequency quadrupler generates frequencies from
+ 16000000000 Hz to 32000000000 Hz.
+
+ Note: writes to one of the channels will affect the frequency of
+ all the other channels, since it involves changing the VCO
+ fundamental output frequency.
+
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_name
+KernelVersion:
+Contact: linux-iio@vger.kernel.org
+Description:
+ Reading returns the datasheet name for channel Y:
+
+ out_altvoltage0_name: RF8x
+ out_altvoltage1_name: RFAUX8x
+ out_altvoltage2_name: RF16x
+ out_altvoltage3_name: RF32x
+
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_powerdown
+KernelVersion:
+Contact: linux-iio@vger.kernel.org
+Description:
+ This attribute allows the user to power down the PLL and it's
+ RFOut buffers.
+ Writing 1 causes the specified channel to power down.
+ Clearing returns to normal operation.
diff --git a/Documentation/ABI/testing/sysfs-bus-siox b/Documentation/ABI/testing/sysfs-bus-siox
index fed7c3765a4e..c2a403f20b90 100644
--- a/Documentation/ABI/testing/sysfs-bus-siox
+++ b/Documentation/ABI/testing/sysfs-bus-siox
@@ -1,6 +1,6 @@
What: /sys/bus/siox/devices/siox-X/active
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
On reading represents the current state of the bus. If it
contains a "0" the bus is stopped and connected devices are
@@ -12,7 +12,7 @@ Description:
What: /sys/bus/siox/devices/siox-X/device_add
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Write-only file. Write
@@ -27,13 +27,13 @@ Description:
What: /sys/bus/siox/devices/siox-X/device_remove
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Write-only file. A single write removes the last device in the siox chain.
What: /sys/bus/siox/devices/siox-X/poll_interval_ns
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Defines the interval between two poll cycles in nano seconds.
Note this is rounded to jiffies on writing. On reading the current value
@@ -41,33 +41,33 @@ Description:
What: /sys/bus/siox/devices/siox-X-Y/connected
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value. "0" means the Yth device on siox bus X isn't "connected" i.e.
communication with it is not ensured. "1" signals a working connection.
What: /sys/bus/siox/devices/siox-X-Y/inbytes
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting the inbytes value provided to siox-X/device_add
What: /sys/bus/siox/devices/siox-X-Y/status_errors
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Counts the number of time intervals when the read status byte doesn't yield the
expected value.
What: /sys/bus/siox/devices/siox-X-Y/type
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting the type value provided to siox-X/device_add.
What: /sys/bus/siox/devices/siox-X-Y/watchdog
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting if the watchdog of the siox device is
active. "0" means the watchdog is not active and the device is expected to
@@ -75,13 +75,13 @@ Description:
What: /sys/bus/siox/devices/siox-X-Y/watchdog_errors
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting the number to time intervals when the
watchdog was active.
What: /sys/bus/siox/devices/siox-X-Y/outbytes
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting the outbytes value provided to siox-X/device_add.
diff --git a/Documentation/ABI/testing/sysfs-class-net-phydev b/Documentation/ABI/testing/sysfs-class-net-phydev
index 2a5723343aba..206cbf538b59 100644
--- a/Documentation/ABI/testing/sysfs-class-net-phydev
+++ b/Documentation/ABI/testing/sysfs-class-net-phydev
@@ -41,3 +41,11 @@ Description:
xgmii, moca, qsgmii, trgmii, 1000base-x, 2500base-x, rxaui,
xaui, 10gbase-kr, unknown
+What: /sys/class/mdio_bus/<bus>/<device>/phy_standalone
+Date: May 2019
+KernelVersion: 5.3
+Contact: netdev@vger.kernel.org
+Description:
+ Boolean value indicating whether the PHY device is used in
+ standalone mode, without a net_device associated, by PHYLINK.
+ Attribute created only when this is the case.
diff --git a/Documentation/ABI/testing/sysfs-class-net-qmi b/Documentation/ABI/testing/sysfs-class-net-qmi
index 7122d6264c49..c310db4ccbc2 100644
--- a/Documentation/ABI/testing/sysfs-class-net-qmi
+++ b/Documentation/ABI/testing/sysfs-class-net-qmi
@@ -29,7 +29,7 @@ Contact: Bjørn Mork <bjorn@mork.no>
Description:
Unsigned integer.
- Write a number ranging from 1 to 127 to add a qmap mux
+ Write a number ranging from 1 to 254 to add a qmap mux
based network device, supported by recent Qualcomm based
modems.
@@ -46,5 +46,5 @@ Contact: Bjørn Mork <bjorn@mork.no>
Description:
Unsigned integer.
- Write a number ranging from 1 to 127 to delete a previously
+ Write a number ranging from 1 to 254 to delete a previously
created qmap mux based network device.
diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu
index 1528239f69b2..d404603c6b52 100644
--- a/Documentation/ABI/testing/sysfs-devices-system-cpu
+++ b/Documentation/ABI/testing/sysfs-devices-system-cpu
@@ -137,7 +137,8 @@ Description: Discover cpuidle policy and mechanism
current_governor: (RW) displays current idle policy. Users can
switch the governor at runtime by writing to this file.
- See files in Documentation/cpuidle/ for more information.
+ See Documentation/admin-guide/pm/cpuidle.rst and
+ Documentation/driver-api/pm/cpuidle.rst for more information.
What: /sys/devices/system/cpu/cpuX/cpuidle/stateN/name
@@ -538,3 +539,26 @@ Description: Intel Energy and Performance Bias Hint (EPB)
This attribute is present for all online CPUs supporting the
Intel EPB feature.
+
+What: /sys/devices/system/cpu/umwait_control
+ /sys/devices/system/cpu/umwait_control/enable_c02
+ /sys/devices/system/cpu/umwait_control/max_time
+Date: May 2019
+Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
+Description: Umwait control
+
+ enable_c02: Read/write interface to control umwait C0.2 state
+ Read returns C0.2 state status:
+ 0: C0.2 is disabled
+ 1: C0.2 is enabled
+
+ Write 'y' or '1' or 'on' to enable C0.2 state.
+ Write 'n' or '0' or 'off' to disable C0.2 state.
+
+ The interface is case insensitive.
+
+ max_time: Read/write interface to control umwait maximum time
+ in TSC-quanta that the CPU can reside in either C0.1
+ or C0.2 state. The time is an unsigned 32-bit number.
+ Note that a value of zero means there is no limit.
+ Low order two bits must be zero.
diff --git a/Documentation/ABI/testing/sysfs-driver-habanalabs b/Documentation/ABI/testing/sysfs-driver-habanalabs
index 78b2bcf316a3..f433fc6db3c6 100644
--- a/Documentation/ABI/testing/sysfs-driver-habanalabs
+++ b/Documentation/ABI/testing/sysfs-driver-habanalabs
@@ -62,18 +62,20 @@ What: /sys/class/habanalabs/hl<n>/ic_clk
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Allows the user to set the maximum clock frequency of the
- Interconnect fabric. Writes to this parameter affect the device
- only when the power management profile is set to "manual" mode.
- The device IC clock might be set to lower value then the
+Description: Allows the user to set the maximum clock frequency, in Hz, of
+ the Interconnect fabric. Writes to this parameter affect the
+ device only when the power management profile is set to "manual"
+ mode. The device IC clock might be set to lower value than the
maximum. The user should read the ic_clk_curr to see the actual
- frequency value of the IC
+ frequency value of the IC. This property is valid only for the
+ Goya ASIC family
What: /sys/class/habanalabs/hl<n>/ic_clk_curr
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Displays the current clock frequency of the Interconnect fabric
+Description: Displays the current clock frequency, in Hz, of the Interconnect
+ fabric. This property is valid only for the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/infineon_ver
Date: Jan 2019
@@ -92,18 +94,20 @@ What: /sys/class/habanalabs/hl<n>/mme_clk
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Allows the user to set the maximum clock frequency of the
- MME compute engine. Writes to this parameter affect the device
- only when the power management profile is set to "manual" mode.
- The device MME clock might be set to lower value then the
+Description: Allows the user to set the maximum clock frequency, in Hz, of
+ the MME compute engine. Writes to this parameter affect the
+ device only when the power management profile is set to "manual"
+ mode. The device MME clock might be set to lower value than the
maximum. The user should read the mme_clk_curr to see the actual
- frequency value of the MME
+ frequency value of the MME. This property is valid only for the
+ Goya ASIC family
What: /sys/class/habanalabs/hl<n>/mme_clk_curr
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Displays the current clock frequency of the MME compute engine
+Description: Displays the current clock frequency, in Hz, of the MME compute
+ engine. This property is valid only for the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/pci_addr
Date: Jan 2019
@@ -163,18 +167,20 @@ What: /sys/class/habanalabs/hl<n>/tpc_clk
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Allows the user to set the maximum clock frequency of the
- TPC compute engines. Writes to this parameter affect the device
- only when the power management profile is set to "manual" mode.
- The device TPC clock might be set to lower value then the
+Description: Allows the user to set the maximum clock frequency, in Hz, of
+ the TPC compute engines. Writes to this parameter affect the
+ device only when the power management profile is set to "manual"
+ mode. The device TPC clock might be set to lower value than the
maximum. The user should read the tpc_clk_curr to see the actual
- frequency value of the TPC
+ frequency value of the TPC. This property is valid only for
+ Goya ASIC family
What: /sys/class/habanalabs/hl<n>/tpc_clk_curr
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Displays the current clock frequency of the TPC compute engines
+Description: Displays the current clock frequency, in Hz, of the TPC compute
+ engines. This property is valid only for the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/uboot_ver
Date: Jan 2019
diff --git a/Documentation/ABI/testing/sysfs-kernel-iommu_groups b/Documentation/ABI/testing/sysfs-kernel-iommu_groups
index 35c64e00b35c..017f5bc3920c 100644
--- a/Documentation/ABI/testing/sysfs-kernel-iommu_groups
+++ b/Documentation/ABI/testing/sysfs-kernel-iommu_groups
@@ -24,3 +24,12 @@ Description: /sys/kernel/iommu_groups/reserved_regions list IOVA
region is described on a single line: the 1st field is
the base IOVA, the second is the end IOVA and the third
field describes the type of the region.
+
+What: /sys/kernel/iommu_groups/reserved_regions
+Date: June 2019
+KernelVersion: v5.3
+Contact: Eric Auger <eric.auger@redhat.com>
+Description: In case an RMRR is used only by graphics or USB devices
+ it is now exposed as "direct-relaxable" instead of "direct".
+ In device assignment use case, for instance, those RMRR
+ are considered to be relaxable and safe.
diff --git a/Documentation/ABI/testing/sysfs-kernel-uids b/Documentation/ABI/testing/sysfs-kernel-uids
index 28f14695a852..4182b7061816 100644
--- a/Documentation/ABI/testing/sysfs-kernel-uids
+++ b/Documentation/ABI/testing/sysfs-kernel-uids
@@ -11,4 +11,4 @@ Description:
example would be, if User A has shares = 1024 and user
B has shares = 2048, User B will get twice the CPU
bandwidth user A will. For more details refer
- Documentation/scheduler/sched-design-CFS.txt
+ Documentation/scheduler/sched-design-CFS.rst
diff --git a/Documentation/ABI/testing/sysfs-platform-wilco-ec b/Documentation/ABI/testing/sysfs-platform-wilco-ec
new file mode 100644
index 000000000000..8827a734f933
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-platform-wilco-ec
@@ -0,0 +1,40 @@
+What: /sys/bus/platform/devices/GOOG000C\:00/boot_on_ac
+Date: April 2019
+KernelVersion: 5.3
+Description:
+ Boot on AC is a policy which makes the device boot from S5
+ when AC power is connected. This is useful for users who
+ want to run their device headless or with a dock.
+
+ Input should be parseable by kstrtou8() to 0 or 1.
+
+What: /sys/bus/platform/devices/GOOG000C\:00/build_date
+Date: May 2019
+KernelVersion: 5.3
+Description:
+ Display Wilco Embedded Controller firmware build date.
+ Output will a MM/DD/YY string.
+
+What: /sys/bus/platform/devices/GOOG000C\:00/build_revision
+Date: May 2019
+KernelVersion: 5.3
+Description:
+ Display Wilco Embedded Controller build revision.
+ Output will a version string be similar to the example below:
+ d2592cae0
+
+What: /sys/bus/platform/devices/GOOG000C\:00/model_number
+Date: May 2019
+KernelVersion: 5.3
+Description:
+ Display Wilco Embedded Controller model number.
+ Output will a version string be similar to the example below:
+ 08B6
+
+What: /sys/bus/platform/devices/GOOG000C\:00/version
+Date: May 2019
+KernelVersion: 5.3
+Description:
+ Display Wilco Embedded Controller firmware version.
+ The format of the string is x.y.z. Where x is major, y is minor
+ and z is the build number. For example: 95.00.06
diff --git a/Documentation/ABI/testing/sysfs-power b/Documentation/ABI/testing/sysfs-power
index 18b7dc929234..3c5130355011 100644
--- a/Documentation/ABI/testing/sysfs-power
+++ b/Documentation/ABI/testing/sysfs-power
@@ -300,4 +300,4 @@ Description:
attempt.
Using this sysfs file will override any values that were
- set using the kernel command line for disk offset. \ No newline at end of file
+ set using the kernel command line for disk offset.
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt
index 0076150fdccb..e47c63bd4887 100644
--- a/Documentation/DMA-API.txt
+++ b/Documentation/DMA-API.txt
@@ -198,7 +198,7 @@ call to set the mask to the value returned.
::
size_t
- dma_direct_max_mapping_size(struct device *dev);
+ dma_max_mapping_size(struct device *dev);
Returns the maximum size of a mapping for the device. The size parameter
of the mapping functions like dma_map_single(), dma_map_page() and
diff --git a/Documentation/EDID/HOWTO.txt b/Documentation/EDID/howto.rst
index 539871c3b785..725fd49a88ca 100644
--- a/Documentation/EDID/HOWTO.txt
+++ b/Documentation/EDID/howto.rst
@@ -1,3 +1,9 @@
+:orphan:
+
+====
+EDID
+====
+
In the good old days when graphics parameters were configured explicitly
in a file called xorg.conf, even broken hardware could be managed.
@@ -34,16 +40,19 @@ Makefile. Please note that the EDID data structure expects the timing
values in a different way as compared to the standard X11 format.
X11:
-HTimings: hdisp hsyncstart hsyncend htotal
-VTimings: vdisp vsyncstart vsyncend vtotal
-
-EDID:
-#define XPIX hdisp
-#define XBLANK htotal-hdisp
-#define XOFFSET hsyncstart-hdisp
-#define XPULSE hsyncend-hsyncstart
-
-#define YPIX vdisp
-#define YBLANK vtotal-vdisp
-#define YOFFSET vsyncstart-vdisp
-#define YPULSE vsyncend-vsyncstart
+ HTimings:
+ hdisp hsyncstart hsyncend htotal
+ VTimings:
+ vdisp vsyncstart vsyncend vtotal
+
+EDID::
+
+ #define XPIX hdisp
+ #define XBLANK htotal-hdisp
+ #define XOFFSET hsyncstart-hdisp
+ #define XPULSE hsyncend-hsyncstart
+
+ #define YPIX vdisp
+ #define YBLANK vtotal-vdisp
+ #define YOFFSET vsyncstart-vdisp
+ #define YPULSE vsyncend-vsyncstart
diff --git a/Documentation/Kconfig b/Documentation/Kconfig
new file mode 100644
index 000000000000..66046fa1c341
--- /dev/null
+++ b/Documentation/Kconfig
@@ -0,0 +1,13 @@
+config WARN_MISSING_DOCUMENTS
+
+ bool "Warn if there's a missing documentation file"
+ depends on COMPILE_TEST
+ help
+ It is not uncommon that a document gets renamed.
+ This option makes the Kernel to check for missing dependencies,
+ warning when something is missing. Works only if the Kernel
+ is built from a git tree.
+
+ If unsure, select 'N'.
+
+
diff --git a/Documentation/Makefile b/Documentation/Makefile
index e889e7cb8511..e145e4db508b 100644
--- a/Documentation/Makefile
+++ b/Documentation/Makefile
@@ -4,6 +4,11 @@
subdir-y := devicetree/bindings/
+# Check for broken documentation file references
+ifeq ($(CONFIG_WARN_MISSING_DOCUMENTS),y)
+$(shell $(srctree)/scripts/documentation-file-ref-check --warn)
+endif
+
# You can set these variables from the command line.
SPHINXBUILD = sphinx-build
SPHINXOPTS =
@@ -23,11 +28,13 @@ ifeq ($(HAVE_SPHINX),0)
.DEFAULT:
$(warning The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed and in PATH, or set the SPHINXBUILD make variable to point to the full path of the '$(SPHINXBUILD)' executable.)
@echo
- @./scripts/sphinx-pre-install
+ @$(srctree)/scripts/sphinx-pre-install
@echo " SKIP Sphinx $@ target."
else # HAVE_SPHINX
+export SPHINXOPTS = $(shell perl -e 'open IN,"sphinx-build --version 2>&1 |"; while (<IN>) { if (m/([\d\.]+)/) { print "-jauto" if ($$1 >= "1.7") } ;} close IN')
+
# User-friendly check for pdflatex and latexmk
HAVE_PDFLATEX := $(shell if which $(PDFLATEX) >/dev/null 2>&1; then echo 1; else echo 0; fi)
HAVE_LATEXMK := $(shell if which latexmk >/dev/null 2>&1; then echo 1; else echo 0; fi)
@@ -70,12 +77,14 @@ quiet_cmd_sphinx = SPHINX $@ --> file://$(abspath $(BUILDDIR)/$3/$4)
$(abspath $(BUILDDIR)/$3/$4)
htmldocs:
+ @$(srctree)/scripts/sphinx-pre-install --version-check
@+$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,html,$(var),,$(var)))
linkcheckdocs:
@$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,linkcheck,$(var),,$(var)))
latexdocs:
+ @$(srctree)/scripts/sphinx-pre-install --version-check
@+$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,latex,$(var),latex,$(var)))
ifeq ($(HAVE_PDFLATEX),0)
@@ -87,14 +96,17 @@ pdfdocs:
else # HAVE_PDFLATEX
pdfdocs: latexdocs
+ @$(srctree)/scripts/sphinx-pre-install --version-check
$(foreach var,$(SPHINXDIRS), $(MAKE) PDFLATEX="$(PDFLATEX)" LATEXOPTS="$(LATEXOPTS)" -C $(BUILDDIR)/$(var)/latex || exit;)
endif # HAVE_PDFLATEX
epubdocs:
+ @$(srctree)/scripts/sphinx-pre-install --version-check
@+$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,epub,$(var),epub,$(var)))
xmldocs:
+ @$(srctree)/scripts/sphinx-pre-install --version-check
@+$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,xml,$(var),xml,$(var)))
endif # HAVE_SPHINX
diff --git a/Documentation/RCU/UP.txt b/Documentation/RCU/UP.rst
index 53bde717017b..e26dda27430c 100644
--- a/Documentation/RCU/UP.txt
+++ b/Documentation/RCU/UP.rst
@@ -1,17 +1,19 @@
-RCU on Uniprocessor Systems
+.. _up_doc:
+RCU on Uniprocessor Systems
+===========================
A common misconception is that, on UP systems, the call_rcu() primitive
may immediately invoke its function. The basis of this misconception
is that since there is only one CPU, it should not be necessary to
wait for anything else to get done, since there are no other CPUs for
-anything else to be happening on. Although this approach will -sort- -of-
+anything else to be happening on. Although this approach will *sort of*
work a surprising amount of the time, it is a very bad idea in general.
This document presents three examples that demonstrate exactly how bad
an idea this is.
-
Example 1: softirq Suicide
+--------------------------
Suppose that an RCU-based algorithm scans a linked list containing
elements A, B, and C in process context, and can delete elements from
@@ -28,8 +30,8 @@ your kernel.
This same problem can occur if call_rcu() is invoked from a hardware
interrupt handler.
-
Example 2: Function-Call Fatality
+---------------------------------
Of course, one could avert the suicide described in the preceding example
by having call_rcu() directly invoke its arguments only if it was called
@@ -46,11 +48,13 @@ its arguments would cause it to fail to make the fundamental guarantee
underlying RCU, namely that call_rcu() defers invoking its arguments until
all RCU read-side critical sections currently executing have completed.
-Quick Quiz #1: why is it -not- legal to invoke synchronize_rcu() in
- this case?
+Quick Quiz #1:
+ Why is it *not* legal to invoke synchronize_rcu() in this case?
+:ref:`Answers to Quick Quiz <answer_quick_quiz_up>`
Example 3: Death by Deadlock
+----------------------------
Suppose that call_rcu() is invoked while holding a lock, and that the
callback function must acquire this same lock. In this case, if
@@ -76,25 +80,30 @@ there are cases where this can be quite ugly:
If call_rcu() directly invokes the callback, painful locking restrictions
or API changes would be required.
-Quick Quiz #2: What locking restriction must RCU callbacks respect?
+Quick Quiz #2:
+ What locking restriction must RCU callbacks respect?
+:ref:`Answers to Quick Quiz <answer_quick_quiz_up>`
Summary
+-------
Permitting call_rcu() to immediately invoke its arguments breaks RCU,
even on a UP system. So do not do it! Even on a UP system, the RCU
-infrastructure -must- respect grace periods, and -must- invoke callbacks
+infrastructure *must* respect grace periods, and *must* invoke callbacks
from a known environment in which no locks are held.
-Note that it -is- safe for synchronize_rcu() to return immediately on
-UP systems, including !PREEMPT SMP builds running on UP systems.
+Note that it *is* safe for synchronize_rcu() to return immediately on
+UP systems, including PREEMPT SMP builds running on UP systems.
-Quick Quiz #3: Why can't synchronize_rcu() return immediately on
- UP systems running preemptable RCU?
+Quick Quiz #3:
+ Why can't synchronize_rcu() return immediately on UP systems running
+ preemptable RCU?
+.. _answer_quick_quiz_up:
Answer to Quick Quiz #1:
- Why is it -not- legal to invoke synchronize_rcu() in this case?
+ Why is it *not* legal to invoke synchronize_rcu() in this case?
Because the calling function is scanning an RCU-protected linked
list, and is therefore within an RCU read-side critical section.
@@ -104,12 +113,13 @@ Answer to Quick Quiz #1:
Answer to Quick Quiz #2:
What locking restriction must RCU callbacks respect?
- Any lock that is acquired within an RCU callback must be
- acquired elsewhere using an _irq variant of the spinlock
- primitive. For example, if "mylock" is acquired by an
- RCU callback, then a process-context acquisition of this
- lock must use something like spin_lock_irqsave() to
- acquire the lock.
+ Any lock that is acquired within an RCU callback must be acquired
+ elsewhere using an _bh variant of the spinlock primitive.
+ For example, if "mylock" is acquired by an RCU callback, then
+ a process-context acquisition of this lock must use something
+ like spin_lock_bh() to acquire the lock. Please note that
+ it is also OK to use _irq variants of spinlocks, for example,
+ spin_lock_irqsave().
If the process-context code were to simply use spin_lock(),
then, since RCU callbacks can be invoked from softirq context,
@@ -119,7 +129,7 @@ Answer to Quick Quiz #2:
This restriction might seem gratuitous, since very few RCU
callbacks acquire locks directly. However, a great many RCU
- callbacks do acquire locks -indirectly-, for example, via
+ callbacks do acquire locks *indirectly*, for example, via
the kfree() primitive.
Answer to Quick Quiz #3:
diff --git a/Documentation/RCU/index.rst b/Documentation/RCU/index.rst
new file mode 100644
index 000000000000..340a9725676c
--- /dev/null
+++ b/Documentation/RCU/index.rst
@@ -0,0 +1,19 @@
+.. _rcu_concepts:
+
+============
+RCU concepts
+============
+
+.. toctree::
+ :maxdepth: 1
+
+ rcu
+ listRCU
+ UP
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/RCU/listRCU.txt b/Documentation/RCU/listRCU.rst
index adb5a3782846..7956ff33042b 100644
--- a/Documentation/RCU/listRCU.txt
+++ b/Documentation/RCU/listRCU.rst
@@ -1,5 +1,7 @@
-Using RCU to Protect Read-Mostly Linked Lists
+.. _list_rcu_doc:
+Using RCU to Protect Read-Mostly Linked Lists
+=============================================
One of the best applications of RCU is to protect read-mostly linked lists
("struct list_head" in list.h). One big advantage of this approach
@@ -7,8 +9,8 @@ is that all of the required memory barriers are included for you in
the list macros. This document describes several applications of RCU,
with the best fits first.
-
Example 1: Read-Side Action Taken Outside of Lock, No In-Place Updates
+----------------------------------------------------------------------
The best applications are cases where, if reader-writer locking were
used, the read-side lock would be dropped before taking any action
@@ -24,7 +26,7 @@ added or deleted, rather than being modified in place.
A straightforward example of this use of RCU may be found in the
system-call auditing support. For example, a reader-writer locked
-implementation of audit_filter_task() might be as follows:
+implementation of audit_filter_task() might be as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
{
@@ -48,7 +50,7 @@ the corresponding value is returned. By the time that this value is acted
on, the list may well have been modified. This makes sense, since if
you are turning auditing off, it is OK to audit a few extra system calls.
-This means that RCU can be easily applied to the read side, as follows:
+This means that RCU can be easily applied to the read side, as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
{
@@ -73,7 +75,7 @@ become list_for_each_entry_rcu(). The _rcu() list-traversal primitives
insert the read-side memory barriers that are required on DEC Alpha CPUs.
The changes to the update side are also straightforward. A reader-writer
-lock might be used as follows for deletion and insertion:
+lock might be used as follows for deletion and insertion::
static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)
@@ -106,7 +108,7 @@ lock might be used as follows for deletion and insertion:
return 0;
}
-Following are the RCU equivalents for these two functions:
+Following are the RCU equivalents for these two functions::
static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)
@@ -154,13 +156,13 @@ otherwise cause concurrent readers to fail spectacularly.
So, when readers can tolerate stale data and when entries are either added
or deleted, without in-place modification, it is very easy to use RCU!
-
Example 2: Handling In-Place Updates
+------------------------------------
The system-call auditing code does not update auditing rules in place.
However, if it did, reader-writer-locked code to do so might look as
follows (presumably, the field_count is only permitted to decrease,
-otherwise, the added fields would need to be filled in):
+otherwise, the added fields would need to be filled in)::
static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
@@ -187,7 +189,7 @@ otherwise, the added fields would need to be filled in):
The RCU version creates a copy, updates the copy, then replaces the old
entry with the newly updated entry. This sequence of actions, allowing
concurrent reads while doing a copy to perform an update, is what gives
-RCU ("read-copy update") its name. The RCU code is as follows:
+RCU ("read-copy update") its name. The RCU code is as follows::
static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
@@ -216,8 +218,8 @@ RCU ("read-copy update") its name. The RCU code is as follows:
Again, this assumes that the caller holds audit_netlink_sem. Normally,
the reader-writer lock would become a spinlock in this sort of code.
-
Example 3: Eliminating Stale Data
+---------------------------------
The auditing examples above tolerate stale data, as do most algorithms
that are tracking external state. Because there is a delay from the
@@ -231,13 +233,16 @@ per-entry spinlock, and, if the "deleted" flag is set, pretends that the
entry does not exist. For this to be helpful, the search function must
return holding the per-entry spinlock, as ipc_lock() does in fact do.
-Quick Quiz: Why does the search function need to return holding the
- per-entry lock for this deleted-flag technique to be helpful?
+Quick Quiz:
+ Why does the search function need to return holding the per-entry lock for
+ this deleted-flag technique to be helpful?
+
+:ref:`Answer to Quick Quiz <answer_quick_quiz_list>`
If the system-call audit module were to ever need to reject stale data,
one way to accomplish this would be to add a "deleted" flag and a "lock"
spinlock to the audit_entry structure, and modify audit_filter_task()
-as follows:
+as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
{
@@ -268,7 +273,7 @@ audit_upd_rule() would need additional memory barriers to ensure
that the list_add_rcu() was really executed before the list_del_rcu().
The audit_del_rule() function would need to set the "deleted"
-flag under the spinlock as follows:
+flag under the spinlock as follows::
static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)
@@ -290,8 +295,8 @@ flag under the spinlock as follows:
return -EFAULT; /* No matching rule */
}
-
Summary
+-------
Read-mostly list-based data structures that can tolerate stale data are
the most amenable to use of RCU. The simplest case is where entries are
@@ -302,8 +307,9 @@ If stale data cannot be tolerated, then a "deleted" flag may be used
in conjunction with a per-entry spinlock in order to allow the search
function to reject newly deleted data.
+.. _answer_quick_quiz_list:
-Answer to Quick Quiz
+Answer to Quick Quiz:
Why does the search function need to return holding the per-entry
lock for this deleted-flag technique to be helpful?
diff --git a/Documentation/RCU/rcu.rst b/Documentation/RCU/rcu.rst
new file mode 100644
index 000000000000..8dfb437dacc3
--- /dev/null
+++ b/Documentation/RCU/rcu.rst
@@ -0,0 +1,92 @@
+.. _rcu_doc:
+
+RCU Concepts
+============
+
+The basic idea behind RCU (read-copy update) is to split destructive
+operations into two parts, one that prevents anyone from seeing the data
+item being destroyed, and one that actually carries out the destruction.
+A "grace period" must elapse between the two parts, and this grace period
+must be long enough that any readers accessing the item being deleted have
+since dropped their references. For example, an RCU-protected deletion
+from a linked list would first remove the item from the list, wait for
+a grace period to elapse, then free the element. See the
+Documentation/RCU/listRCU.rst file for more information on using RCU with
+linked lists.
+
+Frequently Asked Questions
+--------------------------
+
+- Why would anyone want to use RCU?
+
+ The advantage of RCU's two-part approach is that RCU readers need
+ not acquire any locks, perform any atomic instructions, write to
+ shared memory, or (on CPUs other than Alpha) execute any memory
+ barriers. The fact that these operations are quite expensive
+ on modern CPUs is what gives RCU its performance advantages
+ in read-mostly situations. The fact that RCU readers need not
+ acquire locks can also greatly simplify deadlock-avoidance code.
+
+- How can the updater tell when a grace period has completed
+ if the RCU readers give no indication when they are done?
+
+ Just as with spinlocks, RCU readers are not permitted to
+ block, switch to user-mode execution, or enter the idle loop.
+ Therefore, as soon as a CPU is seen passing through any of these
+ three states, we know that that CPU has exited any previous RCU
+ read-side critical sections. So, if we remove an item from a
+ linked list, and then wait until all CPUs have switched context,
+ executed in user mode, or executed in the idle loop, we can
+ safely free up that item.
+
+ Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the
+ same effect, but require that the readers manipulate CPU-local
+ counters. These counters allow limited types of blocking within
+ RCU read-side critical sections. SRCU also uses CPU-local
+ counters, and permits general blocking within RCU read-side
+ critical sections. These variants of RCU detect grace periods
+ by sampling these counters.
+
+- If I am running on a uniprocessor kernel, which can only do one
+ thing at a time, why should I wait for a grace period?
+
+ See the Documentation/RCU/UP.rst file for more information.
+
+- How can I see where RCU is currently used in the Linux kernel?
+
+ Search for "rcu_read_lock", "rcu_read_unlock", "call_rcu",
+ "rcu_read_lock_bh", "rcu_read_unlock_bh", "srcu_read_lock",
+ "srcu_read_unlock", "synchronize_rcu", "synchronize_net",
+ "synchronize_srcu", and the other RCU primitives. Or grab one
+ of the cscope databases from:
+
+ (http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html).
+
+- What guidelines should I follow when writing code that uses RCU?
+
+ See the checklist.txt file in this directory.
+
+- Why the name "RCU"?
+
+ "RCU" stands for "read-copy update". The file Documentation/RCU/listRCU.rst
+ has more information on where this name came from, search for
+ "read-copy update" to find it.
+
+- I hear that RCU is patented? What is with that?
+
+ Yes, it is. There are several known patents related to RCU,
+ search for the string "Patent" in RTFP.txt to find them.
+ Of these, one was allowed to lapse by the assignee, and the
+ others have been contributed to the Linux kernel under GPL.
+ There are now also LGPL implementations of user-level RCU
+ available (http://liburcu.org/).
+
+- I hear that RCU needs work in order to support realtime kernels?
+
+ Realtime-friendly RCU can be enabled via the CONFIG_PREEMPT_RCU
+ kernel configuration parameter.
+
+- Where can I find more information on RCU?
+
+ See the RTFP.txt file in this directory.
+ Or point your browser at (http://www.rdrop.com/users/paulmck/RCU/).
diff --git a/Documentation/RCU/rcu.txt b/Documentation/RCU/rcu.txt
deleted file mode 100644
index c818cf65c5a9..000000000000
--- a/Documentation/RCU/rcu.txt
+++ /dev/null
@@ -1,89 +0,0 @@
-RCU Concepts
-
-
-The basic idea behind RCU (read-copy update) is to split destructive
-operations into two parts, one that prevents anyone from seeing the data
-item being destroyed, and one that actually carries out the destruction.
-A "grace period" must elapse between the two parts, and this grace period
-must be long enough that any readers accessing the item being deleted have
-since dropped their references. For example, an RCU-protected deletion
-from a linked list would first remove the item from the list, wait for
-a grace period to elapse, then free the element. See the listRCU.txt
-file for more information on using RCU with linked lists.
-
-
-Frequently Asked Questions
-
-o Why would anyone want to use RCU?
-
- The advantage of RCU's two-part approach is that RCU readers need
- not acquire any locks, perform any atomic instructions, write to
- shared memory, or (on CPUs other than Alpha) execute any memory
- barriers. The fact that these operations are quite expensive
- on modern CPUs is what gives RCU its performance advantages
- in read-mostly situations. The fact that RCU readers need not
- acquire locks can also greatly simplify deadlock-avoidance code.
-
-o How can the updater tell when a grace period has completed
- if the RCU readers give no indication when they are done?
-
- Just as with spinlocks, RCU readers are not permitted to
- block, switch to user-mode execution, or enter the idle loop.
- Therefore, as soon as a CPU is seen passing through any of these
- three states, we know that that CPU has exited any previous RCU
- read-side critical sections. So, if we remove an item from a
- linked list, and then wait until all CPUs have switched context,
- executed in user mode, or executed in the idle loop, we can
- safely free up that item.
-
- Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the
- same effect, but require that the readers manipulate CPU-local
- counters. These counters allow limited types of blocking within
- RCU read-side critical sections. SRCU also uses CPU-local
- counters, and permits general blocking within RCU read-side
- critical sections. These variants of RCU detect grace periods
- by sampling these counters.
-
-o If I am running on a uniprocessor kernel, which can only do one
- thing at a time, why should I wait for a grace period?
-
- See the UP.txt file in this directory.
-
-o How can I see where RCU is currently used in the Linux kernel?
-
- Search for "rcu_read_lock", "rcu_read_unlock", "call_rcu",
- "rcu_read_lock_bh", "rcu_read_unlock_bh", "srcu_read_lock",
- "srcu_read_unlock", "synchronize_rcu", "synchronize_net",
- "synchronize_srcu", and the other RCU primitives. Or grab one
- of the cscope databases from:
-
- http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html
-
-o What guidelines should I follow when writing code that uses RCU?
-
- See the checklist.txt file in this directory.
-
-o Why the name "RCU"?
-
- "RCU" stands for "read-copy update". The file listRCU.txt has
- more information on where this name came from, search for
- "read-copy update" to find it.
-
-o I hear that RCU is patented? What is with that?
-
- Yes, it is. There are several known patents related to RCU,
- search for the string "Patent" in RTFP.txt to find them.
- Of these, one was allowed to lapse by the assignee, and the
- others have been contributed to the Linux kernel under GPL.
- There are now also LGPL implementations of user-level RCU
- available (http://liburcu.org/).
-
-o I hear that RCU needs work in order to support realtime kernels?
-
- Realtime-friendly RCU can be enabled via the CONFIG_PREEMPT_RCU
- kernel configuration parameter.
-
-o Where can I find more information on RCU?
-
- See the RTFP.txt file in this directory.
- Or point your browser at http://www.rdrop.com/users/paulmck/RCU/.
diff --git a/Documentation/RCU/rcuref.txt b/Documentation/RCU/rcuref.txt
index 613033ff2b9b..5e6429d66c24 100644
--- a/Documentation/RCU/rcuref.txt
+++ b/Documentation/RCU/rcuref.txt
@@ -12,6 +12,7 @@ please read on.
Reference counting on elements of lists which are protected by traditional
reader/writer spinlocks or semaphores are straightforward:
+CODE LISTING A:
1. 2.
add() search_and_reference()
{ {
@@ -28,7 +29,8 @@ add() search_and_reference()
release_referenced() delete()
{ {
... write_lock(&list_lock);
- atomic_dec(&el->rc, relfunc) ...
+ if(atomic_dec_and_test(&el->rc)) ...
+ kfree(el);
... remove_element
} write_unlock(&list_lock);
...
@@ -44,6 +46,7 @@ search_and_reference() could potentially hold reference to an element which
has already been deleted from the list/array. Use atomic_inc_not_zero()
in this scenario as follows:
+CODE LISTING B:
1. 2.
add() search_and_reference()
{ {
@@ -79,6 +82,7 @@ search_and_reference() code path. In such cases, the
atomic_dec_and_test() may be moved from delete() to el_free()
as follows:
+CODE LISTING C:
1. 2.
add() search_and_reference()
{ {
@@ -114,6 +118,17 @@ element can therefore safely be freed. This in turn guarantees that if
any reader finds the element, that reader may safely acquire a reference
without checking the value of the reference counter.
+A clear advantage of the RCU-based pattern in listing C over the one
+in listing B is that any call to search_and_reference() that locates
+a given object will succeed in obtaining a reference to that object,
+even given a concurrent invocation of delete() for that same object.
+Similarly, a clear advantage of both listings B and C over listing A is
+that a call to delete() is not delayed even if there are an arbitrarily
+large number of calls to search_and_reference() searching for the same
+object that delete() was invoked on. Instead, all that is delayed is
+the eventual invocation of kfree(), which is usually not a problem on
+modern computer systems, even the small ones.
+
In cases where delete() can sleep, synchronize_rcu() can be called from
delete(), so that el_free() can be subsumed into delete as follows:
@@ -130,3 +145,7 @@ delete()
kfree(el);
...
}
+
+As additional examples in the kernel, the pattern in listing C is used by
+reference counting of struct pid, while the pattern in listing B is used by
+struct posix_acl.
diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt
index 1ab70c37921f..13e88fc00f01 100644
--- a/Documentation/RCU/stallwarn.txt
+++ b/Documentation/RCU/stallwarn.txt
@@ -153,7 +153,7 @@ rcupdate.rcu_task_stall_timeout
This boot/sysfs parameter controls the RCU-tasks stall warning
interval. A value of zero or less suppresses RCU-tasks stall
warnings. A positive value sets the stall-warning interval
- in jiffies. An RCU-tasks stall warning starts with the line:
+ in seconds. An RCU-tasks stall warning starts with the line:
INFO: rcu_tasks detected stalls on tasks:
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
index 981651a8b65d..7e1a8721637a 100644
--- a/Documentation/RCU/whatisRCU.txt
+++ b/Documentation/RCU/whatisRCU.txt
@@ -212,7 +212,7 @@ synchronize_rcu()
rcu_assign_pointer()
- typeof(p) rcu_assign_pointer(p, typeof(p) v);
+ void rcu_assign_pointer(p, typeof(p) v);
Yes, rcu_assign_pointer() -is- implemented as a macro, though it
would be cool to be able to declare a function in this manner.
@@ -220,9 +220,9 @@ rcu_assign_pointer()
The updater uses this function to assign a new value to an
RCU-protected pointer, in order to safely communicate the change
- in value from the updater to the reader. This function returns
- the new value, and also executes any memory-barrier instructions
- required for a given CPU architecture.
+ in value from the updater to the reader. This macro does not
+ evaluate to an rvalue, but it does execute any memory-barrier
+ instructions required for a given CPU architecture.
Perhaps just as important, it serves to document (1) which
pointers are protected by RCU and (2) the point at which a
diff --git a/Documentation/accelerators/ocxl.rst b/Documentation/accelerators/ocxl.rst
index 14cefc020e2d..b1cea19a90f5 100644
--- a/Documentation/accelerators/ocxl.rst
+++ b/Documentation/accelerators/ocxl.rst
@@ -1,3 +1,5 @@
+:orphan:
+
========================================================
OpenCAPI (Open Coherent Accelerator Processor Interface)
========================================================
diff --git a/Documentation/acpi/dsd/leds.txt b/Documentation/acpi/dsd/leds.txt
index 81a63af42ed2..cc58b1a574c5 100644
--- a/Documentation/acpi/dsd/leds.txt
+++ b/Documentation/acpi/dsd/leds.txt
@@ -96,4 +96,4 @@ where
<URL:http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.1.pdf>,
referenced 2019-02-21.
-[7] Documentation/acpi/dsd/data-node-reference.txt
+[7] Documentation/firmware-guide/acpi/dsd/data-node-references.rst
diff --git a/Documentation/admin-guide/LSM/LoadPin.rst b/Documentation/admin-guide/LSM/LoadPin.rst
index 32070762d24c..716ad9b23c9a 100644
--- a/Documentation/admin-guide/LSM/LoadPin.rst
+++ b/Documentation/admin-guide/LSM/LoadPin.rst
@@ -19,3 +19,13 @@ block device backing the filesystem is not read-only, a sysctl is
created to toggle pinning: ``/proc/sys/kernel/loadpin/enabled``. (Having
a mutable filesystem means pinning is mutable too, but having the
sysctl allows for easy testing on systems with a mutable filesystem.)
+
+It's also possible to exclude specific file types from LoadPin using kernel
+command line option "``loadpin.exclude``". By default, all files are
+included, but they can be excluded using kernel command line option such
+as "``loadpin.exclude=kernel-module,kexec-image``". This allows to use
+different mechanisms such as ``CONFIG_MODULE_SIG`` and
+``CONFIG_KEXEC_VERIFY_SIG`` to verify kernel module and kernel image while
+still use LoadPin to protect the integrity of other files kernel loads. The
+full list of valid file types can be found in ``kernel_read_file_str``
+defined in ``include/linux/fs.h``.
diff --git a/Documentation/admin-guide/README.rst b/Documentation/admin-guide/README.rst
index a582c780c3bd..cc6151fc0845 100644
--- a/Documentation/admin-guide/README.rst
+++ b/Documentation/admin-guide/README.rst
@@ -227,7 +227,7 @@ Configuring the kernel
"make tinyconfig" Configure the tiniest possible kernel.
You can find more information on using the Linux kernel config tools
- in Documentation/kbuild/kconfig.txt.
+ in Documentation/kbuild/kconfig.rst.
- NOTES on ``make config``:
diff --git a/Documentation/filesystems/binderfs.rst b/Documentation/admin-guide/binderfs.rst
index c009671f8434..c009671f8434 100644
--- a/Documentation/filesystems/binderfs.rst
+++ b/Documentation/admin-guide/binderfs.rst
diff --git a/Documentation/admin-guide/bug-hunting.rst b/Documentation/admin-guide/bug-hunting.rst
index f278b289e260..b761aa2a51d2 100644
--- a/Documentation/admin-guide/bug-hunting.rst
+++ b/Documentation/admin-guide/bug-hunting.rst
@@ -90,7 +90,7 @@ the disk is not available then you have three options:
run a null modem to a second machine and capture the output there
using your favourite communication program. Minicom works well.
-(3) Use Kdump (see Documentation/kdump/kdump.txt),
+(3) Use Kdump (see Documentation/kdump/kdump.rst),
extract the kernel ring buffer from old memory with using dmesg
gdbmacro in Documentation/kdump/gdbmacros.txt.
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index cf88c1f98270..a9548de56ac9 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -705,6 +705,12 @@ Conventions
informational files on the root cgroup which end up showing global
information available elsewhere shouldn't exist.
+- The default time unit is microseconds. If a different unit is ever
+ used, an explicit unit suffix must be present.
+
+- A parts-per quantity should use a percentage decimal with at least
+ two digit fractional part - e.g. 13.40.
+
- If a controller implements weight based resource distribution, its
interface file should be named "weight" and have the range [1,
10000] with 100 as the default. The values are chosen to allow
@@ -1140,6 +1146,11 @@ PAGE_SIZE multiple when read back.
otherwise, a value change in this file generates a file
modified event.
+ Note that all fields in this file are hierarchical and the
+ file modified event can be generated due to an event down the
+ hierarchy. For for the local events at the cgroup level see
+ memory.events.local.
+
low
The number of times the cgroup is reclaimed due to
high memory pressure even though its usage is under
@@ -1179,6 +1190,11 @@ PAGE_SIZE multiple when read back.
The number of processes belonging to this cgroup
killed by any kind of OOM killer.
+ memory.events.local
+ Similar to memory.events but the fields in the file are local
+ to the cgroup i.e. not hierarchical. The file modified event
+ generated on this file reflects only the local events.
+
memory.stat
A read-only flat-keyed file which exists on non-root cgroups.
diff --git a/Documentation/admin-guide/devices.txt b/Documentation/admin-guide/devices.txt
index 1649117e6087..e56e00655153 100644
--- a/Documentation/admin-guide/devices.txt
+++ b/Documentation/admin-guide/devices.txt
@@ -2693,8 +2693,8 @@
41 = /dev/ttySMX0 Motorola i.MX - port 0
42 = /dev/ttySMX1 Motorola i.MX - port 1
43 = /dev/ttySMX2 Motorola i.MX - port 2
- 44 = /dev/ttyMM0 Marvell MPSC - port 0
- 45 = /dev/ttyMM1 Marvell MPSC - port 1
+ 44 = /dev/ttyMM0 Marvell MPSC - port 0 (obsolete unused)
+ 45 = /dev/ttyMM1 Marvell MPSC - port 1 (obsolete unused)
46 = /dev/ttyCPM0 PPC CPM (SCC or SMC) - port 0
...
47 = /dev/ttyCPM5 PPC CPM (SCC or SMC) - port 5
diff --git a/Documentation/admin-guide/hw-vuln/index.rst b/Documentation/admin-guide/hw-vuln/index.rst
index ffc064c1ec68..49311f3da6f2 100644
--- a/Documentation/admin-guide/hw-vuln/index.rst
+++ b/Documentation/admin-guide/hw-vuln/index.rst
@@ -9,5 +9,6 @@ are configurable at compile, boot or run time.
.. toctree::
:maxdepth: 1
+ spectre
l1tf
mds
diff --git a/Documentation/admin-guide/hw-vuln/l1tf.rst b/Documentation/admin-guide/hw-vuln/l1tf.rst
index 31653a9f0e1b..656aee262e23 100644
--- a/Documentation/admin-guide/hw-vuln/l1tf.rst
+++ b/Documentation/admin-guide/hw-vuln/l1tf.rst
@@ -241,7 +241,7 @@ Guest mitigation mechanisms
For further information about confining guests to a single or to a group
of cores consult the cpusets documentation:
- https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
+ https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.rst
.. _interrupt_isolation:
diff --git a/Documentation/admin-guide/hw-vuln/spectre.rst b/Documentation/admin-guide/hw-vuln/spectre.rst
new file mode 100644
index 000000000000..25f3b2532198
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/spectre.rst
@@ -0,0 +1,697 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Spectre Side Channels
+=====================
+
+Spectre is a class of side channel attacks that exploit branch prediction
+and speculative execution on modern CPUs to read memory, possibly
+bypassing access controls. Speculative execution side channel exploits
+do not modify memory but attempt to infer privileged data in the memory.
+
+This document covers Spectre variant 1 and Spectre variant 2.
+
+Affected processors
+-------------------
+
+Speculative execution side channel methods affect a wide range of modern
+high performance processors, since most modern high speed processors
+use branch prediction and speculative execution.
+
+The following CPUs are vulnerable:
+
+ - Intel Core, Atom, Pentium, and Xeon processors
+
+ - AMD Phenom, EPYC, and Zen processors
+
+ - IBM POWER and zSeries processors
+
+ - Higher end ARM processors
+
+ - Apple CPUs
+
+ - Higher end MIPS CPUs
+
+ - Likely most other high performance CPUs. Contact your CPU vendor for details.
+
+Whether a processor is affected or not can be read out from the Spectre
+vulnerability files in sysfs. See :ref:`spectre_sys_info`.
+
+Related CVEs
+------------
+
+The following CVE entries describe Spectre variants:
+
+ ============= ======================= =================
+ CVE-2017-5753 Bounds check bypass Spectre variant 1
+ CVE-2017-5715 Branch target injection Spectre variant 2
+ ============= ======================= =================
+
+Problem
+-------
+
+CPUs use speculative operations to improve performance. That may leave
+traces of memory accesses or computations in the processor's caches,
+buffers, and branch predictors. Malicious software may be able to
+influence the speculative execution paths, and then use the side effects
+of the speculative execution in the CPUs' caches and buffers to infer
+privileged data touched during the speculative execution.
+
+Spectre variant 1 attacks take advantage of speculative execution of
+conditional branches, while Spectre variant 2 attacks use speculative
+execution of indirect branches to leak privileged memory.
+See :ref:`[1] <spec_ref1>` :ref:`[5] <spec_ref5>` :ref:`[7] <spec_ref7>`
+:ref:`[10] <spec_ref10>` :ref:`[11] <spec_ref11>`.
+
+Spectre variant 1 (Bounds Check Bypass)
+---------------------------------------
+
+The bounds check bypass attack :ref:`[2] <spec_ref2>` takes advantage
+of speculative execution that bypasses conditional branch instructions
+used for memory access bounds check (e.g. checking if the index of an
+array results in memory access within a valid range). This results in
+memory accesses to invalid memory (with out-of-bound index) that are
+done speculatively before validation checks resolve. Such speculative
+memory accesses can leave side effects, creating side channels which
+leak information to the attacker.
+
+There are some extensions of Spectre variant 1 attacks for reading data
+over the network, see :ref:`[12] <spec_ref12>`. However such attacks
+are difficult, low bandwidth, fragile, and are considered low risk.
+
+Spectre variant 2 (Branch Target Injection)
+-------------------------------------------
+
+The branch target injection attack takes advantage of speculative
+execution of indirect branches :ref:`[3] <spec_ref3>`. The indirect
+branch predictors inside the processor used to guess the target of
+indirect branches can be influenced by an attacker, causing gadget code
+to be speculatively executed, thus exposing sensitive data touched by
+the victim. The side effects left in the CPU's caches during speculative
+execution can be measured to infer data values.
+
+.. _poison_btb:
+
+In Spectre variant 2 attacks, the attacker can steer speculative indirect
+branches in the victim to gadget code by poisoning the branch target
+buffer of a CPU used for predicting indirect branch addresses. Such
+poisoning could be done by indirect branching into existing code,
+with the address offset of the indirect branch under the attacker's
+control. Since the branch prediction on impacted hardware does not
+fully disambiguate branch address and uses the offset for prediction,
+this could cause privileged code's indirect branch to jump to a gadget
+code with the same offset.
+
+The most useful gadgets take an attacker-controlled input parameter (such
+as a register value) so that the memory read can be controlled. Gadgets
+without input parameters might be possible, but the attacker would have
+very little control over what memory can be read, reducing the risk of
+the attack revealing useful data.
+
+One other variant 2 attack vector is for the attacker to poison the
+return stack buffer (RSB) :ref:`[13] <spec_ref13>` to cause speculative
+subroutine return instruction execution to go to a gadget. An attacker's
+imbalanced subroutine call instructions might "poison" entries in the
+return stack buffer which are later consumed by a victim's subroutine
+return instructions. This attack can be mitigated by flushing the return
+stack buffer on context switch, or virtual machine (VM) exit.
+
+On systems with simultaneous multi-threading (SMT), attacks are possible
+from the sibling thread, as level 1 cache and branch target buffer
+(BTB) may be shared between hardware threads in a CPU core. A malicious
+program running on the sibling thread may influence its peer's BTB to
+steer its indirect branch speculations to gadget code, and measure the
+speculative execution's side effects left in level 1 cache to infer the
+victim's data.
+
+Attack scenarios
+----------------
+
+The following list of attack scenarios have been anticipated, but may
+not cover all possible attack vectors.
+
+1. A user process attacking the kernel
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ The attacker passes a parameter to the kernel via a register or
+ via a known address in memory during a syscall. Such parameter may
+ be used later by the kernel as an index to an array or to derive
+ a pointer for a Spectre variant 1 attack. The index or pointer
+ is invalid, but bound checks are bypassed in the code branch taken
+ for speculative execution. This could cause privileged memory to be
+ accessed and leaked.
+
+ For kernel code that has been identified where data pointers could
+ potentially be influenced for Spectre attacks, new "nospec" accessor
+ macros are used to prevent speculative loading of data.
+
+ Spectre variant 2 attacker can :ref:`poison <poison_btb>` the branch
+ target buffer (BTB) before issuing syscall to launch an attack.
+ After entering the kernel, the kernel could use the poisoned branch
+ target buffer on indirect jump and jump to gadget code in speculative
+ execution.
+
+ If an attacker tries to control the memory addresses leaked during
+ speculative execution, he would also need to pass a parameter to the
+ gadget, either through a register or a known address in memory. After
+ the gadget has executed, he can measure the side effect.
+
+ The kernel can protect itself against consuming poisoned branch
+ target buffer entries by using return trampolines (also known as
+ "retpoline") :ref:`[3] <spec_ref3>` :ref:`[9] <spec_ref9>` for all
+ indirect branches. Return trampolines trap speculative execution paths
+ to prevent jumping to gadget code during speculative execution.
+ x86 CPUs with Enhanced Indirect Branch Restricted Speculation
+ (Enhanced IBRS) available in hardware should use the feature to
+ mitigate Spectre variant 2 instead of retpoline. Enhanced IBRS is
+ more efficient than retpoline.
+
+ There may be gadget code in firmware which could be exploited with
+ Spectre variant 2 attack by a rogue user process. To mitigate such
+ attacks on x86, Indirect Branch Restricted Speculation (IBRS) feature
+ is turned on before the kernel invokes any firmware code.
+
+2. A user process attacking another user process
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ A malicious user process can try to attack another user process,
+ either via a context switch on the same hardware thread, or from the
+ sibling hyperthread sharing a physical processor core on simultaneous
+ multi-threading (SMT) system.
+
+ Spectre variant 1 attacks generally require passing parameters
+ between the processes, which needs a data passing relationship, such
+ as remote procedure calls (RPC). Those parameters are used in gadget
+ code to derive invalid data pointers accessing privileged memory in
+ the attacked process.
+
+ Spectre variant 2 attacks can be launched from a rogue process by
+ :ref:`poisoning <poison_btb>` the branch target buffer. This can
+ influence the indirect branch targets for a victim process that either
+ runs later on the same hardware thread, or running concurrently on
+ a sibling hardware thread sharing the same physical core.
+
+ A user process can protect itself against Spectre variant 2 attacks
+ by using the prctl() syscall to disable indirect branch speculation
+ for itself. An administrator can also cordon off an unsafe process
+ from polluting the branch target buffer by disabling the process's
+ indirect branch speculation. This comes with a performance cost
+ from not using indirect branch speculation and clearing the branch
+ target buffer. When SMT is enabled on x86, for a process that has
+ indirect branch speculation disabled, Single Threaded Indirect Branch
+ Predictors (STIBP) :ref:`[4] <spec_ref4>` are turned on to prevent the
+ sibling thread from controlling branch target buffer. In addition,
+ the Indirect Branch Prediction Barrier (IBPB) is issued to clear the
+ branch target buffer when context switching to and from such process.
+
+ On x86, the return stack buffer is stuffed on context switch.
+ This prevents the branch target buffer from being used for branch
+ prediction when the return stack buffer underflows while switching to
+ a deeper call stack. Any poisoned entries in the return stack buffer
+ left by the previous process will also be cleared.
+
+ User programs should use address space randomization to make attacks
+ more difficult (Set /proc/sys/kernel/randomize_va_space = 1 or 2).
+
+3. A virtualized guest attacking the host
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ The attack mechanism is similar to how user processes attack the
+ kernel. The kernel is entered via hyper-calls or other virtualization
+ exit paths.
+
+ For Spectre variant 1 attacks, rogue guests can pass parameters
+ (e.g. in registers) via hyper-calls to derive invalid pointers to
+ speculate into privileged memory after entering the kernel. For places
+ where such kernel code has been identified, nospec accessor macros
+ are used to stop speculative memory access.
+
+ For Spectre variant 2 attacks, rogue guests can :ref:`poison
+ <poison_btb>` the branch target buffer or return stack buffer, causing
+ the kernel to jump to gadget code in the speculative execution paths.
+
+ To mitigate variant 2, the host kernel can use return trampolines
+ for indirect branches to bypass the poisoned branch target buffer,
+ and flushing the return stack buffer on VM exit. This prevents rogue
+ guests from affecting indirect branching in the host kernel.
+
+ To protect host processes from rogue guests, host processes can have
+ indirect branch speculation disabled via prctl(). The branch target
+ buffer is cleared before context switching to such processes.
+
+4. A virtualized guest attacking other guest
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ A rogue guest may attack another guest to get data accessible by the
+ other guest.
+
+ Spectre variant 1 attacks are possible if parameters can be passed
+ between guests. This may be done via mechanisms such as shared memory
+ or message passing. Such parameters could be used to derive data
+ pointers to privileged data in guest. The privileged data could be
+ accessed by gadget code in the victim's speculation paths.
+
+ Spectre variant 2 attacks can be launched from a rogue guest by
+ :ref:`poisoning <poison_btb>` the branch target buffer or the return
+ stack buffer. Such poisoned entries could be used to influence
+ speculation execution paths in the victim guest.
+
+ Linux kernel mitigates attacks to other guests running in the same
+ CPU hardware thread by flushing the return stack buffer on VM exit,
+ and clearing the branch target buffer before switching to a new guest.
+
+ If SMT is used, Spectre variant 2 attacks from an untrusted guest
+ in the sibling hyperthread can be mitigated by the administrator,
+ by turning off the unsafe guest's indirect branch speculation via
+ prctl(). A guest can also protect itself by turning on microcode
+ based mitigations (such as IBPB or STIBP on x86) within the guest.
+
+.. _spectre_sys_info:
+
+Spectre system information
+--------------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current
+mitigation status of the system for Spectre: whether the system is
+vulnerable, and which mitigations are active.
+
+The sysfs file showing Spectre variant 1 mitigation status is:
+
+ /sys/devices/system/cpu/vulnerabilities/spectre_v1
+
+The possible values in this file are:
+
+ ======================================= =================================
+ 'Mitigation: __user pointer sanitation' Protection in kernel on a case by
+ case base with explicit pointer
+ sanitation.
+ ======================================= =================================
+
+However, the protections are put in place on a case by case basis,
+and there is no guarantee that all possible attack vectors for Spectre
+variant 1 are covered.
+
+The spectre_v2 kernel file reports if the kernel has been compiled with
+retpoline mitigation or if the CPU has hardware mitigation, and if the
+CPU has support for additional process-specific mitigation.
+
+This file also reports CPU features enabled by microcode to mitigate
+attack between user processes:
+
+1. Indirect Branch Prediction Barrier (IBPB) to add additional
+ isolation between processes of different users.
+2. Single Thread Indirect Branch Predictors (STIBP) to add additional
+ isolation between CPU threads running on the same core.
+
+These CPU features may impact performance when used and can be enabled
+per process on a case-by-case base.
+
+The sysfs file showing Spectre variant 2 mitigation status is:
+
+ /sys/devices/system/cpu/vulnerabilities/spectre_v2
+
+The possible values in this file are:
+
+ - Kernel status:
+
+ ==================================== =================================
+ 'Not affected' The processor is not vulnerable
+ 'Vulnerable' Vulnerable, no mitigation
+ 'Mitigation: Full generic retpoline' Software-focused mitigation
+ 'Mitigation: Full AMD retpoline' AMD-specific software mitigation
+ 'Mitigation: Enhanced IBRS' Hardware-focused mitigation
+ ==================================== =================================
+
+ - Firmware status: Show if Indirect Branch Restricted Speculation (IBRS) is
+ used to protect against Spectre variant 2 attacks when calling firmware (x86 only).
+
+ ========== =============================================================
+ 'IBRS_FW' Protection against user program attacks when calling firmware
+ ========== =============================================================
+
+ - Indirect branch prediction barrier (IBPB) status for protection between
+ processes of different users. This feature can be controlled through
+ prctl() per process, or through kernel command line options. This is
+ an x86 only feature. For more details see below.
+
+ =================== ========================================================
+ 'IBPB: disabled' IBPB unused
+ 'IBPB: always-on' Use IBPB on all tasks
+ 'IBPB: conditional' Use IBPB on SECCOMP or indirect branch restricted tasks
+ =================== ========================================================
+
+ - Single threaded indirect branch prediction (STIBP) status for protection
+ between different hyper threads. This feature can be controlled through
+ prctl per process, or through kernel command line options. This is x86
+ only feature. For more details see below.
+
+ ==================== ========================================================
+ 'STIBP: disabled' STIBP unused
+ 'STIBP: forced' Use STIBP on all tasks
+ 'STIBP: conditional' Use STIBP on SECCOMP or indirect branch restricted tasks
+ ==================== ========================================================
+
+ - Return stack buffer (RSB) protection status:
+
+ ============= ===========================================
+ 'RSB filling' Protection of RSB on context switch enabled
+ ============= ===========================================
+
+Full mitigation might require a microcode update from the CPU
+vendor. When the necessary microcode is not available, the kernel will
+report vulnerability.
+
+Turning on mitigation for Spectre variant 1 and Spectre variant 2
+-----------------------------------------------------------------
+
+1. Kernel mitigation
+^^^^^^^^^^^^^^^^^^^^
+
+ For the Spectre variant 1, vulnerable kernel code (as determined
+ by code audit or scanning tools) is annotated on a case by case
+ basis to use nospec accessor macros for bounds clipping :ref:`[2]
+ <spec_ref2>` to avoid any usable disclosure gadgets. However, it may
+ not cover all attack vectors for Spectre variant 1.
+
+ For Spectre variant 2 mitigation, the compiler turns indirect calls or
+ jumps in the kernel into equivalent return trampolines (retpolines)
+ :ref:`[3] <spec_ref3>` :ref:`[9] <spec_ref9>` to go to the target
+ addresses. Speculative execution paths under retpolines are trapped
+ in an infinite loop to prevent any speculative execution jumping to
+ a gadget.
+
+ To turn on retpoline mitigation on a vulnerable CPU, the kernel
+ needs to be compiled with a gcc compiler that supports the
+ -mindirect-branch=thunk-extern -mindirect-branch-register options.
+ If the kernel is compiled with a Clang compiler, the compiler needs
+ to support -mretpoline-external-thunk option. The kernel config
+ CONFIG_RETPOLINE needs to be turned on, and the CPU needs to run with
+ the latest updated microcode.
+
+ On Intel Skylake-era systems the mitigation covers most, but not all,
+ cases. See :ref:`[3] <spec_ref3>` for more details.
+
+ On CPUs with hardware mitigation for Spectre variant 2 (e.g. Enhanced
+ IBRS on x86), retpoline is automatically disabled at run time.
+
+ The retpoline mitigation is turned on by default on vulnerable
+ CPUs. It can be forced on or off by the administrator
+ via the kernel command line and sysfs control files. See
+ :ref:`spectre_mitigation_control_command_line`.
+
+ On x86, indirect branch restricted speculation is turned on by default
+ before invoking any firmware code to prevent Spectre variant 2 exploits
+ using the firmware.
+
+ Using kernel address space randomization (CONFIG_RANDOMIZE_SLAB=y
+ and CONFIG_SLAB_FREELIST_RANDOM=y in the kernel configuration) makes
+ attacks on the kernel generally more difficult.
+
+2. User program mitigation
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ User programs can mitigate Spectre variant 1 using LFENCE or "bounds
+ clipping". For more details see :ref:`[2] <spec_ref2>`.
+
+ For Spectre variant 2 mitigation, individual user programs
+ can be compiled with return trampolines for indirect branches.
+ This protects them from consuming poisoned entries in the branch
+ target buffer left by malicious software. Alternatively, the
+ programs can disable their indirect branch speculation via prctl()
+ (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+ On x86, this will turn on STIBP to guard against attacks from the
+ sibling thread when the user program is running, and use IBPB to
+ flush the branch target buffer when switching to/from the program.
+
+ Restricting indirect branch speculation on a user program will
+ also prevent the program from launching a variant 2 attack
+ on x86. All sand-boxed SECCOMP programs have indirect branch
+ speculation restricted by default. Administrators can change
+ that behavior via the kernel command line and sysfs control files.
+ See :ref:`spectre_mitigation_control_command_line`.
+
+ Programs that disable their indirect branch speculation will have
+ more overhead and run slower.
+
+ User programs should use address space randomization
+ (/proc/sys/kernel/randomize_va_space = 1 or 2) to make attacks more
+ difficult.
+
+3. VM mitigation
+^^^^^^^^^^^^^^^^
+
+ Within the kernel, Spectre variant 1 attacks from rogue guests are
+ mitigated on a case by case basis in VM exit paths. Vulnerable code
+ uses nospec accessor macros for "bounds clipping", to avoid any
+ usable disclosure gadgets. However, this may not cover all variant
+ 1 attack vectors.
+
+ For Spectre variant 2 attacks from rogue guests to the kernel, the
+ Linux kernel uses retpoline or Enhanced IBRS to prevent consumption of
+ poisoned entries in branch target buffer left by rogue guests. It also
+ flushes the return stack buffer on every VM exit to prevent a return
+ stack buffer underflow so poisoned branch target buffer could be used,
+ or attacker guests leaving poisoned entries in the return stack buffer.
+
+ To mitigate guest-to-guest attacks in the same CPU hardware thread,
+ the branch target buffer is sanitized by flushing before switching
+ to a new guest on a CPU.
+
+ The above mitigations are turned on by default on vulnerable CPUs.
+
+ To mitigate guest-to-guest attacks from sibling thread when SMT is
+ in use, an untrusted guest running in the sibling thread can have
+ its indirect branch speculation disabled by administrator via prctl().
+
+ The kernel also allows guests to use any microcode based mitigation
+ they choose to use (such as IBPB or STIBP on x86) to protect themselves.
+
+.. _spectre_mitigation_control_command_line:
+
+Mitigation control on the kernel command line
+---------------------------------------------
+
+Spectre variant 2 mitigation can be disabled or force enabled at the
+kernel command line.
+
+ nospectre_v2
+
+ [X86] Disable all mitigations for the Spectre variant 2
+ (indirect branch prediction) vulnerability. System may
+ allow data leaks with this option, which is equivalent
+ to spectre_v2=off.
+
+
+ spectre_v2=
+
+ [X86] Control mitigation of Spectre variant 2
+ (indirect branch speculation) vulnerability.
+ The default operation protects the kernel from
+ user space attacks.
+
+ on
+ unconditionally enable, implies
+ spectre_v2_user=on
+ off
+ unconditionally disable, implies
+ spectre_v2_user=off
+ auto
+ kernel detects whether your CPU model is
+ vulnerable
+
+ Selecting 'on' will, and 'auto' may, choose a
+ mitigation method at run time according to the
+ CPU, the available microcode, the setting of the
+ CONFIG_RETPOLINE configuration option, and the
+ compiler with which the kernel was built.
+
+ Selecting 'on' will also enable the mitigation
+ against user space to user space task attacks.
+
+ Selecting 'off' will disable both the kernel and
+ the user space protections.
+
+ Specific mitigations can also be selected manually:
+
+ retpoline
+ replace indirect branches
+ retpoline,generic
+ google's original retpoline
+ retpoline,amd
+ AMD-specific minimal thunk
+
+ Not specifying this option is equivalent to
+ spectre_v2=auto.
+
+For user space mitigation:
+
+ spectre_v2_user=
+
+ [X86] Control mitigation of Spectre variant 2
+ (indirect branch speculation) vulnerability between
+ user space tasks
+
+ on
+ Unconditionally enable mitigations. Is
+ enforced by spectre_v2=on
+
+ off
+ Unconditionally disable mitigations. Is
+ enforced by spectre_v2=off
+
+ prctl
+ Indirect branch speculation is enabled,
+ but mitigation can be enabled via prctl
+ per thread. The mitigation control state
+ is inherited on fork.
+
+ prctl,ibpb
+ Like "prctl" above, but only STIBP is
+ controlled per thread. IBPB is issued
+ always when switching between different user
+ space processes.
+
+ seccomp
+ Same as "prctl" above, but all seccomp
+ threads will enable the mitigation unless
+ they explicitly opt out.
+
+ seccomp,ibpb
+ Like "seccomp" above, but only STIBP is
+ controlled per thread. IBPB is issued
+ always when switching between different
+ user space processes.
+
+ auto
+ Kernel selects the mitigation depending on
+ the available CPU features and vulnerability.
+
+ Default mitigation:
+ If CONFIG_SECCOMP=y then "seccomp", otherwise "prctl"
+
+ Not specifying this option is equivalent to
+ spectre_v2_user=auto.
+
+ In general the kernel by default selects
+ reasonable mitigations for the current CPU. To
+ disable Spectre variant 2 mitigations, boot with
+ spectre_v2=off. Spectre variant 1 mitigations
+ cannot be disabled.
+
+Mitigation selection guide
+--------------------------
+
+1. Trusted userspace
+^^^^^^^^^^^^^^^^^^^^
+
+ If all userspace applications are from trusted sources and do not
+ execute externally supplied untrusted code, then the mitigations can
+ be disabled.
+
+2. Protect sensitive programs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ For security-sensitive programs that have secrets (e.g. crypto
+ keys), protection against Spectre variant 2 can be put in place by
+ disabling indirect branch speculation when the program is running
+ (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+
+3. Sandbox untrusted programs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Untrusted programs that could be a source of attacks can be cordoned
+ off by disabling their indirect branch speculation when they are run
+ (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+ This prevents untrusted programs from polluting the branch target
+ buffer. All programs running in SECCOMP sandboxes have indirect
+ branch speculation restricted by default. This behavior can be
+ changed via the kernel command line and sysfs control files. See
+ :ref:`spectre_mitigation_control_command_line`.
+
+3. High security mode
+^^^^^^^^^^^^^^^^^^^^^
+
+ All Spectre variant 2 mitigations can be forced on
+ at boot time for all programs (See the "on" option in
+ :ref:`spectre_mitigation_control_command_line`). This will add
+ overhead as indirect branch speculations for all programs will be
+ restricted.
+
+ On x86, branch target buffer will be flushed with IBPB when switching
+ to a new program. STIBP is left on all the time to protect programs
+ against variant 2 attacks originating from programs running on
+ sibling threads.
+
+ Alternatively, STIBP can be used only when running programs
+ whose indirect branch speculation is explicitly disabled,
+ while IBPB is still used all the time when switching to a new
+ program to clear the branch target buffer (See "ibpb" option in
+ :ref:`spectre_mitigation_control_command_line`). This "ibpb" option
+ has less performance cost than the "on" option, which leaves STIBP
+ on all the time.
+
+References on Spectre
+---------------------
+
+Intel white papers:
+
+.. _spec_ref1:
+
+[1] `Intel analysis of speculative execution side channels <https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf>`_.
+
+.. _spec_ref2:
+
+[2] `Bounds check bypass <https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass>`_.
+
+.. _spec_ref3:
+
+[3] `Deep dive: Retpoline: A branch target injection mitigation <https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation>`_.
+
+.. _spec_ref4:
+
+[4] `Deep Dive: Single Thread Indirect Branch Predictors <https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors>`_.
+
+AMD white papers:
+
+.. _spec_ref5:
+
+[5] `AMD64 technology indirect branch control extension <https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf>`_.
+
+.. _spec_ref6:
+
+[6] `Software techniques for managing speculation on AMD processors <https://developer.amd.com/wp-content/resources/90343-B_SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf>`_.
+
+ARM white papers:
+
+.. _spec_ref7:
+
+[7] `Cache speculation side-channels <https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper>`_.
+
+.. _spec_ref8:
+
+[8] `Cache speculation issues update <https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/latest-updates/cache-speculation-issues-update>`_.
+
+Google white paper:
+
+.. _spec_ref9:
+
+[9] `Retpoline: a software construct for preventing branch-target-injection <https://support.google.com/faqs/answer/7625886>`_.
+
+MIPS white paper:
+
+.. _spec_ref10:
+
+[10] `MIPS: response on speculative execution and side channel vulnerabilities <https://www.mips.com/blog/mips-response-on-speculative-execution-and-side-channel-vulnerabilities/>`_.
+
+Academic papers:
+
+.. _spec_ref11:
+
+[11] `Spectre Attacks: Exploiting Speculative Execution <https://spectreattack.com/spectre.pdf>`_.
+
+.. _spec_ref12:
+
+[12] `NetSpectre: Read Arbitrary Memory over Network <https://arxiv.org/abs/1807.10535>`_.
+
+.. _spec_ref13:
+
+[13] `Spectre Returns! Speculation Attacks using the Return Stack Buffer <https://www.usenix.org/system/files/conference/woot18/woot18-paper-koruyeh.pdf>`_.
diff --git a/Documentation/admin-guide/index.rst b/Documentation/admin-guide/index.rst
index 8001917ee012..24fbe0568eff 100644
--- a/Documentation/admin-guide/index.rst
+++ b/Documentation/admin-guide/index.rst
@@ -70,6 +70,7 @@ configure specific aspects of kernel behavior to your liking.
ras
bcache
ext4
+ binderfs
pm/index
thunderbolt
LSM/index
diff --git a/Documentation/admin-guide/kernel-parameters.rst b/Documentation/admin-guide/kernel-parameters.rst
index 0124980dca2d..5d29ba5ad88c 100644
--- a/Documentation/admin-guide/kernel-parameters.rst
+++ b/Documentation/admin-guide/kernel-parameters.rst
@@ -9,11 +9,11 @@ and sorted into English Dictionary order (defined as ignoring all
punctuation and sorting digits before letters in a case insensitive
manner), and with descriptions where known.
-The kernel parses parameters from the kernel command line up to "--";
+The kernel parses parameters from the kernel command line up to "``--``";
if it doesn't recognize a parameter and it doesn't contain a '.', the
parameter gets passed to init: parameters with '=' go into init's
environment, others are passed as command line arguments to init.
-Everything after "--" is passed as an argument to init.
+Everything after "``--``" is passed as an argument to init.
Module parameters can be specified in two ways: via the kernel command
line with a module name prefix, or via modprobe, e.g.::
@@ -167,7 +167,7 @@ parameter is applicable::
X86-32 X86-32, aka i386 architecture is enabled.
X86-64 X86-64 architecture is enabled.
More X86-64 boot options can be found in
- Documentation/x86/x86_64/boot-options.txt .
+ Documentation/x86/x86_64/boot-options.rst.
X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
X86_UV SGI UV support is enabled.
XEN Xen support is enabled
@@ -181,10 +181,10 @@ In addition, the following text indicates that the option::
Parameters denoted with BOOT are actually interpreted by the boot
loader, and have no meaning to the kernel directly.
Do not modify the syntax of boot loader parameters without extreme
-need or coordination with <Documentation/x86/boot.txt>.
+need or coordination with <Documentation/x86/boot.rst>.
There are also arch-specific kernel-parameters not documented here.
-See for example <Documentation/x86/x86_64/boot-options.txt>.
+See for example <Documentation/x86/x86_64/boot-options.rst>.
Note that ALL kernel parameters listed below are CASE SENSITIVE, and that
a trailing = on the name of any parameter states that that parameter will
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 138f6664b2e2..099c5a4be95b 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -53,7 +53,7 @@
ACPI_DEBUG_PRINT statements, e.g.,
ACPI_DEBUG_PRINT((ACPI_DB_INFO, ...
The debug_level mask defaults to "info". See
- Documentation/acpi/debug.txt for more information about
+ Documentation/firmware-guide/acpi/debug.rst for more information about
debug layers and levels.
Enable processor driver info messages:
@@ -478,7 +478,7 @@
others).
ccw_timeout_log [S390]
- See Documentation/s390/CommonIO for details.
+ See Documentation/s390/common_io.rst for details.
cgroup_disable= [KNL] Disable a particular controller
Format: {name of the controller(s) to disable}
@@ -516,7 +516,7 @@
/selinux/checkreqprot.
cio_ignore= [S390]
- See Documentation/s390/CommonIO for details.
+ See Documentation/s390/common_io.rst for details.
clk_ignore_unused
[CLK]
Prevents the clock framework from automatically gating
@@ -708,14 +708,14 @@
[KNL, x86_64] select a region under 4G first, and
fall back to reserve region above 4G when '@offset'
hasn't been specified.
- See Documentation/kdump/kdump.txt for further details.
+ See Documentation/kdump/kdump.rst for further details.
crashkernel=range1:size1[,range2:size2,...][@offset]
[KNL] Same as above, but depends on the memory
in the running system. The syntax of range is
start-[end] where start and end are both
a memory unit (amount[KMG]). See also
- Documentation/kdump/kdump.txt for an example.
+ Documentation/kdump/kdump.rst for an example.
crashkernel=size[KMG],high
[KNL, x86_64] range could be above 4G. Allow kernel
@@ -805,12 +805,10 @@
tracking down these problems.
debug_pagealloc=
- [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this
- parameter enables the feature at boot time. In
- default, it is disabled. We can avoid allocating huge
- chunk of memory for debug pagealloc if we don't enable
- it at boot time and the system will work mostly same
- with the kernel built without CONFIG_DEBUG_PAGEALLOC.
+ [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this parameter
+ enables the feature at boot time. By default, it is
+ disabled and the system will work mostly the same as a
+ kernel built without CONFIG_DEBUG_PAGEALLOC.
on: enable the feature
debugpat [X86] Enable PAT debugging
@@ -932,7 +930,7 @@
edid/1680x1050.bin, or edid/1920x1080.bin is given
and no file with the same name exists. Details and
instructions how to build your own EDID data are
- available in Documentation/EDID/HOWTO.txt. An EDID
+ available in Documentation/EDID/howto.rst. An EDID
data set will only be used for a particular connector,
if its name and a colon are prepended to the EDID
name. Each connector may use a unique EDID data
@@ -963,7 +961,7 @@
for details.
nompx [X86] Disables Intel Memory Protection Extensions.
- See Documentation/x86/intel_mpx.txt for more
+ See Documentation/x86/intel_mpx.rst for more
information about the feature.
nopku [X86] Disable Memory Protection Keys CPU feature found
@@ -1189,7 +1187,7 @@
that is to be dynamically loaded by Linux. If there are
multiple variables with the same name but with different
vendor GUIDs, all of them will be loaded. See
- Documentation/acpi/ssdt-overlays.txt for details.
+ Documentation/admin-guide/acpi/ssdt-overlays.rst for details.
eisa_irq_edge= [PARISC,HW]
@@ -1209,7 +1207,7 @@
Specifies physical address of start of kernel core
image elf header and optionally the size. Generally
kexec loader will pass this option to capture kernel.
- See Documentation/kdump/kdump.txt for details.
+ See Documentation/kdump/kdump.rst for details.
enable_mtrr_cleanup [X86]
The kernel tries to adjust MTRR layout from continuous
@@ -1388,9 +1386,6 @@
Valid parameters: "on", "off"
Default: "on"
- hisax= [HW,ISDN]
- See Documentation/isdn/README.HiSax.
-
hlt [BUGS=ARM,SH]
hpet= [X86-32,HPET] option to control HPET usage
@@ -1507,7 +1502,7 @@
Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
.vlb_clock .pci_clock .noflush .nohpa .noprobe .nowerr
.cdrom .chs .ignore_cable are additional options
- See Documentation/ide/ide.txt.
+ See Documentation/ide/ide.rst.
ide-generic.probe-mask= [HW] (E)IDE subsystem
Format: <int>
@@ -1673,6 +1668,15 @@
initrd= [BOOT] Specify the location of the initial ramdisk
+ init_on_alloc= [MM] Fill newly allocated pages and heap objects with
+ zeroes.
+ Format: 0 | 1
+ Default set by CONFIG_INIT_ON_ALLOC_DEFAULT_ON.
+
+ init_on_free= [MM] Fill freed pages and heap objects with zeroes.
+ Format: 0 | 1
+ Default set by CONFIG_INIT_ON_FREE_DEFAULT_ON.
+
init_pkru= [x86] Specify the default memory protection keys rights
register contents for all processes. 0x55555554 by
default (disallow access to all but pkey 0). Can
@@ -2383,7 +2387,7 @@
mce [X86-32] Machine Check Exception
- mce=option [X86-64] See Documentation/x86/x86_64/boot-options.txt
+ mce=option [X86-64] See Documentation/x86/x86_64/boot-options.rst
md= [HW] RAID subsystems devices and level
See Documentation/admin-guide/md.rst.
@@ -2439,7 +2443,7 @@
set according to the
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE kernel config
option.
- See Documentation/memory-hotplug.txt.
+ See Documentation/admin-guide/mm/memory-hotplug.rst.
memmap=exactmap [KNL,X86] Enable setting of an exact
E820 memory map, as specified by the user.
@@ -2528,7 +2532,7 @@
mem_encrypt=on: Activate SME
mem_encrypt=off: Do not activate SME
- Refer to Documentation/x86/amd-memory-encryption.txt
+ Refer to Documentation/virtual/kvm/amd-memory-encryption.rst
for details on when memory encryption can be activated.
mem_sleep_default= [SUSPEND] Default system suspend mode:
@@ -2836,8 +2840,9 @@
0 - turn hardlockup detector in nmi_watchdog off
1 - turn hardlockup detector in nmi_watchdog on
When panic is specified, panic when an NMI watchdog
- timeout occurs (or 'nopanic' to override the opposite
- default). To disable both hard and soft lockup detectors,
+ timeout occurs (or 'nopanic' to not panic on an NMI
+ watchdog, if CONFIG_BOOTPARAM_HARDLOCKUP_PANIC is set)
+ To disable both hard and soft lockup detectors,
please see 'nowatchdog'.
This is useful when you use a panic=... timeout and
need the box quickly up again.
@@ -3528,7 +3533,7 @@
See Documentation/blockdev/paride.txt.
pirq= [SMP,APIC] Manual mp-table setup
- See Documentation/x86/i386/IO-APIC.txt.
+ See Documentation/x86/i386/IO-APIC.rst.
plip= [PPT,NET] Parallel port network link
Format: { parport<nr> | timid | 0 }
@@ -3752,6 +3757,12 @@
the propagation of recent CPU-hotplug changes up
the rcu_node combining tree.
+ rcutree.use_softirq= [KNL]
+ If set to zero, move all RCU_SOFTIRQ processing to
+ per-CPU rcuc kthreads. Defaults to a non-zero
+ value, meaning that RCU_SOFTIRQ is used by default.
+ Specify rcutree.use_softirq=0 to use rcuc kthreads.
+
rcutree.rcu_fanout_exact= [KNL]
Disable autobalancing of the rcu_node combining
tree. This is used by rcutorture, and might
@@ -4078,7 +4089,7 @@
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
- See Documentation/cgroup-v1/cpusets.txt.
+ See Documentation/cgroup-v1/cpusets.rst.
reserve= [KNL,BUGS] Force kernel to ignore I/O ports or memory
Format: <base1>,<size1>[,<base2>,<size2>,...]
@@ -4588,7 +4599,7 @@
swapaccount=[0|1]
[KNL] Enable accounting of swap in memory resource
controller if no parameter or 1 is given or disable
- it if 0 is given (See Documentation/cgroup-v1/memory.txt)
+ it if 0 is given (See Documentation/cgroup-v1/memory.rst)
swiotlb= [ARM,IA-64,PPC,MIPS,X86]
Format: { <int> | force | noforce }
@@ -5026,7 +5037,7 @@
vector=percpu: enable percpu vector domain
video= [FB] Frame buffer configuration
- See Documentation/fb/modedb.txt.
+ See Documentation/fb/modedb.rst.
video.brightness_switch_enabled= [0,1]
If set to 1, on receiving an ACPI notify event
@@ -5054,7 +5065,7 @@
Can be used multiple times for multiple devices.
vga= [BOOT,X86-32] Select a particular video mode
- See Documentation/x86/boot.txt and
+ See Documentation/x86/boot.rst and
Documentation/svga.txt.
Use vga=ask for menu.
This is actually a boot loader parameter; the value is
@@ -5100,13 +5111,12 @@
targets for exploits that can control RIP.
emulate [default] Vsyscalls turn into traps and are
- emulated reasonably safely.
+ emulated reasonably safely. The vsyscall
+ page is readable.
- native Vsyscalls are native syscall instructions.
- This is a little bit faster than trapping
- and makes a few dynamic recompilers work
- better than they would in emulation mode.
- It also makes exploits much easier to write.
+ xonly Vsyscalls turn into traps and are
+ emulated reasonably safely. The vsyscall
+ page is not readable.
none Vsyscalls don't work at all. This makes
them quite hard to use for exploits but
@@ -5162,7 +5172,7 @@
Default: 3 = cyan.
watchdog timers [HW,WDT] For information on watchdog timers,
- see Documentation/watchdog/watchdog-parameters.txt
+ see Documentation/watchdog/watchdog-parameters.rst
or other driver-specific files in the
Documentation/watchdog/ directory.
diff --git a/Documentation/admin-guide/mm/numa_memory_policy.rst b/Documentation/admin-guide/mm/numa_memory_policy.rst
index d78c5b315f72..546f174e5d6a 100644
--- a/Documentation/admin-guide/mm/numa_memory_policy.rst
+++ b/Documentation/admin-guide/mm/numa_memory_policy.rst
@@ -15,7 +15,7 @@ document attempts to describe the concepts and APIs of the 2.6 memory policy
support.
Memory policies should not be confused with cpusets
-(``Documentation/cgroup-v1/cpusets.txt``)
+(``Documentation/cgroup-v1/cpusets.rst``)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
diff --git a/Documentation/admin-guide/mm/numaperf.rst b/Documentation/admin-guide/mm/numaperf.rst
index c067ed145158..a80c3c37226e 100644
--- a/Documentation/admin-guide/mm/numaperf.rst
+++ b/Documentation/admin-guide/mm/numaperf.rst
@@ -165,5 +165,6 @@ write-through caching.
========
See Also
========
-.. [1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
- Section 5.2.27
+
+[1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
+- Section 5.2.27
diff --git a/Documentation/admin-guide/ras.rst b/Documentation/admin-guide/ras.rst
index c7495e42e6f4..2b20f5f7380d 100644
--- a/Documentation/admin-guide/ras.rst
+++ b/Documentation/admin-guide/ras.rst
@@ -199,7 +199,7 @@ Architecture (MCA)\ [#f3]_.
mode).
.. [#f3] For more details about the Machine Check Architecture (MCA),
- please read Documentation/x86/x86_64/machinecheck at the Kernel tree.
+ please read Documentation/x86/x86_64/machinecheck.rst at the Kernel tree.
EDAC - Error Detection And Correction
*************************************
diff --git a/Documentation/aoe/aoe.txt b/Documentation/aoe/aoe.rst
index c71487d399d1..58747ecec71d 100644
--- a/Documentation/aoe/aoe.txt
+++ b/Documentation/aoe/aoe.rst
@@ -1,3 +1,6 @@
+Introduction
+============
+
ATA over Ethernet is a network protocol that provides simple access to
block storage on the LAN.
@@ -22,7 +25,8 @@ document the use of the driver and are not necessary if you install
the aoetools.
-CREATING DEVICE NODES
+Creating Device Nodes
+=====================
Users of udev should find the block device nodes created
automatically, but to create all the necessary device nodes, use the
@@ -38,7 +42,8 @@ CREATING DEVICE NODES
confusing when an AoE device is not present the first time the a
command is run but appears a second later.
-USING DEVICE NODES
+Using Device Nodes
+==================
"cat /dev/etherd/err" blocks, waiting for error diagnostic output,
like any retransmitted packets.
@@ -55,7 +60,7 @@ USING DEVICE NODES
by sysfs counterparts. Using the commands in aoetools insulates
users from these implementation details.
- The block devices are named like this:
+ The block devices are named like this::
e{shelf}.{slot}
e{shelf}.{slot}p{part}
@@ -64,7 +69,8 @@ USING DEVICE NODES
first shelf (shelf address zero). That's the whole disk. The first
partition on that disk would be "e0.2p1".
-USING SYSFS
+Using sysfs
+===========
Each aoe block device in /sys/block has the extra attributes of
state, mac, and netif. The state attribute is "up" when the device
@@ -78,29 +84,29 @@ USING SYSFS
There is a script in this directory that formats this information in
a convenient way. Users with aoetools should use the aoe-stat
- command.
-
- root@makki root# sh Documentation/aoe/status.sh
- e10.0 eth3 up
- e10.1 eth3 up
- e10.2 eth3 up
- e10.3 eth3 up
- e10.4 eth3 up
- e10.5 eth3 up
- e10.6 eth3 up
- e10.7 eth3 up
- e10.8 eth3 up
- e10.9 eth3 up
- e4.0 eth1 up
- e4.1 eth1 up
- e4.2 eth1 up
- e4.3 eth1 up
- e4.4 eth1 up
- e4.5 eth1 up
- e4.6 eth1 up
- e4.7 eth1 up
- e4.8 eth1 up
- e4.9 eth1 up
+ command::
+
+ root@makki root# sh Documentation/aoe/status.sh
+ e10.0 eth3 up
+ e10.1 eth3 up
+ e10.2 eth3 up
+ e10.3 eth3 up
+ e10.4 eth3 up
+ e10.5 eth3 up
+ e10.6 eth3 up
+ e10.7 eth3 up
+ e10.8 eth3 up
+ e10.9 eth3 up
+ e4.0 eth1 up
+ e4.1 eth1 up
+ e4.2 eth1 up
+ e4.3 eth1 up
+ e4.4 eth1 up
+ e4.5 eth1 up
+ e4.6 eth1 up
+ e4.7 eth1 up
+ e4.8 eth1 up
+ e4.9 eth1 up
Use /sys/module/aoe/parameters/aoe_iflist (or better, the driver
option discussed below) instead of /dev/etherd/interfaces to limit
@@ -113,12 +119,13 @@ USING SYSFS
for this purpose. You can also directly use the
/dev/etherd/discover special file described above.
-DRIVER OPTIONS
+Driver Options
+==============
There is a boot option for the built-in aoe driver and a
corresponding module parameter, aoe_iflist. Without this option,
all network interfaces may be used for ATA over Ethernet. Here is a
- usage example for the module parameter.
+ usage example for the module parameter::
modprobe aoe_iflist="eth1 eth3"
diff --git a/Documentation/aoe/examples.rst b/Documentation/aoe/examples.rst
new file mode 100644
index 000000000000..91f3198e52c1
--- /dev/null
+++ b/Documentation/aoe/examples.rst
@@ -0,0 +1,23 @@
+Example of udev rules
+---------------------
+
+ .. include:: udev.txt
+ :literal:
+
+Example of udev install rules script
+------------------------------------
+
+ .. literalinclude:: udev-install.sh
+ :language: shell
+
+Example script to get status
+----------------------------
+
+ .. literalinclude:: status.sh
+ :language: shell
+
+Example of AoE autoload script
+------------------------------
+
+ .. literalinclude:: autoload.sh
+ :language: shell
diff --git a/Documentation/aoe/index.rst b/Documentation/aoe/index.rst
new file mode 100644
index 000000000000..4394b9b7913c
--- /dev/null
+++ b/Documentation/aoe/index.rst
@@ -0,0 +1,19 @@
+:orphan:
+
+=======================
+ATA over Ethernet (AoE)
+=======================
+
+.. toctree::
+ :maxdepth: 1
+
+ aoe
+ todo
+ examples
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/aoe/todo.txt b/Documentation/aoe/todo.rst
index c09dfad4aed8..dea8db5a33e1 100644
--- a/Documentation/aoe/todo.txt
+++ b/Documentation/aoe/todo.rst
@@ -1,3 +1,6 @@
+TODO
+====
+
There is a potential for deadlock when allocating a struct sk_buff for
data that needs to be written out to aoe storage. If the data is
being written from a dirty page in order to free that page, and if
diff --git a/Documentation/aoe/udev.txt b/Documentation/aoe/udev.txt
index 1f06daf03f5b..54feda5a0772 100644
--- a/Documentation/aoe/udev.txt
+++ b/Documentation/aoe/udev.txt
@@ -11,7 +11,7 @@
# udev_rules="/etc/udev/rules.d/"
# bash# ls /etc/udev/rules.d/
# 10-wacom.rules 50-udev.rules
-# bash# cp /path/to/linux-2.6.xx/Documentation/aoe/udev.txt \
+# bash# cp /path/to/linux/Documentation/aoe/udev.txt \
# /etc/udev/rules.d/60-aoe.rules
#
diff --git a/Documentation/arm/mem_alignment b/Documentation/arm/mem_alignment
index 6335fcacbba9..e110e2781039 100644
--- a/Documentation/arm/mem_alignment
+++ b/Documentation/arm/mem_alignment
@@ -1,4 +1,4 @@
-Too many problems poped up because of unnoticed misaligned memory access in
+Too many problems popped up because of unnoticed misaligned memory access in
kernel code lately. Therefore the alignment fixup is now unconditionally
configured in for SA11x0 based targets. According to Alan Cox, this is a
bad idea to configure it out, but Russell King has some good reasons for
diff --git a/Documentation/arm/stm32/overview.rst b/Documentation/arm/stm32/overview.rst
index 85cfc8410798..f7e734153860 100644
--- a/Documentation/arm/stm32/overview.rst
+++ b/Documentation/arm/stm32/overview.rst
@@ -1,3 +1,5 @@
+:orphan:
+
========================
STM32 ARM Linux Overview
========================
diff --git a/Documentation/arm/stm32/stm32f429-overview.rst b/Documentation/arm/stm32/stm32f429-overview.rst
index 18feda97f483..65bbb1c3b423 100644
--- a/Documentation/arm/stm32/stm32f429-overview.rst
+++ b/Documentation/arm/stm32/stm32f429-overview.rst
@@ -1,3 +1,5 @@
+:orphan:
+
STM32F429 Overview
==================
diff --git a/Documentation/arm/stm32/stm32f746-overview.rst b/Documentation/arm/stm32/stm32f746-overview.rst
index b5f4b6ce7656..42d593085015 100644
--- a/Documentation/arm/stm32/stm32f746-overview.rst
+++ b/Documentation/arm/stm32/stm32f746-overview.rst
@@ -1,3 +1,5 @@
+:orphan:
+
STM32F746 Overview
==================
diff --git a/Documentation/arm/stm32/stm32f769-overview.rst b/Documentation/arm/stm32/stm32f769-overview.rst
index 228656ced2fe..f6adac862b17 100644
--- a/Documentation/arm/stm32/stm32f769-overview.rst
+++ b/Documentation/arm/stm32/stm32f769-overview.rst
@@ -1,3 +1,5 @@
+:orphan:
+
STM32F769 Overview
==================
diff --git a/Documentation/arm/stm32/stm32h743-overview.rst b/Documentation/arm/stm32/stm32h743-overview.rst
index 3458dc00095d..c525835e7473 100644
--- a/Documentation/arm/stm32/stm32h743-overview.rst
+++ b/Documentation/arm/stm32/stm32h743-overview.rst
@@ -1,3 +1,5 @@
+:orphan:
+
STM32H743 Overview
==================
diff --git a/Documentation/arm/stm32/stm32mp157-overview.rst b/Documentation/arm/stm32/stm32mp157-overview.rst
index 62e176d47ca7..2c52cd020601 100644
--- a/Documentation/arm/stm32/stm32mp157-overview.rst
+++ b/Documentation/arm/stm32/stm32mp157-overview.rst
@@ -1,3 +1,5 @@
+:orphan:
+
STM32MP157 Overview
===================
diff --git a/Documentation/arm64/acpi_object_usage.txt b/Documentation/arm64/acpi_object_usage.rst
index c77010c5c1f0..d51b69dc624d 100644
--- a/Documentation/arm64/acpi_object_usage.txt
+++ b/Documentation/arm64/acpi_object_usage.rst
@@ -1,5 +1,7 @@
+===========
ACPI Tables
------------
+===========
+
The expectations of individual ACPI tables are discussed in the list that
follows.
@@ -11,54 +13,71 @@ outside of the UEFI Forum (see Section 5.2.6 of the specification).
For ACPI on arm64, tables also fall into the following categories:
- -- Required: DSDT, FADT, GTDT, MADT, MCFG, RSDP, SPCR, XSDT
+ - Required: DSDT, FADT, GTDT, MADT, MCFG, RSDP, SPCR, XSDT
- -- Recommended: BERT, EINJ, ERST, HEST, PCCT, SSDT
+ - Recommended: BERT, EINJ, ERST, HEST, PCCT, SSDT
- -- Optional: BGRT, CPEP, CSRT, DBG2, DRTM, ECDT, FACS, FPDT, IORT,
+ - Optional: BGRT, CPEP, CSRT, DBG2, DRTM, ECDT, FACS, FPDT, IORT,
MCHI, MPST, MSCT, NFIT, PMTT, RASF, SBST, SLIT, SPMI, SRAT, STAO,
TCPA, TPM2, UEFI, XENV
- -- Not supported: BOOT, DBGP, DMAR, ETDT, HPET, IBFT, IVRS, LPIT,
+ - Not supported: BOOT, DBGP, DMAR, ETDT, HPET, IBFT, IVRS, LPIT,
MSDM, OEMx, PSDT, RSDT, SLIC, WAET, WDAT, WDRT, WPBT
+====== ========================================================================
Table Usage for ARMv8 Linux
------ ----------------------------------------------------------------
+====== ========================================================================
BERT Section 18.3 (signature == "BERT")
- == Boot Error Record Table ==
+
+ **Boot Error Record Table**
+
Must be supplied if RAS support is provided by the platform. It
is recommended this table be supplied.
BOOT Signature Reserved (signature == "BOOT")
- == simple BOOT flag table ==
+
+ **simple BOOT flag table**
+
Microsoft only table, will not be supported.
BGRT Section 5.2.22 (signature == "BGRT")
- == Boot Graphics Resource Table ==
+
+ **Boot Graphics Resource Table**
+
Optional, not currently supported, with no real use-case for an
ARM server.
CPEP Section 5.2.18 (signature == "CPEP")
- == Corrected Platform Error Polling table ==
+
+ **Corrected Platform Error Polling table**
+
Optional, not currently supported, and not recommended until such
time as ARM-compatible hardware is available, and the specification
suitably modified.
CSRT Signature Reserved (signature == "CSRT")
- == Core System Resources Table ==
+
+ **Core System Resources Table**
+
Optional, not currently supported.
DBG2 Signature Reserved (signature == "DBG2")
- == DeBuG port table 2 ==
+
+ **DeBuG port table 2**
+
License has changed and should be usable. Optional if used instead
of earlycon=<device> on the command line.
DBGP Signature Reserved (signature == "DBGP")
- == DeBuG Port table ==
+
+ **DeBuG Port table**
+
Microsoft only table, will not be supported.
DSDT Section 5.2.11.1 (signature == "DSDT")
- == Differentiated System Description Table ==
+
+ **Differentiated System Description Table**
+
A DSDT is required; see also SSDT.
ACPI tables contain only one DSDT but can contain one or more SSDTs,
@@ -66,22 +85,30 @@ DSDT Section 5.2.11.1 (signature == "DSDT")
but cannot modify or replace anything in the DSDT.
DMAR Signature Reserved (signature == "DMAR")
- == DMA Remapping table ==
+
+ **DMA Remapping table**
+
x86 only table, will not be supported.
DRTM Signature Reserved (signature == "DRTM")
- == Dynamic Root of Trust for Measurement table ==
+
+ **Dynamic Root of Trust for Measurement table**
+
Optional, not currently supported.
ECDT Section 5.2.16 (signature == "ECDT")
- == Embedded Controller Description Table ==
+
+ **Embedded Controller Description Table**
+
Optional, not currently supported, but could be used on ARM if and
only if one uses the GPE_BIT field to represent an IRQ number, since
there are no GPE blocks defined in hardware reduced mode. This would
need to be modified in the ACPI specification.
EINJ Section 18.6 (signature == "EINJ")
- == Error Injection table ==
+
+ **Error Injection table**
+
This table is very useful for testing platform response to error
conditions; it allows one to inject an error into the system as
if it had actually occurred. However, this table should not be
@@ -89,27 +116,35 @@ EINJ Section 18.6 (signature == "EINJ")
and executed with the ACPICA tools only during testing.
ERST Section 18.5 (signature == "ERST")
- == Error Record Serialization Table ==
+
+ **Error Record Serialization Table**
+
On a platform supports RAS, this table must be supplied if it is not
UEFI-based; if it is UEFI-based, this table may be supplied. When this
table is not present, UEFI run time service will be utilized to save
and retrieve hardware error information to and from a persistent store.
ETDT Signature Reserved (signature == "ETDT")
- == Event Timer Description Table ==
+
+ **Event Timer Description Table**
+
Obsolete table, will not be supported.
FACS Section 5.2.10 (signature == "FACS")
- == Firmware ACPI Control Structure ==
+
+ **Firmware ACPI Control Structure**
+
It is unlikely that this table will be terribly useful. If it is
provided, the Global Lock will NOT be used since it is not part of
the hardware reduced profile, and only 64-bit address fields will
be considered valid.
FADT Section 5.2.9 (signature == "FACP")
- == Fixed ACPI Description Table ==
+
+ **Fixed ACPI Description Table**
Required for arm64.
+
The HW_REDUCED_ACPI flag must be set. All of the fields that are
to be ignored when HW_REDUCED_ACPI is set are expected to be set to
zero.
@@ -118,22 +153,28 @@ FADT Section 5.2.9 (signature == "FACP")
used, not FIRMWARE_CTRL.
If PSCI is used (as is recommended), make sure that ARM_BOOT_ARCH is
- filled in properly -- that the PSCI_COMPLIANT flag is set and that
+ filled in properly - that the PSCI_COMPLIANT flag is set and that
PSCI_USE_HVC is set or unset as needed (see table 5-37).
For the DSDT that is also required, the X_DSDT field is to be used,
not the DSDT field.
FPDT Section 5.2.23 (signature == "FPDT")
- == Firmware Performance Data Table ==
+
+ **Firmware Performance Data Table**
+
Optional, not currently supported.
GTDT Section 5.2.24 (signature == "GTDT")
- == Generic Timer Description Table ==
+
+ **Generic Timer Description Table**
+
Required for arm64.
HEST Section 18.3.2 (signature == "HEST")
- == Hardware Error Source Table ==
+
+ **Hardware Error Source Table**
+
ARM-specific error sources have been defined; please use those or the
PCI types such as type 6 (AER Root Port), 7 (AER Endpoint), or 8 (AER
Bridge), or use type 9 (Generic Hardware Error Source). Firmware first
@@ -144,122 +185,174 @@ HEST Section 18.3.2 (signature == "HEST")
is recommended this table be supplied.
HPET Signature Reserved (signature == "HPET")
- == High Precision Event timer Table ==
+
+ **High Precision Event timer Table**
+
x86 only table, will not be supported.
IBFT Signature Reserved (signature == "IBFT")
- == iSCSI Boot Firmware Table ==
+
+ **iSCSI Boot Firmware Table**
+
Microsoft defined table, support TBD.
IORT Signature Reserved (signature == "IORT")
- == Input Output Remapping Table ==
+
+ **Input Output Remapping Table**
+
arm64 only table, required in order to describe IO topology, SMMUs,
and GIC ITSs, and how those various components are connected together,
such as identifying which components are behind which SMMUs/ITSs.
This table will only be required on certain SBSA platforms (e.g.,
- when using GICv3-ITS and an SMMU); on SBSA Level 0 platforms, it
+ when using GICv3-ITS and an SMMU); on SBSA Level 0 platforms, it
remains optional.
IVRS Signature Reserved (signature == "IVRS")
- == I/O Virtualization Reporting Structure ==
+
+ **I/O Virtualization Reporting Structure**
+
x86_64 (AMD) only table, will not be supported.
LPIT Signature Reserved (signature == "LPIT")
- == Low Power Idle Table ==
+
+ **Low Power Idle Table**
+
x86 only table as of ACPI 5.1; starting with ACPI 6.0, processor
descriptions and power states on ARM platforms should use the DSDT
and define processor container devices (_HID ACPI0010, Section 8.4,
and more specifically 8.4.3 and and 8.4.4).
MADT Section 5.2.12 (signature == "APIC")
- == Multiple APIC Description Table ==
+
+ **Multiple APIC Description Table**
+
Required for arm64. Only the GIC interrupt controller structures
should be used (types 0xA - 0xF).
MCFG Signature Reserved (signature == "MCFG")
- == Memory-mapped ConFiGuration space ==
+
+ **Memory-mapped ConFiGuration space**
+
If the platform supports PCI/PCIe, an MCFG table is required.
MCHI Signature Reserved (signature == "MCHI")
- == Management Controller Host Interface table ==
+
+ **Management Controller Host Interface table**
+
Optional, not currently supported.
MPST Section 5.2.21 (signature == "MPST")
- == Memory Power State Table ==
+
+ **Memory Power State Table**
+
Optional, not currently supported.
MSCT Section 5.2.19 (signature == "MSCT")
- == Maximum System Characteristic Table ==
+
+ **Maximum System Characteristic Table**
+
Optional, not currently supported.
MSDM Signature Reserved (signature == "MSDM")
- == Microsoft Data Management table ==
+
+ **Microsoft Data Management table**
+
Microsoft only table, will not be supported.
NFIT Section 5.2.25 (signature == "NFIT")
- == NVDIMM Firmware Interface Table ==
+
+ **NVDIMM Firmware Interface Table**
+
Optional, not currently supported.
OEMx Signature of "OEMx" only
- == OEM Specific Tables ==
+
+ **OEM Specific Tables**
+
All tables starting with a signature of "OEM" are reserved for OEM
use. Since these are not meant to be of general use but are limited
to very specific end users, they are not recommended for use and are
not supported by the kernel for arm64.
PCCT Section 14.1 (signature == "PCCT)
- == Platform Communications Channel Table ==
+
+ **Platform Communications Channel Table**
+
Recommend for use on arm64; use of PCC is recommended when using CPPC
to control performance and power for platform processors.
PMTT Section 5.2.21.12 (signature == "PMTT")
- == Platform Memory Topology Table ==
+
+ **Platform Memory Topology Table**
+
Optional, not currently supported.
PSDT Section 5.2.11.3 (signature == "PSDT")
- == Persistent System Description Table ==
+
+ **Persistent System Description Table**
+
Obsolete table, will not be supported.
RASF Section 5.2.20 (signature == "RASF")
- == RAS Feature table ==
+
+ **RAS Feature table**
+
Optional, not currently supported.
RSDP Section 5.2.5 (signature == "RSD PTR")
- == Root System Description PoinTeR ==
+
+ **Root System Description PoinTeR**
+
Required for arm64.
RSDT Section 5.2.7 (signature == "RSDT")
- == Root System Description Table ==
+
+ **Root System Description Table**
+
Since this table can only provide 32-bit addresses, it is deprecated
on arm64, and will not be used. If provided, it will be ignored.
SBST Section 5.2.14 (signature == "SBST")
- == Smart Battery Subsystem Table ==
+
+ **Smart Battery Subsystem Table**
+
Optional, not currently supported.
SLIC Signature Reserved (signature == "SLIC")
- == Software LIcensing table ==
+
+ **Software LIcensing table**
+
Microsoft only table, will not be supported.
SLIT Section 5.2.17 (signature == "SLIT")
- == System Locality distance Information Table ==
+
+ **System Locality distance Information Table**
+
Optional in general, but required for NUMA systems.
SPCR Signature Reserved (signature == "SPCR")
- == Serial Port Console Redirection table ==
+
+ **Serial Port Console Redirection table**
+
Required for arm64.
SPMI Signature Reserved (signature == "SPMI")
- == Server Platform Management Interface table ==
+
+ **Server Platform Management Interface table**
+
Optional, not currently supported.
SRAT Section 5.2.16 (signature == "SRAT")
- == System Resource Affinity Table ==
+
+ **System Resource Affinity Table**
+
Optional, but if used, only the GICC Affinity structures are read.
To support arm64 NUMA, this table is required.
SSDT Section 5.2.11.2 (signature == "SSDT")
- == Secondary System Description Table ==
+
+ **Secondary System Description Table**
+
These tables are a continuation of the DSDT; these are recommended
for use with devices that can be added to a running system, but can
also serve the purpose of dividing up device descriptions into more
@@ -272,49 +365,69 @@ SSDT Section 5.2.11.2 (signature == "SSDT")
one DSDT but can contain many SSDTs.
STAO Signature Reserved (signature == "STAO")
- == _STA Override table ==
+
+ **_STA Override table**
+
Optional, but only necessary in virtualized environments in order to
hide devices from guest OSs.
TCPA Signature Reserved (signature == "TCPA")
- == Trusted Computing Platform Alliance table ==
+
+ **Trusted Computing Platform Alliance table**
+
Optional, not currently supported, and may need changes to fully
interoperate with arm64.
TPM2 Signature Reserved (signature == "TPM2")
- == Trusted Platform Module 2 table ==
+
+ **Trusted Platform Module 2 table**
+
Optional, not currently supported, and may need changes to fully
interoperate with arm64.
UEFI Signature Reserved (signature == "UEFI")
- == UEFI ACPI data table ==
+
+ **UEFI ACPI data table**
+
Optional, not currently supported. No known use case for arm64,
at present.
WAET Signature Reserved (signature == "WAET")
- == Windows ACPI Emulated devices Table ==
+
+ **Windows ACPI Emulated devices Table**
+
Microsoft only table, will not be supported.
WDAT Signature Reserved (signature == "WDAT")
- == Watch Dog Action Table ==
+
+ **Watch Dog Action Table**
+
Microsoft only table, will not be supported.
WDRT Signature Reserved (signature == "WDRT")
- == Watch Dog Resource Table ==
+
+ **Watch Dog Resource Table**
+
Microsoft only table, will not be supported.
WPBT Signature Reserved (signature == "WPBT")
- == Windows Platform Binary Table ==
+
+ **Windows Platform Binary Table**
+
Microsoft only table, will not be supported.
XENV Signature Reserved (signature == "XENV")
- == Xen project table ==
+
+ **Xen project table**
+
Optional, used only by Xen at present.
XSDT Section 5.2.8 (signature == "XSDT")
- == eXtended System Description Table ==
- Required for arm64.
+ **eXtended System Description Table**
+
+ Required for arm64.
+====== ========================================================================
ACPI Objects
------------
@@ -323,10 +436,11 @@ shown in the list that follows; any object not explicitly mentioned below
should be used as needed for a particular platform or particular subsystem,
such as power management or PCI.
+===== ================ ========================================================
Name Section Usage for ARMv8 Linux
----- ------------ -------------------------------------------------
+===== ================ ========================================================
_CCA 6.2.17 This method must be defined for all bus masters
- on arm64 -- there are no assumptions made about
+ on arm64 - there are no assumptions made about
whether such devices are cache coherent or not.
The _CCA value is inherited by all descendants of
these devices so it does not need to be repeated.
@@ -422,8 +536,8 @@ _OSC 6.2.11 This method can be a global method in ACPI (i.e.,
by the kernel community, then register it with the
UEFI Forum.
-\_OSI 5.7.2 Deprecated on ARM64. As far as ACPI firmware is
- concerned, _OSI is not to be used to determine what
+\_OSI 5.7.2 Deprecated on ARM64. As far as ACPI firmware is
+ concerned, _OSI is not to be used to determine what
sort of system is being used or what functionality
is provided. The _OSC method is to be used instead.
@@ -447,7 +561,7 @@ _PSx 7.3.2-5 Use as needed; power management specific. If _PS0 is
usage, change them in these methods.
_RDI 8.4.4.4 Recommended for use with processor definitions (_HID
- ACPI0010) on arm64. This should only be used in
+ ACPI0010) on arm64. This should only be used in
conjunction with _LPI.
\_REV 5.7.4 Always returns the latest version of ACPI supported.
@@ -476,6 +590,7 @@ _SWS 7.4.3 Use as needed; power management specific; this may
_UID 6.1.12 Recommended for distinguishing devices of the same
class; define it if at all possible.
+===== ================ ========================================================
@@ -488,7 +603,7 @@ platforms, ACPI events must be signaled differently.
There are two options: GPIO-signaled interrupts (Section 5.6.5), and
interrupt-signaled events (Section 5.6.9). Interrupt-signaled events are a
-new feature in the ACPI 6.1 specification. Either -- or both -- can be used
+new feature in the ACPI 6.1 specification. Either - or both - can be used
on a given platform, and which to use may be dependent of limitations in any
given SoC. If possible, interrupt-signaled events are recommended.
@@ -564,39 +679,40 @@ supported.
The following classes of objects are not supported:
- -- Section 9.2: ambient light sensor devices
+ - Section 9.2: ambient light sensor devices
- -- Section 9.3: battery devices
+ - Section 9.3: battery devices
- -- Section 9.4: lids (e.g., laptop lids)
+ - Section 9.4: lids (e.g., laptop lids)
- -- Section 9.8.2: IDE controllers
+ - Section 9.8.2: IDE controllers
- -- Section 9.9: floppy controllers
+ - Section 9.9: floppy controllers
- -- Section 9.10: GPE block devices
+ - Section 9.10: GPE block devices
- -- Section 9.15: PC/AT RTC/CMOS devices
+ - Section 9.15: PC/AT RTC/CMOS devices
- -- Section 9.16: user presence detection devices
+ - Section 9.16: user presence detection devices
- -- Section 9.17: I/O APIC devices; all GICs must be enumerable via MADT
+ - Section 9.17: I/O APIC devices; all GICs must be enumerable via MADT
- -- Section 9.18: time and alarm devices (see 9.15)
+ - Section 9.18: time and alarm devices (see 9.15)
- -- Section 10: power source and power meter devices
+ - Section 10: power source and power meter devices
- -- Section 11: thermal management
+ - Section 11: thermal management
- -- Section 12: embedded controllers interface
+ - Section 12: embedded controllers interface
- -- Section 13: SMBus interfaces
+ - Section 13: SMBus interfaces
This also means that there is no support for the following objects:
+==== =========================== ==== ==========
Name Section Name Section
----- ------------ ---- ------------
+==== =========================== ==== ==========
_ALC 9.3.4 _FDM 9.10.3
_ALI 9.3.2 _FIX 6.2.7
_ALP 9.3.6 _GAI 10.4.5
@@ -619,4 +735,4 @@ _DCK 6.5.2 _UPD 9.16.1
_EC 12.12 _UPP 9.16.2
_FDE 9.10.1 _WPC 10.5.2
_FDI 9.10.2 _WPP 10.5.3
-
+==== =========================== ==== ==========
diff --git a/Documentation/arm64/arm-acpi.txt b/Documentation/arm64/arm-acpi.rst
index 1a74a041a443..872dbbc73d4a 100644
--- a/Documentation/arm64/arm-acpi.txt
+++ b/Documentation/arm64/arm-acpi.rst
@@ -1,5 +1,7 @@
+=====================
ACPI on ARMv8 Servers
----------------------
+=====================
+
ACPI can be used for ARMv8 general purpose servers designed to follow
the ARM SBSA (Server Base System Architecture) [0] and SBBR (Server
Base Boot Requirements) [1] specifications. Please note that the SBBR
@@ -34,28 +36,28 @@ of the summary text almost directly, to be honest.
The short form of the rationale for ACPI on ARM is:
--- ACPI’s byte code (AML) allows the platform to encode hardware behavior,
+- ACPI’s byte code (AML) allows the platform to encode hardware behavior,
while DT explicitly does not support this. For hardware vendors, being
able to encode behavior is a key tool used in supporting operating
system releases on new hardware.
--- ACPI’s OSPM defines a power management model that constrains what the
+- ACPI’s OSPM defines a power management model that constrains what the
platform is allowed to do into a specific model, while still providing
flexibility in hardware design.
--- In the enterprise server environment, ACPI has established bindings (such
+- In the enterprise server environment, ACPI has established bindings (such
as for RAS) which are currently used in production systems. DT does not.
Such bindings could be defined in DT at some point, but doing so means ARM
and x86 would end up using completely different code paths in both firmware
and the kernel.
--- Choosing a single interface to describe the abstraction between a platform
+- Choosing a single interface to describe the abstraction between a platform
and an OS is important. Hardware vendors would not be required to implement
both DT and ACPI if they want to support multiple operating systems. And,
agreeing on a single interface instead of being fragmented into per OS
interfaces makes for better interoperability overall.
--- The new ACPI governance process works well and Linux is now at the same
+- The new ACPI governance process works well and Linux is now at the same
table as hardware vendors and other OS vendors. In fact, there is no
longer any reason to feel that ACPI only belongs to Windows or that
Linux is in any way secondary to Microsoft in this arena. The move of
@@ -169,31 +171,31 @@ For the ACPI core to operate properly, and in turn provide the information
the kernel needs to configure devices, it expects to find the following
tables (all section numbers refer to the ACPI 6.1 specification):
- -- RSDP (Root System Description Pointer), section 5.2.5
+ - RSDP (Root System Description Pointer), section 5.2.5
- -- XSDT (eXtended System Description Table), section 5.2.8
+ - XSDT (eXtended System Description Table), section 5.2.8
- -- FADT (Fixed ACPI Description Table), section 5.2.9
+ - FADT (Fixed ACPI Description Table), section 5.2.9
- -- DSDT (Differentiated System Description Table), section
+ - DSDT (Differentiated System Description Table), section
5.2.11.1
- -- MADT (Multiple APIC Description Table), section 5.2.12
+ - MADT (Multiple APIC Description Table), section 5.2.12
- -- GTDT (Generic Timer Description Table), section 5.2.24
+ - GTDT (Generic Timer Description Table), section 5.2.24
- -- If PCI is supported, the MCFG (Memory mapped ConFiGuration
+ - If PCI is supported, the MCFG (Memory mapped ConFiGuration
Table), section 5.2.6, specifically Table 5-31.
- -- If booting without a console=<device> kernel parameter is
+ - If booting without a console=<device> kernel parameter is
supported, the SPCR (Serial Port Console Redirection table),
section 5.2.6, specifically Table 5-31.
- -- If necessary to describe the I/O topology, SMMUs and GIC ITSs,
+ - If necessary to describe the I/O topology, SMMUs and GIC ITSs,
the IORT (Input Output Remapping Table, section 5.2.6, specifically
Table 5-31).
- -- If NUMA is supported, the SRAT (System Resource Affinity Table)
+ - If NUMA is supported, the SRAT (System Resource Affinity Table)
and SLIT (System Locality distance Information Table), sections
5.2.16 and 5.2.17, respectively.
@@ -269,9 +271,9 @@ describes how to define the structure of an object returned via _DSD, and
how specific data structures are defined by specific UUIDs. Linux should
only use the _DSD Device Properties UUID [5]:
- -- UUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301
+ - UUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301
- -- http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
+ - http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
The UEFI Forum provides a mechanism for registering device properties [4]
so that they may be used across all operating systems supporting ACPI.
@@ -327,10 +329,10 @@ turning a device full off.
There are two options for using those Power Resources. They can:
- -- be managed in a _PSx method which gets called on entry to power
+ - be managed in a _PSx method which gets called on entry to power
state Dx.
- -- be declared separately as power resources with their own _ON and _OFF
+ - be declared separately as power resources with their own _ON and _OFF
methods. They are then tied back to D-states for a particular device
via _PRx which specifies which power resources a device needs to be on
while in Dx. Kernel then tracks number of devices using a power resource
@@ -339,16 +341,16 @@ There are two options for using those Power Resources. They can:
The kernel ACPI code will also assume that the _PSx methods follow the normal
ACPI rules for such methods:
- -- If either _PS0 or _PS3 is implemented, then the other method must also
+ - If either _PS0 or _PS3 is implemented, then the other method must also
be implemented.
- -- If a device requires usage or setup of a power resource when on, the ASL
+ - If a device requires usage or setup of a power resource when on, the ASL
should organize that it is allocated/enabled using the _PS0 method.
- -- Resources allocated or enabled in the _PS0 method should be disabled
+ - Resources allocated or enabled in the _PS0 method should be disabled
or de-allocated in the _PS3 method.
- -- Firmware will leave the resources in a reasonable state before handing
+ - Firmware will leave the resources in a reasonable state before handing
over control to the kernel.
Such code in _PSx methods will of course be very platform specific. But,
@@ -394,52 +396,52 @@ else must be discovered by the driver probe function. Then, have the rest
of the driver operate off of the contents of that struct. Doing so should
allow most divergence between ACPI and DT functionality to be kept local to
the probe function instead of being scattered throughout the driver. For
-example:
-
-static int device_probe_dt(struct platform_device *pdev)
-{
- /* DT specific functionality */
- ...
-}
-
-static int device_probe_acpi(struct platform_device *pdev)
-{
- /* ACPI specific functionality */
- ...
-}
-
-static int device_probe(struct platform_device *pdev)
-{
- ...
- struct device_node node = pdev->dev.of_node;
- ...
-
- if (node)
- ret = device_probe_dt(pdev);
- else if (ACPI_HANDLE(&pdev->dev))
- ret = device_probe_acpi(pdev);
- else
- /* other initialization */
- ...
- /* Continue with any generic probe operations */
- ...
-}
+example::
+
+ static int device_probe_dt(struct platform_device *pdev)
+ {
+ /* DT specific functionality */
+ ...
+ }
+
+ static int device_probe_acpi(struct platform_device *pdev)
+ {
+ /* ACPI specific functionality */
+ ...
+ }
+
+ static int device_probe(struct platform_device *pdev)
+ {
+ ...
+ struct device_node node = pdev->dev.of_node;
+ ...
+
+ if (node)
+ ret = device_probe_dt(pdev);
+ else if (ACPI_HANDLE(&pdev->dev))
+ ret = device_probe_acpi(pdev);
+ else
+ /* other initialization */
+ ...
+ /* Continue with any generic probe operations */
+ ...
+ }
DO keep the MODULE_DEVICE_TABLE entries together in the driver to make it
clear the different names the driver is probed for, both from DT and from
-ACPI:
+ACPI::
-static struct of_device_id virtio_mmio_match[] = {
- { .compatible = "virtio,mmio", },
- { }
-};
-MODULE_DEVICE_TABLE(of, virtio_mmio_match);
+ static struct of_device_id virtio_mmio_match[] = {
+ { .compatible = "virtio,mmio", },
+ { }
+ };
+ MODULE_DEVICE_TABLE(of, virtio_mmio_match);
-static const struct acpi_device_id virtio_mmio_acpi_match[] = {
- { "LNRO0005", },
- { }
-};
-MODULE_DEVICE_TABLE(acpi, virtio_mmio_acpi_match);
+ static const struct acpi_device_id virtio_mmio_acpi_match[] = {
+ { "LNRO0005", },
+ { }
+ };
+ MODULE_DEVICE_TABLE(acpi, virtio_mmio_acpi_match);
ASWG
@@ -471,7 +473,8 @@ Linux Code
Individual items specific to Linux on ARM, contained in the the Linux
source code, are in the list that follows:
-ACPI_OS_NAME This macro defines the string to be returned when
+ACPI_OS_NAME
+ This macro defines the string to be returned when
an ACPI method invokes the _OS method. On ARM64
systems, this macro will be "Linux" by default.
The command line parameter acpi_os=<string>
@@ -482,38 +485,44 @@ ACPI_OS_NAME This macro defines the string to be returned when
ACPI Objects
------------
Detailed expectations for ACPI tables and object are listed in the file
-Documentation/arm64/acpi_object_usage.txt.
+Documentation/arm64/acpi_object_usage.rst.
References
----------
-[0] http://silver.arm.com -- document ARM-DEN-0029, or newer
+[0] http://silver.arm.com
+ document ARM-DEN-0029, or newer:
"Server Base System Architecture", version 2.3, dated 27 Mar 2014
[1] http://infocenter.arm.com/help/topic/com.arm.doc.den0044a/Server_Base_Boot_Requirements.pdf
Document ARM-DEN-0044A, or newer: "Server Base Boot Requirements, System
Software on ARM Platforms", dated 16 Aug 2014
-[2] http://www.secretlab.ca/archives/151, 10 Jan 2015, Copyright (c) 2015,
+[2] http://www.secretlab.ca/archives/151,
+ 10 Jan 2015, Copyright (c) 2015,
Linaro Ltd., written by Grant Likely.
-[3] AMD ACPI for Seattle platform documentation:
+[3] AMD ACPI for Seattle platform documentation
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Seattle_ACPI_Guide.pdf
-[4] http://www.uefi.org/acpi -- please see the link for the "ACPI _DSD Device
+
+[4] http://www.uefi.org/acpi
+ please see the link for the "ACPI _DSD Device
Property Registry Instructions"
-[5] http://www.uefi.org/acpi -- please see the link for the "_DSD (Device
+[5] http://www.uefi.org/acpi
+ please see the link for the "_DSD (Device
Specific Data) Implementation Guide"
-[6] Kernel code for the unified device property interface can be found in
+[6] Kernel code for the unified device
+ property interface can be found in
include/linux/property.h and drivers/base/property.c.
Authors
-------
-Al Stone <al.stone@linaro.org>
-Graeme Gregory <graeme.gregory@linaro.org>
-Hanjun Guo <hanjun.guo@linaro.org>
+- Al Stone <al.stone@linaro.org>
+- Graeme Gregory <graeme.gregory@linaro.org>
+- Hanjun Guo <hanjun.guo@linaro.org>
-Grant Likely <grant.likely@linaro.org>, for the "Why ACPI on ARM?" section
+- Grant Likely <grant.likely@linaro.org>, for the "Why ACPI on ARM?" section
diff --git a/Documentation/arm64/booting.txt b/Documentation/arm64/booting.rst
index fbab7e21d116..d3f3a60fbf25 100644
--- a/Documentation/arm64/booting.txt
+++ b/Documentation/arm64/booting.rst
@@ -1,7 +1,9 @@
- Booting AArch64 Linux
- =====================
+=====================
+Booting AArch64 Linux
+=====================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 07 September 2012
This document is based on the ARM booting document by Russell King and
@@ -12,7 +14,7 @@ The AArch64 exception model is made up of a number of exception levels
counterpart. EL2 is the hypervisor level and exists only in non-secure
mode. EL3 is the highest priority level and exists only in secure mode.
-For the purposes of this document, we will use the term `boot loader'
+For the purposes of this document, we will use the term `boot loader`
simply to define all software that executes on the CPU(s) before control
is passed to the Linux kernel. This may include secure monitor and
hypervisor code, or it may just be a handful of instructions for
@@ -70,7 +72,7 @@ Image target is available instead.
Requirement: MANDATORY
-The decompressed kernel image contains a 64-byte header as follows:
+The decompressed kernel image contains a 64-byte header as follows::
u32 code0; /* Executable code */
u32 code1; /* Executable code */
@@ -103,19 +105,26 @@ Header notes:
- The flags field (introduced in v3.17) is a little-endian 64-bit field
composed as follows:
- Bit 0: Kernel endianness. 1 if BE, 0 if LE.
- Bit 1-2: Kernel Page size.
- 0 - Unspecified.
- 1 - 4K
- 2 - 16K
- 3 - 64K
- Bit 3: Kernel physical placement
- 0 - 2MB aligned base should be as close as possible
- to the base of DRAM, since memory below it is not
- accessible via the linear mapping
- 1 - 2MB aligned base may be anywhere in physical
- memory
- Bits 4-63: Reserved.
+
+ ============= ===============================================================
+ Bit 0 Kernel endianness. 1 if BE, 0 if LE.
+ Bit 1-2 Kernel Page size.
+
+ * 0 - Unspecified.
+ * 1 - 4K
+ * 2 - 16K
+ * 3 - 64K
+ Bit 3 Kernel physical placement
+
+ 0
+ 2MB aligned base should be as close as possible
+ to the base of DRAM, since memory below it is not
+ accessible via the linear mapping
+ 1
+ 2MB aligned base may be anywhere in physical
+ memory
+ Bits 4-63 Reserved.
+ ============= ===============================================================
- When image_size is zero, a bootloader should attempt to keep as much
memory as possible free for use by the kernel immediately after the
@@ -147,19 +156,22 @@ Before jumping into the kernel, the following conditions must be met:
corrupted by bogus network packets or disk data. This will save
you many hours of debug.
-- Primary CPU general-purpose register settings
- x0 = physical address of device tree blob (dtb) in system RAM.
- x1 = 0 (reserved for future use)
- x2 = 0 (reserved for future use)
- x3 = 0 (reserved for future use)
+- Primary CPU general-purpose register settings:
+
+ - x0 = physical address of device tree blob (dtb) in system RAM.
+ - x1 = 0 (reserved for future use)
+ - x2 = 0 (reserved for future use)
+ - x3 = 0 (reserved for future use)
- CPU mode
+
All forms of interrupts must be masked in PSTATE.DAIF (Debug, SError,
IRQ and FIQ).
The CPU must be in either EL2 (RECOMMENDED in order to have access to
the virtualisation extensions) or non-secure EL1.
- Caches, MMUs
+
The MMU must be off.
Instruction cache may be on or off.
The address range corresponding to the loaded kernel image must be
@@ -172,18 +184,21 @@ Before jumping into the kernel, the following conditions must be met:
operations (not recommended) must be configured and disabled.
- Architected timers
+
CNTFRQ must be programmed with the timer frequency and CNTVOFF must
be programmed with a consistent value on all CPUs. If entering the
kernel at EL1, CNTHCTL_EL2 must have EL1PCTEN (bit 0) set where
available.
- Coherency
+
All CPUs to be booted by the kernel must be part of the same coherency
domain on entry to the kernel. This may require IMPLEMENTATION DEFINED
initialisation to enable the receiving of maintenance operations on
each CPU.
- System registers
+
All writable architected system registers at the exception level where
the kernel image will be entered must be initialised by software at a
higher exception level to prevent execution in an UNKNOWN state.
@@ -195,28 +210,40 @@ Before jumping into the kernel, the following conditions must be met:
For systems with a GICv3 interrupt controller to be used in v3 mode:
- If EL3 is present:
- ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
- ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
+
+ - ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
+ - ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
+
- If the kernel is entered at EL1:
- ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1
- ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1.
+
+ - ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1
+ - ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1.
+
- The DT or ACPI tables must describe a GICv3 interrupt controller.
For systems with a GICv3 interrupt controller to be used in
compatibility (v2) mode:
+
- If EL3 is present:
- ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b0.
+
+ ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b0.
+
- If the kernel is entered at EL1:
- ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b0.
+
+ ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b0.
+
- The DT or ACPI tables must describe a GICv2 interrupt controller.
For CPUs with pointer authentication functionality:
- If EL3 is present:
- SCR_EL3.APK (bit 16) must be initialised to 0b1
- SCR_EL3.API (bit 17) must be initialised to 0b1
+
+ - SCR_EL3.APK (bit 16) must be initialised to 0b1
+ - SCR_EL3.API (bit 17) must be initialised to 0b1
+
- If the kernel is entered at EL1:
- HCR_EL2.APK (bit 40) must be initialised to 0b1
- HCR_EL2.API (bit 41) must be initialised to 0b1
+
+ - HCR_EL2.APK (bit 40) must be initialised to 0b1
+ - HCR_EL2.API (bit 41) must be initialised to 0b1
The requirements described above for CPU mode, caches, MMUs, architected
timers, coherency and system registers apply to all CPUs. All CPUs must
@@ -257,7 +284,7 @@ following manner:
processors") to bring CPUs into the kernel.
The device tree should contain a 'psci' node, as described in
- Documentation/devicetree/bindings/arm/psci.txt.
+ Documentation/devicetree/bindings/arm/psci.yaml.
- Secondary CPU general-purpose register settings
x0 = 0 (reserved for future use)
diff --git a/Documentation/arm64/cpu-feature-registers.txt b/Documentation/arm64/cpu-feature-registers.rst
index 684a0da39378..2955287e9acc 100644
--- a/Documentation/arm64/cpu-feature-registers.txt
+++ b/Documentation/arm64/cpu-feature-registers.rst
@@ -1,5 +1,6 @@
- ARM64 CPU Feature Registers
- ===========================
+===========================
+ARM64 CPU Feature Registers
+===========================
Author: Suzuki K Poulose <suzuki.poulose@arm.com>
@@ -9,7 +10,7 @@ registers to userspace. The availability of this ABI is advertised
via the HWCAP_CPUID in HWCAPs.
1. Motivation
----------------
+-------------
The ARM architecture defines a set of feature registers, which describe
the capabilities of the CPU/system. Access to these system registers is
@@ -33,9 +34,10 @@ there are some issues with their usage.
2. Requirements
------------------
+---------------
+
+ a) Safety:
- a) Safety :
Applications should be able to use the information provided by the
infrastructure to run safely across the system. This has greater
implications on a system with heterogeneous CPUs.
@@ -47,7 +49,8 @@ there are some issues with their usage.
Otherwise an application could crash when scheduled on the CPU
which doesn't support CRC32.
- b) Security :
+ b) Security:
+
Applications should only be able to receive information that is
relevant to the normal operation in userspace. Hence, some of the
fields are masked out(i.e, made invisible) and their values are set to
@@ -58,10 +61,12 @@ there are some issues with their usage.
(even when the CPU provides it).
c) Implementation Defined Features
+
The infrastructure doesn't expose any register which is
IMPLEMENTATION DEFINED as per ARMv8-A Architecture.
- d) CPU Identification :
+ d) CPU Identification:
+
MIDR_EL1 is exposed to help identify the processor. On a
heterogeneous system, this could be racy (just like getcpu()). The
process could be migrated to another CPU by the time it uses the
@@ -70,7 +75,7 @@ there are some issues with their usage.
currently executing on. The REVIDR is not exposed due to this
constraint, as REVIDR makes sense only in conjunction with the
MIDR. Alternately, MIDR_EL1 and REVIDR_EL1 are exposed via sysfs
- at:
+ at::
/sys/devices/system/cpu/cpu$ID/regs/identification/
\- midr
@@ -85,7 +90,8 @@ exception and ends up in SIGILL being delivered to the process.
The infrastructure hooks into the exception handler and emulates the
operation if the source belongs to the supported system register space.
-The infrastructure emulates only the following system register space:
+The infrastructure emulates only the following system register space::
+
Op0=3, Op1=0, CRn=0, CRm=0,4,5,6,7
(See Table C5-6 'System instruction encodings for non-Debug System
@@ -107,73 +113,76 @@ infrastructure:
-------------------------------------------
1) ID_AA64ISAR0_EL1 - Instruction Set Attribute Register 0
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| TS | [55-52] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FHM | [51-48] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DP | [47-44] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SM4 | [43-40] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SM3 | [39-36] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA3 | [35-32] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| RDM | [31-28] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| ATOMICS | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| CRC32 | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA2 | [15-12] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA1 | [11-8] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AES | [7-4] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
2) ID_AA64PFR0_EL1 - Processor Feature Register 0
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DIT | [51-48] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SVE | [35-32] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GIC | [27-24] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AdvSIMD | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FP | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL3 | [15-12] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL2 | [11-8] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL1 | [7-4] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL0 | [3-0] | n |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
3) MIDR_EL1 - Main ID Register
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Implementer | [31-24] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Variant | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Architecture | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| PartNum | [15-4] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Revision | [3-0] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
NOTE: The 'visible' fields of MIDR_EL1 will contain the value
as available on the CPU where it is fetched and is not a system
@@ -181,90 +190,92 @@ infrastructure:
4) ID_AA64ISAR1_EL1 - Instruction set attribute register 1
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GPI | [31-28] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GPA | [27-24] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| LRCPC | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FCMA | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| JSCVT | [15-12] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| API | [11-8] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| APA | [7-4] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DPB | [3-0] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
5) ID_AA64MMFR2_EL1 - Memory model feature register 2
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AT | [35-32] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
6) ID_AA64ZFR0_EL1 - SVE feature ID register 0
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SM4 | [43-40] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA3 | [35-32] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| BitPerm | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AES | [7-4] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SVEVer | [3-0] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
Appendix I: Example
----------------------------
-
-/*
- * Sample program to demonstrate the MRS emulation ABI.
- *
- * Copyright (C) 2015-2016, ARM Ltd
- *
- * Author: Suzuki K Poulose <suzuki.poulose@arm.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
-
-#include <asm/hwcap.h>
-#include <stdio.h>
-#include <sys/auxv.h>
-
-#define get_cpu_ftr(id) ({ \
+-------------------
+
+::
+
+ /*
+ * Sample program to demonstrate the MRS emulation ABI.
+ *
+ * Copyright (C) 2015-2016, ARM Ltd
+ *
+ * Author: Suzuki K Poulose <suzuki.poulose@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+ #include <asm/hwcap.h>
+ #include <stdio.h>
+ #include <sys/auxv.h>
+
+ #define get_cpu_ftr(id) ({ \
unsigned long __val; \
asm("mrs %0, "#id : "=r" (__val)); \
printf("%-20s: 0x%016lx\n", #id, __val); \
})
-int main(void)
-{
+ int main(void)
+ {
if (!(getauxval(AT_HWCAP) & HWCAP_CPUID)) {
fputs("CPUID registers unavailable\n", stderr);
@@ -284,13 +295,10 @@ int main(void)
get_cpu_ftr(MPIDR_EL1);
get_cpu_ftr(REVIDR_EL1);
-#if 0
+ #if 0
/* Unexposed register access causes SIGILL */
get_cpu_ftr(ID_MMFR0_EL1);
-#endif
+ #endif
return 0;
-}
-
-
-
+ }
diff --git a/Documentation/arm64/elf_hwcaps.txt b/Documentation/arm64/elf_hwcaps.rst
index b73a2519ecf2..91f79529c58c 100644
--- a/Documentation/arm64/elf_hwcaps.txt
+++ b/Documentation/arm64/elf_hwcaps.rst
@@ -1,3 +1,4 @@
+================
ARM64 ELF hwcaps
================
@@ -15,16 +16,16 @@ of flags called hwcaps, exposed in the auxilliary vector.
Userspace software can test for features by acquiring the AT_HWCAP or
AT_HWCAP2 entry of the auxiliary vector, and testing whether the relevant
-flags are set, e.g.
+flags are set, e.g.::
-bool floating_point_is_present(void)
-{
- unsigned long hwcaps = getauxval(AT_HWCAP);
- if (hwcaps & HWCAP_FP)
- return true;
+ bool floating_point_is_present(void)
+ {
+ unsigned long hwcaps = getauxval(AT_HWCAP);
+ if (hwcaps & HWCAP_FP)
+ return true;
- return false;
-}
+ return false;
+ }
Where software relies on a feature described by a hwcap, it should check
the relevant hwcap flag to verify that the feature is present before
@@ -45,7 +46,7 @@ userspace code at EL0. These hwcaps are defined in terms of ID register
fields, and should be interpreted with reference to the definition of
these fields in the ARM Architecture Reference Manual (ARM ARM).
-Such hwcaps are described below in the form:
+Such hwcaps are described below in the form::
Functionality implied by idreg.field == val.
@@ -64,75 +65,58 @@ reference to ID registers, and may refer to other documentation.
---------------------------------
HWCAP_FP
-
Functionality implied by ID_AA64PFR0_EL1.FP == 0b0000.
HWCAP_ASIMD
-
Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0000.
HWCAP_EVTSTRM
-
The generic timer is configured to generate events at a frequency of
approximately 100KHz.
HWCAP_AES
-
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0001.
HWCAP_PMULL
-
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0010.
HWCAP_SHA1
-
Functionality implied by ID_AA64ISAR0_EL1.SHA1 == 0b0001.
HWCAP_SHA2
-
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0001.
HWCAP_CRC32
-
Functionality implied by ID_AA64ISAR0_EL1.CRC32 == 0b0001.
HWCAP_ATOMICS
-
Functionality implied by ID_AA64ISAR0_EL1.Atomic == 0b0010.
HWCAP_FPHP
-
Functionality implied by ID_AA64PFR0_EL1.FP == 0b0001.
HWCAP_ASIMDHP
-
Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0001.
HWCAP_CPUID
-
EL0 access to certain ID registers is available, to the extent
- described by Documentation/arm64/cpu-feature-registers.txt.
+ described by Documentation/arm64/cpu-feature-registers.rst.
These ID registers may imply the availability of features.
HWCAP_ASIMDRDM
-
Functionality implied by ID_AA64ISAR0_EL1.RDM == 0b0001.
HWCAP_JSCVT
-
Functionality implied by ID_AA64ISAR1_EL1.JSCVT == 0b0001.
HWCAP_FCMA
-
Functionality implied by ID_AA64ISAR1_EL1.FCMA == 0b0001.
HWCAP_LRCPC
-
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0001.
HWCAP_DCPOP
-
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0001.
HWCAP2_DCPODP
@@ -140,27 +124,21 @@ HWCAP2_DCPODP
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0010.
HWCAP_SHA3
-
Functionality implied by ID_AA64ISAR0_EL1.SHA3 == 0b0001.
HWCAP_SM3
-
Functionality implied by ID_AA64ISAR0_EL1.SM3 == 0b0001.
HWCAP_SM4
-
Functionality implied by ID_AA64ISAR0_EL1.SM4 == 0b0001.
HWCAP_ASIMDDP
-
Functionality implied by ID_AA64ISAR0_EL1.DP == 0b0001.
HWCAP_SHA512
-
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0010.
HWCAP_SVE
-
Functionality implied by ID_AA64PFR0_EL1.SVE == 0b0001.
HWCAP2_SVE2
@@ -188,40 +166,40 @@ HWCAP2_SVESM4
Functionality implied by ID_AA64ZFR0_EL1.SM4 == 0b0001.
HWCAP_ASIMDFHM
-
Functionality implied by ID_AA64ISAR0_EL1.FHM == 0b0001.
HWCAP_DIT
-
Functionality implied by ID_AA64PFR0_EL1.DIT == 0b0001.
HWCAP_USCAT
-
Functionality implied by ID_AA64MMFR2_EL1.AT == 0b0001.
HWCAP_ILRCPC
-
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0010.
HWCAP_FLAGM
-
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.
-HWCAP_SSBS
+HWCAP2_FLAGM2
+ Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0010.
+
+HWCAP_SSBS
Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.
HWCAP_PACA
-
Functionality implied by ID_AA64ISAR1_EL1.APA == 0b0001 or
ID_AA64ISAR1_EL1.API == 0b0001, as described by
- Documentation/arm64/pointer-authentication.txt.
+ Documentation/arm64/pointer-authentication.rst.
HWCAP_PACG
-
Functionality implied by ID_AA64ISAR1_EL1.GPA == 0b0001 or
ID_AA64ISAR1_EL1.GPI == 0b0001, as described by
- Documentation/arm64/pointer-authentication.txt.
+ Documentation/arm64/pointer-authentication.rst.
+
+HWCAP2_FRINT
+
+ Functionality implied by ID_AA64ISAR1_EL1.FRINTTS == 0b0001.
4. Unused AT_HWCAP bits
diff --git a/Documentation/arm64/hugetlbpage.txt b/Documentation/arm64/hugetlbpage.rst
index cfae87dc653b..b44f939e5210 100644
--- a/Documentation/arm64/hugetlbpage.txt
+++ b/Documentation/arm64/hugetlbpage.rst
@@ -1,3 +1,4 @@
+====================
HugeTLBpage on ARM64
====================
@@ -31,8 +32,10 @@ and level of the page table.
The following hugepage sizes are supported -
- CONT PTE PMD CONT PMD PUD
- -------- --- -------- ---
+ ====== ======== ==== ======== ===
+ - CONT PTE PMD CONT PMD PUD
+ ====== ======== ==== ======== ===
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
+ ====== ======== ==== ======== ===
diff --git a/Documentation/arm64/index.rst b/Documentation/arm64/index.rst
new file mode 100644
index 000000000000..018b7836ecb7
--- /dev/null
+++ b/Documentation/arm64/index.rst
@@ -0,0 +1,28 @@
+:orphan:
+
+==================
+ARM64 Architecture
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ acpi_object_usage
+ arm-acpi
+ booting
+ cpu-feature-registers
+ elf_hwcaps
+ hugetlbpage
+ legacy_instructions
+ memory
+ pointer-authentication
+ silicon-errata
+ sve
+ tagged-pointers
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/arm64/legacy_instructions.txt b/Documentation/arm64/legacy_instructions.rst
index 01bf3d9fac85..54401b22cb8f 100644
--- a/Documentation/arm64/legacy_instructions.txt
+++ b/Documentation/arm64/legacy_instructions.rst
@@ -1,3 +1,7 @@
+===================
+Legacy instructions
+===================
+
The arm64 port of the Linux kernel provides infrastructure to support
emulation of instructions which have been deprecated, or obsoleted in
the architecture. The infrastructure code uses undefined instruction
@@ -9,19 +13,22 @@ The emulation mode can be controlled by writing to sysctl nodes
behaviours and the corresponding values of the sysctl nodes -
* Undef
- Value: 0
+ Value: 0
+
Generates undefined instruction abort. Default for instructions that
have been obsoleted in the architecture, e.g., SWP
* Emulate
- Value: 1
+ Value: 1
+
Uses software emulation. To aid migration of software, in this mode
usage of emulated instruction is traced as well as rate limited
warnings are issued. This is the default for deprecated
instructions, .e.g., CP15 barriers
* Hardware Execution
- Value: 2
+ Value: 2
+
Although marked as deprecated, some implementations may support the
enabling/disabling of hardware support for the execution of these
instructions. Using hardware execution generally provides better
@@ -38,20 +45,24 @@ individual instruction notes for further information.
Supported legacy instructions
-----------------------------
* SWP{B}
-Node: /proc/sys/abi/swp
-Status: Obsolete
-Default: Undef (0)
+
+:Node: /proc/sys/abi/swp
+:Status: Obsolete
+:Default: Undef (0)
* CP15 Barriers
-Node: /proc/sys/abi/cp15_barrier
-Status: Deprecated
-Default: Emulate (1)
+
+:Node: /proc/sys/abi/cp15_barrier
+:Status: Deprecated
+:Default: Emulate (1)
* SETEND
-Node: /proc/sys/abi/setend
-Status: Deprecated
-Default: Emulate (1)*
-Note: All the cpus on the system must have mixed endian support at EL0
-for this feature to be enabled. If a new CPU - which doesn't support mixed
-endian - is hotplugged in after this feature has been enabled, there could
-be unexpected results in the application.
+
+:Node: /proc/sys/abi/setend
+:Status: Deprecated
+:Default: Emulate (1)*
+
+ Note: All the cpus on the system must have mixed endian support at EL0
+ for this feature to be enabled. If a new CPU - which doesn't support mixed
+ endian - is hotplugged in after this feature has been enabled, there could
+ be unexpected results in the application.
diff --git a/Documentation/arm64/memory.rst b/Documentation/arm64/memory.rst
new file mode 100644
index 000000000000..464b880fc4b7
--- /dev/null
+++ b/Documentation/arm64/memory.rst
@@ -0,0 +1,98 @@
+==============================
+Memory Layout on AArch64 Linux
+==============================
+
+Author: Catalin Marinas <catalin.marinas@arm.com>
+
+This document describes the virtual memory layout used by the AArch64
+Linux kernel. The architecture allows up to 4 levels of translation
+tables with a 4KB page size and up to 3 levels with a 64KB page size.
+
+AArch64 Linux uses either 3 levels or 4 levels of translation tables
+with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
+(256TB) virtual addresses, respectively, for both user and kernel. With
+64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
+virtual address, are used but the memory layout is the same.
+
+User addresses have bits 63:48 set to 0 while the kernel addresses have
+the same bits set to 1. TTBRx selection is given by bit 63 of the
+virtual address. The swapper_pg_dir contains only kernel (global)
+mappings while the user pgd contains only user (non-global) mappings.
+The swapper_pg_dir address is written to TTBR1 and never written to
+TTBR0.
+
+
+AArch64 Linux memory layout with 4KB pages + 3 levels::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 0000007fffffffff 512GB user
+ ffffff8000000000 ffffffffffffffff 512GB kernel
+
+
+AArch64 Linux memory layout with 4KB pages + 4 levels::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 0000ffffffffffff 256TB user
+ ffff000000000000 ffffffffffffffff 256TB kernel
+
+
+AArch64 Linux memory layout with 64KB pages + 2 levels::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 000003ffffffffff 4TB user
+ fffffc0000000000 ffffffffffffffff 4TB kernel
+
+
+AArch64 Linux memory layout with 64KB pages + 3 levels::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 0000ffffffffffff 256TB user
+ ffff000000000000 ffffffffffffffff 256TB kernel
+
+
+For details of the virtual kernel memory layout please see the kernel
+booting log.
+
+
+Translation table lookup with 4KB pages::
+
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ | | | | | |
+ | | | | | v
+ | | | | | [11:0] in-page offset
+ | | | | +-> [20:12] L3 index
+ | | | +-----------> [29:21] L2 index
+ | | +---------------------> [38:30] L1 index
+ | +-------------------------------> [47:39] L0 index
+ +-------------------------------------------------> [63] TTBR0/1
+
+
+Translation table lookup with 64KB pages::
+
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ | | | | |
+ | | | | v
+ | | | | [15:0] in-page offset
+ | | | +----------> [28:16] L3 index
+ | | +--------------------------> [41:29] L2 index
+ | +-------------------------------> [47:42] L1 index
+ +-------------------------------------------------> [63] TTBR0/1
+
+
+When using KVM without the Virtualization Host Extensions, the
+hypervisor maps kernel pages in EL2 at a fixed (and potentially
+random) offset from the linear mapping. See the kern_hyp_va macro and
+kvm_update_va_mask function for more details. MMIO devices such as
+GICv2 gets mapped next to the HYP idmap page, as do vectors when
+ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.
+
+When using KVM with the Virtualization Host Extensions, no additional
+mappings are created, since the host kernel runs directly in EL2.
diff --git a/Documentation/arm64/memory.txt b/Documentation/arm64/memory.txt
deleted file mode 100644
index c5dab30d3389..000000000000
--- a/Documentation/arm64/memory.txt
+++ /dev/null
@@ -1,97 +0,0 @@
- Memory Layout on AArch64 Linux
- ==============================
-
-Author: Catalin Marinas <catalin.marinas@arm.com>
-
-This document describes the virtual memory layout used by the AArch64
-Linux kernel. The architecture allows up to 4 levels of translation
-tables with a 4KB page size and up to 3 levels with a 64KB page size.
-
-AArch64 Linux uses either 3 levels or 4 levels of translation tables
-with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
-(256TB) virtual addresses, respectively, for both user and kernel. With
-64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
-virtual address, are used but the memory layout is the same.
-
-User addresses have bits 63:48 set to 0 while the kernel addresses have
-the same bits set to 1. TTBRx selection is given by bit 63 of the
-virtual address. The swapper_pg_dir contains only kernel (global)
-mappings while the user pgd contains only user (non-global) mappings.
-The swapper_pg_dir address is written to TTBR1 and never written to
-TTBR0.
-
-
-AArch64 Linux memory layout with 4KB pages + 3 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000007fffffffff 512GB user
-ffffff8000000000 ffffffffffffffff 512GB kernel
-
-
-AArch64 Linux memory layout with 4KB pages + 4 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000ffffffffffff 256TB user
-ffff000000000000 ffffffffffffffff 256TB kernel
-
-
-AArch64 Linux memory layout with 64KB pages + 2 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 000003ffffffffff 4TB user
-fffffc0000000000 ffffffffffffffff 4TB kernel
-
-
-AArch64 Linux memory layout with 64KB pages + 3 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000ffffffffffff 256TB user
-ffff000000000000 ffffffffffffffff 256TB kernel
-
-
-For details of the virtual kernel memory layout please see the kernel
-booting log.
-
-
-Translation table lookup with 4KB pages:
-
-+--------+--------+--------+--------+--------+--------+--------+--------+
-|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
-+--------+--------+--------+--------+--------+--------+--------+--------+
- | | | | | |
- | | | | | v
- | | | | | [11:0] in-page offset
- | | | | +-> [20:12] L3 index
- | | | +-----------> [29:21] L2 index
- | | +---------------------> [38:30] L1 index
- | +-------------------------------> [47:39] L0 index
- +-------------------------------------------------> [63] TTBR0/1
-
-
-Translation table lookup with 64KB pages:
-
-+--------+--------+--------+--------+--------+--------+--------+--------+
-|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
-+--------+--------+--------+--------+--------+--------+--------+--------+
- | | | | |
- | | | | v
- | | | | [15:0] in-page offset
- | | | +----------> [28:16] L3 index
- | | +--------------------------> [41:29] L2 index
- | +-------------------------------> [47:42] L1 index
- +-------------------------------------------------> [63] TTBR0/1
-
-
-When using KVM without the Virtualization Host Extensions, the
-hypervisor maps kernel pages in EL2 at a fixed (and potentially
-random) offset from the linear mapping. See the kern_hyp_va macro and
-kvm_update_va_mask function for more details. MMIO devices such as
-GICv2 gets mapped next to the HYP idmap page, as do vectors when
-ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.
-
-When using KVM with the Virtualization Host Extensions, no additional
-mappings are created, since the host kernel runs directly in EL2.
diff --git a/Documentation/arm64/pointer-authentication.txt b/Documentation/arm64/pointer-authentication.rst
index fc71b33de87e..30b2ab06526b 100644
--- a/Documentation/arm64/pointer-authentication.txt
+++ b/Documentation/arm64/pointer-authentication.rst
@@ -1,7 +1,9 @@
+=======================================
Pointer authentication in AArch64 Linux
=======================================
Author: Mark Rutland <mark.rutland@arm.com>
+
Date: 2017-07-19
This document briefly describes the provision of pointer authentication
diff --git a/Documentation/arm64/silicon-errata.txt b/Documentation/arm64/silicon-errata.rst
index 2735462d5958..c792774be59e 100644
--- a/Documentation/arm64/silicon-errata.txt
+++ b/Documentation/arm64/silicon-errata.rst
@@ -1,7 +1,9 @@
- Silicon Errata and Software Workarounds
- =======================================
+=======================================
+Silicon Errata and Software Workarounds
+=======================================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 27 November 2015
It is an unfortunate fact of life that hardware is often produced with
@@ -9,11 +11,13 @@ so-called "errata", which can cause it to deviate from the architecture
under specific circumstances. For hardware produced by ARM, these
errata are broadly classified into the following categories:
- Category A: A critical error without a viable workaround.
- Category B: A significant or critical error with an acceptable
+ ========== ========================================================
+ Category A A critical error without a viable workaround.
+ Category B A significant or critical error with an acceptable
workaround.
- Category C: A minor error that is not expected to occur under normal
+ Category C A minor error that is not expected to occur under normal
operation.
+ ========== ========================================================
For more information, consult one of the "Software Developers Errata
Notice" documents available on infocenter.arm.com (registration
@@ -42,47 +46,86 @@ file acts as a registry of software workarounds in the Linux Kernel and
will be updated when new workarounds are committed and backported to
stable kernels.
-| Implementor | Component | Erratum ID | Kconfig |
+----------------+-----------------+-----------------+-----------------------------+
+| Implementor | Component | Erratum ID | Kconfig |
++================+=================+=================+=============================+
| Allwinner | A64/R18 | UNKNOWN1 | SUN50I_ERRATUM_UNKNOWN1 |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #826319 | ARM64_ERRATUM_826319 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #827319 | ARM64_ERRATUM_827319 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #824069 | ARM64_ERRATUM_824069 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #819472 | ARM64_ERRATUM_819472 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #845719 | ARM64_ERRATUM_845719 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #843419 | ARM64_ERRATUM_843419 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #832075 | ARM64_ERRATUM_832075 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #852523 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A72 | #853709 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A55 | #1024718 | ARM64_ERRATUM_1024718 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1188873,1418040| ARM64_ERRATUM_1418040 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1165522 | ARM64_ERRATUM_1165522 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1286807 | ARM64_ERRATUM_1286807 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1463225 | ARM64_ERRATUM_1463225 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-N1 | #1188873,1418040| ARM64_ERRATUM_1418040 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | MMU-500 | #841119,826419 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX ITS | #22375,24313 | CAVIUM_ERRATUM_22375 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX ITS | #23144 | CAVIUM_ERRATUM_23144 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX GICv3 | #23154 | CAVIUM_ERRATUM_23154 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX Core | #27456 | CAVIUM_ERRATUM_27456 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX Core | #30115 | CAVIUM_ERRATUM_30115 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX SMMUv2 | #27704 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX2 SMMUv3| #74 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX2 SMMUv3| #126 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Freescale/NXP | LS2080A/LS1043A | A-008585 | FSL_ERRATUM_A008585 |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip0{5,6,7} | #161010101 | HISILICON_ERRATUM_161010101 |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip0{6,7} | #161010701 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip07 | #161600802 | HISILICON_ERRATUM_161600802 |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip08 SMMU PMCG | #162001800 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Kryo/Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Falkor v1 | E1009 | QCOM_FALKOR_ERRATUM_1009 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | QDF2400 ITS | E0065 | QCOM_QDF2400_ERRATUM_0065 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Falkor v{1,2} | E1041 | QCOM_FALKOR_ERRATUM_1041 |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Fujitsu | A64FX | E#010001 | FUJITSU_ERRATUM_010001 |
++----------------+-----------------+-----------------+-----------------------------+
diff --git a/Documentation/arm64/sve.txt b/Documentation/arm64/sve.rst
index 9940e924a47e..5689c74c8082 100644
--- a/Documentation/arm64/sve.txt
+++ b/Documentation/arm64/sve.rst
@@ -1,7 +1,9 @@
- Scalable Vector Extension support for AArch64 Linux
- ===================================================
+===================================================
+Scalable Vector Extension support for AArch64 Linux
+===================================================
Author: Dave Martin <Dave.Martin@arm.com>
+
Date: 4 August 2017
This document outlines briefly the interface provided to userspace by Linux in
@@ -56,6 +58,18 @@ model features for SVE is included in Appendix A.
is to connect to a target process first and then attempt a
ptrace(PTRACE_GETREGSET, pid, NT_ARM_SVE, &iov).
+* Whenever SVE scalable register values (Zn, Pn, FFR) are exchanged in memory
+ between userspace and the kernel, the register value is encoded in memory in
+ an endianness-invariant layout, with bits [(8 * i + 7) : (8 * i)] encoded at
+ byte offset i from the start of the memory representation. This affects for
+ example the signal frame (struct sve_context) and ptrace interface
+ (struct user_sve_header) and associated data.
+
+ Beware that on big-endian systems this results in a different byte order than
+ for the FPSIMD V-registers, which are stored as single host-endian 128-bit
+ values, with bits [(127 - 8 * i) : (120 - 8 * i)] of the register encoded at
+ byte offset i. (struct fpsimd_context, struct user_fpsimd_state).
+
2. Vector length terminology
-----------------------------
@@ -124,6 +138,10 @@ the SVE instruction set architecture.
size and layout. Macros SVE_SIG_* are defined [1] to facilitate access to
the members.
+* Each scalable register (Zn, Pn, FFR) is stored in an endianness-invariant
+ layout, with bits [(8 * i + 7) : (8 * i)] stored at byte offset i from the
+ start of the register's representation in memory.
+
* If the SVE context is too big to fit in sigcontext.__reserved[], then extra
space is allocated on the stack, an extra_context record is written in
__reserved[] referencing this space. sve_context is then written in the
@@ -426,7 +444,7 @@ In A64 state, SVE adds the following:
* FPSR and FPCR are retained from ARMv8-A, and interact with SVE floating-point
operations in a similar way to the way in which they interact with ARMv8
- floating-point operations.
+ floating-point operations::
8VL-1 128 0 bit index
+---- //// -----------------+
@@ -483,6 +501,8 @@ ARMv8-A defines the following floating-point / SIMD register state:
* 32 128-bit vector registers V0..V31
* 2 32-bit status/control registers FPSR, FPCR
+::
+
127 0 bit index
+---------------+
V0 | |
@@ -517,7 +537,7 @@ References
[2] arch/arm64/include/uapi/asm/ptrace.h
AArch64 Linux ptrace ABI definitions
-[3] Documentation/arm64/cpu-feature-registers.txt
+[3] Documentation/arm64/cpu-feature-registers.rst
[4] ARM IHI0055C
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055c/IHI0055C_beta_aapcs64.pdf
diff --git a/Documentation/arm64/tagged-pointers.txt b/Documentation/arm64/tagged-pointers.rst
index a25a99e82bb1..2acdec3ebbeb 100644
--- a/Documentation/arm64/tagged-pointers.txt
+++ b/Documentation/arm64/tagged-pointers.rst
@@ -1,7 +1,9 @@
- Tagged virtual addresses in AArch64 Linux
- =========================================
+=========================================
+Tagged virtual addresses in AArch64 Linux
+=========================================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 12 June 2013
This document briefly describes the provision of tagged virtual
diff --git a/Documentation/atomic_t.txt b/Documentation/atomic_t.txt
index dca3fb0554db..0ab747e0d5ac 100644
--- a/Documentation/atomic_t.txt
+++ b/Documentation/atomic_t.txt
@@ -81,9 +81,11 @@ Non-RMW ops:
The non-RMW ops are (typically) regular LOADs and STOREs and are canonically
implemented using READ_ONCE(), WRITE_ONCE(), smp_load_acquire() and
-smp_store_release() respectively.
+smp_store_release() respectively. Therefore, if you find yourself only using
+the Non-RMW operations of atomic_t, you do not in fact need atomic_t at all
+and are doing it wrong.
-The one detail to this is that atomic_set{}() should be observable to the RMW
+A subtle detail of atomic_set{}() is that it should be observable to the RMW
ops. That is:
C atomic-set
@@ -187,13 +189,22 @@ The barriers:
smp_mb__{before,after}_atomic()
-only apply to the RMW ops and can be used to augment/upgrade the ordering
-inherent to the used atomic op. These barriers provide a full smp_mb().
+only apply to the RMW atomic ops and can be used to augment/upgrade the
+ordering inherent to the op. These barriers act almost like a full smp_mb():
+smp_mb__before_atomic() orders all earlier accesses against the RMW op
+itself and all accesses following it, and smp_mb__after_atomic() orders all
+later accesses against the RMW op and all accesses preceding it. However,
+accesses between the smp_mb__{before,after}_atomic() and the RMW op are not
+ordered, so it is advisable to place the barrier right next to the RMW atomic
+op whenever possible.
These helper barriers exist because architectures have varying implicit
ordering on their SMP atomic primitives. For example our TSO architectures
provide full ordered atomics and these barriers are no-ops.
+NOTE: when the atomic RmW ops are fully ordered, they should also imply a
+compiler barrier.
+
Thus:
atomic_fetch_add();
@@ -212,7 +223,9 @@ Further, while something like:
atomic_dec(&X);
is a 'typical' RELEASE pattern, the barrier is strictly stronger than
-a RELEASE. Similarly for something like:
+a RELEASE because it orders preceding instructions against both the read
+and write parts of the atomic_dec(), and against all following instructions
+as well. Similarly, something like:
atomic_inc(&X);
smp_mb__after_atomic();
@@ -244,7 +257,8 @@ strictly stronger than ACQUIRE. As illustrated:
This should not happen; but a hypothetical atomic_inc_acquire() --
(void)atomic_fetch_inc_acquire() for instance -- would allow the outcome,
-since then:
+because it would not order the W part of the RMW against the following
+WRITE_ONCE. Thus:
P1 P2
diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt
index 1a0f2ac02eb6..bbd6eb5bbb07 100644
--- a/Documentation/block/bfq-iosched.txt
+++ b/Documentation/block/bfq-iosched.txt
@@ -38,13 +38,13 @@ stack). To give an idea of the limits with BFQ, on slow or average
CPUs, here are, first, the limits of BFQ for three different CPUs, on,
respectively, an average laptop, an old desktop, and a cheap embedded
system, in case full hierarchical support is enabled (i.e.,
-CONFIG_BFQ_GROUP_IOSCHED is set), but CONFIG_DEBUG_BLK_CGROUP is not
+CONFIG_BFQ_GROUP_IOSCHED is set), but CONFIG_BFQ_CGROUP_DEBUG is not
set (Section 4-2):
- Intel i7-4850HQ: 400 KIOPS
- AMD A8-3850: 250 KIOPS
- ARM CortexTM-A53 Octa-core: 80 KIOPS
-If CONFIG_DEBUG_BLK_CGROUP is set (and of course full hierarchical
+If CONFIG_BFQ_CGROUP_DEBUG is set (and of course full hierarchical
support is enabled), then the sustainable throughput with BFQ
decreases, because all blkio.bfq* statistics are created and updated
(Section 4-2). For BFQ, this leads to the following maximum
@@ -537,19 +537,19 @@ or io.bfq.weight.
As for cgroups-v1 (blkio controller), the exact set of stat files
created, and kept up-to-date by bfq, depends on whether
-CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq creates all
+CONFIG_BFQ_CGROUP_DEBUG is set. If it is set, then bfq creates all
the stat files documented in
-Documentation/cgroup-v1/blkio-controller.txt. If, instead,
-CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files
+Documentation/cgroup-v1/blkio-controller.rst. If, instead,
+CONFIG_BFQ_CGROUP_DEBUG is not set, then bfq creates only the files
blkio.bfq.io_service_bytes
blkio.bfq.io_service_bytes_recursive
blkio.bfq.io_serviced
blkio.bfq.io_serviced_recursive
-The value of CONFIG_DEBUG_BLK_CGROUP greatly influences the maximum
+The value of CONFIG_BFQ_CGROUP_DEBUG greatly influences the maximum
throughput sustainable with bfq, because updating the blkio.bfq.*
stats is rather costly, especially for some of the stats enabled by
-CONFIG_DEBUG_BLK_CGROUP.
+CONFIG_BFQ_CGROUP_DEBUG.
Parameters to set
-----------------
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt
index ac18b488cb5e..31c177663ed5 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.txt
@@ -436,7 +436,6 @@ struct bio {
struct bvec_iter bi_iter; /* current index into bio_vec array */
unsigned int bi_size; /* total size in bytes */
- unsigned short bi_phys_segments; /* segments after physaddr coalesce*/
unsigned short bi_hw_segments; /* segments after DMA remapping */
unsigned int bi_max; /* max bio_vecs we can hold
used as index into pool */
diff --git a/Documentation/block/queue-sysfs.txt b/Documentation/block/queue-sysfs.txt
index 83b457e24bba..b40b5b7cebd9 100644
--- a/Documentation/block/queue-sysfs.txt
+++ b/Documentation/block/queue-sysfs.txt
@@ -14,6 +14,15 @@ add_random (RW)
This file allows to turn off the disk entropy contribution. Default
value of this file is '1'(on).
+chunk_sectors (RO)
+------------------
+This has different meaning depending on the type of the block device.
+For a RAID device (dm-raid), chunk_sectors indicates the size in 512B sectors
+of the RAID volume stripe segment. For a zoned block device, either host-aware
+or host-managed, chunk_sectors indicates the size in 512B sectors of the zones
+of the device, with the eventual exception of the last zone of the device which
+may be smaller.
+
dax (RO)
--------
This file indicates whether the device supports Direct Access (DAX),
@@ -43,6 +52,16 @@ large discards are issued, setting this value lower will make Linux issue
smaller discards and potentially help reduce latencies induced by large
discard operations.
+discard_zeroes_data (RO)
+------------------------
+Obsolete. Always zero.
+
+fua (RO)
+--------
+Whether or not the block driver supports the FUA flag for write requests.
+FUA stands for Force Unit Access. If the FUA flag is set that means that
+write requests must bypass the volatile cache of the storage device.
+
hw_sector_size (RO)
-------------------
This is the hardware sector size of the device, in bytes.
@@ -83,14 +102,19 @@ logical_block_size (RO)
-----------------------
This is the logical block size of the device, in bytes.
+max_discard_segments (RO)
+-------------------------
+The maximum number of DMA scatter/gather entries in a discard request.
+
max_hw_sectors_kb (RO)
----------------------
This is the maximum number of kilobytes supported in a single data transfer.
max_integrity_segments (RO)
---------------------------
-When read, this file shows the max limit of integrity segments as
-set by block layer which a hardware controller can handle.
+Maximum number of elements in a DMA scatter/gather list with integrity
+data that will be submitted by the block layer core to the associated
+block driver.
max_sectors_kb (RW)
-------------------
@@ -100,11 +124,12 @@ size allowed by the hardware.
max_segments (RO)
-----------------
-Maximum number of segments of the device.
+Maximum number of elements in a DMA scatter/gather list that is submitted
+to the associated block driver.
max_segment_size (RO)
---------------------
-Maximum segment size of the device.
+Maximum size in bytes of a single element in a DMA scatter/gather list.
minimum_io_size (RO)
--------------------
@@ -132,6 +157,12 @@ per-block-cgroup request pool. IOW, if there are N block cgroups,
each request queue may have up to N request pools, each independently
regulated by nr_requests.
+nr_zones (RO)
+-------------
+For zoned block devices (zoned attribute indicating "host-managed" or
+"host-aware"), this indicates the total number of zones of the device.
+This is always 0 for regular block devices.
+
optimal_io_size (RO)
--------------------
This is the optimal IO size reported by the device.
@@ -185,8 +216,8 @@ This is the number of bytes the device can write in a single write-same
command. A value of '0' means write-same is not supported by this
device.
-wb_lat_usec (RW)
-----------------
+wbt_lat_usec (RW)
+-----------------
If the device is registered for writeback throttling, then this file shows
the target minimum read latency. If this latency is exceeded in a given
window of time (see wb_window_usec), then the writeback throttling will start
@@ -201,6 +232,12 @@ blk-throttle makes decision based on the samplings. Lower time means cgroups
have more smooth throughput, but higher CPU overhead. This exists only when
CONFIG_BLK_DEV_THROTTLING_LOW is enabled.
+write_zeroes_max_bytes (RO)
+---------------------------
+For block drivers that support REQ_OP_WRITE_ZEROES, the maximum number of
+bytes that can be zeroed at once. The value 0 means that REQ_OP_WRITE_ZEROES
+is not supported.
+
zoned (RO)
----------
This indicates if the device is a zoned block device and the zone model of the
@@ -213,19 +250,4 @@ devices are described in the ZBC (Zoned Block Commands) and ZAC
do not support zone commands, they will be treated as regular block devices
and zoned will report "none".
-nr_zones (RO)
--------------
-For zoned block devices (zoned attribute indicating "host-managed" or
-"host-aware"), this indicates the total number of zones of the device.
-This is always 0 for regular block devices.
-
-chunk_sectors (RO)
-------------------
-This has different meaning depending on the type of the block device.
-For a RAID device (dm-raid), chunk_sectors indicates the size in 512B sectors
-of the RAID volume stripe segment. For a zoned block device, either host-aware
-or host-managed, chunk_sectors indicates the size in 512B sectors of the zones
-of the device, with the eventual exception of the last zone of the device which
-may be smaller.
-
Jens Axboe <jens.axboe@oracle.com>, February 2009
diff --git a/Documentation/block/switching-sched.txt b/Documentation/block/switching-sched.txt
index 3b2612e342f1..7977f6fb8b20 100644
--- a/Documentation/block/switching-sched.txt
+++ b/Documentation/block/switching-sched.txt
@@ -13,11 +13,9 @@ you can do so by typing:
# mount none /sys -t sysfs
-As of the Linux 2.6.10 kernel, it is now possible to change the
-IO scheduler for a given block device on the fly (thus making it possible,
-for instance, to set the CFQ scheduler for the system default, but
-set a specific device to use the deadline or noop schedulers - which
-can improve that device's throughput).
+It is possible to change the IO scheduler for a given block device on
+the fly to select one of mq-deadline, none, bfq, or kyber schedulers -
+which can improve that device's throughput.
To set a specific scheduler, simply do this:
@@ -30,8 +28,8 @@ The list of defined schedulers can be found by simply doing
a "cat /sys/block/DEV/queue/scheduler" - the list of valid names
will be displayed, with the currently selected scheduler in brackets:
-# cat /sys/block/hda/queue/scheduler
-noop deadline [cfq]
-# echo deadline > /sys/block/hda/queue/scheduler
-# cat /sys/block/hda/queue/scheduler
-noop [deadline] cfq
+# cat /sys/block/sda/queue/scheduler
+[mq-deadline] kyber bfq none
+# echo none >/sys/block/sda/queue/scheduler
+# cat /sys/block/sda/queue/scheduler
+[none] mq-deadline kyber bfq
diff --git a/Documentation/bpf/bpf_design_QA.rst b/Documentation/bpf/bpf_design_QA.rst
index cb402c59eca5..12a246fcf6cb 100644
--- a/Documentation/bpf/bpf_design_QA.rst
+++ b/Documentation/bpf/bpf_design_QA.rst
@@ -172,11 +172,31 @@ registers which makes BPF inefficient virtual machine for 32-bit
CPU architectures and 32-bit HW accelerators. Can true 32-bit registers
be added to BPF in the future?
-A: NO. The first thing to improve performance on 32-bit archs is to teach
-LLVM to generate code that uses 32-bit subregisters. Then second step
-is to teach verifier to mark operations where zero-ing upper bits
-is unnecessary. Then JITs can take advantage of those markings and
-drastically reduce size of generated code and improve performance.
+A: NO.
+
+But some optimizations on zero-ing the upper 32 bits for BPF registers are
+available, and can be leveraged to improve the performance of JITed BPF
+programs for 32-bit architectures.
+
+Starting with version 7, LLVM is able to generate instructions that operate
+on 32-bit subregisters, provided the option -mattr=+alu32 is passed for
+compiling a program. Furthermore, the verifier can now mark the
+instructions for which zero-ing the upper bits of the destination register
+is required, and insert an explicit zero-extension (zext) instruction
+(a mov32 variant). This means that for architectures without zext hardware
+support, the JIT back-ends do not need to clear the upper bits for
+subregisters written by alu32 instructions or narrow loads. Instead, the
+back-ends simply need to support code generation for that mov32 variant,
+and to overwrite bpf_jit_needs_zext() to make it return "true" (in order to
+enable zext insertion in the verifier).
+
+Note that it is possible for a JIT back-end to have partial hardware
+support for zext. In that case, if verifier zext insertion is enabled,
+it could lead to the insertion of unnecessary zext instructions. Such
+instructions could be removed by creating a simple peephole inside the JIT
+back-end: if one instruction has hardware support for zext and if the next
+instruction is an explicit zext, then the latter can be skipped when doing
+the code generation.
Q: Does BPF have a stable ABI?
------------------------------
diff --git a/Documentation/bpf/btf.rst b/Documentation/bpf/btf.rst
index 35d83e24dbdb..4d565d202ce3 100644
--- a/Documentation/bpf/btf.rst
+++ b/Documentation/bpf/btf.rst
@@ -151,6 +151,7 @@ for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
for this int. For example, a bitfield struct member has:
+
* btf member bit offset 100 from the start of the structure,
* btf member pointing to an int type,
* the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
@@ -160,6 +161,7 @@ from bits ``100 + 2 = 102``.
Alternatively, the bitfield struct member can be the following to access the
same bits as the above:
+
* btf member bit offset 102,
* btf member pointing to an int type,
* the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
diff --git a/Documentation/bpf/index.rst b/Documentation/bpf/index.rst
index d3fe4cac0c90..801a6ed3f2e5 100644
--- a/Documentation/bpf/index.rst
+++ b/Documentation/bpf/index.rst
@@ -42,6 +42,7 @@ Program types
.. toctree::
:maxdepth: 1
+ prog_cgroup_sockopt
prog_cgroup_sysctl
prog_flow_dissector
diff --git a/Documentation/bpf/prog_cgroup_sockopt.rst b/Documentation/bpf/prog_cgroup_sockopt.rst
new file mode 100644
index 000000000000..c47d974629ae
--- /dev/null
+++ b/Documentation/bpf/prog_cgroup_sockopt.rst
@@ -0,0 +1,93 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============================
+BPF_PROG_TYPE_CGROUP_SOCKOPT
+============================
+
+``BPF_PROG_TYPE_CGROUP_SOCKOPT`` program type can be attached to two
+cgroup hooks:
+
+* ``BPF_CGROUP_GETSOCKOPT`` - called every time process executes ``getsockopt``
+ system call.
+* ``BPF_CGROUP_SETSOCKOPT`` - called every time process executes ``setsockopt``
+ system call.
+
+The context (``struct bpf_sockopt``) has associated socket (``sk``) and
+all input arguments: ``level``, ``optname``, ``optval`` and ``optlen``.
+
+BPF_CGROUP_SETSOCKOPT
+=====================
+
+``BPF_CGROUP_SETSOCKOPT`` is triggered *before* the kernel handling of
+sockopt and it has writable context: it can modify the supplied arguments
+before passing them down to the kernel. This hook has access to the cgroup
+and socket local storage.
+
+If BPF program sets ``optlen`` to -1, the control will be returned
+back to the userspace after all other BPF programs in the cgroup
+chain finish (i.e. kernel ``setsockopt`` handling will *not* be executed).
+
+Note, that ``optlen`` can not be increased beyond the user-supplied
+value. It can only be decreased or set to -1. Any other value will
+trigger ``EFAULT``.
+
+Return Type
+-----------
+
+* ``0`` - reject the syscall, ``EPERM`` will be returned to the userspace.
+* ``1`` - success, continue with next BPF program in the cgroup chain.
+
+BPF_CGROUP_GETSOCKOPT
+=====================
+
+``BPF_CGROUP_GETSOCKOPT`` is triggered *after* the kernel handing of
+sockopt. The BPF hook can observe ``optval``, ``optlen`` and ``retval``
+if it's interested in whatever kernel has returned. BPF hook can override
+the values above, adjust ``optlen`` and reset ``retval`` to 0. If ``optlen``
+has been increased above initial ``getsockopt`` value (i.e. userspace
+buffer is too small), ``EFAULT`` is returned.
+
+This hook has access to the cgroup and socket local storage.
+
+Note, that the only acceptable value to set to ``retval`` is 0 and the
+original value that the kernel returned. Any other value will trigger
+``EFAULT``.
+
+Return Type
+-----------
+
+* ``0`` - reject the syscall, ``EPERM`` will be returned to the userspace.
+* ``1`` - success: copy ``optval`` and ``optlen`` to userspace, return
+ ``retval`` from the syscall (note that this can be overwritten by
+ the BPF program from the parent cgroup).
+
+Cgroup Inheritance
+==================
+
+Suppose, there is the following cgroup hierarchy where each cgroup
+has ``BPF_CGROUP_GETSOCKOPT`` attached at each level with
+``BPF_F_ALLOW_MULTI`` flag::
+
+ A (root, parent)
+ \
+ B (child)
+
+When the application calls ``getsockopt`` syscall from the cgroup B,
+the programs are executed from the bottom up: B, A. First program
+(B) sees the result of kernel's ``getsockopt``. It can optionally
+adjust ``optval``, ``optlen`` and reset ``retval`` to 0. After that
+control will be passed to the second (A) program which will see the
+same context as B including any potential modifications.
+
+Same for ``BPF_CGROUP_SETSOCKOPT``: if the program is attached to
+A and B, the trigger order is B, then A. If B does any changes
+to the input arguments (``level``, ``optname``, ``optval``, ``optlen``),
+then the next program in the chain (A) will see those changes,
+*not* the original input ``setsockopt`` arguments. The potentially
+modified values will be then passed down to the kernel.
+
+Example
+=======
+
+See ``tools/testing/selftests/bpf/progs/sockopt_sk.c`` for an example
+of BPF program that handles socket options.
diff --git a/Documentation/cdrom/Makefile b/Documentation/cdrom/Makefile
deleted file mode 100644
index a19e321928e1..000000000000
--- a/Documentation/cdrom/Makefile
+++ /dev/null
@@ -1,21 +0,0 @@
-LATEXFILE = cdrom-standard
-
-all:
- make clean
- latex $(LATEXFILE)
- latex $(LATEXFILE)
- @if [ -x `which gv` ]; then \
- `dvips -q -t letter -o $(LATEXFILE).ps $(LATEXFILE).dvi` ;\
- `gv -antialias -media letter -nocenter $(LATEXFILE).ps` ;\
- else \
- `xdvi $(LATEXFILE).dvi &` ;\
- fi
- make sortofclean
-
-clean:
- rm -f $(LATEXFILE).ps $(LATEXFILE).dvi $(LATEXFILE).aux $(LATEXFILE).log
-
-sortofclean:
- rm -f $(LATEXFILE).aux $(LATEXFILE).log
-
-
diff --git a/Documentation/cdrom/cdrom-standard.rst b/Documentation/cdrom/cdrom-standard.rst
new file mode 100644
index 000000000000..dde4f7f7fdbf
--- /dev/null
+++ b/Documentation/cdrom/cdrom-standard.rst
@@ -0,0 +1,1063 @@
+=======================
+A Linux CD-ROM standard
+=======================
+
+:Author: David van Leeuwen <david@ElseWare.cistron.nl>
+:Date: 12 March 1999
+:Updated by: Erik Andersen (andersee@debian.org)
+:Updated by: Jens Axboe (axboe@image.dk)
+
+
+Introduction
+============
+
+Linux is probably the Unix-like operating system that supports
+the widest variety of hardware devices. The reasons for this are
+presumably
+
+- The large list of hardware devices available for the many platforms
+ that Linux now supports (i.e., i386-PCs, Sparc Suns, etc.)
+- The open design of the operating system, such that anybody can write a
+ driver for Linux.
+- There is plenty of source code around as examples of how to write a driver.
+
+The openness of Linux, and the many different types of available
+hardware has allowed Linux to support many different hardware devices.
+Unfortunately, the very openness that has allowed Linux to support
+all these different devices has also allowed the behavior of each
+device driver to differ significantly from one device to another.
+This divergence of behavior has been very significant for CD-ROM
+devices; the way a particular drive reacts to a `standard` *ioctl()*
+call varies greatly from one device driver to another. To avoid making
+their drivers totally inconsistent, the writers of Linux CD-ROM
+drivers generally created new device drivers by understanding, copying,
+and then changing an existing one. Unfortunately, this practice did not
+maintain uniform behavior across all the Linux CD-ROM drivers.
+
+This document describes an effort to establish Uniform behavior across
+all the different CD-ROM device drivers for Linux. This document also
+defines the various *ioctl()'s*, and how the low-level CD-ROM device
+drivers should implement them. Currently (as of the Linux 2.1.\ *x*
+development kernels) several low-level CD-ROM device drivers, including
+both IDE/ATAPI and SCSI, now use this Uniform interface.
+
+When the CD-ROM was developed, the interface between the CD-ROM drive
+and the computer was not specified in the standards. As a result, many
+different CD-ROM interfaces were developed. Some of them had their
+own proprietary design (Sony, Mitsumi, Panasonic, Philips), other
+manufacturers adopted an existing electrical interface and changed
+the functionality (CreativeLabs/SoundBlaster, Teac, Funai) or simply
+adapted their drives to one or more of the already existing electrical
+interfaces (Aztech, Sanyo, Funai, Vertos, Longshine, Optics Storage and
+most of the `NoName` manufacturers). In cases where a new drive really
+brought its own interface or used its own command set and flow control
+scheme, either a separate driver had to be written, or an existing
+driver had to be enhanced. History has delivered us CD-ROM support for
+many of these different interfaces. Nowadays, almost all new CD-ROM
+drives are either IDE/ATAPI or SCSI, and it is very unlikely that any
+manufacturer will create a new interface. Even finding drives for the
+old proprietary interfaces is getting difficult.
+
+When (in the 1.3.70's) I looked at the existing software interface,
+which was expressed through `cdrom.h`, it appeared to be a rather wild
+set of commands and data formats [#f1]_. It seemed that many
+features of the software interface had been added to accommodate the
+capabilities of a particular drive, in an *ad hoc* manner. More
+importantly, it appeared that the behavior of the `standard` commands
+was different for most of the different drivers: e. g., some drivers
+close the tray if an *open()* call occurs when the tray is open, while
+others do not. Some drivers lock the door upon opening the device, to
+prevent an incoherent file system, but others don't, to allow software
+ejection. Undoubtedly, the capabilities of the different drives vary,
+but even when two drives have the same capability their drivers'
+behavior was usually different.
+
+.. [#f1]
+ I cannot recollect what kernel version I looked at, then,
+ presumably 1.2.13 and 1.3.34 --- the latest kernel that I was
+ indirectly involved in.
+
+I decided to start a discussion on how to make all the Linux CD-ROM
+drivers behave more uniformly. I began by contacting the developers of
+the many CD-ROM drivers found in the Linux kernel. Their reactions
+encouraged me to write the Uniform CD-ROM Driver which this document is
+intended to describe. The implementation of the Uniform CD-ROM Driver is
+in the file `cdrom.c`. This driver is intended to be an additional software
+layer that sits on top of the low-level device drivers for each CD-ROM drive.
+By adding this additional layer, it is possible to have all the different
+CD-ROM devices behave **exactly** the same (insofar as the underlying
+hardware will allow).
+
+The goal of the Uniform CD-ROM Driver is **not** to alienate driver developers
+whohave not yet taken steps to support this effort. The goal of Uniform CD-ROM
+Driver is simply to give people writing application programs for CD-ROM drives
+**one** Linux CD-ROM interface with consistent behavior for all
+CD-ROM devices. In addition, this also provides a consistent interface
+between the low-level device driver code and the Linux kernel. Care
+is taken that 100% compatibility exists with the data structures and
+programmer's interface defined in `cdrom.h`. This guide was written to
+help CD-ROM driver developers adapt their code to use the Uniform CD-ROM
+Driver code defined in `cdrom.c`.
+
+Personally, I think that the most important hardware interfaces are
+the IDE/ATAPI drives and, of course, the SCSI drives, but as prices
+of hardware drop continuously, it is also likely that people may have
+more than one CD-ROM drive, possibly of mixed types. It is important
+that these drives behave in the same way. In December 1994, one of the
+cheapest CD-ROM drives was a Philips cm206, a double-speed proprietary
+drive. In the months that I was busy writing a Linux driver for it,
+proprietary drives became obsolete and IDE/ATAPI drives became the
+standard. At the time of the last update to this document (November
+1997) it is becoming difficult to even **find** anything less than a
+16 speed CD-ROM drive, and 24 speed drives are common.
+
+.. _cdrom_api:
+
+Standardizing through another software level
+============================================
+
+At the time this document was conceived, all drivers directly
+implemented the CD-ROM *ioctl()* calls through their own routines. This
+led to the danger of different drivers forgetting to do important things
+like checking that the user was giving the driver valid data. More
+importantly, this led to the divergence of behavior, which has already
+been discussed.
+
+For this reason, the Uniform CD-ROM Driver was created to enforce consistent
+CD-ROM drive behavior, and to provide a common set of services to the various
+low-level CD-ROM device drivers. The Uniform CD-ROM Driver now provides another
+software-level, that separates the *ioctl()* and *open()* implementation
+from the actual hardware implementation. Note that this effort has
+made few changes which will affect a user's application programs. The
+greatest change involved moving the contents of the various low-level
+CD-ROM drivers\' header files to the kernel's cdrom directory. This was
+done to help ensure that the user is only presented with only one cdrom
+interface, the interface defined in `cdrom.h`.
+
+CD-ROM drives are specific enough (i. e., different from other
+block-devices such as floppy or hard disc drives), to define a set
+of common **CD-ROM device operations**, *<cdrom-device>_dops*.
+These operations are different from the classical block-device file
+operations, *<block-device>_fops*.
+
+The routines for the Uniform CD-ROM Driver interface level are implemented
+in the file `cdrom.c`. In this file, the Uniform CD-ROM Driver interfaces
+with the kernel as a block device by registering the following general
+*struct file_operations*::
+
+ struct file_operations cdrom_fops = {
+ NULL, /∗ lseek ∗/
+ block _read , /∗ read—general block-dev read ∗/
+ block _write, /∗ write—general block-dev write ∗/
+ NULL, /∗ readdir ∗/
+ NULL, /∗ select ∗/
+ cdrom_ioctl, /∗ ioctl ∗/
+ NULL, /∗ mmap ∗/
+ cdrom_open, /∗ open ∗/
+ cdrom_release, /∗ release ∗/
+ NULL, /∗ fsync ∗/
+ NULL, /∗ fasync ∗/
+ cdrom_media_changed, /∗ media change ∗/
+ NULL /∗ revalidate ∗/
+ };
+
+Every active CD-ROM device shares this *struct*. The routines
+declared above are all implemented in `cdrom.c`, since this file is the
+place where the behavior of all CD-ROM-devices is defined and
+standardized. The actual interface to the various types of CD-ROM
+hardware is still performed by various low-level CD-ROM-device
+drivers. These routines simply implement certain **capabilities**
+that are common to all CD-ROM (and really, all removable-media
+devices).
+
+Registration of a low-level CD-ROM device driver is now done through
+the general routines in `cdrom.c`, not through the Virtual File System
+(VFS) any more. The interface implemented in `cdrom.c` is carried out
+through two general structures that contain information about the
+capabilities of the driver, and the specific drives on which the
+driver operates. The structures are:
+
+cdrom_device_ops
+ This structure contains information about the low-level driver for a
+ CD-ROM device. This structure is conceptually connected to the major
+ number of the device (although some drivers may have different
+ major numbers, as is the case for the IDE driver).
+
+cdrom_device_info
+ This structure contains information about a particular CD-ROM drive,
+ such as its device name, speed, etc. This structure is conceptually
+ connected to the minor number of the device.
+
+Registering a particular CD-ROM drive with the Uniform CD-ROM Driver
+is done by the low-level device driver though a call to::
+
+ register_cdrom(struct cdrom_device_info * <device>_info)
+
+The device information structure, *<device>_info*, contains all the
+information needed for the kernel to interface with the low-level
+CD-ROM device driver. One of the most important entries in this
+structure is a pointer to the *cdrom_device_ops* structure of the
+low-level driver.
+
+The device operations structure, *cdrom_device_ops*, contains a list
+of pointers to the functions which are implemented in the low-level
+device driver. When `cdrom.c` accesses a CD-ROM device, it does it
+through the functions in this structure. It is impossible to know all
+the capabilities of future CD-ROM drives, so it is expected that this
+list may need to be expanded from time to time as new technologies are
+developed. For example, CD-R and CD-R/W drives are beginning to become
+popular, and support will soon need to be added for them. For now, the
+current *struct* is::
+
+ struct cdrom_device_ops {
+ int (*open)(struct cdrom_device_info *, int)
+ void (*release)(struct cdrom_device_info *);
+ int (*drive_status)(struct cdrom_device_info *, int);
+ unsigned int (*check_events)(struct cdrom_device_info *,
+ unsigned int, int);
+ int (*media_changed)(struct cdrom_device_info *, int);
+ int (*tray_move)(struct cdrom_device_info *, int);
+ int (*lock_door)(struct cdrom_device_info *, int);
+ int (*select_speed)(struct cdrom_device_info *, int);
+ int (*select_disc)(struct cdrom_device_info *, int);
+ int (*get_last_session) (struct cdrom_device_info *,
+ struct cdrom_multisession *);
+ int (*get_mcn)(struct cdrom_device_info *, struct cdrom_mcn *);
+ int (*reset)(struct cdrom_device_info *);
+ int (*audio_ioctl)(struct cdrom_device_info *,
+ unsigned int, void *);
+ const int capability; /* capability flags */
+ int (*generic_packet)(struct cdrom_device_info *,
+ struct packet_command *);
+ };
+
+When a low-level device driver implements one of these capabilities,
+it should add a function pointer to this *struct*. When a particular
+function is not implemented, however, this *struct* should contain a
+NULL instead. The *capability* flags specify the capabilities of the
+CD-ROM hardware and/or low-level CD-ROM driver when a CD-ROM drive
+is registered with the Uniform CD-ROM Driver.
+
+Note that most functions have fewer parameters than their
+*blkdev_fops* counterparts. This is because very little of the
+information in the structures *inode* and *file* is used. For most
+drivers, the main parameter is the *struct* *cdrom_device_info*, from
+which the major and minor number can be extracted. (Most low-level
+CD-ROM drivers don't even look at the major and minor number though,
+since many of them only support one device.) This will be available
+through *dev* in *cdrom_device_info* described below.
+
+The drive-specific, minor-like information that is registered with
+`cdrom.c`, currently contains the following fields::
+
+ struct cdrom_device_info {
+ const struct cdrom_device_ops * ops; /* device operations for this major */
+ struct list_head list; /* linked list of all device_info */
+ struct gendisk * disk; /* matching block layer disk */
+ void * handle; /* driver-dependent data */
+
+ int mask; /* mask of capability: disables them */
+ int speed; /* maximum speed for reading data */
+ int capacity; /* number of discs in a jukebox */
+
+ unsigned int options:30; /* options flags */
+ unsigned mc_flags:2; /* media-change buffer flags */
+ unsigned int vfs_events; /* cached events for vfs path */
+ unsigned int ioctl_events; /* cached events for ioctl path */
+ int use_count; /* number of times device is opened */
+ char name[20]; /* name of the device type */
+
+ __u8 sanyo_slot : 2; /* Sanyo 3-CD changer support */
+ __u8 keeplocked : 1; /* CDROM_LOCKDOOR status */
+ __u8 reserved : 5; /* not used yet */
+ int cdda_method; /* see CDDA_* flags */
+ __u8 last_sense; /* saves last sense key */
+ __u8 media_written; /* dirty flag, DVD+RW bookkeeping */
+ unsigned short mmc3_profile; /* current MMC3 profile */
+ int for_data; /* unknown:TBD */
+ int (*exit)(struct cdrom_device_info *);/* unknown:TBD */
+ int mrw_mode_page; /* which MRW mode page is in use */
+ };
+
+Using this *struct*, a linked list of the registered minor devices is
+built, using the *next* field. The device number, the device operations
+struct and specifications of properties of the drive are stored in this
+structure.
+
+The *mask* flags can be used to mask out some of the capabilities listed
+in *ops->capability*, if a specific drive doesn't support a feature
+of the driver. The value *speed* specifies the maximum head-rate of the
+drive, measured in units of normal audio speed (176kB/sec raw data or
+150kB/sec file system data). The parameters are declared *const*
+because they describe properties of the drive, which don't change after
+registration.
+
+A few registers contain variables local to the CD-ROM drive. The
+flags *options* are used to specify how the general CD-ROM routines
+should behave. These various flags registers should provide enough
+flexibility to adapt to the different users' wishes (and **not** the
+`arbitrary` wishes of the author of the low-level device driver, as is
+the case in the old scheme). The register *mc_flags* is used to buffer
+the information from *media_changed()* to two separate queues. Other
+data that is specific to a minor drive, can be accessed through *handle*,
+which can point to a data structure specific to the low-level driver.
+The fields *use_count*, *next*, *options* and *mc_flags* need not be
+initialized.
+
+The intermediate software layer that `cdrom.c` forms will perform some
+additional bookkeeping. The use count of the device (the number of
+processes that have the device opened) is registered in *use_count*. The
+function *cdrom_ioctl()* will verify the appropriate user-memory regions
+for read and write, and in case a location on the CD is transferred,
+it will `sanitize` the format by making requests to the low-level
+drivers in a standard format, and translating all formats between the
+user-software and low level drivers. This relieves much of the drivers'
+memory checking and format checking and translation. Also, the necessary
+structures will be declared on the program stack.
+
+The implementation of the functions should be as defined in the
+following sections. Two functions **must** be implemented, namely
+*open()* and *release()*. Other functions may be omitted, their
+corresponding capability flags will be cleared upon registration.
+Generally, a function returns zero on success and negative on error. A
+function call should return only after the command has completed, but of
+course waiting for the device should not use processor time.
+
+::
+
+ int open(struct cdrom_device_info *cdi, int purpose)
+
+*Open()* should try to open the device for a specific *purpose*, which
+can be either:
+
+- Open for reading data, as done by `mount()` (2), or the
+ user commands `dd` or `cat`.
+- Open for *ioctl* commands, as done by audio-CD playing programs.
+
+Notice that any strategic code (closing tray upon *open()*, etc.) is
+done by the calling routine in `cdrom.c`, so the low-level routine
+should only be concerned with proper initialization, such as spinning
+up the disc, etc.
+
+::
+
+ void release(struct cdrom_device_info *cdi)
+
+Device-specific actions should be taken such as spinning down the device.
+However, strategic actions such as ejection of the tray, or unlocking
+the door, should be left over to the general routine *cdrom_release()*.
+This is the only function returning type *void*.
+
+.. _cdrom_drive_status:
+
+::
+
+ int drive_status(struct cdrom_device_info *cdi, int slot_nr)
+
+The function *drive_status*, if implemented, should provide
+information on the status of the drive (not the status of the disc,
+which may or may not be in the drive). If the drive is not a changer,
+*slot_nr* should be ignored. In `cdrom.h` the possibilities are listed::
+
+
+ CDS_NO_INFO /* no information available */
+ CDS_NO_DISC /* no disc is inserted, tray is closed */
+ CDS_TRAY_OPEN /* tray is opened */
+ CDS_DRIVE_NOT_READY /* something is wrong, tray is moving? */
+ CDS_DISC_OK /* a disc is loaded and everything is fine */
+
+::
+
+ int media_changed(struct cdrom_device_info *cdi, int disc_nr)
+
+This function is very similar to the original function in $struct
+file_operations*. It returns 1 if the medium of the device *cdi->dev*
+has changed since the last call, and 0 otherwise. The parameter
+*disc_nr* identifies a specific slot in a juke-box, it should be
+ignored for single-disc drives. Note that by `re-routing` this
+function through *cdrom_media_changed()*, we can implement separate
+queues for the VFS and a new *ioctl()* function that can report device
+changes to software (e. g., an auto-mounting daemon).
+
+::
+
+ int tray_move(struct cdrom_device_info *cdi, int position)
+
+This function, if implemented, should control the tray movement. (No
+other function should control this.) The parameter *position* controls
+the desired direction of movement:
+
+- 0 Close tray
+- 1 Open tray
+
+This function returns 0 upon success, and a non-zero value upon
+error. Note that if the tray is already in the desired position, no
+action need be taken, and the return value should be 0.
+
+::
+
+ int lock_door(struct cdrom_device_info *cdi, int lock)
+
+This function (and no other code) controls locking of the door, if the
+drive allows this. The value of *lock* controls the desired locking
+state:
+
+- 0 Unlock door, manual opening is allowed
+- 1 Lock door, tray cannot be ejected manually
+
+This function returns 0 upon success, and a non-zero value upon
+error. Note that if the door is already in the requested state, no
+action need be taken, and the return value should be 0.
+
+::
+
+ int select_speed(struct cdrom_device_info *cdi, int speed)
+
+Some CD-ROM drives are capable of changing their head-speed. There
+are several reasons for changing the speed of a CD-ROM drive. Badly
+pressed CD-ROM s may benefit from less-than-maximum head rate. Modern
+CD-ROM drives can obtain very high head rates (up to *24x* is
+common). It has been reported that these drives can make reading
+errors at these high speeds, reducing the speed can prevent data loss
+in these circumstances. Finally, some of these drives can
+make an annoyingly loud noise, which a lower speed may reduce.
+
+This function specifies the speed at which data is read or audio is
+played back. The value of *speed* specifies the head-speed of the
+drive, measured in units of standard cdrom speed (176kB/sec raw data
+or 150kB/sec file system data). So to request that a CD-ROM drive
+operate at 300kB/sec you would call the CDROM_SELECT_SPEED *ioctl*
+with *speed=2*. The special value `0` means `auto-selection`, i. e.,
+maximum data-rate or real-time audio rate. If the drive doesn't have
+this `auto-selection` capability, the decision should be made on the
+current disc loaded and the return value should be positive. A negative
+return value indicates an error.
+
+::
+
+ int select_disc(struct cdrom_device_info *cdi, int number)
+
+If the drive can store multiple discs (a juke-box) this function
+will perform disc selection. It should return the number of the
+selected disc on success, a negative value on error. Currently, only
+the ide-cd driver supports this functionality.
+
+::
+
+ int get_last_session(struct cdrom_device_info *cdi,
+ struct cdrom_multisession *ms_info)
+
+This function should implement the old corresponding *ioctl()*. For
+device *cdi->dev*, the start of the last session of the current disc
+should be returned in the pointer argument *ms_info*. Note that
+routines in `cdrom.c` have sanitized this argument: its requested
+format will **always** be of the type *CDROM_LBA* (linear block
+addressing mode), whatever the calling software requested. But
+sanitization goes even further: the low-level implementation may
+return the requested information in *CDROM_MSF* format if it wishes so
+(setting the *ms_info->addr_format* field appropriately, of
+course) and the routines in `cdrom.c` will make the transformation if
+necessary. The return value is 0 upon success.
+
+::
+
+ int get_mcn(struct cdrom_device_info *cdi,
+ struct cdrom_mcn *mcn)
+
+Some discs carry a `Media Catalog Number` (MCN), also called
+`Universal Product Code` (UPC). This number should reflect the number
+that is generally found in the bar-code on the product. Unfortunately,
+the few discs that carry such a number on the disc don't even use the
+same format. The return argument to this function is a pointer to a
+pre-declared memory region of type *struct cdrom_mcn*. The MCN is
+expected as a 13-character string, terminated by a null-character.
+
+::
+
+ int reset(struct cdrom_device_info *cdi)
+
+This call should perform a hard-reset on the drive (although in
+circumstances that a hard-reset is necessary, a drive may very well not
+listen to commands anymore). Preferably, control is returned to the
+caller only after the drive has finished resetting. If the drive is no
+longer listening, it may be wise for the underlying low-level cdrom
+driver to time out.
+
+::
+
+ int audio_ioctl(struct cdrom_device_info *cdi,
+ unsigned int cmd, void *arg)
+
+Some of the CD-ROM-\ *ioctl()*\ 's defined in `cdrom.h` can be
+implemented by the routines described above, and hence the function
+*cdrom_ioctl* will use those. However, most *ioctl()*\ 's deal with
+audio-control. We have decided to leave these to be accessed through a
+single function, repeating the arguments *cmd* and *arg*. Note that
+the latter is of type *void*, rather than *unsigned long int*.
+The routine *cdrom_ioctl()* does do some useful things,
+though. It sanitizes the address format type to *CDROM_MSF* (Minutes,
+Seconds, Frames) for all audio calls. It also verifies the memory
+location of *arg*, and reserves stack-memory for the argument. This
+makes implementation of the *audio_ioctl()* much simpler than in the
+old driver scheme. For example, you may look up the function
+*cm206_audio_ioctl()* `cm206.c` that should be updated with
+this documentation.
+
+An unimplemented ioctl should return *-ENOSYS*, but a harmless request
+(e. g., *CDROMSTART*) may be ignored by returning 0 (success). Other
+errors should be according to the standards, whatever they are. When
+an error is returned by the low-level driver, the Uniform CD-ROM Driver
+tries whenever possible to return the error code to the calling program.
+(We may decide to sanitize the return value in *cdrom_ioctl()* though, in
+order to guarantee a uniform interface to the audio-player software.)
+
+::
+
+ int dev_ioctl(struct cdrom_device_info *cdi,
+ unsigned int cmd, unsigned long arg)
+
+Some *ioctl()'s* seem to be specific to certain CD-ROM drives. That is,
+they are introduced to service some capabilities of certain drives. In
+fact, there are 6 different *ioctl()'s* for reading data, either in some
+particular kind of format, or audio data. Not many drives support
+reading audio tracks as data, I believe this is because of protection
+of copyrights of artists. Moreover, I think that if audio-tracks are
+supported, it should be done through the VFS and not via *ioctl()'s*. A
+problem here could be the fact that audio-frames are 2352 bytes long,
+so either the audio-file-system should ask for 75264 bytes at once
+(the least common multiple of 512 and 2352), or the drivers should
+bend their backs to cope with this incoherence (to which I would be
+opposed). Furthermore, it is very difficult for the hardware to find
+the exact frame boundaries, since there are no synchronization headers
+in audio frames. Once these issues are resolved, this code should be
+standardized in `cdrom.c`.
+
+Because there are so many *ioctl()'s* that seem to be introduced to
+satisfy certain drivers [#f2]_, any non-standard *ioctl()*\ s
+are routed through the call *dev_ioctl()*. In principle, `private`
+*ioctl()*\ 's should be numbered after the device's major number, and not
+the general CD-ROM *ioctl* number, `0x53`. Currently the
+non-supported *ioctl()'s* are:
+
+ CDROMREADMODE1, CDROMREADMODE2, CDROMREADAUDIO, CDROMREADRAW,
+ CDROMREADCOOKED, CDROMSEEK, CDROMPLAY-BLK and CDROM-READALL
+
+.. [#f2]
+
+ Is there software around that actually uses these? I'd be interested!
+
+.. _cdrom_capabilities:
+
+CD-ROM capabilities
+-------------------
+
+Instead of just implementing some *ioctl* calls, the interface in
+`cdrom.c` supplies the possibility to indicate the **capabilities**
+of a CD-ROM drive. This can be done by ORing any number of
+capability-constants that are defined in `cdrom.h` at the registration
+phase. Currently, the capabilities are any of::
+
+ CDC_CLOSE_TRAY /* can close tray by software control */
+ CDC_OPEN_TRAY /* can open tray */
+ CDC_LOCK /* can lock and unlock the door */
+ CDC_SELECT_SPEED /* can select speed, in units of * sim*150 ,kB/s */
+ CDC_SELECT_DISC /* drive is juke-box */
+ CDC_MULTI_SESSION /* can read sessions *> rm1* */
+ CDC_MCN /* can read Media Catalog Number */
+ CDC_MEDIA_CHANGED /* can report if disc has changed */
+ CDC_PLAY_AUDIO /* can perform audio-functions (play, pause, etc) */
+ CDC_RESET /* hard reset device */
+ CDC_IOCTLS /* driver has non-standard ioctls */
+ CDC_DRIVE_STATUS /* driver implements drive status */
+
+The capability flag is declared *const*, to prevent drivers from
+accidentally tampering with the contents. The capability fags actually
+inform `cdrom.c` of what the driver can do. If the drive found
+by the driver does not have the capability, is can be masked out by
+the *cdrom_device_info* variable *mask*. For instance, the SCSI CD-ROM
+driver has implemented the code for loading and ejecting CD-ROM's, and
+hence its corresponding flags in *capability* will be set. But a SCSI
+CD-ROM drive might be a caddy system, which can't load the tray, and
+hence for this drive the *cdrom_device_info* struct will have set
+the *CDC_CLOSE_TRAY* bit in *mask*.
+
+In the file `cdrom.c` you will encounter many constructions of the type::
+
+ if (cdo->capability & ∼cdi->mask & CDC _⟨capability⟩) ...
+
+There is no *ioctl* to set the mask... The reason is that
+I think it is better to control the **behavior** rather than the
+**capabilities**.
+
+Options
+-------
+
+A final flag register controls the **behavior** of the CD-ROM
+drives, in order to satisfy different users' wishes, hopefully
+independently of the ideas of the respective author who happened to
+have made the drive's support available to the Linux community. The
+current behavior options are::
+
+ CDO_AUTO_CLOSE /* try to close tray upon device open() */
+ CDO_AUTO_EJECT /* try to open tray on last device close() */
+ CDO_USE_FFLAGS /* use file_pointer->f_flags to indicate purpose for open() */
+ CDO_LOCK /* try to lock door if device is opened */
+ CDO_CHECK_TYPE /* ensure disc type is data if opened for data */
+
+The initial value of this register is
+`CDO_AUTO_CLOSE | CDO_USE_FFLAGS | CDO_LOCK`, reflecting my own view on user
+interface and software standards. Before you protest, there are two
+new *ioctl()'s* implemented in `cdrom.c`, that allow you to control the
+behavior by software. These are::
+
+ CDROM_SET_OPTIONS /* set options specified in (int)arg */
+ CDROM_CLEAR_OPTIONS /* clear options specified in (int)arg */
+
+One option needs some more explanation: *CDO_USE_FFLAGS*. In the next
+newsection we explain what the need for this option is.
+
+A software package `setcd`, available from the Debian distribution
+and `sunsite.unc.edu`, allows user level control of these flags.
+
+
+The need to know the purpose of opening the CD-ROM device
+=========================================================
+
+Traditionally, Unix devices can be used in two different `modes`,
+either by reading/writing to the device file, or by issuing
+controlling commands to the device, by the device's *ioctl()*
+call. The problem with CD-ROM drives, is that they can be used for
+two entirely different purposes. One is to mount removable
+file systems, CD-ROM's, the other is to play audio CD's. Audio commands
+are implemented entirely through *ioctl()\'s*, presumably because the
+first implementation (SUN?) has been such. In principle there is
+nothing wrong with this, but a good control of the `CD player` demands
+that the device can **always** be opened in order to give the
+*ioctl* commands, regardless of the state the drive is in.
+
+On the other hand, when used as a removable-media disc drive (what the
+original purpose of CD-ROM s is) we would like to make sure that the
+disc drive is ready for operation upon opening the device. In the old
+scheme, some CD-ROM drivers don't do any integrity checking, resulting
+in a number of i/o errors reported by the VFS to the kernel when an
+attempt for mounting a CD-ROM on an empty drive occurs. This is not a
+particularly elegant way to find out that there is no CD-ROM inserted;
+it more-or-less looks like the old IBM-PC trying to read an empty floppy
+drive for a couple of seconds, after which the system complains it
+can't read from it. Nowadays we can **sense** the existence of a
+removable medium in a drive, and we believe we should exploit that
+fact. An integrity check on opening of the device, that verifies the
+availability of a CD-ROM and its correct type (data), would be
+desirable.
+
+These two ways of using a CD-ROM drive, principally for data and
+secondarily for playing audio discs, have different demands for the
+behavior of the *open()* call. Audio use simply wants to open the
+device in order to get a file handle which is needed for issuing
+*ioctl* commands, while data use wants to open for correct and
+reliable data transfer. The only way user programs can indicate what
+their *purpose* of opening the device is, is through the *flags*
+parameter (see `open(2)`). For CD-ROM devices, these flags aren't
+implemented (some drivers implement checking for write-related flags,
+but this is not strictly necessary if the device file has correct
+permission flags). Most option flags simply don't make sense to
+CD-ROM devices: *O_CREAT*, *O_NOCTTY*, *O_TRUNC*, *O_APPEND*, and
+*O_SYNC* have no meaning to a CD-ROM.
+
+We therefore propose to use the flag *O_NONBLOCK* to indicate
+that the device is opened just for issuing *ioctl*
+commands. Strictly, the meaning of *O_NONBLOCK* is that opening and
+subsequent calls to the device don't cause the calling process to
+wait. We could interpret this as don't wait until someone has
+inserted some valid data-CD-ROM. Thus, our proposal of the
+implementation for the *open()* call for CD-ROM s is:
+
+- If no other flags are set than *O_RDONLY*, the device is opened
+ for data transfer, and the return value will be 0 only upon successful
+ initialization of the transfer. The call may even induce some actions
+ on the CD-ROM, such as closing the tray.
+- If the option flag *O_NONBLOCK* is set, opening will always be
+ successful, unless the whole device doesn't exist. The drive will take
+ no actions whatsoever.
+
+And what about standards?
+-------------------------
+
+You might hesitate to accept this proposal as it comes from the
+Linux community, and not from some standardizing institute. What
+about SUN, SGI, HP and all those other Unix and hardware vendors?
+Well, these companies are in the lucky position that they generally
+control both the hardware and software of their supported products,
+and are large enough to set their own standard. They do not have to
+deal with a dozen or more different, competing hardware
+configurations\ [#f3]_.
+
+.. [#f3]
+
+ Incidentally, I think that SUN's approach to mounting CD-ROM s is very
+ good in origin: under Solaris a volume-daemon automatically mounts a
+ newly inserted CD-ROM under `/cdrom/*<volume-name>*`.
+
+ In my opinion they should have pushed this
+ further and have **every** CD-ROM on the local area network be
+ mounted at the similar location, i. e., no matter in which particular
+ machine you insert a CD-ROM, it will always appear at the same
+ position in the directory tree, on every system. When I wanted to
+ implement such a user-program for Linux, I came across the
+ differences in behavior of the various drivers, and the need for an
+ *ioctl* informing about media changes.
+
+We believe that using *O_NONBLOCK* to indicate that a device is being opened
+for *ioctl* commands only can be easily introduced in the Linux
+community. All the CD-player authors will have to be informed, we can
+even send in our own patches to the programs. The use of *O_NONBLOCK*
+has most likely no influence on the behavior of the CD-players on
+other operating systems than Linux. Finally, a user can always revert
+to old behavior by a call to
+*ioctl(file_descriptor, CDROM_CLEAR_OPTIONS, CDO_USE_FFLAGS)*.
+
+The preferred strategy of *open()*
+----------------------------------
+
+The routines in `cdrom.c` are designed in such a way that run-time
+configuration of the behavior of CD-ROM devices (of **any** type)
+can be carried out, by the *CDROM_SET/CLEAR_OPTIONS* *ioctls*. Thus, various
+modes of operation can be set:
+
+`CDO_AUTO_CLOSE | CDO_USE_FFLAGS | CDO_LOCK`
+ This is the default setting. (With *CDO_CHECK_TYPE* it will be better, in
+ the future.) If the device is not yet opened by any other process, and if
+ the device is being opened for data (*O_NONBLOCK* is not set) and the
+ tray is found to be open, an attempt to close the tray is made. Then,
+ it is verified that a disc is in the drive and, if *CDO_CHECK_TYPE* is
+ set, that it contains tracks of type `data mode 1`. Only if all tests
+ are passed is the return value zero. The door is locked to prevent file
+ system corruption. If the drive is opened for audio (*O_NONBLOCK* is
+ set), no actions are taken and a value of 0 will be returned.
+
+`CDO_AUTO_CLOSE | CDO_AUTO_EJECT | CDO_LOCK`
+ This mimics the behavior of the current sbpcd-driver. The option flags are
+ ignored, the tray is closed on the first open, if necessary. Similarly,
+ the tray is opened on the last release, i. e., if a CD-ROM is unmounted,
+ it is automatically ejected, such that the user can replace it.
+
+We hope that these option can convince everybody (both driver
+maintainers and user program developers) to adopt the new CD-ROM
+driver scheme and option flag interpretation.
+
+Description of routines in `cdrom.c`
+====================================
+
+Only a few routines in `cdrom.c` are exported to the drivers. In this
+new section we will discuss these, as well as the functions that `take
+over' the CD-ROM interface to the kernel. The header file belonging
+to `cdrom.c` is called `cdrom.h`. Formerly, some of the contents of this
+file were placed in the file `ucdrom.h`, but this file has now been
+merged back into `cdrom.h`.
+
+::
+
+ struct file_operations cdrom_fops
+
+The contents of this structure were described in cdrom_api_.
+A pointer to this structure is assigned to the *fops* field
+of the *struct gendisk*.
+
+::
+
+ int register_cdrom(struct cdrom_device_info *cdi)
+
+This function is used in about the same way one registers *cdrom_fops*
+with the kernel, the device operations and information structures,
+as described in cdrom_api_, should be registered with the
+Uniform CD-ROM Driver::
+
+ register_cdrom(&<device>_info);
+
+
+This function returns zero upon success, and non-zero upon
+failure. The structure *<device>_info* should have a pointer to the
+driver's *<device>_dops*, as in::
+
+ struct cdrom_device_info <device>_info = {
+ <device>_dops;
+ ...
+ }
+
+Note that a driver must have one static structure, *<device>_dops*, while
+it may have as many structures *<device>_info* as there are minor devices
+active. *Register_cdrom()* builds a linked list from these.
+
+
+::
+
+ void unregister_cdrom(struct cdrom_device_info *cdi)
+
+Unregistering device *cdi* with minor number *MINOR(cdi->dev)* removes
+the minor device from the list. If it was the last registered minor for
+the low-level driver, this disconnects the registered device-operation
+routines from the CD-ROM interface. This function returns zero upon
+success, and non-zero upon failure.
+
+::
+
+ int cdrom_open(struct inode * ip, struct file * fp)
+
+This function is not called directly by the low-level drivers, it is
+listed in the standard *cdrom_fops*. If the VFS opens a file, this
+function becomes active. A strategy is implemented in this routine,
+taking care of all capabilities and options that are set in the
+*cdrom_device_ops* connected to the device. Then, the program flow is
+transferred to the device_dependent *open()* call.
+
+::
+
+ void cdrom_release(struct inode *ip, struct file *fp)
+
+This function implements the reverse-logic of *cdrom_open()*, and then
+calls the device-dependent *release()* routine. When the use-count has
+reached 0, the allocated buffers are flushed by calls to *sync_dev(dev)*
+and *invalidate_buffers(dev)*.
+
+
+.. _cdrom_ioctl:
+
+::
+
+ int cdrom_ioctl(struct inode *ip, struct file *fp,
+ unsigned int cmd, unsigned long arg)
+
+This function handles all the standard *ioctl* requests for CD-ROM
+devices in a uniform way. The different calls fall into three
+categories: *ioctl()'s* that can be directly implemented by device
+operations, ones that are routed through the call *audio_ioctl()*, and
+the remaining ones, that are presumable device-dependent. Generally, a
+negative return value indicates an error.
+
+Directly implemented *ioctl()'s*
+--------------------------------
+
+The following `old` CD-ROM *ioctl()*\ 's are implemented by directly
+calling device-operations in *cdrom_device_ops*, if implemented and
+not masked:
+
+`CDROMMULTISESSION`
+ Requests the last session on a CD-ROM.
+`CDROMEJECT`
+ Open tray.
+`CDROMCLOSETRAY`
+ Close tray.
+`CDROMEJECT_SW`
+ If *arg\not=0*, set behavior to auto-close (close
+ tray on first open) and auto-eject (eject on last release), otherwise
+ set behavior to non-moving on *open()* and *release()* calls.
+`CDROM_GET_MCN`
+ Get the Media Catalog Number from a CD.
+
+*Ioctl*s routed through *audio_ioctl()*
+---------------------------------------
+
+The following set of *ioctl()'s* are all implemented through a call to
+the *cdrom_fops* function *audio_ioctl()*. Memory checks and
+allocation are performed in *cdrom_ioctl()*, and also sanitization of
+address format (*CDROM_LBA*/*CDROM_MSF*) is done.
+
+`CDROMSUBCHNL`
+ Get sub-channel data in argument *arg* of type
+ `struct cdrom_subchnl *`.
+`CDROMREADTOCHDR`
+ Read Table of Contents header, in *arg* of type
+ `struct cdrom_tochdr *`.
+`CDROMREADTOCENTRY`
+ Read a Table of Contents entry in *arg* and specified by *arg*
+ of type `struct cdrom_tocentry *`.
+`CDROMPLAYMSF`
+ Play audio fragment specified in Minute, Second, Frame format,
+ delimited by *arg* of type `struct cdrom_msf *`.
+`CDROMPLAYTRKIND`
+ Play audio fragment in track-index format delimited by *arg*
+ of type `struct cdrom_ti *`.
+`CDROMVOLCTRL`
+ Set volume specified by *arg* of type `struct cdrom_volctrl *`.
+`CDROMVOLREAD`
+ Read volume into by *arg* of type `struct cdrom_volctrl *`.
+`CDROMSTART`
+ Spin up disc.
+`CDROMSTOP`
+ Stop playback of audio fragment.
+`CDROMPAUSE`
+ Pause playback of audio fragment.
+`CDROMRESUME`
+ Resume playing.
+
+New *ioctl()'s* in `cdrom.c`
+----------------------------
+
+The following *ioctl()'s* have been introduced to allow user programs to
+control the behavior of individual CD-ROM devices. New *ioctl*
+commands can be identified by the underscores in their names.
+
+`CDROM_SET_OPTIONS`
+ Set options specified by *arg*. Returns the option flag register
+ after modification. Use *arg = \rm0* for reading the current flags.
+`CDROM_CLEAR_OPTIONS`
+ Clear options specified by *arg*. Returns the option flag register
+ after modification.
+`CDROM_SELECT_SPEED`
+ Select head-rate speed of disc specified as by *arg* in units
+ of standard cdrom speed (176\,kB/sec raw data or
+ 150kB/sec file system data). The value 0 means `auto-select`,
+ i. e., play audio discs at real time and data discs at maximum speed.
+ The value *arg* is checked against the maximum head rate of the
+ drive found in the *cdrom_dops*.
+`CDROM_SELECT_DISC`
+ Select disc numbered *arg* from a juke-box.
+
+ First disc is numbered 0. The number *arg* is checked against the
+ maximum number of discs in the juke-box found in the *cdrom_dops*.
+`CDROM_MEDIA_CHANGED`
+ Returns 1 if a disc has been changed since the last call.
+ Note that calls to *cdrom_media_changed* by the VFS are treated
+ by an independent queue, so both mechanisms will detect a
+ media change once. For juke-boxes, an extra argument *arg*
+ specifies the slot for which the information is given. The special
+ value *CDSL_CURRENT* requests that information about the currently
+ selected slot be returned.
+`CDROM_DRIVE_STATUS`
+ Returns the status of the drive by a call to
+ *drive_status()*. Return values are defined in cdrom_drive_status_.
+ Note that this call doesn't return information on the
+ current playing activity of the drive; this can be polled through
+ an *ioctl* call to *CDROMSUBCHNL*. For juke-boxes, an extra argument
+ *arg* specifies the slot for which (possibly limited) information is
+ given. The special value *CDSL_CURRENT* requests that information
+ about the currently selected slot be returned.
+`CDROM_DISC_STATUS`
+ Returns the type of the disc currently in the drive.
+ It should be viewed as a complement to *CDROM_DRIVE_STATUS*.
+ This *ioctl* can provide *some* information about the current
+ disc that is inserted in the drive. This functionality used to be
+ implemented in the low level drivers, but is now carried out
+ entirely in Uniform CD-ROM Driver.
+
+ The history of development of the CD's use as a carrier medium for
+ various digital information has lead to many different disc types.
+ This *ioctl* is useful only in the case that CDs have \emph {only
+ one} type of data on them. While this is often the case, it is
+ also very common for CDs to have some tracks with data, and some
+ tracks with audio. Because this is an existing interface, rather
+ than fixing this interface by changing the assumptions it was made
+ under, thereby breaking all user applications that use this
+ function, the Uniform CD-ROM Driver implements this *ioctl* as
+ follows: If the CD in question has audio tracks on it, and it has
+ absolutely no CD-I, XA, or data tracks on it, it will be reported
+ as *CDS_AUDIO*. If it has both audio and data tracks, it will
+ return *CDS_MIXED*. If there are no audio tracks on the disc, and
+ if the CD in question has any CD-I tracks on it, it will be
+ reported as *CDS_XA_2_2*. Failing that, if the CD in question
+ has any XA tracks on it, it will be reported as *CDS_XA_2_1*.
+ Finally, if the CD in question has any data tracks on it,
+ it will be reported as a data CD (*CDS_DATA_1*).
+
+ This *ioctl* can return::
+
+ CDS_NO_INFO /* no information available */
+ CDS_NO_DISC /* no disc is inserted, or tray is opened */
+ CDS_AUDIO /* Audio disc (2352 audio bytes/frame) */
+ CDS_DATA_1 /* data disc, mode 1 (2048 user bytes/frame) */
+ CDS_XA_2_1 /* mixed data (XA), mode 2, form 1 (2048 user bytes) */
+ CDS_XA_2_2 /* mixed data (XA), mode 2, form 1 (2324 user bytes) */
+ CDS_MIXED /* mixed audio/data disc */
+
+ For some information concerning frame layout of the various disc
+ types, see a recent version of `cdrom.h`.
+
+`CDROM_CHANGER_NSLOTS`
+ Returns the number of slots in a juke-box.
+`CDROMRESET`
+ Reset the drive.
+`CDROM_GET_CAPABILITY`
+ Returns the *capability* flags for the drive. Refer to section
+ cdrom_capabilities_ for more information on these flags.
+`CDROM_LOCKDOOR`
+ Locks the door of the drive. `arg == 0` unlocks the door,
+ any other value locks it.
+`CDROM_DEBUG`
+ Turns on debugging info. Only root is allowed to do this.
+ Same semantics as CDROM_LOCKDOOR.
+
+
+Device dependent *ioctl()'s*
+----------------------------
+
+Finally, all other *ioctl()'s* are passed to the function *dev_ioctl()*,
+if implemented. No memory allocation or verification is carried out.
+
+How to update your driver
+=========================
+
+- Make a backup of your current driver.
+- Get hold of the files `cdrom.c` and `cdrom.h`, they should be in
+ the directory tree that came with this documentation.
+- Make sure you include `cdrom.h`.
+- Change the 3rd argument of *register_blkdev* from `&<your-drive>_fops`
+ to `&cdrom_fops`.
+- Just after that line, add the following to register with the Uniform
+ CD-ROM Driver::
+
+ register_cdrom(&<your-drive>_info);*
+
+ Similarly, add a call to *unregister_cdrom()* at the appropriate place.
+- Copy an example of the device-operations *struct* to your
+ source, e. g., from `cm206.c` *cm206_dops*, and change all
+ entries to names corresponding to your driver, or names you just
+ happen to like. If your driver doesn't support a certain function,
+ make the entry *NULL*. At the entry *capability* you should list all
+ capabilities your driver currently supports. If your driver
+ has a capability that is not listed, please send me a message.
+- Copy the *cdrom_device_info* declaration from the same example
+ driver, and modify the entries according to your needs. If your
+ driver dynamically determines the capabilities of the hardware, this
+ structure should also be declared dynamically.
+- Implement all functions in your `<device>_dops` structure,
+ according to prototypes listed in `cdrom.h`, and specifications given
+ in cdrom_api_. Most likely you have already implemented
+ the code in a large part, and you will almost certainly need to adapt the
+ prototype and return values.
+- Rename your `<device>_ioctl()` function to *audio_ioctl* and
+ change the prototype a little. Remove entries listed in the first
+ part in cdrom_ioctl_, if your code was OK, these are
+ just calls to the routines you adapted in the previous step.
+- You may remove all remaining memory checking code in the
+ *audio_ioctl()* function that deals with audio commands (these are
+ listed in the second part of cdrom_ioctl_. There is no
+ need for memory allocation either, so most *case*s in the *switch*
+ statement look similar to::
+
+ case CDROMREADTOCENTRY:
+ get_toc_entry\bigl((struct cdrom_tocentry *) arg);
+
+- All remaining *ioctl* cases must be moved to a separate
+ function, *<device>_ioctl*, the device-dependent *ioctl()'s*. Note that
+ memory checking and allocation must be kept in this code!
+- Change the prototypes of *<device>_open()* and
+ *<device>_release()*, and remove any strategic code (i. e., tray
+ movement, door locking, etc.).
+- Try to recompile the drivers. We advise you to use modules, both
+ for `cdrom.o` and your driver, as debugging is much easier this
+ way.
+
+Thanks
+======
+
+Thanks to all the people involved. First, Erik Andersen, who has
+taken over the torch in maintaining `cdrom.c` and integrating much
+CD-ROM-related code in the 2.1-kernel. Thanks to Scott Snyder and
+Gerd Knorr, who were the first to implement this interface for SCSI
+and IDE-CD drivers and added many ideas for extension of the data
+structures relative to kernel~2.0. Further thanks to Heiko Eißfeldt,
+Thomas Quinot, Jon Tombs, Ken Pizzini, Eberhard Mönkeberg and Andrew Kroll,
+the Linux CD-ROM device driver developers who were kind
+enough to give suggestions and criticisms during the writing. Finally
+of course, I want to thank Linus Torvalds for making this possible in
+the first place.
diff --git a/Documentation/cdrom/cdrom-standard.tex b/Documentation/cdrom/cdrom-standard.tex
deleted file mode 100644
index f7cd455973f7..000000000000
--- a/Documentation/cdrom/cdrom-standard.tex
+++ /dev/null
@@ -1,1026 +0,0 @@
-\documentclass{article}
-\def\version{$Id: cdrom-standard.tex,v 1.9 1997/12/28 15:42:49 david Exp $}
-\newcommand{\newsection}[1]{\newpage\section{#1}}
-
-\evensidemargin=0pt
-\oddsidemargin=0pt
-\topmargin=-\headheight \advance\topmargin by -\headsep
-\textwidth=15.99cm \textheight=24.62cm % normal A4, 1'' margin
-
-\def\linux{{\sc Linux}}
-\def\cdrom{{\sc cd-rom}}
-\def\UCD{{\sc Uniform cd-rom Driver}}
-\def\cdromc{{\tt {cdrom.c}}}
-\def\cdromh{{\tt {cdrom.h}}}
-\def\fo{\sl} % foreign words
-\def\ie{{\fo i.e.}}
-\def\eg{{\fo e.g.}}
-
-\everymath{\it} \everydisplay{\it}
-\catcode `\_=\active \def_{\_\penalty100 }
-\catcode`\<=\active \def<#1>{{\langle\hbox{\rm#1}\rangle}}
-
-\begin{document}
-\title{A \linux\ \cdrom\ standard}
-\author{David van Leeuwen\\{\normalsize\tt david@ElseWare.cistron.nl}
-\\{\footnotesize updated by Erik Andersen {\tt(andersee@debian.org)}}
-\\{\footnotesize updated by Jens Axboe {\tt(axboe@image.dk)}}}
-\date{12 March 1999}
-
-\maketitle
-
-\newsection{Introduction}
-
-\linux\ is probably the Unix-like operating system that supports
-the widest variety of hardware devices. The reasons for this are
-presumably
-\begin{itemize}
-\item
- The large list of hardware devices available for the many platforms
- that \linux\ now supports (\ie, i386-PCs, Sparc Suns, etc.)
-\item
- The open design of the operating system, such that anybody can write a
- driver for \linux.
-\item
- There is plenty of source code around as examples of how to write a driver.
-\end{itemize}
-The openness of \linux, and the many different types of available
-hardware has allowed \linux\ to support many different hardware devices.
-Unfortunately, the very openness that has allowed \linux\ to support
-all these different devices has also allowed the behavior of each
-device driver to differ significantly from one device to another.
-This divergence of behavior has been very significant for \cdrom\
-devices; the way a particular drive reacts to a `standard' $ioctl()$
-call varies greatly from one device driver to another. To avoid making
-their drivers totally inconsistent, the writers of \linux\ \cdrom\
-drivers generally created new device drivers by understanding, copying,
-and then changing an existing one. Unfortunately, this practice did not
-maintain uniform behavior across all the \linux\ \cdrom\ drivers.
-
-This document describes an effort to establish Uniform behavior across
-all the different \cdrom\ device drivers for \linux. This document also
-defines the various $ioctl$s, and how the low-level \cdrom\ device
-drivers should implement them. Currently (as of the \linux\ 2.1.$x$
-development kernels) several low-level \cdrom\ device drivers, including
-both IDE/ATAPI and SCSI, now use this Uniform interface.
-
-When the \cdrom\ was developed, the interface between the \cdrom\ drive
-and the computer was not specified in the standards. As a result, many
-different \cdrom\ interfaces were developed. Some of them had their
-own proprietary design (Sony, Mitsumi, Panasonic, Philips), other
-manufacturers adopted an existing electrical interface and changed
-the functionality (CreativeLabs/SoundBlaster, Teac, Funai) or simply
-adapted their drives to one or more of the already existing electrical
-interfaces (Aztech, Sanyo, Funai, Vertos, Longshine, Optics Storage and
-most of the `NoName' manufacturers). In cases where a new drive really
-brought its own interface or used its own command set and flow control
-scheme, either a separate driver had to be written, or an existing
-driver had to be enhanced. History has delivered us \cdrom\ support for
-many of these different interfaces. Nowadays, almost all new \cdrom\
-drives are either IDE/ATAPI or SCSI, and it is very unlikely that any
-manufacturer will create a new interface. Even finding drives for the
-old proprietary interfaces is getting difficult.
-
-When (in the 1.3.70's) I looked at the existing software interface,
-which was expressed through \cdromh, it appeared to be a rather wild
-set of commands and data formats.\footnote{I cannot recollect what
-kernel version I looked at, then, presumably 1.2.13 and 1.3.34---the
-latest kernel that I was indirectly involved in.} It seemed that many
-features of the software interface had been added to accommodate the
-capabilities of a particular drive, in an {\fo ad hoc\/} manner. More
-importantly, it appeared that the behavior of the `standard' commands
-was different for most of the different drivers: \eg, some drivers
-close the tray if an $open()$ call occurs when the tray is open, while
-others do not. Some drivers lock the door upon opening the device, to
-prevent an incoherent file system, but others don't, to allow software
-ejection. Undoubtedly, the capabilities of the different drives vary,
-but even when two drives have the same capability their drivers'
-behavior was usually different.
-
-I decided to start a discussion on how to make all the \linux\ \cdrom\
-drivers behave more uniformly. I began by contacting the developers of
-the many \cdrom\ drivers found in the \linux\ kernel. Their reactions
-encouraged me to write the \UCD\ which this document is intended to
-describe. The implementation of the \UCD\ is in the file \cdromc. This
-driver is intended to be an additional software layer that sits on top
-of the low-level device drivers for each \cdrom\ drive. By adding this
-additional layer, it is possible to have all the different \cdrom\
-devices behave {\em exactly\/} the same (insofar as the underlying
-hardware will allow).
-
-The goal of the \UCD\ is {\em not\/} to alienate driver developers who
-have not yet taken steps to support this effort. The goal of \UCD\ is
-simply to give people writing application programs for \cdrom\ drives
-{\em one\/} \linux\ \cdrom\ interface with consistent behavior for all
-\cdrom\ devices. In addition, this also provides a consistent interface
-between the low-level device driver code and the \linux\ kernel. Care
-is taken that 100\,\% compatibility exists with the data structures and
-programmer's interface defined in \cdromh. This guide was written to
-help \cdrom\ driver developers adapt their code to use the \UCD\ code
-defined in \cdromc.
-
-Personally, I think that the most important hardware interfaces are
-the IDE/ATAPI drives and, of course, the SCSI drives, but as prices
-of hardware drop continuously, it is also likely that people may have
-more than one \cdrom\ drive, possibly of mixed types. It is important
-that these drives behave in the same way. In December 1994, one of the
-cheapest \cdrom\ drives was a Philips cm206, a double-speed proprietary
-drive. In the months that I was busy writing a \linux\ driver for it,
-proprietary drives became obsolete and IDE/ATAPI drives became the
-standard. At the time of the last update to this document (November
-1997) it is becoming difficult to even {\em find} anything less than a
-16 speed \cdrom\ drive, and 24 speed drives are common.
-
-\newsection{Standardizing through another software level}
-\label{cdrom.c}
-
-At the time this document was conceived, all drivers directly
-implemented the \cdrom\ $ioctl()$ calls through their own routines. This
-led to the danger of different drivers forgetting to do important things
-like checking that the user was giving the driver valid data. More
-importantly, this led to the divergence of behavior, which has already
-been discussed.
-
-For this reason, the \UCD\ was created to enforce consistent \cdrom\
-drive behavior, and to provide a common set of services to the various
-low-level \cdrom\ device drivers. The \UCD\ now provides another
-software-level, that separates the $ioctl()$ and $open()$ implementation
-from the actual hardware implementation. Note that this effort has
-made few changes which will affect a user's application programs. The
-greatest change involved moving the contents of the various low-level
-\cdrom\ drivers' header files to the kernel's cdrom directory. This was
-done to help ensure that the user is only presented with only one cdrom
-interface, the interface defined in \cdromh.
-
-\cdrom\ drives are specific enough (\ie, different from other
-block-devices such as floppy or hard disc drives), to define a set
-of common {\em \cdrom\ device operations}, $<cdrom-device>_dops$.
-These operations are different from the classical block-device file
-operations, $<block-device>_fops$.
-
-The routines for the \UCD\ interface level are implemented in the file
-\cdromc. In this file, the \UCD\ interfaces with the kernel as a block
-device by registering the following general $struct\ file_operations$:
-$$
-\halign{$#$\ \hfil&$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-struct& file_operations\ cdrom_fops = \{\hidewidth\cr
- &NULL, & lseek \cr
- &block_read, & read---general block-dev read \cr
- &block_write, & write---general block-dev write \cr
- &NULL, & readdir \cr
- &NULL, & select \cr
- &cdrom_ioctl, & ioctl \cr
- &NULL, & mmap \cr
- &cdrom_open, & open \cr
- &cdrom_release, & release \cr
- &NULL, & fsync \cr
- &NULL, & fasync \cr
- &cdrom_media_changed, & media change \cr
- &NULL & revalidate \cr
-\};\cr
-}
-$$
-
-Every active \cdrom\ device shares this $struct$. The routines
-declared above are all implemented in \cdromc, since this file is the
-place where the behavior of all \cdrom-devices is defined and
-standardized. The actual interface to the various types of \cdrom\
-hardware is still performed by various low-level \cdrom-device
-drivers. These routines simply implement certain {\em capabilities\/}
-that are common to all \cdrom\ (and really, all removable-media
-devices).
-
-Registration of a low-level \cdrom\ device driver is now done through
-the general routines in \cdromc, not through the Virtual File System
-(VFS) any more. The interface implemented in \cdromc\ is carried out
-through two general structures that contain information about the
-capabilities of the driver, and the specific drives on which the
-driver operates. The structures are:
-\begin{description}
-\item[$cdrom_device_ops$]
- This structure contains information about the low-level driver for a
- \cdrom\ device. This structure is conceptually connected to the major
- number of the device (although some drivers may have different
- major numbers, as is the case for the IDE driver).
-\item[$cdrom_device_info$]
- This structure contains information about a particular \cdrom\ drive,
- such as its device name, speed, etc. This structure is conceptually
- connected to the minor number of the device.
-\end{description}
-
-Registering a particular \cdrom\ drive with the \UCD\ is done by the
-low-level device driver though a call to:
-$$register_cdrom(struct\ cdrom_device_info * <device>_info)
-$$
-The device information structure, $<device>_info$, contains all the
-information needed for the kernel to interface with the low-level
-\cdrom\ device driver. One of the most important entries in this
-structure is a pointer to the $cdrom_device_ops$ structure of the
-low-level driver.
-
-The device operations structure, $cdrom_device_ops$, contains a list
-of pointers to the functions which are implemented in the low-level
-device driver. When \cdromc\ accesses a \cdrom\ device, it does it
-through the functions in this structure. It is impossible to know all
-the capabilities of future \cdrom\ drives, so it is expected that this
-list may need to be expanded from time to time as new technologies are
-developed. For example, CD-R and CD-R/W drives are beginning to become
-popular, and support will soon need to be added for them. For now, the
-current $struct$ is:
-$$
-\halign{$#$\ \hfil&$#$\ \hfil&\hbox to 10em{$#$\hss}&
- $/*$ \rm# $*/$\hfil\cr
-struct& cdrom_device_ops\ \{ \hidewidth\cr
- &int& (* open)(struct\ cdrom_device_info *, int)\cr
- &void& (* release)(struct\ cdrom_device_info *);\cr
- &int& (* drive_status)(struct\ cdrom_device_info *, int);\cr
- &unsigned\ int& (* check_events)(struct\ cdrom_device_info *, unsigned\ int, int);\cr
- &int& (* media_changed)(struct\ cdrom_device_info *, int);\cr
- &int& (* tray_move)(struct\ cdrom_device_info *, int);\cr
- &int& (* lock_door)(struct\ cdrom_device_info *, int);\cr
- &int& (* select_speed)(struct\ cdrom_device_info *, int);\cr
- &int& (* select_disc)(struct\ cdrom_device_info *, int);\cr
- &int& (* get_last_session) (struct\ cdrom_device_info *,
- struct\ cdrom_multisession *{});\cr
- &int& (* get_mcn)(struct\ cdrom_device_info *, struct\ cdrom_mcn *{});\cr
- &int& (* reset)(struct\ cdrom_device_info *);\cr
- &int& (* audio_ioctl)(struct\ cdrom_device_info *, unsigned\ int,
- void *{});\cr
-\noalign{\medskip}
- &const\ int& capability;& capability flags \cr
- &int& (* generic_packet)(struct\ cdrom_device_info *, struct\ packet_command *{});\cr
-\};\cr
-}
-$$
-When a low-level device driver implements one of these capabilities,
-it should add a function pointer to this $struct$. When a particular
-function is not implemented, however, this $struct$ should contain a
-NULL instead. The $capability$ flags specify the capabilities of the
-\cdrom\ hardware and/or low-level \cdrom\ driver when a \cdrom\ drive
-is registered with the \UCD.
-
-Note that most functions have fewer parameters than their
-$blkdev_fops$ counterparts. This is because very little of the
-information in the structures $inode$ and $file$ is used. For most
-drivers, the main parameter is the $struct$ $cdrom_device_info$, from
-which the major and minor number can be extracted. (Most low-level
-\cdrom\ drivers don't even look at the major and minor number though,
-since many of them only support one device.) This will be available
-through $dev$ in $cdrom_device_info$ described below.
-
-The drive-specific, minor-like information that is registered with
-\cdromc, currently contains the following fields:
-$$
-\halign{$#$\ \hfil&$#$\ \hfil&\hbox to 10em{$#$\hss}&
- $/*$ \rm# $*/$\hfil\cr
-struct& cdrom_device_info\ \{ \hidewidth\cr
- & const\ struct\ cdrom_device_ops *& ops;& device operations for this major\cr
- & struct\ list_head& list;& linked list of all device_info\cr
- & struct\ gendisk *& disk;& matching block layer disk\cr
- & void *& handle;& driver-dependent data\cr
-\noalign{\medskip}
- & int& mask;& mask of capability: disables them \cr
- & int& speed;& maximum speed for reading data \cr
- & int& capacity;& number of discs in a jukebox \cr
-\noalign{\medskip}
- &unsigned\ int& options : 30;& options flags \cr
- &unsigned& mc_flags : 2;& media-change buffer flags \cr
- &unsigned\ int& vfs_events;& cached events for vfs path\cr
- &unsigned\ int& ioctl_events;& cached events for ioctl path\cr
- & int& use_count;& number of times device is opened\cr
- & char& name[20];& name of the device type\cr
-\noalign{\medskip}
- &__u8& sanyo_slot : 2;& Sanyo 3-CD changer support\cr
- &__u8& keeplocked : 1;& CDROM_LOCKDOOR status\cr
- &__u8& reserved : 5;& not used yet\cr
- & int& cdda_method;& see CDDA_* flags\cr
- &__u8& last_sense;& saves last sense key\cr
- &__u8& media_written;& dirty flag, DVD+RW bookkeeping\cr
- &unsigned\ short& mmc3_profile;& current MMC3 profile\cr
- & int& for_data;& unknown:TBD\cr
- & int\ (* exit)\ (struct\ cdrom_device_info *);&& unknown:TBD\cr
- & int& mrw_mode_page;& which MRW mode page is in use\cr
-\}\cr
-}$$
-Using this $struct$, a linked list of the registered minor devices is
-built, using the $next$ field. The device number, the device operations
-struct and specifications of properties of the drive are stored in this
-structure.
-
-The $mask$ flags can be used to mask out some of the capabilities listed
-in $ops\to capability$, if a specific drive doesn't support a feature
-of the driver. The value $speed$ specifies the maximum head-rate of the
-drive, measured in units of normal audio speed (176\,kB/sec raw data or
-150\,kB/sec file system data). The parameters are declared $const$
-because they describe properties of the drive, which don't change after
-registration.
-
-A few registers contain variables local to the \cdrom\ drive. The
-flags $options$ are used to specify how the general \cdrom\ routines
-should behave. These various flags registers should provide enough
-flexibility to adapt to the different users' wishes (and {\em not\/} the
-`arbitrary' wishes of the author of the low-level device driver, as is
-the case in the old scheme). The register $mc_flags$ is used to buffer
-the information from $media_changed()$ to two separate queues. Other
-data that is specific to a minor drive, can be accessed through $handle$,
-which can point to a data structure specific to the low-level driver.
-The fields $use_count$, $next$, $options$ and $mc_flags$ need not be
-initialized.
-
-The intermediate software layer that \cdromc\ forms will perform some
-additional bookkeeping. The use count of the device (the number of
-processes that have the device opened) is registered in $use_count$. The
-function $cdrom_ioctl()$ will verify the appropriate user-memory regions
-for read and write, and in case a location on the CD is transferred,
-it will `sanitize' the format by making requests to the low-level
-drivers in a standard format, and translating all formats between the
-user-software and low level drivers. This relieves much of the drivers'
-memory checking and format checking and translation. Also, the necessary
-structures will be declared on the program stack.
-
-The implementation of the functions should be as defined in the
-following sections. Two functions {\em must\/} be implemented, namely
-$open()$ and $release()$. Other functions may be omitted, their
-corresponding capability flags will be cleared upon registration.
-Generally, a function returns zero on success and negative on error. A
-function call should return only after the command has completed, but of
-course waiting for the device should not use processor time.
-
-\subsection{$Int\ open(struct\ cdrom_device_info * cdi, int\ purpose)$}
-
-$Open()$ should try to open the device for a specific $purpose$, which
-can be either:
-\begin{itemize}
-\item[0] Open for reading data, as done by {\tt {mount()}} (2), or the
-user commands {\tt {dd}} or {\tt {cat}}.
-\item[1] Open for $ioctl$ commands, as done by audio-CD playing
-programs.
-\end{itemize}
-Notice that any strategic code (closing tray upon $open()$, etc.)\ is
-done by the calling routine in \cdromc, so the low-level routine
-should only be concerned with proper initialization, such as spinning
-up the disc, etc. % and device-use count
-
-
-\subsection{$Void\ release(struct\ cdrom_device_info * cdi)$}
-
-
-Device-specific actions should be taken such as spinning down the device.
-However, strategic actions such as ejection of the tray, or unlocking
-the door, should be left over to the general routine $cdrom_release()$.
-This is the only function returning type $void$.
-
-\subsection{$Int\ drive_status(struct\ cdrom_device_info * cdi, int\ slot_nr)$}
-\label{drive status}
-
-The function $drive_status$, if implemented, should provide
-information on the status of the drive (not the status of the disc,
-which may or may not be in the drive). If the drive is not a changer,
-$slot_nr$ should be ignored. In \cdromh\ the possibilities are listed:
-$$
-\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-CDS_NO_INFO& no information available\cr
-CDS_NO_DISC& no disc is inserted, tray is closed\cr
-CDS_TRAY_OPEN& tray is opened\cr
-CDS_DRIVE_NOT_READY& something is wrong, tray is moving?\cr
-CDS_DISC_OK& a disc is loaded and everything is fine\cr
-}
-$$
-
-\subsection{$Int\ media_changed(struct\ cdrom_device_info * cdi, int\ disc_nr)$}
-
-This function is very similar to the original function in $struct\
-file_operations$. It returns 1 if the medium of the device $cdi\to
-dev$ has changed since the last call, and 0 otherwise. The parameter
-$disc_nr$ identifies a specific slot in a juke-box, it should be
-ignored for single-disc drives. Note that by `re-routing' this
-function through $cdrom_media_changed()$, we can implement separate
-queues for the VFS and a new $ioctl()$ function that can report device
-changes to software (\eg, an auto-mounting daemon).
-
-\subsection{$Int\ tray_move(struct\ cdrom_device_info * cdi, int\ position)$}
-
-This function, if implemented, should control the tray movement. (No
-other function should control this.) The parameter $position$ controls
-the desired direction of movement:
-\begin{itemize}
-\item[0] Close tray
-\item[1] Open tray
-\end{itemize}
-This function returns 0 upon success, and a non-zero value upon
-error. Note that if the tray is already in the desired position, no
-action need be taken, and the return value should be 0.
-
-\subsection{$Int\ lock_door(struct\ cdrom_device_info * cdi, int\ lock)$}
-
-This function (and no other code) controls locking of the door, if the
-drive allows this. The value of $lock$ controls the desired locking
-state:
-\begin{itemize}
-\item[0] Unlock door, manual opening is allowed
-\item[1] Lock door, tray cannot be ejected manually
-\end{itemize}
-This function returns 0 upon success, and a non-zero value upon
-error. Note that if the door is already in the requested state, no
-action need be taken, and the return value should be 0.
-
-\subsection{$Int\ select_speed(struct\ cdrom_device_info * cdi, int\ speed)$}
-
-Some \cdrom\ drives are capable of changing their head-speed. There
-are several reasons for changing the speed of a \cdrom\ drive. Badly
-pressed \cdrom s may benefit from less-than-maximum head rate. Modern
-\cdrom\ drives can obtain very high head rates (up to $24\times$ is
-common). It has been reported that these drives can make reading
-errors at these high speeds, reducing the speed can prevent data loss
-in these circumstances. Finally, some of these drives can
-make an annoyingly loud noise, which a lower speed may reduce. %Finally,
-%although the audio-low-pass filters probably aren't designed for it,
-%more than real-time playback of audio might be used for high-speed
-%copying of audio tracks.
-
-This function specifies the speed at which data is read or audio is
-played back. The value of $speed$ specifies the head-speed of the
-drive, measured in units of standard cdrom speed (176\,kB/sec raw data
-or 150\,kB/sec file system data). So to request that a \cdrom\ drive
-operate at 300\,kB/sec you would call the CDROM_SELECT_SPEED $ioctl$
-with $speed=2$. The special value `0' means `auto-selection', \ie,
-maximum data-rate or real-time audio rate. If the drive doesn't have
-this `auto-selection' capability, the decision should be made on the
-current disc loaded and the return value should be positive. A negative
-return value indicates an error.
-
-\subsection{$Int\ select_disc(struct\ cdrom_device_info * cdi, int\ number)$}
-
-If the drive can store multiple discs (a juke-box) this function
-will perform disc selection. It should return the number of the
-selected disc on success, a negative value on error. Currently, only
-the ide-cd driver supports this functionality.
-
-\subsection{$Int\ get_last_session(struct\ cdrom_device_info * cdi, struct\
- cdrom_multisession * ms_info)$}
-
-This function should implement the old corresponding $ioctl()$. For
-device $cdi\to dev$, the start of the last session of the current disc
-should be returned in the pointer argument $ms_info$. Note that
-routines in \cdromc\ have sanitized this argument: its requested
-format will {\em always\/} be of the type $CDROM_LBA$ (linear block
-addressing mode), whatever the calling software requested. But
-sanitization goes even further: the low-level implementation may
-return the requested information in $CDROM_MSF$ format if it wishes so
-(setting the $ms_info\rightarrow addr_format$ field appropriately, of
-course) and the routines in \cdromc\ will make the transformation if
-necessary. The return value is 0 upon success.
-
-\subsection{$Int\ get_mcn(struct\ cdrom_device_info * cdi, struct\
- cdrom_mcn * mcn)$}
-
-Some discs carry a `Media Catalog Number' (MCN), also called
-`Universal Product Code' (UPC). This number should reflect the number
-that is generally found in the bar-code on the product. Unfortunately,
-the few discs that carry such a number on the disc don't even use the
-same format. The return argument to this function is a pointer to a
-pre-declared memory region of type $struct\ cdrom_mcn$. The MCN is
-expected as a 13-character string, terminated by a null-character.
-
-\subsection{$Int\ reset(struct\ cdrom_device_info * cdi)$}
-
-This call should perform a hard-reset on the drive (although in
-circumstances that a hard-reset is necessary, a drive may very well not
-listen to commands anymore). Preferably, control is returned to the
-caller only after the drive has finished resetting. If the drive is no
-longer listening, it may be wise for the underlying low-level cdrom
-driver to time out.
-
-\subsection{$Int\ audio_ioctl(struct\ cdrom_device_info * cdi, unsigned\
- int\ cmd, void * arg)$}
-
-Some of the \cdrom-$ioctl$s defined in \cdromh\ can be
-implemented by the routines described above, and hence the function
-$cdrom_ioctl$ will use those. However, most $ioctl$s deal with
-audio-control. We have decided to leave these to be accessed through a
-single function, repeating the arguments $cmd$ and $arg$. Note that
-the latter is of type $void*{}$, rather than $unsigned\ long\
-int$. The routine $cdrom_ioctl()$ does do some useful things,
-though. It sanitizes the address format type to $CDROM_MSF$ (Minutes,
-Seconds, Frames) for all audio calls. It also verifies the memory
-location of $arg$, and reserves stack-memory for the argument. This
-makes implementation of the $audio_ioctl()$ much simpler than in the
-old driver scheme. For example, you may look up the function
-$cm206_audio_ioctl()$ in {\tt {cm206.c}} that should be updated with
-this documentation.
-
-An unimplemented ioctl should return $-ENOSYS$, but a harmless request
-(\eg, $CDROMSTART$) may be ignored by returning 0 (success). Other
-errors should be according to the standards, whatever they are. When
-an error is returned by the low-level driver, the \UCD\ tries whenever
-possible to return the error code to the calling program. (We may decide
-to sanitize the return value in $cdrom_ioctl()$ though, in order to
-guarantee a uniform interface to the audio-player software.)
-
-\subsection{$Int\ dev_ioctl(struct\ cdrom_device_info * cdi, unsigned\ int\
- cmd, unsigned\ long\ arg)$}
-
-Some $ioctl$s seem to be specific to certain \cdrom\ drives. That is,
-they are introduced to service some capabilities of certain drives. In
-fact, there are 6 different $ioctl$s for reading data, either in some
-particular kind of format, or audio data. Not many drives support
-reading audio tracks as data, I believe this is because of protection
-of copyrights of artists. Moreover, I think that if audio-tracks are
-supported, it should be done through the VFS and not via $ioctl$s. A
-problem here could be the fact that audio-frames are 2352 bytes long,
-so either the audio-file-system should ask for 75264 bytes at once
-(the least common multiple of 512 and 2352), or the drivers should
-bend their backs to cope with this incoherence (to which I would be
-opposed). Furthermore, it is very difficult for the hardware to find
-the exact frame boundaries, since there are no synchronization headers
-in audio frames. Once these issues are resolved, this code should be
-standardized in \cdromc.
-
-Because there are so many $ioctl$s that seem to be introduced to
-satisfy certain drivers,\footnote{Is there software around that
- actually uses these? I'd be interested!} any `non-standard' $ioctl$s
-are routed through the call $dev_ioctl()$. In principle, `private'
-$ioctl$s should be numbered after the device's major number, and not
-the general \cdrom\ $ioctl$ number, {\tt {0x53}}. Currently the
-non-supported $ioctl$s are: {\it CDROMREADMODE1, CDROMREADMODE2,
- CDROMREADAUDIO, CDROMREADRAW, CDROMREADCOOKED, CDROMSEEK,
- CDROMPLAY\-BLK and CDROM\-READALL}.
-
-
-\subsection{\cdrom\ capabilities}
-\label{capability}
-
-Instead of just implementing some $ioctl$ calls, the interface in
-\cdromc\ supplies the possibility to indicate the {\em capabilities\/}
-of a \cdrom\ drive. This can be done by ORing any number of
-capability-constants that are defined in \cdromh\ at the registration
-phase. Currently, the capabilities are any of:
-$$
-\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-CDC_CLOSE_TRAY& can close tray by software control\cr
-CDC_OPEN_TRAY& can open tray\cr
-CDC_LOCK& can lock and unlock the door\cr
-CDC_SELECT_SPEED& can select speed, in units of $\sim$150\,kB/s\cr
-CDC_SELECT_DISC& drive is juke-box\cr
-CDC_MULTI_SESSION& can read sessions $>\rm1$\cr
-CDC_MCN& can read Media Catalog Number\cr
-CDC_MEDIA_CHANGED& can report if disc has changed\cr
-CDC_PLAY_AUDIO& can perform audio-functions (play, pause, etc)\cr
-CDC_RESET& hard reset device\cr
-CDC_IOCTLS& driver has non-standard ioctls\cr
-CDC_DRIVE_STATUS& driver implements drive status\cr
-}
-$$
-The capability flag is declared $const$, to prevent drivers from
-accidentally tampering with the contents. The capability fags actually
-inform \cdromc\ of what the driver can do. If the drive found
-by the driver does not have the capability, is can be masked out by
-the $cdrom_device_info$ variable $mask$. For instance, the SCSI \cdrom\
-driver has implemented the code for loading and ejecting \cdrom's, and
-hence its corresponding flags in $capability$ will be set. But a SCSI
-\cdrom\ drive might be a caddy system, which can't load the tray, and
-hence for this drive the $cdrom_device_info$ struct will have set
-the $CDC_CLOSE_TRAY$ bit in $mask$.
-
-In the file \cdromc\ you will encounter many constructions of the type
-$$\it
-if\ (cdo\rightarrow capability \mathrel\& \mathord{\sim} cdi\rightarrow mask
- \mathrel{\&} CDC_<capability>) \ldots
-$$
-There is no $ioctl$ to set the mask\dots The reason is that
-I think it is better to control the {\em behavior\/} rather than the
-{\em capabilities}.
-
-\subsection{Options}
-
-A final flag register controls the {\em behavior\/} of the \cdrom\
-drives, in order to satisfy different users' wishes, hopefully
-independently of the ideas of the respective author who happened to
-have made the drive's support available to the \linux\ community. The
-current behavior options are:
-$$
-\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-CDO_AUTO_CLOSE& try to close tray upon device $open()$\cr
-CDO_AUTO_EJECT& try to open tray on last device $close()$\cr
-CDO_USE_FFLAGS& use $file_pointer\rightarrow f_flags$ to indicate
- purpose for $open()$\cr
-CDO_LOCK& try to lock door if device is opened\cr
-CDO_CHECK_TYPE& ensure disc type is data if opened for data\cr
-}
-$$
-
-The initial value of this register is $CDO_AUTO_CLOSE \mathrel|
-CDO_USE_FFLAGS \mathrel| CDO_LOCK$, reflecting my own view on user
-interface and software standards. Before you protest, there are two
-new $ioctl$s implemented in \cdromc, that allow you to control the
-behavior by software. These are:
-$$
-\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-CDROM_SET_OPTIONS& set options specified in $(int)\ arg$\cr
-CDROM_CLEAR_OPTIONS& clear options specified in $(int)\ arg$\cr
-}
-$$
-One option needs some more explanation: $CDO_USE_FFLAGS$. In the next
-newsection we explain what the need for this option is.
-
-A software package {\tt setcd}, available from the Debian distribution
-and {\tt sunsite.unc.edu}, allows user level control of these flags.
-
-\newsection{The need to know the purpose of opening the \cdrom\ device}
-
-Traditionally, Unix devices can be used in two different `modes',
-either by reading/writing to the device file, or by issuing
-controlling commands to the device, by the device's $ioctl()$
-call. The problem with \cdrom\ drives, is that they can be used for
-two entirely different purposes. One is to mount removable
-file systems, \cdrom s, the other is to play audio CD's. Audio commands
-are implemented entirely through $ioctl$s, presumably because the
-first implementation (SUN?) has been such. In principle there is
-nothing wrong with this, but a good control of the `CD player' demands
-that the device can {\em always\/} be opened in order to give the
-$ioctl$ commands, regardless of the state the drive is in.
-
-On the other hand, when used as a removable-media disc drive (what the
-original purpose of \cdrom s is) we would like to make sure that the
-disc drive is ready for operation upon opening the device. In the old
-scheme, some \cdrom\ drivers don't do any integrity checking, resulting
-in a number of i/o errors reported by the VFS to the kernel when an
-attempt for mounting a \cdrom\ on an empty drive occurs. This is not a
-particularly elegant way to find out that there is no \cdrom\ inserted;
-it more-or-less looks like the old IBM-PC trying to read an empty floppy
-drive for a couple of seconds, after which the system complains it
-can't read from it. Nowadays we can {\em sense\/} the existence of a
-removable medium in a drive, and we believe we should exploit that
-fact. An integrity check on opening of the device, that verifies the
-availability of a \cdrom\ and its correct type (data), would be
-desirable.
-
-These two ways of using a \cdrom\ drive, principally for data and
-secondarily for playing audio discs, have different demands for the
-behavior of the $open()$ call. Audio use simply wants to open the
-device in order to get a file handle which is needed for issuing
-$ioctl$ commands, while data use wants to open for correct and
-reliable data transfer. The only way user programs can indicate what
-their {\em purpose\/} of opening the device is, is through the $flags$
-parameter (see {\tt {open(2)}}). For \cdrom\ devices, these flags aren't
-implemented (some drivers implement checking for write-related flags,
-but this is not strictly necessary if the device file has correct
-permission flags). Most option flags simply don't make sense to
-\cdrom\ devices: $O_CREAT$, $O_NOCTTY$, $O_TRUNC$, $O_APPEND$, and
-$O_SYNC$ have no meaning to a \cdrom.
-
-We therefore propose to use the flag $O_NONBLOCK$ to indicate
-that the device is opened just for issuing $ioctl$
-commands. Strictly, the meaning of $O_NONBLOCK$ is that opening and
-subsequent calls to the device don't cause the calling process to
-wait. We could interpret this as ``don't wait until someone has
-inserted some valid data-\cdrom.'' Thus, our proposal of the
-implementation for the $open()$ call for \cdrom s is:
-\begin{itemize}
-\item If no other flags are set than $O_RDONLY$, the device is opened
-for data transfer, and the return value will be 0 only upon successful
-initialization of the transfer. The call may even induce some actions
-on the \cdrom, such as closing the tray.
-\item If the option flag $O_NONBLOCK$ is set, opening will always be
-successful, unless the whole device doesn't exist. The drive will take
-no actions whatsoever.
-\end{itemize}
-
-\subsection{And what about standards?}
-
-You might hesitate to accept this proposal as it comes from the
-\linux\ community, and not from some standardizing institute. What
-about SUN, SGI, HP and all those other Unix and hardware vendors?
-Well, these companies are in the lucky position that they generally
-control both the hardware and software of their supported products,
-and are large enough to set their own standard. They do not have to
-deal with a dozen or more different, competing hardware
-configurations.\footnote{Incidentally, I think that SUN's approach to
-mounting \cdrom s is very good in origin: under Solaris a
-volume-daemon automatically mounts a newly inserted \cdrom\ under {\tt
-{/cdrom/$<volume-name>$/}}. In my opinion they should have pushed this
-further and have {\em every\/} \cdrom\ on the local area network be
-mounted at the similar location, \ie, no matter in which particular
-machine you insert a \cdrom, it will always appear at the same
-position in the directory tree, on every system. When I wanted to
-implement such a user-program for \linux, I came across the
-differences in behavior of the various drivers, and the need for an
-$ioctl$ informing about media changes.}
-
-We believe that using $O_NONBLOCK$ to indicate that a device is being opened
-for $ioctl$ commands only can be easily introduced in the \linux\
-community. All the CD-player authors will have to be informed, we can
-even send in our own patches to the programs. The use of $O_NONBLOCK$
-has most likely no influence on the behavior of the CD-players on
-other operating systems than \linux. Finally, a user can always revert
-to old behavior by a call to $ioctl(file_descriptor, CDROM_CLEAR_OPTIONS,
-CDO_USE_FFLAGS)$.
-
-\subsection{The preferred strategy of $open()$}
-
-The routines in \cdromc\ are designed in such a way that run-time
-configuration of the behavior of \cdrom\ devices (of {\em any\/} type)
-can be carried out, by the $CDROM_SET/CLEAR_OPTIONS$ $ioctls$. Thus, various
-modes of operation can be set:
-\begin{description}
-\item[$CDO_AUTO_CLOSE \mathrel| CDO_USE_FFLAGS \mathrel| CDO_LOCK$] This
-is the default setting. (With $CDO_CHECK_TYPE$ it will be better, in the
-future.) If the device is not yet opened by any other process, and if
-the device is being opened for data ($O_NONBLOCK$ is not set) and the
-tray is found to be open, an attempt to close the tray is made. Then,
-it is verified that a disc is in the drive and, if $CDO_CHECK_TYPE$ is
-set, that it contains tracks of type `data mode 1.' Only if all tests
-are passed is the return value zero. The door is locked to prevent file
-system corruption. If the drive is opened for audio ($O_NONBLOCK$ is
-set), no actions are taken and a value of 0 will be returned.
-\item[$CDO_AUTO_CLOSE \mathrel| CDO_AUTO_EJECT \mathrel| CDO_LOCK$] This
-mimics the behavior of the current sbpcd-driver. The option flags are
-ignored, the tray is closed on the first open, if necessary. Similarly,
-the tray is opened on the last release, \ie, if a \cdrom\ is unmounted,
-it is automatically ejected, such that the user can replace it.
-\end{description}
-We hope that these option can convince everybody (both driver
-maintainers and user program developers) to adopt the new \cdrom\
-driver scheme and option flag interpretation.
-
-\newsection{Description of routines in \cdromc}
-
-Only a few routines in \cdromc\ are exported to the drivers. In this
-new section we will discuss these, as well as the functions that `take
-over' the \cdrom\ interface to the kernel. The header file belonging
-to \cdromc\ is called \cdromh. Formerly, some of the contents of this
-file were placed in the file {\tt {ucdrom.h}}, but this file has now been
-merged back into \cdromh.
-
-\subsection{$Struct\ file_operations\ cdrom_fops$}
-
-The contents of this structure were described in section~\ref{cdrom.c}.
-A pointer to this structure is assigned to the $fops$ field
-of the $struct gendisk$.
-
-\subsection{$Int\ register_cdrom( struct\ cdrom_device_info\ * cdi)$}
-
-This function is used in about the same way one registers $cdrom_fops$
-with the kernel, the device operations and information structures,
-as described in section~\ref{cdrom.c}, should be registered with the
-\UCD:
-$$
-register_cdrom(\&<device>_info));
-$$
-This function returns zero upon success, and non-zero upon
-failure. The structure $<device>_info$ should have a pointer to the
-driver's $<device>_dops$, as in
-$$
-\vbox{\halign{&$#$\hfil\cr
-struct\ &cdrom_device_info\ <device>_info = \{\cr
-& <device>_dops;\cr
-&\ldots\cr
-\}\cr
-}}$$
-Note that a driver must have one static structure, $<device>_dops$, while
-it may have as many structures $<device>_info$ as there are minor devices
-active. $Register_cdrom()$ builds a linked list from these.
-
-\subsection{$Void\ unregister_cdrom(struct\ cdrom_device_info * cdi)$}
-
-Unregistering device $cdi$ with minor number $MINOR(cdi\to dev)$ removes
-the minor device from the list. If it was the last registered minor for
-the low-level driver, this disconnects the registered device-operation
-routines from the \cdrom\ interface. This function returns zero upon
-success, and non-zero upon failure.
-
-\subsection{$Int\ cdrom_open(struct\ inode * ip, struct\ file * fp)$}
-
-This function is not called directly by the low-level drivers, it is
-listed in the standard $cdrom_fops$. If the VFS opens a file, this
-function becomes active. A strategy is implemented in this routine,
-taking care of all capabilities and options that are set in the
-$cdrom_device_ops$ connected to the device. Then, the program flow is
-transferred to the device_dependent $open()$ call.
-
-\subsection{$Void\ cdrom_release(struct\ inode *ip, struct\ file
-*fp)$}
-
-This function implements the reverse-logic of $cdrom_open()$, and then
-calls the device-dependent $release()$ routine. When the use-count has
-reached 0, the allocated buffers are flushed by calls to $sync_dev(dev)$
-and $invalidate_buffers(dev)$.
-
-
-\subsection{$Int\ cdrom_ioctl(struct\ inode *ip, struct\ file *fp,
-unsigned\ int\ cmd, unsigned\ long\ arg)$}
-\label{cdrom-ioctl}
-
-This function handles all the standard $ioctl$ requests for \cdrom\
-devices in a uniform way. The different calls fall into three
-categories: $ioctl$s that can be directly implemented by device
-operations, ones that are routed through the call $audio_ioctl()$, and
-the remaining ones, that are presumable device-dependent. Generally, a
-negative return value indicates an error.
-
-\subsubsection{Directly implemented $ioctl$s}
-\label{ioctl-direct}
-
-The following `old' \cdrom-$ioctl$s are implemented by directly
-calling device-operations in $cdrom_device_ops$, if implemented and
-not masked:
-\begin{description}
-\item[CDROMMULTISESSION] Requests the last session on a \cdrom.
-\item[CDROMEJECT] Open tray.
-\item[CDROMCLOSETRAY] Close tray.
-\item[CDROMEJECT_SW] If $arg\not=0$, set behavior to auto-close (close
-tray on first open) and auto-eject (eject on last release), otherwise
-set behavior to non-moving on $open()$ and $release()$ calls.
-\item[CDROM_GET_MCN] Get the Media Catalog Number from a CD.
-\end{description}
-
-\subsubsection{$Ioctl$s routed through $audio_ioctl()$}
-\label{ioctl-audio}
-
-The following set of $ioctl$s are all implemented through a call to
-the $cdrom_fops$ function $audio_ioctl()$. Memory checks and
-allocation are performed in $cdrom_ioctl()$, and also sanitization of
-address format ($CDROM_LBA$/$CDROM_MSF$) is done.
-\begin{description}
-\item[CDROMSUBCHNL] Get sub-channel data in argument $arg$ of type $struct\
-cdrom_subchnl *{}$.
-\item[CDROMREADTOCHDR] Read Table of Contents header, in $arg$ of type
-$struct\ cdrom_tochdr *{}$.
-\item[CDROMREADTOCENTRY] Read a Table of Contents entry in $arg$ and
-specified by $arg$ of type $struct\ cdrom_tocentry *{}$.
-\item[CDROMPLAYMSF] Play audio fragment specified in Minute, Second,
-Frame format, delimited by $arg$ of type $struct\ cdrom_msf *{}$.
-\item[CDROMPLAYTRKIND] Play audio fragment in track-index format
-delimited by $arg$ of type $struct\ \penalty-1000 cdrom_ti *{}$.
-\item[CDROMVOLCTRL] Set volume specified by $arg$ of type $struct\
-cdrom_volctrl *{}$.
-\item[CDROMVOLREAD] Read volume into by $arg$ of type $struct\
-cdrom_volctrl *{}$.
-\item[CDROMSTART] Spin up disc.
-\item[CDROMSTOP] Stop playback of audio fragment.
-\item[CDROMPAUSE] Pause playback of audio fragment.
-\item[CDROMRESUME] Resume playing.
-\end{description}
-
-\subsubsection{New $ioctl$s in \cdromc}
-
-The following $ioctl$s have been introduced to allow user programs to
-control the behavior of individual \cdrom\ devices. New $ioctl$
-commands can be identified by the underscores in their names.
-\begin{description}
-\item[CDROM_SET_OPTIONS] Set options specified by $arg$. Returns the
-option flag register after modification. Use $arg = \rm0$ for reading
-the current flags.
-\item[CDROM_CLEAR_OPTIONS] Clear options specified by $arg$. Returns
- the option flag register after modification.
-\item[CDROM_SELECT_SPEED] Select head-rate speed of disc specified as
- by $arg$ in units of standard cdrom speed (176\,kB/sec raw data or
- 150\,kB/sec file system data). The value 0 means `auto-select', \ie,
- play audio discs at real time and data discs at maximum speed. The value
- $arg$ is checked against the maximum head rate of the drive found in the
- $cdrom_dops$.
-\item[CDROM_SELECT_DISC] Select disc numbered $arg$ from a juke-box.
- First disc is numbered 0. The number $arg$ is checked against the
- maximum number of discs in the juke-box found in the $cdrom_dops$.
-\item[CDROM_MEDIA_CHANGED] Returns 1 if a disc has been changed since
- the last call. Note that calls to $cdrom_media_changed$ by the VFS
- are treated by an independent queue, so both mechanisms will detect
- a media change once. For juke-boxes, an extra argument $arg$
- specifies the slot for which the information is given. The special
- value $CDSL_CURRENT$ requests that information about the currently
- selected slot be returned.
-\item[CDROM_DRIVE_STATUS] Returns the status of the drive by a call to
- $drive_status()$. Return values are defined in section~\ref{drive
- status}. Note that this call doesn't return information on the
- current playing activity of the drive; this can be polled through an
- $ioctl$ call to $CDROMSUBCHNL$. For juke-boxes, an extra argument
- $arg$ specifies the slot for which (possibly limited) information is
- given. The special value $CDSL_CURRENT$ requests that information
- about the currently selected slot be returned.
-\item[CDROM_DISC_STATUS] Returns the type of the disc currently in the
- drive. It should be viewed as a complement to $CDROM_DRIVE_STATUS$.
- This $ioctl$ can provide \emph {some} information about the current
- disc that is inserted in the drive. This functionality used to be
- implemented in the low level drivers, but is now carried out
- entirely in \UCD.
-
- The history of development of the CD's use as a carrier medium for
- various digital information has lead to many different disc types.
- This $ioctl$ is useful only in the case that CDs have \emph {only
- one} type of data on them. While this is often the case, it is
- also very common for CDs to have some tracks with data, and some
- tracks with audio. Because this is an existing interface, rather
- than fixing this interface by changing the assumptions it was made
- under, thereby breaking all user applications that use this
- function, the \UCD\ implements this $ioctl$ as follows: If the CD in
- question has audio tracks on it, and it has absolutely no CD-I, XA,
- or data tracks on it, it will be reported as $CDS_AUDIO$. If it has
- both audio and data tracks, it will return $CDS_MIXED$. If there
- are no audio tracks on the disc, and if the CD in question has any
- CD-I tracks on it, it will be reported as $CDS_XA_2_2$. Failing
- that, if the CD in question has any XA tracks on it, it will be
- reported as $CDS_XA_2_1$. Finally, if the CD in question has any
- data tracks on it, it will be reported as a data CD ($CDS_DATA_1$).
-
- This $ioctl$ can return:
- $$
- \halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
- CDS_NO_INFO& no information available\cr
- CDS_NO_DISC& no disc is inserted, or tray is opened\cr
- CDS_AUDIO& Audio disc (2352 audio bytes/frame)\cr
- CDS_DATA_1& data disc, mode 1 (2048 user bytes/frame)\cr
- CDS_XA_2_1& mixed data (XA), mode 2, form 1 (2048 user bytes)\cr
- CDS_XA_2_2& mixed data (XA), mode 2, form 1 (2324 user bytes)\cr
- CDS_MIXED& mixed audio/data disc\cr
- }
- $$
- For some information concerning frame layout of the various disc
- types, see a recent version of \cdromh.
-
-\item[CDROM_CHANGER_NSLOTS] Returns the number of slots in a
- juke-box.
-\item[CDROMRESET] Reset the drive.
-\item[CDROM_GET_CAPABILITY] Returns the $capability$ flags for the
- drive. Refer to section \ref{capability} for more information on
- these flags.
-\item[CDROM_LOCKDOOR] Locks the door of the drive. $arg == \rm0$
- unlocks the door, any other value locks it.
-\item[CDROM_DEBUG] Turns on debugging info. Only root is allowed
- to do this. Same semantics as CDROM_LOCKDOOR.
-\end{description}
-
-\subsubsection{Device dependent $ioctl$s}
-
-Finally, all other $ioctl$s are passed to the function $dev_ioctl()$,
-if implemented. No memory allocation or verification is carried out.
-
-\newsection{How to update your driver}
-
-\begin{enumerate}
-\item Make a backup of your current driver.
-\item Get hold of the files \cdromc\ and \cdromh, they should be in
- the directory tree that came with this documentation.
-\item Make sure you include \cdromh.
-\item Change the 3rd argument of $register_blkdev$ from
-$\&<your-drive>_fops$ to $\&cdrom_fops$.
-\item Just after that line, add the following to register with the \UCD:
- $$register_cdrom(\&<your-drive>_info);$$
- Similarly, add a call to $unregister_cdrom()$ at the appropriate place.
-\item Copy an example of the device-operations $struct$ to your
- source, \eg, from {\tt {cm206.c}} $cm206_dops$, and change all
- entries to names corresponding to your driver, or names you just
- happen to like. If your driver doesn't support a certain function,
- make the entry $NULL$. At the entry $capability$ you should list all
- capabilities your driver currently supports. If your driver
- has a capability that is not listed, please send me a message.
-\item Copy the $cdrom_device_info$ declaration from the same example
- driver, and modify the entries according to your needs. If your
- driver dynamically determines the capabilities of the hardware, this
- structure should also be declared dynamically.
-\item Implement all functions in your $<device>_dops$ structure,
- according to prototypes listed in \cdromh, and specifications given
- in section~\ref{cdrom.c}. Most likely you have already implemented
- the code in a large part, and you will almost certainly need to adapt the
- prototype and return values.
-\item Rename your $<device>_ioctl()$ function to $audio_ioctl$ and
- change the prototype a little. Remove entries listed in the first
- part in section~\ref{cdrom-ioctl}, if your code was OK, these are
- just calls to the routines you adapted in the previous step.
-\item You may remove all remaining memory checking code in the
- $audio_ioctl()$ function that deals with audio commands (these are
- listed in the second part of section~\ref{cdrom-ioctl}). There is no
- need for memory allocation either, so most $case$s in the $switch$
- statement look similar to:
- $$
- case\ CDROMREADTOCENTRY\colon get_toc_entry\bigl((struct\
- cdrom_tocentry *{})\ arg\bigr);
- $$
-\item All remaining $ioctl$ cases must be moved to a separate
- function, $<device>_ioctl$, the device-dependent $ioctl$s. Note that
- memory checking and allocation must be kept in this code!
-\item Change the prototypes of $<device>_open()$ and
- $<device>_release()$, and remove any strategic code (\ie, tray
- movement, door locking, etc.).
-\item Try to recompile the drivers. We advise you to use modules, both
- for {\tt {cdrom.o}} and your driver, as debugging is much easier this
- way.
-\end{enumerate}
-
-\newsection{Thanks}
-
-Thanks to all the people involved. First, Erik Andersen, who has
-taken over the torch in maintaining \cdromc\ and integrating much
-\cdrom-related code in the 2.1-kernel. Thanks to Scott Snyder and
-Gerd Knorr, who were the first to implement this interface for SCSI
-and IDE-CD drivers and added many ideas for extension of the data
-structures relative to kernel~2.0. Further thanks to Heiko Ei{\ss}feldt,
-Thomas Quinot, Jon Tombs, Ken Pizzini, Eberhard M\"onkeberg and Andrew
-Kroll, the \linux\ \cdrom\ device driver developers who were kind
-enough to give suggestions and criticisms during the writing. Finally
-of course, I want to thank Linus Torvalds for making this possible in
-the first place.
-
-\vfill
-$ \version\ $
-\eject
-\end{document}
diff --git a/Documentation/cdrom/ide-cd b/Documentation/cdrom/ide-cd.rst
index a5f2a7f1ff46..bdccb74fc92d 100644
--- a/Documentation/cdrom/ide-cd
+++ b/Documentation/cdrom/ide-cd.rst
@@ -1,18 +1,20 @@
IDE-CD driver documentation
-Originally by scott snyder <snyder@fnald0.fnal.gov> (19 May 1996)
-Carrying on the torch is: Erik Andersen <andersee@debian.org>
-New maintainers (19 Oct 1998): Jens Axboe <axboe@image.dk>
+===========================
+
+:Originally by: scott snyder <snyder@fnald0.fnal.gov> (19 May 1996)
+:Carrying on the torch is: Erik Andersen <andersee@debian.org>
+:New maintainers (19 Oct 1998): Jens Axboe <axboe@image.dk>
1. Introduction
---------------
-The ide-cd driver should work with all ATAPI ver 1.2 to ATAPI 2.6 compliant
+The ide-cd driver should work with all ATAPI ver 1.2 to ATAPI 2.6 compliant
CDROM drives which attach to an IDE interface. Note that some CDROM vendors
(including Mitsumi, Sony, Creative, Aztech, and Goldstar) have made
both ATAPI-compliant drives and drives which use a proprietary
interface. If your drive uses one of those proprietary interfaces,
this driver will not work with it (but one of the other CDROM drivers
-probably will). This driver will not work with `ATAPI' drives which
+probably will). This driver will not work with `ATAPI` drives which
attach to the parallel port. In addition, there is at least one drive
(CyCDROM CR520ie) which attaches to the IDE port but is not ATAPI;
this driver will not work with drives like that either (but see the
@@ -31,7 +33,7 @@ This driver provides the following features:
from audio tracks. The program cdda2wav can be used for this.
Note, however, that only some drives actually support this.
- - There is now support for CDROM changers which comply with the
+ - There is now support for CDROM changers which comply with the
ATAPI 2.6 draft standard (such as the NEC CDR-251). This additional
functionality includes a function call to query which slot is the
currently selected slot, a function call to query which slots contain
@@ -45,22 +47,22 @@ This driver provides the following features:
---------------
0. The ide-cd relies on the ide disk driver. See
- Documentation/ide/ide.txt for up-to-date information on the ide
+ Documentation/ide/ide.rst for up-to-date information on the ide
driver.
1. Make sure that the ide and ide-cd drivers are compiled into the
- kernel you're using. When configuring the kernel, in the section
- entitled "Floppy, IDE, and other block devices", say either `Y'
- (which will compile the support directly into the kernel) or `M'
+ kernel you're using. When configuring the kernel, in the section
+ entitled "Floppy, IDE, and other block devices", say either `Y`
+ (which will compile the support directly into the kernel) or `M`
(to compile support as a module which can be loaded and unloaded)
- to the options:
+ to the options::
ATA/ATAPI/MFM/RLL support
Include IDE/ATAPI CDROM support
Depending on what type of IDE interface you have, you may need to
specify additional configuration options. See
- Documentation/ide/ide.txt.
+ Documentation/ide/ide.rst.
2. You should also ensure that the iso9660 filesystem is either
compiled into the kernel or available as a loadable module. You
@@ -72,35 +74,35 @@ This driver provides the following features:
address and an IRQ number, the standard assignments being
0x1f0 and 14 for the primary interface and 0x170 and 15 for the
secondary interface. Each interface can control up to two devices,
- where each device can be a hard drive, a CDROM drive, a floppy drive,
- or a tape drive. The two devices on an interface are called `master'
- and `slave'; this is usually selectable via a jumper on the drive.
+ where each device can be a hard drive, a CDROM drive, a floppy drive,
+ or a tape drive. The two devices on an interface are called `master`
+ and `slave`; this is usually selectable via a jumper on the drive.
Linux names these devices as follows. The master and slave devices
- on the primary IDE interface are called `hda' and `hdb',
+ on the primary IDE interface are called `hda` and `hdb`,
respectively. The drives on the secondary interface are called
- `hdc' and `hdd'. (Interfaces at other locations get other letters
- in the third position; see Documentation/ide/ide.txt.)
+ `hdc` and `hdd`. (Interfaces at other locations get other letters
+ in the third position; see Documentation/ide/ide.rst.)
If you want your CDROM drive to be found automatically by the
driver, you should make sure your IDE interface uses either the
primary or secondary addresses mentioned above. In addition, if
the CDROM drive is the only device on the IDE interface, it should
- be jumpered as `master'. (If for some reason you cannot configure
+ be jumpered as `master`. (If for some reason you cannot configure
your system in this manner, you can probably still use the driver.
You may have to pass extra configuration information to the kernel
- when you boot, however. See Documentation/ide/ide.txt for more
+ when you boot, however. See Documentation/ide/ide.rst for more
information.)
4. Boot the system. If the drive is recognized, you should see a
- message which looks like
+ message which looks like::
hdb: NEC CD-ROM DRIVE:260, ATAPI CDROM drive
If you do not see this, see section 5 below.
5. You may want to create a symbolic link /dev/cdrom pointing to the
- actual device. You can do this with the command
+ actual device. You can do this with the command::
ln -s /dev/hdX /dev/cdrom
@@ -108,14 +110,14 @@ This driver provides the following features:
drive is installed.
6. You should be able to see any error messages from the driver with
- the `dmesg' command.
+ the `dmesg` command.
3. Basic usage
--------------
-An ISO 9660 CDROM can be mounted by putting the disc in the drive and
-typing (as root)
+An ISO 9660 CDROM can be mounted by putting the disc in the drive and
+typing (as root)::
mount -t iso9660 /dev/cdrom /mnt/cdrom
@@ -123,7 +125,7 @@ where it is assumed that /dev/cdrom is a link pointing to the actual
device (as described in step 5 of the last section) and /mnt/cdrom is
an empty directory. You should now be able to see the contents of the
CDROM under the /mnt/cdrom directory. If you want to eject the CDROM,
-you must first dismount it with a command like
+you must first dismount it with a command like::
umount /mnt/cdrom
@@ -148,7 +150,7 @@ such as cdda2wav. The only types of drive which I've heard support
this are Sony and Toshiba drives. You will get errors if you try to
use this function on a drive which does not support it.
-For supported changers, you can use the `cdchange' program (appended to
+For supported changers, you can use the `cdchange` program (appended to
the end of this file) to switch between changer slots. Note that the
drive should be unmounted before attempting this. The program takes
two arguments: the CDROM device, and the slot number to which you wish
@@ -161,17 +163,17 @@ to change. If the slot number is -1, the drive is unloaded.
This section discusses some common problems encountered when trying to
use the driver, and some possible solutions. Note that if you are
experiencing problems, you should probably also review
-Documentation/ide/ide.txt for current information about the underlying
+Documentation/ide/ide.rst for current information about the underlying
IDE support code. Some of these items apply only to earlier versions
of the driver, but are mentioned here for completeness.
-In most cases, you should probably check with `dmesg' for any errors
+In most cases, you should probably check with `dmesg` for any errors
from the driver.
a. Drive is not detected during booting.
- Review the configuration instructions above and in
- Documentation/ide/ide.txt, and check how your hardware is
+ Documentation/ide/ide.rst, and check how your hardware is
configured.
- If your drive is the only device on an IDE interface, it should
@@ -179,14 +181,14 @@ a. Drive is not detected during booting.
- If your IDE interface is not at the standard addresses of 0x170
or 0x1f0, you'll need to explicitly inform the driver using a
- lilo option. See Documentation/ide/ide.txt. (This feature was
+ lilo option. See Documentation/ide/ide.rst. (This feature was
added around kernel version 1.3.30.)
- If the autoprobing is not finding your drive, you can tell the
driver to assume that one exists by using a lilo option of the
- form `hdX=cdrom', where X is the drive letter corresponding to
- where your drive is installed. Note that if you do this and you
- see a boot message like
+ form `hdX=cdrom`, where X is the drive letter corresponding to
+ where your drive is installed. Note that if you do this and you
+ see a boot message like::
hdX: ATAPI cdrom (?)
@@ -205,7 +207,7 @@ a. Drive is not detected during booting.
Support for some interfaces needing extra initialization is
provided in later 1.3.x kernels. You may need to turn on
additional kernel configuration options to get them to work;
- see Documentation/ide/ide.txt.
+ see Documentation/ide/ide.rst.
Even if support is not available for your interface, you may be
able to get it to work with the following procedure. First boot
@@ -220,7 +222,7 @@ b. Timeout/IRQ errors.
probably not making it to the host.
- IRQ problems may also be indicated by the message
- `IRQ probe failed (<n>)' while booting. If <n> is zero, that
+ `IRQ probe failed (<n>)` while booting. If <n> is zero, that
means that the system did not see an interrupt from the drive when
it was expecting one (on any feasible IRQ). If <n> is negative,
that means the system saw interrupts on multiple IRQ lines, when
@@ -240,27 +242,27 @@ b. Timeout/IRQ errors.
there are hardware problems with the interrupt setup; they
apparently don't use interrupts.
- - If you own a Pioneer DR-A24X, you _will_ get nasty error messages
+ - If you own a Pioneer DR-A24X, you _will_ get nasty error messages
on boot such as "irq timeout: status=0x50 { DriveReady SeekComplete }"
The Pioneer DR-A24X CDROM drives are fairly popular these days.
Unfortunately, these drives seem to become very confused when we perform
the standard Linux ATA disk drive probe. If you own one of these drives,
- you can bypass the ATA probing which confuses these CDROM drives, by
- adding `append="hdX=noprobe hdX=cdrom"' to your lilo.conf file and running
- lilo (again where X is the drive letter corresponding to where your drive
+ you can bypass the ATA probing which confuses these CDROM drives, by
+ adding `append="hdX=noprobe hdX=cdrom"` to your lilo.conf file and running
+ lilo (again where X is the drive letter corresponding to where your drive
is installed.)
-
+
c. System hangups.
- If the system locks up when you try to access the CDROM, the most
likely cause is that you have a buggy IDE adapter which doesn't
properly handle simultaneous transactions on multiple interfaces.
The most notorious of these is the CMD640B chip. This problem can
- be worked around by specifying the `serialize' option when
+ be worked around by specifying the `serialize` option when
booting. Recent kernels should be able to detect the need for
this automatically in most cases, but the detection is not
- foolproof. See Documentation/ide/ide.txt for more information
- about the `serialize' option and the CMD640B.
+ foolproof. See Documentation/ide/ide.rst for more information
+ about the `serialize` option and the CMD640B.
- Note that many MS-DOS CDROM drivers will work with such buggy
hardware, apparently because they never attempt to overlap CDROM
@@ -269,14 +271,14 @@ c. System hangups.
d. Can't mount a CDROM.
- - If you get errors from mount, it may help to check `dmesg' to see
+ - If you get errors from mount, it may help to check `dmesg` to see
if there are any more specific errors from the driver or from the
filesystem.
- Make sure there's a CDROM loaded in the drive, and that's it's an
ISO 9660 disc. You can't mount an audio CD.
- - With the CDROM in the drive and unmounted, try something like
+ - With the CDROM in the drive and unmounted, try something like::
cat /dev/cdrom | od | more
@@ -284,9 +286,9 @@ d. Can't mount a CDROM.
OK, and the problem is at the filesystem level (i.e., the CDROM is
not ISO 9660 or has errors in the filesystem structure).
- - If you see `not a block device' errors, check that the definitions
+ - If you see `not a block device` errors, check that the definitions
of the device special files are correct. They should be as
- follows:
+ follows::
brw-rw---- 1 root disk 3, 0 Nov 11 18:48 /dev/hda
brw-rw---- 1 root disk 3, 64 Nov 11 18:48 /dev/hdb
@@ -301,7 +303,7 @@ d. Can't mount a CDROM.
If you have a /dev/cdrom symbolic link, check that it is pointing
to the correct device file.
- If you hear people talking of the devices `hd1a' and `hd1b', these
+ If you hear people talking of the devices `hd1a` and `hd1b`, these
were old names for what are now called hdc and hdd. Those names
should be considered obsolete.
@@ -311,8 +313,8 @@ d. Can't mount a CDROM.
always give meaningful error messages.
-e. Directory listings are unpredictably truncated, and `dmesg' shows
- `buffer botch' error messages from the driver.
+e. Directory listings are unpredictably truncated, and `dmesg` shows
+ `buffer botch` error messages from the driver.
- There was a bug in the version of the driver in 1.2.x kernels
which could cause this. It was fixed in 1.3.0. If you can't
@@ -335,34 +337,36 @@ f. Data corruption.
5. cdchange.c
-------------
-/*
- * cdchange.c [-v] <device> [<slot>]
- *
- * This loads a CDROM from a specified slot in a changer, and displays
- * information about the changer status. The drive should be unmounted before
- * using this program.
- *
- * Changer information is displayed if either the -v flag is specified
- * or no slot was specified.
- *
- * Based on code originally from Gerhard Zuber <zuber@berlin.snafu.de>.
- * Changer status information, and rewrite for the new Uniform CDROM driver
- * interface by Erik Andersen <andersee@debian.org>.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <errno.h>
-#include <string.h>
-#include <unistd.h>
-#include <fcntl.h>
-#include <sys/ioctl.h>
-#include <linux/cdrom.h>
-
-
-int
-main (int argc, char **argv)
-{
+::
+
+ /*
+ * cdchange.c [-v] <device> [<slot>]
+ *
+ * This loads a CDROM from a specified slot in a changer, and displays
+ * information about the changer status. The drive should be unmounted before
+ * using this program.
+ *
+ * Changer information is displayed if either the -v flag is specified
+ * or no slot was specified.
+ *
+ * Based on code originally from Gerhard Zuber <zuber@berlin.snafu.de>.
+ * Changer status information, and rewrite for the new Uniform CDROM driver
+ * interface by Erik Andersen <andersee@debian.org>.
+ */
+
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <errno.h>
+ #include <string.h>
+ #include <unistd.h>
+ #include <fcntl.h>
+ #include <sys/ioctl.h>
+ #include <linux/cdrom.h>
+
+
+ int
+ main (int argc, char **argv)
+ {
char *program;
char *device;
int fd; /* file descriptor for CD-ROM device */
@@ -382,30 +386,30 @@ main (int argc, char **argv)
fprintf (stderr, " Slots are numbered 1 -- n.\n");
exit (1);
}
-
+
if (strcmp (argv[0], "-v") == 0) {
verbose = 1;
++argv;
--argc;
}
-
+
device = argv[0];
-
+
if (argc == 2)
slot = atoi (argv[1]) - 1;
- /* open device */
+ /* open device */
fd = open(device, O_RDONLY | O_NONBLOCK);
if (fd < 0) {
- fprintf (stderr, "%s: open failed for `%s': %s\n",
+ fprintf (stderr, "%s: open failed for `%s`: %s\n",
program, device, strerror (errno));
exit (1);
}
- /* Check CD player status */
+ /* Check CD player status */
total_slots_available = ioctl (fd, CDROM_CHANGER_NSLOTS);
if (total_slots_available <= 1 ) {
- fprintf (stderr, "%s: Device `%s' is not an ATAPI "
+ fprintf (stderr, "%s: Device `%s` is not an ATAPI "
"compliant CD changer.\n", program, device);
exit (1);
}
@@ -418,7 +422,7 @@ main (int argc, char **argv)
exit (1);
}
- /* load */
+ /* load */
slot=ioctl (fd, CDROM_SELECT_DISC, slot);
if (slot<0) {
fflush(stdout);
@@ -462,14 +466,14 @@ main (int argc, char **argv)
for (x_slot=0; x_slot<total_slots_available; x_slot++) {
printf ("Slot %2d: ", x_slot+1);
- status = ioctl (fd, CDROM_DRIVE_STATUS, x_slot);
- if (status<0) {
- perror(" CDROM_DRIVE_STATUS");
- } else switch(status) {
+ status = ioctl (fd, CDROM_DRIVE_STATUS, x_slot);
+ if (status<0) {
+ perror(" CDROM_DRIVE_STATUS");
+ } else switch(status) {
case CDS_DISC_OK:
printf ("Disc present.");
break;
- case CDS_NO_DISC:
+ case CDS_NO_DISC:
printf ("Empty slot.");
break;
case CDS_TRAY_OPEN:
@@ -507,11 +511,11 @@ main (int argc, char **argv)
break;
}
}
- status = ioctl (fd, CDROM_MEDIA_CHANGED, x_slot);
- if (status<0) {
+ status = ioctl (fd, CDROM_MEDIA_CHANGED, x_slot);
+ if (status<0) {
perror(" CDROM_MEDIA_CHANGED");
- }
- switch (status) {
+ }
+ switch (status) {
case 1:
printf ("Changed.\n");
break;
@@ -525,10 +529,10 @@ main (int argc, char **argv)
/* close device */
status = close (fd);
if (status != 0) {
- fprintf (stderr, "%s: close failed for `%s': %s\n",
+ fprintf (stderr, "%s: close failed for `%s`: %s\n",
program, device, strerror (errno));
exit (1);
}
-
+
exit (0);
-}
+ }
diff --git a/Documentation/cdrom/index.rst b/Documentation/cdrom/index.rst
new file mode 100644
index 000000000000..efbd5d111825
--- /dev/null
+++ b/Documentation/cdrom/index.rst
@@ -0,0 +1,19 @@
+:orphan:
+
+=====
+cdrom
+=====
+
+.. toctree::
+ :maxdepth: 1
+
+ cdrom-standard
+ ide-cd
+ packet-writing
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/cdrom/packet-writing.txt b/Documentation/cdrom/packet-writing.rst
index 2834170d821e..c5c957195a5a 100644
--- a/Documentation/cdrom/packet-writing.txt
+++ b/Documentation/cdrom/packet-writing.rst
@@ -1,3 +1,7 @@
+==============
+Packet writing
+==============
+
Getting started quick
---------------------
@@ -10,13 +14,16 @@ Getting started quick
Download from http://sourceforge.net/projects/linux-udf/
- Grab a new CD-RW disc and format it (assuming CD-RW is hdc, substitute
- as appropriate):
+ as appropriate)::
+
# cdrwtool -d /dev/hdc -q
-- Setup your writer
+- Setup your writer::
+
# pktsetup dev_name /dev/hdc
-- Now you can mount /dev/pktcdvd/dev_name and copy files to it. Enjoy!
+- Now you can mount /dev/pktcdvd/dev_name and copy files to it. Enjoy::
+
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
@@ -25,11 +32,11 @@ Packet writing for DVD-RW media
DVD-RW discs can be written to much like CD-RW discs if they are in
the so called "restricted overwrite" mode. To put a disc in restricted
-overwrite mode, run:
+overwrite mode, run::
# dvd+rw-format /dev/hdc
-You can then use the disc the same way you would use a CD-RW disc:
+You can then use the disc the same way you would use a CD-RW disc::
# pktsetup dev_name /dev/hdc
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
@@ -41,7 +48,7 @@ Packet writing for DVD+RW media
According to the DVD+RW specification, a drive supporting DVD+RW discs
shall implement "true random writes with 2KB granularity", which means
that it should be possible to put any filesystem with a block size >=
-2KB on such a disc. For example, it should be possible to do:
+2KB on such a disc. For example, it should be possible to do::
# dvd+rw-format /dev/hdc (only needed if the disc has never
been formatted)
@@ -54,7 +61,7 @@ follow the specification, but suffer bad performance problems if the
writes are not 32KB aligned.
Both problems can be solved by using the pktcdvd driver, which always
-generates aligned writes.
+generates aligned writes::
# dvd+rw-format /dev/hdc
# pktsetup dev_name /dev/hdc
@@ -83,7 +90,7 @@ Notes
- Since the pktcdvd driver makes the disc appear as a regular block
device with a 2KB block size, you can put any filesystem you like on
- the disc. For example, run:
+ the disc. For example, run::
# /sbin/mke2fs /dev/pktcdvd/dev_name
@@ -97,7 +104,7 @@ Since Linux 2.6.20, the pktcdvd module has a sysfs interface
and can be controlled by it. For example the "pktcdvd" tool uses
this interface. (see http://tom.ist-im-web.de/download/pktcdvd )
-"pktcdvd" works similar to "pktsetup", e.g.:
+"pktcdvd" works similar to "pktsetup", e.g.::
# pktcdvd -a dev_name /dev/hdc
# mkudffs /dev/pktcdvd/dev_name
@@ -115,7 +122,7 @@ For a description of the sysfs interface look into the file:
Using the pktcdvd debugfs interface
-----------------------------------
-To read pktcdvd device infos in human readable form, do:
+To read pktcdvd device infos in human readable form, do::
# cat /sys/kernel/debug/pktcdvd/pktcdvd[0-7]/info
diff --git a/Documentation/cgroup-v1/blkio-controller.txt b/Documentation/cgroup-v1/blkio-controller.rst
index 673dc34d3f78..1d7d962933be 100644
--- a/Documentation/cgroup-v1/blkio-controller.txt
+++ b/Documentation/cgroup-v1/blkio-controller.rst
@@ -1,5 +1,7 @@
- Block IO Controller
- ===================
+===================
+Block IO Controller
+===================
+
Overview
========
cgroup subsys "blkio" implements the block io controller. There seems to be
@@ -8,81 +10,36 @@ both at leaf nodes as well as at intermediate nodes in a storage hierarchy.
Plan is to use the same cgroup based management interface for blkio controller
and based on user options switch IO policies in the background.
-Currently two IO control policies are implemented. First one is proportional
-weight time based division of disk policy. It is implemented in CFQ. Hence
-this policy takes effect only on leaf nodes when CFQ is being used. The second
-one is throttling policy which can be used to specify upper IO rate limits
-on devices. This policy is implemented in generic block layer and can be
-used on leaf nodes as well as higher level logical devices like device mapper.
+One IO control policy is throttling policy which can be used to
+specify upper IO rate limits on devices. This policy is implemented in
+generic block layer and can be used on leaf nodes as well as higher
+level logical devices like device mapper.
HOWTO
=====
-Proportional Weight division of bandwidth
------------------------------------------
-You can do a very simple testing of running two dd threads in two different
-cgroups. Here is what you can do.
-
-- Enable Block IO controller
- CONFIG_BLK_CGROUP=y
-
-- Enable group scheduling in CFQ
- CONFIG_CFQ_GROUP_IOSCHED=y
-
-- Compile and boot into kernel and mount IO controller (blkio); see
- cgroups.txt, Why are cgroups needed?.
-
- mount -t tmpfs cgroup_root /sys/fs/cgroup
- mkdir /sys/fs/cgroup/blkio
- mount -t cgroup -o blkio none /sys/fs/cgroup/blkio
-
-- Create two cgroups
- mkdir -p /sys/fs/cgroup/blkio/test1/ /sys/fs/cgroup/blkio/test2
-
-- Set weights of group test1 and test2
- echo 1000 > /sys/fs/cgroup/blkio/test1/blkio.weight
- echo 500 > /sys/fs/cgroup/blkio/test2/blkio.weight
-
-- Create two same size files (say 512MB each) on same disk (file1, file2) and
- launch two dd threads in different cgroup to read those files.
-
- sync
- echo 3 > /proc/sys/vm/drop_caches
-
- dd if=/mnt/sdb/zerofile1 of=/dev/null &
- echo $! > /sys/fs/cgroup/blkio/test1/tasks
- cat /sys/fs/cgroup/blkio/test1/tasks
-
- dd if=/mnt/sdb/zerofile2 of=/dev/null &
- echo $! > /sys/fs/cgroup/blkio/test2/tasks
- cat /sys/fs/cgroup/blkio/test2/tasks
-
-- At macro level, first dd should finish first. To get more precise data, keep
- on looking at (with the help of script), at blkio.disk_time and
- blkio.disk_sectors files of both test1 and test2 groups. This will tell how
- much disk time (in milliseconds), each group got and how many sectors each
- group dispatched to the disk. We provide fairness in terms of disk time, so
- ideally io.disk_time of cgroups should be in proportion to the weight.
-
Throttling/Upper Limit policy
-----------------------------
-- Enable Block IO controller
+- Enable Block IO controller::
+
CONFIG_BLK_CGROUP=y
-- Enable throttling in block layer
+- Enable throttling in block layer::
+
CONFIG_BLK_DEV_THROTTLING=y
-- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)
+- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)::
+
mount -t cgroup -o blkio none /sys/fs/cgroup/blkio
- Specify a bandwidth rate on particular device for root group. The format
- for policy is "<major>:<minor> <bytes_per_second>".
+ for policy is "<major>:<minor> <bytes_per_second>"::
echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device
Above will put a limit of 1MB/second on reads happening for root group
on device having major/minor number 8:16.
-- Run dd to read a file and see if rate is throttled to 1MB/s or not.
+- Run dd to read a file and see if rate is throttled to 1MB/s or not::
# dd iflag=direct if=/mnt/common/zerofile of=/dev/null bs=4K count=1024
1024+0 records in
@@ -94,12 +51,12 @@ Throttling/Upper Limit policy
Hierarchical Cgroups
====================
-Both CFQ and throttling implement hierarchy support; however,
+Throttling implements hierarchy support; however,
throttling's hierarchy support is enabled iff "sane_behavior" is
enabled from cgroup side, which currently is a development option and
not publicly available.
-If somebody created a hierarchy like as follows.
+If somebody created a hierarchy like as follows::
root
/ \
@@ -107,15 +64,14 @@ If somebody created a hierarchy like as follows.
|
test3
-CFQ by default and throttling with "sane_behavior" will handle the
-hierarchy correctly. For details on CFQ hierarchy support, refer to
-Documentation/block/cfq-iosched.txt. For throttling, all limits apply
+Throttling with "sane_behavior" will handle the
+hierarchy correctly. For throttling, all limits apply
to the whole subtree while all statistics are local to the IOs
directly generated by tasks in that cgroup.
Throttling without "sane_behavior" enabled from cgroup side will
practically treat all groups at same level as if it looks like the
-following.
+following::
pivot
/ / \ \
@@ -126,14 +82,10 @@ Various user visible config options
CONFIG_BLK_CGROUP
- Block IO controller.
-CONFIG_DEBUG_BLK_CGROUP
+CONFIG_BFQ_CGROUP_DEBUG
- Debug help. Right now some additional stats file show up in cgroup
if this option is enabled.
-CONFIG_CFQ_GROUP_IOSCHED
- - Enables group scheduling in CFQ. Currently only 1 level of group
- creation is allowed.
-
CONFIG_BLK_DEV_THROTTLING
- Enable block device throttling support in block layer.
@@ -152,27 +104,31 @@ Proportional weight policy files
These rules override the default value of group weight as specified
by blkio.weight.
- Following is the format.
+ Following is the format::
- # echo dev_maj:dev_minor weight > blkio.weight_device
- Configure weight=300 on /dev/sdb (8:16) in this cgroup
- # echo 8:16 300 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
+ # echo dev_maj:dev_minor weight > blkio.weight_device
- Configure weight=500 on /dev/sda (8:0) in this cgroup
- # echo 8:0 500 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:0 500
- 8:16 300
+ Configure weight=300 on /dev/sdb (8:16) in this cgroup::
- Remove specific weight for /dev/sda in this cgroup
- # echo 8:0 0 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
+ # echo 8:16 300 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
+
+ Configure weight=500 on /dev/sda (8:0) in this cgroup::
+
+ # echo 8:0 500 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:0 500
+ 8:16 300
+
+ Remove specific weight for /dev/sda in this cgroup::
+
+ # echo 8:0 0 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
- blkio.leaf_weight[_device]
- Equivalents of blkio.weight[_device] for the purpose of
@@ -246,13 +202,13 @@ Proportional weight policy files
write, sync or async.
- blkio.avg_queue_size
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
The average queue size for this cgroup over the entire time of this
cgroup's existence. Queue size samples are taken each time one of the
queues of this cgroup gets a timeslice.
- blkio.group_wait_time
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
This is the amount of time the cgroup had to wait since it became busy
(i.e., went from 0 to 1 request queued) to get a timeslice for one of
its queues. This is different from the io_wait_time which is the
@@ -263,7 +219,7 @@ Proportional weight policy files
got a timeslice and will not include the current delta.
- blkio.empty_time
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
This is the amount of time a cgroup spends without any pending
requests when not being served, i.e., it does not include any time
spent idling for one of the queues of the cgroup. This is in
@@ -272,7 +228,7 @@ Proportional weight policy files
time it had a pending request and will not include the current delta.
- blkio.idle_time
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
This is the amount of time spent by the IO scheduler idling for a
given cgroup in anticipation of a better request than the existing ones
from other queues/cgroups. This is in nanoseconds. If this is read
@@ -281,7 +237,7 @@ Proportional weight policy files
the current delta.
- blkio.dequeue
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. This
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y. This
gives the statistics about how many a times a group was dequeued
from service tree of the device. First two fields specify the major
and minor number of the device and third field specifies the number
@@ -297,30 +253,30 @@ Throttling/Upper limit policy files
- blkio.throttle.read_bps_device
- Specifies upper limit on READ rate from the device. IO rate is
specified in bytes per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
- blkio.throttle.write_bps_device
- Specifies upper limit on WRITE rate to the device. IO rate is
specified in bytes per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
- blkio.throttle.read_iops_device
- Specifies upper limit on READ rate from the device. IO rate is
specified in IO per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
- blkio.throttle.write_iops_device
- Specifies upper limit on WRITE rate to the device. IO rate is
specified in io per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
Note: If both BW and IOPS rules are specified for a device, then IO is
subjected to both the constraints.
@@ -344,32 +300,3 @@ Common files among various policies
- blkio.reset_stats
- Writing an int to this file will result in resetting all the stats
for that cgroup.
-
-CFQ sysfs tunable
-=================
-/sys/block/<disk>/queue/iosched/slice_idle
-------------------------------------------
-On a faster hardware CFQ can be slow, especially with sequential workload.
-This happens because CFQ idles on a single queue and single queue might not
-drive deeper request queue depths to keep the storage busy. In such scenarios
-one can try setting slice_idle=0 and that would switch CFQ to IOPS
-(IO operations per second) mode on NCQ supporting hardware.
-
-That means CFQ will not idle between cfq queues of a cfq group and hence be
-able to driver higher queue depth and achieve better throughput. That also
-means that cfq provides fairness among groups in terms of IOPS and not in
-terms of disk time.
-
-/sys/block/<disk>/queue/iosched/group_idle
-------------------------------------------
-If one disables idling on individual cfq queues and cfq service trees by
-setting slice_idle=0, group_idle kicks in. That means CFQ will still idle
-on the group in an attempt to provide fairness among groups.
-
-By default group_idle is same as slice_idle and does not do anything if
-slice_idle is enabled.
-
-One can experience an overall throughput drop if you have created multiple
-groups and put applications in that group which are not driving enough
-IO to keep disk busy. In that case set group_idle=0, and CFQ will not idle
-on individual groups and throughput should improve.
diff --git a/Documentation/cgroup-v1/cgroups.txt b/Documentation/cgroup-v1/cgroups.rst
index 059f7063eea6..46bbe7e022d4 100644
--- a/Documentation/cgroup-v1/cgroups.txt
+++ b/Documentation/cgroup-v1/cgroups.rst
@@ -1,35 +1,39 @@
- CGROUPS
- -------
+==============
+Control Groups
+==============
Written by Paul Menage <menage@google.com> based on
-Documentation/cgroup-v1/cpusets.txt
+Documentation/cgroup-v1/cpusets.rst
Original copyright statements from cpusets.txt:
+
Portions Copyright (C) 2004 BULL SA.
+
Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+
Modified by Paul Jackson <pj@sgi.com>
+
Modified by Christoph Lameter <cl@linux.com>
-CONTENTS:
-=========
-
-1. Control Groups
- 1.1 What are cgroups ?
- 1.2 Why are cgroups needed ?
- 1.3 How are cgroups implemented ?
- 1.4 What does notify_on_release do ?
- 1.5 What does clone_children do ?
- 1.6 How do I use cgroups ?
-2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Attaching processes
- 2.3 Mounting hierarchies by name
-3. Kernel API
- 3.1 Overview
- 3.2 Synchronization
- 3.3 Subsystem API
-4. Extended attributes usage
-5. Questions
+.. CONTENTS:
+
+ 1. Control Groups
+ 1.1 What are cgroups ?
+ 1.2 Why are cgroups needed ?
+ 1.3 How are cgroups implemented ?
+ 1.4 What does notify_on_release do ?
+ 1.5 What does clone_children do ?
+ 1.6 How do I use cgroups ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Attaching processes
+ 2.3 Mounting hierarchies by name
+ 3. Kernel API
+ 3.1 Overview
+ 3.2 Synchronization
+ 3.3 Subsystem API
+ 4. Extended attributes usage
+ 5. Questions
1. Control Groups
=================
@@ -72,7 +76,7 @@ On their own, the only use for cgroups is for simple job
tracking. The intention is that other subsystems hook into the generic
cgroup support to provide new attributes for cgroups, such as
accounting/limiting the resources which processes in a cgroup can
-access. For example, cpusets (see Documentation/cgroup-v1/cpusets.txt) allow
+access. For example, cpusets (see Documentation/cgroup-v1/cpusets.rst) allow
you to associate a set of CPUs and a set of memory nodes with the
tasks in each cgroup.
@@ -108,7 +112,7 @@ As an example of a scenario (originally proposed by vatsa@in.ibm.com)
that can benefit from multiple hierarchies, consider a large
university server with various users - students, professors, system
tasks etc. The resource planning for this server could be along the
-following lines:
+following lines::
CPU : "Top cpuset"
/ \
@@ -136,7 +140,7 @@ depending on who launched it (prof/student).
With the ability to classify tasks differently for different resources
(by putting those resource subsystems in different hierarchies),
the admin can easily set up a script which receives exec notifications
-and depending on who is launching the browser he can
+and depending on who is launching the browser he can::
# echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks
@@ -151,7 +155,7 @@ wants to do online gaming :)) OR give one of the student's simulation
apps enhanced CPU power.
With ability to write PIDs directly to resource classes, it's just a
-matter of:
+matter of::
# echo pid > /sys/fs/cgroup/network/<new_class>/tasks
(after some time)
@@ -306,7 +310,7 @@ configuration from the parent during initialization.
--------------------------
To start a new job that is to be contained within a cgroup, using
-the "cpuset" cgroup subsystem, the steps are something like:
+the "cpuset" cgroup subsystem, the steps are something like::
1) mount -t tmpfs cgroup_root /sys/fs/cgroup
2) mkdir /sys/fs/cgroup/cpuset
@@ -320,7 +324,7 @@ the "cpuset" cgroup subsystem, the steps are something like:
For example, the following sequence of commands will setup a cgroup
named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cgroup:
+and then start a subshell 'sh' in that cgroup::
mount -t tmpfs cgroup_root /sys/fs/cgroup
mkdir /sys/fs/cgroup/cpuset
@@ -345,8 +349,9 @@ and then start a subshell 'sh' in that cgroup:
Creating, modifying, using cgroups can be done through the cgroup
virtual filesystem.
-To mount a cgroup hierarchy with all available subsystems, type:
-# mount -t cgroup xxx /sys/fs/cgroup
+To mount a cgroup hierarchy with all available subsystems, type::
+
+ # mount -t cgroup xxx /sys/fs/cgroup
The "xxx" is not interpreted by the cgroup code, but will appear in
/proc/mounts so may be any useful identifying string that you like.
@@ -355,18 +360,19 @@ Note: Some subsystems do not work without some user input first. For instance,
if cpusets are enabled the user will have to populate the cpus and mems files
for each new cgroup created before that group can be used.
-As explained in section `1.2 Why are cgroups needed?' you should create
+As explained in section `1.2 Why are cgroups needed?` you should create
different hierarchies of cgroups for each single resource or group of
resources you want to control. Therefore, you should mount a tmpfs on
/sys/fs/cgroup and create directories for each cgroup resource or resource
-group.
+group::
-# mount -t tmpfs cgroup_root /sys/fs/cgroup
-# mkdir /sys/fs/cgroup/rg1
+ # mount -t tmpfs cgroup_root /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/rg1
To mount a cgroup hierarchy with just the cpuset and memory
-subsystems, type:
-# mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
+subsystems, type::
+
+ # mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
While remounting cgroups is currently supported, it is not recommend
to use it. Remounting allows changing bound subsystems and
@@ -375,9 +381,10 @@ hierarchy is empty and release_agent itself should be replaced with
conventional fsnotify. The support for remounting will be removed in
the future.
-To Specify a hierarchy's release_agent:
-# mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
- xxx /sys/fs/cgroup/rg1
+To Specify a hierarchy's release_agent::
+
+ # mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
+ xxx /sys/fs/cgroup/rg1
Note that specifying 'release_agent' more than once will return failure.
@@ -390,32 +397,39 @@ Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the
tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1
is the cgroup that holds the whole system.
-If you want to change the value of release_agent:
-# echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
+If you want to change the value of release_agent::
+
+ # echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
It can also be changed via remount.
-If you want to create a new cgroup under /sys/fs/cgroup/rg1:
-# cd /sys/fs/cgroup/rg1
-# mkdir my_cgroup
+If you want to create a new cgroup under /sys/fs/cgroup/rg1::
+
+ # cd /sys/fs/cgroup/rg1
+ # mkdir my_cgroup
+
+Now you want to do something with this cgroup:
+
+ # cd my_cgroup
-Now you want to do something with this cgroup.
-# cd my_cgroup
+In this directory you can find several files::
-In this directory you can find several files:
-# ls
-cgroup.procs notify_on_release tasks
-(plus whatever files added by the attached subsystems)
+ # ls
+ cgroup.procs notify_on_release tasks
+ (plus whatever files added by the attached subsystems)
-Now attach your shell to this cgroup:
-# /bin/echo $$ > tasks
+Now attach your shell to this cgroup::
+
+ # /bin/echo $$ > tasks
You can also create cgroups inside your cgroup by using mkdir in this
-directory.
-# mkdir my_sub_cs
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cgroup, just use rmdir::
-To remove a cgroup, just use rmdir:
-# rmdir my_sub_cs
+ # rmdir my_sub_cs
This will fail if the cgroup is in use (has cgroups inside, or
has processes attached, or is held alive by other subsystem-specific
@@ -424,19 +438,21 @@ reference).
2.2 Attaching processes
-----------------------
-# /bin/echo PID > tasks
+::
+
+ # /bin/echo PID > tasks
Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another:
+If you have several tasks to attach, you have to do it one after another::
-# /bin/echo PID1 > tasks
-# /bin/echo PID2 > tasks
- ...
-# /bin/echo PIDn > tasks
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
+ ...
+ # /bin/echo PIDn > tasks
-You can attach the current shell task by echoing 0:
+You can attach the current shell task by echoing 0::
-# echo 0 > tasks
+ # echo 0 > tasks
You can use the cgroup.procs file instead of the tasks file to move all
threads in a threadgroup at once. Echoing the PID of any task in a
@@ -529,7 +545,7 @@ Each subsystem may export the following methods. The only mandatory
methods are css_alloc/free. Any others that are null are presumed to
be successful no-ops.
-struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)
+``struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
Called to allocate a subsystem state object for a cgroup. The
@@ -544,7 +560,7 @@ identified by the passed cgroup object having a NULL parent (since
it's the root of the hierarchy) and may be an appropriate place for
initialization code.
-int css_online(struct cgroup *cgrp)
+``int css_online(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
Called after @cgrp successfully completed all allocations and made
@@ -554,7 +570,7 @@ callback can be used to implement reliable state sharing and
propagation along the hierarchy. See the comment on
cgroup_for_each_descendant_pre() for details.
-void css_offline(struct cgroup *cgrp);
+``void css_offline(struct cgroup *cgrp);``
(cgroup_mutex held by caller)
This is the counterpart of css_online() and called iff css_online()
@@ -564,7 +580,7 @@ all references it's holding on @cgrp. When all references are dropped,
cgroup removal will proceed to the next step - css_free(). After this
callback, @cgrp should be considered dead to the subsystem.
-void css_free(struct cgroup *cgrp)
+``void css_free(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
The cgroup system is about to free @cgrp; the subsystem should free
@@ -573,7 +589,7 @@ is completely unused; @cgrp->parent is still valid. (Note - can also
be called for a newly-created cgroup if an error occurs after this
subsystem's create() method has been called for the new cgroup).
-int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called prior to moving one or more tasks into a cgroup; if the
@@ -594,7 +610,7 @@ fork. If this method returns 0 (success) then this should remain valid
while the caller holds cgroup_mutex and it is ensured that either
attach() or cancel_attach() will be called in future.
-void css_reset(struct cgroup_subsys_state *css)
+``void css_reset(struct cgroup_subsys_state *css)``
(cgroup_mutex held by caller)
An optional operation which should restore @css's configuration to the
@@ -608,7 +624,7 @@ This prevents unexpected resource control from a hidden css and
ensures that the configuration is in the initial state when it is made
visible again later.
-void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called when a task attach operation has failed after can_attach() has succeeded.
@@ -617,26 +633,26 @@ function, so that the subsystem can implement a rollback. If not, not necessary.
This will be called only about subsystems whose can_attach() operation have
succeeded. The parameters are identical to can_attach().
-void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called after the task has been attached to the cgroup, to allow any
post-attachment activity that requires memory allocations or blocking.
The parameters are identical to can_attach().
-void fork(struct task_struct *task)
+``void fork(struct task_struct *task)``
Called when a task is forked into a cgroup.
-void exit(struct task_struct *task)
+``void exit(struct task_struct *task)``
Called during task exit.
-void free(struct task_struct *task)
+``void free(struct task_struct *task)``
Called when the task_struct is freed.
-void bind(struct cgroup *root)
+``void bind(struct cgroup *root)``
(cgroup_mutex held by caller)
Called when a cgroup subsystem is rebound to a different hierarchy
@@ -649,6 +665,7 @@ that is being created/destroyed (and hence has no sub-cgroups).
cgroup filesystem supports certain types of extended attributes in its
directories and files. The current supported types are:
+
- Trusted (XATTR_TRUSTED)
- Security (XATTR_SECURITY)
@@ -666,12 +683,13 @@ in containers and systemd for assorted meta data like main PID in a cgroup
5. Questions
============
-Q: what's up with this '/bin/echo' ?
-A: bash's builtin 'echo' command does not check calls to write() against
- errors. If you use it in the cgroup file system, you won't be
- able to tell whether a command succeeded or failed.
+::
-Q: When I attach processes, only the first of the line gets really attached !
-A: We can only return one error code per call to write(). So you should also
- put only ONE PID.
+ Q: what's up with this '/bin/echo' ?
+ A: bash's builtin 'echo' command does not check calls to write() against
+ errors. If you use it in the cgroup file system, you won't be
+ able to tell whether a command succeeded or failed.
+ Q: When I attach processes, only the first of the line gets really attached !
+ A: We can only return one error code per call to write(). So you should also
+ put only ONE PID.
diff --git a/Documentation/cgroup-v1/cpuacct.txt b/Documentation/cgroup-v1/cpuacct.rst
index 9d73cc0cadb9..d30ed81d2ad7 100644
--- a/Documentation/cgroup-v1/cpuacct.txt
+++ b/Documentation/cgroup-v1/cpuacct.rst
@@ -1,5 +1,6 @@
+=========================
CPU Accounting Controller
--------------------------
+=========================
The CPU accounting controller is used to group tasks using cgroups and
account the CPU usage of these groups of tasks.
@@ -8,9 +9,9 @@ The CPU accounting controller supports multi-hierarchy groups. An accounting
group accumulates the CPU usage of all of its child groups and the tasks
directly present in its group.
-Accounting groups can be created by first mounting the cgroup filesystem.
+Accounting groups can be created by first mounting the cgroup filesystem::
-# mount -t cgroup -ocpuacct none /sys/fs/cgroup
+ # mount -t cgroup -ocpuacct none /sys/fs/cgroup
With the above step, the initial or the parent accounting group becomes
visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
@@ -19,11 +20,11 @@ the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
by this group which is essentially the CPU time obtained by all the tasks
in the system.
-New accounting groups can be created under the parent group /sys/fs/cgroup.
+New accounting groups can be created under the parent group /sys/fs/cgroup::
-# cd /sys/fs/cgroup
-# mkdir g1
-# echo $$ > g1/tasks
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
The above steps create a new group g1 and move the current shell
process (bash) into it. CPU time consumed by this bash and its children
diff --git a/Documentation/cgroup-v1/cpusets.txt b/Documentation/cgroup-v1/cpusets.rst
index 8402dd6de8df..b6a42cdea72b 100644
--- a/Documentation/cgroup-v1/cpusets.txt
+++ b/Documentation/cgroup-v1/cpusets.rst
@@ -1,35 +1,36 @@
- CPUSETS
- -------
+=======
+CPUSETS
+=======
Copyright (C) 2004 BULL SA.
-Written by Simon.Derr@bull.net
-
-Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
-Modified by Paul Jackson <pj@sgi.com>
-Modified by Christoph Lameter <cl@linux.com>
-Modified by Paul Menage <menage@google.com>
-Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
-CONTENTS:
-=========
+Written by Simon.Derr@bull.net
-1. Cpusets
- 1.1 What are cpusets ?
- 1.2 Why are cpusets needed ?
- 1.3 How are cpusets implemented ?
- 1.4 What are exclusive cpusets ?
- 1.5 What is memory_pressure ?
- 1.6 What is memory spread ?
- 1.7 What is sched_load_balance ?
- 1.8 What is sched_relax_domain_level ?
- 1.9 How do I use cpusets ?
-2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Adding/removing cpus
- 2.3 Setting flags
- 2.4 Attaching processes
-3. Questions
-4. Contact
+- Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+- Modified by Paul Jackson <pj@sgi.com>
+- Modified by Christoph Lameter <cl@linux.com>
+- Modified by Paul Menage <menage@google.com>
+- Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
+
+.. CONTENTS:
+
+ 1. Cpusets
+ 1.1 What are cpusets ?
+ 1.2 Why are cpusets needed ?
+ 1.3 How are cpusets implemented ?
+ 1.4 What are exclusive cpusets ?
+ 1.5 What is memory_pressure ?
+ 1.6 What is memory spread ?
+ 1.7 What is sched_load_balance ?
+ 1.8 What is sched_relax_domain_level ?
+ 1.9 How do I use cpusets ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Adding/removing cpus
+ 2.3 Setting flags
+ 2.4 Attaching processes
+ 3. Questions
+ 4. Contact
1. Cpusets
==========
@@ -48,7 +49,7 @@ hooks, beyond what is already present, required to manage dynamic
job placement on large systems.
Cpusets use the generic cgroup subsystem described in
-Documentation/cgroup-v1/cgroups.txt.
+Documentation/cgroup-v1/cgroups.rst.
Requests by a task, using the sched_setaffinity(2) system call to
include CPUs in its CPU affinity mask, and using the mbind(2) and
@@ -157,7 +158,7 @@ modifying cpusets is via this cpuset file system.
The /proc/<pid>/status file for each task has four added lines,
displaying the task's cpus_allowed (on which CPUs it may be scheduled)
and mems_allowed (on which Memory Nodes it may obtain memory),
-in the two formats seen in the following example:
+in the two formats seen in the following example::
Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff
Cpus_allowed_list: 0-127
@@ -181,6 +182,7 @@ files describing that cpuset:
- cpuset.sched_relax_domain_level: the searching range when migrating tasks
In addition, only the root cpuset has the following file:
+
- cpuset.memory_pressure_enabled flag: compute memory_pressure?
New cpusets are created using the mkdir system call or shell
@@ -266,7 +268,8 @@ to monitor a cpuset for signs of memory pressure. It's up to the
batch manager or other user code to decide what to do about it and
take action.
-==> Unless this feature is enabled by writing "1" to the special file
+==>
+ Unless this feature is enabled by writing "1" to the special file
/dev/cpuset/memory_pressure_enabled, the hook in the rebalance
code of __alloc_pages() for this metric reduces to simply noticing
that the cpuset_memory_pressure_enabled flag is zero. So only
@@ -399,6 +402,7 @@ have tasks running on them unless explicitly assigned.
This default load balancing across all CPUs is not well suited for
the following two situations:
+
1) On large systems, load balancing across many CPUs is expensive.
If the system is managed using cpusets to place independent jobs
on separate sets of CPUs, full load balancing is unnecessary.
@@ -501,6 +505,7 @@ all the CPUs that must be load balanced.
The cpuset code builds a new such partition and passes it to the
scheduler sched domain setup code, to have the sched domains rebuilt
as necessary, whenever:
+
- the 'cpuset.sched_load_balance' flag of a cpuset with non-empty CPUs changes,
- or CPUs come or go from a cpuset with this flag enabled,
- or 'cpuset.sched_relax_domain_level' value of a cpuset with non-empty CPUs
@@ -553,13 +558,15 @@ this searching range as you like. This file takes int value which
indicates size of searching range in levels ideally as follows,
otherwise initial value -1 that indicates the cpuset has no request.
- -1 : no request. use system default or follow request of others.
- 0 : no search.
- 1 : search siblings (hyperthreads in a core).
- 2 : search cores in a package.
- 3 : search cpus in a node [= system wide on non-NUMA system]
- 4 : search nodes in a chunk of node [on NUMA system]
- 5 : search system wide [on NUMA system]
+====== ===========================================================
+ -1 no request. use system default or follow request of others.
+ 0 no search.
+ 1 search siblings (hyperthreads in a core).
+ 2 search cores in a package.
+ 3 search cpus in a node [= system wide on non-NUMA system]
+ 4 search nodes in a chunk of node [on NUMA system]
+ 5 search system wide [on NUMA system]
+====== ===========================================================
The system default is architecture dependent. The system default
can be changed using the relax_domain_level= boot parameter.
@@ -578,13 +585,14 @@ and whether it is acceptable or not depends on your situation.
Don't modify this file if you are not sure.
If your situation is:
+
- The migration costs between each cpu can be assumed considerably
small(for you) due to your special application's behavior or
special hardware support for CPU cache etc.
- The searching cost doesn't have impact(for you) or you can make
the searching cost enough small by managing cpuset to compact etc.
- The latency is required even it sacrifices cache hit rate etc.
-then increasing 'sched_relax_domain_level' would benefit you.
+ then increasing 'sched_relax_domain_level' would benefit you.
1.9 How do I use cpusets ?
@@ -678,7 +686,7 @@ To start a new job that is to be contained within a cpuset, the steps are:
For example, the following sequence of commands will setup a cpuset
named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cpuset:
+and then start a subshell 'sh' in that cpuset::
mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
cd /sys/fs/cgroup/cpuset
@@ -693,6 +701,7 @@ and then start a subshell 'sh' in that cpuset:
cat /proc/self/cpuset
There are ways to query or modify cpusets:
+
- via the cpuset file system directly, using the various cd, mkdir, echo,
cat, rmdir commands from the shell, or their equivalent from C.
- via the C library libcpuset.
@@ -722,115 +731,133 @@ Then under /sys/fs/cgroup/cpuset you can find a tree that corresponds to the
tree of the cpusets in the system. For instance, /sys/fs/cgroup/cpuset
is the cpuset that holds the whole system.
-If you want to create a new cpuset under /sys/fs/cgroup/cpuset:
-# cd /sys/fs/cgroup/cpuset
-# mkdir my_cpuset
+If you want to create a new cpuset under /sys/fs/cgroup/cpuset::
+
+ # cd /sys/fs/cgroup/cpuset
+ # mkdir my_cpuset
-Now you want to do something with this cpuset.
-# cd my_cpuset
+Now you want to do something with this cpuset::
-In this directory you can find several files:
-# ls
-cgroup.clone_children cpuset.memory_pressure
-cgroup.event_control cpuset.memory_spread_page
-cgroup.procs cpuset.memory_spread_slab
-cpuset.cpu_exclusive cpuset.mems
-cpuset.cpus cpuset.sched_load_balance
-cpuset.mem_exclusive cpuset.sched_relax_domain_level
-cpuset.mem_hardwall notify_on_release
-cpuset.memory_migrate tasks
+ # cd my_cpuset
+
+In this directory you can find several files::
+
+ # ls
+ cgroup.clone_children cpuset.memory_pressure
+ cgroup.event_control cpuset.memory_spread_page
+ cgroup.procs cpuset.memory_spread_slab
+ cpuset.cpu_exclusive cpuset.mems
+ cpuset.cpus cpuset.sched_load_balance
+ cpuset.mem_exclusive cpuset.sched_relax_domain_level
+ cpuset.mem_hardwall notify_on_release
+ cpuset.memory_migrate tasks
Reading them will give you information about the state of this cpuset:
the CPUs and Memory Nodes it can use, the processes that are using
it, its properties. By writing to these files you can manipulate
the cpuset.
-Set some flags:
-# /bin/echo 1 > cpuset.cpu_exclusive
+Set some flags::
+
+ # /bin/echo 1 > cpuset.cpu_exclusive
+
+Add some cpus::
+
+ # /bin/echo 0-7 > cpuset.cpus
+
+Add some mems::
-Add some cpus:
-# /bin/echo 0-7 > cpuset.cpus
+ # /bin/echo 0-7 > cpuset.mems
-Add some mems:
-# /bin/echo 0-7 > cpuset.mems
+Now attach your shell to this cpuset::
-Now attach your shell to this cpuset:
-# /bin/echo $$ > tasks
+ # /bin/echo $$ > tasks
You can also create cpusets inside your cpuset by using mkdir in this
-directory.
-# mkdir my_sub_cs
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cpuset, just use rmdir::
+
+ # rmdir my_sub_cs
-To remove a cpuset, just use rmdir:
-# rmdir my_sub_cs
This will fail if the cpuset is in use (has cpusets inside, or has
processes attached).
Note that for legacy reasons, the "cpuset" filesystem exists as a
wrapper around the cgroup filesystem.
-The command
+The command::
-mount -t cpuset X /sys/fs/cgroup/cpuset
+ mount -t cpuset X /sys/fs/cgroup/cpuset
-is equivalent to
+is equivalent to::
-mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset
-echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent
+ mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset
+ echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent
2.2 Adding/removing cpus
------------------------
This is the syntax to use when writing in the cpus or mems files
-in cpuset directories:
+in cpuset directories::
-# /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
-# /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
+ # /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
+ # /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
To add a CPU to a cpuset, write the new list of CPUs including the
-CPU to be added. To add 6 to the above cpuset:
+CPU to be added. To add 6 to the above cpuset::
-# /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
+ # /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
Similarly to remove a CPU from a cpuset, write the new list of CPUs
without the CPU to be removed.
-To remove all the CPUs:
+To remove all the CPUs::
-# /bin/echo "" > cpuset.cpus -> clear cpus list
+ # /bin/echo "" > cpuset.cpus -> clear cpus list
2.3 Setting flags
-----------------
-The syntax is very simple:
+The syntax is very simple::
-# /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
-# /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
+ # /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
+ # /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
2.4 Attaching processes
-----------------------
-# /bin/echo PID > tasks
+::
+
+ # /bin/echo PID > tasks
Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another:
+If you have several tasks to attach, you have to do it one after another::
-# /bin/echo PID1 > tasks
-# /bin/echo PID2 > tasks
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
...
-# /bin/echo PIDn > tasks
+ # /bin/echo PIDn > tasks
3. Questions
============
-Q: what's up with this '/bin/echo' ?
-A: bash's builtin 'echo' command does not check calls to write() against
+Q:
+ what's up with this '/bin/echo' ?
+
+A:
+ bash's builtin 'echo' command does not check calls to write() against
errors. If you use it in the cpuset file system, you won't be
able to tell whether a command succeeded or failed.
-Q: When I attach processes, only the first of the line gets really attached !
-A: We can only return one error code per call to write(). So you should also
+Q:
+ When I attach processes, only the first of the line gets really attached !
+
+A:
+ We can only return one error code per call to write(). So you should also
put only ONE pid.
4. Contact
diff --git a/Documentation/cgroup-v1/devices.txt b/Documentation/cgroup-v1/devices.rst
index 3c1095ca02ea..e1886783961e 100644
--- a/Documentation/cgroup-v1/devices.txt
+++ b/Documentation/cgroup-v1/devices.rst
@@ -1,6 +1,9 @@
+===========================
Device Whitelist Controller
+===========================
-1. Description:
+1. Description
+==============
Implement a cgroup to track and enforce open and mknod restrictions
on device files. A device cgroup associates a device access
@@ -16,24 +19,26 @@ devices from the whitelist or add new entries. A child cgroup can
never receive a device access which is denied by its parent.
2. User Interface
+=================
An entry is added using devices.allow, and removed using
-devices.deny. For instance
+devices.deny. For instance::
echo 'c 1:3 mr' > /sys/fs/cgroup/1/devices.allow
allows cgroup 1 to read and mknod the device usually known as
-/dev/null. Doing
+/dev/null. Doing::
echo a > /sys/fs/cgroup/1/devices.deny
-will remove the default 'a *:* rwm' entry. Doing
+will remove the default 'a *:* rwm' entry. Doing::
echo a > /sys/fs/cgroup/1/devices.allow
will add the 'a *:* rwm' entry to the whitelist.
3. Security
+===========
Any task can move itself between cgroups. This clearly won't
suffice, but we can decide the best way to adequately restrict
@@ -50,6 +55,7 @@ A cgroup may not be granted more permissions than the cgroup's
parent has.
4. Hierarchy
+============
device cgroups maintain hierarchy by making sure a cgroup never has more
access permissions than its parent. Every time an entry is written to
@@ -58,7 +64,8 @@ from their whitelist and all the locally set whitelist entries will be
re-evaluated. In case one of the locally set whitelist entries would provide
more access than the cgroup's parent, it'll be removed from the whitelist.
-Example:
+Example::
+
A
/ \
B
@@ -67,10 +74,12 @@ Example:
A allow "b 8:* rwm", "c 116:1 rw"
B deny "c 1:3 rwm", "c 116:2 rwm", "b 3:* rwm"
-If a device is denied in group A:
+If a device is denied in group A::
+
# echo "c 116:* r" > A/devices.deny
+
it'll propagate down and after revalidating B's entries, the whitelist entry
-"c 116:2 rwm" will be removed:
+"c 116:2 rwm" will be removed::
group whitelist entries denied devices
A all "b 8:* rwm", "c 116:* rw"
@@ -79,7 +88,8 @@ it'll propagate down and after revalidating B's entries, the whitelist entry
In case parent's exceptions change and local exceptions are not allowed
anymore, they'll be deleted.
-Notice that new whitelist entries will not be propagated:
+Notice that new whitelist entries will not be propagated::
+
A
/ \
B
@@ -88,24 +98,30 @@ Notice that new whitelist entries will not be propagated:
A "c 1:3 rwm", "c 1:5 r" all the rest
B "c 1:3 rwm", "c 1:5 r" all the rest
-when adding "c *:3 rwm":
+when adding ``c *:3 rwm``::
+
# echo "c *:3 rwm" >A/devices.allow
-the result:
+the result::
+
group whitelist entries denied devices
A "c *:3 rwm", "c 1:5 r" all the rest
B "c 1:3 rwm", "c 1:5 r" all the rest
-but now it'll be possible to add new entries to B:
+but now it'll be possible to add new entries to B::
+
# echo "c 2:3 rwm" >B/devices.allow
# echo "c 50:3 r" >B/devices.allow
-or even
+
+or even::
+
# echo "c *:3 rwm" >B/devices.allow
Allowing or denying all by writing 'a' to devices.allow or devices.deny will
not be possible once the device cgroups has children.
4.1 Hierarchy (internal implementation)
+---------------------------------------
device cgroups is implemented internally using a behavior (ALLOW, DENY) and a
list of exceptions. The internal state is controlled using the same user
diff --git a/Documentation/cgroup-v1/freezer-subsystem.txt b/Documentation/cgroup-v1/freezer-subsystem.rst
index e831cb2b8394..582d3427de3f 100644
--- a/Documentation/cgroup-v1/freezer-subsystem.txt
+++ b/Documentation/cgroup-v1/freezer-subsystem.rst
@@ -1,3 +1,7 @@
+==============
+Cgroup Freezer
+==============
+
The cgroup freezer is useful to batch job management system which start
and stop sets of tasks in order to schedule the resources of a machine
according to the desires of a system administrator. This sort of program
@@ -23,7 +27,7 @@ blocked, or ignored it can be seen by waiting or ptracing parent tasks.
SIGCONT is especially unsuitable since it can be caught by the task. Any
programs designed to watch for SIGSTOP and SIGCONT could be broken by
attempting to use SIGSTOP and SIGCONT to stop and resume tasks. We can
-demonstrate this problem using nested bash shells:
+demonstrate this problem using nested bash shells::
$ echo $$
16644
@@ -93,19 +97,19 @@ The following cgroupfs files are created by cgroup freezer.
The root cgroup is non-freezable and the above interface files don't
exist.
-* Examples of usage :
+* Examples of usage::
# mkdir /sys/fs/cgroup/freezer
# mount -t cgroup -ofreezer freezer /sys/fs/cgroup/freezer
# mkdir /sys/fs/cgroup/freezer/0
# echo $some_pid > /sys/fs/cgroup/freezer/0/tasks
-to get status of the freezer subsystem :
+to get status of the freezer subsystem::
# cat /sys/fs/cgroup/freezer/0/freezer.state
THAWED
-to freeze all tasks in the container :
+to freeze all tasks in the container::
# echo FROZEN > /sys/fs/cgroup/freezer/0/freezer.state
# cat /sys/fs/cgroup/freezer/0/freezer.state
@@ -113,7 +117,7 @@ to freeze all tasks in the container :
# cat /sys/fs/cgroup/freezer/0/freezer.state
FROZEN
-to unfreeze all tasks in the container :
+to unfreeze all tasks in the container::
# echo THAWED > /sys/fs/cgroup/freezer/0/freezer.state
# cat /sys/fs/cgroup/freezer/0/freezer.state
diff --git a/Documentation/cgroup-v1/hugetlb.txt b/Documentation/cgroup-v1/hugetlb.rst
index 106245c3aecc..a3902aa253a9 100644
--- a/Documentation/cgroup-v1/hugetlb.txt
+++ b/Documentation/cgroup-v1/hugetlb.rst
@@ -1,5 +1,6 @@
+==================
HugeTLB Controller
--------------------
+==================
The HugeTLB controller allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
@@ -16,30 +17,34 @@ With the above step, the initial or the parent HugeTLB group becomes
visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
-New groups can be created under the parent group /sys/fs/cgroup.
+New groups can be created under the parent group /sys/fs/cgroup::
-# cd /sys/fs/cgroup
-# mkdir g1
-# echo $$ > g1/tasks
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
The above steps create a new group g1 and move the current shell
process (bash) into it.
-Brief summary of control files
+Brief summary of control files::
hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb usage
hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB limit
-For a system supporting two hugepage size (16M and 16G) the control
-files include:
-
-hugetlb.16GB.limit_in_bytes
-hugetlb.16GB.max_usage_in_bytes
-hugetlb.16GB.usage_in_bytes
-hugetlb.16GB.failcnt
-hugetlb.16MB.limit_in_bytes
-hugetlb.16MB.max_usage_in_bytes
-hugetlb.16MB.usage_in_bytes
-hugetlb.16MB.failcnt
+For a system supporting three hugepage sizes (64k, 32M and 1G), the control
+files include::
+
+ hugetlb.1GB.limit_in_bytes
+ hugetlb.1GB.max_usage_in_bytes
+ hugetlb.1GB.usage_in_bytes
+ hugetlb.1GB.failcnt
+ hugetlb.64KB.limit_in_bytes
+ hugetlb.64KB.max_usage_in_bytes
+ hugetlb.64KB.usage_in_bytes
+ hugetlb.64KB.failcnt
+ hugetlb.32MB.limit_in_bytes
+ hugetlb.32MB.max_usage_in_bytes
+ hugetlb.32MB.usage_in_bytes
+ hugetlb.32MB.failcnt
diff --git a/Documentation/cgroup-v1/index.rst b/Documentation/cgroup-v1/index.rst
new file mode 100644
index 000000000000..fe76d42edc11
--- /dev/null
+++ b/Documentation/cgroup-v1/index.rst
@@ -0,0 +1,30 @@
+:orphan:
+
+========================
+Control Groups version 1
+========================
+
+.. toctree::
+ :maxdepth: 1
+
+ cgroups
+
+ blkio-controller
+ cpuacct
+ cpusets
+ devices
+ freezer-subsystem
+ hugetlb
+ memcg_test
+ memory
+ net_cls
+ net_prio
+ pids
+ rdma
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/cgroup-v1/memcg_test.txt b/Documentation/cgroup-v1/memcg_test.rst
index 621e29ffb358..91bd18c6a514 100644
--- a/Documentation/cgroup-v1/memcg_test.txt
+++ b/Documentation/cgroup-v1/memcg_test.rst
@@ -1,32 +1,43 @@
-Memory Resource Controller(Memcg) Implementation Memo.
+=====================================================
+Memory Resource Controller(Memcg) Implementation Memo
+=====================================================
+
Last Updated: 2010/2
+
Base Kernel Version: based on 2.6.33-rc7-mm(candidate for 34).
Because VM is getting complex (one of reasons is memcg...), memcg's behavior
is complex. This is a document for memcg's internal behavior.
Please note that implementation details can be changed.
-(*) Topics on API should be in Documentation/cgroup-v1/memory.txt)
+(*) Topics on API should be in Documentation/cgroup-v1/memory.rst)
0. How to record usage ?
+========================
+
2 objects are used.
page_cgroup ....an object per page.
+
Allocated at boot or memory hotplug. Freed at memory hot removal.
swap_cgroup ... an entry per swp_entry.
+
Allocated at swapon(). Freed at swapoff().
The page_cgroup has USED bit and double count against a page_cgroup never
occurs. swap_cgroup is used only when a charged page is swapped-out.
1. Charge
+=========
a page/swp_entry may be charged (usage += PAGE_SIZE) at
mem_cgroup_try_charge()
2. Uncharge
+===========
+
a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by
mem_cgroup_uncharge()
@@ -37,9 +48,12 @@ Please note that implementation details can be changed.
disappears.
3. charge-commit-cancel
+=======================
+
Memcg pages are charged in two steps:
- mem_cgroup_try_charge()
- mem_cgroup_commit_charge() or mem_cgroup_cancel_charge()
+
+ - mem_cgroup_try_charge()
+ - mem_cgroup_commit_charge() or mem_cgroup_cancel_charge()
At try_charge(), there are no flags to say "this page is charged".
at this point, usage += PAGE_SIZE.
@@ -51,6 +65,8 @@ Please note that implementation details can be changed.
Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
4. Anonymous
+============
+
Anonymous page is newly allocated at
- page fault into MAP_ANONYMOUS mapping.
- Copy-On-Write.
@@ -78,34 +94,45 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
(e) zap_pte() is called and swp_entry's refcnt -=1 -> 0.
5. Page Cache
- Page Cache is charged at
+=============
+
+ Page Cache is charged at
- add_to_page_cache_locked().
The logic is very clear. (About migration, see below)
- Note: __remove_from_page_cache() is called by remove_from_page_cache()
- and __remove_mapping().
+
+ Note:
+ __remove_from_page_cache() is called by remove_from_page_cache()
+ and __remove_mapping().
6. Shmem(tmpfs) Page Cache
+===========================
+
The best way to understand shmem's page state transition is to read
mm/shmem.c.
+
But brief explanation of the behavior of memcg around shmem will be
helpful to understand the logic.
Shmem's page (just leaf page, not direct/indirect block) can be on
+
- radix-tree of shmem's inode.
- SwapCache.
- Both on radix-tree and SwapCache. This happens at swap-in
and swap-out,
It's charged when...
+
- A new page is added to shmem's radix-tree.
- A swp page is read. (move a charge from swap_cgroup to page_cgroup)
7. Page Migration
+=================
mem_cgroup_migrate()
8. LRU
+======
Each memcg has its own private LRU. Now, its handling is under global
VM's control (means that it's handled under global pgdat->lru_lock).
Almost all routines around memcg's LRU is called by global LRU's
@@ -114,163 +141,211 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
A special function is mem_cgroup_isolate_pages(). This scans
memcg's private LRU and call __isolate_lru_page() to extract a page
from LRU.
+
(By __isolate_lru_page(), the page is removed from both of global and
- private LRU.)
+ private LRU.)
9. Typical Tests.
+=================
Tests for racy cases.
- 9.1 Small limit to memcg.
+9.1 Small limit to memcg.
+-------------------------
+
When you do test to do racy case, it's good test to set memcg's limit
to be very small rather than GB. Many races found in the test under
xKB or xxMB limits.
+
(Memory behavior under GB and Memory behavior under MB shows very
- different situation.)
+ different situation.)
+
+9.2 Shmem
+---------
- 9.2 Shmem
Historically, memcg's shmem handling was poor and we saw some amount
of troubles here. This is because shmem is page-cache but can be
SwapCache. Test with shmem/tmpfs is always good test.
- 9.3 Migration
+9.3 Migration
+-------------
+
For NUMA, migration is an another special case. To do easy test, cpuset
- is useful. Following is a sample script to do migration.
+ is useful. Following is a sample script to do migration::
- mount -t cgroup -o cpuset none /opt/cpuset
+ mount -t cgroup -o cpuset none /opt/cpuset
- mkdir /opt/cpuset/01
- echo 1 > /opt/cpuset/01/cpuset.cpus
- echo 0 > /opt/cpuset/01/cpuset.mems
- echo 1 > /opt/cpuset/01/cpuset.memory_migrate
- mkdir /opt/cpuset/02
- echo 1 > /opt/cpuset/02/cpuset.cpus
- echo 1 > /opt/cpuset/02/cpuset.mems
- echo 1 > /opt/cpuset/02/cpuset.memory_migrate
+ mkdir /opt/cpuset/01
+ echo 1 > /opt/cpuset/01/cpuset.cpus
+ echo 0 > /opt/cpuset/01/cpuset.mems
+ echo 1 > /opt/cpuset/01/cpuset.memory_migrate
+ mkdir /opt/cpuset/02
+ echo 1 > /opt/cpuset/02/cpuset.cpus
+ echo 1 > /opt/cpuset/02/cpuset.mems
+ echo 1 > /opt/cpuset/02/cpuset.memory_migrate
In above set, when you moves a task from 01 to 02, page migration to
node 0 to node 1 will occur. Following is a script to migrate all
- under cpuset.
- --
- move_task()
- {
- for pid in $1
- do
- /bin/echo $pid >$2/tasks 2>/dev/null
- echo -n $pid
- echo -n " "
- done
- echo END
- }
-
- G1_TASK=`cat ${G1}/tasks`
- G2_TASK=`cat ${G2}/tasks`
- move_task "${G1_TASK}" ${G2} &
- --
- 9.4 Memory hotplug.
+ under cpuset.::
+
+ --
+ move_task()
+ {
+ for pid in $1
+ do
+ /bin/echo $pid >$2/tasks 2>/dev/null
+ echo -n $pid
+ echo -n " "
+ done
+ echo END
+ }
+
+ G1_TASK=`cat ${G1}/tasks`
+ G2_TASK=`cat ${G2}/tasks`
+ move_task "${G1_TASK}" ${G2} &
+ --
+
+9.4 Memory hotplug
+------------------
+
memory hotplug test is one of good test.
- to offline memory, do following.
- # echo offline > /sys/devices/system/memory/memoryXXX/state
+
+ to offline memory, do following::
+
+ # echo offline > /sys/devices/system/memory/memoryXXX/state
+
(XXX is the place of memory)
+
This is an easy way to test page migration, too.
- 9.5 mkdir/rmdir
+9.5 mkdir/rmdir
+---------------
+
When using hierarchy, mkdir/rmdir test should be done.
- Use tests like the following.
+ Use tests like the following::
+
+ echo 1 >/opt/cgroup/01/memory/use_hierarchy
+ mkdir /opt/cgroup/01/child_a
+ mkdir /opt/cgroup/01/child_b
- echo 1 >/opt/cgroup/01/memory/use_hierarchy
- mkdir /opt/cgroup/01/child_a
- mkdir /opt/cgroup/01/child_b
+ set limit to 01.
+ add limit to 01/child_b
+ run jobs under child_a and child_b
- set limit to 01.
- add limit to 01/child_b
- run jobs under child_a and child_b
+ create/delete following groups at random while jobs are running::
- create/delete following groups at random while jobs are running.
- /opt/cgroup/01/child_a/child_aa
- /opt/cgroup/01/child_b/child_bb
- /opt/cgroup/01/child_c
+ /opt/cgroup/01/child_a/child_aa
+ /opt/cgroup/01/child_b/child_bb
+ /opt/cgroup/01/child_c
running new jobs in new group is also good.
- 9.6 Mount with other subsystems.
+9.6 Mount with other subsystems
+-------------------------------
+
Mounting with other subsystems is a good test because there is a
race and lock dependency with other cgroup subsystems.
- example)
- # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
+ example::
+
+ # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
and do task move, mkdir, rmdir etc...under this.
- 9.7 swapoff.
+9.7 swapoff
+-----------
+
Besides management of swap is one of complicated parts of memcg,
call path of swap-in at swapoff is not same as usual swap-in path..
It's worth to be tested explicitly.
- For example, test like following is good.
- (Shell-A)
- # mount -t cgroup none /cgroup -o memory
- # mkdir /cgroup/test
- # echo 40M > /cgroup/test/memory.limit_in_bytes
- # echo 0 > /cgroup/test/tasks
+ For example, test like following is good:
+
+ (Shell-A)::
+
+ # mount -t cgroup none /cgroup -o memory
+ # mkdir /cgroup/test
+ # echo 40M > /cgroup/test/memory.limit_in_bytes
+ # echo 0 > /cgroup/test/tasks
+
Run malloc(100M) program under this. You'll see 60M of swaps.
- (Shell-B)
- # move all tasks in /cgroup/test to /cgroup
- # /sbin/swapoff -a
- # rmdir /cgroup/test
- # kill malloc task.
+
+ (Shell-B)::
+
+ # move all tasks in /cgroup/test to /cgroup
+ # /sbin/swapoff -a
+ # rmdir /cgroup/test
+ # kill malloc task.
Of course, tmpfs v.s. swapoff test should be tested, too.
- 9.8 OOM-Killer
+9.8 OOM-Killer
+--------------
+
Out-of-memory caused by memcg's limit will kill tasks under
the memcg. When hierarchy is used, a task under hierarchy
will be killed by the kernel.
+
In this case, panic_on_oom shouldn't be invoked and tasks
in other groups shouldn't be killed.
It's not difficult to cause OOM under memcg as following.
- Case A) when you can swapoff
- #swapoff -a
- #echo 50M > /memory.limit_in_bytes
+
+ Case A) when you can swapoff::
+
+ #swapoff -a
+ #echo 50M > /memory.limit_in_bytes
+
run 51M of malloc
- Case B) when you use mem+swap limitation.
- #echo 50M > memory.limit_in_bytes
- #echo 50M > memory.memsw.limit_in_bytes
+ Case B) when you use mem+swap limitation::
+
+ #echo 50M > memory.limit_in_bytes
+ #echo 50M > memory.memsw.limit_in_bytes
+
run 51M of malloc
- 9.9 Move charges at task migration
+9.9 Move charges at task migration
+----------------------------------
+
Charges associated with a task can be moved along with task migration.
- (Shell-A)
- #mkdir /cgroup/A
- #echo $$ >/cgroup/A/tasks
+ (Shell-A)::
+
+ #mkdir /cgroup/A
+ #echo $$ >/cgroup/A/tasks
+
run some programs which uses some amount of memory in /cgroup/A.
- (Shell-B)
- #mkdir /cgroup/B
- #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
- #echo "pid of the program running in group A" >/cgroup/B/tasks
+ (Shell-B)::
+
+ #mkdir /cgroup/B
+ #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
+ #echo "pid of the program running in group A" >/cgroup/B/tasks
- You can see charges have been moved by reading *.usage_in_bytes or
+ You can see charges have been moved by reading ``*.usage_in_bytes`` or
memory.stat of both A and B.
- See 8.2 of Documentation/cgroup-v1/memory.txt to see what value should be
- written to move_charge_at_immigrate.
- 9.10 Memory thresholds
+ See 8.2 of Documentation/cgroup-v1/memory.rst to see what value should
+ be written to move_charge_at_immigrate.
+
+9.10 Memory thresholds
+----------------------
+
Memory controller implements memory thresholds using cgroups notification
API. You can use tools/cgroup/cgroup_event_listener.c to test it.
- (Shell-A) Create cgroup and run event listener
- # mkdir /cgroup/A
- # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
+ (Shell-A) Create cgroup and run event listener::
+
+ # mkdir /cgroup/A
+ # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
+
+ (Shell-B) Add task to cgroup and try to allocate and free memory::
- (Shell-B) Add task to cgroup and try to allocate and free memory
- # echo $$ >/cgroup/A/tasks
- # a="$(dd if=/dev/zero bs=1M count=10)"
- # a=
+ # echo $$ >/cgroup/A/tasks
+ # a="$(dd if=/dev/zero bs=1M count=10)"
+ # a=
You will see message from cgroup_event_listener every time you cross
the thresholds.
diff --git a/Documentation/cgroup-v1/memory.txt b/Documentation/cgroup-v1/memory.rst
index a33cedf85427..41bdc038dad9 100644
--- a/Documentation/cgroup-v1/memory.txt
+++ b/Documentation/cgroup-v1/memory.rst
@@ -1,22 +1,26 @@
+==========================
Memory Resource Controller
+==========================
-NOTE: This document is hopelessly outdated and it asks for a complete
+NOTE:
+ This document is hopelessly outdated and it asks for a complete
rewrite. It still contains a useful information so we are keeping it
here but make sure to check the current code if you need a deeper
understanding.
-NOTE: The Memory Resource Controller has generically been referred to as the
+NOTE:
+ The Memory Resource Controller has generically been referred to as the
memory controller in this document. Do not confuse memory controller
used here with the memory controller that is used in hardware.
-(For editors)
-In this document:
+(For editors) In this document:
When we mention a cgroup (cgroupfs's directory) with memory controller,
we call it "memory cgroup". When you see git-log and source code, you'll
see patch's title and function names tend to use "memcg".
In this document, we avoid using it.
Benefits and Purpose of the memory controller
+=============================================
The memory controller isolates the memory behaviour of a group of tasks
from the rest of the system. The article on LWN [12] mentions some probable
@@ -38,6 +42,7 @@ e. There are several other use cases; find one or use the controller just
Current Status: linux-2.6.34-mmotm(development version of 2010/April)
Features:
+
- accounting anonymous pages, file caches, swap caches usage and limiting them.
- pages are linked to per-memcg LRU exclusively, and there is no global LRU.
- optionally, memory+swap usage can be accounted and limited.
@@ -54,41 +59,48 @@ Features:
Brief summary of control files.
- tasks # attach a task(thread) and show list of threads
- cgroup.procs # show list of processes
- cgroup.event_control # an interface for event_fd()
- memory.usage_in_bytes # show current usage for memory
- (See 5.5 for details)
- memory.memsw.usage_in_bytes # show current usage for memory+Swap
- (See 5.5 for details)
- memory.limit_in_bytes # set/show limit of memory usage
- memory.memsw.limit_in_bytes # set/show limit of memory+Swap usage
- memory.failcnt # show the number of memory usage hits limits
- memory.memsw.failcnt # show the number of memory+Swap hits limits
- memory.max_usage_in_bytes # show max memory usage recorded
- memory.memsw.max_usage_in_bytes # show max memory+Swap usage recorded
- memory.soft_limit_in_bytes # set/show soft limit of memory usage
- memory.stat # show various statistics
- memory.use_hierarchy # set/show hierarchical account enabled
- memory.force_empty # trigger forced page reclaim
- memory.pressure_level # set memory pressure notifications
- memory.swappiness # set/show swappiness parameter of vmscan
- (See sysctl's vm.swappiness)
- memory.move_charge_at_immigrate # set/show controls of moving charges
- memory.oom_control # set/show oom controls.
- memory.numa_stat # show the number of memory usage per numa node
-
- memory.kmem.limit_in_bytes # set/show hard limit for kernel memory
- memory.kmem.usage_in_bytes # show current kernel memory allocation
- memory.kmem.failcnt # show the number of kernel memory usage hits limits
- memory.kmem.max_usage_in_bytes # show max kernel memory usage recorded
-
- memory.kmem.tcp.limit_in_bytes # set/show hard limit for tcp buf memory
- memory.kmem.tcp.usage_in_bytes # show current tcp buf memory allocation
- memory.kmem.tcp.failcnt # show the number of tcp buf memory usage hits limits
- memory.kmem.tcp.max_usage_in_bytes # show max tcp buf memory usage recorded
+==================================== ==========================================
+ tasks attach a task(thread) and show list of
+ threads
+ cgroup.procs show list of processes
+ cgroup.event_control an interface for event_fd()
+ memory.usage_in_bytes show current usage for memory
+ (See 5.5 for details)
+ memory.memsw.usage_in_bytes show current usage for memory+Swap
+ (See 5.5 for details)
+ memory.limit_in_bytes set/show limit of memory usage
+ memory.memsw.limit_in_bytes set/show limit of memory+Swap usage
+ memory.failcnt show the number of memory usage hits limits
+ memory.memsw.failcnt show the number of memory+Swap hits limits
+ memory.max_usage_in_bytes show max memory usage recorded
+ memory.memsw.max_usage_in_bytes show max memory+Swap usage recorded
+ memory.soft_limit_in_bytes set/show soft limit of memory usage
+ memory.stat show various statistics
+ memory.use_hierarchy set/show hierarchical account enabled
+ memory.force_empty trigger forced page reclaim
+ memory.pressure_level set memory pressure notifications
+ memory.swappiness set/show swappiness parameter of vmscan
+ (See sysctl's vm.swappiness)
+ memory.move_charge_at_immigrate set/show controls of moving charges
+ memory.oom_control set/show oom controls.
+ memory.numa_stat show the number of memory usage per numa
+ node
+
+ memory.kmem.limit_in_bytes set/show hard limit for kernel memory
+ memory.kmem.usage_in_bytes show current kernel memory allocation
+ memory.kmem.failcnt show the number of kernel memory usage
+ hits limits
+ memory.kmem.max_usage_in_bytes show max kernel memory usage recorded
+
+ memory.kmem.tcp.limit_in_bytes set/show hard limit for tcp buf memory
+ memory.kmem.tcp.usage_in_bytes show current tcp buf memory allocation
+ memory.kmem.tcp.failcnt show the number of tcp buf memory usage
+ hits limits
+ memory.kmem.tcp.max_usage_in_bytes show max tcp buf memory usage recorded
+==================================== ==========================================
1. History
+==========
The memory controller has a long history. A request for comments for the memory
controller was posted by Balbir Singh [1]. At the time the RFC was posted
@@ -103,6 +115,7 @@ at version 6; it combines both mapped (RSS) and unmapped Page
Cache Control [11].
2. Memory Control
+=================
Memory is a unique resource in the sense that it is present in a limited
amount. If a task requires a lot of CPU processing, the task can spread
@@ -120,6 +133,7 @@ are:
The memory controller is the first controller developed.
2.1. Design
+-----------
The core of the design is a counter called the page_counter. The
page_counter tracks the current memory usage and limit of the group of
@@ -127,6 +141,9 @@ processes associated with the controller. Each cgroup has a memory controller
specific data structure (mem_cgroup) associated with it.
2.2. Accounting
+---------------
+
+::
+--------------------+
| mem_cgroup |
@@ -165,6 +182,7 @@ updated. page_cgroup has its own LRU on cgroup.
(*) page_cgroup structure is allocated at boot/memory-hotplug time.
2.2.1 Accounting details
+------------------------
All mapped anon pages (RSS) and cache pages (Page Cache) are accounted.
Some pages which are never reclaimable and will not be on the LRU
@@ -191,6 +209,7 @@ Note: we just account pages-on-LRU because our purpose is to control amount
of used pages; not-on-LRU pages tend to be out-of-control from VM view.
2.3 Shared Page Accounting
+--------------------------
Shared pages are accounted on the basis of the first touch approach. The
cgroup that first touches a page is accounted for the page. The principle
@@ -207,11 +226,13 @@ be backed into memory in force, charges for pages are accounted against the
caller of swapoff rather than the users of shmem.
2.4 Swap Extension (CONFIG_MEMCG_SWAP)
+--------------------------------------
Swap Extension allows you to record charge for swap. A swapped-in page is
charged back to original page allocator if possible.
When swap is accounted, following files are added.
+
- memory.memsw.usage_in_bytes.
- memory.memsw.limit_in_bytes.
@@ -224,14 +245,16 @@ In this case, setting memsw.limit_in_bytes=3G will prevent bad use of swap.
By using the memsw limit, you can avoid system OOM which can be caused by swap
shortage.
-* why 'memory+swap' rather than swap.
+**why 'memory+swap' rather than swap**
+
The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
to move account from memory to swap...there is no change in usage of
memory+swap. In other words, when we want to limit the usage of swap without
affecting global LRU, memory+swap limit is better than just limiting swap from
an OS point of view.
-* What happens when a cgroup hits memory.memsw.limit_in_bytes
+**What happens when a cgroup hits memory.memsw.limit_in_bytes**
+
When a cgroup hits memory.memsw.limit_in_bytes, it's useless to do swap-out
in this cgroup. Then, swap-out will not be done by cgroup routine and file
caches are dropped. But as mentioned above, global LRU can do swapout memory
@@ -239,6 +262,7 @@ from it for sanity of the system's memory management state. You can't forbid
it by cgroup.
2.5 Reclaim
+-----------
Each cgroup maintains a per cgroup LRU which has the same structure as
global VM. When a cgroup goes over its limit, we first try
@@ -251,29 +275,36 @@ The reclaim algorithm has not been modified for cgroups, except that
pages that are selected for reclaiming come from the per-cgroup LRU
list.
-NOTE: Reclaim does not work for the root cgroup, since we cannot set any
-limits on the root cgroup.
+NOTE:
+ Reclaim does not work for the root cgroup, since we cannot set any
+ limits on the root cgroup.
-Note2: When panic_on_oom is set to "2", the whole system will panic.
+Note2:
+ When panic_on_oom is set to "2", the whole system will panic.
When oom event notifier is registered, event will be delivered.
(See oom_control section)
2.6 Locking
+-----------
lock_page_cgroup()/unlock_page_cgroup() should not be called under
the i_pages lock.
Other lock order is following:
+
PG_locked.
- mm->page_table_lock
- pgdat->lru_lock
- lock_page_cgroup.
+ mm->page_table_lock
+ pgdat->lru_lock
+ lock_page_cgroup.
+
In many cases, just lock_page_cgroup() is called.
+
per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by
pgdat->lru_lock, it has no lock of its own.
2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM)
+-----------------------------------------------
With the Kernel memory extension, the Memory Controller is able to limit
the amount of kernel memory used by the system. Kernel memory is fundamentally
@@ -288,6 +319,7 @@ Kernel memory limits are not imposed for the root cgroup. Usage for the root
cgroup may or may not be accounted. The memory used is accumulated into
memory.kmem.usage_in_bytes, or in a separate counter when it makes sense.
(currently only for tcp).
+
The main "kmem" counter is fed into the main counter, so kmem charges will
also be visible from the user counter.
@@ -295,36 +327,42 @@ Currently no soft limit is implemented for kernel memory. It is future work
to trigger slab reclaim when those limits are reached.
2.7.1 Current Kernel Memory resources accounted
+-----------------------------------------------
-* stack pages: every process consumes some stack pages. By accounting into
-kernel memory, we prevent new processes from being created when the kernel
-memory usage is too high.
+stack pages:
+ every process consumes some stack pages. By accounting into
+ kernel memory, we prevent new processes from being created when the kernel
+ memory usage is too high.
-* slab pages: pages allocated by the SLAB or SLUB allocator are tracked. A copy
-of each kmem_cache is created every time the cache is touched by the first time
-from inside the memcg. The creation is done lazily, so some objects can still be
-skipped while the cache is being created. All objects in a slab page should
-belong to the same memcg. This only fails to hold when a task is migrated to a
-different memcg during the page allocation by the cache.
+slab pages:
+ pages allocated by the SLAB or SLUB allocator are tracked. A copy
+ of each kmem_cache is created every time the cache is touched by the first time
+ from inside the memcg. The creation is done lazily, so some objects can still be
+ skipped while the cache is being created. All objects in a slab page should
+ belong to the same memcg. This only fails to hold when a task is migrated to a
+ different memcg during the page allocation by the cache.
-* sockets memory pressure: some sockets protocols have memory pressure
-thresholds. The Memory Controller allows them to be controlled individually
-per cgroup, instead of globally.
+sockets memory pressure:
+ some sockets protocols have memory pressure
+ thresholds. The Memory Controller allows them to be controlled individually
+ per cgroup, instead of globally.
-* tcp memory pressure: sockets memory pressure for the tcp protocol.
+tcp memory pressure:
+ sockets memory pressure for the tcp protocol.
2.7.2 Common use cases
+----------------------
Because the "kmem" counter is fed to the main user counter, kernel memory can
never be limited completely independently of user memory. Say "U" is the user
limit, and "K" the kernel limit. There are three possible ways limits can be
set:
- U != 0, K = unlimited:
+U != 0, K = unlimited:
This is the standard memcg limitation mechanism already present before kmem
accounting. Kernel memory is completely ignored.
- U != 0, K < U:
+U != 0, K < U:
Kernel memory is a subset of the user memory. This setup is useful in
deployments where the total amount of memory per-cgroup is overcommited.
Overcommiting kernel memory limits is definitely not recommended, since the
@@ -332,19 +370,23 @@ set:
In this case, the admin could set up K so that the sum of all groups is
never greater than the total memory, and freely set U at the cost of his
QoS.
- WARNING: In the current implementation, memory reclaim will NOT be
+
+WARNING:
+ In the current implementation, memory reclaim will NOT be
triggered for a cgroup when it hits K while staying below U, which makes
this setup impractical.
- U != 0, K >= U:
+U != 0, K >= U:
Since kmem charges will also be fed to the user counter and reclaim will be
triggered for the cgroup for both kinds of memory. This setup gives the
admin a unified view of memory, and it is also useful for people who just
want to track kernel memory usage.
3. User Interface
+=================
3.0. Configuration
+------------------
a. Enable CONFIG_CGROUPS
b. Enable CONFIG_MEMCG
@@ -352,39 +394,53 @@ c. Enable CONFIG_MEMCG_SWAP (to use swap extension)
d. Enable CONFIG_MEMCG_KMEM (to use kmem extension)
3.1. Prepare the cgroups (see cgroups.txt, Why are cgroups needed?)
-# mount -t tmpfs none /sys/fs/cgroup
-# mkdir /sys/fs/cgroup/memory
-# mount -t cgroup none /sys/fs/cgroup/memory -o memory
+-------------------------------------------------------------------
+
+::
+
+ # mount -t tmpfs none /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/memory
+ # mount -t cgroup none /sys/fs/cgroup/memory -o memory
+
+3.2. Make the new group and move bash into it::
+
+ # mkdir /sys/fs/cgroup/memory/0
+ # echo $$ > /sys/fs/cgroup/memory/0/tasks
-3.2. Make the new group and move bash into it
-# mkdir /sys/fs/cgroup/memory/0
-# echo $$ > /sys/fs/cgroup/memory/0/tasks
+Since now we're in the 0 cgroup, we can alter the memory limit::
-Since now we're in the 0 cgroup, we can alter the memory limit:
-# echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
+ # echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
-NOTE: We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
-mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes, Gibibytes.)
+NOTE:
+ We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
+ mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes,
+ Gibibytes.)
-NOTE: We can write "-1" to reset the *.limit_in_bytes(unlimited).
-NOTE: We cannot set limits on the root cgroup any more.
+NOTE:
+ We can write "-1" to reset the ``*.limit_in_bytes(unlimited)``.
-# cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
-4194304
+NOTE:
+ We cannot set limits on the root cgroup any more.
-We can check the usage:
-# cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
-1216512
+::
+
+ # cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
+ 4194304
+
+We can check the usage::
+
+ # cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
+ 1216512
A successful write to this file does not guarantee a successful setting of
this limit to the value written into the file. This can be due to a
number of factors, such as rounding up to page boundaries or the total
availability of memory on the system. The user is required to re-read
-this file after a write to guarantee the value committed by the kernel.
+this file after a write to guarantee the value committed by the kernel::
-# echo 1 > memory.limit_in_bytes
-# cat memory.limit_in_bytes
-4096
+ # echo 1 > memory.limit_in_bytes
+ # cat memory.limit_in_bytes
+ 4096
The memory.failcnt field gives the number of times that the cgroup limit was
exceeded.
@@ -393,6 +449,7 @@ The memory.stat file gives accounting information. Now, the number of
caches, RSS and Active pages/Inactive pages are shown.
4. Testing
+==========
For testing features and implementation, see memcg_test.txt.
@@ -408,6 +465,7 @@ But the above two are testing extreme situations.
Trying usual test under memory controller is always helpful.
4.1 Troubleshooting
+-------------------
Sometimes a user might find that the application under a cgroup is
terminated by the OOM killer. There are several causes for this:
@@ -422,6 +480,7 @@ To know what happens, disabling OOM_Kill as per "10. OOM Control" (below) and
seeing what happens will be helpful.
4.2 Task migration
+------------------
When a task migrates from one cgroup to another, its charge is not
carried forward by default. The pages allocated from the original cgroup still
@@ -432,6 +491,7 @@ You can move charges of a task along with task migration.
See 8. "Move charges at task migration"
4.3 Removing a cgroup
+---------------------
A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
cgroup might have some charge associated with it, even though all
@@ -448,13 +508,15 @@ will be charged as a new owner of it.
About use_hierarchy, see Section 6.
-5. Misc. interfaces.
+5. Misc. interfaces
+===================
5.1 force_empty
+---------------
memory.force_empty interface is provided to make cgroup's memory usage empty.
- When writing anything to this
+ When writing anything to this::
- # echo 0 > memory.force_empty
+ # echo 0 > memory.force_empty
the cgroup will be reclaimed and as many pages reclaimed as possible.
@@ -471,50 +533,61 @@ About use_hierarchy, see Section 6.
About use_hierarchy, see Section 6.
5.2 stat file
+-------------
memory.stat file includes following statistics
-# per-memory cgroup local status
-cache - # of bytes of page cache memory.
-rss - # of bytes of anonymous and swap cache memory (includes
+per-memory cgroup local status
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+=============== ===============================================================
+cache # of bytes of page cache memory.
+rss # of bytes of anonymous and swap cache memory (includes
transparent hugepages).
-rss_huge - # of bytes of anonymous transparent hugepages.
-mapped_file - # of bytes of mapped file (includes tmpfs/shmem)
-pgpgin - # of charging events to the memory cgroup. The charging
+rss_huge # of bytes of anonymous transparent hugepages.
+mapped_file # of bytes of mapped file (includes tmpfs/shmem)
+pgpgin # of charging events to the memory cgroup. The charging
event happens each time a page is accounted as either mapped
anon page(RSS) or cache page(Page Cache) to the cgroup.
-pgpgout - # of uncharging events to the memory cgroup. The uncharging
+pgpgout # of uncharging events to the memory cgroup. The uncharging
event happens each time a page is unaccounted from the cgroup.
-swap - # of bytes of swap usage
-dirty - # of bytes that are waiting to get written back to the disk.
-writeback - # of bytes of file/anon cache that are queued for syncing to
+swap # of bytes of swap usage
+dirty # of bytes that are waiting to get written back to the disk.
+writeback # of bytes of file/anon cache that are queued for syncing to
disk.
-inactive_anon - # of bytes of anonymous and swap cache memory on inactive
+inactive_anon # of bytes of anonymous and swap cache memory on inactive
LRU list.
-active_anon - # of bytes of anonymous and swap cache memory on active
+active_anon # of bytes of anonymous and swap cache memory on active
LRU list.
-inactive_file - # of bytes of file-backed memory on inactive LRU list.
-active_file - # of bytes of file-backed memory on active LRU list.
-unevictable - # of bytes of memory that cannot be reclaimed (mlocked etc).
-
-# status considering hierarchy (see memory.use_hierarchy settings)
-
-hierarchical_memory_limit - # of bytes of memory limit with regard to hierarchy
- under which the memory cgroup is
-hierarchical_memsw_limit - # of bytes of memory+swap limit with regard to
- hierarchy under which memory cgroup is.
-
-total_<counter> - # hierarchical version of <counter>, which in
- addition to the cgroup's own value includes the
- sum of all hierarchical children's values of
- <counter>, i.e. total_cache
-
-# The following additional stats are dependent on CONFIG_DEBUG_VM.
-
-recent_rotated_anon - VM internal parameter. (see mm/vmscan.c)
-recent_rotated_file - VM internal parameter. (see mm/vmscan.c)
-recent_scanned_anon - VM internal parameter. (see mm/vmscan.c)
-recent_scanned_file - VM internal parameter. (see mm/vmscan.c)
+inactive_file # of bytes of file-backed memory on inactive LRU list.
+active_file # of bytes of file-backed memory on active LRU list.
+unevictable # of bytes of memory that cannot be reclaimed (mlocked etc).
+=============== ===============================================================
+
+status considering hierarchy (see memory.use_hierarchy settings)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+========================= ===================================================
+hierarchical_memory_limit # of bytes of memory limit with regard to hierarchy
+ under which the memory cgroup is
+hierarchical_memsw_limit # of bytes of memory+swap limit with regard to
+ hierarchy under which memory cgroup is.
+
+total_<counter> # hierarchical version of <counter>, which in
+ addition to the cgroup's own value includes the
+ sum of all hierarchical children's values of
+ <counter>, i.e. total_cache
+========================= ===================================================
+
+The following additional stats are dependent on CONFIG_DEBUG_VM
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+========================= ========================================
+recent_rotated_anon VM internal parameter. (see mm/vmscan.c)
+recent_rotated_file VM internal parameter. (see mm/vmscan.c)
+recent_scanned_anon VM internal parameter. (see mm/vmscan.c)
+recent_scanned_file VM internal parameter. (see mm/vmscan.c)
+========================= ========================================
Memo:
recent_rotated means recent frequency of LRU rotation.
@@ -525,12 +598,15 @@ Note:
Only anonymous and swap cache memory is listed as part of 'rss' stat.
This should not be confused with the true 'resident set size' or the
amount of physical memory used by the cgroup.
+
'rss + mapped_file" will give you resident set size of cgroup.
+
(Note: file and shmem may be shared among other cgroups. In that case,
- mapped_file is accounted only when the memory cgroup is owner of page
- cache.)
+ mapped_file is accounted only when the memory cgroup is owner of page
+ cache.)
5.3 swappiness
+--------------
Overrides /proc/sys/vm/swappiness for the particular group. The tunable
in the root cgroup corresponds to the global swappiness setting.
@@ -541,16 +617,19 @@ there is a swap storage available. This might lead to memcg OOM killer
if there are no file pages to reclaim.
5.4 failcnt
+-----------
A memory cgroup provides memory.failcnt and memory.memsw.failcnt files.
This failcnt(== failure count) shows the number of times that a usage counter
hit its limit. When a memory cgroup hits a limit, failcnt increases and
memory under it will be reclaimed.
-You can reset failcnt by writing 0 to failcnt file.
-# echo 0 > .../memory.failcnt
+You can reset failcnt by writing 0 to failcnt file::
+
+ # echo 0 > .../memory.failcnt
5.5 usage_in_bytes
+------------------
For efficiency, as other kernel components, memory cgroup uses some optimization
to avoid unnecessary cacheline false sharing. usage_in_bytes is affected by the
@@ -560,6 +639,7 @@ If you want to know more exact memory usage, you should use RSS+CACHE(+SWAP)
value in memory.stat(see 5.2).
5.6 numa_stat
+-------------
This is similar to numa_maps but operates on a per-memcg basis. This is
useful for providing visibility into the numa locality information within
@@ -571,22 +651,23 @@ Each memcg's numa_stat file includes "total", "file", "anon" and "unevictable"
per-node page counts including "hierarchical_<counter>" which sums up all
hierarchical children's values in addition to the memcg's own value.
-The output format of memory.numa_stat is:
+The output format of memory.numa_stat is::
-total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
-file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
-anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
-unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
-hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
The "total" count is sum of file + anon + unevictable.
6. Hierarchy support
+====================
The memory controller supports a deep hierarchy and hierarchical accounting.
The hierarchy is created by creating the appropriate cgroups in the
cgroup filesystem. Consider for example, the following cgroup filesystem
-hierarchy
+hierarchy::
root
/ | \
@@ -603,24 +684,28 @@ limit, the reclaim algorithm reclaims from the tasks in the ancestor and the
children of the ancestor.
6.1 Enabling hierarchical accounting and reclaim
+------------------------------------------------
A memory cgroup by default disables the hierarchy feature. Support
-can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup
+can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup::
-# echo 1 > memory.use_hierarchy
+ # echo 1 > memory.use_hierarchy
-The feature can be disabled by
+The feature can be disabled by::
-# echo 0 > memory.use_hierarchy
+ # echo 0 > memory.use_hierarchy
-NOTE1: Enabling/disabling will fail if either the cgroup already has other
+NOTE1:
+ Enabling/disabling will fail if either the cgroup already has other
cgroups created below it, or if the parent cgroup has use_hierarchy
enabled.
-NOTE2: When panic_on_oom is set to "2", the whole system will panic in
+NOTE2:
+ When panic_on_oom is set to "2", the whole system will panic in
case of an OOM event in any cgroup.
7. Soft limits
+==============
Soft limits allow for greater sharing of memory. The idea behind soft limits
is to allow control groups to use as much of the memory as needed, provided
@@ -640,22 +725,26 @@ hints/setup. Currently soft limit based reclaim is set up such that
it gets invoked from balance_pgdat (kswapd).
7.1 Interface
+-------------
Soft limits can be setup by using the following commands (in this example we
-assume a soft limit of 256 MiB)
+assume a soft limit of 256 MiB)::
-# echo 256M > memory.soft_limit_in_bytes
+ # echo 256M > memory.soft_limit_in_bytes
-If we want to change this to 1G, we can at any time use
+If we want to change this to 1G, we can at any time use::
-# echo 1G > memory.soft_limit_in_bytes
+ # echo 1G > memory.soft_limit_in_bytes
-NOTE1: Soft limits take effect over a long period of time, since they involve
+NOTE1:
+ Soft limits take effect over a long period of time, since they involve
reclaiming memory for balancing between memory cgroups
-NOTE2: It is recommended to set the soft limit always below the hard limit,
+NOTE2:
+ It is recommended to set the soft limit always below the hard limit,
otherwise the hard limit will take precedence.
8. Move charges at task migration
+=================================
Users can move charges associated with a task along with task migration, that
is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
@@ -663,60 +752,71 @@ This feature is not supported in !CONFIG_MMU environments because of lack of
page tables.
8.1 Interface
+-------------
This feature is disabled by default. It can be enabled (and disabled again) by
writing to memory.move_charge_at_immigrate of the destination cgroup.
-If you want to enable it:
+If you want to enable it::
-# echo (some positive value) > memory.move_charge_at_immigrate
+ # echo (some positive value) > memory.move_charge_at_immigrate
-Note: Each bits of move_charge_at_immigrate has its own meaning about what type
+Note:
+ Each bits of move_charge_at_immigrate has its own meaning about what type
of charges should be moved. See 8.2 for details.
-Note: Charges are moved only when you move mm->owner, in other words,
+Note:
+ Charges are moved only when you move mm->owner, in other words,
a leader of a thread group.
-Note: If we cannot find enough space for the task in the destination cgroup, we
+Note:
+ If we cannot find enough space for the task in the destination cgroup, we
try to make space by reclaiming memory. Task migration may fail if we
cannot make enough space.
-Note: It can take several seconds if you move charges much.
+Note:
+ It can take several seconds if you move charges much.
-And if you want disable it again:
+And if you want disable it again::
-# echo 0 > memory.move_charge_at_immigrate
+ # echo 0 > memory.move_charge_at_immigrate
8.2 Type of charges which can be moved
+--------------------------------------
Each bit in move_charge_at_immigrate has its own meaning about what type of
charges should be moved. But in any case, it must be noted that an account of
a page or a swap can be moved only when it is charged to the task's current
(old) memory cgroup.
- bit | what type of charges would be moved ?
- -----+------------------------------------------------------------------------
- 0 | A charge of an anonymous page (or swap of it) used by the target task.
- | You must enable Swap Extension (see 2.4) to enable move of swap charges.
- -----+------------------------------------------------------------------------
- 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory)
- | and swaps of tmpfs file) mmapped by the target task. Unlike the case of
- | anonymous pages, file pages (and swaps) in the range mmapped by the task
- | will be moved even if the task hasn't done page fault, i.e. they might
- | not be the task's "RSS", but other task's "RSS" that maps the same file.
- | And mapcount of the page is ignored (the page can be moved even if
- | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to
- | enable move of swap charges.
++---+--------------------------------------------------------------------------+
+|bit| what type of charges would be moved ? |
++===+==========================================================================+
+| 0 | A charge of an anonymous page (or swap of it) used by the target task. |
+| | You must enable Swap Extension (see 2.4) to enable move of swap charges. |
++---+--------------------------------------------------------------------------+
+| 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory) |
+| | and swaps of tmpfs file) mmapped by the target task. Unlike the case of |
+| | anonymous pages, file pages (and swaps) in the range mmapped by the task |
+| | will be moved even if the task hasn't done page fault, i.e. they might |
+| | not be the task's "RSS", but other task's "RSS" that maps the same file. |
+| | And mapcount of the page is ignored (the page can be moved even if |
+| | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to |
+| | enable move of swap charges. |
++---+--------------------------------------------------------------------------+
8.3 TODO
+--------
- All of moving charge operations are done under cgroup_mutex. It's not good
behavior to hold the mutex too long, so we may need some trick.
9. Memory thresholds
+====================
Memory cgroup implements memory thresholds using the cgroups notification
API (see cgroups.txt). It allows to register multiple memory and memsw
thresholds and gets notifications when it crosses.
To register a threshold, an application must:
+
- create an eventfd using eventfd(2);
- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
- write string like "<event_fd> <fd of memory.usage_in_bytes> <threshold>" to
@@ -728,6 +828,7 @@ threshold in any direction.
It's applicable for root and non-root cgroup.
10. OOM Control
+===============
memory.oom_control file is for OOM notification and other controls.
@@ -736,6 +837,7 @@ API (See cgroups.txt). It allows to register multiple OOM notification
delivery and gets notification when OOM happens.
To register a notifier, an application must:
+
- create an eventfd using eventfd(2)
- open memory.oom_control file
- write string like "<event_fd> <fd of memory.oom_control>" to
@@ -752,8 +854,11 @@ If OOM-killer is disabled, tasks under cgroup will hang/sleep
in memory cgroup's OOM-waitqueue when they request accountable memory.
For running them, you have to relax the memory cgroup's OOM status by
+
* enlarge limit or reduce usage.
+
To reduce usage,
+
* kill some tasks.
* move some tasks to other group with account migration.
* remove some files (on tmpfs?)
@@ -761,11 +866,14 @@ To reduce usage,
Then, stopped tasks will work again.
At reading, current status of OOM is shown.
- oom_kill_disable 0 or 1 (if 1, oom-killer is disabled)
- under_oom 0 or 1 (if 1, the memory cgroup is under OOM, tasks may
- be stopped.)
+
+ - oom_kill_disable 0 or 1
+ (if 1, oom-killer is disabled)
+ - under_oom 0 or 1
+ (if 1, the memory cgroup is under OOM, tasks may be stopped.)
11. Memory Pressure
+===================
The pressure level notifications can be used to monitor the memory
allocation cost; based on the pressure, applications can implement
@@ -840,21 +948,22 @@ Test:
Here is a small script example that makes a new cgroup, sets up a
memory limit, sets up a notification in the cgroup and then makes child
- cgroup experience a critical pressure:
+ cgroup experience a critical pressure::
- # cd /sys/fs/cgroup/memory/
- # mkdir foo
- # cd foo
- # cgroup_event_listener memory.pressure_level low,hierarchy &
- # echo 8000000 > memory.limit_in_bytes
- # echo 8000000 > memory.memsw.limit_in_bytes
- # echo $$ > tasks
- # dd if=/dev/zero | read x
+ # cd /sys/fs/cgroup/memory/
+ # mkdir foo
+ # cd foo
+ # cgroup_event_listener memory.pressure_level low,hierarchy &
+ # echo 8000000 > memory.limit_in_bytes
+ # echo 8000000 > memory.memsw.limit_in_bytes
+ # echo $$ > tasks
+ # dd if=/dev/zero | read x
(Expect a bunch of notifications, and eventually, the oom-killer will
trigger.)
12. TODO
+========
1. Make per-cgroup scanner reclaim not-shared pages first
2. Teach controller to account for shared-pages
@@ -862,11 +971,13 @@ Test:
not yet hit but the usage is getting closer
Summary
+=======
Overall, the memory controller has been a stable controller and has been
commented and discussed quite extensively in the community.
References
+==========
1. Singh, Balbir. RFC: Memory Controller, http://lwn.net/Articles/206697/
2. Singh, Balbir. Memory Controller (RSS Control),
diff --git a/Documentation/cgroup-v1/net_cls.txt b/Documentation/cgroup-v1/net_cls.rst
index ec182346dea2..a2cf272af7a0 100644
--- a/Documentation/cgroup-v1/net_cls.txt
+++ b/Documentation/cgroup-v1/net_cls.rst
@@ -1,5 +1,6 @@
+=========================
Network classifier cgroup
--------------------------
+=========================
The Network classifier cgroup provides an interface to
tag network packets with a class identifier (classid).
@@ -17,23 +18,27 @@ values is 0xAAAABBBB; AAAA is the major handle number and BBBB
is the minor handle number.
Reading net_cls.classid yields a decimal result.
-Example:
-mkdir /sys/fs/cgroup/net_cls
-mount -t cgroup -onet_cls net_cls /sys/fs/cgroup/net_cls
-mkdir /sys/fs/cgroup/net_cls/0
-echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
- - setting a 10:1 handle.
+Example::
-cat /sys/fs/cgroup/net_cls/0/net_cls.classid
-1048577
+ mkdir /sys/fs/cgroup/net_cls
+ mount -t cgroup -onet_cls net_cls /sys/fs/cgroup/net_cls
+ mkdir /sys/fs/cgroup/net_cls/0
+ echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
-configuring tc:
-tc qdisc add dev eth0 root handle 10: htb
+- setting a 10:1 handle::
-tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
- - creating traffic class 10:1
+ cat /sys/fs/cgroup/net_cls/0/net_cls.classid
+ 1048577
-tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
+- configuring tc::
-configuring iptables, basic example:
-iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
+ tc qdisc add dev eth0 root handle 10: htb
+ tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
+
+- creating traffic class 10:1::
+
+ tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
+
+configuring iptables, basic example::
+
+ iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
diff --git a/Documentation/cgroup-v1/net_prio.txt b/Documentation/cgroup-v1/net_prio.rst
index a82cbd28ea8a..b40905871c64 100644
--- a/Documentation/cgroup-v1/net_prio.txt
+++ b/Documentation/cgroup-v1/net_prio.rst
@@ -1,5 +1,6 @@
+=======================
Network priority cgroup
--------------------------
+=======================
The Network priority cgroup provides an interface to allow an administrator to
dynamically set the priority of network traffic generated by various
@@ -14,9 +15,9 @@ SO_PRIORITY socket option. This however, is not always possible because:
This cgroup allows an administrator to assign a process to a group which defines
the priority of egress traffic on a given interface. Network priority groups can
-be created by first mounting the cgroup filesystem.
+be created by first mounting the cgroup filesystem::
-# mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
+ # mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
With the above step, the initial group acting as the parent accounting group
becomes visible at '/sys/fs/cgroup/net_prio'. This group includes all tasks in
@@ -25,17 +26,18 @@ the system. '/sys/fs/cgroup/net_prio/tasks' lists the tasks in this cgroup.
Each net_prio cgroup contains two files that are subsystem specific
net_prio.prioidx
-This file is read-only, and is simply informative. It contains a unique integer
-value that the kernel uses as an internal representation of this cgroup.
+ This file is read-only, and is simply informative. It contains a unique
+ integer value that the kernel uses as an internal representation of this
+ cgroup.
net_prio.ifpriomap
-This file contains a map of the priorities assigned to traffic originating from
-processes in this group and egressing the system on various interfaces. It
-contains a list of tuples in the form <ifname priority>. Contents of this file
-can be modified by echoing a string into the file using the same tuple format.
-for example:
+ This file contains a map of the priorities assigned to traffic originating
+ from processes in this group and egressing the system on various interfaces.
+ It contains a list of tuples in the form <ifname priority>. Contents of this
+ file can be modified by echoing a string into the file using the same tuple
+ format. For example::
-echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
+ echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
This command would force any traffic originating from processes belonging to the
iscsi net_prio cgroup and egressing on interface eth0 to have the priority of
diff --git a/Documentation/cgroup-v1/pids.txt b/Documentation/cgroup-v1/pids.rst
index e105d708ccde..6acebd9e72c8 100644
--- a/Documentation/cgroup-v1/pids.txt
+++ b/Documentation/cgroup-v1/pids.rst
@@ -1,5 +1,6 @@
- Process Number Controller
- =========================
+=========================
+Process Number Controller
+=========================
Abstract
--------
@@ -34,55 +35,58 @@ pids.current tracks all child cgroup hierarchies, so parent/pids.current is a
superset of parent/child/pids.current.
The pids.events file contains event counters:
+
- max: Number of times fork failed because limit was hit.
Example
-------
-First, we mount the pids controller:
-# mkdir -p /sys/fs/cgroup/pids
-# mount -t cgroup -o pids none /sys/fs/cgroup/pids
+First, we mount the pids controller::
+
+ # mkdir -p /sys/fs/cgroup/pids
+ # mount -t cgroup -o pids none /sys/fs/cgroup/pids
+
+Then we create a hierarchy, set limits and attach processes to it::
-Then we create a hierarchy, set limits and attach processes to it:
-# mkdir -p /sys/fs/cgroup/pids/parent/child
-# echo 2 > /sys/fs/cgroup/pids/parent/pids.max
-# echo $$ > /sys/fs/cgroup/pids/parent/cgroup.procs
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-#
+ # mkdir -p /sys/fs/cgroup/pids/parent/child
+ # echo 2 > /sys/fs/cgroup/pids/parent/pids.max
+ # echo $$ > /sys/fs/cgroup/pids/parent/cgroup.procs
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ #
It should be noted that attempts to overcome the set limit (2 in this case) will
-fail:
+fail::
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-# ( /bin/echo "Here's some processes for you." | cat )
-sh: fork: Resource temporary unavailable
-#
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ # ( /bin/echo "Here's some processes for you." | cat )
+ sh: fork: Resource temporary unavailable
+ #
Even if we migrate to a child cgroup (which doesn't have a set limit), we will
not be able to overcome the most stringent limit in the hierarchy (in this case,
-parent's):
-
-# echo $$ > /sys/fs/cgroup/pids/parent/child/cgroup.procs
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-# cat /sys/fs/cgroup/pids/parent/child/pids.current
-2
-# cat /sys/fs/cgroup/pids/parent/child/pids.max
-max
-# ( /bin/echo "Here's some processes for you." | cat )
-sh: fork: Resource temporary unavailable
-#
+parent's)::
+
+ # echo $$ > /sys/fs/cgroup/pids/parent/child/cgroup.procs
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ # cat /sys/fs/cgroup/pids/parent/child/pids.current
+ 2
+ # cat /sys/fs/cgroup/pids/parent/child/pids.max
+ max
+ # ( /bin/echo "Here's some processes for you." | cat )
+ sh: fork: Resource temporary unavailable
+ #
We can set a limit that is smaller than pids.current, which will stop any new
processes from being forked at all (note that the shell itself counts towards
-pids.current):
-
-# echo 1 > /sys/fs/cgroup/pids/parent/pids.max
-# /bin/echo "We can't even spawn a single process now."
-sh: fork: Resource temporary unavailable
-# echo 0 > /sys/fs/cgroup/pids/parent/pids.max
-# /bin/echo "We can't even spawn a single process now."
-sh: fork: Resource temporary unavailable
-#
+pids.current)::
+
+ # echo 1 > /sys/fs/cgroup/pids/parent/pids.max
+ # /bin/echo "We can't even spawn a single process now."
+ sh: fork: Resource temporary unavailable
+ # echo 0 > /sys/fs/cgroup/pids/parent/pids.max
+ # /bin/echo "We can't even spawn a single process now."
+ sh: fork: Resource temporary unavailable
+ #
diff --git a/Documentation/cgroup-v1/rdma.txt b/Documentation/cgroup-v1/rdma.rst
index 9bdb7fd03f83..2fcb0a9bf790 100644
--- a/Documentation/cgroup-v1/rdma.txt
+++ b/Documentation/cgroup-v1/rdma.rst
@@ -1,16 +1,17 @@
- RDMA Controller
- ----------------
+===============
+RDMA Controller
+===============
-Contents
---------
+.. Contents
-1. Overview
- 1-1. What is RDMA controller?
- 1-2. Why RDMA controller needed?
- 1-3. How is RDMA controller implemented?
-2. Usage Examples
+ 1. Overview
+ 1-1. What is RDMA controller?
+ 1-2. Why RDMA controller needed?
+ 1-3. How is RDMA controller implemented?
+ 2. Usage Examples
1. Overview
+===========
1-1. What is RDMA controller?
-----------------------------
@@ -83,27 +84,34 @@ what is configured by user for a given cgroup and what is supported by
IB device.
Following resources can be accounted by rdma controller.
+
+ ========== =============================
hca_handle Maximum number of HCA Handles
hca_object Maximum number of HCA Objects
+ ========== =============================
2. Usage Examples
------------------
-
-(a) Configure resource limit:
-echo mlx4_0 hca_handle=2 hca_object=2000 > /sys/fs/cgroup/rdma/1/rdma.max
-echo ocrdma1 hca_handle=3 > /sys/fs/cgroup/rdma/2/rdma.max
-
-(b) Query resource limit:
-cat /sys/fs/cgroup/rdma/2/rdma.max
-#Output:
-mlx4_0 hca_handle=2 hca_object=2000
-ocrdma1 hca_handle=3 hca_object=max
-
-(c) Query current usage:
-cat /sys/fs/cgroup/rdma/2/rdma.current
-#Output:
-mlx4_0 hca_handle=1 hca_object=20
-ocrdma1 hca_handle=1 hca_object=23
-
-(d) Delete resource limit:
-echo echo mlx4_0 hca_handle=max hca_object=max > /sys/fs/cgroup/rdma/1/rdma.max
+=================
+
+(a) Configure resource limit::
+
+ echo mlx4_0 hca_handle=2 hca_object=2000 > /sys/fs/cgroup/rdma/1/rdma.max
+ echo ocrdma1 hca_handle=3 > /sys/fs/cgroup/rdma/2/rdma.max
+
+(b) Query resource limit::
+
+ cat /sys/fs/cgroup/rdma/2/rdma.max
+ #Output:
+ mlx4_0 hca_handle=2 hca_object=2000
+ ocrdma1 hca_handle=3 hca_object=max
+
+(c) Query current usage::
+
+ cat /sys/fs/cgroup/rdma/2/rdma.current
+ #Output:
+ mlx4_0 hca_handle=1 hca_object=20
+ ocrdma1 hca_handle=1 hca_object=23
+
+(d) Delete resource limit::
+
+ echo echo mlx4_0 hca_handle=max hca_object=max > /sys/fs/cgroup/rdma/1/rdma.max
diff --git a/Documentation/conf.py b/Documentation/conf.py
index 7ace3f8852bd..3b2397bcb565 100644
--- a/Documentation/conf.py
+++ b/Documentation/conf.py
@@ -34,7 +34,8 @@ needs_sphinx = '1.3'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
-extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain', 'kfigure', 'sphinx.ext.ifconfig']
+extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain',
+ 'kfigure', 'sphinx.ext.ifconfig', 'automarkup']
# The name of the math extension changed on Sphinx 1.4
if (major == 1 and minor > 3) or (major > 1):
@@ -200,7 +201,7 @@ html_context = {
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
-#html_use_smartypants = True
+html_use_smartypants = False
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
diff --git a/Documentation/core-api/circular-buffers.rst b/Documentation/core-api/circular-buffers.rst
index 53e51caa3347..50966f66e398 100644
--- a/Documentation/core-api/circular-buffers.rst
+++ b/Documentation/core-api/circular-buffers.rst
@@ -3,7 +3,7 @@ Circular Buffers
================
:Author: David Howells <dhowells@redhat.com>
-:Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+:Author: Paul E. McKenney <paulmck@linux.ibm.com>
Linux provides a number of features that can be used to implement circular
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst
index ee1bb8983a88..322ac954b390 100644
--- a/Documentation/core-api/index.rst
+++ b/Documentation/core-api/index.rst
@@ -34,6 +34,8 @@ Core utilities
timekeeping
boot-time-mm
memory-hotplug
+ protection-keys
+ ../RCU/index
Interfaces for kernel debugging
diff --git a/Documentation/core-api/kernel-api.rst b/Documentation/core-api/kernel-api.rst
index a29c99d13331..08af5caf036d 100644
--- a/Documentation/core-api/kernel-api.rst
+++ b/Documentation/core-api/kernel-api.rst
@@ -33,6 +33,9 @@ String Conversions
.. kernel-doc:: lib/kstrtox.c
:export:
+.. kernel-doc:: lib/string_helpers.c
+ :export:
+
String Manipulation
-------------------
@@ -51,7 +54,7 @@ The Linux kernel provides more basic utility functions.
Bit Operations
--------------
-.. kernel-doc:: arch/x86/include/asm/bitops.h
+.. kernel-doc:: include/asm-generic/bitops-instrumented.h
:internal:
Bitmap Operations
@@ -138,6 +141,15 @@ Base 2 log and power Functions
.. kernel-doc:: include/linux/log2.h
:internal:
+Integer power Functions
+-----------------------
+
+.. kernel-doc:: lib/math/int_pow.c
+ :export:
+
+.. kernel-doc:: lib/math/int_sqrt.c
+ :export:
+
Division Functions
------------------
@@ -358,8 +370,6 @@ Read-Copy Update (RCU)
.. kernel-doc:: kernel/rcu/tree.c
-.. kernel-doc:: kernel/rcu/tree_plugin.h
-
.. kernel-doc:: kernel/rcu/tree_exp.h
.. kernel-doc:: kernel/rcu/update.c
diff --git a/Documentation/x86/protection-keys.rst b/Documentation/core-api/protection-keys.rst
index 49d9833af871..49d9833af871 100644
--- a/Documentation/x86/protection-keys.rst
+++ b/Documentation/core-api/protection-keys.rst
diff --git a/Documentation/core-api/timekeeping.rst b/Documentation/core-api/timekeeping.rst
index 93cbeb9daec0..c0ffa30c7c37 100644
--- a/Documentation/core-api/timekeeping.rst
+++ b/Documentation/core-api/timekeeping.rst
@@ -65,7 +65,7 @@ different format depending on what is required by the user:
.. c:function:: u64 ktime_get_ns( void )
u64 ktime_get_boottime_ns( void )
u64 ktime_get_real_ns( void )
- u64 ktime_get_tai_ns( void )
+ u64 ktime_get_clocktai_ns( void )
u64 ktime_get_raw_ns( void )
Same as the plain ktime_get functions, but returning a u64 number
@@ -99,19 +99,23 @@ Coarse and fast_ns access
Some additional variants exist for more specialized cases:
-.. c:function:: ktime_t ktime_get_coarse_boottime( void )
+.. c:function:: ktime_t ktime_get_coarse( void )
+ ktime_t ktime_get_coarse_boottime( void )
ktime_t ktime_get_coarse_real( void )
ktime_t ktime_get_coarse_clocktai( void )
- ktime_t ktime_get_coarse_raw( void )
+
+.. c:function:: u64 ktime_get_coarse_ns( void )
+ u64 ktime_get_coarse_boottime_ns( void )
+ u64 ktime_get_coarse_real_ns( void )
+ u64 ktime_get_coarse_clocktai_ns( void )
.. c:function:: void ktime_get_coarse_ts64( struct timespec64 * )
void ktime_get_coarse_boottime_ts64( struct timespec64 * )
void ktime_get_coarse_real_ts64( struct timespec64 * )
void ktime_get_coarse_clocktai_ts64( struct timespec64 * )
- void ktime_get_coarse_raw_ts64( struct timespec64 * )
These are quicker than the non-coarse versions, but less accurate,
- corresponding to CLOCK_MONONOTNIC_COARSE and CLOCK_REALTIME_COARSE
+ corresponding to CLOCK_MONOTONIC_COARSE and CLOCK_REALTIME_COARSE
in user space, along with the equivalent boottime/tai/raw
timebase not available in user space.
diff --git a/Documentation/core-api/xarray.rst b/Documentation/core-api/xarray.rst
index ef6f9f98f595..fcedc5349ace 100644
--- a/Documentation/core-api/xarray.rst
+++ b/Documentation/core-api/xarray.rst
@@ -30,27 +30,27 @@ it called marks. Each mark may be set or cleared independently of
the others. You can iterate over entries which are marked.
Normal pointers may be stored in the XArray directly. They must be 4-byte
-aligned, which is true for any pointer returned from :c:func:`kmalloc` and
-:c:func:`alloc_page`. It isn't true for arbitrary user-space pointers,
+aligned, which is true for any pointer returned from kmalloc() and
+alloc_page(). It isn't true for arbitrary user-space pointers,
nor for function pointers. You can store pointers to statically allocated
objects, as long as those objects have an alignment of at least 4.
You can also store integers between 0 and ``LONG_MAX`` in the XArray.
-You must first convert it into an entry using :c:func:`xa_mk_value`.
+You must first convert it into an entry using xa_mk_value().
When you retrieve an entry from the XArray, you can check whether it is
-a value entry by calling :c:func:`xa_is_value`, and convert it back to
-an integer by calling :c:func:`xa_to_value`.
+a value entry by calling xa_is_value(), and convert it back to
+an integer by calling xa_to_value().
Some users want to store tagged pointers instead of using the marks
-described above. They can call :c:func:`xa_tag_pointer` to create an
-entry with a tag, :c:func:`xa_untag_pointer` to turn a tagged entry
-back into an untagged pointer and :c:func:`xa_pointer_tag` to retrieve
+described above. They can call xa_tag_pointer() to create an
+entry with a tag, xa_untag_pointer() to turn a tagged entry
+back into an untagged pointer and xa_pointer_tag() to retrieve
the tag of an entry. Tagged pointers use the same bits that are used
to distinguish value entries from normal pointers, so each user must
decide whether they want to store value entries or tagged pointers in
any particular XArray.
-The XArray does not support storing :c:func:`IS_ERR` pointers as some
+The XArray does not support storing IS_ERR() pointers as some
conflict with value entries or internal entries.
An unusual feature of the XArray is the ability to create entries which
@@ -64,89 +64,89 @@ entry will cause the XArray to forget about the range.
Normal API
==========
-Start by initialising an XArray, either with :c:func:`DEFINE_XARRAY`
-for statically allocated XArrays or :c:func:`xa_init` for dynamically
+Start by initialising an XArray, either with DEFINE_XARRAY()
+for statically allocated XArrays or xa_init() for dynamically
allocated ones. A freshly-initialised XArray contains a ``NULL``
pointer at every index.
-You can then set entries using :c:func:`xa_store` and get entries
-using :c:func:`xa_load`. xa_store will overwrite any entry with the
+You can then set entries using xa_store() and get entries
+using xa_load(). xa_store will overwrite any entry with the
new entry and return the previous entry stored at that index. You can
-use :c:func:`xa_erase` instead of calling :c:func:`xa_store` with a
+use xa_erase() instead of calling xa_store() with a
``NULL`` entry. There is no difference between an entry that has never
been stored to, one that has been erased and one that has most recently
had ``NULL`` stored to it.
You can conditionally replace an entry at an index by using
-:c:func:`xa_cmpxchg`. Like :c:func:`cmpxchg`, it will only succeed if
+xa_cmpxchg(). Like cmpxchg(), it will only succeed if
the entry at that index has the 'old' value. It also returns the entry
which was at that index; if it returns the same entry which was passed as
-'old', then :c:func:`xa_cmpxchg` succeeded.
+'old', then xa_cmpxchg() succeeded.
If you want to only store a new entry to an index if the current entry
-at that index is ``NULL``, you can use :c:func:`xa_insert` which
+at that index is ``NULL``, you can use xa_insert() which
returns ``-EBUSY`` if the entry is not empty.
You can enquire whether a mark is set on an entry by using
-:c:func:`xa_get_mark`. If the entry is not ``NULL``, you can set a mark
-on it by using :c:func:`xa_set_mark` and remove the mark from an entry by
-calling :c:func:`xa_clear_mark`. You can ask whether any entry in the
-XArray has a particular mark set by calling :c:func:`xa_marked`.
+xa_get_mark(). If the entry is not ``NULL``, you can set a mark
+on it by using xa_set_mark() and remove the mark from an entry by
+calling xa_clear_mark(). You can ask whether any entry in the
+XArray has a particular mark set by calling xa_marked().
You can copy entries out of the XArray into a plain array by calling
-:c:func:`xa_extract`. Or you can iterate over the present entries in
-the XArray by calling :c:func:`xa_for_each`. You may prefer to use
-:c:func:`xa_find` or :c:func:`xa_find_after` to move to the next present
+xa_extract(). Or you can iterate over the present entries in
+the XArray by calling xa_for_each(). You may prefer to use
+xa_find() or xa_find_after() to move to the next present
entry in the XArray.
-Calling :c:func:`xa_store_range` stores the same entry in a range
+Calling xa_store_range() stores the same entry in a range
of indices. If you do this, some of the other operations will behave
in a slightly odd way. For example, marking the entry at one index
may result in the entry being marked at some, but not all of the other
indices. Storing into one index may result in the entry retrieved by
some, but not all of the other indices changing.
-Sometimes you need to ensure that a subsequent call to :c:func:`xa_store`
-will not need to allocate memory. The :c:func:`xa_reserve` function
+Sometimes you need to ensure that a subsequent call to xa_store()
+will not need to allocate memory. The xa_reserve() function
will store a reserved entry at the indicated index. Users of the
normal API will see this entry as containing ``NULL``. If you do
-not need to use the reserved entry, you can call :c:func:`xa_release`
+not need to use the reserved entry, you can call xa_release()
to remove the unused entry. If another user has stored to the entry
-in the meantime, :c:func:`xa_release` will do nothing; if instead you
-want the entry to become ``NULL``, you should use :c:func:`xa_erase`.
-Using :c:func:`xa_insert` on a reserved entry will fail.
+in the meantime, xa_release() will do nothing; if instead you
+want the entry to become ``NULL``, you should use xa_erase().
+Using xa_insert() on a reserved entry will fail.
-If all entries in the array are ``NULL``, the :c:func:`xa_empty` function
+If all entries in the array are ``NULL``, the xa_empty() function
will return ``true``.
Finally, you can remove all entries from an XArray by calling
-:c:func:`xa_destroy`. If the XArray entries are pointers, you may wish
+xa_destroy(). If the XArray entries are pointers, you may wish
to free the entries first. You can do this by iterating over all present
-entries in the XArray using the :c:func:`xa_for_each` iterator.
+entries in the XArray using the xa_for_each() iterator.
Allocating XArrays
------------------
-If you use :c:func:`DEFINE_XARRAY_ALLOC` to define the XArray, or
-initialise it by passing ``XA_FLAGS_ALLOC`` to :c:func:`xa_init_flags`,
+If you use DEFINE_XARRAY_ALLOC() to define the XArray, or
+initialise it by passing ``XA_FLAGS_ALLOC`` to xa_init_flags(),
the XArray changes to track whether entries are in use or not.
-You can call :c:func:`xa_alloc` to store the entry at an unused index
+You can call xa_alloc() to store the entry at an unused index
in the XArray. If you need to modify the array from interrupt context,
-you can use :c:func:`xa_alloc_bh` or :c:func:`xa_alloc_irq` to disable
+you can use xa_alloc_bh() or xa_alloc_irq() to disable
interrupts while allocating the ID.
-Using :c:func:`xa_store`, :c:func:`xa_cmpxchg` or :c:func:`xa_insert` will
+Using xa_store(), xa_cmpxchg() or xa_insert() will
also mark the entry as being allocated. Unlike a normal XArray, storing
-``NULL`` will mark the entry as being in use, like :c:func:`xa_reserve`.
-To free an entry, use :c:func:`xa_erase` (or :c:func:`xa_release` if
+``NULL`` will mark the entry as being in use, like xa_reserve().
+To free an entry, use xa_erase() (or xa_release() if
you only want to free the entry if it's ``NULL``).
By default, the lowest free entry is allocated starting from 0. If you
want to allocate entries starting at 1, it is more efficient to use
-:c:func:`DEFINE_XARRAY_ALLOC1` or ``XA_FLAGS_ALLOC1``. If you want to
+DEFINE_XARRAY_ALLOC1() or ``XA_FLAGS_ALLOC1``. If you want to
allocate IDs up to a maximum, then wrap back around to the lowest free
-ID, you can use :c:func:`xa_alloc_cyclic`.
+ID, you can use xa_alloc_cyclic().
You cannot use ``XA_MARK_0`` with an allocating XArray as this mark
is used to track whether an entry is free or not. The other marks are
@@ -155,17 +155,17 @@ available for your use.
Memory allocation
-----------------
-The :c:func:`xa_store`, :c:func:`xa_cmpxchg`, :c:func:`xa_alloc`,
-:c:func:`xa_reserve` and :c:func:`xa_insert` functions take a gfp_t
+The xa_store(), xa_cmpxchg(), xa_alloc(),
+xa_reserve() and xa_insert() functions take a gfp_t
parameter in case the XArray needs to allocate memory to store this entry.
If the entry is being deleted, no memory allocation needs to be performed,
and the GFP flags specified will be ignored.
It is possible for no memory to be allocatable, particularly if you pass
a restrictive set of GFP flags. In that case, the functions return a
-special value which can be turned into an errno using :c:func:`xa_err`.
+special value which can be turned into an errno using xa_err().
If you don't need to know exactly which error occurred, using
-:c:func:`xa_is_err` is slightly more efficient.
+xa_is_err() is slightly more efficient.
Locking
-------
@@ -174,54 +174,54 @@ When using the Normal API, you do not have to worry about locking.
The XArray uses RCU and an internal spinlock to synchronise access:
No lock needed:
- * :c:func:`xa_empty`
- * :c:func:`xa_marked`
+ * xa_empty()
+ * xa_marked()
Takes RCU read lock:
- * :c:func:`xa_load`
- * :c:func:`xa_for_each`
- * :c:func:`xa_find`
- * :c:func:`xa_find_after`
- * :c:func:`xa_extract`
- * :c:func:`xa_get_mark`
+ * xa_load()
+ * xa_for_each()
+ * xa_find()
+ * xa_find_after()
+ * xa_extract()
+ * xa_get_mark()
Takes xa_lock internally:
- * :c:func:`xa_store`
- * :c:func:`xa_store_bh`
- * :c:func:`xa_store_irq`
- * :c:func:`xa_insert`
- * :c:func:`xa_insert_bh`
- * :c:func:`xa_insert_irq`
- * :c:func:`xa_erase`
- * :c:func:`xa_erase_bh`
- * :c:func:`xa_erase_irq`
- * :c:func:`xa_cmpxchg`
- * :c:func:`xa_cmpxchg_bh`
- * :c:func:`xa_cmpxchg_irq`
- * :c:func:`xa_store_range`
- * :c:func:`xa_alloc`
- * :c:func:`xa_alloc_bh`
- * :c:func:`xa_alloc_irq`
- * :c:func:`xa_reserve`
- * :c:func:`xa_reserve_bh`
- * :c:func:`xa_reserve_irq`
- * :c:func:`xa_destroy`
- * :c:func:`xa_set_mark`
- * :c:func:`xa_clear_mark`
+ * xa_store()
+ * xa_store_bh()
+ * xa_store_irq()
+ * xa_insert()
+ * xa_insert_bh()
+ * xa_insert_irq()
+ * xa_erase()
+ * xa_erase_bh()
+ * xa_erase_irq()
+ * xa_cmpxchg()
+ * xa_cmpxchg_bh()
+ * xa_cmpxchg_irq()
+ * xa_store_range()
+ * xa_alloc()
+ * xa_alloc_bh()
+ * xa_alloc_irq()
+ * xa_reserve()
+ * xa_reserve_bh()
+ * xa_reserve_irq()
+ * xa_destroy()
+ * xa_set_mark()
+ * xa_clear_mark()
Assumes xa_lock held on entry:
- * :c:func:`__xa_store`
- * :c:func:`__xa_insert`
- * :c:func:`__xa_erase`
- * :c:func:`__xa_cmpxchg`
- * :c:func:`__xa_alloc`
- * :c:func:`__xa_set_mark`
- * :c:func:`__xa_clear_mark`
+ * __xa_store()
+ * __xa_insert()
+ * __xa_erase()
+ * __xa_cmpxchg()
+ * __xa_alloc()
+ * __xa_set_mark()
+ * __xa_clear_mark()
If you want to take advantage of the lock to protect the data structures
-that you are storing in the XArray, you can call :c:func:`xa_lock`
-before calling :c:func:`xa_load`, then take a reference count on the
-object you have found before calling :c:func:`xa_unlock`. This will
+that you are storing in the XArray, you can call xa_lock()
+before calling xa_load(), then take a reference count on the
+object you have found before calling xa_unlock(). This will
prevent stores from removing the object from the array between looking
up the object and incrementing the refcount. You can also use RCU to
avoid dereferencing freed memory, but an explanation of that is beyond
@@ -261,7 +261,7 @@ context and then erase them in softirq context, you can do that this way::
}
If you are going to modify the XArray from interrupt or softirq context,
-you need to initialise the array using :c:func:`xa_init_flags`, passing
+you need to initialise the array using xa_init_flags(), passing
``XA_FLAGS_LOCK_IRQ`` or ``XA_FLAGS_LOCK_BH``.
The above example also shows a common pattern of wanting to extend the
@@ -269,20 +269,20 @@ coverage of the xa_lock on the store side to protect some statistics
associated with the array.
Sharing the XArray with interrupt context is also possible, either
-using :c:func:`xa_lock_irqsave` in both the interrupt handler and process
-context, or :c:func:`xa_lock_irq` in process context and :c:func:`xa_lock`
+using xa_lock_irqsave() in both the interrupt handler and process
+context, or xa_lock_irq() in process context and xa_lock()
in the interrupt handler. Some of the more common patterns have helper
-functions such as :c:func:`xa_store_bh`, :c:func:`xa_store_irq`,
-:c:func:`xa_erase_bh`, :c:func:`xa_erase_irq`, :c:func:`xa_cmpxchg_bh`
-and :c:func:`xa_cmpxchg_irq`.
+functions such as xa_store_bh(), xa_store_irq(),
+xa_erase_bh(), xa_erase_irq(), xa_cmpxchg_bh()
+and xa_cmpxchg_irq().
Sometimes you need to protect access to the XArray with a mutex because
that lock sits above another mutex in the locking hierarchy. That does
-not entitle you to use functions like :c:func:`__xa_erase` without taking
+not entitle you to use functions like __xa_erase() without taking
the xa_lock; the xa_lock is used for lockdep validation and will be used
for other purposes in the future.
-The :c:func:`__xa_set_mark` and :c:func:`__xa_clear_mark` functions are also
+The __xa_set_mark() and __xa_clear_mark() functions are also
available for situations where you look up an entry and want to atomically
set or clear a mark. It may be more efficient to use the advanced API
in this case, as it will save you from walking the tree twice.
@@ -300,27 +300,27 @@ indeed the normal API is implemented in terms of the advanced API. The
advanced API is only available to modules with a GPL-compatible license.
The advanced API is based around the xa_state. This is an opaque data
-structure which you declare on the stack using the :c:func:`XA_STATE`
+structure which you declare on the stack using the XA_STATE()
macro. This macro initialises the xa_state ready to start walking
around the XArray. It is used as a cursor to maintain the position
in the XArray and let you compose various operations together without
having to restart from the top every time.
The xa_state is also used to store errors. You can call
-:c:func:`xas_error` to retrieve the error. All operations check whether
+xas_error() to retrieve the error. All operations check whether
the xa_state is in an error state before proceeding, so there's no need
for you to check for an error after each call; you can make multiple
calls in succession and only check at a convenient point. The only
errors currently generated by the XArray code itself are ``ENOMEM`` and
``EINVAL``, but it supports arbitrary errors in case you want to call
-:c:func:`xas_set_err` yourself.
+xas_set_err() yourself.
-If the xa_state is holding an ``ENOMEM`` error, calling :c:func:`xas_nomem`
+If the xa_state is holding an ``ENOMEM`` error, calling xas_nomem()
will attempt to allocate more memory using the specified gfp flags and
cache it in the xa_state for the next attempt. The idea is that you take
the xa_lock, attempt the operation and drop the lock. The operation
attempts to allocate memory while holding the lock, but it is more
-likely to fail. Once you have dropped the lock, :c:func:`xas_nomem`
+likely to fail. Once you have dropped the lock, xas_nomem()
can try harder to allocate more memory. It will return ``true`` if it
is worth retrying the operation (i.e. that there was a memory error *and*
more memory was allocated). If it has previously allocated memory, and
@@ -333,7 +333,7 @@ Internal Entries
The XArray reserves some entries for its own purposes. These are never
exposed through the normal API, but when using the advanced API, it's
possible to see them. Usually the best way to handle them is to pass them
-to :c:func:`xas_retry`, and retry the operation if it returns ``true``.
+to xas_retry(), and retry the operation if it returns ``true``.
.. flat-table::
:widths: 1 1 6
@@ -343,89 +343,89 @@ to :c:func:`xas_retry`, and retry the operation if it returns ``true``.
- Usage
* - Node
- - :c:func:`xa_is_node`
+ - xa_is_node()
- An XArray node. May be visible when using a multi-index xa_state.
* - Sibling
- - :c:func:`xa_is_sibling`
+ - xa_is_sibling()
- A non-canonical entry for a multi-index entry. The value indicates
which slot in this node has the canonical entry.
* - Retry
- - :c:func:`xa_is_retry`
+ - xa_is_retry()
- This entry is currently being modified by a thread which has the
xa_lock. The node containing this entry may be freed at the end
of this RCU period. You should restart the lookup from the head
of the array.
* - Zero
- - :c:func:`xa_is_zero`
+ - xa_is_zero()
- Zero entries appear as ``NULL`` through the Normal API, but occupy
an entry in the XArray which can be used to reserve the index for
future use. This is used by allocating XArrays for allocated entries
which are ``NULL``.
Other internal entries may be added in the future. As far as possible, they
-will be handled by :c:func:`xas_retry`.
+will be handled by xas_retry().
Additional functionality
------------------------
-The :c:func:`xas_create_range` function allocates all the necessary memory
+The xas_create_range() function allocates all the necessary memory
to store every entry in a range. It will set ENOMEM in the xa_state if
it cannot allocate memory.
-You can use :c:func:`xas_init_marks` to reset the marks on an entry
+You can use xas_init_marks() to reset the marks on an entry
to their default state. This is usually all marks clear, unless the
XArray is marked with ``XA_FLAGS_TRACK_FREE``, in which case mark 0 is set
and all other marks are clear. Replacing one entry with another using
-:c:func:`xas_store` will not reset the marks on that entry; if you want
+xas_store() will not reset the marks on that entry; if you want
the marks reset, you should do that explicitly.
-The :c:func:`xas_load` will walk the xa_state as close to the entry
+The xas_load() will walk the xa_state as close to the entry
as it can. If you know the xa_state has already been walked to the
entry and need to check that the entry hasn't changed, you can use
-:c:func:`xas_reload` to save a function call.
+xas_reload() to save a function call.
If you need to move to a different index in the XArray, call
-:c:func:`xas_set`. This resets the cursor to the top of the tree, which
+xas_set(). This resets the cursor to the top of the tree, which
will generally make the next operation walk the cursor to the desired
spot in the tree. If you want to move to the next or previous index,
-call :c:func:`xas_next` or :c:func:`xas_prev`. Setting the index does
+call xas_next() or xas_prev(). Setting the index does
not walk the cursor around the array so does not require a lock to be
held, while moving to the next or previous index does.
-You can search for the next present entry using :c:func:`xas_find`. This
-is the equivalent of both :c:func:`xa_find` and :c:func:`xa_find_after`;
+You can search for the next present entry using xas_find(). This
+is the equivalent of both xa_find() and xa_find_after();
if the cursor has been walked to an entry, then it will find the next
entry after the one currently referenced. If not, it will return the
-entry at the index of the xa_state. Using :c:func:`xas_next_entry` to
-move to the next present entry instead of :c:func:`xas_find` will save
+entry at the index of the xa_state. Using xas_next_entry() to
+move to the next present entry instead of xas_find() will save
a function call in the majority of cases at the expense of emitting more
inline code.
-The :c:func:`xas_find_marked` function is similar. If the xa_state has
+The xas_find_marked() function is similar. If the xa_state has
not been walked, it will return the entry at the index of the xa_state,
if it is marked. Otherwise, it will return the first marked entry after
-the entry referenced by the xa_state. The :c:func:`xas_next_marked`
-function is the equivalent of :c:func:`xas_next_entry`.
+the entry referenced by the xa_state. The xas_next_marked()
+function is the equivalent of xas_next_entry().
-When iterating over a range of the XArray using :c:func:`xas_for_each`
-or :c:func:`xas_for_each_marked`, it may be necessary to temporarily stop
-the iteration. The :c:func:`xas_pause` function exists for this purpose.
+When iterating over a range of the XArray using xas_for_each()
+or xas_for_each_marked(), it may be necessary to temporarily stop
+the iteration. The xas_pause() function exists for this purpose.
After you have done the necessary work and wish to resume, the xa_state
is in an appropriate state to continue the iteration after the entry
you last processed. If you have interrupts disabled while iterating,
then it is good manners to pause the iteration and reenable interrupts
every ``XA_CHECK_SCHED`` entries.
-The :c:func:`xas_get_mark`, :c:func:`xas_set_mark` and
-:c:func:`xas_clear_mark` functions require the xa_state cursor to have
+The xas_get_mark(), xas_set_mark() and
+xas_clear_mark() functions require the xa_state cursor to have
been moved to the appropriate location in the xarray; they will do
-nothing if you have called :c:func:`xas_pause` or :c:func:`xas_set`
+nothing if you have called xas_pause() or xas_set()
immediately before.
-You can call :c:func:`xas_set_update` to have a callback function
+You can call xas_set_update() to have a callback function
called each time the XArray updates a node. This is used by the page
cache workingset code to maintain its list of nodes which contain only
shadow entries.
@@ -443,25 +443,25 @@ eg indices 64-127 may be tied together, but 2-6 may not be. This may
save substantial quantities of memory; for example tying 512 entries
together will save over 4kB.
-You can create a multi-index entry by using :c:func:`XA_STATE_ORDER`
-or :c:func:`xas_set_order` followed by a call to :c:func:`xas_store`.
-Calling :c:func:`xas_load` with a multi-index xa_state will walk the
+You can create a multi-index entry by using XA_STATE_ORDER()
+or xas_set_order() followed by a call to xas_store().
+Calling xas_load() with a multi-index xa_state will walk the
xa_state to the right location in the tree, but the return value is not
meaningful, potentially being an internal entry or ``NULL`` even when there
-is an entry stored within the range. Calling :c:func:`xas_find_conflict`
+is an entry stored within the range. Calling xas_find_conflict()
will return the first entry within the range or ``NULL`` if there are no
-entries in the range. The :c:func:`xas_for_each_conflict` iterator will
+entries in the range. The xas_for_each_conflict() iterator will
iterate over every entry which overlaps the specified range.
-If :c:func:`xas_load` encounters a multi-index entry, the xa_index
+If xas_load() encounters a multi-index entry, the xa_index
in the xa_state will not be changed. When iterating over an XArray
-or calling :c:func:`xas_find`, if the initial index is in the middle
+or calling xas_find(), if the initial index is in the middle
of a multi-index entry, it will not be altered. Subsequent calls
or iterations will move the index to the first index in the range.
Each entry will only be returned once, no matter how many indices it
occupies.
-Using :c:func:`xas_next` or :c:func:`xas_prev` with a multi-index xa_state
+Using xas_next() or xas_prev() with a multi-index xa_state
is not supported. Using either of these functions on a multi-index entry
will reveal sibling entries; these should be skipped over by the caller.
diff --git a/Documentation/cputopology.txt b/Documentation/cputopology.txt
index cb61277e2308..b90dafcc8237 100644
--- a/Documentation/cputopology.txt
+++ b/Documentation/cputopology.txt
@@ -12,6 +12,12 @@ physical_package_id:
socket number, but the actual value is architecture and platform
dependent.
+die_id:
+
+ the CPU die ID of cpuX. Typically it is the hardware platform's
+ identifier (rather than the kernel's). The actual value is
+ architecture and platform dependent.
+
core_id:
the CPU core ID of cpuX. Typically it is the hardware platform's
@@ -30,25 +36,33 @@ drawer_id:
identifier (rather than the kernel's). The actual value is
architecture and platform dependent.
-thread_siblings:
+core_cpus:
- internal kernel map of cpuX's hardware threads within the same
- core as cpuX.
+ internal kernel map of CPUs within the same core.
+ (deprecated name: "thread_siblings")
-thread_siblings_list:
+core_cpus_list:
- human-readable list of cpuX's hardware threads within the same
- core as cpuX.
+ human-readable list of CPUs within the same core.
+ (deprecated name: "thread_siblings_list");
-core_siblings:
+package_cpus:
- internal kernel map of cpuX's hardware threads within the same
- physical_package_id.
+ internal kernel map of the CPUs sharing the same physical_package_id.
+ (deprecated name: "core_siblings")
-core_siblings_list:
+package_cpus_list:
- human-readable list of cpuX's hardware threads within the same
- physical_package_id.
+ human-readable list of CPUs sharing the same physical_package_id.
+ (deprecated name: "core_siblings_list")
+
+die_cpus:
+
+ internal kernel map of CPUs within the same die.
+
+die_cpus_list:
+
+ human-readable list of CPUs within the same die.
book_siblings:
@@ -81,11 +95,13 @@ For an architecture to support this feature, it must define some of
these macros in include/asm-XXX/topology.h::
#define topology_physical_package_id(cpu)
+ #define topology_die_id(cpu)
#define topology_core_id(cpu)
#define topology_book_id(cpu)
#define topology_drawer_id(cpu)
#define topology_sibling_cpumask(cpu)
#define topology_core_cpumask(cpu)
+ #define topology_die_cpumask(cpu)
#define topology_book_cpumask(cpu)
#define topology_drawer_cpumask(cpu)
@@ -99,9 +115,11 @@ provides default definitions for any of the above macros that are
not defined by include/asm-XXX/topology.h:
1) topology_physical_package_id: -1
-2) topology_core_id: 0
-3) topology_sibling_cpumask: just the given CPU
-4) topology_core_cpumask: just the given CPU
+2) topology_die_id: -1
+3) topology_core_id: 0
+4) topology_sibling_cpumask: just the given CPU
+5) topology_core_cpumask: just the given CPU
+6) topology_die_cpumask: just the given CPU
For architectures that don't support books (CONFIG_SCHED_BOOK) there are no
default definitions for topology_book_id() and topology_book_cpumask().
diff --git a/Documentation/crypto/api-samples.rst b/Documentation/crypto/api-samples.rst
index f14afaaf2f32..e923f17bc2bd 100644
--- a/Documentation/crypto/api-samples.rst
+++ b/Documentation/crypto/api-samples.rst
@@ -4,111 +4,89 @@ Code Examples
Code Example For Symmetric Key Cipher Operation
-----------------------------------------------
-::
-
-
- /* tie all data structures together */
- struct skcipher_def {
- struct scatterlist sg;
- struct crypto_skcipher *tfm;
- struct skcipher_request *req;
- struct crypto_wait wait;
- };
-
- /* Perform cipher operation */
- static unsigned int test_skcipher_encdec(struct skcipher_def *sk,
- int enc)
- {
- int rc;
-
- if (enc)
- rc = crypto_wait_req(crypto_skcipher_encrypt(sk->req), &sk->wait);
- else
- rc = crypto_wait_req(crypto_skcipher_decrypt(sk->req), &sk->wait);
-
- if (rc)
- pr_info("skcipher encrypt returned with result %d\n", rc);
+This code encrypts some data with AES-256-XTS. For sake of example,
+all inputs are random bytes, the encryption is done in-place, and it's
+assumed the code is running in a context where it can sleep.
- return rc;
- }
+::
- /* Initialize and trigger cipher operation */
static int test_skcipher(void)
{
- struct skcipher_def sk;
- struct crypto_skcipher *skcipher = NULL;
- struct skcipher_request *req = NULL;
- char *scratchpad = NULL;
- char *ivdata = NULL;
- unsigned char key[32];
- int ret = -EFAULT;
-
- skcipher = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0);
- if (IS_ERR(skcipher)) {
- pr_info("could not allocate skcipher handle\n");
- return PTR_ERR(skcipher);
- }
-
- req = skcipher_request_alloc(skcipher, GFP_KERNEL);
- if (!req) {
- pr_info("could not allocate skcipher request\n");
- ret = -ENOMEM;
- goto out;
- }
-
- skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done,
- &sk.wait);
-
- /* AES 256 with random key */
- get_random_bytes(&key, 32);
- if (crypto_skcipher_setkey(skcipher, key, 32)) {
- pr_info("key could not be set\n");
- ret = -EAGAIN;
- goto out;
- }
-
- /* IV will be random */
- ivdata = kmalloc(16, GFP_KERNEL);
- if (!ivdata) {
- pr_info("could not allocate ivdata\n");
- goto out;
- }
- get_random_bytes(ivdata, 16);
-
- /* Input data will be random */
- scratchpad = kmalloc(16, GFP_KERNEL);
- if (!scratchpad) {
- pr_info("could not allocate scratchpad\n");
- goto out;
- }
- get_random_bytes(scratchpad, 16);
-
- sk.tfm = skcipher;
- sk.req = req;
-
- /* We encrypt one block */
- sg_init_one(&sk.sg, scratchpad, 16);
- skcipher_request_set_crypt(req, &sk.sg, &sk.sg, 16, ivdata);
- crypto_init_wait(&sk.wait);
-
- /* encrypt data */
- ret = test_skcipher_encdec(&sk, 1);
- if (ret)
- goto out;
-
- pr_info("Encryption triggered successfully\n");
-
+ struct crypto_skcipher *tfm = NULL;
+ struct skcipher_request *req = NULL;
+ u8 *data = NULL;
+ const size_t datasize = 512; /* data size in bytes */
+ struct scatterlist sg;
+ DECLARE_CRYPTO_WAIT(wait);
+ u8 iv[16]; /* AES-256-XTS takes a 16-byte IV */
+ u8 key[64]; /* AES-256-XTS takes a 64-byte key */
+ int err;
+
+ /*
+ * Allocate a tfm (a transformation object) and set the key.
+ *
+ * In real-world use, a tfm and key are typically used for many
+ * encryption/decryption operations. But in this example, we'll just do a
+ * single encryption operation with it (which is not very efficient).
+ */
+
+ tfm = crypto_alloc_skcipher("xts(aes)", 0, 0);
+ if (IS_ERR(tfm)) {
+ pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm));
+ return PTR_ERR(tfm);
+ }
+
+ get_random_bytes(key, sizeof(key));
+ err = crypto_skcipher_setkey(tfm, key, sizeof(key));
+ if (err) {
+ pr_err("Error setting key: %d\n", err);
+ goto out;
+ }
+
+ /* Allocate a request object */
+ req = skcipher_request_alloc(tfm, GFP_KERNEL);
+ if (!req) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /* Prepare the input data */
+ data = kmalloc(datasize, GFP_KERNEL);
+ if (!data) {
+ err = -ENOMEM;
+ goto out;
+ }
+ get_random_bytes(data, datasize);
+
+ /* Initialize the IV */
+ get_random_bytes(iv, sizeof(iv));
+
+ /*
+ * Encrypt the data in-place.
+ *
+ * For simplicity, in this example we wait for the request to complete
+ * before proceeding, even if the underlying implementation is asynchronous.
+ *
+ * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to
+ * crypto_skcipher_decrypt().
+ */
+ sg_init_one(&sg, data, datasize);
+ skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
+ CRYPTO_TFM_REQ_MAY_SLEEP,
+ crypto_req_done, &wait);
+ skcipher_request_set_crypt(req, &sg, &sg, datasize, iv);
+ err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ if (err) {
+ pr_err("Error encrypting data: %d\n", err);
+ goto out;
+ }
+
+ pr_debug("Encryption was successful\n");
out:
- if (skcipher)
- crypto_free_skcipher(skcipher);
- if (req)
+ crypto_free_skcipher(tfm);
skcipher_request_free(req);
- if (ivdata)
- kfree(ivdata);
- if (scratchpad)
- kfree(scratchpad);
- return ret;
+ kfree(data);
+ return err;
}
diff --git a/Documentation/crypto/api-skcipher.rst b/Documentation/crypto/api-skcipher.rst
index 4eec4a93f7e3..20ba08dddf2e 100644
--- a/Documentation/crypto/api-skcipher.rst
+++ b/Documentation/crypto/api-skcipher.rst
@@ -5,7 +5,7 @@ Block Cipher Algorithm Definitions
:doc: Block Cipher Algorithm Definitions
.. kernel-doc:: include/linux/crypto.h
- :functions: crypto_alg ablkcipher_alg blkcipher_alg cipher_alg
+ :functions: crypto_alg ablkcipher_alg blkcipher_alg cipher_alg compress_alg
Symmetric Key Cipher API
------------------------
diff --git a/Documentation/crypto/architecture.rst b/Documentation/crypto/architecture.rst
index ee8ff0762d7f..3eae1ae7f798 100644
--- a/Documentation/crypto/architecture.rst
+++ b/Documentation/crypto/architecture.rst
@@ -208,9 +208,7 @@ the aforementioned cipher types:
- CRYPTO_ALG_TYPE_KPP Key-agreement Protocol Primitive (KPP) such as
an ECDH or DH implementation
-- CRYPTO_ALG_TYPE_DIGEST Raw message digest
-
-- CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST
+- CRYPTO_ALG_TYPE_HASH Raw message digest
- CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash
diff --git a/Documentation/crypto/crypto_engine.rst b/Documentation/crypto/crypto_engine.rst
index 1d56221dfe35..236c674d6897 100644
--- a/Documentation/crypto/crypto_engine.rst
+++ b/Documentation/crypto/crypto_engine.rst
@@ -1,50 +1,85 @@
-=============
-CRYPTO ENGINE
+.. SPDX-License-Identifier: GPL-2.0
+Crypto Engine
=============
Overview
--------
-The crypto engine API (CE), is a crypto queue manager.
+The crypto engine (CE) API is a crypto queue manager.
Requirement
-----------
-You have to put at start of your tfm_ctx the struct crypto_engine_ctx::
+You must put, at the start of your transform context your_tfm_ctx, the structure
+crypto_engine:
+
+::
- struct your_tfm_ctx {
- struct crypto_engine_ctx enginectx;
- ...
- };
+ struct your_tfm_ctx {
+ struct crypto_engine engine;
+ ...
+ };
-Why: Since CE manage only crypto_async_request, it cannot know the underlying
-request_type and so have access only on the TFM.
-So using container_of for accessing __ctx is impossible.
-Furthermore, the crypto engine cannot know the "struct your_tfm_ctx",
-so it must assume that crypto_engine_ctx is at start of it.
+The crypto engine only manages asynchronous requests in the form of
+crypto_async_request. It cannot know the underlying request type and thus only
+has access to the transform structure. It is not possible to access the context
+using container_of. In addition, the engine knows nothing about your
+structure "``struct your_tfm_ctx``". The engine assumes (requires) the placement
+of the known member ``struct crypto_engine`` at the beginning.
Order of operations
-------------------
-You have to obtain a struct crypto_engine via crypto_engine_alloc_init().
-And start it via crypto_engine_start().
-
-Before transferring any request, you have to fill the enginectx.
-- prepare_request: (taking a function pointer) If you need to do some processing before doing the request
-- unprepare_request: (taking a function pointer) Undoing what's done in prepare_request
-- do_one_request: (taking a function pointer) Do encryption for current request
-
-Note: that those three functions get the crypto_async_request associated with the received request.
-So your need to get the original request via container_of(areq, struct yourrequesttype_request, base);
-
-When your driver receive a crypto_request, you have to transfer it to
-the cryptoengine via one of:
-- crypto_transfer_ablkcipher_request_to_engine()
-- crypto_transfer_aead_request_to_engine()
-- crypto_transfer_akcipher_request_to_engine()
-- crypto_transfer_hash_request_to_engine()
-- crypto_transfer_skcipher_request_to_engine()
-
-At the end of the request process, a call to one of the following function is needed:
-- crypto_finalize_ablkcipher_request
-- crypto_finalize_aead_request
-- crypto_finalize_akcipher_request
-- crypto_finalize_hash_request
-- crypto_finalize_skcipher_request
+You are required to obtain a struct crypto_engine via ``crypto_engine_alloc_init()``.
+Start it via ``crypto_engine_start()``. When finished with your work, shut down the
+engine using ``crypto_engine_stop()`` and destroy the engine with
+``crypto_engine_exit()``.
+
+Before transferring any request, you have to fill the context enginectx by
+providing functions for the following:
+
+* ``prepare_crypt_hardware``: Called once before any prepare functions are
+ called.
+
+* ``unprepare_crypt_hardware``: Called once after all unprepare functions have
+ been called.
+
+* ``prepare_cipher_request``/``prepare_hash_request``: Called before each
+ corresponding request is performed. If some processing or other preparatory
+ work is required, do it here.
+
+* ``unprepare_cipher_request``/``unprepare_hash_request``: Called after each
+ request is handled. Clean up / undo what was done in the prepare function.
+
+* ``cipher_one_request``/``hash_one_request``: Handle the current request by
+ performing the operation.
+
+Note that these functions access the crypto_async_request structure
+associated with the received request. You are able to retrieve the original
+request by using:
+
+::
+
+ container_of(areq, struct yourrequesttype_request, base);
+
+When your driver receives a crypto_request, you must to transfer it to
+the crypto engine via one of:
+
+* crypto_transfer_ablkcipher_request_to_engine()
+
+* crypto_transfer_aead_request_to_engine()
+
+* crypto_transfer_akcipher_request_to_engine()
+
+* crypto_transfer_hash_request_to_engine()
+
+* crypto_transfer_skcipher_request_to_engine()
+
+At the end of the request process, a call to one of the following functions is needed:
+
+* crypto_finalize_ablkcipher_request()
+
+* crypto_finalize_aead_request()
+
+* crypto_finalize_akcipher_request()
+
+* crypto_finalize_hash_request()
+
+* crypto_finalize_skcipher_request()
diff --git a/Documentation/dev-tools/kmemleak.rst b/Documentation/dev-tools/kmemleak.rst
index e6f51260ff32..3621cd5e1eef 100644
--- a/Documentation/dev-tools/kmemleak.rst
+++ b/Documentation/dev-tools/kmemleak.rst
@@ -2,8 +2,8 @@ Kernel Memory Leak Detector
===========================
Kmemleak provides a way of detecting possible kernel memory leaks in a
-way similar to a tracing garbage collector
-(https://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29#Tracing_garbage_collectors),
+way similar to a `tracing garbage collector
+<https://en.wikipedia.org/wiki/Tracing_garbage_collection>`_,
with the difference that the orphan objects are not freed but only
reported via /sys/kernel/debug/kmemleak. A similar method is used by the
Valgrind tool (``memcheck --leak-check``) to detect the memory leaks in
@@ -15,10 +15,13 @@ Usage
CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel
thread scans the memory every 10 minutes (by default) and prints the
-number of new unreferenced objects found. To display the details of all
-the possible memory leaks::
+number of new unreferenced objects found. If the ``debugfs`` isn't already
+mounted, mount with::
# mount -t debugfs nodev /sys/kernel/debug/
+
+To display the details of all the possible scanned memory leaks::
+
# cat /sys/kernel/debug/kmemleak
To trigger an intermediate memory scan::
@@ -72,6 +75,9 @@ If CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF are enabled, the kmemleak is
disabled by default. Passing ``kmemleak=on`` on the kernel command
line enables the function.
+If you are getting errors like "Error while writing to stdout" or "write_loop:
+Invalid argument", make sure kmemleak is properly enabled.
+
Basic Algorithm
---------------
@@ -218,3 +224,37 @@ the pointer is calculated by other methods than the usual container_of
macro or the pointer is stored in a location not scanned by kmemleak.
Page allocations and ioremap are not tracked.
+
+Testing with kmemleak-test
+--------------------------
+
+To check if you have all set up to use kmemleak, you can use the kmemleak-test
+module, a module that deliberately leaks memory. Set CONFIG_DEBUG_KMEMLEAK_TEST
+as module (it can't be used as bult-in) and boot the kernel with kmemleak
+enabled. Load the module and perform a scan with::
+
+ # modprobe kmemleak-test
+ # echo scan > /sys/kernel/debug/kmemleak
+
+Note that the you may not get results instantly or on the first scanning. When
+kmemleak gets results, it'll log ``kmemleak: <count of leaks> new suspected
+memory leaks``. Then read the file to see then::
+
+ # cat /sys/kernel/debug/kmemleak
+ unreferenced object 0xffff89862ca702e8 (size 32):
+ comm "modprobe", pid 2088, jiffies 4294680594 (age 375.486s)
+ hex dump (first 32 bytes):
+ 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
+ 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk.
+ backtrace:
+ [<00000000e0a73ec7>] 0xffffffffc01d2036
+ [<000000000c5d2a46>] do_one_initcall+0x41/0x1df
+ [<0000000046db7e0a>] do_init_module+0x55/0x200
+ [<00000000542b9814>] load_module+0x203c/0x2480
+ [<00000000c2850256>] __do_sys_finit_module+0xba/0xe0
+ [<000000006564e7ef>] do_syscall_64+0x43/0x110
+ [<000000007c873fa6>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
+ ...
+
+Removing the module with ``rmmod kmemleak_test`` should also trigger some
+kmemleak results.
diff --git a/Documentation/device-mapper/cache-policies.txt b/Documentation/device-mapper/cache-policies.rst
index 86786d87d9a8..b17fe352fc41 100644
--- a/Documentation/device-mapper/cache-policies.txt
+++ b/Documentation/device-mapper/cache-policies.rst
@@ -1,3 +1,4 @@
+=============================
Guidance for writing policies
=============================
@@ -30,7 +31,7 @@ multiqueue (mq)
This policy is now an alias for smq (see below).
-The following tunables are accepted, but have no effect:
+The following tunables are accepted, but have no effect::
'sequential_threshold <#nr_sequential_ios>'
'random_threshold <#nr_random_ios>'
@@ -56,7 +57,9 @@ mq policy's hints to be dropped. Also, performance of the cache may
degrade slightly until smq recalculates the origin device's hotspots
that should be cached.
-Memory usage:
+Memory usage
+^^^^^^^^^^^^
+
The mq policy used a lot of memory; 88 bytes per cache block on a 64
bit machine.
@@ -69,7 +72,9 @@ cache block).
All this means smq uses ~25bytes per cache block. Still a lot of
memory, but a substantial improvement nontheless.
-Level balancing:
+Level balancing
+^^^^^^^^^^^^^^^
+
mq placed entries in different levels of the multiqueue structures
based on their hit count (~ln(hit count)). This meant the bottom
levels generally had the most entries, and the top ones had very
@@ -94,7 +99,9 @@ is used to decide which blocks to promote. If the hotspot queue is
performing badly then it starts moving entries more quickly between
levels. This lets it adapt to new IO patterns very quickly.
-Performance:
+Performance
+^^^^^^^^^^^
+
Testing smq shows substantially better performance than mq.
cleaner
@@ -105,16 +112,19 @@ The cleaner writes back all dirty blocks in a cache to decommission it.
Examples
========
-The syntax for a table is:
+The syntax for a table is::
+
cache <metadata dev> <cache dev> <origin dev> <block size>
<#feature_args> [<feature arg>]*
<policy> <#policy_args> [<policy arg>]*
-The syntax to send a message using the dmsetup command is:
+The syntax to send a message using the dmsetup command is::
+
dmsetup message <mapped device> 0 sequential_threshold 1024
dmsetup message <mapped device> 0 random_threshold 8
-Using dmsetup:
+Using dmsetup::
+
dmsetup create blah --table "0 268435456 cache /dev/sdb /dev/sdc \
/dev/sdd 512 0 mq 4 sequential_threshold 1024 random_threshold 8"
creates a 128GB large mapped device named 'blah' with the
diff --git a/Documentation/device-mapper/cache.txt b/Documentation/device-mapper/cache.rst
index 8ae1cf8e94da..f15e5254d05b 100644
--- a/Documentation/device-mapper/cache.txt
+++ b/Documentation/device-mapper/cache.rst
@@ -1,3 +1,7 @@
+=====
+Cache
+=====
+
Introduction
============
@@ -24,10 +28,13 @@ scenarios (eg. a vm image server).
Glossary
========
- Migration - Movement of the primary copy of a logical block from one
+ Migration
+ Movement of the primary copy of a logical block from one
device to the other.
- Promotion - Migration from slow device to fast device.
- Demotion - Migration from fast device to slow device.
+ Promotion
+ Migration from slow device to fast device.
+ Demotion
+ Migration from fast device to slow device.
The origin device always contains a copy of the logical block, which
may be out of date or kept in sync with the copy on the cache device
@@ -169,45 +176,53 @@ Target interface
Constructor
-----------
- cache <metadata dev> <cache dev> <origin dev> <block size>
- <#feature args> [<feature arg>]*
- <policy> <#policy args> [policy args]*
+ ::
+
+ cache <metadata dev> <cache dev> <origin dev> <block size>
+ <#feature args> [<feature arg>]*
+ <policy> <#policy args> [policy args]*
- metadata dev : fast device holding the persistent metadata
- cache dev : fast device holding cached data blocks
- origin dev : slow device holding original data blocks
- block size : cache unit size in sectors
+ ================ =======================================================
+ metadata dev fast device holding the persistent metadata
+ cache dev fast device holding cached data blocks
+ origin dev slow device holding original data blocks
+ block size cache unit size in sectors
- #feature args : number of feature arguments passed
- feature args : writethrough or passthrough (The default is writeback.)
+ #feature args number of feature arguments passed
+ feature args writethrough or passthrough (The default is writeback.)
- policy : the replacement policy to use
- #policy args : an even number of arguments corresponding to
- key/value pairs passed to the policy
- policy args : key/value pairs passed to the policy
- E.g. 'sequential_threshold 1024'
- See cache-policies.txt for details.
+ policy the replacement policy to use
+ #policy args an even number of arguments corresponding to
+ key/value pairs passed to the policy
+ policy args key/value pairs passed to the policy
+ E.g. 'sequential_threshold 1024'
+ See cache-policies.txt for details.
+ ================ =======================================================
Optional feature arguments are:
- writethrough : write through caching that prohibits cache block
- content from being different from origin block content.
- Without this argument, the default behaviour is to write
- back cache block contents later for performance reasons,
- so they may differ from the corresponding origin blocks.
-
- passthrough : a degraded mode useful for various cache coherency
- situations (e.g., rolling back snapshots of
- underlying storage). Reads and writes always go to
- the origin. If a write goes to a cached origin
- block, then the cache block is invalidated.
- To enable passthrough mode the cache must be clean.
-
- metadata2 : use version 2 of the metadata. This stores the dirty bits
- in a separate btree, which improves speed of shutting
- down the cache.
-
- no_discard_passdown : disable passing down discards from the cache
- to the origin's data device.
+
+
+ ==================== ========================================================
+ writethrough write through caching that prohibits cache block
+ content from being different from origin block content.
+ Without this argument, the default behaviour is to write
+ back cache block contents later for performance reasons,
+ so they may differ from the corresponding origin blocks.
+
+ passthrough a degraded mode useful for various cache coherency
+ situations (e.g., rolling back snapshots of
+ underlying storage). Reads and writes always go to
+ the origin. If a write goes to a cached origin
+ block, then the cache block is invalidated.
+ To enable passthrough mode the cache must be clean.
+
+ metadata2 use version 2 of the metadata. This stores the dirty
+ bits in a separate btree, which improves speed of
+ shutting down the cache.
+
+ no_discard_passdown disable passing down discards from the cache
+ to the origin's data device.
+ ==================== ========================================================
A policy called 'default' is always registered. This is an alias for
the policy we currently think is giving best all round performance.
@@ -218,54 +233,61 @@ the characteristics of a specific policy, always request it by name.
Status
------
-<metadata block size> <#used metadata blocks>/<#total metadata blocks>
-<cache block size> <#used cache blocks>/<#total cache blocks>
-<#read hits> <#read misses> <#write hits> <#write misses>
-<#demotions> <#promotions> <#dirty> <#features> <features>*
-<#core args> <core args>* <policy name> <#policy args> <policy args>*
-<cache metadata mode>
-
-metadata block size : Fixed block size for each metadata block in
- sectors
-#used metadata blocks : Number of metadata blocks used
-#total metadata blocks : Total number of metadata blocks
-cache block size : Configurable block size for the cache device
- in sectors
-#used cache blocks : Number of blocks resident in the cache
-#total cache blocks : Total number of cache blocks
-#read hits : Number of times a READ bio has been mapped
- to the cache
-#read misses : Number of times a READ bio has been mapped
- to the origin
-#write hits : Number of times a WRITE bio has been mapped
- to the cache
-#write misses : Number of times a WRITE bio has been
- mapped to the origin
-#demotions : Number of times a block has been removed
- from the cache
-#promotions : Number of times a block has been moved to
- the cache
-#dirty : Number of blocks in the cache that differ
- from the origin
-#feature args : Number of feature args to follow
-feature args : 'writethrough' (optional)
-#core args : Number of core arguments (must be even)
-core args : Key/value pairs for tuning the core
- e.g. migration_threshold
-policy name : Name of the policy
-#policy args : Number of policy arguments to follow (must be even)
-policy args : Key/value pairs e.g. sequential_threshold
-cache metadata mode : ro if read-only, rw if read-write
- In serious cases where even a read-only mode is deemed unsafe
- no further I/O will be permitted and the status will just
- contain the string 'Fail'. The userspace recovery tools
- should then be used.
-needs_check : 'needs_check' if set, '-' if not set
- A metadata operation has failed, resulting in the needs_check
- flag being set in the metadata's superblock. The metadata
- device must be deactivated and checked/repaired before the
- cache can be made fully operational again. '-' indicates
- needs_check is not set.
+::
+
+ <metadata block size> <#used metadata blocks>/<#total metadata blocks>
+ <cache block size> <#used cache blocks>/<#total cache blocks>
+ <#read hits> <#read misses> <#write hits> <#write misses>
+ <#demotions> <#promotions> <#dirty> <#features> <features>*
+ <#core args> <core args>* <policy name> <#policy args> <policy args>*
+ <cache metadata mode>
+
+
+========================= =====================================================
+metadata block size Fixed block size for each metadata block in
+ sectors
+#used metadata blocks Number of metadata blocks used
+#total metadata blocks Total number of metadata blocks
+cache block size Configurable block size for the cache device
+ in sectors
+#used cache blocks Number of blocks resident in the cache
+#total cache blocks Total number of cache blocks
+#read hits Number of times a READ bio has been mapped
+ to the cache
+#read misses Number of times a READ bio has been mapped
+ to the origin
+#write hits Number of times a WRITE bio has been mapped
+ to the cache
+#write misses Number of times a WRITE bio has been
+ mapped to the origin
+#demotions Number of times a block has been removed
+ from the cache
+#promotions Number of times a block has been moved to
+ the cache
+#dirty Number of blocks in the cache that differ
+ from the origin
+#feature args Number of feature args to follow
+feature args 'writethrough' (optional)
+#core args Number of core arguments (must be even)
+core args Key/value pairs for tuning the core
+ e.g. migration_threshold
+policy name Name of the policy
+#policy args Number of policy arguments to follow (must be even)
+policy args Key/value pairs e.g. sequential_threshold
+cache metadata mode ro if read-only, rw if read-write
+
+ In serious cases where even a read-only mode is
+ deemed unsafe no further I/O will be permitted and
+ the status will just contain the string 'Fail'.
+ The userspace recovery tools should then be used.
+needs_check 'needs_check' if set, '-' if not set
+ A metadata operation has failed, resulting in the
+ needs_check flag being set in the metadata's
+ superblock. The metadata device must be
+ deactivated and checked/repaired before the
+ cache can be made fully operational again.
+ '-' indicates needs_check is not set.
+========================= =====================================================
Messages
--------
@@ -274,11 +296,12 @@ Policies will have different tunables, specific to each one, so we
need a generic way of getting and setting these. Device-mapper
messages are used. (A sysfs interface would also be possible.)
-The message format is:
+The message format is::
<key> <value>
-E.g.
+E.g.::
+
dmsetup message my_cache 0 sequential_threshold 1024
@@ -290,11 +313,12 @@ of values from 5 to 9. Each cblock must be expressed as a decimal
value, in the future a variant message that takes cblock ranges
expressed in hexadecimal may be needed to better support efficient
invalidation of larger caches. The cache must be in passthrough mode
-when invalidate_cblocks is used.
+when invalidate_cblocks is used::
invalidate_cblocks [<cblock>|<cblock begin>-<cblock end>]*
-E.g.
+E.g.::
+
dmsetup message my_cache 0 invalidate_cblocks 2345 3456-4567 5678-6789
Examples
@@ -304,8 +328,10 @@ The test suite can be found here:
https://github.com/jthornber/device-mapper-test-suite
-dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
- /dev/mapper/ssd /dev/mapper/origin 512 1 writeback default 0'
-dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
- /dev/mapper/ssd /dev/mapper/origin 1024 1 writeback \
- mq 4 sequential_threshold 1024 random_threshold 8'
+::
+
+ dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
+ /dev/mapper/ssd /dev/mapper/origin 512 1 writeback default 0'
+ dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
+ /dev/mapper/ssd /dev/mapper/origin 1024 1 writeback \
+ mq 4 sequential_threshold 1024 random_threshold 8'
diff --git a/Documentation/device-mapper/delay.txt b/Documentation/device-mapper/delay.rst
index 6426c45273cb..917ba8c33359 100644
--- a/Documentation/device-mapper/delay.txt
+++ b/Documentation/device-mapper/delay.rst
@@ -1,10 +1,12 @@
+========
dm-delay
========
Device-Mapper's "delay" target delays reads and/or writes
and maps them to different devices.
-Parameters:
+Parameters::
+
<device> <offset> <delay> [<write_device> <write_offset> <write_delay>
[<flush_device> <flush_offset> <flush_delay>]]
@@ -14,15 +16,16 @@ Delays are specified in milliseconds.
Example scripts
===============
-[[
-#!/bin/sh
-# Create device delaying rw operation for 500ms
-echo "0 `blockdev --getsz $1` delay $1 0 500" | dmsetup create delayed
-]]
-
-[[
-#!/bin/sh
-# Create device delaying only write operation for 500ms and
-# splitting reads and writes to different devices $1 $2
-echo "0 `blockdev --getsz $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
-]]
+
+::
+
+ #!/bin/sh
+ # Create device delaying rw operation for 500ms
+ echo "0 `blockdev --getsz $1` delay $1 0 500" | dmsetup create delayed
+
+::
+
+ #!/bin/sh
+ # Create device delaying only write operation for 500ms and
+ # splitting reads and writes to different devices $1 $2
+ echo "0 `blockdev --getsz $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
diff --git a/Documentation/device-mapper/dm-crypt.txt b/Documentation/device-mapper/dm-crypt.rst
index 3b3e1de21c9c..8f4a3f889d43 100644
--- a/Documentation/device-mapper/dm-crypt.txt
+++ b/Documentation/device-mapper/dm-crypt.rst
@@ -1,5 +1,6 @@
+========
dm-crypt
-=========
+========
Device-Mapper's "crypt" target provides transparent encryption of block devices
using the kernel crypto API.
@@ -7,15 +8,20 @@ using the kernel crypto API.
For a more detailed description of supported parameters see:
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
-Parameters: <cipher> <key> <iv_offset> <device path> \
+Parameters::
+
+ <cipher> <key> <iv_offset> <device path> \
<offset> [<#opt_params> <opt_params>]
<cipher>
Encryption cipher, encryption mode and Initial Vector (IV) generator.
- The cipher specifications format is:
+ The cipher specifications format is::
+
cipher[:keycount]-chainmode-ivmode[:ivopts]
- Examples:
+
+ Examples::
+
aes-cbc-essiv:sha256
aes-xts-plain64
serpent-xts-plain64
@@ -25,12 +31,17 @@ Parameters: <cipher> <key> <iv_offset> <device path> \
as for the first format type.
This format is mainly used for specification of authenticated modes.
- The crypto API cipher specifications format is:
+ The crypto API cipher specifications format is::
+
capi:cipher_api_spec-ivmode[:ivopts]
- Examples:
+
+ Examples::
+
capi:cbc(aes)-essiv:sha256
capi:xts(aes)-plain64
- Examples of authenticated modes:
+
+ Examples of authenticated modes::
+
capi:gcm(aes)-random
capi:authenc(hmac(sha256),xts(aes))-random
capi:rfc7539(chacha20,poly1305)-random
@@ -142,21 +153,21 @@ LUKS (Linux Unified Key Setup) is now the preferred way to set up disk
encryption with dm-crypt using the 'cryptsetup' utility, see
https://gitlab.com/cryptsetup/cryptsetup
-[[
-#!/bin/sh
-# Create a crypt device using dmsetup
-dmsetup create crypt1 --table "0 `blockdev --getsz $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
-]]
-
-[[
-#!/bin/sh
-# Create a crypt device using dmsetup when encryption key is stored in keyring service
-dmsetup create crypt2 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 :32:logon:my_prefix:my_key 0 $1 0"
-]]
-
-[[
-#!/bin/sh
-# Create a crypt device using cryptsetup and LUKS header with default cipher
-cryptsetup luksFormat $1
-cryptsetup luksOpen $1 crypt1
-]]
+::
+
+ #!/bin/sh
+ # Create a crypt device using dmsetup
+ dmsetup create crypt1 --table "0 `blockdev --getsz $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
+
+::
+
+ #!/bin/sh
+ # Create a crypt device using dmsetup when encryption key is stored in keyring service
+ dmsetup create crypt2 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 :32:logon:my_prefix:my_key 0 $1 0"
+
+::
+
+ #!/bin/sh
+ # Create a crypt device using cryptsetup and LUKS header with default cipher
+ cryptsetup luksFormat $1
+ cryptsetup luksOpen $1 crypt1
diff --git a/Documentation/device-mapper/dm-flakey.txt b/Documentation/device-mapper/dm-flakey.rst
index 9f0e247d0877..86138735879d 100644
--- a/Documentation/device-mapper/dm-flakey.txt
+++ b/Documentation/device-mapper/dm-flakey.rst
@@ -1,3 +1,4 @@
+=========
dm-flakey
=========
@@ -15,17 +16,26 @@ underlying devices.
Table parameters
----------------
+
+::
+
<dev path> <offset> <up interval> <down interval> \
[<num_features> [<feature arguments>]]
Mandatory parameters:
- <dev path>: Full pathname to the underlying block-device, or a
- "major:minor" device-number.
- <offset>: Starting sector within the device.
- <up interval>: Number of seconds device is available.
- <down interval>: Number of seconds device returns errors.
+
+ <dev path>:
+ Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>:
+ Starting sector within the device.
+ <up interval>:
+ Number of seconds device is available.
+ <down interval>:
+ Number of seconds device returns errors.
Optional feature parameters:
+
If no feature parameters are present, during the periods of
unreliability, all I/O returns errors.
@@ -41,17 +51,24 @@ Optional feature parameters:
During <down interval>, replace <Nth_byte> of the data of
each matching bio with <value>.
- <Nth_byte>: The offset of the byte to replace.
- Counting starts at 1, to replace the first byte.
- <direction>: Either 'r' to corrupt reads or 'w' to corrupt writes.
- 'w' is incompatible with drop_writes.
- <value>: The value (from 0-255) to write.
- <flags>: Perform the replacement only if bio->bi_opf has all the
- selected flags set.
+ <Nth_byte>:
+ The offset of the byte to replace.
+ Counting starts at 1, to replace the first byte.
+ <direction>:
+ Either 'r' to corrupt reads or 'w' to corrupt writes.
+ 'w' is incompatible with drop_writes.
+ <value>:
+ The value (from 0-255) to write.
+ <flags>:
+ Perform the replacement only if bio->bi_opf has all the
+ selected flags set.
Examples:
+
+Replaces the 32nd byte of READ bios with the value 1::
+
corrupt_bio_byte 32 r 1 0
- - replaces the 32nd byte of READ bios with the value 1
+
+Replaces the 224th byte of REQ_META (=32) bios with the value 0::
corrupt_bio_byte 224 w 0 32
- - replaces the 224th byte of REQ_META (=32) bios with the value 0
diff --git a/Documentation/device-mapper/dm-init.txt b/Documentation/device-mapper/dm-init.rst
index 8464ee7c01b8..e5242ff17e9b 100644
--- a/Documentation/device-mapper/dm-init.txt
+++ b/Documentation/device-mapper/dm-init.rst
@@ -1,5 +1,6 @@
+================================
Early creation of mapped devices
-====================================
+================================
It is possible to configure a device-mapper device to act as the root device for
your system in two ways.
@@ -12,15 +13,17 @@ The second is to create one or more device-mappers using the module parameter
The format is specified as a string of data separated by commas and optionally
semi-colons, where:
+
- a comma is used to separate fields like name, uuid, flags and table
(specifies one device)
- a semi-colon is used to separate devices.
-So the format will look like this:
+So the format will look like this::
dm-mod.create=<name>,<uuid>,<minor>,<flags>,<table>[,<table>+][;<name>,<uuid>,<minor>,<flags>,<table>[,<table>+]+]
-Where,
+Where::
+
<name> ::= The device name.
<uuid> ::= xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx | ""
<minor> ::= The device minor number | ""
@@ -29,7 +32,7 @@ Where,
<target_type> ::= "verity" | "linear" | ... (see list below)
The dm line should be equivalent to the one used by the dmsetup tool with the
---concise argument.
+`--concise` argument.
Target types
============
@@ -38,32 +41,34 @@ Not all target types are available as there are serious risks in allowing
activation of certain DM targets without first using userspace tools to check
the validity of associated metadata.
- "cache": constrained, userspace should verify cache device
- "crypt": allowed
- "delay": allowed
- "era": constrained, userspace should verify metadata device
- "flakey": constrained, meant for test
- "linear": allowed
- "log-writes": constrained, userspace should verify metadata device
- "mirror": constrained, userspace should verify main/mirror device
- "raid": constrained, userspace should verify metadata device
- "snapshot": constrained, userspace should verify src/dst device
- "snapshot-origin": allowed
- "snapshot-merge": constrained, userspace should verify src/dst device
- "striped": allowed
- "switch": constrained, userspace should verify dev path
- "thin": constrained, requires dm target message from userspace
- "thin-pool": constrained, requires dm target message from userspace
- "verity": allowed
- "writecache": constrained, userspace should verify cache device
- "zero": constrained, not meant for rootfs
+======================= =======================================================
+`cache` constrained, userspace should verify cache device
+`crypt` allowed
+`delay` allowed
+`era` constrained, userspace should verify metadata device
+`flakey` constrained, meant for test
+`linear` allowed
+`log-writes` constrained, userspace should verify metadata device
+`mirror` constrained, userspace should verify main/mirror device
+`raid` constrained, userspace should verify metadata device
+`snapshot` constrained, userspace should verify src/dst device
+`snapshot-origin` allowed
+`snapshot-merge` constrained, userspace should verify src/dst device
+`striped` allowed
+`switch` constrained, userspace should verify dev path
+`thin` constrained, requires dm target message from userspace
+`thin-pool` constrained, requires dm target message from userspace
+`verity` allowed
+`writecache` constrained, userspace should verify cache device
+`zero` constrained, not meant for rootfs
+======================= =======================================================
If the target is not listed above, it is constrained by default (not tested).
Examples
========
An example of booting to a linear array made up of user-mode linux block
-devices:
+devices::
dm-mod.create="lroot,,,rw, 0 4096 linear 98:16 0, 4096 4096 linear 98:32 0" root=/dev/dm-0
@@ -71,43 +76,49 @@ This will boot to a rw dm-linear target of 8192 sectors split across two block
devices identified by their major:minor numbers. After boot, udev will rename
this target to /dev/mapper/lroot (depending on the rules). No uuid was assigned.
-An example of multiple device-mappers, with the dm-mod.create="..." contents is shown here
-split on multiple lines for readability:
+An example of multiple device-mappers, with the dm-mod.create="..." contents
+is shown here split on multiple lines for readability::
- vroot,,,ro,
- 0 1740800 verity 254:0 254:0 1740800 sha1
- 76e9be054b15884a9fa85973e9cb274c93afadb6
- 5b3549d54d6c7a3837b9b81ed72e49463a64c03680c47835bef94d768e5646fe;
- vram,,,rw,
- 0 32768 linear 1:0 0,
- 32768 32768 linear 1:1 0
+ dm-linear,,1,rw,
+ 0 32768 linear 8:1 0,
+ 32768 1024000 linear 8:2 0;
+ dm-verity,,3,ro,
+ 0 1638400 verity 1 /dev/sdc1 /dev/sdc2 4096 4096 204800 1 sha256
+ ac87db56303c9c1da433d7209b5a6ef3e4779df141200cbd7c157dcb8dd89c42
+ 5ebfe87f7df3235b80a117ebc4078e44f55045487ad4a96581d1adb564615b51
Other examples (per target):
-"crypt":
+"crypt"::
+
dm-crypt,,8,ro,
0 1048576 crypt aes-xts-plain64
babebabebabebabebabebabebabebabebabebabebabebabebabebabebabebabe 0
/dev/sda 0 1 allow_discards
-"delay":
+"delay"::
+
dm-delay,,4,ro,0 409600 delay /dev/sda1 0 500
-"linear":
+"linear"::
+
dm-linear,,,rw,
0 32768 linear /dev/sda1 0,
32768 1024000 linear /dev/sda2 0,
1056768 204800 linear /dev/sda3 0,
1261568 512000 linear /dev/sda4 0
-"snapshot-origin":
+"snapshot-origin"::
+
dm-snap-orig,,4,ro,0 409600 snapshot-origin 8:2
-"striped":
+"striped"::
+
dm-striped,,4,ro,0 1638400 striped 4 4096
/dev/sda1 0 /dev/sda2 0 /dev/sda3 0 /dev/sda4 0
-"verity":
+"verity"::
+
dm-verity,,4,ro,
0 1638400 verity 1 8:1 8:2 4096 4096 204800 1 sha256
fb1a5a0f00deb908d8b53cb270858975e76cf64105d412ce764225d53b8f3cfd
diff --git a/Documentation/device-mapper/dm-integrity.txt b/Documentation/device-mapper/dm-integrity.rst
index d63d78ffeb73..a30aa91b5fbe 100644
--- a/Documentation/device-mapper/dm-integrity.txt
+++ b/Documentation/device-mapper/dm-integrity.rst
@@ -1,3 +1,7 @@
+============
+dm-integrity
+============
+
The dm-integrity target emulates a block device that has additional
per-sector tags that can be used for storing integrity information.
@@ -35,15 +39,16 @@ zeroes. If the superblock is neither valid nor zeroed, the dm-integrity
target can't be loaded.
To use the target for the first time:
+
1. overwrite the superblock with zeroes
2. load the dm-integrity target with one-sector size, the kernel driver
- will format the device
+ will format the device
3. unload the dm-integrity target
4. read the "provided_data_sectors" value from the superblock
5. load the dm-integrity target with the the target size
- "provided_data_sectors"
+ "provided_data_sectors"
6. if you want to use dm-integrity with dm-crypt, load the dm-crypt target
- with the size "provided_data_sectors"
+ with the size "provided_data_sectors"
Target arguments:
@@ -51,17 +56,20 @@ Target arguments:
1. the underlying block device
2. the number of reserved sector at the beginning of the device - the
- dm-integrity won't read of write these sectors
+ dm-integrity won't read of write these sectors
3. the size of the integrity tag (if "-" is used, the size is taken from
- the internal-hash algorithm)
+ the internal-hash algorithm)
4. mode:
- D - direct writes (without journal) - in this mode, journaling is
+
+ D - direct writes (without journal)
+ in this mode, journaling is
not used and data sectors and integrity tags are written
separately. In case of crash, it is possible that the data
and integrity tag doesn't match.
- J - journaled writes - data and integrity tags are written to the
+ J - journaled writes
+ data and integrity tags are written to the
journal and atomicity is guaranteed. In case of crash,
either both data and tag or none of them are written. The
journaled mode degrades write throughput twice because the
@@ -178,9 +186,12 @@ and the reloaded target would be non-functional.
The layout of the formatted block device:
-* reserved sectors (they are not used by this target, they can be used for
- storing LUKS metadata or for other purpose), the size of the reserved
- area is specified in the target arguments
+
+* reserved sectors
+ (they are not used by this target, they can be used for
+ storing LUKS metadata or for other purpose), the size of the reserved
+ area is specified in the target arguments
+
* superblock (4kiB)
* magic string - identifies that the device was formatted
* version
@@ -192,40 +203,55 @@ The layout of the formatted block device:
metadata and padding). The user of this target should not send
bios that access data beyond the "provided data sectors" limit.
* flags
- SB_FLAG_HAVE_JOURNAL_MAC - a flag is set if journal_mac is used
- SB_FLAG_RECALCULATING - recalculating is in progress
- SB_FLAG_DIRTY_BITMAP - journal area contains the bitmap of dirty
- blocks
+ SB_FLAG_HAVE_JOURNAL_MAC
+ - a flag is set if journal_mac is used
+ SB_FLAG_RECALCULATING
+ - recalculating is in progress
+ SB_FLAG_DIRTY_BITMAP
+ - journal area contains the bitmap of dirty
+ blocks
* log2(sectors per block)
* a position where recalculating finished
* journal
The journal is divided into sections, each section contains:
+
* metadata area (4kiB), it contains journal entries
- every journal entry contains:
+
+ - every journal entry contains:
+
* logical sector (specifies where the data and tag should
be written)
* last 8 bytes of data
* integrity tag (the size is specified in the superblock)
- every metadata sector ends with
+
+ - every metadata sector ends with
+
* mac (8-bytes), all the macs in 8 metadata sectors form a
64-byte value. It is used to store hmac of sector
numbers in the journal section, to protect against a
possibility that the attacker tampers with sector
numbers in the journal.
* commit id
+
* data area (the size is variable; it depends on how many journal
entries fit into the metadata area)
- every sector in the data area contains:
+
+ - every sector in the data area contains:
+
* data (504 bytes of data, the last 8 bytes are stored in
the journal entry)
* commit id
+
To test if the whole journal section was written correctly, every
512-byte sector of the journal ends with 8-byte commit id. If the
commit id matches on all sectors in a journal section, then it is
assumed that the section was written correctly. If the commit id
doesn't match, the section was written partially and it should not
be replayed.
-* one or more runs of interleaved tags and data. Each run contains:
+
+* one or more runs of interleaved tags and data.
+ Each run contains:
+
* tag area - it contains integrity tags. There is one tag for each
sector in the data area
* data area - it contains data sectors. The number of data sectors
diff --git a/Documentation/device-mapper/dm-io.txt b/Documentation/device-mapper/dm-io.rst
index 3b5d9a52cdcf..d2492917a1f5 100644
--- a/Documentation/device-mapper/dm-io.txt
+++ b/Documentation/device-mapper/dm-io.rst
@@ -1,3 +1,4 @@
+=====
dm-io
=====
@@ -7,7 +8,7 @@ version.
The user must set up an io_region structure to describe the desired location
of the I/O. Each io_region indicates a block-device along with the starting
-sector and size of the region.
+sector and size of the region::
struct io_region {
struct block_device *bdev;
@@ -19,7 +20,7 @@ Dm-io can read from one io_region or write to one or more io_regions. Writes
to multiple regions are specified by an array of io_region structures.
The first I/O service type takes a list of memory pages as the data buffer for
-the I/O, along with an offset into the first page.
+the I/O, along with an offset into the first page::
struct page_list {
struct page_list *next;
@@ -35,7 +36,7 @@ the I/O, along with an offset into the first page.
The second I/O service type takes an array of bio vectors as the data buffer
for the I/O. This service can be handy if the caller has a pre-assembled bio,
-but wants to direct different portions of the bio to different devices.
+but wants to direct different portions of the bio to different devices::
int dm_io_sync_bvec(unsigned int num_regions, struct io_region *where,
int rw, struct bio_vec *bvec,
@@ -47,7 +48,7 @@ but wants to direct different portions of the bio to different devices.
The third I/O service type takes a pointer to a vmalloc'd memory buffer as the
data buffer for the I/O. This service can be handy if the caller needs to do
I/O to a large region but doesn't want to allocate a large number of individual
-memory pages.
+memory pages::
int dm_io_sync_vm(unsigned int num_regions, struct io_region *where, int rw,
void *data, unsigned long *error_bits);
@@ -55,11 +56,11 @@ memory pages.
void *data, io_notify_fn fn, void *context);
Callers of the asynchronous I/O services must include the name of a completion
-callback routine and a pointer to some context data for the I/O.
+callback routine and a pointer to some context data for the I/O::
typedef void (*io_notify_fn)(unsigned long error, void *context);
-The "error" parameter in this callback, as well as the "*error" parameter in
+The "error" parameter in this callback, as well as the `*error` parameter in
all of the synchronous versions, is a bitset (instead of a simple error value).
In the case of an write-I/O to multiple regions, this bitset allows dm-io to
indicate success or failure on each individual region.
@@ -72,4 +73,3 @@ always available in order to avoid unnecessary waiting while performing I/O.
When the user is finished using the dm-io services, they should call
dm_io_put() and specify the same number of pages that were given on the
dm_io_get() call.
-
diff --git a/Documentation/device-mapper/dm-log.txt b/Documentation/device-mapper/dm-log.rst
index c155ac569c44..ba4fce39bc27 100644
--- a/Documentation/device-mapper/dm-log.txt
+++ b/Documentation/device-mapper/dm-log.rst
@@ -1,3 +1,4 @@
+=====================
Device-Mapper Logging
=====================
The device-mapper logging code is used by some of the device-mapper
@@ -16,11 +17,13 @@ dm_dirty_log_type in include/linux/dm-dirty-log.h). Various different
logging implementations are available and provide different
capabilities. The list includes:
+============== ==============================================================
Type Files
-==== =====
+============== ==============================================================
disk drivers/md/dm-log.c
core drivers/md/dm-log.c
userspace drivers/md/dm-log-userspace* include/linux/dm-log-userspace.h
+============== ==============================================================
The "disk" log type
-------------------
diff --git a/Documentation/device-mapper/dm-queue-length.txt b/Documentation/device-mapper/dm-queue-length.rst
index f4db2562175c..d8e381c1cb02 100644
--- a/Documentation/device-mapper/dm-queue-length.txt
+++ b/Documentation/device-mapper/dm-queue-length.rst
@@ -1,3 +1,4 @@
+===============
dm-queue-length
===============
@@ -6,12 +7,18 @@ which selects a path with the least number of in-flight I/Os.
The path selector name is 'queue-length'.
Table parameters for each path: [<repeat_count>]
+
+::
+
<repeat_count>: The number of I/Os to dispatch using the selected
path before switching to the next path.
If not given, internal default is used. To check
the default value, see the activated table.
Status for each path: <status> <fail-count> <in-flight>
+
+::
+
<status>: 'A' if the path is active, 'F' if the path is failed.
<fail-count>: The number of path failures.
<in-flight>: The number of in-flight I/Os on the path.
@@ -29,11 +36,13 @@ Examples
========
In case that 2 paths (sda and sdb) are used with repeat_count == 128.
-# echo "0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128" \
- dmsetup create test
-#
-# dmsetup table
-test: 0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128
-#
-# dmsetup status
-test: 0 10 multipath 2 0 0 0 1 1 E 0 2 1 8:0 A 0 0 8:16 A 0 0
+::
+
+ # echo "0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128" \
+ dmsetup create test
+ #
+ # dmsetup table
+ test: 0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128
+ #
+ # dmsetup status
+ test: 0 10 multipath 2 0 0 0 1 1 E 0 2 1 8:0 A 0 0 8:16 A 0 0
diff --git a/Documentation/device-mapper/dm-raid.txt b/Documentation/device-mapper/dm-raid.rst
index 2355bef14653..2fe255b130fb 100644
--- a/Documentation/device-mapper/dm-raid.txt
+++ b/Documentation/device-mapper/dm-raid.rst
@@ -1,3 +1,4 @@
+=======
dm-raid
=======
@@ -8,49 +9,66 @@ interface.
Mapping Table Interface
-----------------------
-The target is named "raid" and it accepts the following parameters:
+The target is named "raid" and it accepts the following parameters::
<raid_type> <#raid_params> <raid_params> \
<#raid_devs> <metadata_dev0> <dev0> [.. <metadata_devN> <devN>]
<raid_type>:
+
+ ============= ===============================================================
raid0 RAID0 striping (no resilience)
raid1 RAID1 mirroring
raid4 RAID4 with dedicated last parity disk
raid5_n RAID5 with dedicated last parity disk supporting takeover
Same as raid4
- -Transitory layout
+
+ - Transitory layout
raid5_la RAID5 left asymmetric
+
- rotating parity 0 with data continuation
raid5_ra RAID5 right asymmetric
+
- rotating parity N with data continuation
raid5_ls RAID5 left symmetric
+
- rotating parity 0 with data restart
raid5_rs RAID5 right symmetric
+
- rotating parity N with data restart
raid6_zr RAID6 zero restart
+
- rotating parity zero (left-to-right) with data restart
raid6_nr RAID6 N restart
+
- rotating parity N (right-to-left) with data restart
raid6_nc RAID6 N continue
+
- rotating parity N (right-to-left) with data continuation
raid6_n_6 RAID6 with dedicate parity disks
+
- parity and Q-syndrome on the last 2 disks;
layout for takeover from/to raid4/raid5_n
raid6_la_6 Same as "raid_la" plus dedicated last Q-syndrome disk
+
- layout for takeover from raid5_la from/to raid6
raid6_ra_6 Same as "raid5_ra" dedicated last Q-syndrome disk
+
- layout for takeover from raid5_ra from/to raid6
raid6_ls_6 Same as "raid5_ls" dedicated last Q-syndrome disk
+
- layout for takeover from raid5_ls from/to raid6
raid6_rs_6 Same as "raid5_rs" dedicated last Q-syndrome disk
+
- layout for takeover from raid5_rs from/to raid6
raid10 Various RAID10 inspired algorithms chosen by additional params
(see raid10_format and raid10_copies below)
+
- RAID10: Striped Mirrors (aka 'Striping on top of mirrors')
- RAID1E: Integrated Adjacent Stripe Mirroring
- RAID1E: Integrated Offset Stripe Mirroring
- - and other similar RAID10 variants
+ - and other similar RAID10 variants
+ ============= ===============================================================
Reference: Chapter 4 of
http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf
@@ -58,33 +76,41 @@ The target is named "raid" and it accepts the following parameters:
<#raid_params>: The number of parameters that follow.
<raid_params> consists of
+
Mandatory parameters:
- <chunk_size>: Chunk size in sectors. This parameter is often known as
+ <chunk_size>:
+ Chunk size in sectors. This parameter is often known as
"stripe size". It is the only mandatory parameter and
is placed first.
followed by optional parameters (in any order):
- [sync|nosync] Force or prevent RAID initialization.
+ [sync|nosync]
+ Force or prevent RAID initialization.
- [rebuild <idx>] Rebuild drive number 'idx' (first drive is 0).
+ [rebuild <idx>]
+ Rebuild drive number 'idx' (first drive is 0).
[daemon_sleep <ms>]
Interval between runs of the bitmap daemon that
clear bits. A longer interval means less bitmap I/O but
resyncing after a failure is likely to take longer.
- [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
- [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
- [write_mostly <idx>] Mark drive index 'idx' write-mostly.
- [max_write_behind <sectors>] See '--write-behind=' (man mdadm)
- [stripe_cache <sectors>] Stripe cache size (RAID 4/5/6 only)
+ [min_recovery_rate <kB/sec/disk>]
+ Throttle RAID initialization
+ [max_recovery_rate <kB/sec/disk>]
+ Throttle RAID initialization
+ [write_mostly <idx>]
+ Mark drive index 'idx' write-mostly.
+ [max_write_behind <sectors>]
+ See '--write-behind=' (man mdadm)
+ [stripe_cache <sectors>]
+ Stripe cache size (RAID 4/5/6 only)
[region_size <sectors>]
The region_size multiplied by the number of regions is the
logical size of the array. The bitmap records the device
synchronisation state for each region.
- [raid10_copies <# copies>]
- [raid10_format <near|far|offset>]
+ [raid10_copies <# copies>], [raid10_format <near|far|offset>]
These two options are used to alter the default layout of
a RAID10 configuration. The number of copies is can be
specified, but the default is 2. There are also three
@@ -93,13 +119,17 @@ The target is named "raid" and it accepts the following parameters:
respect to mirroring. If these options are left unspecified,
or 'raid10_copies 2' and/or 'raid10_format near' are given,
then the layouts for 2, 3 and 4 devices are:
+
+ ======== ========== ==============
2 drives 3 drives 4 drives
- -------- ---------- --------------
+ ======== ========== ==============
A1 A1 A1 A1 A2 A1 A1 A2 A2
A2 A2 A2 A3 A3 A3 A3 A4 A4
A3 A3 A4 A4 A5 A5 A5 A6 A6
A4 A4 A5 A6 A6 A7 A7 A8 A8
.. .. .. .. .. .. .. .. ..
+ ======== ========== ==============
+
The 2-device layout is equivalent 2-way RAID1. The 4-device
layout is what a traditional RAID10 would look like. The
3-device layout is what might be called a 'RAID1E - Integrated
@@ -107,8 +137,10 @@ The target is named "raid" and it accepts the following parameters:
If 'raid10_copies 2' and 'raid10_format far', then the layouts
for 2, 3 and 4 devices are:
+
+ ======== ============ ===================
2 drives 3 drives 4 drives
- -------- -------------- --------------------
+ ======== ============ ===================
A1 A2 A1 A2 A3 A1 A2 A3 A4
A3 A4 A4 A5 A6 A5 A6 A7 A8
A5 A6 A7 A8 A9 A9 A10 A11 A12
@@ -117,11 +149,14 @@ The target is named "raid" and it accepts the following parameters:
A4 A3 A6 A4 A5 A6 A5 A8 A7
A6 A5 A9 A7 A8 A10 A9 A12 A11
.. .. .. .. .. .. .. .. ..
+ ======== ============ ===================
If 'raid10_copies 2' and 'raid10_format offset', then the
layouts for 2, 3 and 4 devices are:
+
+ ======== ========== ================
2 drives 3 drives 4 drives
- -------- ------------ -----------------
+ ======== ========== ================
A1 A2 A1 A2 A3 A1 A2 A3 A4
A2 A1 A3 A1 A2 A2 A1 A4 A3
A3 A4 A4 A5 A6 A5 A6 A7 A8
@@ -129,6 +164,8 @@ The target is named "raid" and it accepts the following parameters:
A5 A6 A7 A8 A9 A9 A10 A11 A12
A6 A5 A9 A7 A8 A10 A9 A12 A11
.. .. .. .. .. .. .. .. ..
+ ======== ========== ================
+
Here we see layouts closely akin to 'RAID1E - Integrated
Offset Stripe Mirroring'.
@@ -190,22 +227,25 @@ The target is named "raid" and it accepts the following parameters:
Example Tables
--------------
-# RAID4 - 4 data drives, 1 parity (no metadata devices)
-# No metadata devices specified to hold superblock/bitmap info
-# Chunk size of 1MiB
-# (Lines separated for easy reading)
-0 1960893648 raid \
- raid4 1 2048 \
- 5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
+::
-# RAID4 - 4 data drives, 1 parity (with metadata devices)
-# Chunk size of 1MiB, force RAID initialization,
-# min recovery rate at 20 kiB/sec/disk
+ # RAID4 - 4 data drives, 1 parity (no metadata devices)
+ # No metadata devices specified to hold superblock/bitmap info
+ # Chunk size of 1MiB
+ # (Lines separated for easy reading)
-0 1960893648 raid \
- raid4 4 2048 sync min_recovery_rate 20 \
- 5 8:17 8:18 8:33 8:34 8:49 8:50 8:65 8:66 8:81 8:82
+ 0 1960893648 raid \
+ raid4 1 2048 \
+ 5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
+
+ # RAID4 - 4 data drives, 1 parity (with metadata devices)
+ # Chunk size of 1MiB, force RAID initialization,
+ # min recovery rate at 20 kiB/sec/disk
+
+ 0 1960893648 raid \
+ raid4 4 2048 sync min_recovery_rate 20 \
+ 5 8:17 8:18 8:33 8:34 8:49 8:50 8:65 8:66 8:81 8:82
Status Output
@@ -219,41 +259,58 @@ Arguments that can be repeated are ordered by value.
'dmsetup status' yields information on the state and health of the array.
The output is as follows (normally a single line, but expanded here for
-clarity):
-1: <s> <l> raid \
-2: <raid_type> <#devices> <health_chars> \
-3: <sync_ratio> <sync_action> <mismatch_cnt>
+clarity)::
+
+ 1: <s> <l> raid \
+ 2: <raid_type> <#devices> <health_chars> \
+ 3: <sync_ratio> <sync_action> <mismatch_cnt>
Line 1 is the standard output produced by device-mapper.
-Line 2 & 3 are produced by the raid target and are best explained by example:
+
+Line 2 & 3 are produced by the raid target and are best explained by example::
+
0 1960893648 raid raid4 5 AAAAA 2/490221568 init 0
+
Here we can see the RAID type is raid4, there are 5 devices - all of
which are 'A'live, and the array is 2/490221568 complete with its initial
recovery. Here is a fuller description of the individual fields:
+
+ =============== =========================================================
<raid_type> Same as the <raid_type> used to create the array.
- <health_chars> One char for each device, indicating: 'A' = alive and
- in-sync, 'a' = alive but not in-sync, 'D' = dead/failed.
+ <health_chars> One char for each device, indicating:
+
+ - 'A' = alive and in-sync
+ - 'a' = alive but not in-sync
+ - 'D' = dead/failed.
<sync_ratio> The ratio indicating how much of the array has undergone
the process described by 'sync_action'. If the
'sync_action' is "check" or "repair", then the process
of "resync" or "recover" can be considered complete.
<sync_action> One of the following possible states:
- idle - No synchronization action is being performed.
- frozen - The current action has been halted.
- resync - Array is undergoing its initial synchronization
+
+ idle
+ - No synchronization action is being performed.
+ frozen
+ - The current action has been halted.
+ resync
+ - Array is undergoing its initial synchronization
or is resynchronizing after an unclean shutdown
(possibly aided by a bitmap).
- recover - A device in the array is being rebuilt or
+ recover
+ - A device in the array is being rebuilt or
replaced.
- check - A user-initiated full check of the array is
+ check
+ - A user-initiated full check of the array is
being performed. All blocks are read and
checked for consistency. The number of
discrepancies found are recorded in
<mismatch_cnt>. No changes are made to the
array by this action.
- repair - The same as "check", but discrepancies are
+ repair
+ - The same as "check", but discrepancies are
corrected.
- reshape - The array is undergoing a reshape.
+ reshape
+ - The array is undergoing a reshape.
<mismatch_cnt> The number of discrepancies found between mirror copies
in RAID1/10 or wrong parity values found in RAID4/5/6.
This value is valid only after a "check" of the array
@@ -261,10 +318,11 @@ recovery. Here is a fuller description of the individual fields:
<data_offset> The current data offset to the start of the user data on
each component device of a raid set (see the respective
raid parameter to support out-of-place reshaping).
- <journal_char> 'A' - active write-through journal device.
- 'a' - active write-back journal device.
- 'D' - dead journal device.
- '-' - no journal device.
+ <journal_char> - 'A' - active write-through journal device.
+ - 'a' - active write-back journal device.
+ - 'D' - dead journal device.
+ - '-' - no journal device.
+ =============== =========================================================
Message Interface
@@ -272,12 +330,15 @@ Message Interface
The dm-raid target will accept certain actions through the 'message' interface.
('man dmsetup' for more information on the message interface.) These actions
include:
- "idle" - Halt the current sync action.
- "frozen" - Freeze the current sync action.
- "resync" - Initiate/continue a resync.
- "recover"- Initiate/continue a recover process.
- "check" - Initiate a check (i.e. a "scrub") of the array.
- "repair" - Initiate a repair of the array.
+
+ ========= ================================================
+ "idle" Halt the current sync action.
+ "frozen" Freeze the current sync action.
+ "resync" Initiate/continue a resync.
+ "recover" Initiate/continue a recover process.
+ "check" Initiate a check (i.e. a "scrub") of the array.
+ "repair" Initiate a repair of the array.
+ ========= ================================================
Discard Support
@@ -307,48 +368,52 @@ increasingly whitelisted in the kernel and can thus be trusted.
For trusted devices, the following dm-raid module parameter can be set
to safely enable discard support for RAID 4/5/6:
+
'devices_handle_discards_safely'
Version History
---------------
-1.0.0 Initial version. Support for RAID 4/5/6
-1.1.0 Added support for RAID 1
-1.2.0 Handle creation of arrays that contain failed devices.
-1.3.0 Added support for RAID 10
-1.3.1 Allow device replacement/rebuild for RAID 10
-1.3.2 Fix/improve redundancy checking for RAID10
-1.4.0 Non-functional change. Removes arg from mapping function.
-1.4.1 RAID10 fix redundancy validation checks (commit 55ebbb5).
-1.4.2 Add RAID10 "far" and "offset" algorithm support.
-1.5.0 Add message interface to allow manipulation of the sync_action.
+
+::
+
+ 1.0.0 Initial version. Support for RAID 4/5/6
+ 1.1.0 Added support for RAID 1
+ 1.2.0 Handle creation of arrays that contain failed devices.
+ 1.3.0 Added support for RAID 10
+ 1.3.1 Allow device replacement/rebuild for RAID 10
+ 1.3.2 Fix/improve redundancy checking for RAID10
+ 1.4.0 Non-functional change. Removes arg from mapping function.
+ 1.4.1 RAID10 fix redundancy validation checks (commit 55ebbb5).
+ 1.4.2 Add RAID10 "far" and "offset" algorithm support.
+ 1.5.0 Add message interface to allow manipulation of the sync_action.
New status (STATUSTYPE_INFO) fields: sync_action and mismatch_cnt.
-1.5.1 Add ability to restore transiently failed devices on resume.
-1.5.2 'mismatch_cnt' is zero unless [last_]sync_action is "check".
-1.6.0 Add discard support (and devices_handle_discard_safely module param).
-1.7.0 Add support for MD RAID0 mappings.
-1.8.0 Explicitly check for compatible flags in the superblock metadata
+ 1.5.1 Add ability to restore transiently failed devices on resume.
+ 1.5.2 'mismatch_cnt' is zero unless [last_]sync_action is "check".
+ 1.6.0 Add discard support (and devices_handle_discard_safely module param).
+ 1.7.0 Add support for MD RAID0 mappings.
+ 1.8.0 Explicitly check for compatible flags in the superblock metadata
and reject to start the raid set if any are set by a newer
target version, thus avoiding data corruption on a raid set
with a reshape in progress.
-1.9.0 Add support for RAID level takeover/reshape/region size
+ 1.9.0 Add support for RAID level takeover/reshape/region size
and set size reduction.
-1.9.1 Fix activation of existing RAID 4/10 mapped devices
-1.9.2 Don't emit '- -' on the status table line in case the constructor
+ 1.9.1 Fix activation of existing RAID 4/10 mapped devices
+ 1.9.2 Don't emit '- -' on the status table line in case the constructor
fails reading a superblock. Correctly emit 'maj:min1 maj:min2' and
'D' on the status line. If '- -' is passed into the constructor, emit
'- -' on the table line and '-' as the status line health character.
-1.10.0 Add support for raid4/5/6 journal device
-1.10.1 Fix data corruption on reshape request
-1.11.0 Fix table line argument order
+ 1.10.0 Add support for raid4/5/6 journal device
+ 1.10.1 Fix data corruption on reshape request
+ 1.11.0 Fix table line argument order
(wrong raid10_copies/raid10_format sequence)
-1.11.1 Add raid4/5/6 journal write-back support via journal_mode option
-1.12.1 Fix for MD deadlock between mddev_suspend() and md_write_start() available
-1.13.0 Fix dev_health status at end of "recover" (was 'a', now 'A')
-1.13.1 Fix deadlock caused by early md_stop_writes(). Also fix size an
+ 1.11.1 Add raid4/5/6 journal write-back support via journal_mode option
+ 1.12.1 Fix for MD deadlock between mddev_suspend() and md_write_start() available
+ 1.13.0 Fix dev_health status at end of "recover" (was 'a', now 'A')
+ 1.13.1 Fix deadlock caused by early md_stop_writes(). Also fix size an
state races.
-1.13.2 Fix raid redundancy validation and avoid keeping raid set frozen
-1.14.0 Fix reshape race on small devices. Fix stripe adding reshape
+ 1.13.2 Fix raid redundancy validation and avoid keeping raid set frozen
+ 1.14.0 Fix reshape race on small devices. Fix stripe adding reshape
deadlock/potential data corruption. Update superblock when
specific devices are requested via rebuild. Fix RAID leg
rebuild errors.
diff --git a/Documentation/device-mapper/dm-service-time.txt b/Documentation/device-mapper/dm-service-time.rst
index fb1d4a0cf122..facf277fc13c 100644
--- a/Documentation/device-mapper/dm-service-time.txt
+++ b/Documentation/device-mapper/dm-service-time.rst
@@ -1,3 +1,4 @@
+===============
dm-service-time
===============
@@ -12,25 +13,34 @@ in a path-group, and it can be specified as a table argument.
The path selector name is 'service-time'.
-Table parameters for each path: [<repeat_count> [<relative_throughput>]]
- <repeat_count>: The number of I/Os to dispatch using the selected
+Table parameters for each path:
+
+ [<repeat_count> [<relative_throughput>]]
+ <repeat_count>:
+ The number of I/Os to dispatch using the selected
path before switching to the next path.
If not given, internal default is used. To check
the default value, see the activated table.
- <relative_throughput>: The relative throughput value of the path
+ <relative_throughput>:
+ The relative throughput value of the path
among all paths in the path-group.
The valid range is 0-100.
If not given, minimum value '1' is used.
If '0' is given, the path isn't selected while
other paths having a positive value are available.
-Status for each path: <status> <fail-count> <in-flight-size> \
- <relative_throughput>
- <status>: 'A' if the path is active, 'F' if the path is failed.
- <fail-count>: The number of path failures.
- <in-flight-size>: The size of in-flight I/Os on the path.
- <relative_throughput>: The relative throughput value of the path
- among all paths in the path-group.
+Status for each path:
+
+ <status> <fail-count> <in-flight-size> <relative_throughput>
+ <status>:
+ 'A' if the path is active, 'F' if the path is failed.
+ <fail-count>:
+ The number of path failures.
+ <in-flight-size>:
+ The size of in-flight I/Os on the path.
+ <relative_throughput>:
+ The relative throughput value of the path
+ among all paths in the path-group.
Algorithm
@@ -39,7 +49,7 @@ Algorithm
dm-service-time adds the I/O size to 'in-flight-size' when the I/O is
dispatched and subtracts when completed.
Basically, dm-service-time selects a path having minimum service time
-which is calculated by:
+which is calculated by::
('in-flight-size' + 'size-of-incoming-io') / 'relative_throughput'
@@ -67,25 +77,25 @@ Examples
========
In case that 2 paths (sda and sdb) are used with repeat_count == 128
and sda has an average throughput 1GB/s and sdb has 4GB/s,
-'relative_throughput' value may be '1' for sda and '4' for sdb.
-
-# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
- dmsetup create test
-#
-# dmsetup table
-test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
-#
-# dmsetup status
-test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
-
-
-Or '2' for sda and '8' for sdb would be also true.
-
-# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
- dmsetup create test
-#
-# dmsetup table
-test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
-#
-# dmsetup status
-test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8
+'relative_throughput' value may be '1' for sda and '4' for sdb::
+
+ # echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
+ dmsetup create test
+ #
+ # dmsetup table
+ test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
+ #
+ # dmsetup status
+ test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
+
+
+Or '2' for sda and '8' for sdb would be also true::
+
+ # echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
+ dmsetup create test
+ #
+ # dmsetup table
+ test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
+ #
+ # dmsetup status
+ test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8
diff --git a/Documentation/device-mapper/dm-uevent.rst b/Documentation/device-mapper/dm-uevent.rst
new file mode 100644
index 000000000000..4a8ee8d069c9
--- /dev/null
+++ b/Documentation/device-mapper/dm-uevent.rst
@@ -0,0 +1,110 @@
+====================
+device-mapper uevent
+====================
+
+The device-mapper uevent code adds the capability to device-mapper to create
+and send kobject uevents (uevents). Previously device-mapper events were only
+available through the ioctl interface. The advantage of the uevents interface
+is the event contains environment attributes providing increased context for
+the event avoiding the need to query the state of the device-mapper device after
+the event is received.
+
+There are two functions currently for device-mapper events. The first function
+listed creates the event and the second function sends the event(s)::
+
+ void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
+ const char *path, unsigned nr_valid_paths)
+
+ void dm_send_uevents(struct list_head *events, struct kobject *kobj)
+
+
+The variables added to the uevent environment are:
+
+Variable Name: DM_TARGET
+------------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description:
+:Value: Name of device-mapper target that generated the event.
+
+Variable Name: DM_ACTION
+------------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description:
+:Value: Device-mapper specific action that caused the uevent action.
+ PATH_FAILED - A path has failed;
+ PATH_REINSTATED - A path has been reinstated.
+
+Variable Name: DM_SEQNUM
+------------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: unsigned integer
+:Description: A sequence number for this specific device-mapper device.
+:Value: Valid unsigned integer range.
+
+Variable Name: DM_PATH
+----------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description: Major and minor number of the path device pertaining to this
+ event.
+:Value: Path name in the form of "Major:Minor"
+
+Variable Name: DM_NR_VALID_PATHS
+--------------------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: unsigned integer
+:Description:
+:Value: Valid unsigned integer range.
+
+Variable Name: DM_NAME
+----------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description: Name of the device-mapper device.
+:Value: Name
+
+Variable Name: DM_UUID
+----------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description: UUID of the device-mapper device.
+:Value: UUID. (Empty string if there isn't one.)
+
+An example of the uevents generated as captured by udevmonitor is shown
+below
+
+1.) Path failure::
+
+ UEVENT[1192521009.711215] change@/block/dm-3
+ ACTION=change
+ DEVPATH=/block/dm-3
+ SUBSYSTEM=block
+ DM_TARGET=multipath
+ DM_ACTION=PATH_FAILED
+ DM_SEQNUM=1
+ DM_PATH=8:32
+ DM_NR_VALID_PATHS=0
+ DM_NAME=mpath2
+ DM_UUID=mpath-35333333000002328
+ MINOR=3
+ MAJOR=253
+ SEQNUM=1130
+
+2.) Path reinstate::
+
+ UEVENT[1192521132.989927] change@/block/dm-3
+ ACTION=change
+ DEVPATH=/block/dm-3
+ SUBSYSTEM=block
+ DM_TARGET=multipath
+ DM_ACTION=PATH_REINSTATED
+ DM_SEQNUM=2
+ DM_PATH=8:32
+ DM_NR_VALID_PATHS=1
+ DM_NAME=mpath2
+ DM_UUID=mpath-35333333000002328
+ MINOR=3
+ MAJOR=253
+ SEQNUM=1131
diff --git a/Documentation/device-mapper/dm-uevent.txt b/Documentation/device-mapper/dm-uevent.txt
deleted file mode 100644
index 07edbd85c714..000000000000
--- a/Documentation/device-mapper/dm-uevent.txt
+++ /dev/null
@@ -1,97 +0,0 @@
-The device-mapper uevent code adds the capability to device-mapper to create
-and send kobject uevents (uevents). Previously device-mapper events were only
-available through the ioctl interface. The advantage of the uevents interface
-is the event contains environment attributes providing increased context for
-the event avoiding the need to query the state of the device-mapper device after
-the event is received.
-
-There are two functions currently for device-mapper events. The first function
-listed creates the event and the second function sends the event(s).
-
-void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
- const char *path, unsigned nr_valid_paths)
-
-void dm_send_uevents(struct list_head *events, struct kobject *kobj)
-
-
-The variables added to the uevent environment are:
-
-Variable Name: DM_TARGET
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description:
-Value: Name of device-mapper target that generated the event.
-
-Variable Name: DM_ACTION
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description:
-Value: Device-mapper specific action that caused the uevent action.
- PATH_FAILED - A path has failed.
- PATH_REINSTATED - A path has been reinstated.
-
-Variable Name: DM_SEQNUM
-Uevent Action(s): KOBJ_CHANGE
-Type: unsigned integer
-Description: A sequence number for this specific device-mapper device.
-Value: Valid unsigned integer range.
-
-Variable Name: DM_PATH
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description: Major and minor number of the path device pertaining to this
-event.
-Value: Path name in the form of "Major:Minor"
-
-Variable Name: DM_NR_VALID_PATHS
-Uevent Action(s): KOBJ_CHANGE
-Type: unsigned integer
-Description:
-Value: Valid unsigned integer range.
-
-Variable Name: DM_NAME
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description: Name of the device-mapper device.
-Value: Name
-
-Variable Name: DM_UUID
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description: UUID of the device-mapper device.
-Value: UUID. (Empty string if there isn't one.)
-
-An example of the uevents generated as captured by udevmonitor is shown
-below.
-
-1.) Path failure.
-UEVENT[1192521009.711215] change@/block/dm-3
-ACTION=change
-DEVPATH=/block/dm-3
-SUBSYSTEM=block
-DM_TARGET=multipath
-DM_ACTION=PATH_FAILED
-DM_SEQNUM=1
-DM_PATH=8:32
-DM_NR_VALID_PATHS=0
-DM_NAME=mpath2
-DM_UUID=mpath-35333333000002328
-MINOR=3
-MAJOR=253
-SEQNUM=1130
-
-2.) Path reinstate.
-UEVENT[1192521132.989927] change@/block/dm-3
-ACTION=change
-DEVPATH=/block/dm-3
-SUBSYSTEM=block
-DM_TARGET=multipath
-DM_ACTION=PATH_REINSTATED
-DM_SEQNUM=2
-DM_PATH=8:32
-DM_NR_VALID_PATHS=1
-DM_NAME=mpath2
-DM_UUID=mpath-35333333000002328
-MINOR=3
-MAJOR=253
-SEQNUM=1131
diff --git a/Documentation/device-mapper/dm-zoned.txt b/Documentation/device-mapper/dm-zoned.rst
index 736fcc78d193..07f56ebc1730 100644
--- a/Documentation/device-mapper/dm-zoned.txt
+++ b/Documentation/device-mapper/dm-zoned.rst
@@ -1,3 +1,4 @@
+========
dm-zoned
========
@@ -133,12 +134,13 @@ A zoned block device must first be formatted using the dmzadm tool. This
will analyze the device zone configuration, determine where to place the
metadata sets on the device and initialize the metadata sets.
-Ex:
+Ex::
-dmzadm --format /dev/sdxx
+ dmzadm --format /dev/sdxx
For a formatted device, the target can be created normally with the
dmsetup utility. The only parameter that dm-zoned requires is the
-underlying zoned block device name. Ex:
+underlying zoned block device name. Ex::
-echo "0 `blockdev --getsize ${dev}` zoned ${dev}" | dmsetup create dmz-`basename ${dev}`
+ echo "0 `blockdev --getsize ${dev}` zoned ${dev}" | \
+ dmsetup create dmz-`basename ${dev}`
diff --git a/Documentation/device-mapper/era.txt b/Documentation/device-mapper/era.rst
index 3c6d01be3560..90dd5c670b9f 100644
--- a/Documentation/device-mapper/era.txt
+++ b/Documentation/device-mapper/era.rst
@@ -1,3 +1,7 @@
+======
+dm-era
+======
+
Introduction
============
@@ -14,12 +18,14 @@ coherency after rolling back a vendor snapshot.
Constructor
===========
- era <metadata dev> <origin dev> <block size>
+era <metadata dev> <origin dev> <block size>
- metadata dev : fast device holding the persistent metadata
- origin dev : device holding data blocks that may change
- block size : block size of origin data device, granularity that is
- tracked by the target
+ ================ ======================================================
+ metadata dev fast device holding the persistent metadata
+ origin dev device holding data blocks that may change
+ block size block size of origin data device, granularity that is
+ tracked by the target
+ ================ ======================================================
Messages
========
@@ -49,14 +55,16 @@ Status
<metadata block size> <#used metadata blocks>/<#total metadata blocks>
<current era> <held metadata root | '-'>
-metadata block size : Fixed block size for each metadata block in
- sectors
-#used metadata blocks : Number of metadata blocks used
-#total metadata blocks : Total number of metadata blocks
-current era : The current era
-held metadata root : The location, in blocks, of the metadata root
- that has been 'held' for userspace read
- access. '-' indicates there is no held root
+========================= ==============================================
+metadata block size Fixed block size for each metadata block in
+ sectors
+#used metadata blocks Number of metadata blocks used
+#total metadata blocks Total number of metadata blocks
+current era The current era
+held metadata root The location, in blocks, of the metadata root
+ that has been 'held' for userspace read
+ access. '-' indicates there is no held root
+========================= ==============================================
Detailed use case
=================
@@ -88,7 +96,7 @@ Memory usage
The target uses a bitset to record writes in the current era. It also
has a spare bitset ready for switching over to a new era. Other than
-that it uses a few 4k blocks for updating metadata.
+that it uses a few 4k blocks for updating metadata::
(4 * nr_blocks) bytes + buffers
diff --git a/Documentation/device-mapper/index.rst b/Documentation/device-mapper/index.rst
new file mode 100644
index 000000000000..105e253bc231
--- /dev/null
+++ b/Documentation/device-mapper/index.rst
@@ -0,0 +1,44 @@
+:orphan:
+
+=============
+Device Mapper
+=============
+
+.. toctree::
+ :maxdepth: 1
+
+ cache-policies
+ cache
+ delay
+ dm-crypt
+ dm-flakey
+ dm-init
+ dm-integrity
+ dm-io
+ dm-log
+ dm-queue-length
+ dm-raid
+ dm-service-time
+ dm-uevent
+ dm-zoned
+ era
+ kcopyd
+ linear
+ log-writes
+ persistent-data
+ snapshot
+ statistics
+ striped
+ switch
+ thin-provisioning
+ unstriped
+ verity
+ writecache
+ zero
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/device-mapper/kcopyd.txt b/Documentation/device-mapper/kcopyd.rst
index 820382c4cecf..7651d395127f 100644
--- a/Documentation/device-mapper/kcopyd.txt
+++ b/Documentation/device-mapper/kcopyd.rst
@@ -1,3 +1,4 @@
+======
kcopyd
======
@@ -7,7 +8,7 @@ notification. It is used by dm-snapshot and dm-mirror.
Users of kcopyd must first create a client and indicate how many memory pages
to set aside for their copy jobs. This is done with a call to
-kcopyd_client_create().
+kcopyd_client_create()::
int kcopyd_client_create(unsigned int num_pages,
struct kcopyd_client **result);
@@ -16,7 +17,7 @@ To start a copy job, the user must set up io_region structures to describe
the source and destinations of the copy. Each io_region indicates a
block-device along with the starting sector and size of the region. The source
of the copy is given as one io_region structure, and the destinations of the
-copy are given as an array of io_region structures.
+copy are given as an array of io_region structures::
struct io_region {
struct block_device *bdev;
@@ -26,7 +27,7 @@ copy are given as an array of io_region structures.
To start the copy, the user calls kcopyd_copy(), passing in the client
pointer, pointers to the source and destination io_regions, the name of a
-completion callback routine, and a pointer to some context data for the copy.
+completion callback routine, and a pointer to some context data for the copy::
int kcopyd_copy(struct kcopyd_client *kc, struct io_region *from,
unsigned int num_dests, struct io_region *dests,
@@ -41,7 +42,6 @@ write error occurred during the copy.
When a user is done with all their copy jobs, they should call
kcopyd_client_destroy() to delete the kcopyd client, which will release the
-associated memory pages.
+associated memory pages::
void kcopyd_client_destroy(struct kcopyd_client *kc);
-
diff --git a/Documentation/device-mapper/linear.rst b/Documentation/device-mapper/linear.rst
new file mode 100644
index 000000000000..9d17fc6e64a9
--- /dev/null
+++ b/Documentation/device-mapper/linear.rst
@@ -0,0 +1,63 @@
+=========
+dm-linear
+=========
+
+Device-Mapper's "linear" target maps a linear range of the Device-Mapper
+device onto a linear range of another device. This is the basic building
+block of logical volume managers.
+
+Parameters: <dev path> <offset>
+ <dev path>:
+ Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>:
+ Starting sector within the device.
+
+
+Example scripts
+===============
+
+::
+
+ #!/bin/sh
+ # Create an identity mapping for a device
+ echo "0 `blockdev --getsz $1` linear $1 0" | dmsetup create identity
+
+::
+
+ #!/bin/sh
+ # Join 2 devices together
+ size1=`blockdev --getsz $1`
+ size2=`blockdev --getsz $2`
+ echo "0 $size1 linear $1 0
+ $size1 $size2 linear $2 0" | dmsetup create joined
+
+::
+
+ #!/usr/bin/perl -w
+ # Split a device into 4M chunks and then join them together in reverse order.
+
+ my $name = "reverse";
+ my $extent_size = 4 * 1024 * 2;
+ my $dev = $ARGV[0];
+ my $table = "";
+ my $count = 0;
+
+ if (!defined($dev)) {
+ die("Please specify a device.\n");
+ }
+
+ my $dev_size = `blockdev --getsz $dev`;
+ my $extents = int($dev_size / $extent_size) -
+ (($dev_size % $extent_size) ? 1 : 0);
+
+ while ($extents > 0) {
+ my $this_start = $count * $extent_size;
+ $extents--;
+ $count++;
+ my $this_offset = $extents * $extent_size;
+
+ $table .= "$this_start $extent_size linear $dev $this_offset\n";
+ }
+
+ `echo \"$table\" | dmsetup create $name`;
diff --git a/Documentation/device-mapper/linear.txt b/Documentation/device-mapper/linear.txt
deleted file mode 100644
index 7cb98d89d3f8..000000000000
--- a/Documentation/device-mapper/linear.txt
+++ /dev/null
@@ -1,61 +0,0 @@
-dm-linear
-=========
-
-Device-Mapper's "linear" target maps a linear range of the Device-Mapper
-device onto a linear range of another device. This is the basic building
-block of logical volume managers.
-
-Parameters: <dev path> <offset>
- <dev path>: Full pathname to the underlying block-device, or a
- "major:minor" device-number.
- <offset>: Starting sector within the device.
-
-
-Example scripts
-===============
-[[
-#!/bin/sh
-# Create an identity mapping for a device
-echo "0 `blockdev --getsz $1` linear $1 0" | dmsetup create identity
-]]
-
-
-[[
-#!/bin/sh
-# Join 2 devices together
-size1=`blockdev --getsz $1`
-size2=`blockdev --getsz $2`
-echo "0 $size1 linear $1 0
-$size1 $size2 linear $2 0" | dmsetup create joined
-]]
-
-
-[[
-#!/usr/bin/perl -w
-# Split a device into 4M chunks and then join them together in reverse order.
-
-my $name = "reverse";
-my $extent_size = 4 * 1024 * 2;
-my $dev = $ARGV[0];
-my $table = "";
-my $count = 0;
-
-if (!defined($dev)) {
- die("Please specify a device.\n");
-}
-
-my $dev_size = `blockdev --getsz $dev`;
-my $extents = int($dev_size / $extent_size) -
- (($dev_size % $extent_size) ? 1 : 0);
-
-while ($extents > 0) {
- my $this_start = $count * $extent_size;
- $extents--;
- $count++;
- my $this_offset = $extents * $extent_size;
-
- $table .= "$this_start $extent_size linear $dev $this_offset\n";
-}
-
-`echo \"$table\" | dmsetup create $name`;
-]]
diff --git a/Documentation/device-mapper/log-writes.txt b/Documentation/device-mapper/log-writes.rst
index b638d124be6a..23141f2ffb7c 100644
--- a/Documentation/device-mapper/log-writes.txt
+++ b/Documentation/device-mapper/log-writes.rst
@@ -1,3 +1,4 @@
+=============
dm-log-writes
=============
@@ -25,11 +26,11 @@ completed WRITEs, at the time the REQ_PREFLUSH is issued, are added in order to
simulate the worst case scenario with regard to power failures. Consider the
following example (W means write, C means complete):
-W1,W2,W3,C3,C2,Wflush,C1,Cflush
+ W1,W2,W3,C3,C2,Wflush,C1,Cflush
-The log would show the following
+The log would show the following:
-W3,W2,flush,W1....
+ W3,W2,flush,W1....
Again this is to simulate what is actually on disk, this allows us to detect
cases where a power failure at a particular point in time would create an
@@ -42,11 +43,11 @@ Any REQ_OP_DISCARD requests are treated like WRITE requests. Otherwise we would
have all the DISCARD requests, and then the WRITE requests and then the FLUSH
request. Consider the following example:
-WRITE block 1, DISCARD block 1, FLUSH
+ WRITE block 1, DISCARD block 1, FLUSH
-If we logged DISCARD when it completed, the replay would look like this
+If we logged DISCARD when it completed, the replay would look like this:
-DISCARD 1, WRITE 1, FLUSH
+ DISCARD 1, WRITE 1, FLUSH
which isn't quite what happened and wouldn't be caught during the log replay.
@@ -57,15 +58,19 @@ i) Constructor
log-writes <dev_path> <log_dev_path>
- dev_path : Device that all of the IO will go to normally.
- log_dev_path : Device where the log entries are written to.
+ ============= ==============================================
+ dev_path Device that all of the IO will go to normally.
+ log_dev_path Device where the log entries are written to.
+ ============= ==============================================
ii) Status
<#logged entries> <highest allocated sector>
- #logged entries : Number of logged entries
- highest allocated sector : Highest allocated sector
+ =========================== ========================
+ #logged entries Number of logged entries
+ highest allocated sector Highest allocated sector
+ =========================== ========================
iii) Messages
@@ -75,15 +80,15 @@ iii) Messages
For example say you want to fsck a file system after every
write, but first you need to replay up to the mkfs to make sure
we're fsck'ing something reasonable, you would do something like
- this:
+ this::
mkfs.btrfs -f /dev/mapper/log
dmsetup message log 0 mark mkfs
<run test>
- This would allow you to replay the log up to the mkfs mark and
- then replay from that point on doing the fsck check in the
- interval that you want.
+ This would allow you to replay the log up to the mkfs mark and
+ then replay from that point on doing the fsck check in the
+ interval that you want.
Every log has a mark at the end labeled "dm-log-writes-end".
@@ -97,42 +102,42 @@ Example usage
=============
Say you want to test fsync on your file system. You would do something like
-this:
-
-TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
-dmsetup create log --table "$TABLE"
-mkfs.btrfs -f /dev/mapper/log
-dmsetup message log 0 mark mkfs
-
-mount /dev/mapper/log /mnt/btrfs-test
-<some test that does fsync at the end>
-dmsetup message log 0 mark fsync
-md5sum /mnt/btrfs-test/foo
-umount /mnt/btrfs-test
-
-dmsetup remove log
-replay-log --log /dev/sdc --replay /dev/sdb --end-mark fsync
-mount /dev/sdb /mnt/btrfs-test
-md5sum /mnt/btrfs-test/foo
-<verify md5sum's are correct>
-
-Another option is to do a complicated file system operation and verify the file
-system is consistent during the entire operation. You could do this with:
-
-TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
-dmsetup create log --table "$TABLE"
-mkfs.btrfs -f /dev/mapper/log
-dmsetup message log 0 mark mkfs
-
-mount /dev/mapper/log /mnt/btrfs-test
-<fsstress to dirty the fs>
-btrfs filesystem balance /mnt/btrfs-test
-umount /mnt/btrfs-test
-dmsetup remove log
-
-replay-log --log /dev/sdc --replay /dev/sdb --end-mark mkfs
-btrfsck /dev/sdb
-replay-log --log /dev/sdc --replay /dev/sdb --start-mark mkfs \
+this::
+
+ TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
+ dmsetup create log --table "$TABLE"
+ mkfs.btrfs -f /dev/mapper/log
+ dmsetup message log 0 mark mkfs
+
+ mount /dev/mapper/log /mnt/btrfs-test
+ <some test that does fsync at the end>
+ dmsetup message log 0 mark fsync
+ md5sum /mnt/btrfs-test/foo
+ umount /mnt/btrfs-test
+
+ dmsetup remove log
+ replay-log --log /dev/sdc --replay /dev/sdb --end-mark fsync
+ mount /dev/sdb /mnt/btrfs-test
+ md5sum /mnt/btrfs-test/foo
+ <verify md5sum's are correct>
+
+ Another option is to do a complicated file system operation and verify the file
+ system is consistent during the entire operation. You could do this with:
+
+ TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
+ dmsetup create log --table "$TABLE"
+ mkfs.btrfs -f /dev/mapper/log
+ dmsetup message log 0 mark mkfs
+
+ mount /dev/mapper/log /mnt/btrfs-test
+ <fsstress to dirty the fs>
+ btrfs filesystem balance /mnt/btrfs-test
+ umount /mnt/btrfs-test
+ dmsetup remove log
+
+ replay-log --log /dev/sdc --replay /dev/sdb --end-mark mkfs
+ btrfsck /dev/sdb
+ replay-log --log /dev/sdc --replay /dev/sdb --start-mark mkfs \
--fsck "btrfsck /dev/sdb" --check fua
And that will replay the log until it sees a FUA request, run the fsck command
diff --git a/Documentation/device-mapper/persistent-data.txt b/Documentation/device-mapper/persistent-data.rst
index a333bcb3a6c2..2065c3c5a091 100644
--- a/Documentation/device-mapper/persistent-data.txt
+++ b/Documentation/device-mapper/persistent-data.rst
@@ -1,3 +1,7 @@
+===============
+Persistent data
+===============
+
Introduction
============
diff --git a/Documentation/device-mapper/snapshot.txt b/Documentation/device-mapper/snapshot.rst
index b8bbb516f989..4c53304e72f1 100644
--- a/Documentation/device-mapper/snapshot.txt
+++ b/Documentation/device-mapper/snapshot.rst
@@ -1,15 +1,16 @@
+==============================
Device-mapper snapshot support
==============================
Device-mapper allows you, without massive data copying:
-*) To create snapshots of any block device i.e. mountable, saved states of
-the block device which are also writable without interfering with the
-original content;
-*) To create device "forks", i.e. multiple different versions of the
-same data stream.
-*) To merge a snapshot of a block device back into the snapshot's origin
-device.
+- To create snapshots of any block device i.e. mountable, saved states of
+ the block device which are also writable without interfering with the
+ original content;
+- To create device "forks", i.e. multiple different versions of the
+ same data stream.
+- To merge a snapshot of a block device back into the snapshot's origin
+ device.
In the first two cases, dm copies only the chunks of data that get
changed and uses a separate copy-on-write (COW) block device for
@@ -22,7 +23,7 @@ the origin device.
There are three dm targets available:
snapshot, snapshot-origin, and snapshot-merge.
-*) snapshot-origin <origin>
+- snapshot-origin <origin>
which will normally have one or more snapshots based on it.
Reads will be mapped directly to the backing device. For each write, the
@@ -30,7 +31,7 @@ original data will be saved in the <COW device> of each snapshot to keep
its visible content unchanged, at least until the <COW device> fills up.
-*) snapshot <origin> <COW device> <persistent?> <chunksize>
+- snapshot <origin> <COW device> <persistent?> <chunksize>
A snapshot of the <origin> block device is created. Changed chunks of
<chunksize> sectors will be stored on the <COW device>. Writes will
@@ -83,25 +84,25 @@ When you create the first LVM2 snapshot of a volume, four dm devices are used:
source volume), whose table is replaced by a "snapshot-origin" mapping
from device #1.
-A fixed naming scheme is used, so with the following commands:
+A fixed naming scheme is used, so with the following commands::
-lvcreate -L 1G -n base volumeGroup
-lvcreate -L 100M --snapshot -n snap volumeGroup/base
+ lvcreate -L 1G -n base volumeGroup
+ lvcreate -L 100M --snapshot -n snap volumeGroup/base
-we'll have this situation (with volumes in above order):
+we'll have this situation (with volumes in above order)::
-# dmsetup table|grep volumeGroup
+ # dmsetup table|grep volumeGroup
-volumeGroup-base-real: 0 2097152 linear 8:19 384
-volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
-volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
-volumeGroup-base: 0 2097152 snapshot-origin 254:11
+ volumeGroup-base-real: 0 2097152 linear 8:19 384
+ volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
+ volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
+ volumeGroup-base: 0 2097152 snapshot-origin 254:11
-# ls -lL /dev/mapper/volumeGroup-*
-brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
-brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
-brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
-brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
+ # ls -lL /dev/mapper/volumeGroup-*
+ brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
+ brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
+ brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
+ brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
How snapshot-merge is used by LVM2
@@ -114,27 +115,28 @@ merging snapshot after it completes. The "snapshot" that hands over its
COW device to the "snapshot-merge" is deactivated (unless using lvchange
--refresh); but if it is left active it will simply return I/O errors.
-A snapshot will merge into its origin with the following command:
+A snapshot will merge into its origin with the following command::
-lvconvert --merge volumeGroup/snap
+ lvconvert --merge volumeGroup/snap
-we'll now have this situation:
+we'll now have this situation::
-# dmsetup table|grep volumeGroup
+ # dmsetup table|grep volumeGroup
-volumeGroup-base-real: 0 2097152 linear 8:19 384
-volumeGroup-base-cow: 0 204800 linear 8:19 2097536
-volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
+ volumeGroup-base-real: 0 2097152 linear 8:19 384
+ volumeGroup-base-cow: 0 204800 linear 8:19 2097536
+ volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
-# ls -lL /dev/mapper/volumeGroup-*
-brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
-brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
-brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
+ # ls -lL /dev/mapper/volumeGroup-*
+ brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
+ brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
+ brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
How to determine when a merging is complete
===========================================
The snapshot-merge and snapshot status lines end with:
+
<sectors_allocated>/<total_sectors> <metadata_sectors>
Both <sectors_allocated> and <total_sectors> include both data and metadata.
@@ -142,35 +144,37 @@ During merging, the number of sectors allocated gets smaller and
smaller. Merging has finished when the number of sectors holding data
is zero, in other words <sectors_allocated> == <metadata_sectors>.
-Here is a practical example (using a hybrid of lvm and dmsetup commands):
+Here is a practical example (using a hybrid of lvm and dmsetup commands)::
-# lvs
- LV VG Attr LSize Origin Snap% Move Log Copy% Convert
- base volumeGroup owi-a- 4.00g
- snap volumeGroup swi-a- 1.00g base 18.97
+ # lvs
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup owi-a- 4.00g
+ snap volumeGroup swi-a- 1.00g base 18.97
-# dmsetup status volumeGroup-snap
-0 8388608 snapshot 397896/2097152 1560
- ^^^^ metadata sectors
+ # dmsetup status volumeGroup-snap
+ 0 8388608 snapshot 397896/2097152 1560
+ ^^^^ metadata sectors
-# lvconvert --merge -b volumeGroup/snap
- Merging of volume snap started.
+ # lvconvert --merge -b volumeGroup/snap
+ Merging of volume snap started.
-# lvs volumeGroup/snap
- LV VG Attr LSize Origin Snap% Move Log Copy% Convert
- base volumeGroup Owi-a- 4.00g 17.23
+ # lvs volumeGroup/snap
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup Owi-a- 4.00g 17.23
-# dmsetup status volumeGroup-base
-0 8388608 snapshot-merge 281688/2097152 1104
+ # dmsetup status volumeGroup-base
+ 0 8388608 snapshot-merge 281688/2097152 1104
-# dmsetup status volumeGroup-base
-0 8388608 snapshot-merge 180480/2097152 712
+ # dmsetup status volumeGroup-base
+ 0 8388608 snapshot-merge 180480/2097152 712
-# dmsetup status volumeGroup-base
-0 8388608 snapshot-merge 16/2097152 16
+ # dmsetup status volumeGroup-base
+ 0 8388608 snapshot-merge 16/2097152 16
Merging has finished.
-# lvs
- LV VG Attr LSize Origin Snap% Move Log Copy% Convert
- base volumeGroup owi-a- 4.00g
+::
+
+ # lvs
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup owi-a- 4.00g
diff --git a/Documentation/device-mapper/statistics.txt b/Documentation/device-mapper/statistics.rst
index 170ac02a1f50..3d80a9f850cc 100644
--- a/Documentation/device-mapper/statistics.txt
+++ b/Documentation/device-mapper/statistics.rst
@@ -1,3 +1,4 @@
+=============
DM statistics
=============
@@ -11,7 +12,7 @@ Individual statistics will be collected for each step-sized area within
the range specified.
The I/O statistics counters for each step-sized area of a region are
-in the same format as /sys/block/*/stat or /proc/diskstats (see:
+in the same format as `/sys/block/*/stat` or `/proc/diskstats` (see:
Documentation/iostats.txt). But two extra counters (12 and 13) are
provided: total time spent reading and writing. When the histogram
argument is used, the 14th parameter is reported that represents the
@@ -32,40 +33,45 @@ on each other's data.
The creation of DM statistics will allocate memory via kmalloc or
fallback to using vmalloc space. At most, 1/4 of the overall system
memory may be allocated by DM statistics. The admin can see how much
-memory is used by reading
-/sys/module/dm_mod/parameters/stats_current_allocated_bytes
+memory is used by reading:
+
+ /sys/module/dm_mod/parameters/stats_current_allocated_bytes
Messages
========
- @stats_create <range> <step>
- [<number_of_optional_arguments> <optional_arguments>...]
- [<program_id> [<aux_data>]]
-
+ @stats_create <range> <step> [<number_of_optional_arguments> <optional_arguments>...] [<program_id> [<aux_data>]]
Create a new region and return the region_id.
<range>
- "-" - whole device
- "<start_sector>+<length>" - a range of <length> 512-byte sectors
- starting with <start_sector>.
+ "-"
+ whole device
+ "<start_sector>+<length>"
+ a range of <length> 512-byte sectors
+ starting with <start_sector>.
<step>
- "<area_size>" - the range is subdivided into areas each containing
- <area_size> sectors.
- "/<number_of_areas>" - the range is subdivided into the specified
- number of areas.
+ "<area_size>"
+ the range is subdivided into areas each containing
+ <area_size> sectors.
+ "/<number_of_areas>"
+ the range is subdivided into the specified
+ number of areas.
<number_of_optional_arguments>
The number of optional arguments
<optional_arguments>
- The following optional arguments are supported
- precise_timestamps - use precise timer with nanosecond resolution
+ The following optional arguments are supported:
+
+ precise_timestamps
+ use precise timer with nanosecond resolution
instead of the "jiffies" variable. When this argument is
used, the resulting times are in nanoseconds instead of
milliseconds. Precise timestamps are a little bit slower
to obtain than jiffies-based timestamps.
- histogram:n1,n2,n3,n4,... - collect histogram of latencies. The
+ histogram:n1,n2,n3,n4,...
+ collect histogram of latencies. The
numbers n1, n2, etc are times that represent the boundaries
of the histogram. If precise_timestamps is not used, the
times are in milliseconds, otherwise they are in
@@ -96,21 +102,18 @@ Messages
@stats_list message, but it doesn't use this value for anything.
@stats_delete <region_id>
-
Delete the region with the specified id.
<region_id>
region_id returned from @stats_create
@stats_clear <region_id>
-
Clear all the counters except the in-flight i/o counters.
<region_id>
region_id returned from @stats_create
@stats_list [<program_id>]
-
List all regions registered with @stats_create.
<program_id>
@@ -127,7 +130,6 @@ Messages
if they were specified when creating the region.
@stats_print <region_id> [<starting_line> <number_of_lines>]
-
Print counters for each step-sized area of a region.
<region_id>
@@ -143,10 +145,11 @@ Messages
Output format for each step-sized area of a region:
- <start_sector>+<length> counters
+ <start_sector>+<length>
+ counters
The first 11 counters have the same meaning as
- /sys/block/*/stat or /proc/diskstats.
+ `/sys/block/*/stat or /proc/diskstats`.
Please refer to Documentation/iostats.txt for details.
@@ -163,11 +166,11 @@ Messages
11. the weighted number of milliseconds spent doing I/Os
Additional counters:
+
12. the total time spent reading in milliseconds
13. the total time spent writing in milliseconds
@stats_print_clear <region_id> [<starting_line> <number_of_lines>]
-
Atomically print and then clear all the counters except the
in-flight i/o counters. Useful when the client consuming the
statistics does not want to lose any statistics (those updated
@@ -185,7 +188,6 @@ Messages
If omitted, all lines are printed and then cleared.
@stats_set_aux <region_id> <aux_data>
-
Store auxiliary data aux_data for the specified region.
<region_id>
@@ -201,23 +203,23 @@ Examples
========
Subdivide the DM device 'vol' into 100 pieces and start collecting
-statistics on them:
+statistics on them::
dmsetup message vol 0 @stats_create - /100
Set the auxiliary data string to "foo bar baz" (the escape for each
-space must also be escaped, otherwise the shell will consume them):
+space must also be escaped, otherwise the shell will consume them)::
dmsetup message vol 0 @stats_set_aux 0 foo\\ bar\\ baz
-List the statistics:
+List the statistics::
dmsetup message vol 0 @stats_list
-Print the statistics:
+Print the statistics::
dmsetup message vol 0 @stats_print 0
-Delete the statistics:
+Delete the statistics::
dmsetup message vol 0 @stats_delete 0
diff --git a/Documentation/device-mapper/striped.rst b/Documentation/device-mapper/striped.rst
new file mode 100644
index 000000000000..e9a8da192ae1
--- /dev/null
+++ b/Documentation/device-mapper/striped.rst
@@ -0,0 +1,61 @@
+=========
+dm-stripe
+=========
+
+Device-Mapper's "striped" target is used to create a striped (i.e. RAID-0)
+device across one or more underlying devices. Data is written in "chunks",
+with consecutive chunks rotating among the underlying devices. This can
+potentially provide improved I/O throughput by utilizing several physical
+devices in parallel.
+
+Parameters: <num devs> <chunk size> [<dev path> <offset>]+
+ <num devs>:
+ Number of underlying devices.
+ <chunk size>:
+ Size of each chunk of data. Must be at least as
+ large as the system's PAGE_SIZE.
+ <dev path>:
+ Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>:
+ Starting sector within the device.
+
+One or more underlying devices can be specified. The striped device size must
+be a multiple of the chunk size multiplied by the number of underlying devices.
+
+
+Example scripts
+===============
+
+::
+
+ #!/usr/bin/perl -w
+ # Create a striped device across any number of underlying devices. The device
+ # will be called "stripe_dev" and have a chunk-size of 128k.
+
+ my $chunk_size = 128 * 2;
+ my $dev_name = "stripe_dev";
+ my $num_devs = @ARGV;
+ my @devs = @ARGV;
+ my ($min_dev_size, $stripe_dev_size, $i);
+
+ if (!$num_devs) {
+ die("Specify at least one device\n");
+ }
+
+ $min_dev_size = `blockdev --getsz $devs[0]`;
+ for ($i = 1; $i < $num_devs; $i++) {
+ my $this_size = `blockdev --getsz $devs[$i]`;
+ $min_dev_size = ($min_dev_size < $this_size) ?
+ $min_dev_size : $this_size;
+ }
+
+ $stripe_dev_size = $min_dev_size * $num_devs;
+ $stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
+
+ $table = "0 $stripe_dev_size striped $num_devs $chunk_size";
+ for ($i = 0; $i < $num_devs; $i++) {
+ $table .= " $devs[$i] 0";
+ }
+
+ `echo $table | dmsetup create $dev_name`;
diff --git a/Documentation/device-mapper/striped.txt b/Documentation/device-mapper/striped.txt
deleted file mode 100644
index 07ec492cceee..000000000000
--- a/Documentation/device-mapper/striped.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-dm-stripe
-=========
-
-Device-Mapper's "striped" target is used to create a striped (i.e. RAID-0)
-device across one or more underlying devices. Data is written in "chunks",
-with consecutive chunks rotating among the underlying devices. This can
-potentially provide improved I/O throughput by utilizing several physical
-devices in parallel.
-
-Parameters: <num devs> <chunk size> [<dev path> <offset>]+
- <num devs>: Number of underlying devices.
- <chunk size>: Size of each chunk of data. Must be at least as
- large as the system's PAGE_SIZE.
- <dev path>: Full pathname to the underlying block-device, or a
- "major:minor" device-number.
- <offset>: Starting sector within the device.
-
-One or more underlying devices can be specified. The striped device size must
-be a multiple of the chunk size multiplied by the number of underlying devices.
-
-
-Example scripts
-===============
-
-[[
-#!/usr/bin/perl -w
-# Create a striped device across any number of underlying devices. The device
-# will be called "stripe_dev" and have a chunk-size of 128k.
-
-my $chunk_size = 128 * 2;
-my $dev_name = "stripe_dev";
-my $num_devs = @ARGV;
-my @devs = @ARGV;
-my ($min_dev_size, $stripe_dev_size, $i);
-
-if (!$num_devs) {
- die("Specify at least one device\n");
-}
-
-$min_dev_size = `blockdev --getsz $devs[0]`;
-for ($i = 1; $i < $num_devs; $i++) {
- my $this_size = `blockdev --getsz $devs[$i]`;
- $min_dev_size = ($min_dev_size < $this_size) ?
- $min_dev_size : $this_size;
-}
-
-$stripe_dev_size = $min_dev_size * $num_devs;
-$stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
-
-$table = "0 $stripe_dev_size striped $num_devs $chunk_size";
-for ($i = 0; $i < $num_devs; $i++) {
- $table .= " $devs[$i] 0";
-}
-
-`echo $table | dmsetup create $dev_name`;
-]]
-
diff --git a/Documentation/device-mapper/switch.txt b/Documentation/device-mapper/switch.rst
index 5bd4831db4a8..7dde06be1a4f 100644
--- a/Documentation/device-mapper/switch.txt
+++ b/Documentation/device-mapper/switch.rst
@@ -1,3 +1,4 @@
+=========
dm-switch
=========
@@ -67,27 +68,25 @@ b-tree can achieve.
Construction Parameters
=======================
- <num_paths> <region_size> <num_optional_args> [<optional_args>...]
- [<dev_path> <offset>]+
-
-<num_paths>
- The number of paths across which to distribute the I/O.
+ <num_paths> <region_size> <num_optional_args> [<optional_args>...] [<dev_path> <offset>]+
+ <num_paths>
+ The number of paths across which to distribute the I/O.
-<region_size>
- The number of 512-byte sectors in a region. Each region can be redirected
- to any of the available paths.
+ <region_size>
+ The number of 512-byte sectors in a region. Each region can be redirected
+ to any of the available paths.
-<num_optional_args>
- The number of optional arguments. Currently, no optional arguments
- are supported and so this must be zero.
+ <num_optional_args>
+ The number of optional arguments. Currently, no optional arguments
+ are supported and so this must be zero.
-<dev_path>
- The block device that represents a specific path to the device.
+ <dev_path>
+ The block device that represents a specific path to the device.
-<offset>
- The offset of the start of data on the specific <dev_path> (in units
- of 512-byte sectors). This number is added to the sector number when
- forwarding the request to the specific path. Typically it is zero.
+ <offset>
+ The offset of the start of data on the specific <dev_path> (in units
+ of 512-byte sectors). This number is added to the sector number when
+ forwarding the request to the specific path. Typically it is zero.
Messages
========
@@ -122,17 +121,21 @@ Example
Assume that you have volumes vg1/switch0 vg1/switch1 vg1/switch2 with
the same size.
-Create a switch device with 64kB region size:
+Create a switch device with 64kB region size::
+
dmsetup create switch --table "0 `blockdev --getsz /dev/vg1/switch0`
switch 3 128 0 /dev/vg1/switch0 0 /dev/vg1/switch1 0 /dev/vg1/switch2 0"
Set mappings for the first 7 entries to point to devices switch0, switch1,
-switch2, switch0, switch1, switch2, switch1:
+switch2, switch0, switch1, switch2, switch1::
+
dmsetup message switch 0 set_region_mappings 0:0 :1 :2 :0 :1 :2 :1
-Set repetitive mapping. This command:
+Set repetitive mapping. This command::
+
dmsetup message switch 0 set_region_mappings 1000:1 :2 R2,10
-is equivalent to:
+
+is equivalent to::
+
dmsetup message switch 0 set_region_mappings 1000:1 :2 :1 :2 :1 :2 :1 :2 \
:1 :2 :1 :2 :1 :2 :1 :2 :1 :2
-
diff --git a/Documentation/device-mapper/thin-provisioning.txt b/Documentation/device-mapper/thin-provisioning.rst
index 883e7ca5f745..bafebf79da4b 100644
--- a/Documentation/device-mapper/thin-provisioning.txt
+++ b/Documentation/device-mapper/thin-provisioning.rst
@@ -1,3 +1,7 @@
+=================
+Thin provisioning
+=================
+
Introduction
============
@@ -95,6 +99,8 @@ previously.)
Using an existing pool device
-----------------------------
+::
+
dmsetup create pool \
--table "0 20971520 thin-pool $metadata_dev $data_dev \
$data_block_size $low_water_mark"
@@ -154,7 +160,7 @@ Thin provisioning
i) Creating a new thinly-provisioned volume.
To create a new thinly- provisioned volume you must send a message to an
- active pool device, /dev/mapper/pool in this example.
+ active pool device, /dev/mapper/pool in this example::
dmsetup message /dev/mapper/pool 0 "create_thin 0"
@@ -164,7 +170,7 @@ i) Creating a new thinly-provisioned volume.
ii) Using a thinly-provisioned volume.
- Thinly-provisioned volumes are activated using the 'thin' target:
+ Thinly-provisioned volumes are activated using the 'thin' target::
dmsetup create thin --table "0 2097152 thin /dev/mapper/pool 0"
@@ -181,6 +187,8 @@ i) Creating an internal snapshot.
must suspend it before creating the snapshot to avoid corruption.
This is NOT enforced at the moment, so please be careful!
+ ::
+
dmsetup suspend /dev/mapper/thin
dmsetup message /dev/mapper/pool 0 "create_snap 1 0"
dmsetup resume /dev/mapper/thin
@@ -198,14 +206,14 @@ ii) Using an internal snapshot.
activating or removing them both. (This differs from conventional
device-mapper snapshots.)
- Activate it exactly the same way as any other thinly-provisioned volume:
+ Activate it exactly the same way as any other thinly-provisioned volume::
dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 1"
External snapshots
------------------
-You can use an external _read only_ device as an origin for a
+You can use an external **read only** device as an origin for a
thinly-provisioned volume. Any read to an unprovisioned area of the
thin device will be passed through to the origin. Writes trigger
the allocation of new blocks as usual.
@@ -223,11 +231,13 @@ i) Creating a snapshot of an external device
This is the same as creating a thin device.
You don't mention the origin at this stage.
+ ::
+
dmsetup message /dev/mapper/pool 0 "create_thin 0"
ii) Using a snapshot of an external device.
- Append an extra parameter to the thin target specifying the origin:
+ Append an extra parameter to the thin target specifying the origin::
dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 0 /dev/image"
@@ -240,6 +250,8 @@ Deactivation
All devices using a pool must be deactivated before the pool itself
can be.
+::
+
dmsetup remove thin
dmsetup remove snap
dmsetup remove pool
@@ -252,25 +264,32 @@ Reference
i) Constructor
- thin-pool <metadata dev> <data dev> <data block size (sectors)> \
- <low water mark (blocks)> [<number of feature args> [<arg>]*]
+ ::
+
+ thin-pool <metadata dev> <data dev> <data block size (sectors)> \
+ <low water mark (blocks)> [<number of feature args> [<arg>]*]
Optional feature arguments:
- skip_block_zeroing: Skip the zeroing of newly-provisioned blocks.
+ skip_block_zeroing:
+ Skip the zeroing of newly-provisioned blocks.
- ignore_discard: Disable discard support.
+ ignore_discard:
+ Disable discard support.
- no_discard_passdown: Don't pass discards down to the underlying
- data device, but just remove the mapping.
+ no_discard_passdown:
+ Don't pass discards down to the underlying
+ data device, but just remove the mapping.
- read_only: Don't allow any changes to be made to the pool
+ read_only:
+ Don't allow any changes to be made to the pool
metadata. This mode is only available after the
thin-pool has been created and first used in full
read/write mode. It cannot be specified on initial
thin-pool creation.
- error_if_no_space: Error IOs, instead of queueing, if no space.
+ error_if_no_space:
+ Error IOs, instead of queueing, if no space.
Data block size must be between 64KB (128 sectors) and 1GB
(2097152 sectors) inclusive.
@@ -278,10 +297,12 @@ i) Constructor
ii) Status
- <transaction id> <used metadata blocks>/<total metadata blocks>
- <used data blocks>/<total data blocks> <held metadata root>
- ro|rw|out_of_data_space [no_]discard_passdown [error|queue]_if_no_space
- needs_check|- metadata_low_watermark
+ ::
+
+ <transaction id> <used metadata blocks>/<total metadata blocks>
+ <used data blocks>/<total data blocks> <held metadata root>
+ ro|rw|out_of_data_space [no_]discard_passdown [error|queue]_if_no_space
+ needs_check|- metadata_low_watermark
transaction id:
A 64-bit number used by userspace to help synchronise with metadata
@@ -336,13 +357,11 @@ ii) Status
iii) Messages
create_thin <dev id>
-
Create a new thinly-provisioned device.
<dev id> is an arbitrary unique 24-bit identifier chosen by
the caller.
create_snap <dev id> <origin id>
-
Create a new snapshot of another thinly-provisioned device.
<dev id> is an arbitrary unique 24-bit identifier chosen by
the caller.
@@ -350,11 +369,9 @@ iii) Messages
of which the new device will be a snapshot.
delete <dev id>
-
Deletes a thin device. Irreversible.
set_transaction_id <current id> <new id>
-
Userland volume managers, such as LVM, need a way to
synchronise their external metadata with the internal metadata of the
pool target. The thin-pool target offers to store an
@@ -364,14 +381,12 @@ iii) Messages
compare-and-swap message.
reserve_metadata_snap
-
Reserve a copy of the data mapping btree for use by userland.
This allows userland to inspect the mappings as they were when
this message was executed. Use the pool's status command to
get the root block associated with the metadata snapshot.
release_metadata_snap
-
Release a previously reserved copy of the data mapping btree.
'thin' target
@@ -379,7 +394,9 @@ iii) Messages
i) Constructor
- thin <pool dev> <dev id> [<external origin dev>]
+ ::
+
+ thin <pool dev> <dev id> [<external origin dev>]
pool dev:
the thin-pool device, e.g. /dev/mapper/my_pool or 253:0
@@ -401,8 +418,7 @@ provisioned as and when needed.
ii) Status
- <nr mapped sectors> <highest mapped sector>
-
+ <nr mapped sectors> <highest mapped sector>
If the pool has encountered device errors and failed, the status
will just contain the string 'Fail'. The userspace recovery
tools should then be used.
diff --git a/Documentation/device-mapper/unstriped.txt b/Documentation/device-mapper/unstriped.rst
index 0b2a306c54ee..0a8d3eb3f072 100644
--- a/Documentation/device-mapper/unstriped.txt
+++ b/Documentation/device-mapper/unstriped.rst
@@ -1,3 +1,7 @@
+================================
+Device-mapper "unstriped" target
+================================
+
Introduction
============
@@ -34,46 +38,46 @@ striped target to combine the 4 devices into one. It then will use
the unstriped target ontop of the striped device to access the
individual backing loop devices. We write data to the newly exposed
unstriped devices and verify the data written matches the correct
-underlying device on the striped array.
+underlying device on the striped array::
-#!/bin/bash
+ #!/bin/bash
-MEMBER_SIZE=$((128 * 1024 * 1024))
-NUM=4
-SEQ_END=$((${NUM}-1))
-CHUNK=256
-BS=4096
+ MEMBER_SIZE=$((128 * 1024 * 1024))
+ NUM=4
+ SEQ_END=$((${NUM}-1))
+ CHUNK=256
+ BS=4096
-RAID_SIZE=$((${MEMBER_SIZE}*${NUM}/512))
-DM_PARMS="0 ${RAID_SIZE} striped ${NUM} ${CHUNK}"
-COUNT=$((${MEMBER_SIZE} / ${BS}))
+ RAID_SIZE=$((${MEMBER_SIZE}*${NUM}/512))
+ DM_PARMS="0 ${RAID_SIZE} striped ${NUM} ${CHUNK}"
+ COUNT=$((${MEMBER_SIZE} / ${BS}))
-for i in $(seq 0 ${SEQ_END}); do
- dd if=/dev/zero of=member-${i} bs=${MEMBER_SIZE} count=1 oflag=direct
- losetup /dev/loop${i} member-${i}
- DM_PARMS+=" /dev/loop${i} 0"
-done
+ for i in $(seq 0 ${SEQ_END}); do
+ dd if=/dev/zero of=member-${i} bs=${MEMBER_SIZE} count=1 oflag=direct
+ losetup /dev/loop${i} member-${i}
+ DM_PARMS+=" /dev/loop${i} 0"
+ done
-echo $DM_PARMS | dmsetup create raid0
-for i in $(seq 0 ${SEQ_END}); do
- echo "0 1 unstriped ${NUM} ${CHUNK} ${i} /dev/mapper/raid0 0" | dmsetup create set-${i}
-done;
+ echo $DM_PARMS | dmsetup create raid0
+ for i in $(seq 0 ${SEQ_END}); do
+ echo "0 1 unstriped ${NUM} ${CHUNK} ${i} /dev/mapper/raid0 0" | dmsetup create set-${i}
+ done;
-for i in $(seq 0 ${SEQ_END}); do
- dd if=/dev/urandom of=/dev/mapper/set-${i} bs=${BS} count=${COUNT} oflag=direct
- diff /dev/mapper/set-${i} member-${i}
-done;
+ for i in $(seq 0 ${SEQ_END}); do
+ dd if=/dev/urandom of=/dev/mapper/set-${i} bs=${BS} count=${COUNT} oflag=direct
+ diff /dev/mapper/set-${i} member-${i}
+ done;
-for i in $(seq 0 ${SEQ_END}); do
- dmsetup remove set-${i}
-done
+ for i in $(seq 0 ${SEQ_END}); do
+ dmsetup remove set-${i}
+ done
-dmsetup remove raid0
+ dmsetup remove raid0
-for i in $(seq 0 ${SEQ_END}); do
- losetup -d /dev/loop${i}
- rm -f member-${i}
-done
+ for i in $(seq 0 ${SEQ_END}); do
+ losetup -d /dev/loop${i}
+ rm -f member-${i}
+ done
Another example
---------------
@@ -81,7 +85,7 @@ Another example
Intel NVMe drives contain two cores on the physical device.
Each core of the drive has segregated access to its LBA range.
The current LBA model has a RAID 0 128k chunk on each core, resulting
-in a 256k stripe across the two cores:
+in a 256k stripe across the two cores::
Core 0: Core 1:
__________ __________
@@ -108,17 +112,24 @@ Example dmsetup usage
unstriped ontop of Intel NVMe device that has 2 cores
-----------------------------------------------------
-dmsetup create nvmset0 --table '0 512 unstriped 2 256 0 /dev/nvme0n1 0'
-dmsetup create nvmset1 --table '0 512 unstriped 2 256 1 /dev/nvme0n1 0'
+
+::
+
+ dmsetup create nvmset0 --table '0 512 unstriped 2 256 0 /dev/nvme0n1 0'
+ dmsetup create nvmset1 --table '0 512 unstriped 2 256 1 /dev/nvme0n1 0'
There will now be two devices that expose Intel NVMe core 0 and 1
-respectively:
-/dev/mapper/nvmset0
-/dev/mapper/nvmset1
+respectively::
+
+ /dev/mapper/nvmset0
+ /dev/mapper/nvmset1
unstriped ontop of striped with 4 drives using 128K chunk size
--------------------------------------------------------------
-dmsetup create raid_disk0 --table '0 512 unstriped 4 256 0 /dev/mapper/striped 0'
-dmsetup create raid_disk1 --table '0 512 unstriped 4 256 1 /dev/mapper/striped 0'
-dmsetup create raid_disk2 --table '0 512 unstriped 4 256 2 /dev/mapper/striped 0'
-dmsetup create raid_disk3 --table '0 512 unstriped 4 256 3 /dev/mapper/striped 0'
+
+::
+
+ dmsetup create raid_disk0 --table '0 512 unstriped 4 256 0 /dev/mapper/striped 0'
+ dmsetup create raid_disk1 --table '0 512 unstriped 4 256 1 /dev/mapper/striped 0'
+ dmsetup create raid_disk2 --table '0 512 unstriped 4 256 2 /dev/mapper/striped 0'
+ dmsetup create raid_disk3 --table '0 512 unstriped 4 256 3 /dev/mapper/striped 0'
diff --git a/Documentation/device-mapper/verity.txt b/Documentation/device-mapper/verity.rst
index b3d2e4a42255..a4d1c1476d72 100644
--- a/Documentation/device-mapper/verity.txt
+++ b/Documentation/device-mapper/verity.rst
@@ -1,5 +1,6 @@
+=========
dm-verity
-==========
+=========
Device-Mapper's "verity" target provides transparent integrity checking of
block devices using a cryptographic digest provided by the kernel crypto API.
@@ -7,6 +8,9 @@ This target is read-only.
Construction Parameters
=======================
+
+::
+
<version> <dev> <hash_dev>
<data_block_size> <hash_block_size>
<num_data_blocks> <hash_start_block>
@@ -160,7 +164,9 @@ calculating the parent node.
The tree looks something like:
-alg = sha256, num_blocks = 32768, block_size = 4096
+ alg = sha256, num_blocks = 32768, block_size = 4096
+
+::
[ root ]
/ . . . \
@@ -189,6 +195,7 @@ block boundary) are the hash blocks which are stored a depth at a time
The full specification of kernel parameters and on-disk metadata format
is available at the cryptsetup project's wiki page
+
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity
Status
@@ -198,7 +205,8 @@ If any check failed, C (for Corruption) is returned.
Example
=======
-Set up a device:
+Set up a device::
+
# dmsetup create vroot --readonly --table \
"0 2097152 verity 1 /dev/sda1 /dev/sda2 4096 4096 262144 1 sha256 "\
"4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
@@ -209,11 +217,13 @@ the hash tree or activate the kernel device. This is available from
the cryptsetup upstream repository https://gitlab.com/cryptsetup/cryptsetup/
(as a libcryptsetup extension).
-Create hash on the device:
+Create hash on the device::
+
# veritysetup format /dev/sda1 /dev/sda2
...
Root hash: 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
-Activate the device:
+Activate the device::
+
# veritysetup create vroot /dev/sda1 /dev/sda2 \
4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
diff --git a/Documentation/device-mapper/writecache.txt b/Documentation/device-mapper/writecache.rst
index 01532b3008ae..d3d7690f5e8d 100644
--- a/Documentation/device-mapper/writecache.txt
+++ b/Documentation/device-mapper/writecache.rst
@@ -1,3 +1,7 @@
+=================
+Writecache target
+=================
+
The writecache target caches writes on persistent memory or on SSD. It
doesn't cache reads because reads are supposed to be cached in page cache
in normal RAM.
@@ -6,15 +10,18 @@ When the device is constructed, the first sector should be zeroed or the
first sector should contain valid superblock from previous invocation.
Constructor parameters:
+
1. type of the cache device - "p" or "s"
- p - persistent memory
- s - SSD
+
+ - p - persistent memory
+ - s - SSD
2. the underlying device that will be cached
3. the cache device
4. block size (4096 is recommended; the maximum block size is the page
size)
5. the number of optional parameters (the parameters with an argument
count as two)
+
start_sector n (default: 0)
offset from the start of cache device in 512-byte sectors
high_watermark n (default: 50)
@@ -43,6 +50,7 @@ Constructor parameters:
applicable only to persistent memory - don't use the FUA
flag when writing back data and send the FLUSH request
afterwards
+
- some underlying devices perform better with fua, some
with nofua. The user should test it
@@ -60,6 +68,7 @@ Messages:
flush the cache device on next suspend. Use this message
when you are going to remove the cache device. The proper
sequence for removing the cache device is:
+
1. send the "flush_on_suspend" message
2. load an inactive table with a linear target that maps
to the underlying device
diff --git a/Documentation/device-mapper/zero.txt b/Documentation/device-mapper/zero.rst
index 20fb38e7fa7e..11fb5cf4597c 100644
--- a/Documentation/device-mapper/zero.txt
+++ b/Documentation/device-mapper/zero.rst
@@ -1,3 +1,4 @@
+=======
dm-zero
=======
@@ -18,20 +19,19 @@ filesystem limitations.
To create a sparse device, start by creating a dm-zero device that's the
desired size of the sparse device. For this example, we'll assume a 10TB
-sparse device.
+sparse device::
-TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
-echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
+ TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
+ echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
Then create a snapshot of the zero device, using any available block-device as
the COW device. The size of the COW device will determine the amount of real
space available to the sparse device. For this example, we'll assume /dev/sdb1
-is an available 10GB partition.
+is an available 10GB partition::
-echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
- dmsetup create sparse1
+ echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
+ dmsetup create sparse1
This will create a 10TB sparse device called /dev/mapper/sparse1 that has
10GB of actual storage space available. If more than 10GB of data is written
to this device, it will start returning I/O errors.
-
diff --git a/Documentation/devicetree/bindings/Makefile b/Documentation/devicetree/bindings/Makefile
index 8a2774b5834b..6b0dfd5c17ba 100644
--- a/Documentation/devicetree/bindings/Makefile
+++ b/Documentation/devicetree/bindings/Makefile
@@ -25,7 +25,7 @@ DT_DOCS = $(shell \
DT_SCHEMA_FILES ?= $(addprefix $(src)/,$(DT_DOCS))
extra-y += $(patsubst $(src)/%.yaml,%.example.dts, $(DT_SCHEMA_FILES))
-extra-y += $(patsubst $(src)/%.yaml,%.example.dtb, $(DT_SCHEMA_FILES))
+extra-y += $(patsubst $(src)/%.yaml,%.example.dt.yaml, $(DT_SCHEMA_FILES))
$(obj)/$(DT_TMP_SCHEMA): $(DT_SCHEMA_FILES) FORCE
$(call if_changed,mk_schema)
diff --git a/Documentation/devicetree/bindings/arm/al,alpine.txt b/Documentation/devicetree/bindings/arm/al,alpine.txt
deleted file mode 100644
index d00debe2e86f..000000000000
--- a/Documentation/devicetree/bindings/arm/al,alpine.txt
+++ /dev/null
@@ -1,16 +0,0 @@
-Annapurna Labs Alpine Platform Device Tree Bindings
----------------------------------------------------------------
-
-Boards in the Alpine family shall have the following properties:
-
-* Required root node properties:
-compatible: must contain "al,alpine"
-
-* Example:
-
-/ {
- model = "Annapurna Labs Alpine Dev Board";
- compatible = "al,alpine";
-
- ...
-}
diff --git a/Documentation/devicetree/bindings/arm/al,alpine.yaml b/Documentation/devicetree/bindings/arm/al,alpine.yaml
new file mode 100644
index 000000000000..a70dff277e05
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/al,alpine.yaml
@@ -0,0 +1,21 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/al,alpine.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Annapurna Labs Alpine Platform Device Tree Bindings
+
+maintainers:
+ - Tsahee Zidenberg <tsahee@annapurnalabs.com>
+ - Antoine Tenart <antoine.tenart@bootlin.com>
+
+properties:
+ compatible:
+ items:
+ - const: al,alpine
+ model:
+ items:
+ - const: "Annapurna Labs Alpine Dev Board"
+
+...
diff --git a/Documentation/devicetree/bindings/arm/arm-boards b/Documentation/devicetree/bindings/arm/arm-boards
index abff8d834a6a..6758ece324b1 100644
--- a/Documentation/devicetree/bindings/arm/arm-boards
+++ b/Documentation/devicetree/bindings/arm/arm-boards
@@ -197,7 +197,7 @@ Required nodes:
The description for the board must include:
- a "psci" node describing the boot method used for the secondary CPUs.
A detailed description of the bindings used for "psci" nodes is present
- in the psci.txt file.
+ in the psci.yaml file.
- a "cpus" node describing the available cores and their associated
"enable-method"s. For more details see cpus.txt file.
diff --git a/Documentation/devicetree/bindings/arm/axxia.txt b/Documentation/devicetree/bindings/arm/axxia.txt
deleted file mode 100644
index 7b4ef9c07696..000000000000
--- a/Documentation/devicetree/bindings/arm/axxia.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-Axxia AXM55xx device tree bindings
-
-Boards using the AXM55xx SoC need to have the following properties:
-
-Required root node property:
-
- - compatible = "lsi,axm5516"
-
-Boards:
-
- LSI AXM5516 Validation board (Amarillo)
- compatible = "lsi,axm5516-amarillo", "lsi,axm5516"
diff --git a/Documentation/devicetree/bindings/arm/axxia.yaml b/Documentation/devicetree/bindings/arm/axxia.yaml
new file mode 100644
index 000000000000..98780a569f22
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/axxia.yaml
@@ -0,0 +1,19 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/axxia.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Axxia AXM55xx device tree bindings
+
+maintainers:
+ - Anders Berg <anders.berg@lsi.com>
+
+properties:
+ compatible:
+ description: LSI AXM5516 Validation board (Amarillo)
+ items:
+ - const: lsi,axm5516-amarillo
+ - const: lsi,axm5516
+
+...
diff --git a/Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt b/Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt
index 298291211ea4..f1de3247c1b7 100644
--- a/Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt
+++ b/Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt
@@ -26,8 +26,8 @@ Required properties:
processor core is clocked by the internal CPU clock, so it
is enabled with CPU clock by default.
-- cpu : the CPU phandle the debug module is affined to. When omitted
- the module is considered to belong to CPU0.
+- cpu : the CPU phandle the debug module is affined to. Do not assume it
+ to default to CPU0 if omitted.
Optional properties:
diff --git a/Documentation/devicetree/bindings/arm/coresight.txt b/Documentation/devicetree/bindings/arm/coresight.txt
index 8a88ddebc1a2..fcc3bacfd8bc 100644
--- a/Documentation/devicetree/bindings/arm/coresight.txt
+++ b/Documentation/devicetree/bindings/arm/coresight.txt
@@ -59,6 +59,11 @@ its hardware characteristcs.
* port or ports: see "Graph bindings for Coresight" below.
+* Additional required property for Embedded Trace Macrocell (version 3.x and
+ version 4.x):
+ * cpu: the cpu phandle this ETM/PTM is affined to. Do not
+ assume it to default to CPU0 if omitted.
+
* Additional required properties for System Trace Macrocells (STM):
* reg: along with the physical base address and length of the register
set as described above, another entry is required to describe the
@@ -87,9 +92,6 @@ its hardware characteristcs.
* arm,cp14: must be present if the system accesses ETM/PTM management
registers via co-processor 14.
- * cpu: the cpu phandle this ETM/PTM is affined to. When omitted the
- source is considered to belong to CPU0.
-
* Optional property for TMC:
* arm,buffer-size: size of contiguous buffer space for TMC ETR
diff --git a/Documentation/devicetree/bindings/arm/cpus.yaml b/Documentation/devicetree/bindings/arm/cpus.yaml
index 591bbd012d63..aa40b074b864 100644
--- a/Documentation/devicetree/bindings/arm/cpus.yaml
+++ b/Documentation/devicetree/bindings/arm/cpus.yaml
@@ -39,281 +39,242 @@ description: |+
described below.
properties:
- $nodename:
- const: cpus
- description: Container of cpu nodes
-
- '#address-cells':
- enum: [1, 2]
+ reg:
+ maxItems: 1
description: |
- Definition depends on ARM architecture version and configuration:
+ Usage and definition depend on ARM architecture version and
+ configuration:
On uniprocessor ARM architectures previous to v7
- value must be 1, to enable a simple enumeration
- scheme for processors that do not have a HW CPU
- identification register.
- On 32-bit ARM 11 MPcore, ARM v7 or later systems
- value must be 1, that corresponds to CPUID/MPIDR
- registers sizes.
- On ARM v8 64-bit systems value should be set to 2,
- that corresponds to the MPIDR_EL1 register size.
- If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
- in the system, #address-cells can be set to 1, since
- MPIDR_EL1[63:32] bits are not used for CPUs
- identification.
-
- '#size-cells':
- const: 0
-
-patternProperties:
- '^cpu@[0-9a-f]+$':
- type: object
- properties:
- device_type:
- const: cpu
-
- reg:
- maxItems: 1
- description: |
- Usage and definition depend on ARM architecture version and
- configuration:
-
- On uniprocessor ARM architectures previous to v7
- this property is required and must be set to 0.
-
- On ARM 11 MPcore based systems this property is
- required and matches the CPUID[11:0] register bits.
-
- Bits [11:0] in the reg cell must be set to
- bits [11:0] in CPU ID register.
-
- All other bits in the reg cell must be set to 0.
-
- On 32-bit ARM v7 or later systems this property is
- required and matches the CPU MPIDR[23:0] register
- bits.
-
- Bits [23:0] in the reg cell must be set to
- bits [23:0] in MPIDR.
-
- All other bits in the reg cell must be set to 0.
-
- On ARM v8 64-bit systems this property is required
- and matches the MPIDR_EL1 register affinity bits.
+ this property is required and must be set to 0.
+
+ On ARM 11 MPcore based systems this property is
+ required and matches the CPUID[11:0] register bits.
+
+ Bits [11:0] in the reg cell must be set to
+ bits [11:0] in CPU ID register.
+
+ All other bits in the reg cell must be set to 0.
+
+ On 32-bit ARM v7 or later systems this property is
+ required and matches the CPU MPIDR[23:0] register
+ bits.
+
+ Bits [23:0] in the reg cell must be set to
+ bits [23:0] in MPIDR.
+
+ All other bits in the reg cell must be set to 0.
+
+ On ARM v8 64-bit systems this property is required
+ and matches the MPIDR_EL1 register affinity bits.
+
+ * If cpus node's #address-cells property is set to 2
+
+ The first reg cell bits [7:0] must be set to
+ bits [39:32] of MPIDR_EL1.
+
+ The second reg cell bits [23:0] must be set to
+ bits [23:0] of MPIDR_EL1.
+
+ * If cpus node's #address-cells property is set to 1
+
+ The reg cell bits [23:0] must be set to bits [23:0]
+ of MPIDR_EL1.
+
+ All other bits in the reg cells must be set to 0.
+
+ compatible:
+ enum:
+ - arm,arm710t
+ - arm,arm720t
+ - arm,arm740t
+ - arm,arm7ej-s
+ - arm,arm7tdmi
+ - arm,arm7tdmi-s
+ - arm,arm9es
+ - arm,arm9ej-s
+ - arm,arm920t
+ - arm,arm922t
+ - arm,arm925
+ - arm,arm926e-s
+ - arm,arm926ej-s
+ - arm,arm940t
+ - arm,arm946e-s
+ - arm,arm966e-s
+ - arm,arm968e-s
+ - arm,arm9tdmi
+ - arm,arm1020e
+ - arm,arm1020t
+ - arm,arm1022e
+ - arm,arm1026ej-s
+ - arm,arm1136j-s
+ - arm,arm1136jf-s
+ - arm,arm1156t2-s
+ - arm,arm1156t2f-s
+ - arm,arm1176jzf
+ - arm,arm1176jz-s
+ - arm,arm1176jzf-s
+ - arm,arm11mpcore
+ - arm,armv8 # Only for s/w models
+ - arm,cortex-a5
+ - arm,cortex-a7
+ - arm,cortex-a8
+ - arm,cortex-a9
+ - arm,cortex-a12
+ - arm,cortex-a15
+ - arm,cortex-a17
+ - arm,cortex-a53
+ - arm,cortex-a57
+ - arm,cortex-a72
+ - arm,cortex-a73
+ - arm,cortex-m0
+ - arm,cortex-m0+
+ - arm,cortex-m1
+ - arm,cortex-m3
+ - arm,cortex-m4
+ - arm,cortex-r4
+ - arm,cortex-r5
+ - arm,cortex-r7
+ - brcm,brahma-b15
+ - brcm,brahma-b53
+ - brcm,vulcan
+ - cavium,thunder
+ - cavium,thunder2
+ - faraday,fa526
+ - intel,sa110
+ - intel,sa1100
+ - marvell,feroceon
+ - marvell,mohawk
+ - marvell,pj4a
+ - marvell,pj4b
+ - marvell,sheeva-v5
+ - marvell,sheeva-v7
+ - nvidia,tegra132-denver
+ - nvidia,tegra186-denver
+ - nvidia,tegra194-carmel
+ - qcom,krait
+ - qcom,kryo
+ - qcom,kryo385
+ - qcom,scorpion
+
+ enable-method:
+ allOf:
+ - $ref: '/schemas/types.yaml#/definitions/string'
+ - oneOf:
+ # On ARM v8 64-bit this property is required
+ - enum:
+ - psci
+ - spin-table
+ # On ARM 32-bit systems this property is optional
+ - enum:
+ - actions,s500-smp
+ - allwinner,sun6i-a31
+ - allwinner,sun8i-a23
+ - allwinner,sun9i-a80-smp
+ - allwinner,sun8i-a83t-smp
+ - amlogic,meson8-smp
+ - amlogic,meson8b-smp
+ - arm,realview-smp
+ - brcm,bcm11351-cpu-method
+ - brcm,bcm23550
+ - brcm,bcm2836-smp
+ - brcm,bcm63138
+ - brcm,bcm-nsp-smp
+ - brcm,brahma-b15
+ - marvell,armada-375-smp
+ - marvell,armada-380-smp
+ - marvell,armada-390-smp
+ - marvell,armada-xp-smp
+ - marvell,98dx3236-smp
+ - mediatek,mt6589-smp
+ - mediatek,mt81xx-tz-smp
+ - qcom,gcc-msm8660
+ - qcom,kpss-acc-v1
+ - qcom,kpss-acc-v2
+ - renesas,apmu
+ - renesas,r9a06g032-smp
+ - rockchip,rk3036-smp
+ - rockchip,rk3066-smp
+ - socionext,milbeaut-m10v-smp
+ - ste,dbx500-smp
+
+ cpu-release-addr:
+ $ref: '/schemas/types.yaml#/definitions/uint64'
+
+ description:
+ Required for systems that have an "enable-method"
+ property value of "spin-table".
+ On ARM v8 64-bit systems must be a two cell
+ property identifying a 64-bit zero-initialised
+ memory location.
+
+ cpu-idle-states:
+ $ref: '/schemas/types.yaml#/definitions/phandle-array'
+ description: |
+ List of phandles to idle state nodes supported
+ by this cpu (see ./idle-states.txt).
+
+ capacity-dmips-mhz:
+ $ref: '/schemas/types.yaml#/definitions/uint32'
+ description:
+ u32 value representing CPU capacity (see ./cpu-capacity.txt) in
+ DMIPS/MHz, relative to highest capacity-dmips-mhz
+ in the system.
+
+ dynamic-power-coefficient:
+ $ref: '/schemas/types.yaml#/definitions/uint32'
+ description:
+ A u32 value that represents the running time dynamic
+ power coefficient in units of uW/MHz/V^2. The
+ coefficient can either be calculated from power
+ measurements or derived by analysis.
+
+ The dynamic power consumption of the CPU is
+ proportional to the square of the Voltage (V) and
+ the clock frequency (f). The coefficient is used to
+ calculate the dynamic power as below -
+
+ Pdyn = dynamic-power-coefficient * V^2 * f
+
+ where voltage is in V, frequency is in MHz.
+
+ qcom,saw:
+ $ref: '/schemas/types.yaml#/definitions/phandle'
+ description: |
+ Specifies the SAW* node associated with this CPU.
- * If cpus node's #address-cells property is set to 2
+ Required for systems that have an "enable-method" property
+ value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
- The first reg cell bits [7:0] must be set to
- bits [39:32] of MPIDR_EL1.
+ * arm/msm/qcom,saw2.txt
- The second reg cell bits [23:0] must be set to
- bits [23:0] of MPIDR_EL1.
+ qcom,acc:
+ $ref: '/schemas/types.yaml#/definitions/phandle'
+ description: |
+ Specifies the ACC* node associated with this CPU.
- * If cpus node's #address-cells property is set to 1
+ Required for systems that have an "enable-method" property
+ value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
- The reg cell bits [23:0] must be set to bits [23:0]
- of MPIDR_EL1.
+ * arm/msm/qcom,kpss-acc.txt
- All other bits in the reg cells must be set to 0.
+ rockchip,pmu:
+ $ref: '/schemas/types.yaml#/definitions/phandle'
+ description: |
+ Specifies the syscon node controlling the cpu core power domains.
- compatible:
- items:
- - enum:
- - arm,arm710t
- - arm,arm720t
- - arm,arm740t
- - arm,arm7ej-s
- - arm,arm7tdmi
- - arm,arm7tdmi-s
- - arm,arm9es
- - arm,arm9ej-s
- - arm,arm920t
- - arm,arm922t
- - arm,arm925
- - arm,arm926e-s
- - arm,arm926ej-s
- - arm,arm940t
- - arm,arm946e-s
- - arm,arm966e-s
- - arm,arm968e-s
- - arm,arm9tdmi
- - arm,arm1020e
- - arm,arm1020t
- - arm,arm1022e
- - arm,arm1026ej-s
- - arm,arm1136j-s
- - arm,arm1136jf-s
- - arm,arm1156t2-s
- - arm,arm1156t2f-s
- - arm,arm1176jzf
- - arm,arm1176jz-s
- - arm,arm1176jzf-s
- - arm,arm11mpcore
- - arm,armv8 # Only for s/w models
- - arm,cortex-a5
- - arm,cortex-a7
- - arm,cortex-a8
- - arm,cortex-a9
- - arm,cortex-a12
- - arm,cortex-a15
- - arm,cortex-a17
- - arm,cortex-a53
- - arm,cortex-a57
- - arm,cortex-a72
- - arm,cortex-a73
- - arm,cortex-m0
- - arm,cortex-m0+
- - arm,cortex-m1
- - arm,cortex-m3
- - arm,cortex-m4
- - arm,cortex-r4
- - arm,cortex-r5
- - arm,cortex-r7
- - brcm,brahma-b15
- - brcm,brahma-b53
- - brcm,vulcan
- - cavium,thunder
- - cavium,thunder2
- - faraday,fa526
- - intel,sa110
- - intel,sa1100
- - marvell,feroceon
- - marvell,mohawk
- - marvell,pj4a
- - marvell,pj4b
- - marvell,sheeva-v5
- - marvell,sheeva-v7
- - nvidia,tegra132-denver
- - nvidia,tegra186-denver
- - nvidia,tegra194-carmel
- - qcom,krait
- - qcom,kryo
- - qcom,kryo385
- - qcom,scorpion
-
- enable-method:
- allOf:
- - $ref: '/schemas/types.yaml#/definitions/string'
- - oneOf:
- # On ARM v8 64-bit this property is required
- - enum:
- - psci
- - spin-table
- # On ARM 32-bit systems this property is optional
- - enum:
- - actions,s500-smp
- - allwinner,sun6i-a31
- - allwinner,sun8i-a23
- - allwinner,sun9i-a80-smp
- - allwinner,sun8i-a83t-smp
- - amlogic,meson8-smp
- - amlogic,meson8b-smp
- - arm,realview-smp
- - brcm,bcm11351-cpu-method
- - brcm,bcm23550
- - brcm,bcm2836-smp
- - brcm,bcm63138
- - brcm,bcm-nsp-smp
- - brcm,brahma-b15
- - marvell,armada-375-smp
- - marvell,armada-380-smp
- - marvell,armada-390-smp
- - marvell,armada-xp-smp
- - marvell,98dx3236-smp
- - mediatek,mt6589-smp
- - mediatek,mt81xx-tz-smp
- - qcom,gcc-msm8660
- - qcom,kpss-acc-v1
- - qcom,kpss-acc-v2
- - renesas,apmu
- - renesas,r9a06g032-smp
- - rockchip,rk3036-smp
- - rockchip,rk3066-smp
- - socionext,milbeaut-m10v-smp
- - ste,dbx500-smp
-
- cpu-release-addr:
- $ref: '/schemas/types.yaml#/definitions/uint64'
-
- description:
- Required for systems that have an "enable-method"
- property value of "spin-table".
- On ARM v8 64-bit systems must be a two cell
- property identifying a 64-bit zero-initialised
- memory location.
-
- cpu-idle-states:
- $ref: '/schemas/types.yaml#/definitions/phandle-array'
- description: |
- List of phandles to idle state nodes supported
- by this cpu (see ./idle-states.txt).
-
- capacity-dmips-mhz:
- $ref: '/schemas/types.yaml#/definitions/uint32'
- description:
- u32 value representing CPU capacity (see ./cpu-capacity.txt) in
- DMIPS/MHz, relative to highest capacity-dmips-mhz
- in the system.
-
- dynamic-power-coefficient:
- $ref: '/schemas/types.yaml#/definitions/uint32'
- description:
- A u32 value that represents the running time dynamic
- power coefficient in units of uW/MHz/V^2. The
- coefficient can either be calculated from power
- measurements or derived by analysis.
-
- The dynamic power consumption of the CPU is
- proportional to the square of the Voltage (V) and
- the clock frequency (f). The coefficient is used to
- calculate the dynamic power as below -
-
- Pdyn = dynamic-power-coefficient * V^2 * f
-
- where voltage is in V, frequency is in MHz.
-
- qcom,saw:
- $ref: '/schemas/types.yaml#/definitions/phandle'
- description: |
- Specifies the SAW* node associated with this CPU.
-
- Required for systems that have an "enable-method" property
- value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
-
- * arm/msm/qcom,saw2.txt
-
- qcom,acc:
- $ref: '/schemas/types.yaml#/definitions/phandle'
- description: |
- Specifies the ACC* node associated with this CPU.
-
- Required for systems that have an "enable-method" property
- value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
-
- * arm/msm/qcom,kpss-acc.txt
-
- rockchip,pmu:
- $ref: '/schemas/types.yaml#/definitions/phandle'
- description: |
- Specifies the syscon node controlling the cpu core power domains.
-
- Optional for systems that have an "enable-method"
- property value of "rockchip,rk3066-smp"
- While optional, it is the preferred way to get access to
- the cpu-core power-domains.
-
- required:
- - device_type
- - reg
- - compatible
-
- dependencies:
- cpu-release-addr: [enable-method]
- rockchip,pmu: [enable-method]
+ Optional for systems that have an "enable-method"
+ property value of "rockchip,rk3066-smp"
+ While optional, it is the preferred way to get access to
+ the cpu-core power-domains.
required:
- - '#address-cells'
- - '#size-cells'
+ - device_type
+ - reg
+ - compatible
+
+dependencies:
+ rockchip,pmu: [enable-method]
examples:
- |
diff --git a/Documentation/devicetree/bindings/arm/digicolor.txt b/Documentation/devicetree/bindings/arm/digicolor.txt
deleted file mode 100644
index 658553f40b23..000000000000
--- a/Documentation/devicetree/bindings/arm/digicolor.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-Conexant Digicolor Platforms Device Tree Bindings
-
-Each device tree must specify which Conexant Digicolor SoC it uses.
-Must be the following compatible string:
-
- cnxt,cx92755
diff --git a/Documentation/devicetree/bindings/arm/digicolor.yaml b/Documentation/devicetree/bindings/arm/digicolor.yaml
new file mode 100644
index 000000000000..d9c80b827e9b
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/digicolor.yaml
@@ -0,0 +1,16 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/digicolor.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Conexant Digicolor Platforms Device Tree Bindings
+
+maintainers:
+ - Baruch Siach <baruch@tkos.co.il>
+
+properties:
+ compatible:
+ const: cnxt,cx92755
+
+...
diff --git a/Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt b/Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt
index 5d7dbabbb784..f378922906f6 100644
--- a/Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt
+++ b/Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt
@@ -133,6 +133,18 @@ RTC bindings based on SCU Message Protocol
Required properties:
- compatible: should be "fsl,imx8qxp-sc-rtc";
+OCOTP bindings based on SCU Message Protocol
+------------------------------------------------------------
+Required properties:
+- compatible: Should be "fsl,imx8qxp-scu-ocotp"
+- #address-cells: Must be 1. Contains byte index
+- #size-cells: Must be 1. Contains byte length
+
+Optional Child nodes:
+
+- Data cells of ocotp:
+ Detailed bindings are described in bindings/nvmem/nvmem.txt
+
Example (imx8qxp):
-------------
aliases {
@@ -177,6 +189,16 @@ firmware {
...
};
+ ocotp: imx8qx-ocotp {
+ compatible = "fsl,imx8qxp-scu-ocotp";
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ fec_mac0: mac@2c4 {
+ reg = <0x2c4 8>;
+ };
+ };
+
pd: imx8qx-pd {
compatible = "fsl,imx8qxp-scu-pd", "fsl,scu-pd";
#power-domain-cells = <1>;
diff --git a/Documentation/devicetree/bindings/arm/idle-states.txt b/Documentation/devicetree/bindings/arm/idle-states.txt
index 45730ba60af5..326f29b270ad 100644
--- a/Documentation/devicetree/bindings/arm/idle-states.txt
+++ b/Documentation/devicetree/bindings/arm/idle-states.txt
@@ -241,9 +241,13 @@ processor idle states, defined as device tree nodes, are listed.
- "psci"
# On ARM 32-bit systems this property is optional
-The nodes describing the idle states (state) can only be defined within the
-idle-states node, any other configuration is considered invalid and therefore
-must be ignored.
+This assumes that the "enable-method" property is set to "psci" in the cpu
+node[6] that is responsible for setting up CPU idle management in the OS
+implementation.
+
+The nodes describing the idle states (state) can only be defined
+within the idle-states node, any other configuration is considered invalid
+and therefore must be ignored.
===========================================
4 - state node
@@ -687,7 +691,7 @@ cpus {
Documentation/devicetree/bindings/arm/cpus.yaml
[2] ARM Linux Kernel documentation - PSCI bindings
- Documentation/devicetree/bindings/arm/psci.txt
+ Documentation/devicetree/bindings/arm/psci.yaml
[3] ARM Server Base System Architecture (SBSA)
http://infocenter.arm.com/help/index.jsp
@@ -697,3 +701,6 @@ cpus {
[5] Devicetree Specification
https://www.devicetree.org/specifications/
+
+[6] ARM Linux Kernel documentation - Booting AArch64 Linux
+ Documentation/arm64/booting.txt
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,sgmiisys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,sgmiisys.txt
index 30cb645c0e54..f5518f26a914 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,sgmiisys.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,sgmiisys.txt
@@ -9,6 +9,8 @@ Required Properties:
- "mediatek,mt7622-sgmiisys", "syscon"
- "mediatek,mt7629-sgmiisys", "syscon"
- #clock-cells: Must be 1
+- mediatek,physpeed: Should be one of "auto", "1000" or "2500" to match up
+ the capability of the target PHY.
The SGMIISYS controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
diff --git a/Documentation/devicetree/bindings/arm/moxart.txt b/Documentation/devicetree/bindings/arm/moxart.txt
deleted file mode 100644
index 11087edb0658..000000000000
--- a/Documentation/devicetree/bindings/arm/moxart.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-MOXA ART device tree bindings
-
-Boards with the MOXA ART SoC shall have the following properties:
-
-Required root node property:
-
-compatible = "moxa,moxart";
-
-Boards:
-
-- UC-7112-LX: embedded computer
- compatible = "moxa,moxart-uc-7112-lx", "moxa,moxart"
diff --git a/Documentation/devicetree/bindings/arm/moxart.yaml b/Documentation/devicetree/bindings/arm/moxart.yaml
new file mode 100644
index 000000000000..c068df59fad2
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/moxart.yaml
@@ -0,0 +1,19 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/moxart.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MOXA ART device tree bindings
+
+maintainers:
+ - Jonas Jensen <jonas.jensen@gmail.com>
+
+properties:
+ compatible:
+ description: UC-7112-LX embedded computer
+ items:
+ - const: moxa,moxart-uc-7112-lx
+ - const: moxa,moxart
+
+...
diff --git a/Documentation/devicetree/bindings/arm/nxp/lpc32xx.txt b/Documentation/devicetree/bindings/arm/nxp/lpc32xx.txt
deleted file mode 100644
index 56ec8ddc4a3b..000000000000
--- a/Documentation/devicetree/bindings/arm/nxp/lpc32xx.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-NXP LPC32xx Platforms Device Tree Bindings
-------------------------------------------
-
-Boards with the NXP LPC32xx SoC shall have the following properties:
-
-Required root node property:
-
-compatible: must be "nxp,lpc3220", "nxp,lpc3230", "nxp,lpc3240" or "nxp,lpc3250"
diff --git a/Documentation/devicetree/bindings/arm/nxp/lpc32xx.yaml b/Documentation/devicetree/bindings/arm/nxp/lpc32xx.yaml
new file mode 100644
index 000000000000..07f39d3eee7e
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/nxp/lpc32xx.yaml
@@ -0,0 +1,25 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/nxp/lpc32xx.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NXP LPC32xx Platforms Device Tree Bindings
+
+maintainers:
+ - Roland Stigge <stigge@antcom.de>
+
+properties:
+ compatible:
+ oneOf:
+ - enum:
+ - nxp,lpc3220
+ - nxp,lpc3230
+ - nxp,lpc3240
+ - items:
+ - enum:
+ - ea,ea3250
+ - phytec,phy3250
+ - const: nxp,lpc3250
+
+...
diff --git a/Documentation/devicetree/bindings/arm/psci.txt b/Documentation/devicetree/bindings/arm/psci.txt
deleted file mode 100644
index a2c4f1d52492..000000000000
--- a/Documentation/devicetree/bindings/arm/psci.txt
+++ /dev/null
@@ -1,111 +0,0 @@
-* Power State Coordination Interface (PSCI)
-
-Firmware implementing the PSCI functions described in ARM document number
-ARM DEN 0022A ("Power State Coordination Interface System Software on ARM
-processors") can be used by Linux to initiate various CPU-centric power
-operations.
-
-Issue A of the specification describes functions for CPU suspend, hotplug
-and migration of secure software.
-
-Functions are invoked by trapping to the privilege level of the PSCI
-firmware (specified as part of the binding below) and passing arguments
-in a manner similar to that specified by AAPCS:
-
- r0 => 32-bit Function ID / return value
- {r1 - r3} => Parameters
-
-Note that the immediate field of the trapping instruction must be set
-to #0.
-
-
-Main node required properties:
-
- - compatible : should contain at least one of:
-
- * "arm,psci" : For implementations complying to PSCI versions prior
- to 0.2.
- For these cases function IDs must be provided.
-
- * "arm,psci-0.2" : For implementations complying to PSCI 0.2.
- Function IDs are not required and should be ignored by
- an OS with PSCI 0.2 support, but are permitted to be
- present for compatibility with existing software when
- "arm,psci" is later in the compatible list.
-
- * "arm,psci-1.0" : For implementations complying to PSCI 1.0.
- PSCI 1.0 is backward compatible with PSCI 0.2 with
- minor specification updates, as defined in the PSCI
- specification[2].
-
- - method : The method of calling the PSCI firmware. Permitted
- values are:
-
- "smc" : SMC #0, with the register assignments specified
- in this binding.
-
- "hvc" : HVC #0, with the register assignments specified
- in this binding.
-
-Main node optional properties:
-
- - cpu_suspend : Function ID for CPU_SUSPEND operation
-
- - cpu_off : Function ID for CPU_OFF operation
-
- - cpu_on : Function ID for CPU_ON operation
-
- - migrate : Function ID for MIGRATE operation
-
-Device tree nodes that require usage of PSCI CPU_SUSPEND function (ie idle
-state nodes, as per bindings in [1]) must specify the following properties:
-
-- arm,psci-suspend-param
- Usage: Required for state nodes[1] if the corresponding
- idle-states node entry-method property is set
- to "psci".
- Value type: <u32>
- Definition: power_state parameter to pass to the PSCI
- suspend call.
-
-Example:
-
-Case 1: PSCI v0.1 only.
-
- psci {
- compatible = "arm,psci";
- method = "smc";
- cpu_suspend = <0x95c10000>;
- cpu_off = <0x95c10001>;
- cpu_on = <0x95c10002>;
- migrate = <0x95c10003>;
- };
-
-Case 2: PSCI v0.2 only
-
- psci {
- compatible = "arm,psci-0.2";
- method = "smc";
- };
-
-Case 3: PSCI v0.2 and PSCI v0.1.
-
- A DTB may provide IDs for use by kernels without PSCI 0.2 support,
- enabling firmware and hypervisors to support existing and new kernels.
- These IDs will be ignored by kernels with PSCI 0.2 support, which will
- use the standard PSCI 0.2 IDs exclusively.
-
- psci {
- compatible = "arm,psci-0.2", "arm,psci";
- method = "hvc";
-
- cpu_on = < arbitrary value >;
- cpu_off = < arbitrary value >;
-
- ...
- };
-
-[1] Kernel documentation - ARM idle states bindings
- Documentation/devicetree/bindings/arm/idle-states.txt
-[2] Power State Coordination Interface (PSCI) specification
- http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
diff --git a/Documentation/devicetree/bindings/arm/psci.yaml b/Documentation/devicetree/bindings/arm/psci.yaml
new file mode 100644
index 000000000000..7abdf58b335e
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/psci.yaml
@@ -0,0 +1,163 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/psci.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Power State Coordination Interface (PSCI)
+
+maintainers:
+ - Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
+
+description: |+
+ Firmware implementing the PSCI functions described in ARM document number
+ ARM DEN 0022A ("Power State Coordination Interface System Software on ARM
+ processors") can be used by Linux to initiate various CPU-centric power
+ operations.
+
+ Issue A of the specification describes functions for CPU suspend, hotplug
+ and migration of secure software.
+
+ Functions are invoked by trapping to the privilege level of the PSCI
+ firmware (specified as part of the binding below) and passing arguments
+ in a manner similar to that specified by AAPCS:
+
+ r0 => 32-bit Function ID / return value
+ {r1 - r3} => Parameters
+
+ Note that the immediate field of the trapping instruction must be set
+ to #0.
+
+ [2] Power State Coordination Interface (PSCI) specification
+ http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
+
+properties:
+ compatible:
+ oneOf:
+ - description:
+ For implementations complying to PSCI versions prior to 0.2.
+ const: arm,psci
+
+ - description:
+ For implementations complying to PSCI 0.2.
+ const: arm,psci-0.2
+
+ - description:
+ For implementations complying to PSCI 0.2.
+ Function IDs are not required and should be ignored by an OS with
+ PSCI 0.2 support, but are permitted to be present for compatibility
+ with existing software when "arm,psci" is later in the compatible
+ list.
+ items:
+ - const: arm,psci-0.2
+ - const: arm,psci
+
+ - description:
+ For implementations complying to PSCI 1.0.
+ const: arm,psci-1.0
+
+ - description:
+ For implementations complying to PSCI 1.0.
+ PSCI 1.0 is backward compatible with PSCI 0.2 with minor
+ specification updates, as defined in the PSCI specification[2].
+ items:
+ - const: arm,psci-1.0
+ - const: arm,psci-0.2
+
+ method:
+ description: The method of calling the PSCI firmware.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/string-array
+ - enum:
+ # SMC #0, with the register assignments specified in this binding.
+ - smc
+ # HVC #0, with the register assignments specified in this binding.
+ - hvc
+
+ cpu_suspend:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Function ID for CPU_SUSPEND operation
+
+ cpu_off:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Function ID for CPU_OFF operation
+
+ cpu_on:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Function ID for CPU_ON operation
+
+ migrate:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Function ID for MIGRATE operation
+
+ arm,psci-suspend-param:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: |
+ power_state parameter to pass to the PSCI suspend call.
+
+ Device tree nodes that require usage of PSCI CPU_SUSPEND function (ie
+ idle state nodes with entry-method property is set to "psci", as per
+ bindings in [1]) must specify this property.
+
+ [1] Kernel documentation - ARM idle states bindings
+ Documentation/devicetree/bindings/arm/idle-states.txt
+
+
+required:
+ - compatible
+ - method
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: arm,psci
+ then:
+ required:
+ - cpu_off
+ - cpu_on
+
+examples:
+ - |+
+
+ // Case 1: PSCI v0.1 only.
+
+ psci {
+ compatible = "arm,psci";
+ method = "smc";
+ cpu_suspend = <0x95c10000>;
+ cpu_off = <0x95c10001>;
+ cpu_on = <0x95c10002>;
+ migrate = <0x95c10003>;
+ };
+
+ - |+
+
+ // Case 2: PSCI v0.2 only
+
+ psci {
+ compatible = "arm,psci-0.2";
+ method = "smc";
+ };
+
+
+ - |+
+
+ // Case 3: PSCI v0.2 and PSCI v0.1.
+
+ /*
+ * A DTB may provide IDs for use by kernels without PSCI 0.2 support,
+ * enabling firmware and hypervisors to support existing and new kernels.
+ * These IDs will be ignored by kernels with PSCI 0.2 support, which will
+ * use the standard PSCI 0.2 IDs exclusively.
+ */
+
+ psci {
+ compatible = "arm,psci-0.2", "arm,psci";
+ method = "hvc";
+
+ cpu_on = <0x95c10002>;
+ cpu_off = <0x95c10001>;
+ };
+...
diff --git a/Documentation/devicetree/bindings/arm/qcom.yaml b/Documentation/devicetree/bindings/arm/qcom.yaml
index f6316ab66385..54ef6b6b9189 100644
--- a/Documentation/devicetree/bindings/arm/qcom.yaml
+++ b/Documentation/devicetree/bindings/arm/qcom.yaml
@@ -102,6 +102,15 @@ properties:
- const: qcom,msm8960
- items:
+ - enum:
+ - fairphone,fp2
+ - lge,hammerhead
+ - sony,xperia-amami
+ - sony,xperia-castor
+ - sony,xperia-honami
+ - const: qcom,msm8974
+
+ - items:
- const: qcom,msm8916-mtp/1
- const: qcom,msm8916-mtp
- const: qcom,msm8916
@@ -110,6 +119,11 @@ properties:
- const: qcom,msm8996-mtp
- items:
+ - enum:
+ - qcom,ipq4019-ap-dk04.1-c3
+ - qcom,ipq4019-ap-dk07.1-c1
+ - qcom,ipq4019-ap-dk07.1-c2
+ - qcom,ipq4019-dk04.1-c1
- const: qcom,ipq4019
- items:
diff --git a/Documentation/devicetree/bindings/arm/rda.txt b/Documentation/devicetree/bindings/arm/rda.txt
deleted file mode 100644
index 43c80762c428..000000000000
--- a/Documentation/devicetree/bindings/arm/rda.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-RDA Micro platforms device tree bindings
-----------------------------------------
-
-RDA8810PL SoC
-=============
-
-Required root node properties:
-
- - compatible : must contain "rda,8810pl"
-
-
-Boards:
-
-Root node property compatible must contain, depending on board:
-
- - Orange Pi 2G-IoT: "xunlong,orangepi-2g-iot"
- - Orange Pi i96: "xunlong,orangepi-i96"
diff --git a/Documentation/devicetree/bindings/arm/rda.yaml b/Documentation/devicetree/bindings/arm/rda.yaml
new file mode 100644
index 000000000000..51cec2b63b04
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/rda.yaml
@@ -0,0 +1,20 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/rda.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: RDA Micro platforms device tree bindings
+
+maintainers:
+ - Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
+
+properties:
+ compatible:
+ items:
+ - enum:
+ - xunlong,orangepi-2g-iot # Orange Pi 2G-IoT
+ - xunlong,orangepi-i96 # Orange Pi i96
+ - const: rda,8810pl
+
+...
diff --git a/Documentation/devicetree/bindings/common-properties.txt b/Documentation/devicetree/bindings/common-properties.txt
index a3448bfa1c82..98a28130e100 100644
--- a/Documentation/devicetree/bindings/common-properties.txt
+++ b/Documentation/devicetree/bindings/common-properties.txt
@@ -5,30 +5,29 @@ Endianness
----------
The Devicetree Specification does not define any properties related to hardware
-byteswapping, but endianness issues show up frequently in porting Linux to
+byte swapping, but endianness issues show up frequently in porting drivers to
different machine types. This document attempts to provide a consistent
-way of handling byteswapping across drivers.
+way of handling byte swapping across drivers.
Optional properties:
- big-endian: Boolean; force big endian register accesses
unconditionally (e.g. ioread32be/iowrite32be). Use this if you
- know the peripheral always needs to be accessed in BE mode.
+ know the peripheral always needs to be accessed in big endian (BE) mode.
- little-endian: Boolean; force little endian register accesses
unconditionally (e.g. readl/writel). Use this if you know the
- peripheral always needs to be accessed in LE mode.
+ peripheral always needs to be accessed in little endian (LE) mode.
- native-endian: Boolean; always use register accesses matched to the
endianness of the kernel binary (e.g. LE vmlinux -> readl/writel,
- BE vmlinux -> ioread32be/iowrite32be). In this case no byteswaps
+ BE vmlinux -> ioread32be/iowrite32be). In this case no byte swaps
will ever be performed. Use this if the hardware "self-adjusts"
register endianness based on the CPU's configured endianness.
If a binding supports these properties, then the binding should also
specify the default behavior if none of these properties are present.
In such cases, little-endian is the preferred default, but it is not
-a requirement. The of_device_is_big_endian() and of_fdt_is_big_endian()
-helper functions do assume that little-endian is the default, because
-most existing (PCI-based) drivers implicitly default to LE by using
-readl/writel for MMIO accesses.
+a requirement. Some implementations assume that little-endian is
+the default, because most existing (PCI-based) drivers implicitly
+default to LE for their MMIO accesses.
Examples:
Scenario 1 : CPU in LE mode & device in LE mode.
diff --git a/Documentation/devicetree/bindings/cpufreq/imx-cpufreq-dt.txt b/Documentation/devicetree/bindings/cpufreq/imx-cpufreq-dt.txt
new file mode 100644
index 000000000000..87bff5add3f9
--- /dev/null
+++ b/Documentation/devicetree/bindings/cpufreq/imx-cpufreq-dt.txt
@@ -0,0 +1,37 @@
+i.MX CPUFreq-DT OPP bindings
+================================
+
+Certain i.MX SoCs support different OPPs depending on the "market segment" and
+"speed grading" value which are written in fuses. These bits are combined with
+the opp-supported-hw values for each OPP to check if the OPP is allowed.
+
+Required properties:
+--------------------
+
+For each opp entry in 'operating-points-v2' table:
+- opp-supported-hw: Two bitmaps indicating:
+ - Supported speed grade mask
+ - Supported market segment mask
+ 0: Consumer
+ 1: Extended Consumer
+ 2: Industrial
+ 3: Automotive
+
+Example:
+--------
+
+opp_table {
+ compatible = "operating-points-v2";
+ opp-1000000000 {
+ opp-hz = /bits/ 64 <1000000000>;
+ /* grade >= 0, consumer only */
+ opp-supported-hw = <0xf>, <0x3>;
+ };
+
+ opp-1300000000 {
+ opp-hz = /bits/ 64 <1300000000>;
+ opp-microvolt = <1000000>;
+ /* grade >= 1, all segments */
+ opp-supported-hw = <0xe>, <0x7>;
+ };
+}
diff --git a/Documentation/devicetree/bindings/crypto/atmel-crypto.txt b/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
index 6b458bb2440d..f2aab3dc2b52 100644
--- a/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
+++ b/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
@@ -66,16 +66,3 @@ sha@f8034000 {
dmas = <&dma1 2 17>;
dma-names = "tx";
};
-
-* Eliptic Curve Cryptography (I2C)
-
-Required properties:
-- compatible : must be "atmel,atecc508a".
-- reg: I2C bus address of the device.
-- clock-frequency: must be present in the i2c controller node.
-
-Example:
-atecc508a@c0 {
- compatible = "atmel,atecc508a";
- reg = <0xC0>;
-};
diff --git a/Documentation/devicetree/bindings/display/simple-framebuffer.yaml b/Documentation/devicetree/bindings/display/simple-framebuffer.yaml
index b052d76cf8b6..678776b6012a 100644
--- a/Documentation/devicetree/bindings/display/simple-framebuffer.yaml
+++ b/Documentation/devicetree/bindings/display/simple-framebuffer.yaml
@@ -126,6 +126,28 @@ required:
# but usually they will be filled by the bootloader.
- compatible
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,simple-framebuffer
+
+ then:
+ required:
+ - allwinner,pipeline
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: amlogic,simple-framebuffer
+
+ then:
+ required:
+ - amlogic,pipeline
+
+
additionalProperties: false
examples:
@@ -139,7 +161,8 @@ examples:
#size-cells = <1>;
stdout-path = "display0";
framebuffer0: framebuffer@1d385000 {
- compatible = "simple-framebuffer";
+ compatible = "allwinner,simple-framebuffer", "simple-framebuffer";
+ allwinner,pipeline = "de_be0-lcd0";
reg = <0x1d385000 3840000>;
width = <1600>;
height = <1200>;
diff --git a/Documentation/devicetree/bindings/extcon/extcon-fsa9480.txt b/Documentation/devicetree/bindings/extcon/extcon-fsa9480.txt
new file mode 100644
index 000000000000..d592c21245f2
--- /dev/null
+++ b/Documentation/devicetree/bindings/extcon/extcon-fsa9480.txt
@@ -0,0 +1,19 @@
+FAIRCHILD SEMICONDUCTOR FSA9480 MICROUSB SWITCH
+
+The FSA9480 is a USB port accessory detector and switch. The FSA9480 is fully
+controlled using I2C and enables USB data, stereo and mono audio, video,
+microphone, and UART data to use a common connector port.
+
+Required properties:
+ - compatible : Must be "fcs,fsa9480"
+ - reg : Specifies i2c slave address. Must be 0x25.
+ - interrupts : Should contain one entry specifying interrupt signal of
+ interrupt parent to which interrupt pin of the chip is connected.
+
+ Example:
+ musb@25 {
+ compatible = "fcs,fsa9480";
+ reg = <0x25>;
+ interrupt-parent = <&gph2>;
+ interrupts = <7 0>;
+ };
diff --git a/Documentation/devicetree/bindings/gpio/gpio-davinci.txt b/Documentation/devicetree/bindings/gpio/gpio-davinci.txt
index 553b92a7e87b..bc6b4b62df83 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-davinci.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-davinci.txt
@@ -5,6 +5,7 @@ Required Properties:
"ti,keystone-gpio": for Keystone 2 66AK2H/K, 66AK2L,
66AK2E SoCs
"ti,k2g-gpio", "ti,keystone-gpio": for 66AK2G
+ "ti,am654-gpio", "ti,keystone-gpio": for TI K3 AM654
- reg: Physical base address of the controller and the size of memory mapped
registers.
@@ -145,3 +146,20 @@ gpio0: gpio@260bf00 {
ti,ngpio = <32>;
ti,davinci-gpio-unbanked = <32>;
};
+
+Example for K3 AM654:
+
+wkup_gpio0: wkup_gpio0@42110000 {
+ compatible = "ti,am654-gpio", "ti,keystone-gpio";
+ reg = <0x42110000 0x100>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-parent = <&intr_wkup_gpio>;
+ interrupts = <59 128>, <59 129>, <59 130>, <59 131>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ ti,ngpio = <56>;
+ ti,davinci-gpio-unbanked = <0>;
+ clocks = <&k3_clks 59 0>;
+ clock-names = "gpio";
+};
diff --git a/Documentation/devicetree/bindings/gpio/pl061-gpio.txt b/Documentation/devicetree/bindings/gpio/pl061-gpio.txt
deleted file mode 100644
index 89058d375b7c..000000000000
--- a/Documentation/devicetree/bindings/gpio/pl061-gpio.txt
+++ /dev/null
@@ -1,10 +0,0 @@
-ARM PL061 GPIO controller
-
-Required properties:
-- compatible : "arm,pl061", "arm,primecell"
-- #gpio-cells : Should be two. The first cell is the pin number and the
- second cell is used to specify optional parameters:
- - bit 0 specifies polarity (0 for normal, 1 for inverted)
-- gpio-controller : Marks the device node as a GPIO controller.
-- interrupts : Interrupt mapping for GPIO IRQ.
-- gpio-ranges : Interaction with the PINCTRL subsystem.
diff --git a/Documentation/devicetree/bindings/gpio/pl061-gpio.yaml b/Documentation/devicetree/bindings/gpio/pl061-gpio.yaml
new file mode 100644
index 000000000000..313b17229247
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/pl061-gpio.yaml
@@ -0,0 +1,69 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/gpio/pl061-gpio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ARM PL061 GPIO controller
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+ - Rob Herring <robh@kernel.org>
+
+# We need a select here so we don't match all nodes with 'arm,primecell'
+select:
+ properties:
+ compatible:
+ contains:
+ const: arm,pl061
+ required:
+ - compatible
+
+properties:
+ $nodename:
+ pattern: "^gpio@[0-9a-f]+$"
+
+ compatible:
+ items:
+ - const: arm,pl061
+ - const: arm,primecell
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ oneOf:
+ - maxItems: 1
+ - maxItems: 8
+
+ interrupt-controller: true
+
+ "#interrupt-cells":
+ const: 2
+
+ clocks:
+ maxItems: 1
+
+ clock-names: true
+
+ "#gpio-cells":
+ const: 2
+
+ gpio-controller: true
+
+ gpio-ranges:
+ maxItems: 8
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-controller
+ - "#interrupt-cells"
+ - clocks
+ - "#gpio-cells"
+ - gpio-controller
+
+additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt b/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
index 69da2115abdc..1cf6182f888c 100644
--- a/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
+++ b/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
@@ -38,6 +38,6 @@ Example:
nunchuk: nunchuk@52 {
compatible = "nintendo,nunchuk";
- reg = <0x52 0x80000010 0>;
+ reg = <0x52 0x0 0x10>;
};
};
diff --git a/Documentation/devicetree/bindings/i3c/i3c.txt b/Documentation/devicetree/bindings/i3c/i3c.txt
index ab729a0a86ae..4ffe059f0fec 100644
--- a/Documentation/devicetree/bindings/i3c/i3c.txt
+++ b/Documentation/devicetree/bindings/i3c/i3c.txt
@@ -39,7 +39,9 @@ valid here, but several new properties have been added.
New constraint on existing properties:
--------------------------------------
- reg: contains 3 cells
- + first cell : still encoding the I2C address
+ + first cell : still encoding the I2C address. 10 bit addressing is not
+ supported. Devices with 10 bit address can't be properly passed through
+ DEFSLVS command.
+ second cell: shall be 0
diff --git a/Documentation/devicetree/bindings/iio/accel/adi,adxl345.yaml b/Documentation/devicetree/bindings/iio/accel/adi,adxl345.yaml
new file mode 100644
index 000000000000..7ba167e2e1ea
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/accel/adi,adxl345.yaml
@@ -0,0 +1,72 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/accelerometers/adi,adxl345.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices ADXL345/ADXL375 3-Axis Digital Accelerometers
+
+maintainers:
+ - Michael Hennerich <michael.hennerich@analog.com>
+
+description: |
+ Analog Devices ADXL345/ADXL375 3-Axis Digital Accelerometers that supports
+ both I2C & SPI interfaces.
+ http://www.analog.com/en/products/mems/accelerometers/adxl345.html
+ http://www.analog.com/en/products/sensors-mems/accelerometers/adxl375.html
+
+properties:
+ compatible:
+ enum:
+ - adi,adxl345
+ - adi,adxl375
+
+ reg:
+ maxItems: 1
+
+ spi-cpha: true
+
+ spi-cpol: true
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ i2c0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* Example for a I2C device node */
+ accelerometer@2a {
+ compatible = "adi,adxl345";
+ reg = <0x53>;
+ interrupt-parent = <&gpio0>;
+ interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ };
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* Example for a SPI device node */
+ accelerometer@0 {
+ compatible = "adi,adxl345";
+ reg = <0>;
+ spi-max-frequency = <5000000>;
+ spi-cpol;
+ spi-cpha;
+ interrupt-parent = <&gpio0>;
+ interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/accel/adi,adxl372.yaml b/Documentation/devicetree/bindings/iio/accel/adi,adxl372.yaml
new file mode 100644
index 000000000000..a7fafb9bf5c6
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/accel/adi,adxl372.yaml
@@ -0,0 +1,63 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/accelerometers/adi,adxl372.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices ADXL372 3-Axis, +/-(200g) Digital Accelerometer
+
+maintainers:
+ - Stefan Popa <stefan.popa@analog.com>
+
+description: |
+ Analog Devices ADXL372 3-Axis, +/-(200g) Digital Accelerometer that supports
+ both I2C & SPI interfaces
+ https://www.analog.com/en/products/adxl372.html
+
+properties:
+ compatible:
+ enum:
+ - adi,adxl372
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ i2c0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* Example for a I2C device node */
+ accelerometer@53 {
+ compatible = "adi,adxl372";
+ reg = <0x53>;
+ interrupt-parent = <&gpio>;
+ interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
+ };
+ };
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ accelerometer@0 {
+ compatible = "adi,adxl372";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ interrupt-parent = <&gpio>;
+ interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/accel/adxl345.txt b/Documentation/devicetree/bindings/iio/accel/adxl345.txt
deleted file mode 100644
index f9525f6e3d43..000000000000
--- a/Documentation/devicetree/bindings/iio/accel/adxl345.txt
+++ /dev/null
@@ -1,39 +0,0 @@
-Analog Devices ADXL345/ADXL375 3-Axis Digital Accelerometers
-
-http://www.analog.com/en/products/mems/accelerometers/adxl345.html
-http://www.analog.com/en/products/sensors-mems/accelerometers/adxl375.html
-
-Required properties:
- - compatible : should be one of
- "adi,adxl345"
- "adi,adxl375"
- - reg : the I2C address or SPI chip select number of the sensor
-
-Required properties for SPI bus usage:
- - spi-max-frequency : set maximum clock frequency, must be 5000000
- - spi-cpol and spi-cpha : must be defined for adxl345 to enable SPI mode 3
-
-Optional properties:
- - interrupts: interrupt mapping for IRQ as documented in
- Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
-
-Example for a I2C device node:
-
- accelerometer@2a {
- compatible = "adi,adxl345";
- reg = <0x53>;
- interrupt-parent = <&gpio1>;
- interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
- };
-
-Example for a SPI device node:
-
- accelerometer@0 {
- compatible = "adi,adxl345";
- reg = <0>;
- spi-max-frequency = <5000000>;
- spi-cpol;
- spi-cpha;
- interrupt-parent = <&gpio1>;
- interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
- };
diff --git a/Documentation/devicetree/bindings/iio/accel/adxl372.txt b/Documentation/devicetree/bindings/iio/accel/adxl372.txt
deleted file mode 100644
index a289964756a7..000000000000
--- a/Documentation/devicetree/bindings/iio/accel/adxl372.txt
+++ /dev/null
@@ -1,33 +0,0 @@
-Analog Devices ADXL372 3-Axis, +/-(200g) Digital Accelerometer
-
-http://www.analog.com/media/en/technical-documentation/data-sheets/adxl372.pdf
-
-Required properties:
- - compatible : should be "adi,adxl372"
- - reg: the I2C address or SPI chip select number for the device
-
-Required properties for SPI bus usage:
- - spi-max-frequency: Max SPI frequency to use
-
-Optional properties:
- - interrupts: interrupt mapping for IRQ as documented in
- Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
-
-Example for a I2C device node:
-
- accelerometer@53 {
- compatible = "adi,adxl372";
- reg = <0x53>;
- interrupt-parent = <&gpio>;
- interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
- };
-
-Example for a SPI device node:
-
- accelerometer@0 {
- compatible = "adi,adxl372";
- reg = <0>;
- spi-max-frequency = <1000000>;
- interrupt-parent = <&gpio>;
- interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
- };
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7124.txt b/Documentation/devicetree/bindings/iio/adc/adi,ad7124.txt
deleted file mode 100644
index 416273dce569..000000000000
--- a/Documentation/devicetree/bindings/iio/adc/adi,ad7124.txt
+++ /dev/null
@@ -1,75 +0,0 @@
-Analog Devices AD7124 ADC device driver
-
-Required properties for the AD7124:
- - compatible: Must be one of "adi,ad7124-4" or "adi,ad7124-8"
- - reg: SPI chip select number for the device
- - spi-max-frequency: Max SPI frequency to use
- see: Documentation/devicetree/bindings/spi/spi-bus.txt
- - clocks: phandle to the master clock (mclk)
- see: Documentation/devicetree/bindings/clock/clock-bindings.txt
- - clock-names: Must be "mclk".
- - interrupts: IRQ line for the ADC
- see: Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
-
- Required properties:
- * #address-cells: Must be 1.
- * #size-cells: Must be 0.
-
- Subnode(s) represent the external channels which are connected to the ADC.
- Each subnode represents one channel and has the following properties:
- Required properties:
- * reg: The channel number. It can have up to 4 channels on ad7124-4
- and 8 channels on ad7124-8, numbered from 0 to 15.
- * diff-channels: see: Documentation/devicetree/bindings/iio/adc/adc.txt
-
- Optional properties:
- * bipolar: see: Documentation/devicetree/bindings/iio/adc/adc.txt
- * adi,reference-select: Select the reference source to use when
- converting on the the specific channel. Valid values are:
- 0: REFIN1(+)/REFIN1(−).
- 1: REFIN2(+)/REFIN2(−).
- 3: AVDD
- If this field is left empty, internal reference is selected.
-
-Optional properties:
- - refin1-supply: refin1 supply can be used as reference for conversion.
- - refin2-supply: refin2 supply can be used as reference for conversion.
- - avdd-supply: avdd supply can be used as reference for conversion.
-
-Example:
- adc@0 {
- compatible = "adi,ad7124-4";
- reg = <0>;
- spi-max-frequency = <5000000>;
- interrupts = <25 2>;
- interrupt-parent = <&gpio>;
- refin1-supply = <&adc_vref>;
- clocks = <&ad7124_mclk>;
- clock-names = "mclk";
-
- #address-cells = <1>;
- #size-cells = <0>;
-
- channel@0 {
- reg = <0>;
- diff-channels = <0 1>;
- adi,reference-select = <0>;
- };
-
- channel@1 {
- reg = <1>;
- bipolar;
- diff-channels = <2 3>;
- adi,reference-select = <0>;
- };
-
- channel@2 {
- reg = <2>;
- diff-channels = <4 5>;
- };
-
- channel@3 {
- reg = <3>;
- diff-channels = <6 7>;
- };
- };
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7124.yaml b/Documentation/devicetree/bindings/iio/adc/adi,ad7124.yaml
new file mode 100644
index 000000000000..cf494a08b837
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/adi,ad7124.yaml
@@ -0,0 +1,155 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 Analog Devices Inc.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/bindings/iio/adc/adi,ad7124.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD7124 ADC device driver
+
+maintainers:
+ - Stefan Popa <stefan.popa@analog.com>
+
+description: |
+ Bindings for the Analog Devices AD7124 ADC device. Datasheet can be
+ found here:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7124-8.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad7124-4
+ - adi,ad7124-8
+
+ reg:
+ description: SPI chip select number for the device
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+ description: phandle to the master clock (mclk)
+
+ clock-names:
+ items:
+ - const: mclk
+
+ interrupts:
+ description: IRQ line for the ADC
+ maxItems: 1
+
+ '#address-cells':
+ const: 1
+
+ '#size-cells':
+ const: 0
+
+ refin1-supply:
+ description: refin1 supply can be used as reference for conversion.
+ maxItems: 1
+
+ refin2-supply:
+ description: refin2 supply can be used as reference for conversion.
+ maxItems: 1
+
+ avdd-supply:
+ description: avdd supply can be used as reference for conversion.
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - interrupts
+
+patternProperties:
+ "^channel@([0-9]|1[0-5])$":
+ type: object
+ description: |
+ Represents the external channels which are connected to the ADC.
+ See Documentation/devicetree/bindings/iio/adc/adc.txt.
+
+ properties:
+ reg:
+ description: |
+ The channel number. It can have up to 8 channels on ad7124-4
+ and 16 channels on ad7124-8, numbered from 0 to 15.
+ items:
+ minimum: 0
+ maximum: 15
+
+ adi,reference-select:
+ description: |
+ Select the reference source to use when converting on
+ the specific channel. Valid values are:
+ 0: REFIN1(+)/REFIN1(−).
+ 1: REFIN2(+)/REFIN2(−).
+ 3: AVDD
+ If this field is left empty, internal reference is selected.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [0, 1, 3]
+
+ diff-channels:
+ description: see Documentation/devicetree/bindings/iio/adc/adc.txt
+ items:
+ minimum: 0
+ maximum: 15
+
+ bipolar:
+ description: see Documentation/devicetree/bindings/iio/adc/adc.txt
+ type: boolean
+
+ adi,buffered-positive:
+ description: Enable buffered mode for positive input.
+ type: boolean
+
+ adi,buffered-negative:
+ description: Enable buffered mode for negative input.
+ type: boolean
+
+ required:
+ - reg
+ - diff-channels
+
+examples:
+ - |
+ adc@0 {
+ compatible = "adi,ad7124-4";
+ reg = <0>;
+ spi-max-frequency = <5000000>;
+ interrupts = <25 2>;
+ interrupt-parent = <&gpio>;
+ refin1-supply = <&adc_vref>;
+ clocks = <&ad7124_mclk>;
+ clock-names = "mclk";
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ channel@0 {
+ reg = <0>;
+ diff-channels = <0 1>;
+ adi,reference-select = <0>;
+ adi,buffered-positive;
+ };
+
+ channel@1 {
+ reg = <1>;
+ bipolar;
+ diff-channels = <2 3>;
+ adi,reference-select = <0>;
+ adi,buffered-positive;
+ adi,buffered-negative;
+ };
+
+ channel@2 {
+ reg = <2>;
+ diff-channels = <4 5>;
+ };
+
+ channel@3 {
+ reg = <3>;
+ diff-channels = <6 7>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7780.txt b/Documentation/devicetree/bindings/iio/adc/adi,ad7780.txt
deleted file mode 100644
index 440e52555349..000000000000
--- a/Documentation/devicetree/bindings/iio/adc/adi,ad7780.txt
+++ /dev/null
@@ -1,48 +0,0 @@
-* Analog Devices AD7170/AD7171/AD7780/AD7781
-
-Data sheets:
-
-- AD7170:
- * https://www.analog.com/media/en/technical-documentation/data-sheets/AD7170.pdf
-- AD7171:
- * https://www.analog.com/media/en/technical-documentation/data-sheets/AD7171.pdf
-- AD7780:
- * https://www.analog.com/media/en/technical-documentation/data-sheets/ad7780.pdf
-- AD7781:
- * https://www.analog.com/media/en/technical-documentation/data-sheets/AD7781.pdf
-
-Required properties:
-
-- compatible: should be one of
- * "adi,ad7170"
- * "adi,ad7171"
- * "adi,ad7780"
- * "adi,ad7781"
-- reg: spi chip select number for the device
-- vref-supply: the regulator supply for the ADC reference voltage
-
-Optional properties:
-
-- powerdown-gpios: must be the device tree identifier of the PDRST pin. If
- specified, it will be asserted during driver probe. As the
- line is active high, it should be marked GPIO_ACTIVE_HIGH.
-- adi,gain-gpios: must be the device tree identifier of the GAIN pin. Only for
- the ad778x chips. If specified, it will be asserted during
- driver probe. As the line is active low, it should be marked
- GPIO_ACTIVE_LOW.
-- adi,filter-gpios: must be the device tree identifier of the FILTER pin. Only
- for the ad778x chips. If specified, it will be asserted
- during driver probe. As the line is active low, it should be
- marked GPIO_ACTIVE_LOW.
-
-Example:
-
-adc@0 {
- compatible = "adi,ad7780";
- reg = <0>;
- vref-supply = <&vdd_supply>
-
- powerdown-gpios = <&gpio 12 GPIO_ACTIVE_HIGH>;
- adi,gain-gpios = <&gpio 5 GPIO_ACTIVE_LOW>;
- adi,filter-gpios = <&gpio 15 GPIO_ACTIVE_LOW>;
-};
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7780.yaml b/Documentation/devicetree/bindings/iio/adc/adi,ad7780.yaml
new file mode 100644
index 000000000000..d1109416963c
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/adi,ad7780.yaml
@@ -0,0 +1,87 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/adc/adi,ad7780.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD7170/AD7171/AD7780/AD7781 analog to digital converters
+
+maintainers:
+ - Michael Hennerich <michael.hennerich@analog.com>
+
+description: |
+ The ad7780 is a sigma-delta analog to digital converter. This driver provides
+ reading voltage values and status bits from both the ad778x and ad717x series.
+ Its interface also allows writing on the FILTER and GAIN GPIO pins on the
+ ad778x.
+
+ Specifications on the converters can be found at:
+ AD7170:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7170.pdf
+ AD7171:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7171.pdf
+ AD7780:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/ad7780.pdf
+ AD7781:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7781.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad7170
+ - adi,ad7171
+ - adi,ad7780
+ - adi,ad7781
+
+ reg:
+ maxItems: 1
+
+ avdd-supply:
+ description:
+ The regulator supply for the ADC reference voltage.
+ maxItems: 1
+
+ powerdown-gpios:
+ description:
+ Must be the device tree identifier of the PDRST pin. If
+ specified, it will be asserted during driver probe. As the
+ line is active high, it should be marked GPIO_ACTIVE_HIGH.
+ maxItems: 1
+
+ adi,gain-gpios:
+ description:
+ Must be the device tree identifier of the GAIN pin. Only for
+ the ad778x chips. If specified, it will be asserted during
+ driver probe. As the line is active low, it should be marked
+ GPIO_ACTIVE_LOW.
+ maxItems: 1
+
+ adi,filter-gpios:
+ description:
+ Must be the device tree identifier of the FILTER pin. Only
+ for the ad778x chips. If specified, it will be asserted
+ during driver probe. As the line is active low, it should be
+ marked GPIO_ACTIVE_LOW.
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ adc@0 {
+ compatible = "adi,ad7780";
+ reg = <0>;
+
+ avdd-supply = <&vdd_supply>;
+ powerdown-gpios = <&gpio0 12 GPIO_ACTIVE_HIGH>;
+ adi,gain-gpios = <&gpio1 5 GPIO_ACTIVE_LOW>;
+ adi,filter-gpios = <&gpio2 15 GPIO_ACTIVE_LOW>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt b/Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt
index 0df9befdaecc..78c06e05c8e5 100644
--- a/Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt
@@ -13,8 +13,10 @@ Required properties:
- compatible: Should be one of:
- "mediatek,mt2701-auxadc": For MT2701 family of SoCs
- "mediatek,mt2712-auxadc": For MT2712 family of SoCs
+ - "mediatek,mt6765-auxadc": For MT6765 family of SoCs
- "mediatek,mt7622-auxadc": For MT7622 family of SoCs
- "mediatek,mt8173-auxadc": For MT8173 family of SoCs
+ - "mediatek,mt8183-auxadc", "mediatek,mt8173-auxadc": For MT8183 family of SoCs
- reg: Address range of the AUXADC unit.
- clocks: Should contain a clock specifier for each entry in clock-names
- clock-names: Should contain "main".
diff --git a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
index 8346bcb04ad7..93a0bd2efc05 100644
--- a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
@@ -38,6 +38,7 @@ Required properties:
It's required on stm32h7.
- clock-names: Must be "adc" and/or "bus" depending on part used.
- interrupt-controller: Identifies the controller node as interrupt-parent
+- vdda-supply: Phandle to the vdda input analog voltage.
- vref-supply: Phandle to the vref input analog reference voltage.
- #interrupt-cells = <1>;
- #address-cells = <1>;
diff --git a/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.txt b/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.txt
deleted file mode 100644
index 6eee2709b5b6..000000000000
--- a/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-* Sensirion SPS30 particulate matter sensor
-
-Required properties:
-- compatible: must be "sensirion,sps30"
-- reg: the I2C address of the sensor
-
-Example:
-
-sps30@69 {
- compatible = "sensirion,sps30";
- reg = <0x69>;
-};
diff --git a/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.yaml b/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.yaml
new file mode 100644
index 000000000000..50a50a0d7070
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.yaml
@@ -0,0 +1,39 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/chemical/sensirion,sps30.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Sensirion SPS30 particulate matter sensor
+
+maintainers:
+ - Tomasz Duszynski <tduszyns@gmail.com>
+
+description: |
+ Air pollution sensor capable of measuring mass concentration of dust
+ particles.
+
+properties:
+ compatible:
+ enum:
+ - sensirion,sps30
+ reg:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ air-pollution-sensor@69 {
+ compatible = "sensirion,sps30";
+ reg = <0x69>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/iio/frequency/adf4371.yaml b/Documentation/devicetree/bindings/iio/frequency/adf4371.yaml
new file mode 100644
index 000000000000..7ec3ec94356b
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/frequency/adf4371.yaml
@@ -0,0 +1,63 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/frequency/adf4371.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices ADF4371/ADF4372 Wideband Synthesizers
+
+maintainers:
+ - Popa Stefan <stefan.popa@analog.com>
+
+description: |
+ Analog Devices ADF4371/ADF4372 SPI Wideband Synthesizers
+ https://www.analog.com/media/en/technical-documentation/data-sheets/adf4371.pdf
+ https://www.analog.com/media/en/technical-documentation/data-sheets/adf4372.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,adf4371
+ - adi,adf4372
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ description:
+ Definition of the external clock (see clock/clock-bindings.txt)
+ maxItems: 1
+
+ clock-names:
+ description:
+ Must be "clkin"
+ maxItems: 1
+
+ adi,mute-till-lock-en:
+ type: boolean
+ description:
+ If this property is present, then the supply current to RF8P and RF8N
+ output stage will shut down until the ADF4371/ADF4372 achieves lock as
+ measured by the digital lock detect circuitry.
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ frequency@0 {
+ compatible = "adi,adf4371";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ clocks = <&adf4371_clkin>;
+ clock-names = "clkin";
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/light/isl29018.txt b/Documentation/devicetree/bindings/iio/light/isl29018.txt
deleted file mode 100644
index b9bbde3e13ed..000000000000
--- a/Documentation/devicetree/bindings/iio/light/isl29018.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-* ISL 29018/29023/29035 I2C ALS, Proximity, and Infrared sensor
-
-Required properties:
-
- - compatible: Should be one of
- "isil,isl29018"
- "isil,isl29023"
- "isil,isl29035"
- - reg: the I2C address of the device
-
-Optional properties:
-
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
- - vcc-supply: phandle to the regulator that provides power to the sensor.
-
-Example:
-
-isl29018@44 {
- compatible = "isil,isl29018";
- reg = <0x44>;
- interrupt-parent = <&gpio>;
- interrupts = <TEGRA_GPIO(Z, 2) IRQ_TYPE_LEVEL_HIGH>;
-};
diff --git a/Documentation/devicetree/bindings/iio/light/isl29018.yaml b/Documentation/devicetree/bindings/iio/light/isl29018.yaml
new file mode 100644
index 000000000000..cbb00be8f359
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/isl29018.yaml
@@ -0,0 +1,56 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/isl29018.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: |
+ Intersil 29018/29023/29035 Ambient Light, Infrared Light, and Proximity Sensor
+
+maintainers:
+ - Brian Masney <masneyb@onstation.org>
+
+description: |
+ Ambient and infrared light sensing with proximity detection over an i2c
+ interface.
+
+ https://www.renesas.com/us/en/www/doc/datasheet/isl29018.pdf
+ https://www.renesas.com/us/en/www/doc/datasheet/isl29023.pdf
+ https://www.renesas.com/us/en/www/doc/datasheet/isl29035.pdf
+
+properties:
+ compatible:
+ enum:
+ - isil,isl29018
+ - isil,isl29023
+ - isil,isl29035
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ vcc-supply:
+ description: Regulator that provides power to the sensor
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+
+ i2c {
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ sensor@44 {
+ compatible = "isil,isl29018";
+ reg = <0x44>;
+ interrupts-extended = <&msmgpio 61 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2583.txt b/Documentation/devicetree/bindings/iio/light/tsl2583.txt
deleted file mode 100644
index 059dffa1829a..000000000000
--- a/Documentation/devicetree/bindings/iio/light/tsl2583.txt
+++ /dev/null
@@ -1,25 +0,0 @@
-* TAOS TSL 2580/2581/2583 ALS sensor
-
-Required properties:
-
- - compatible: Should be one of
- "amstaos,tsl2580"
- "amstaos,tsl2581"
- "amstaos,tsl2583"
- - reg: the I2C address of the device
-
-Optional properties:
-
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
- - vcc-supply: phandle to the regulator that provides power to the sensor.
-
-Example:
-
-tsl2581@29 {
- compatible = "amstaos,tsl2581";
- reg = <0x29>;
-};
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2583.yaml b/Documentation/devicetree/bindings/iio/light/tsl2583.yaml
new file mode 100644
index 000000000000..e86ef64ecf03
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/tsl2583.yaml
@@ -0,0 +1,46 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/tsl2583.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: AMS/TAOS Ambient Light Sensor (ALS)
+
+maintainers:
+ - Brian Masney <masneyb@onstation.org>
+
+description: |
+ Ambient light sensing with an i2c interface.
+
+properties:
+ compatible:
+ enum:
+ - amstaos,tsl2580
+ - amstaos,tsl2581
+ - amstaos,tsl2583
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ vcc-supply:
+ description: Regulator that provides power to the sensor
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ light-sensor@29 {
+ compatible = "amstaos,tsl2581";
+ reg = <0x29>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2772.txt b/Documentation/devicetree/bindings/iio/light/tsl2772.txt
deleted file mode 100644
index 1c5e6f17a1df..000000000000
--- a/Documentation/devicetree/bindings/iio/light/tsl2772.txt
+++ /dev/null
@@ -1,42 +0,0 @@
-* AMS/TAOS ALS and proximity sensor
-
-Required properties:
-
- - compatible: Should be one of
- "amstaos,tsl2571"
- "amstaos,tsl2671"
- "amstaos,tmd2671"
- "amstaos,tsl2771"
- "amstaos,tmd2771"
- "amstaos,tsl2572"
- "amstaos,tsl2672"
- "amstaos,tmd2672"
- "amstaos,tsl2772"
- "amstaos,tmd2772"
- "avago,apds9930"
- - reg: the I2C address of the device
-
-Optional properties:
-
- - amstaos,proximity-diodes - proximity diodes to enable. <0>, <1>, or <0 1>
- are the only valid values.
- - led-max-microamp - current for the proximity LED. Must be 100000, 50000,
- 25000, or 13000.
- - vdd-supply: phandle to the regulator that provides power to the sensor.
- - vddio-supply: phandle to the regulator that provides power to the bus.
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
-Example:
-
-tsl2772@39 {
- compatible = "amstaos,tsl2772";
- reg = <0x39>;
- interrupts-extended = <&msmgpio 61 IRQ_TYPE_EDGE_FALLING>;
- vdd-supply = <&pm8941_l17>;
- vddio-supply = <&pm8941_lvs1>;
- amstaos,proximity-diodes = <0>;
- led-max-microamp = <100000>;
-};
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2772.yaml b/Documentation/devicetree/bindings/iio/light/tsl2772.yaml
new file mode 100644
index 000000000000..ed2c3d5eadf5
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/tsl2772.yaml
@@ -0,0 +1,83 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/tsl2772.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: AMS/TAOS Ambient Light Sensor (ALS) and Proximity Detector
+
+maintainers:
+ - Brian Masney <masneyb@onstation.org>
+
+description: |
+ Ambient light sensing and proximity detection with an i2c interface.
+ https://ams.com/documents/20143/36005/TSL2772_DS000181_2-00.pdf
+
+properties:
+ compatible:
+ enum:
+ - amstaos,tsl2571
+ - amstaos,tsl2671
+ - amstaos,tmd2671
+ - amstaos,tsl2771
+ - amstaos,tmd2771
+ - amstaos,tsl2572
+ - amstaos,tsl2672
+ - amstaos,tmd2672
+ - amstaos,tsl2772
+ - amstaos,tmd2772
+ - avago,apds9930
+
+ reg:
+ maxItems: 1
+
+ amstaos,proximity-diodes:
+ description: Proximity diodes to enable
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+ - minItems: 1
+ maxItems: 2
+ items:
+ minimum: 0
+ maximum: 1
+
+ interrupts:
+ maxItems: 1
+
+ led-max-microamp:
+ description: Current for the proximity LED
+ enum:
+ - 13000
+ - 25000
+ - 50000
+ - 100000
+
+ vdd-supply:
+ description: Regulator that provides power to the sensor
+
+ vddio-supply:
+ description: Regulator that provides power to the bus
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ sensor@39 {
+ compatible = "amstaos,tsl2772";
+ reg = <0x39>;
+ interrupts-extended = <&msmgpio 61 IRQ_TYPE_EDGE_FALLING>;
+ vdd-supply = <&pm8941_l17>;
+ vddio-supply = <&pm8941_lvs1>;
+ amstaos,proximity-diodes = <0>;
+ led-max-microamp = <100000>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt b/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt
new file mode 100644
index 000000000000..4e82fd575cec
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt
@@ -0,0 +1,29 @@
+Amazon's Annapurna Labs Fabric Interrupt Controller
+
+Required properties:
+
+- compatible: should be "amazon,al-fic"
+- reg: physical base address and size of the registers
+- interrupt-controller: identifies the node as an interrupt controller
+- #interrupt-cells: must be 2.
+ First cell defines the index of the interrupt within the controller.
+ Second cell is used to specify the trigger type and must be one of the
+ following:
+ - bits[3:0] trigger type and level flags
+ 1 = low-to-high edge triggered
+ 4 = active high level-sensitive
+- interrupt-parent: specifies the parent interrupt controller.
+- interrupts: describes which input line in the interrupt parent, this
+ fic's output is connected to. This field property depends on the parent's
+ binding
+
+Example:
+
+amazon_fic: interrupt-controller@0xfd8a8500 {
+ compatible = "amazon,al-fic";
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ reg = <0x0 0xfd8a8500 0x0 0x1000>;
+ interrupt-parent = <&gic>;
+ interrupts = <GIC_SPI 0x0 IRQ_TYPE_LEVEL_HIGH>;
+};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
index 1502a51548bb..7d531d5fff29 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
@@ -15,6 +15,7 @@ Required properties:
"amlogic,meson-gxbb-gpio-intc" for GXBB SoCs (S905) or
"amlogic,meson-gxl-gpio-intc" for GXL SoCs (S905X, S912)
"amlogic,meson-axg-gpio-intc" for AXG SoCs (A113D, A113X)
+ "amlogic,meson-g12a-gpio-intc" for G12A SoCs (S905D2, S905X2, S905Y2)
- reg : Specifies base physical address and size of the registers.
- interrupt-controller : Identifies the node as an interrupt controller.
- #interrupt-cells : Specifies the number of cells needed to encode an
diff --git a/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt b/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
index ab921f1698fb..e13405355166 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
@@ -6,11 +6,16 @@ C-SKY Multi-processors Interrupt Controller is designed for ck807/ck810/ck860
SMP soc, and it also could be used in non-SMP system.
Interrupt number definition:
-
0-15 : software irq, and we use 15 as our IPI_IRQ.
16-31 : private irq, and we use 16 as the co-processor timer.
31-1024: common irq for soc ip.
+Interrupt triger mode: (Defined in dt-bindings/interrupt-controller/irq.h)
+ IRQ_TYPE_LEVEL_HIGH (default)
+ IRQ_TYPE_LEVEL_LOW
+ IRQ_TYPE_EDGE_RISING
+ IRQ_TYPE_EDGE_FALLING
+
=============================
intc node bindings definition
=============================
@@ -26,15 +31,22 @@ intc node bindings definition
- #interrupt-cells
Usage: required
Value type: <u32>
- Definition: must be <1>
+ Definition: <2>
- interrupt-controller:
Usage: required
-Examples:
+Examples: ("interrupts = <irq_num IRQ_TYPE_XXX>")
---------
+#include <dt-bindings/interrupt-controller/irq.h>
intc: interrupt-controller {
compatible = "csky,mpintc";
- #interrupt-cells = <1>;
+ #interrupt-cells = <2>;
interrupt-controller;
};
+
+ device: device-example {
+ ...
+ interrupts = <34 IRQ_TYPE_EDGE_RISING>;
+ interrupt-parent = <&intc>;
+ };
diff --git a/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt b/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt
new file mode 100644
index 000000000000..727b7e4cd6e0
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt
@@ -0,0 +1,43 @@
+DT bindings for the Renesas RZ/A1 Interrupt Controller
+
+The RZ/A1 Interrupt Controller is a front-end for the GIC found on Renesas
+RZ/A1 and RZ/A2 SoCs:
+ - IRQ sense select for 8 external interrupts, 1:1-mapped to 8 GIC SPI
+ interrupts,
+ - NMI edge select.
+
+Required properties:
+ - compatible: Must be "renesas,<soctype>-irqc", and "renesas,rza1-irqc" as
+ fallback.
+ Examples with soctypes are:
+ - "renesas,r7s72100-irqc" (RZ/A1H)
+ - "renesas,r7s9210-irqc" (RZ/A2M)
+ - #interrupt-cells: Must be 2 (an interrupt index and flags, as defined
+ in interrupts.txt in this directory)
+ - #address-cells: Must be zero
+ - interrupt-controller: Marks the device as an interrupt controller
+ - reg: Base address and length of the memory resource used by the interrupt
+ controller
+ - interrupt-map: Specifies the mapping from external interrupts to GIC
+ interrupts
+ - interrupt-map-mask: Must be <7 0>
+
+Example:
+
+ irqc: interrupt-controller@fcfef800 {
+ compatible = "renesas,r7s72100-irqc", "renesas,rza1-irqc";
+ #interrupt-cells = <2>;
+ #address-cells = <0>;
+ interrupt-controller;
+ reg = <0xfcfef800 0x6>;
+ interrupt-map =
+ <0 0 &gic GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>,
+ <1 0 &gic GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>,
+ <2 0 &gic GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>,
+ <3 0 &gic GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>,
+ <4 0 &gic GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>,
+ <5 0 &gic GIC_SPI 5 IRQ_TYPE_LEVEL_HIGH>,
+ <6 0 &gic GIC_SPI 6 IRQ_TYPE_LEVEL_HIGH>,
+ <7 0 &gic GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-map-mask = <7 0>;
+ };
diff --git a/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt b/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt
index 3538a214fff1..352f5e9c759b 100644
--- a/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt
+++ b/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt
@@ -36,4 +36,4 @@ Example:
kcs_chan = <2>;
status = "disabled";
};
- }; \ No newline at end of file
+ };
diff --git a/Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml b/Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml
index 4d61fe0a98a4..dc129d9a329e 100644
--- a/Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml
+++ b/Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml
@@ -23,16 +23,17 @@ properties:
reg:
maxItems: 1
- ti,linear-mapping-mode:
- description: |
- Enable linear mapping mode. If disabled, then it will use exponential
- mapping mode in which the ramp up/down appears to have a more uniform
- transition to the human eye.
- type: boolean
+ '#address-cells':
+ const: 1
+
+ '#size-cells':
+ const: 0
required:
- compatible
- reg
+ - '#address-cells'
+ - '#size-cells'
patternProperties:
"^led@[01]$":
@@ -48,7 +49,6 @@ patternProperties:
in this property. The two current sinks can be controlled
independently with both banks, or bank A can be configured to control
both sinks with the led-sources property.
- maxItems: 1
minimum: 0
maximum: 1
@@ -73,6 +73,13 @@ patternProperties:
minimum: 0
maximum: 255
+ ti,linear-mapping-mode:
+ description: |
+ Enable linear mapping mode. If disabled, then it will use exponential
+ mapping mode in which the ramp up/down appears to have a more uniform
+ transition to the human eye.
+ type: boolean
+
required:
- reg
diff --git a/Documentation/devicetree/bindings/leds/leds-lm36274.txt b/Documentation/devicetree/bindings/leds/leds-lm36274.txt
new file mode 100644
index 000000000000..39c230d59a4d
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-lm36274.txt
@@ -0,0 +1,85 @@
+* Texas Instruments LM36274 4-Channel LCD Backlight Driver w/Integrated Bias
+
+The LM36274 is an integrated four-channel WLED driver and LCD bias supply.
+The backlight boost provides the power to bias four parallel LED strings with
+up to 29V total output voltage. The 11-bit LED current is programmable via
+the I2C bus and/or controlled via a logic level PWM input from 60 uA to 30 mA.
+
+Parent device properties are documented in
+Documentation/devicetree/bindings/mfd/ti-lmu.txt
+
+Regulator properties are documented in
+Documentation/devicetree/bindings/regulator/lm363x-regulator.txt
+
+Required backlight properties:
+ - compatible:
+ "ti,lm36274-backlight"
+ - reg : 0
+ - #address-cells : 1
+ - #size-cells : 0
+ - led-sources : Indicates which LED strings will be enabled.
+ Values from 0-3, sources is 0 based so strings will be
+ source value + 1.
+
+Optional backlight properties:
+ - label : see Documentation/devicetree/bindings/leds/common.txt
+ - linux,default-trigger :
+ see Documentation/devicetree/bindings/leds/common.txt
+
+Example:
+
+HVLED string 1 and 3 are controlled by control bank A and HVLED 2 string is
+controlled by control bank B.
+
+lm36274@11 {
+ compatible = "ti,lm36274";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x11>;
+
+ enable-gpios = <&gpio1 28 GPIO_ACTIVE_HIGH>;
+
+ regulators {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm363x-regulator";
+
+ enable-gpios = <&pioC 0 GPIO_ACTIVE_HIGH>,
+ <&pioC 1 GPIO_ACTIVE_HIGH>;
+
+ vboost {
+ regulator-name = "lcd_boost";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <7150000>;
+ regulator-always-on;
+ };
+
+ vpos {
+ regulator-name = "lcd_vpos";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+
+ vneg {
+ regulator-name = "lcd_vneg";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+ };
+
+ backlight {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm36274-backlight";
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ label = "white:backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+ };
+};
+
+For more product information please see the link below:
+http://www.ti.com/lit/ds/symlink/lm36274.pdf
diff --git a/Documentation/devicetree/bindings/leds/leds-lm3697.txt b/Documentation/devicetree/bindings/leds/leds-lm3697.txt
new file mode 100644
index 000000000000..63992d732959
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-lm3697.txt
@@ -0,0 +1,73 @@
+* Texas Instruments - LM3697 Highly Efficient White LED Driver
+
+The LM3697 11-bit LED driver provides high-
+performance backlight dimming for 1, 2, or 3 series
+LED strings while delivering up to 90% efficiency.
+
+This device is suitable for display and keypad lighting
+
+Required properties:
+ - compatible:
+ "ti,lm3697"
+ - reg : I2C slave address
+ - #address-cells : 1
+ - #size-cells : 0
+
+Optional properties:
+ - enable-gpios : GPIO pin to enable/disable the device
+ - vled-supply : LED supply
+
+Required child properties:
+ - reg : 0 - LED is Controlled by bank A
+ 1 - LED is Controlled by bank B
+ - led-sources : Indicates which HVLED string is associated to which
+ control bank. This is a zero based property so
+ HVLED1 = 0, HVLED2 = 1, HVLED3 = 2.
+ Additional information is contained
+ in Documentation/devicetree/bindings/leds/common.txt
+
+Optional child properties:
+ - ti,brightness-resolution - see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - ramp-up-us: see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - ramp-down-us: see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - label : see Documentation/devicetree/bindings/leds/common.txt
+ - linux,default-trigger :
+ see Documentation/devicetree/bindings/leds/common.txt
+
+Example:
+
+HVLED string 1 and 3 are controlled by control bank A and HVLED 2 string is
+controlled by control bank B.
+
+led-controller@36 {
+ compatible = "ti,lm3697";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x36>;
+
+ enable-gpios = <&gpio1 28 GPIO_ACTIVE_HIGH>;
+ vled-supply = <&vbatt>;
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ ti,brightness-resolution = <2047>;
+ ramp-up-us = <5000>;
+ ramp-down-us = <1000>;
+ label = "white:first_backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+
+ led@1 {
+ reg = <1>;
+ led-sources = <1>;
+ ti,brightness-resolution = <255>;
+ ramp-up-us = <500>;
+ ramp-down-us = <1000>;
+ label = "white:second_backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+}
+
+For more product information please see the link below:
+http://www.ti.com/lit/ds/symlink/lm3697.pdf
diff --git a/Documentation/devicetree/bindings/leds/leds-spi-byte.txt b/Documentation/devicetree/bindings/leds/leds-spi-byte.txt
new file mode 100644
index 000000000000..28b6b2d9091e
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-spi-byte.txt
@@ -0,0 +1,44 @@
+* Single Byte SPI LED Device Driver.
+
+The driver can be used for controllers with a very simple SPI protocol:
+- one LED is controlled by a single byte on MOSI
+- the value of the byte gives the brightness between two values (lowest to
+ highest)
+- no return value is necessary (no MISO signal)
+
+The value for lowest and highest brightness is dependent on the device and
+therefore on the compatible string.
+
+Depending on the compatible string some special functions (like hardware
+accelerated blinking) might can be supported too.
+
+The driver currently only supports one LED. The properties of the LED are
+configured in a sub-node in the device node.
+
+Required properties:
+- compatible: should be one of
+ * "ubnt,acb-spi-led" microcontroller (SONiX 8F26E611LA) based device
+ used for example in Ubiquiti airCube ISP
+
+Property rules described in Documentation/devicetree/bindings/spi/spi-bus.txt
+apply.
+
+LED sub-node properties:
+- label:
+ see Documentation/devicetree/bindings/leds/common.txt
+- default-state:
+ see Documentation/devicetree/bindings/leds/common.txt
+ Only "on" and "off" are supported.
+
+Example:
+
+led-controller@0 {
+ compatible = "ubnt,acb-spi-led";
+ reg = <0>;
+ spi-max-frequency = <100000>;
+
+ led {
+ label = "white:status";
+ default-state = "on";
+ };
+};
diff --git a/Documentation/devicetree/bindings/media/allegro.txt b/Documentation/devicetree/bindings/media/allegro.txt
new file mode 100644
index 000000000000..a92e2fbf26c9
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/allegro.txt
@@ -0,0 +1,43 @@
+Device-tree bindings for the Allegro DVT video IP codecs present in the Xilinx
+ZynqMP SoC. The IP core may either be a H.264/H.265 encoder or H.264/H.265
+decoder ip core.
+
+Each actual codec engines is controlled by a microcontroller (MCU). Host
+software uses a provided mailbox interface to communicate with the MCU. The
+MCU share an interrupt.
+
+Required properties:
+ - compatible: value should be one of the following
+ "allegro,al5e-1.1", "allegro,al5e": encoder IP core
+ "allegro,al5d-1.1", "allegro,al5d": decoder IP core
+ - reg: base and length of the memory mapped register region and base and
+ length of the memory mapped sram
+ - reg-names: must include "regs" and "sram"
+ - interrupts: shared interrupt from the MCUs to the processing system
+ - clocks: must contain an entry for each entry in clock-names
+ - clock-names: must include "core_clk", "mcu_clk", "m_axi_core_aclk",
+ "m_axi_mcu_aclk", "s_axi_lite_aclk"
+
+Example:
+ al5e: video-codec@a0009000 {
+ compatible = "allegro,al5e-1.1", "allegro,al5e";
+ reg = <0 0xa0009000 0 0x1000>,
+ <0 0xa0000000 0 0x8000>;
+ reg-names = "regs", "sram";
+ interrupts = <0 96 4>;
+ clocks = <&xlnx_vcu 0>, <&xlnx_vcu 1>,
+ <&clkc 71>, <&clkc 71>, <&clkc 71>;
+ clock-names = "core_clk", "mcu_clk", "m_axi_core_aclk",
+ "m_axi_mcu_aclk", "s_axi_lite_aclk"
+ };
+ al5d: video-codec@a0029000 {
+ compatible = "allegro,al5d-1.1", "allegro,al5d";
+ reg = <0 0xa0029000 0 0x1000>,
+ <0 0xa0020000 0 0x8000>;
+ reg-names = "regs", "sram";
+ interrupts = <0 96 4>;
+ clocks = <&xlnx_vcu 2>, <&xlnx_vcu 3>,
+ <&clkc 71>, <&clkc 71>, <&clkc 71>;
+ clock-names = "core_clk", "mcu_clk", "m_axi_core_aclk",
+ "m_axi_mcu_aclk", "s_axi_lite_aclk"
+ };
diff --git a/Documentation/devicetree/bindings/media/amlogic,vdec.txt b/Documentation/devicetree/bindings/media/amlogic,vdec.txt
new file mode 100644
index 000000000000..aabdd01bcf32
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/amlogic,vdec.txt
@@ -0,0 +1,71 @@
+Amlogic Video Decoder
+================================
+
+The video decoding IP lies within the DOS memory region,
+except for the hardware bitstream parser that makes use of an undocumented
+region.
+
+It makes use of the following blocks:
+
+- ESPARSER is a bitstream parser that outputs to a VIFIFO. Further VDEC blocks
+then feed from this VIFIFO.
+- VDEC_1 can decode MPEG-1, MPEG-2, MPEG-4 part 2, MJPEG, H.263, H.264, VC-1.
+- VDEC_HEVC can decode HEVC and VP9.
+
+Both VDEC_1 and VDEC_HEVC share the "vdec" IRQ and as such cannot run
+concurrently.
+
+Device Tree Bindings:
+---------------------
+
+VDEC: Video Decoder
+--------------------------
+
+Required properties:
+- compatible: value should be different for each SoC family as :
+ - GXBB (S905) : "amlogic,gxbb-vdec"
+ - GXL (S905X, S905D) : "amlogic,gxl-vdec"
+ - GXM (S912) : "amlogic,gxm-vdec"
+- reg: base address and size of he following memory-mapped regions :
+ - dos
+ - esparser
+- reg-names: should contain the names of the previous memory regions
+- interrupts: should contain the following IRQs:
+ - vdec
+ - esparser
+- interrupt-names: should contain the names of the previous interrupts
+- amlogic,ao-sysctrl: should point to the AOBUS sysctrl node
+- amlogic,canvas: should point to a canvas provider node
+- clocks: should contain the following clocks :
+ - dos_parser
+ - dos
+ - vdec_1
+ - vdec_hevc
+- clock-names: should contain the names of the previous clocks
+- resets: should contain the parser reset
+- reset-names: should be "esparser"
+
+Example:
+
+vdec: video-decoder@c8820000 {
+ compatible = "amlogic,gxbb-vdec";
+ reg = <0x0 0xc8820000 0x0 0x10000>,
+ <0x0 0xc110a580 0x0 0xe4>;
+ reg-names = "dos", "esparser";
+
+ interrupts = <GIC_SPI 44 IRQ_TYPE_EDGE_RISING>,
+ <GIC_SPI 32 IRQ_TYPE_EDGE_RISING>;
+ interrupt-names = "vdec", "esparser";
+
+ amlogic,ao-sysctrl = <&sysctrl_AO>;
+ amlogic,canvas = <&canvas>;
+
+ clocks = <&clkc CLKID_DOS_PARSER>,
+ <&clkc CLKID_DOS>,
+ <&clkc CLKID_VDEC_1>,
+ <&clkc CLKID_VDEC_HEVC>;
+ clock-names = "dos_parser", "dos", "vdec_1", "vdec_hevc";
+
+ resets = <&reset RESET_PARSER>;
+ reset-names = "esparser";
+};
diff --git a/Documentation/devicetree/bindings/media/imx7-csi.txt b/Documentation/devicetree/bindings/media/imx7-csi.txt
index 3c07bc676bc3..443aef07356e 100644
--- a/Documentation/devicetree/bindings/media/imx7-csi.txt
+++ b/Documentation/devicetree/bindings/media/imx7-csi.txt
@@ -14,8 +14,7 @@ Required properties:
- interrupts : should contain CSI interrupt;
- clocks : list of clock specifiers, see
Documentation/devicetree/bindings/clock/clock-bindings.txt for details;
-- clock-names : must contain "axi", "mclk" and "dcic" entries, matching
- entries in the clock property;
+- clock-names : must contain "mclk";
The device node shall contain one 'port' child node with one child 'endpoint'
node, according to the bindings defined in:
@@ -32,10 +31,8 @@ example:
compatible = "fsl,imx7-csi";
reg = <0x30710000 0x10000>;
interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&clks IMX7D_CLK_DUMMY>,
- <&clks IMX7D_CSI_MCLK_ROOT_CLK>,
- <&clks IMX7D_CLK_DUMMY>;
- clock-names = "axi", "mclk", "dcic";
+ clocks = <&clks IMX7D_CSI_MCLK_ROOT_CLK>;
+ clock-names = "mclk";
port {
csi_from_csi_mux: endpoint {
diff --git a/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.txt b/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.txt
new file mode 100644
index 000000000000..7ec2c8c8a3b9
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.txt
@@ -0,0 +1,50 @@
+Marvell MMP2 camera host interface
+
+Required properties:
+ - compatible: Should be "marvell,mmp2-ccic".
+ - reg: Register base and size.
+ - interrupts: The interrupt number.
+ - #clock-cells: Must be 0.
+
+Optional properties:
+ - clocks: Reference to the input clock as specified by
+ Documentation/devicetree/bindings/clock/clock-bindings.txt.
+ - clock-names: Names of the clocks used; "axi" for the AXI bus interface,
+ "func" for the peripheral clock and "phy" for the parallel
+ video bus interface.
+ - clock-output-names: Optional clock source for sensors. Shall be "mclk".
+
+Required subnodes:
+ - port: The parallel bus interface port with a single endpoint linked to
+ the sensor's endpoint as described in
+ Documentation/devicetree/bindings/media/video-interfaces.txt.
+
+Required endpoint properties:
+ - bus-type: data bus type, <5> or <6> for Parallel or Bt.656 respectively
+ - pclk-sample: pixel clock polarity
+ - hsync-active: horizontal synchronization polarity (only required for
+ parallel bus)
+ - vsync-active: vertical synchronization polarity (only required for
+ parallel bus)
+
+Example:
+
+ camera0: camera@d420a000 {
+ compatible = "marvell,mmp2-ccic";
+ reg = <0xd420a000 0x800>;
+ interrupts = <42>;
+ clocks = <&soc_clocks MMP2_CLK_CCIC0>;
+ clock-names = "axi";
+ #clock-cells = <0>;
+ clock-output-names = "mclk";
+
+ port {
+ camera0_0: endpoint {
+ remote-endpoint = <&ov7670_0>;
+ bus-type = <5>; /* Parallel */
+ hsync-active = <1>; /* Active high */
+ vsync-active = <1>; /* Active high */
+ pclk-sample = <0>; /* Falling */
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/st,stm32-dcmi.txt b/Documentation/devicetree/bindings/media/st,stm32-dcmi.txt
index 249790a93017..3122ded82eb4 100644
--- a/Documentation/devicetree/bindings/media/st,stm32-dcmi.txt
+++ b/Documentation/devicetree/bindings/media/st,stm32-dcmi.txt
@@ -11,7 +11,7 @@ Required properties:
- clock-names: must contain "mclk", which is the DCMI peripherial clock
- pinctrl: the pincontrol settings to configure muxing properly
for pins that connect to DCMI device.
- See Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt.
+ See Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml.
- dmas: phandle to DMA controller node,
see Documentation/devicetree/bindings/dma/stm32-dma.txt
- dma-names: must contain "tx", which is the transmit channel from DCMI to DMA
diff --git a/Documentation/devicetree/bindings/media/sun6i-csi.txt b/Documentation/devicetree/bindings/media/sun6i-csi.txt
index 0dd540bb03db..a2e3e56f0257 100644
--- a/Documentation/devicetree/bindings/media/sun6i-csi.txt
+++ b/Documentation/devicetree/bindings/media/sun6i-csi.txt
@@ -6,6 +6,7 @@ Allwinner V3s SoC features a CSI module(CSI1) with parallel interface.
Required properties:
- compatible: value must be one of:
* "allwinner,sun6i-a31-csi"
+ * "allwinner,sun8i-a83t-csi"
* "allwinner,sun8i-h3-csi"
* "allwinner,sun8i-v3s-csi"
* "allwinner,sun50i-a64-csi"
diff --git a/Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt b/Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt
index f936b5589b19..59b8dcc118ee 100644
--- a/Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt
@@ -5,6 +5,7 @@ controller in Ingenic JZ4780
Required properties:
- compatible: Should be set to one of:
+ "ingenic,jz4740-nemc" (JZ4740)
"ingenic,jz4780-nemc" (JZ4780)
- reg: Should specify the NEMC controller registers location and length.
- clocks: Clock for the NEMC controller.
diff --git a/Documentation/devicetree/bindings/mfd/atmel-usart.txt b/Documentation/devicetree/bindings/mfd/atmel-usart.txt
index 7f0cd72f47d2..699fd3c9ace8 100644
--- a/Documentation/devicetree/bindings/mfd/atmel-usart.txt
+++ b/Documentation/devicetree/bindings/mfd/atmel-usart.txt
@@ -17,17 +17,24 @@ Required properties for USART in SPI mode:
- cs-gpios: chipselects (internal cs not supported)
- atmel,usart-mode : Must be <AT91_USART_MODE_SPI> (found in dt-bindings/mfd/at91-usart.h)
+Optional properties in serial and SPI mode:
+- dma bindings for dma transfer:
+ - dmas: DMA specifier, consisting of a phandle to DMA controller node,
+ memory peripheral interface and USART DMA channel ID, FIFO configuration.
+ The order of DMA channels is fixed. The first DMA channel must be TX
+ associated channel and the second one must be RX associated channel.
+ Refer to dma.txt and atmel-dma.txt for details.
+ - dma-names: "tx" for TX channel.
+ "rx" for RX channel.
+ The order of dma-names is also fixed. The first name must be "tx"
+ and the second one must be "rx" as in the examples below.
+
Optional properties in serial mode:
- atmel,use-dma-rx: use of PDC or DMA for receiving data
- atmel,use-dma-tx: use of PDC or DMA for transmitting data
- {rts,cts,dtr,dsr,rng,dcd}-gpios: specify a GPIO for RTS/CTS/DTR/DSR/RI/DCD line respectively.
It will use specified PIO instead of the peripheral function pin for the USART feature.
If unsure, don't specify this property.
-- add dma bindings for dma transfer:
- - dmas: DMA specifier, consisting of a phandle to DMA controller node,
- memory peripheral interface and USART DMA channel ID, FIFO configuration.
- Refer to dma.txt and atmel-dma.txt for details.
- - dma-names: "rx" for RX channel, "tx" for TX channel.
- atmel,fifo-size: maximum number of data the RX and TX FIFOs can store for FIFO
capable USARTs.
- rs485-rts-delay, rs485-rx-during-tx, linux,rs485-enabled-at-boot-time: see rs485.txt
@@ -81,5 +88,8 @@ Example:
interrupts = <12 IRQ_TYPE_LEVEL_HIGH 5>;
clocks = <&usart0_clk>;
clock-names = "usart";
+ dmas = <&dma0 2 AT91_DMA_CFG_PER_ID(3)>,
+ <&dma0 2 (AT91_DMA_CFG_PER_ID(4) | AT91_DMA_CFG_FIFOCFG_ASAP)>;
+ dma-names = "tx", "rx";
cs-gpios = <&pioB 3 0>;
};
diff --git a/Documentation/devicetree/bindings/mfd/ti-lmu.txt b/Documentation/devicetree/bindings/mfd/ti-lmu.txt
index 86ca786d54fc..2296b8f24de4 100644
--- a/Documentation/devicetree/bindings/mfd/ti-lmu.txt
+++ b/Documentation/devicetree/bindings/mfd/ti-lmu.txt
@@ -8,7 +8,7 @@ TI LMU driver supports lighting devices below.
LM3632 Backlight and regulator
LM3633 Backlight, LED and fault monitor
LM3695 Backlight
- LM3697 Backlight and fault monitor
+ LM36274 Backlight and regulator
Required properties:
- compatible: Should be one of:
@@ -16,15 +16,32 @@ Required properties:
"ti,lm3632"
"ti,lm3633"
"ti,lm3695"
- "ti,lm3697"
+ "ti,lm36274"
- reg: I2C slave address.
0x11 for LM3632
0x29 for LM3631
- 0x36 for LM3633, LM3697
+ 0x36 for LM3633
0x63 for LM3695
+ 0x11 for LM36274
-Optional property:
+Optional properties:
- enable-gpios: A GPIO specifier for hardware enable pin.
+ - ramp-up-us: Current ramping from one brightness level to
+ the a higher brightness level.
+ Range from 2048 us - 117.44 s
+ - ramp-down-us: Current ramping from one brightness level to
+ the a lower brightness level.
+ Range from 2048 us - 117.44 s
+ - ti,brightness-resolution - This determines whether to use 8 bit brightness
+ mode or 11 bit brightness mode. If this value is
+ not set the device is defaulted to the preferred
+ 8bit brightness mode per 7.3.4.1 of the data
+ sheet. This setting can either be in the parent
+ node or as part of the LED child nodes. This
+ is determined by the part itself if the strings
+ have a common brightness register or individual
+ brightness registers.
+ The values are 255 (8bit) or 2047 (11bit).
Required node:
- backlight: All LMU devices have backlight child nodes.
@@ -35,14 +52,15 @@ Optional nodes:
Required properties:
- compatible: Should be one of:
"ti,lm3633-fault-monitor"
- "ti,lm3697-fault-monitor"
- leds: LED properties for LM3633. Please refer to [2].
+ LED properties for LM36274. Please refer to [4].
- regulators: Regulator properties for LM3631 and LM3632.
Please refer to [3].
[1] ../leds/backlight/ti-lmu-backlight.txt
[2] ../leds/leds-lm3633.txt
[3] ../regulator/lm363x-regulator.txt
+[4] ../leds/leds-lm36274.txt
lm3631@29 {
compatible = "ti,lm3631";
@@ -90,7 +108,7 @@ lm3631@29 {
lcd_bl {
led-sources = <0 1>;
- ramp-up-msec = <300>;
+ ramp-up-us = <300000>;
};
};
};
@@ -152,15 +170,15 @@ lm3633@36 {
main {
label = "main_lcd";
led-sources = <1 2>;
- ramp-up-msec = <500>;
- ramp-down-msec = <500>;
+ ramp-up-us = <500000>;
+ ramp-down-us = <500000>;
};
front {
label = "front_lcd";
led-sources = <0>;
- ramp-up-msec = <1000>;
- ramp-down-msec = <0>;
+ ramp-up-us = <1000000>;
+ ramp-down-us = <0>;
};
};
@@ -201,23 +219,51 @@ lm3695@63 {
};
};
-lm3697@36 {
- compatible = "ti,lm3697";
- reg = <0x36>;
+lm36274@11 {
+ compatible = "ti,lm36274";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x11>;
enable-gpios = <&pioC 2 GPIO_ACTIVE_HIGH>;
+ regulators {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm363x-regulator";
- backlight {
- compatible = "ti,lm3697-backlight";
+ enable-gpios = <&pioC 0 GPIO_ACTIVE_HIGH>,
+ <&pioC 1 GPIO_ACTIVE_HIGH>;
- lcd {
- led-sources = <0 1 2>;
- ramp-up-msec = <200>;
- ramp-down-msec = <200>;
+ vboost {
+ regulator-name = "lcd_boost";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <7150000>;
+ regulator-always-on;
+ };
+
+ vpos {
+ regulator-name = "lcd_vpos";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+
+ vneg {
+ regulator-name = "lcd_vneg";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
};
};
- fault-monitor {
- compatible = "ti,lm3697-fault-monitor";
+ backlight {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm36274-backlight";
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ label = "white:backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
};
};
diff --git a/Documentation/devicetree/bindings/misc/xlnx,sd-fec.txt b/Documentation/devicetree/bindings/misc/xlnx,sd-fec.txt
new file mode 100644
index 000000000000..e3289634fa30
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/xlnx,sd-fec.txt
@@ -0,0 +1,58 @@
+* Xilinx SDFEC(16nm) IP *
+
+The Soft Decision Forward Error Correction (SDFEC) Engine is a Hard IP block
+which provides high-throughput LDPC and Turbo Code implementations.
+The LDPC decode & encode functionality is capable of covering a range of
+customer specified Quasi-cyclic (QC) codes. The Turbo decode functionality
+principally covers codes used by LTE. The FEC Engine offers significant
+power and area savings versus implementations done in the FPGA fabric.
+
+
+Required properties:
+- compatible: Must be "xlnx,sd-fec-1.1"
+- clock-names : List of input clock names from the following:
+ - "core_clk", Main processing clock for processing core (required)
+ - "s_axi_aclk", AXI4-Lite memory-mapped slave interface clock (required)
+ - "s_axis_din_aclk", DIN AXI4-Stream Slave interface clock (optional)
+ - "s_axis_din_words-aclk", DIN_WORDS AXI4-Stream Slave interface clock (optional)
+ - "s_axis_ctrl_aclk", Control input AXI4-Stream Slave interface clock (optional)
+ - "m_axis_dout_aclk", DOUT AXI4-Stream Master interface clock (optional)
+ - "m_axis_dout_words_aclk", DOUT_WORDS AXI4-Stream Master interface clock (optional)
+ - "m_axis_status_aclk", Status output AXI4-Stream Master interface clock (optional)
+- clocks : Clock phandles (see clock_bindings.txt for details).
+- reg: Should contain Xilinx SDFEC 16nm Hardened IP block registers
+ location and length.
+- xlnx,sdfec-code : Should contain "ldpc" or "turbo" to describe the codes
+ being used.
+- xlnx,sdfec-din-words : A value 0 indicates that the DIN_WORDS interface is
+ driven with a fixed value and is not present on the device, a value of 1
+ configures the DIN_WORDS to be block based, while a value of 2 configures the
+ DIN_WORDS input to be supplied for each AXI transaction.
+- xlnx,sdfec-din-width : Configures the DIN AXI stream where a value of 1
+ configures a width of "1x128b", 2 a width of "2x128b" and 4 configures a width
+ of "4x128b".
+- xlnx,sdfec-dout-words : A value 0 indicates that the DOUT_WORDS interface is
+ driven with a fixed value and is not present on the device, a value of 1
+ configures the DOUT_WORDS to be block based, while a value of 2 configures the
+ DOUT_WORDS input to be supplied for each AXI transaction.
+- xlnx,sdfec-dout-width : Configures the DOUT AXI stream where a value of 1
+ configures a width of "1x128b", 2 a width of "2x128b" and 4 configures a width
+ of "4x128b".
+Optional properties:
+- interrupts: should contain SDFEC interrupt number
+
+Example
+---------------------------------------
+ sd_fec_0: sd-fec@a0040000 {
+ compatible = "xlnx,sd-fec-1.1";
+ clock-names = "core_clk","s_axi_aclk","s_axis_ctrl_aclk","s_axis_din_aclk","m_axis_status_aclk","m_axis_dout_aclk";
+ clocks = <&misc_clk_2>,<&misc_clk_0>,<&misc_clk_1>,<&misc_clk_1>,<&misc_clk_1>, <&misc_clk_1>;
+ reg = <0x0 0xa0040000 0x0 0x40000>;
+ interrupt-parent = <&axi_intc>;
+ interrupts = <1 0>;
+ xlnx,sdfec-code = "ldpc";
+ xlnx,sdfec-din-words = <0>;
+ xlnx,sdfec-din-width = <2>;
+ xlnx,sdfec-dout-words = <0>;
+ xlnx,sdfec-dout-width = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/mmc/allwinner,sun4i-a10-mmc.yaml b/Documentation/devicetree/bindings/mmc/allwinner,sun4i-a10-mmc.yaml
new file mode 100644
index 000000000000..df0280edef97
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/allwinner,sun4i-a10-mmc.yaml
@@ -0,0 +1,98 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/mmc/allwinner,sun4i-a10-mmc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 MMC Controller Device Tree Bindings
+
+allOf:
+ - $ref: "mmc-controller.yaml"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#address-cells": true
+ "#size-cells": true
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-mmc
+ - const: allwinner,sun5i-a13-mmc
+ - const: allwinner,sun7i-a20-mmc
+ - const: allwinner,sun8i-a83t-emmc
+ - const: allwinner,sun9i-a80-mmc
+ - const: allwinner,sun50i-a64-emmc
+ - const: allwinner,sun50i-a64-mmc
+ - items:
+ - const: allwinner,sun8i-a83t-mmc
+ - const: allwinner,sun7i-a20-mmc
+ - items:
+ - const: allwinner,sun50i-h6-emmc
+ - const: allwinner,sun50i-a64-emmc
+ - items:
+ - const: allwinner,sun50i-h6-mmc
+ - const: allwinner,sun50i-a64-mmc
+ - items:
+ - const: allwinner,sun8i-r40-emmc
+ - const: allwinner,sun50i-a64-emmc
+ - items:
+ - const: allwinner,sun8i-r40-mmc
+ - const: allwinner,sun50i-a64-mmc
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ minItems: 2
+ maxItems: 4
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+ - description: Output Clock
+ - description: Sample Clock
+
+ clock-names:
+ minItems: 2
+ maxItems: 4
+ items:
+ - const: ahb
+ - const: mmc
+ - const: output
+ - const: sample
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ const: ahb
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ mmc0: mmc@1c0f000 {
+ compatible = "allwinner,sun5i-a13-mmc";
+ reg = <0x01c0f000 0x1000>;
+ clocks = <&ahb_gates 8>, <&mmc0_clk>;
+ clock-names = "ahb", "mmc";
+ interrupts = <32>;
+ bus-width = <4>;
+ cd-gpios = <&pio 7 1 0>;
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt b/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
index 13e70409e8ac..ccc5358db131 100644
--- a/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
+++ b/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
@@ -22,6 +22,10 @@ Required properties:
clock rate requested by the MMC core.
- resets : phandle of the internal reset line
+Optional properties:
+- amlogic,dram-access-quirk: set when controller's internal DMA engine cannot access the
+ DRAM memory, like on the G12A dedicated SDIO controller.
+
Example:
sd_emmc_a: mmc@70000 {
diff --git a/Documentation/devicetree/bindings/mmc/mmc-controller.yaml b/Documentation/devicetree/bindings/mmc/mmc-controller.yaml
new file mode 100644
index 000000000000..080754e0ef35
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/mmc-controller.yaml
@@ -0,0 +1,374 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/mmc/mmc-controller.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MMC Controller Generic Binding
+
+maintainers:
+ - Ulf Hansson <ulf.hansson@linaro.org>
+
+description: |
+ These properties are common to multiple MMC host controllers. Any host
+ that requires the respective functionality should implement them using
+ these definitions.
+
+properties:
+ $nodename:
+ pattern: "^mmc(@.*)?$"
+
+ "#address-cells":
+ const: 1
+ description: |
+ The cell is the slot ID if a function subnode is used.
+
+ "#size-cells":
+ const: 0
+
+ # Card Detection.
+ # If none of these properties are supplied, the host native card
+ # detect will be used. Only one of them should be provided.
+
+ broken-cd:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ There is no card detection available; polling must be used.
+
+ cd-gpios:
+ description:
+ The card detection will be done using the GPIO provided.
+
+ non-removable:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Non-removable slot (like eMMC); assume always present.
+
+ # *NOTE* on CD and WP polarity. To use common for all SD/MMC host
+ # controllers line polarity properties, we have to fix the meaning
+ # of the "normal" and "inverted" line levels. We choose to follow
+ # the SDHCI standard, which specifies both those lines as "active
+ # low." Therefore, using the "cd-inverted" property means, that the
+ # CD line is active high, i.e. it is high, when a card is
+ # inserted. Similar logic applies to the "wp-inverted" property.
+ #
+ # CD and WP lines can be implemented on the hardware in one of two
+ # ways: as GPIOs, specified in cd-gpios and wp-gpios properties, or
+ # as dedicated pins. Polarity of dedicated pins can be specified,
+ # using *-inverted properties. GPIO polarity can also be specified
+ # using the GPIO_ACTIVE_LOW flag. This creates an ambiguity in the
+ # latter case. We choose to use the XOR logic for GPIO CD and WP
+ # lines. This means, the two properties are "superimposed," for
+ # example leaving the GPIO_ACTIVE_LOW flag clear and specifying the
+ # respective *-inverted property property results in a
+ # double-inversion and actually means the "normal" line polarity is
+ # in effect.
+ wp-inverted:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The Write Protect line polarity is inverted.
+
+ cd-inverted:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The CD line polarity is inverted.
+
+ # Other properties
+
+ bus-width:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [1, 4, 8]
+ default: 1
+ description:
+ Number of data lines.
+
+ max-frequency:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 400000
+ - maximum: 200000000
+ description:
+ Maximum operating frequency of the bus.
+
+ disable-wp:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ When set, no physical write-protect line is present. This
+ property should only be specified when the controller has a
+ dedicated write-protect detection logic. If a GPIO is always
+ used for the write-protect detection. If a GPIO is always used
+ for the write-protect detection logic, it is sufficient to not
+ specify the wp-gpios property in the absence of a write-protect
+ line.
+
+ wp-gpios:
+ description:
+ GPIO to use for the write-protect detection.
+
+ cd-debounce-delay-ms:
+ description:
+ Set delay time before detecting card after card insert
+ interrupt.
+
+ no-1-8-v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ When specified, denotes that 1.8V card voltage is not supported
+ on this system, even if the controller claims it.
+
+ cap-sd-highspeed:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD high-speed timing is supported.
+
+ cap-mmc-highspeed:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ MMC high-speed timing is supported.
+
+ sd-uhs-sdr12:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS SDR12 speed is supported.
+
+ sd-uhs-sdr25:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS SDR25 speed is supported.
+
+ sd-uhs-sdr50:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS SDR50 speed is supported.
+
+ sd-uhs-sdr104:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS SDR104 speed is supported.
+
+ sd-uhs-ddr50:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS DDR50 speed is supported.
+
+ cap-power-off-card:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Powering off the card is safe.
+
+ cap-mmc-hw-reset:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC hardware reset is supported
+
+ cap-sdio-irq:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ enable SDIO IRQ signalling on this interface
+
+ full-pwr-cycle:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Full power cycle of the card is supported.
+
+ mmc-ddr-1_2v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC high-speed DDR mode (1.2V I/O) is supported.
+
+ mmc-ddr-1_8v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC high-speed DDR mode (1.8V I/O) is supported.
+
+ mmc-ddr-3_3v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC high-speed DDR mode (3.3V I/O) is supported.
+
+ mmc-hs200-1_2v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS200 mode (1.2V I/O) is supported.
+
+ mmc-hs200-1_8v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS200 mode (1.8V I/O) is supported.
+
+ mmc-hs400-1_2v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS400 mode (1.2V I/O) is supported.
+
+ mmc-hs400-1_8v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS400 mode (1.8V I/O) is supported.
+
+ mmc-hs400-enhanced-strobe:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS400 enhanced strobe mode is supported
+
+ dsr:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ - maximum: 0xffff
+ description:
+ Value the card Driver Stage Register (DSR) should be programmed
+ with.
+
+ no-sdio:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Controller is limited to send SDIO commands during
+ initialization.
+
+ no-sd:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Controller is limited to send SD commands during initialization.
+
+ no-mmc:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Controller is limited to send MMC commands during
+ initialization.
+
+ fixed-emmc-driver-type:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ - maximum: 4
+ description:
+ For non-removable eMMC, enforce this driver type. The value is
+ the driver type as specified in the eMMC specification (table
+ 206 in spec version 5.1)
+
+ post-power-on-delay-ms:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - default: 10
+ description:
+ It was invented for MMC pwrseq-simple which could be referred to
+ mmc-pwrseq-simple.txt. But now it\'s reused as a tunable delay
+ waiting for I/O signalling and card power supply to be stable,
+ regardless of whether pwrseq-simple is used. Default to 10ms if
+ no available.
+
+ supports-cqe:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The presence of this property indicates that the corresponding
+ MMC host controller supports HW command queue feature.
+
+ disable-cqe-dcmd:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The presence of this property indicates that the MMC
+ controller\'s command queue engine (CQE) does not support direct
+ commands (DCMDs).
+
+ keep-power-in-suspend:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SDIO only. Preserves card power during a suspend/resume cycle.
+
+ # Deprecated: enable-sdio-wakeup
+ wakeup-source:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SDIO only. Enables wake up of host system on SDIO IRQ assertion.
+
+ vmmc-supply:
+ description:
+ Supply for the card power
+
+ vqmmc-supply:
+ description:
+ Supply for the bus IO line power
+
+ mmc-pwrseq:
+ $ref: /schemas/types.yaml#/definitions/phandle
+ description:
+ System-on-Chip designs may specify a specific MMC power
+ sequence. To successfully detect an (e)MMC/SD/SDIO card, that
+ power sequence must be maintained while initializing the card.
+
+patternProperties:
+ "^.*@[0-9]+$":
+ type: object
+ description: |
+ On embedded systems the cards connected to a host may need
+ additional properties. These can be specified in subnodes to the
+ host controller node. The subnodes are identified by the
+ standard \'reg\' property. Which information exactly can be
+ specified depends on the bindings for the SDIO function driver
+ for the subnode, as specified by the compatible string.
+
+ properties:
+ compatible:
+ description: |
+ Name of SDIO function following generic names recommended
+ practice
+
+ reg:
+ items:
+ - minimum: 0
+ maximum: 7
+ description:
+ Must contain the SDIO function number of the function this
+ subnode describes. A value of 0 denotes the memory SD
+ function, values from 1 to 7 denote the SDIO functions.
+
+ broken-hpi:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Use this to indicate that the mmc-card has a broken hpi
+ implementation, and that hpi should not be used.
+
+ required:
+ - reg
+
+dependencies:
+ cd-debounce-delay-ms: [ cd-gpios ]
+ fixed-emmc-driver-type: [ non-removable ]
+
+examples:
+ - |
+ sdhci@ab000000 {
+ compatible = "sdhci";
+ reg = <0xab000000 0x200>;
+ interrupts = <23>;
+ bus-width = <4>;
+ cd-gpios = <&gpio 69 0>;
+ cd-inverted;
+ wp-gpios = <&gpio 70 0>;
+ max-frequency = <50000000>;
+ keep-power-in-suspend;
+ wakeup-source;
+ mmc-pwrseq = <&sdhci0_pwrseq>;
+ };
+
+ - |
+ mmc3: mmc@1c12000 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&mmc3_pins_a>;
+ vmmc-supply = <&reg_vmmc3>;
+ bus-width = <4>;
+ non-removable;
+ mmc-pwrseq = <&sdhci0_pwrseq>;
+
+ brcmf: bcrmf@1 {
+ reg = <1>;
+ compatible = "brcm,bcm43xx-fmac";
+ interrupt-parent = <&pio>;
+ interrupts = <10 8>;
+ interrupt-names = "host-wake";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mmc/mmc.txt b/Documentation/devicetree/bindings/mmc/mmc.txt
index c269dbe384fe..bf9d7d3febf1 100644
--- a/Documentation/devicetree/bindings/mmc/mmc.txt
+++ b/Documentation/devicetree/bindings/mmc/mmc.txt
@@ -1,177 +1 @@
-These properties are common to multiple MMC host controllers. Any host
-that requires the respective functionality should implement them using
-these definitions.
-
-Interpreted by the OF core:
-- reg: Registers location and length.
-- interrupts: Interrupts used by the MMC controller.
-
-Card detection:
-If no property below is supplied, host native card detect is used.
-Only one of the properties in this section should be supplied:
- - broken-cd: There is no card detection available; polling must be used.
- - cd-gpios: Specify GPIOs for card detection, see gpio binding
- - non-removable: non-removable slot (like eMMC); assume always present.
-
-Optional properties:
-- bus-width: Number of data lines, can be <1>, <4>, or <8>. The default
- will be <1> if the property is absent.
-- wp-gpios: Specify GPIOs for write protection, see gpio binding
-- cd-inverted: when present, polarity on the CD line is inverted. See the note
- below for the case, when a GPIO is used for the CD line
-- cd-debounce-delay-ms: Set delay time before detecting card after card insert interrupt.
- It's only valid when cd-gpios is present.
-- wp-inverted: when present, polarity on the WP line is inverted. See the note
- below for the case, when a GPIO is used for the WP line
-- disable-wp: When set no physical WP line is present. This property should
- only be specified when the controller has a dedicated write-protect
- detection logic. If a GPIO is always used for the write-protect detection
- logic it is sufficient to not specify wp-gpios property in the absence of a WP
- line.
-- max-frequency: maximum operating clock frequency
-- no-1-8-v: when present, denotes that 1.8v card voltage is not supported on
- this system, even if the controller claims it is.
-- cap-sd-highspeed: SD high-speed timing is supported
-- cap-mmc-highspeed: MMC high-speed timing is supported
-- sd-uhs-sdr12: SD UHS SDR12 speed is supported
-- sd-uhs-sdr25: SD UHS SDR25 speed is supported
-- sd-uhs-sdr50: SD UHS SDR50 speed is supported
-- sd-uhs-sdr104: SD UHS SDR104 speed is supported
-- sd-uhs-ddr50: SD UHS DDR50 speed is supported
-- cap-power-off-card: powering off the card is safe
-- cap-mmc-hw-reset: eMMC hardware reset is supported
-- cap-sdio-irq: enable SDIO IRQ signalling on this interface
-- full-pwr-cycle: full power cycle of the card is supported
-- mmc-ddr-3_3v: eMMC high-speed DDR mode(3.3V I/O) is supported
-- mmc-ddr-1_8v: eMMC high-speed DDR mode(1.8V I/O) is supported
-- mmc-ddr-1_2v: eMMC high-speed DDR mode(1.2V I/O) is supported
-- mmc-hs200-1_8v: eMMC HS200 mode(1.8V I/O) is supported
-- mmc-hs200-1_2v: eMMC HS200 mode(1.2V I/O) is supported
-- mmc-hs400-1_8v: eMMC HS400 mode(1.8V I/O) is supported
-- mmc-hs400-1_2v: eMMC HS400 mode(1.2V I/O) is supported
-- mmc-hs400-enhanced-strobe: eMMC HS400 enhanced strobe mode is supported
-- dsr: Value the card's (optional) Driver Stage Register (DSR) should be
- programmed with. Valid range: [0 .. 0xffff].
-- no-sdio: controller is limited to send sdio cmd during initialization
-- no-sd: controller is limited to send sd cmd during initialization
-- no-mmc: controller is limited to send mmc cmd during initialization
-- fixed-emmc-driver-type: for non-removable eMMC, enforce this driver type.
- The value <n> is the driver type as specified in the eMMC specification
- (table 206 in spec version 5.1).
-- post-power-on-delay-ms : It was invented for MMC pwrseq-simple which could
- be referred to mmc-pwrseq-simple.txt. But now it's reused as a tunable delay
- waiting for I/O signalling and card power supply to be stable, regardless of
- whether pwrseq-simple is used. Default to 10ms if no available.
-- supports-cqe : The presence of this property indicates that the corresponding
- MMC host controller supports HW command queue feature.
-- disable-cqe-dcmd: This property indicates that the MMC controller's command
- queue engine (CQE) does not support direct commands (DCMDs).
-
-*NOTE* on CD and WP polarity. To use common for all SD/MMC host controllers line
-polarity properties, we have to fix the meaning of the "normal" and "inverted"
-line levels. We choose to follow the SDHCI standard, which specifies both those
-lines as "active low." Therefore, using the "cd-inverted" property means, that
-the CD line is active high, i.e. it is high, when a card is inserted. Similar
-logic applies to the "wp-inverted" property.
-
-CD and WP lines can be implemented on the hardware in one of two ways: as GPIOs,
-specified in cd-gpios and wp-gpios properties, or as dedicated pins. Polarity of
-dedicated pins can be specified, using *-inverted properties. GPIO polarity can
-also be specified using the GPIO_ACTIVE_LOW flag. This creates an ambiguity
-in the latter case. We choose to use the XOR logic for GPIO CD and WP lines.
-This means, the two properties are "superimposed," for example leaving the
-GPIO_ACTIVE_LOW flag clear and specifying the respective *-inverted property
-property results in a double-inversion and actually means the "normal" line
-polarity is in effect.
-
-Optional SDIO properties:
-- keep-power-in-suspend: Preserves card power during a suspend/resume cycle
-- wakeup-source: Enables wake up of host system on SDIO IRQ assertion
- (Legacy property supported: "enable-sdio-wakeup")
-
-MMC power
----------
-
-Controllers may implement power control from both the connected cards and
-the IO signaling (for example to change to high-speed 1.8V signalling). If
-the system supports this, then the following two properties should point
-to valid regulator nodes:
-
-- vqmmc-supply: supply node for IO line power
-- vmmc-supply: supply node for card's power
-
-
-MMC power sequences:
---------------------
-
-System on chip designs may specify a specific MMC power sequence. To
-successfully detect an (e)MMC/SD/SDIO card, that power sequence must be
-maintained while initializing the card.
-
-Optional property:
-- mmc-pwrseq: phandle to the MMC power sequence node. See "mmc-pwrseq-*"
- for documentation of MMC power sequence bindings.
-
-
-Use of Function subnodes
-------------------------
-
-On embedded systems the cards connected to a host may need additional
-properties. These can be specified in subnodes to the host controller node.
-The subnodes are identified by the standard 'reg' property.
-Which information exactly can be specified depends on the bindings for the
-SDIO function driver for the subnode, as specified by the compatible string.
-
-Required host node properties when using function subnodes:
-- #address-cells: should be one. The cell is the slot id.
-- #size-cells: should be zero.
-
-Required function subnode properties:
-- reg: Must contain the SDIO function number of the function this subnode
- describes. A value of 0 denotes the memory SD function, values from
- 1 to 7 denote the SDIO functions.
-
-Optional function subnode properties:
-- compatible: name of SDIO function following generic names recommended practice
-
-
-Examples
---------
-
-Basic example:
-
-sdhci@ab000000 {
- compatible = "sdhci";
- reg = <0xab000000 0x200>;
- interrupts = <23>;
- bus-width = <4>;
- cd-gpios = <&gpio 69 0>;
- cd-inverted;
- wp-gpios = <&gpio 70 0>;
- max-frequency = <50000000>;
- keep-power-in-suspend;
- wakeup-source;
- mmc-pwrseq = <&sdhci0_pwrseq>
-}
-
-Example with sdio function subnode:
-
-mmc3: mmc@1c12000 {
- #address-cells = <1>;
- #size-cells = <0>;
-
- pinctrl-names = "default";
- pinctrl-0 = <&mmc3_pins_a>;
- vmmc-supply = <&reg_vmmc3>;
- bus-width = <4>;
- non-removable;
- mmc-pwrseq = <&sdhci0_pwrseq>
-
- brcmf: bcrmf@1 {
- reg = <1>;
- compatible = "brcm,bcm43xx-fmac";
- interrupt-parent = <&pio>;
- interrupts = <10 8>; /* PH10 / EINT10 */
- interrupt-names = "host-wake";
- };
-};
+This file has moved to mmc-controller.yaml.
diff --git a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt b/Documentation/devicetree/bindings/mmc/renesas,sdhi.txt
index 2b4f17ca9087..dd08d038a65c 100644
--- a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt
+++ b/Documentation/devicetree/bindings/mmc/renesas,sdhi.txt
@@ -1,13 +1,4 @@
-* Toshiba Mobile IO SD/MMC controller
-
-The tmio-mmc driver doesn't probe its devices actively, instead its binding to
-devices is managed by either MFD drivers or by the sh_mobile_sdhi platform
-driver. Those drivers supply the tmio-mmc driver with platform data, that either
-describe hardware capabilities, known to them, or are obtained by them from
-their own platform data or from their DT information. In the latter case all
-compulsory and any optional properties, common to all SD/MMC drivers, as
-described in mmc.txt, can be used. Additionally the following tmio_mmc-specific
-optional bindings can be used.
+* Renesas SDHI SD/MMC controller
Required properties:
- compatible: should contain one or more of the following:
diff --git a/Documentation/devicetree/bindings/mmc/sdhci-am654.txt b/Documentation/devicetree/bindings/mmc/sdhci-am654.txt
index 15dbbbace27e..50e87df47971 100644
--- a/Documentation/devicetree/bindings/mmc/sdhci-am654.txt
+++ b/Documentation/devicetree/bindings/mmc/sdhci-am654.txt
@@ -8,7 +8,10 @@ Only deviations are documented here.
[3] Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
Required Properties:
- - compatible: should be "ti,am654-sdhci-5.1"
+ - compatible: should be one of:
+ "ti,am654-sdhci-5.1": SDHCI on AM654 device.
+ "ti,j721e-sdhci-8bit": 8 bit SDHCI on J721E device.
+ "ti,j721e-sdhci-4bit": 4 bit SDHCI on J721E device.
- reg: Must be two entries.
- The first should be the sdhci register space
- The second should the subsystem/phy register space
@@ -16,9 +19,13 @@ Required Properties:
- clock-names: Tuple including "clk_xin" and "clk_ahb"
- interrupts: Interrupt specifiers
- ti,otap-del-sel: Output Tap Delay select
+
+Optional Properties (Required for ti,am654-sdhci-5.1 and ti,j721e-sdhci-8bit):
- ti,trm-icp: DLL trim select
- ti,driver-strength-ohm: driver strength in ohms.
Valid values are 33, 40, 50, 66 and 100 ohms.
+Optional Properties:
+ - ti,strobe-sel: strobe select delay for HS400 speed mode. Default value: 0x0.
Example:
diff --git a/Documentation/devicetree/bindings/mmc/sdhci-sprd.txt b/Documentation/devicetree/bindings/mmc/sdhci-sprd.txt
index 45c9978aad7b..eb7eb1b529f0 100644
--- a/Documentation/devicetree/bindings/mmc/sdhci-sprd.txt
+++ b/Documentation/devicetree/bindings/mmc/sdhci-sprd.txt
@@ -14,10 +14,31 @@ Required properties:
- clock-names: Should contain the following:
"sdio" - SDIO source clock (required)
"enable" - gate clock which used for enabling/disabling the device (required)
+ "2x_enable" - gate clock controlling the device for some special platforms (optional)
Optional properties:
- assigned-clocks: the same with "sdio" clock
- assigned-clock-parents: the default parent of "sdio" clock
+- pinctrl-names: should be "default", "state_uhs"
+- pinctrl-0: should contain default/high speed pin control
+- pinctrl-1: should contain uhs mode pin control
+
+PHY DLL delays are used to delay the data valid window, and align the window
+to sampling clock. PHY DLL delays can be configured by following properties,
+and each property contains 4 cells which are used to configure the clock data
+write line delay value, clock read command line delay value, clock read data
+positive edge delay value and clock read data negative edge delay value.
+Each cell's delay value unit is cycle of the PHY clock.
+
+- sprd,phy-delay-legacy: Delay value for legacy timing.
+- sprd,phy-delay-sd-highspeed: Delay value for SD high-speed timing.
+- sprd,phy-delay-sd-uhs-sdr50: Delay value for SD UHS SDR50 timing.
+- sprd,phy-delay-sd-uhs-sdr104: Delay value for SD UHS SDR50 timing.
+- sprd,phy-delay-mmc-highspeed: Delay value for MMC high-speed timing.
+- sprd,phy-delay-mmc-ddr52: Delay value for MMC DDR52 timing.
+- sprd,phy-delay-mmc-hs200: Delay value for MMC HS200 timing.
+- sprd,phy-delay-mmc-hs400: Delay value for MMC HS400 timing.
+- sprd,phy-delay-mmc-hs400es: Delay value for MMC HS400 enhanced strobe timing.
Examples:
@@ -32,6 +53,11 @@ sdio0: sdio@20600000 {
assigned-clocks = <&ap_clk CLK_EMMC_2X>;
assigned-clock-parents = <&rpll CLK_RPLL_390M>;
+ pinctrl-names = "default", "state_uhs";
+ pinctrl-0 = <&sd0_pins_default>;
+ pinctrl-1 = <&sd0_pins_uhs>;
+
+ sprd,phy-delay-sd-uhs-sdr104 = <0x3f 0x7f 0x2e 0x2e>;
bus-width = <8>;
non-removable;
no-sdio;
diff --git a/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt b/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt
deleted file mode 100644
index e9cb3ec5e502..000000000000
--- a/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt
+++ /dev/null
@@ -1,52 +0,0 @@
-* Allwinner sunxi MMC controller
-
-The highspeed MMC host controller on Allwinner SoCs provides an interface
-for MMC, SD and SDIO types of memory cards.
-
-Supported maximum speeds are the ones of the eMMC standard 4.5 as well
-as the speed of SD standard 3.0.
-Absolute maximum transfer rate is 200MB/s
-
-Required properties:
- - compatible : should be one of:
- * "allwinner,sun4i-a10-mmc"
- * "allwinner,sun5i-a13-mmc"
- * "allwinner,sun7i-a20-mmc"
- * "allwinner,sun8i-a83t-emmc"
- * "allwinner,sun9i-a80-mmc"
- * "allwinner,sun50i-a64-emmc"
- * "allwinner,sun50i-a64-mmc"
- * "allwinner,sun50i-h6-emmc", "allwinner.sun50i-a64-emmc"
- * "allwinner,sun50i-h6-mmc", "allwinner.sun50i-a64-mmc"
- - reg : mmc controller base registers
- - clocks : a list with 4 phandle + clock specifier pairs
- - clock-names : must contain "ahb", "mmc", "output" and "sample"
- - interrupts : mmc controller interrupt
-
-Optional properties:
- - resets : phandle + reset specifier pair
- - reset-names : must contain "ahb"
- - for cd, bus-width and additional generic mmc parameters
- please refer to mmc.txt within this directory
-
-Examples:
- - Within .dtsi:
- mmc0: mmc@1c0f000 {
- compatible = "allwinner,sun5i-a13-mmc";
- reg = <0x01c0f000 0x1000>;
- clocks = <&ahb_gates 8>, <&mmc0_clk>, <&mmc0_output_clk>, <&mmc0_sample_clk>;
- clock-names = "ahb", "mod", "output", "sample";
- interrupts = <0 32 4>;
- status = "disabled";
- };
-
- - Within dts:
- mmc0: mmc@1c0f000 {
- pinctrl-names = "default", "default";
- pinctrl-0 = <&mmc0_pins_a>;
- pinctrl-1 = <&mmc0_cd_pin_reference_design>;
- bus-width = <4>;
- cd-gpios = <&pio 7 1 0>; /* PH1 */
- cd-inverted;
- status = "okay";
- };
diff --git a/Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml b/Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml
index fbd4da3684fc..e5a411518be1 100644
--- a/Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml
+++ b/Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml
@@ -57,7 +57,6 @@ patternProperties:
"^nand@[a-f0-9]+$":
properties:
reg:
- maxItems: 1
minimum: 0
maximum: 7
diff --git a/Documentation/devicetree/bindings/mux/mmio-mux.txt b/Documentation/devicetree/bindings/mux/mmio-mux.txt
deleted file mode 100644
index a9bfb4d8b6ac..000000000000
--- a/Documentation/devicetree/bindings/mux/mmio-mux.txt
+++ /dev/null
@@ -1,60 +0,0 @@
-MMIO register bitfield-based multiplexer controller bindings
-
-Define register bitfields to be used to control multiplexers. The parent
-device tree node must be a syscon node to provide register access.
-
-Required properties:
-- compatible : "mmio-mux"
-- #mux-control-cells : <1>
-- mux-reg-masks : an array of register offset and pre-shifted bitfield mask
- pairs, each describing a single mux control.
-* Standard mux-controller bindings as decribed in mux-controller.txt
-
-Optional properties:
-- idle-states : if present, the state the muxes will have when idle. The
- special state MUX_IDLE_AS_IS is the default.
-
-The multiplexer state of each multiplexer is defined as the value of the
-bitfield described by the corresponding register offset and bitfield mask pair
-in the mux-reg-masks array, accessed through the parent syscon.
-
-Example:
-
- syscon {
- compatible = "syscon";
-
- mux: mux-controller {
- compatible = "mmio-mux";
- #mux-control-cells = <1>;
-
- mux-reg-masks = <0x3 0x30>, /* 0: reg 0x3, bits 5:4 */
- <0x3 0x40>, /* 1: reg 0x3, bit 6 */
- idle-states = <MUX_IDLE_AS_IS>, <0>;
- };
- };
-
- video-mux {
- compatible = "video-mux";
- mux-controls = <&mux 0>;
-
- ports {
- /* inputs 0..3 */
- port@0 {
- reg = <0>;
- };
- port@1 {
- reg = <1>;
- };
- port@2 {
- reg = <2>;
- };
- port@3 {
- reg = <3>;
- };
-
- /* output */
- port@4 {
- reg = <4>;
- };
- };
- };
diff --git a/Documentation/devicetree/bindings/mux/reg-mux.txt b/Documentation/devicetree/bindings/mux/reg-mux.txt
new file mode 100644
index 000000000000..4afd7ba73d60
--- /dev/null
+++ b/Documentation/devicetree/bindings/mux/reg-mux.txt
@@ -0,0 +1,129 @@
+Generic register bitfield-based multiplexer controller bindings
+
+Define register bitfields to be used to control multiplexers. The parent
+device tree node must be a device node to provide register r/w access.
+
+Required properties:
+- compatible : should be one of
+ "reg-mux" : if parent device of mux controller is not syscon device
+ "mmio-mux" : if parent device of mux controller is syscon device
+- #mux-control-cells : <1>
+- mux-reg-masks : an array of register offset and pre-shifted bitfield mask
+ pairs, each describing a single mux control.
+* Standard mux-controller bindings as decribed in mux-controller.txt
+
+Optional properties:
+- idle-states : if present, the state the muxes will have when idle. The
+ special state MUX_IDLE_AS_IS is the default.
+
+The multiplexer state of each multiplexer is defined as the value of the
+bitfield described by the corresponding register offset and bitfield mask
+pair in the mux-reg-masks array.
+
+Example 1:
+The parent device of mux controller is not a syscon device.
+
+&i2c0 {
+ fpga@66 { // fpga connected to i2c
+ compatible = "fsl,lx2160aqds-fpga", "fsl,fpga-qixis-i2c",
+ "simple-mfd";
+ reg = <0x66>;
+
+ mux: mux-controller {
+ compatible = "reg-mux";
+ #mux-control-cells = <1>;
+ mux-reg-masks = <0x54 0xf8>, /* 0: reg 0x54, bits 7:3 */
+ <0x54 0x07>; /* 1: reg 0x54, bits 2:0 */
+ };
+ };
+};
+
+mdio-mux-1 {
+ compatible = "mdio-mux-multiplexer";
+ mux-controls = <&mux 0>;
+ mdio-parent-bus = <&emdio1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ mdio@0 {
+ reg = <0x0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ mdio@8 {
+ reg = <0x8>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ ..
+ ..
+};
+
+mdio-mux-2 {
+ compatible = "mdio-mux-multiplexer";
+ mux-controls = <&mux 1>;
+ mdio-parent-bus = <&emdio2>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ mdio@0 {
+ reg = <0x0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ mdio@1 {
+ reg = <0x1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ ..
+ ..
+};
+
+Example 2:
+The parent device of mux controller is syscon device.
+
+syscon {
+ compatible = "syscon";
+
+ mux: mux-controller {
+ compatible = "mmio-mux";
+ #mux-control-cells = <1>;
+
+ mux-reg-masks = <0x3 0x30>, /* 0: reg 0x3, bits 5:4 */
+ <0x3 0x40>, /* 1: reg 0x3, bit 6 */
+ idle-states = <MUX_IDLE_AS_IS>, <0>;
+ };
+};
+
+video-mux {
+ compatible = "video-mux";
+ mux-controls = <&mux 0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ports {
+ /* inputs 0..3 */
+ port@0 {
+ reg = <0>;
+ };
+ port@1 {
+ reg = <1>;
+ };
+ port@2 {
+ reg = <2>;
+ };
+ port@3 {
+ reg = <3>;
+ };
+
+ /* output */
+ port@4 {
+ reg = <4>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-emac.yaml b/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-emac.yaml
new file mode 100644
index 000000000000..792196bf4abd
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-emac.yaml
@@ -0,0 +1,56 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/allwinner,sun4i-a10-emac.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 EMAC Ethernet Controller Device Tree Bindings
+
+allOf:
+ - $ref: "ethernet-controller.yaml#"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ const: allwinner,sun4i-a10-emac
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ allwinner,sram:
+ description: Phandle to the device SRAM
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - phy-handle
+ - allwinner,sram
+
+examples:
+ - |
+ emac: ethernet@1c0b000 {
+ compatible = "allwinner,sun4i-a10-emac";
+ reg = <0x01c0b000 0x1000>;
+ interrupts = <55>;
+ clocks = <&ahb_gates 17>;
+ phy-handle = <&phy0>;
+ allwinner,sram = <&emac_sram 1>;
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-mdio.yaml b/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-mdio.yaml
new file mode 100644
index 000000000000..df24d9d969f7
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-mdio.yaml
@@ -0,0 +1,70 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/allwinner,sun4i-a10-mdio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 MDIO Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: "mdio.yaml#"
+
+# Select every compatible, including the deprecated ones. This way, we
+# will be able to report a warning when we have that compatible, since
+# we will validate the node thanks to the select, but won't report it
+# as a valid value in the compatible property description
+select:
+ properties:
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-mdio
+
+ # Deprecated
+ - allwinner,sun4i-mdio
+
+ required:
+ - compatible
+
+properties:
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ compatible:
+ const: allwinner,sun4i-a10-mdio
+
+ reg:
+ maxItems: 1
+
+ phy-supply:
+ description: PHY regulator
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ mdio@1c0b080 {
+ compatible = "allwinner,sun4i-a10-mdio";
+ reg = <0x01c0b080 0x14>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ phy-supply = <&reg_emac_3v3>;
+
+ phy0: ethernet-phy@0 {
+ reg = <0>;
+ };
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt b/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt
deleted file mode 100644
index e98118aef5f6..000000000000
--- a/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-* Allwinner EMAC ethernet controller
-
-Required properties:
-- compatible: should be "allwinner,sun4i-a10-emac" (Deprecated:
- "allwinner,sun4i-emac")
-- reg: address and length of the register set for the device.
-- interrupts: interrupt for the device
-- phy: see ethernet.txt file in the same directory.
-- clocks: A phandle to the reference clock for this device
-
-Example:
-
-emac: ethernet@1c0b000 {
- compatible = "allwinner,sun4i-a10-emac";
- reg = <0x01c0b000 0x1000>;
- interrupts = <55>;
- clocks = <&ahb_gates 17>;
- phy = <&phy0>;
-};
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt b/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt
deleted file mode 100644
index ab5b8613b0ef..000000000000
--- a/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-* Allwinner A10 MDIO Ethernet Controller interface
-
-Required properties:
-- compatible: should be "allwinner,sun4i-a10-mdio"
- (Deprecated: "allwinner,sun4i-mdio").
-- reg: address and length of the register set for the device.
-
-Optional properties:
-- phy-supply: phandle to a regulator if the PHY needs one
-
-Example at the SoC level:
-mdio@1c0b080 {
- compatible = "allwinner,sun4i-a10-mdio";
- reg = <0x01c0b080 0x14>;
- #address-cells = <1>;
- #size-cells = <0>;
-};
-
-And at the board level:
-
-mdio@1c0b080 {
- phy-supply = <&reg_emac_3v3>;
-
- phy0: ethernet-phy@0 {
- reg = <0>;
- };
-};
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt b/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt
deleted file mode 100644
index 8b3f953656e3..000000000000
--- a/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-* Allwinner GMAC ethernet controller
-
-This device is a platform glue layer for stmmac.
-Please see stmmac.txt for the other unchanged properties.
-
-Required properties:
- - compatible: Should be "allwinner,sun7i-a20-gmac"
- - clocks: Should contain the GMAC main clock, and tx clock
- The tx clock type should be "allwinner,sun7i-a20-gmac-clk"
- - clock-names: Should contain the clock names "stmmaceth",
- and "allwinner_gmac_tx"
-
-Optional properties:
-- phy-supply: phandle to a regulator if the PHY needs one
-
-Examples:
-
- gmac: ethernet@1c50000 {
- compatible = "allwinner,sun7i-a20-gmac";
- reg = <0x01c50000 0x10000>,
- <0x01c20164 0x4>;
- interrupts = <0 85 1>;
- interrupt-names = "macirq";
- clocks = <&ahb_gates 49>, <&gmac_tx>;
- clock-names = "stmmaceth", "allwinner_gmac_tx";
- phy-mode = "mii";
- };
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.yaml b/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.yaml
new file mode 100644
index 000000000000..06b1cc8bea14
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.yaml
@@ -0,0 +1,65 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/allwinner,sun7i-a20-gmac.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A20 GMAC Device Tree Bindings
+
+allOf:
+ - $ref: "snps,dwmac.yaml#"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ const: allwinner,sun7i-a20-gmac
+
+ interrupts:
+ maxItems: 1
+
+ interrupt-names:
+ const: macirq
+
+ clocks:
+ items:
+ - description: GMAC main clock
+ - description: TX clock
+
+ clock-names:
+ items:
+ - const: stmmaceth
+ - const: allwinner_gmac_tx
+
+ phy-supply:
+ description:
+ PHY regulator
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - clocks
+ - clock-names
+ - phy-mode
+
+examples:
+ - |
+ gmac: ethernet@1c50000 {
+ compatible = "allwinner,sun7i-a20-gmac";
+ reg = <0x01c50000 0x10000>;
+ interrupts = <0 85 1>;
+ interrupt-names = "macirq";
+ clocks = <&ahb_gates 49>, <&gmac_tx>;
+ clock-names = "stmmaceth", "allwinner_gmac_tx";
+ phy-mode = "mii";
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun8i-a83t-emac.yaml b/Documentation/devicetree/bindings/net/allwinner,sun8i-a83t-emac.yaml
new file mode 100644
index 000000000000..d4084c149768
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun8i-a83t-emac.yaml
@@ -0,0 +1,321 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/allwinner,sun8i-a83t-gmac.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A83t EMAC Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun8i-a83t-emac
+ - const: allwinner,sun8i-h3-emac
+ - const: allwinner,sun8i-r40-emac
+ - const: allwinner,sun8i-v3s-emac
+ - const: allwinner,sun50i-a64-emac
+ - items:
+ - const: allwinner,sun50i-h6-emac
+ - const: allwinner,sun50i-a64-emac
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ interrupt-names:
+ const: macirq
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ const: stmmaceth
+
+ syscon:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Phandle to the device containing the EMAC or GMAC clock
+ register
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - phy-handle
+ - phy-mode
+ - syscon
+
+allOf:
+ - $ref: "snps,dwmac.yaml#"
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-a83t-emac
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-v3s-emac
+ - allwinner,sun50i-a64-emac
+
+ then:
+ properties:
+ allwinner,tx-delay-ps:
+ default: 0
+ minimum: 0
+ maximum: 700
+ multipleOf: 100
+ description:
+ External RGMII PHY TX clock delay chain value in ps.
+
+ allwinner,rx-delay-ps:
+ default: 0
+ minimum: 0
+ maximum: 3100
+ multipleOf: 100
+ description:
+ External RGMII PHY TX clock delay chain value in ps.
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-r40-emac
+
+ then:
+ properties:
+ allwinner,rx-delay-ps:
+ default: 0
+ minimum: 0
+ maximum: 700
+ multipleOf: 100
+ description:
+ External RGMII PHY TX clock delay chain value in ps.
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-v3s-emac
+
+ then:
+ properties:
+ allwinner,leds-active-low:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ EPHY LEDs are active low.
+
+ mdio-mux:
+ type: object
+
+ properties:
+ compatible:
+ const: allwinner,sun8i-h3-mdio-mux
+
+ mdio-parent-bus:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Phandle to EMAC MDIO.
+
+ mdio@1:
+ type: object
+ description: Internal MDIO Bus
+
+ properties:
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ compatible:
+ const: allwinner,sun8i-h3-mdio-internal
+
+ reg:
+ const: 1
+
+ patternProperties:
+ "^ethernet-phy@[0-9a-f]$":
+ type: object
+ description:
+ Integrated PHY node
+
+ properties:
+ clocks:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+ required:
+ - clocks
+ - resets
+
+
+ mdio@2:
+ type: object
+ description: External MDIO Bus (H3 only)
+
+ properties:
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ reg:
+ const: 2
+
+ required:
+ - compatible
+ - mdio-parent-bus
+ - mdio@1
+
+examples:
+ - |
+ ethernet@1c0b000 {
+ compatible = "allwinner,sun8i-h3-emac";
+ syscon = <&syscon>;
+ reg = <0x01c0b000 0x104>;
+ interrupts = <0 82 1>;
+ interrupt-names = "macirq";
+ resets = <&ccu 12>;
+ reset-names = "stmmaceth";
+ clocks = <&ccu 27>;
+ clock-names = "stmmaceth";
+
+ phy-handle = <&int_mii_phy>;
+ phy-mode = "mii";
+ allwinner,leds-active-low;
+
+ mdio1: mdio {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "snps,dwmac-mdio";
+ };
+
+ mdio-mux {
+ compatible = "allwinner,sun8i-h3-mdio-mux";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ mdio-parent-bus = <&mdio1>;
+
+ int_mii_phy: mdio@1 {
+ compatible = "allwinner,sun8i-h3-mdio-internal";
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethernet-phy@1 {
+ reg = <1>;
+ clocks = <&ccu 67>;
+ resets = <&ccu 39>;
+ phy-is-integrated;
+ };
+ };
+
+ mdio@2 {
+ reg = <2>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+ };
+ };
+
+ - |
+ ethernet@1c0b000 {
+ compatible = "allwinner,sun8i-h3-emac";
+ syscon = <&syscon>;
+ reg = <0x01c0b000 0x104>;
+ interrupts = <0 82 1>;
+ interrupt-names = "macirq";
+ resets = <&ccu 12>;
+ reset-names = "stmmaceth";
+ clocks = <&ccu 27>;
+ clock-names = "stmmaceth";
+
+ phy-handle = <&ext_rgmii_phy>;
+ phy-mode = "rgmii";
+ allwinner,leds-active-low;
+
+ mdio2: mdio {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "snps,dwmac-mdio";
+ };
+
+ mdio-mux {
+ compatible = "allwinner,sun8i-h3-mdio-mux";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ mdio-parent-bus = <&mdio2>;
+
+ mdio@1 {
+ compatible = "allwinner,sun8i-h3-mdio-internal";
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethernet-phy@1 {
+ reg = <1>;
+ clocks = <&ccu 67>;
+ resets = <&ccu 39>;
+ };
+ };
+
+ mdio@2 {
+ reg = <2>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ext_rgmii_phy: ethernet-phy@1 {
+ reg = <1>;
+ };
+ };
+ };
+ };
+
+ - |
+ ethernet@1c0b000 {
+ compatible = "allwinner,sun8i-a83t-emac";
+ syscon = <&syscon>;
+ reg = <0x01c0b000 0x104>;
+ interrupts = <0 82 1>;
+ interrupt-names = "macirq";
+ resets = <&ccu 13>;
+ reset-names = "stmmaceth";
+ clocks = <&ccu 27>;
+ clock-names = "stmmaceth";
+ phy-handle = <&ext_rgmii_phy1>;
+ phy-mode = "rgmii";
+
+ mdio {
+ compatible = "snps,dwmac-mdio";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ext_rgmii_phy1: ethernet-phy@1 {
+ reg = <1>;
+ };
+ };
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt b/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt
index 188c8bd4eb67..5a0111d4de58 100644
--- a/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt
+++ b/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt
@@ -4,6 +4,7 @@ Required properties:
- compatible: Should be one of the following:
- "microchip,mcp2510" for MCP2510.
- "microchip,mcp2515" for MCP2515.
+ - "microchip,mcp25625" for MCP25625.
- reg: SPI chip select.
- clocks: The clock feeding the CAN controller.
- interrupts: Should contain IRQ line for the CAN controller.
diff --git a/Documentation/devicetree/bindings/net/dsa/ksz.txt b/Documentation/devicetree/bindings/net/dsa/ksz.txt
index e7db7268fd0f..4ac21cef370e 100644
--- a/Documentation/devicetree/bindings/net/dsa/ksz.txt
+++ b/Documentation/devicetree/bindings/net/dsa/ksz.txt
@@ -16,6 +16,8 @@ Required properties:
Optional properties:
- reset-gpios : Should be a gpio specifier for a reset line
+- microchip,synclko-125 : Set if the output SYNCLKO frequency should be set to
+ 125MHz instead of 25MHz.
See Documentation/devicetree/bindings/net/dsa/dsa.txt for a list of additional
required and optional properties.
diff --git a/Documentation/devicetree/bindings/net/dsa/marvell.txt b/Documentation/devicetree/bindings/net/dsa/marvell.txt
index feb007af13cb..6f9538974bb9 100644
--- a/Documentation/devicetree/bindings/net/dsa/marvell.txt
+++ b/Documentation/devicetree/bindings/net/dsa/marvell.txt
@@ -21,10 +21,13 @@ which is at a different MDIO base address in different switch families.
6341, 6350, 6351, 6352
- "marvell,mv88e6190" : Switch has base address 0x00. Use with models:
6190, 6190X, 6191, 6290, 6390, 6390X
+- "marvell,mv88e6250" : Switch has base address 0x08 or 0x18. Use with model:
+ 6250
Required properties:
-- compatible : Should be one of "marvell,mv88e6085" or
- "marvell,mv88e6190" as indicated above
+- compatible : Should be one of "marvell,mv88e6085",
+ "marvell,mv88e6190" or "marvell,mv88e6250" as
+ indicated above
- reg : Address on the MII bus for the switch.
Optional properties:
diff --git a/Documentation/devicetree/bindings/net/dsa/qca8k.txt b/Documentation/devicetree/bindings/net/dsa/qca8k.txt
index 93a7469e70d4..ccbc6d89325d 100644
--- a/Documentation/devicetree/bindings/net/dsa/qca8k.txt
+++ b/Documentation/devicetree/bindings/net/dsa/qca8k.txt
@@ -9,6 +9,10 @@ Required properties:
- #size-cells: must be 0
- #address-cells: must be 1
+Optional properties:
+
+- reset-gpios: GPIO to be used to reset the whole device
+
Subnodes:
The integrated switch subnode should be specified according to the binding
@@ -66,6 +70,7 @@ for the external mdio-bus configuration:
#address-cells = <1>;
#size-cells = <0>;
+ reset-gpios = <&gpio 42 GPIO_ACTIVE_LOW>;
reg = <0x10>;
ports {
@@ -123,6 +128,7 @@ for the internal master mdio-bus configuration:
#address-cells = <1>;
#size-cells = <0>;
+ reset-gpios = <&gpio 42 GPIO_ACTIVE_LOW>;
reg = <0x10>;
ports {
diff --git a/Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt b/Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt
index ed4710c40641..bbf4a13f6d75 100644
--- a/Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt
+++ b/Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt
@@ -2,8 +2,8 @@ Vitesse VSC73xx Switches
========================
This defines device tree bindings for the Vitesse VSC73xx switch chips.
-The Vitesse company has been acquired by Microsemi and Microsemi in turn
-acquired by Microchip but retains this vendor branding.
+The Vitesse company has been acquired by Microsemi and Microsemi has
+been acquired Microchip but retains this vendor branding.
The currently supported switch chips are:
Vitesse VSC7385 SparX-G5 5+1-port Integrated Gigabit Ethernet Switch
@@ -11,8 +11,14 @@ Vitesse VSC7388 SparX-G8 8-port Integrated Gigabit Ethernet Switch
Vitesse VSC7395 SparX-G5e 5+1-port Integrated Gigabit Ethernet Switch
Vitesse VSC7398 SparX-G8e 8-port Integrated Gigabit Ethernet Switch
-The device tree node is an SPI device so it must reside inside a SPI bus
-device tree node, see spi/spi-bus.txt
+This switch could have two different management interface.
+
+If SPI interface is used, the device tree node is an SPI device so it must
+reside inside a SPI bus device tree node, see spi/spi-bus.txt
+
+When the chip is connected to a parallel memory bus and work in memory-mapped
+I/O mode, a platform device is used to represent the vsc73xx. In this case it
+must reside inside a platform bus device tree node.
Required properties:
@@ -38,6 +44,7 @@ and subnodes of DSA switches.
Examples:
+SPI:
switch@0 {
compatible = "vitesse,vsc7395";
reg = <0>;
@@ -79,3 +86,46 @@ switch@0 {
};
};
};
+
+Platform:
+switch@2,0 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "vitesse,vsc7385";
+ reg = <0x2 0x0 0x20000>;
+ reset-gpios = <&gpio0 12 GPIO_ACTIVE_LOW>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+ label = "lan1";
+ };
+ port@1 {
+ reg = <1>;
+ label = "lan2";
+ };
+ port@2 {
+ reg = <2>;
+ label = "lan3";
+ };
+ port@3 {
+ reg = <3>;
+ label = "lan4";
+ };
+ vsc: port@6 {
+ reg = <6>;
+ label = "cpu";
+ ethernet = <&enet0>;
+ phy-mode = "rgmii";
+ fixed-link {
+ speed = <1000>;
+ full-duplex;
+ pause;
+ };
+ };
+ };
+
+};
diff --git a/Documentation/devicetree/bindings/net/dwmac-sun8i.txt b/Documentation/devicetree/bindings/net/dwmac-sun8i.txt
deleted file mode 100644
index 54c66d0611cb..000000000000
--- a/Documentation/devicetree/bindings/net/dwmac-sun8i.txt
+++ /dev/null
@@ -1,201 +0,0 @@
-* Allwinner sun8i GMAC ethernet controller
-
-This device is a platform glue layer for stmmac.
-Please see stmmac.txt for the other unchanged properties.
-
-Required properties:
-- compatible: must be one of the following string:
- "allwinner,sun8i-a83t-emac"
- "allwinner,sun8i-h3-emac"
- "allwinner,sun8i-r40-gmac"
- "allwinner,sun8i-v3s-emac"
- "allwinner,sun50i-a64-emac"
- "allwinner,sun50i-h6-emac", "allwinner-sun50i-a64-emac"
-- reg: address and length of the register for the device.
-- interrupts: interrupt for the device
-- interrupt-names: must be "macirq"
-- clocks: A phandle to the reference clock for this device
-- clock-names: must be "stmmaceth"
-- resets: A phandle to the reset control for this device
-- reset-names: must be "stmmaceth"
-- phy-mode: See ethernet.txt
-- phy-handle: See ethernet.txt
-- syscon: A phandle to the device containing the EMAC or GMAC clock register
-
-Optional properties:
-- allwinner,tx-delay-ps: TX clock delay chain value in ps.
- Range is 0-700. Default is 0.
- Unavailable for allwinner,sun8i-r40-gmac
-- allwinner,rx-delay-ps: RX clock delay chain value in ps.
- Range is 0-3100. Default is 0.
- Range is 0-700 for allwinner,sun8i-r40-gmac
-Both delay properties need to be a multiple of 100. They control the
-clock delay for external RGMII PHY. They do not apply to the internal
-PHY or external non-RGMII PHYs.
-
-Optional properties for the following compatibles:
- - "allwinner,sun8i-h3-emac",
- - "allwinner,sun8i-v3s-emac":
-- allwinner,leds-active-low: EPHY LEDs are active low
-
-Required child node of emac:
-- mdio bus node: should be named mdio with compatible "snps,dwmac-mdio"
-
-Required properties of the mdio node:
-- #address-cells: shall be 1
-- #size-cells: shall be 0
-
-The device node referenced by "phy" or "phy-handle" must be a child node
-of the mdio node. See phy.txt for the generic PHY bindings.
-
-The following compatibles require that the emac node have a mdio-mux child
-node called "mdio-mux":
- - "allwinner,sun8i-h3-emac"
- - "allwinner,sun8i-v3s-emac":
-Required properties for the mdio-mux node:
- - compatible = "allwinner,sun8i-h3-mdio-mux"
- - mdio-parent-bus: a phandle to EMAC mdio
- - one child mdio for the integrated mdio with the compatible
- "allwinner,sun8i-h3-mdio-internal"
- - one child mdio for the external mdio if present (V3s have none)
-Required properties for the mdio-mux children node:
- - reg: 1 for internal MDIO bus, 2 for external MDIO bus
-
-The following compatibles require a PHY node representing the integrated
-PHY, under the integrated MDIO bus node if an mdio-mux node is used:
- - "allwinner,sun8i-h3-emac",
- - "allwinner,sun8i-v3s-emac":
-
-Additional information regarding generic multiplexer properties can be found
-at Documentation/devicetree/bindings/net/mdio-mux.txt
-
-Required properties of the integrated phy node:
-- clocks: a phandle to the reference clock for the EPHY
-- resets: a phandle to the reset control for the EPHY
-- Must be a child of the integrated mdio
-
-Example with integrated PHY:
-emac: ethernet@1c0b000 {
- compatible = "allwinner,sun8i-h3-emac";
- syscon = <&syscon>;
- reg = <0x01c0b000 0x104>;
- interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "macirq";
- resets = <&ccu RST_BUS_EMAC>;
- reset-names = "stmmaceth";
- clocks = <&ccu CLK_BUS_EMAC>;
- clock-names = "stmmaceth";
-
- phy-handle = <&int_mii_phy>;
- phy-mode = "mii";
- allwinner,leds-active-low;
-
- mdio: mdio {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "snps,dwmac-mdio";
- };
-
- mdio-mux {
- compatible = "mdio-mux", "allwinner,sun8i-h3-mdio-mux";
- #address-cells = <1>;
- #size-cells = <0>;
-
- mdio-parent-bus = <&mdio>;
-
- int_mdio: mdio@1 {
- compatible = "allwinner,sun8i-h3-mdio-internal";
- reg = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
- int_mii_phy: ethernet-phy@1 {
- reg = <1>;
- clocks = <&ccu CLK_BUS_EPHY>;
- resets = <&ccu RST_BUS_EPHY>;
- phy-is-integrated;
- };
- };
- ext_mdio: mdio@2 {
- reg = <2>;
- #address-cells = <1>;
- #size-cells = <0>;
- };
- };
-};
-
-Example with external PHY:
-emac: ethernet@1c0b000 {
- compatible = "allwinner,sun8i-h3-emac";
- syscon = <&syscon>;
- reg = <0x01c0b000 0x104>;
- interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "macirq";
- resets = <&ccu RST_BUS_EMAC>;
- reset-names = "stmmaceth";
- clocks = <&ccu CLK_BUS_EMAC>;
- clock-names = "stmmaceth";
-
- phy-handle = <&ext_rgmii_phy>;
- phy-mode = "rgmii";
- allwinner,leds-active-low;
-
- mdio: mdio {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "snps,dwmac-mdio";
- };
-
- mdio-mux {
- compatible = "allwinner,sun8i-h3-mdio-mux";
- #address-cells = <1>;
- #size-cells = <0>;
-
- mdio-parent-bus = <&mdio>;
-
- int_mdio: mdio@1 {
- compatible = "allwinner,sun8i-h3-mdio-internal";
- reg = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
- int_mii_phy: ethernet-phy@1 {
- reg = <1>;
- clocks = <&ccu CLK_BUS_EPHY>;
- resets = <&ccu RST_BUS_EPHY>;
- };
- };
- ext_mdio: mdio@2 {
- reg = <2>;
- #address-cells = <1>;
- #size-cells = <0>;
- ext_rgmii_phy: ethernet-phy@1 {
- reg = <1>;
- };
- }:
- };
-};
-
-Example with SoC without integrated PHY
-
-emac: ethernet@1c0b000 {
- compatible = "allwinner,sun8i-a83t-emac";
- syscon = <&syscon>;
- reg = <0x01c0b000 0x104>;
- interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "macirq";
- resets = <&ccu RST_BUS_EMAC>;
- reset-names = "stmmaceth";
- clocks = <&ccu CLK_BUS_EMAC>;
- clock-names = "stmmaceth";
-
- phy-handle = <&ext_rgmii_phy>;
- phy-mode = "rgmii";
-
- mdio: mdio {
- compatible = "snps,dwmac-mdio";
- #address-cells = <1>;
- #size-cells = <0>;
- ext_rgmii_phy: ethernet-phy@1 {
- reg = <1>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/net/ethernet-controller.yaml b/Documentation/devicetree/bindings/net/ethernet-controller.yaml
new file mode 100644
index 000000000000..0e7c31794ae6
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/ethernet-controller.yaml
@@ -0,0 +1,206 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/ethernet-controller.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Ethernet Controller Generic Binding
+
+maintainers:
+ - David S. Miller <davem@davemloft.net>
+
+properties:
+ $nodename:
+ pattern: "^ethernet(@.*)?$"
+
+ local-mac-address:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint8-array
+ - items:
+ - minItems: 6
+ maxItems: 6
+ description:
+ Specifies the MAC address that was assigned to the network device.
+
+ mac-address:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint8-array
+ - items:
+ - minItems: 6
+ maxItems: 6
+ description:
+ Specifies the MAC address that was last used by the boot
+ program; should be used in cases where the MAC address assigned
+ to the device by the boot program is different from the
+ local-mac-address property.
+
+ max-frame-size:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Maximum transfer unit (IEEE defined MTU), rather than the
+ maximum frame size (there\'s contradiction in the Devicetree
+ Specification).
+
+ max-speed:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Specifies maximum speed in Mbit/s supported by the device.
+
+ nvmem-cells:
+ maxItems: 1
+ description:
+ Reference to an nvmem node for the MAC address
+
+ nvmem-cells-names:
+ const: mac-address
+
+ phy-connection-type:
+ description:
+ Operation mode of the PHY interface
+ enum:
+ # There is not a standard bus between the MAC and the PHY,
+ # something proprietary is being used to embed the PHY in the
+ # MAC.
+ - internal
+ - mii
+ - gmii
+ - sgmii
+ - qsgmii
+ - tbi
+ - rev-mii
+ - rmii
+
+ # RX and TX delays are added by the MAC when required
+ - rgmii
+
+ # RGMII with internal RX and TX delays provided by the PHY,
+ # the MAC should not add the RX or TX delays in this case
+ - rgmii-id
+
+ # RGMII with internal RX delay provided by the PHY, the MAC
+ # should not add an RX delay in this case
+ - rgmii-rxid
+
+ # RGMII with internal TX delay provided by the PHY, the MAC
+ # should not add an TX delay in this case
+ - rgmii-txid
+ - rtbi
+ - smii
+ - xgmii
+ - trgmii
+ - 1000base-x
+ - 2500base-x
+ - rxaui
+ - xaui
+
+ # 10GBASE-KR, XFI, SFI
+ - 10gbase-kr
+ - usxgmii
+
+ phy-mode:
+ $ref: "#/properties/phy-connection-type"
+
+ phy-handle:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Specifies a reference to a node representing a PHY device.
+
+ phy:
+ $ref: "#/properties/phy-handle"
+ deprecated: true
+
+ phy-device:
+ $ref: "#/properties/phy-handle"
+ deprecated: true
+
+ rx-fifo-depth:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ The size of the controller\'s receive fifo in bytes. This is used
+ for components that can have configurable receive fifo sizes,
+ and is useful for determining certain configuration settings
+ such as flow control thresholds.
+
+ tx-fifo-depth:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ The size of the controller\'s transmit fifo in bytes. This
+ is used for components that can have configurable fifo sizes.
+
+ managed:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/string
+ - default: auto
+ enum:
+ - auto
+ - in-band-status
+ description:
+ Specifies the PHY management type. If auto is set and fixed-link
+ is not specified, it uses MDIO for management.
+
+ fixed-link:
+ allOf:
+ - if:
+ type: array
+ then:
+ deprecated: true
+ minItems: 1
+ maxItems: 1
+ items:
+ items:
+ - minimum: 0
+ maximum: 31
+ description:
+ Emulated PHY ID, choose any but unique to the all
+ specified fixed-links
+
+ - enum: [0, 1]
+ description:
+ Duplex configuration. 0 for half duplex or 1 for
+ full duplex
+
+ - enum: [10, 100, 1000]
+ description:
+ Link speed in Mbits/sec.
+
+ - enum: [0, 1]
+ description:
+ Pause configuration. 0 for no pause, 1 for pause
+
+ - enum: [0, 1]
+ description:
+ Asymmetric pause configuration. 0 for no asymmetric
+ pause, 1 for asymmetric pause
+
+
+ - if:
+ type: object
+ then:
+ properties:
+ speed:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32
+ - enum: [10, 100, 1000]
+ description:
+ Link speed.
+
+ full-duplex:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Indicates that full-duplex is used. When absent, half
+ duplex is assumed.
+
+ asym-pause:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Indicates that asym_pause should be enabled.
+
+ link-gpios:
+ maxItems: 1
+ description:
+ GPIO to determine if the link is up
+
+ required:
+ - speed
+
+...
diff --git a/Documentation/devicetree/bindings/net/ethernet-phy.yaml b/Documentation/devicetree/bindings/net/ethernet-phy.yaml
new file mode 100644
index 000000000000..f70f18ff821f
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/ethernet-phy.yaml
@@ -0,0 +1,177 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/ethernet-phy.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Ethernet PHY Generic Binding
+
+maintainers:
+ - Andrew Lunn <andrew@lunn.ch>
+ - Florian Fainelli <f.fainelli@gmail.com>
+ - Heiner Kallweit <hkallweit1@gmail.com>
+
+# The dt-schema tools will generate a select statement first by using
+# the compatible, and second by using the node name if any. In our
+# case, the node name is the one we want to match on, while the
+# compatible is optional.
+select:
+ properties:
+ $nodename:
+ pattern: "^ethernet-phy(@[a-f0-9]+)?$"
+
+ required:
+ - $nodename
+
+properties:
+ $nodename:
+ pattern: "^ethernet-phy(@[a-f0-9]+)?$"
+
+ compatible:
+ oneOf:
+ - const: ethernet-phy-ieee802.3-c22
+ description: PHYs that implement IEEE802.3 clause 22
+ - const: ethernet-phy-ieee802.3-c45
+ description: PHYs that implement IEEE802.3 clause 45
+ - pattern: "^ethernet-phy-id[a-f0-9]{4}\\.[a-f0-9]{4}$"
+ description:
+ If the PHY reports an incorrect ID (or none at all) then the
+ compatible list may contain an entry with the correct PHY ID
+ in the above form.
+ The first group of digits is the 16 bit Phy Identifier 1
+ register, this is the chip vendor OUI bits 3:18. The
+ second group of digits is the Phy Identifier 2 register,
+ this is the chip vendor OUI bits 19:24, followed by 10
+ bits of a vendor specific ID.
+ - items:
+ - pattern: "^ethernet-phy-id[a-f0-9]{4}\\.[a-f0-9]{4}$"
+ - const: ethernet-phy-ieee802.3-c45
+
+ reg:
+ minimum: 0
+ maximum: 31
+ description:
+ The ID number for the PHY.
+
+ interrupts:
+ maxItems: 1
+
+ max-speed:
+ enum:
+ - 10
+ - 100
+ - 1000
+ - 2500
+ - 5000
+ - 10000
+ - 20000
+ - 25000
+ - 40000
+ - 50000
+ - 56000
+ - 100000
+ - 200000
+ description:
+ Maximum PHY supported speed in Mbits / seconds.
+
+ broken-turn-around:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ If set, indicates the PHY device does not correctly release
+ the turn around line low at the end of a MDIO transaction.
+
+ enet-phy-lane-swap:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ If set, indicates the PHY will swap the TX/RX lanes to
+ compensate for the board being designed with the lanes
+ swapped.
+
+ eee-broken-100tx:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-1000t:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-10gt:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-1000kx:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-10gkx4:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-10gkr:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ phy-is-integrated:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ If set, indicates that the PHY is integrated into the same
+ physical package as the Ethernet MAC. If needed, muxers
+ should be configured to ensure the integrated PHY is
+ used. The absence of this property indicates the muxers
+ should be configured so that the external PHY is used.
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ const: phy
+
+ reset-gpios:
+ maxItems: 1
+ description:
+ The GPIO phandle and specifier for the PHY reset signal.
+
+ reset-assert-us:
+ description:
+ Delay after the reset was asserted in microseconds. If this
+ property is missing the delay will be skipped.
+
+ reset-deassert-us:
+ description:
+ Delay after the reset was deasserted in microseconds. If
+ this property is missing the delay will be skipped.
+
+required:
+ - reg
+
+examples:
+ - |
+ ethernet {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethernet-phy@0 {
+ compatible = "ethernet-phy-id0141.0e90", "ethernet-phy-ieee802.3-c45";
+ interrupt-parent = <&PIC>;
+ interrupts = <35 1>;
+ reg = <0>;
+
+ resets = <&rst 8>;
+ reset-names = "phy";
+ reset-gpios = <&gpio1 4 1>;
+ reset-assert-us = <1000>;
+ reset-deassert-us = <2000>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/ethernet.txt b/Documentation/devicetree/bindings/net/ethernet.txt
index e88c3641d613..5df413d01be2 100644
--- a/Documentation/devicetree/bindings/net/ethernet.txt
+++ b/Documentation/devicetree/bindings/net/ethernet.txt
@@ -1,67 +1 @@
-The following properties are common to the Ethernet controllers:
-
-NOTE: All 'phy*' properties documented below are Ethernet specific. For the
-generic PHY 'phys' property, see
-Documentation/devicetree/bindings/phy/phy-bindings.txt.
-
-- mac-address: array of 6 bytes, specifies the MAC address that was last used by
- the boot program; should be used in cases where the MAC address assigned to
- the device by the boot program is different from the "local-mac-address"
- property;
-- local-mac-address: array of 6 bytes, specifies the MAC address that was
- assigned to the network device;
-- nvmem-cells: phandle, reference to an nvmem node for the MAC address
-- nvmem-cell-names: string, should be "mac-address" if nvmem is to be used
-- max-speed: number, specifies maximum speed in Mbit/s supported by the device;
-- max-frame-size: number, maximum transfer unit (IEEE defined MTU), rather than
- the maximum frame size (there's contradiction in the Devicetree
- Specification).
-- phy-mode: string, operation mode of the PHY interface. This is now a de-facto
- standard property; supported values are:
- * "internal" (Internal means there is not a standard bus between the MAC and
- the PHY, something proprietary is being used to embed the PHY in the MAC.)
- * "mii"
- * "gmii"
- * "sgmii"
- * "qsgmii"
- * "tbi"
- * "rev-mii"
- * "rmii"
- * "rgmii" (RX and TX delays are added by the MAC when required)
- * "rgmii-id" (RGMII with internal RX and TX delays provided by the PHY, the
- MAC should not add the RX or TX delays in this case)
- * "rgmii-rxid" (RGMII with internal RX delay provided by the PHY, the MAC
- should not add an RX delay in this case)
- * "rgmii-txid" (RGMII with internal TX delay provided by the PHY, the MAC
- should not add an TX delay in this case)
- * "rtbi"
- * "smii"
- * "xgmii"
- * "trgmii"
- * "1000base-x",
- * "2500base-x",
- * "rxaui"
- * "xaui"
- * "10gbase-kr" (10GBASE-KR, XFI, SFI)
-- phy-connection-type: the same as "phy-mode" property but described in the
- Devicetree Specification;
-- phy-handle: phandle, specifies a reference to a node representing a PHY
- device; this property is described in the Devicetree Specification and so
- preferred;
-- phy: the same as "phy-handle" property, not recommended for new bindings.
-- phy-device: the same as "phy-handle" property, not recommended for new
- bindings.
-- rx-fifo-depth: the size of the controller's receive fifo in bytes. This
- is used for components that can have configurable receive fifo sizes,
- and is useful for determining certain configuration settings such as
- flow control thresholds.
-- tx-fifo-depth: the size of the controller's transmit fifo in bytes. This
- is used for components that can have configurable fifo sizes.
-- managed: string, specifies the PHY management type. Supported values are:
- "auto", "in-band-status". "auto" is the default, it usess MDIO for
- management if fixed-link is not specified.
-
-Child nodes of the Ethernet controller are typically the individual PHY devices
-connected via the MDIO bus (sometimes the MDIO bus controller is separate).
-They are described in the phy.txt file in this same directory.
-For non-MDIO PHY management see fixed-link.txt.
+This file has moved to ethernet-controller.yaml.
diff --git a/Documentation/devicetree/bindings/net/fixed-link.txt b/Documentation/devicetree/bindings/net/fixed-link.txt
index ec5d889fe3d8..5df413d01be2 100644
--- a/Documentation/devicetree/bindings/net/fixed-link.txt
+++ b/Documentation/devicetree/bindings/net/fixed-link.txt
@@ -1,54 +1 @@
-Fixed link Device Tree binding
-------------------------------
-
-Some Ethernet MACs have a "fixed link", and are not connected to a
-normal MDIO-managed PHY device. For those situations, a Device Tree
-binding allows to describe a "fixed link".
-
-Such a fixed link situation is described by creating a 'fixed-link'
-sub-node of the Ethernet MAC device node, with the following
-properties:
-
-* 'speed' (integer, mandatory), to indicate the link speed. Accepted
- values are 10, 100 and 1000
-* 'full-duplex' (boolean, optional), to indicate that full duplex is
- used. When absent, half duplex is assumed.
-* 'pause' (boolean, optional), to indicate that pause should be
- enabled.
-* 'asym-pause' (boolean, optional), to indicate that asym_pause should
- be enabled.
-* 'link-gpios' ('gpio-list', optional), to indicate if a gpio can be read
- to determine if the link is up.
-
-Old, deprecated 'fixed-link' binding:
-
-* A 'fixed-link' property in the Ethernet MAC node, with 5 cells, of the
- form <a b c d e> with the following accepted values:
- - a: emulated PHY ID, choose any but but unique to the all specified
- fixed-links, from 0 to 31
- - b: duplex configuration: 0 for half duplex, 1 for full duplex
- - c: link speed in Mbits/sec, accepted values are: 10, 100 and 1000
- - d: pause configuration: 0 for no pause, 1 for pause
- - e: asymmetric pause configuration: 0 for no asymmetric pause, 1 for
- asymmetric pause
-
-Examples:
-
-ethernet@0 {
- ...
- fixed-link {
- speed = <1000>;
- full-duplex;
- };
- ...
-};
-
-ethernet@1 {
- ...
- fixed-link {
- speed = <1000>;
- pause;
- link-gpios = <&gpio0 12 GPIO_ACTIVE_HIGH>;
- };
- ...
-};
+This file has moved to ethernet-controller.yaml.
diff --git a/Documentation/devicetree/bindings/net/fsl-enetc.txt b/Documentation/devicetree/bindings/net/fsl-enetc.txt
index c812e25ae90f..25fc687419db 100644
--- a/Documentation/devicetree/bindings/net/fsl-enetc.txt
+++ b/Documentation/devicetree/bindings/net/fsl-enetc.txt
@@ -16,8 +16,8 @@ Required properties:
In this case, the ENETC node should include a "mdio" sub-node
that in turn should contain the "ethernet-phy" node describing the
external phy. Below properties are required, their bindings
-already defined in ethernet.txt or phy.txt, under
-Documentation/devicetree/bindings/net/*.
+already defined in Documentation/devicetree/bindings/net/ethernet.txt or
+Documentation/devicetree/bindings/net/phy.txt.
Required:
@@ -51,8 +51,7 @@ Example:
connection:
In this case, the ENETC port node defines a fixed link connection,
-as specified by "fixed-link.txt", under
-Documentation/devicetree/bindings/net/*.
+as specified by Documentation/devicetree/bindings/net/fixed-link.txt.
Required:
diff --git a/Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt b/Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt
index d1df8a00e1f3..464c0dafc617 100644
--- a/Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt
+++ b/Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt
@@ -10,6 +10,7 @@ Required properties:
phandle, specifies a reference to the syscon ppe node
port, port number connected to the controller
channel, recv channel start from channel * number (RX_DESC_NUM)
+ group, field in the pkg desc, in general, it is the same as the port.
- phy-mode: see ethernet.txt [1].
Optional properties:
@@ -66,7 +67,7 @@ Example:
reg = <0x28b0000 0x10000>;
interrupts = <0 413 4>;
phy-mode = "mii";
- port-handle = <&ppe 31 0>;
+ port-handle = <&ppe 31 0 31>;
};
ge0: ethernet@2800000 {
@@ -74,7 +75,7 @@ Example:
reg = <0x2800000 0x10000>;
interrupts = <0 402 4>;
phy-mode = "sgmii";
- port-handle = <&ppe 0 1>;
+ port-handle = <&ppe 0 1 0>;
phy-handle = <&phy0>;
};
@@ -83,6 +84,6 @@ Example:
reg = <0x2880000 0x10000>;
interrupts = <0 410 4>;
phy-mode = "sgmii";
- port-handle = <&ppe 8 2>;
+ port-handle = <&ppe 8 2 8>;
phy-handle = <&phy1>;
};
diff --git a/Documentation/devicetree/bindings/net/keystone-netcp.txt b/Documentation/devicetree/bindings/net/keystone-netcp.txt
index 6262c2f293b0..24f11e042f8d 100644
--- a/Documentation/devicetree/bindings/net/keystone-netcp.txt
+++ b/Documentation/devicetree/bindings/net/keystone-netcp.txt
@@ -104,6 +104,23 @@ Required properties:
- 10Gb mac<->mac forced mode : 11
----phy-handle: phandle to PHY device
+- cpts: sub-node time synchronization (CPTS) submodule configuration
+-- clocks: CPTS reference clock. Should point on cpts-refclk-mux clock.
+-- clock-names: should be "cpts"
+-- cpts-refclk-mux: multiplexer clock definition sub-node for CPTS reference (RFTCLK) clock
+--- #clock-cells: should be 0
+--- clocks: list of CPTS reference (RFTCLK) clock's parents as defined in Data manual
+--- ti,mux-tbl: array of multiplexer indexes as defined in Data manual
+--- assigned-clocks: should point on cpts-refclk-mux clock
+--- assigned-clock-parents: should point on required RFTCLK clock parent to be selected
+-- cpts_clock_mult: (optional) Numerator to convert input clock ticks
+ into nanoseconds
+-- cpts_clock_shift: (optional) Denominator to convert input clock ticks into
+ nanoseconds.
+ Mult and shift will be calculated basing on CPTS
+ rftclk frequency if both cpts_clock_shift and
+ cpts_clock_mult properties are not provided.
+
Optional properties:
- enable-ale: NetCP driver keeps the address learning feature in the ethernet
switch module disabled. This attribute is to enable the address
@@ -168,6 +185,23 @@ netcp: netcp@2000000 {
tx-queue = <648>;
tx-channel = <8>;
+ cpts {
+ clocks = <&cpts_refclk_mux>;
+ clock-names = "cpts";
+
+ cpts_refclk_mux: cpts-refclk-mux {
+ #clock-cells = <0>;
+ clocks = <&chipclk12>, <&chipclk13>,
+ <&timi0>, <&timi1>,
+ <&tsipclka>, <&tsrefclk>,
+ <&tsipclkb>;
+ ti,mux-tbl = <0x0>, <0x1>, <0x2>,
+ <0x3>, <0x4>, <0x8>, <0xC>;
+ assigned-clocks = <&cpts_refclk_mux>;
+ assigned-clock-parents = <&chipclk12>;
+ };
+ };
+
interfaces {
gbe0: interface-0 {
slave-port = <0>;
@@ -219,3 +253,13 @@ netcp: netcp@2000000 {
};
};
};
+
+CPTS board configuration - select external CPTS RFTCLK:
+
+&tsrefclk{
+ clock-frequency = <500000000>;
+};
+
+&cpts_refclk_mux {
+ assigned-clock-parents = <&tsrefclk>;
+};
diff --git a/Documentation/devicetree/bindings/net/macb.txt b/Documentation/devicetree/bindings/net/macb.txt
index 9c5e94482b5f..63c73fafe26d 100644
--- a/Documentation/devicetree/bindings/net/macb.txt
+++ b/Documentation/devicetree/bindings/net/macb.txt
@@ -15,8 +15,11 @@ Required properties:
Use "atmel,sama5d4-gem" for the GEM IP (10/100) available on Atmel sama5d4 SoCs.
Use "cdns,zynq-gem" Xilinx Zynq-7xxx SoC.
Use "cdns,zynqmp-gem" for Zynq Ultrascale+ MPSoC.
+ Use "sifive,fu540-macb" for SiFive FU540-C000 SoC.
Or the generic form: "cdns,emac".
- reg: Address and length of the register set for the device
+ For "sifive,fu540-macb", second range is required to specify the
+ address and length of the registers for GEMGXL Management block.
- interrupts: Should contain macb interrupt
- phy-mode: See ethernet.txt file in the same directory.
- clock-names: Tuple listing input clock names.
diff --git a/Documentation/devicetree/bindings/net/marvell-bluetooth.txt b/Documentation/devicetree/bindings/net/marvell-bluetooth.txt
new file mode 100644
index 000000000000..0e2842296032
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/marvell-bluetooth.txt
@@ -0,0 +1,25 @@
+Marvell Bluetooth Chips
+-----------------------
+
+This documents the binding structure and common properties for serial
+attached Marvell Bluetooth devices. The following chips are included in
+this binding:
+
+* Marvell 88W8897 Bluetooth devices
+
+Required properties:
+ - compatible: should be:
+ "mrvl,88w8897"
+
+Optional properties:
+None so far
+
+Example:
+
+&serial0 {
+ compatible = "ns16550a";
+ ...
+ bluetooth {
+ compatible = "mrvl,88w8897";
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt b/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt
index 42cd81090a2c..3f3cfc1d8d4d 100644
--- a/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt
+++ b/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt
@@ -16,7 +16,7 @@ Required properties:
Optional properties:
- interrupts: interrupt line number for the SMI error/done interrupt
-- clocks: phandle for up to three required clocks for the MDIO instance
+- clocks: phandle for up to four required clocks for the MDIO instance
The child nodes of the MDIO driver are the individual PHY devices
connected to this MDIO bus. They must have a "reg" property given the
diff --git a/Documentation/devicetree/bindings/net/mdio.txt b/Documentation/devicetree/bindings/net/mdio.txt
index e3e1603f256c..cf8a0105488e 100644
--- a/Documentation/devicetree/bindings/net/mdio.txt
+++ b/Documentation/devicetree/bindings/net/mdio.txt
@@ -1,37 +1 @@
-Common MDIO bus properties.
-
-These are generic properties that can apply to any MDIO bus.
-
-Optional properties:
-- reset-gpios: One GPIO that control the RESET lines of all PHYs on that MDIO
- bus.
-- reset-delay-us: RESET pulse width in microseconds.
-
-A list of child nodes, one per device on the bus is expected. These
-should follow the generic phy.txt, or a device specific binding document.
-
-The 'reset-delay-us' indicates the RESET signal pulse width in microseconds and
-applies to all PHY devices. It must therefore be appropriately determined based
-on all PHY requirements (maximum value of all per-PHY RESET pulse widths).
-
-Example :
-This example shows these optional properties, plus other properties
-required for the TI Davinci MDIO driver.
-
- davinci_mdio: ethernet@5c030000 {
- compatible = "ti,davinci_mdio";
- reg = <0x5c030000 0x1000>;
- #address-cells = <1>;
- #size-cells = <0>;
-
- reset-gpios = <&gpio2 5 GPIO_ACTIVE_LOW>;
- reset-delay-us = <2>;
-
- ethphy0: ethernet-phy@1 {
- reg = <1>;
- };
-
- ethphy1: ethernet-phy@3 {
- reg = <3>;
- };
- };
+This file has moved to mdio.yaml.
diff --git a/Documentation/devicetree/bindings/net/mdio.yaml b/Documentation/devicetree/bindings/net/mdio.yaml
new file mode 100644
index 000000000000..5d08d2ffd4eb
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/mdio.yaml
@@ -0,0 +1,74 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/mdio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MDIO Bus Generic Binding
+
+maintainers:
+ - Andrew Lunn <andrew@lunn.ch>
+ - Florian Fainelli <f.fainelli@gmail.com>
+ - Heiner Kallweit <hkallweit1@gmail.com>
+
+description:
+ These are generic properties that can apply to any MDIO bus. Any
+ MDIO bus must have a list of child nodes, one per device on the
+ bus. These should follow the generic ethernet-phy.yaml document, or
+ a device specific binding document.
+
+properties:
+ $nodename:
+ pattern: "^mdio(@.*)?"
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ reset-gpios:
+ maxItems: 1
+ description:
+ The phandle and specifier for the GPIO that controls the RESET
+ lines of all PHYs on that MDIO bus.
+
+ reset-delay-us:
+ description:
+ RESET pulse width in microseconds. It applies to all PHY devices
+ and must therefore be appropriately determined based on all PHY
+ requirements (maximum value of all per-PHY RESET pulse widths).
+
+patternProperties:
+ "^ethernet-phy@[0-9a-f]+$":
+ type: object
+
+ properties:
+ reg:
+ minimum: 0
+ maximum: 31
+ description:
+ The ID number for the PHY.
+
+ required:
+ - reg
+
+examples:
+ - |
+ davinci_mdio: mdio@5c030000 {
+ compatible = "ti,davinci_mdio";
+ reg = <0x5c030000 0x1000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ reset-gpios = <&gpio2 5 1>;
+ reset-delay-us = <2>;
+
+ ethphy0: ethernet-phy@1 {
+ reg = <1>;
+ };
+
+ ethphy1: ethernet-phy@3 {
+ reg = <3>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/mediatek-bluetooth.txt b/Documentation/devicetree/bindings/net/mediatek-bluetooth.txt
index 41a7dcc80f5b..112011c51d5e 100644
--- a/Documentation/devicetree/bindings/net/mediatek-bluetooth.txt
+++ b/Documentation/devicetree/bindings/net/mediatek-bluetooth.txt
@@ -50,16 +50,33 @@ Required properties:
"mediatek,mt7663u-bluetooth": for MT7663U device
"mediatek,mt7668u-bluetooth": for MT7668U device
- vcc-supply: Main voltage regulator
+
+If the pin controller on the platform can support both pinmux and GPIO
+control such as the most of MediaTek platform. Please use below properties.
+
- pinctrl-names: Should be "default", "runtime"
- pinctrl-0: Should contain UART RXD low when the device is powered up to
enter proper bootstrap mode.
- pinctrl-1: Should contain UART mode pin ctrl
+Else, the pin controller on the platform only can support pinmux control and
+the GPIO control still has to rely on the dedicated GPIO controller such as
+a legacy MediaTek SoC, MT7621. Please use the below properties.
+
+- boot-gpios: GPIO same to the pin as UART RXD and used to keep LOW when
+ the device is powered up to enter proper bootstrap mode when
+- pinctrl-names: Should be "default"
+- pinctrl-0: Should contain UART mode pin ctrl
+
Optional properties:
- reset-gpios: GPIO used to reset the device whose initial state keeps low,
if the GPIO is missing, then board-level design should be
guaranteed.
+- clocks: Should be the clock specifiers corresponding to the entry in
+ clock-names property. If the clock is missing, then board-level
+ design should be guaranteed.
+- clock-names: Should contain "osc" entry for the external oscillator.
- current-speed: Current baud rate of the device whose defaults to 921600
Example:
diff --git a/Documentation/devicetree/bindings/net/mediatek-net.txt b/Documentation/devicetree/bindings/net/mediatek-net.txt
index 503f2b9194e2..770ff98d4524 100644
--- a/Documentation/devicetree/bindings/net/mediatek-net.txt
+++ b/Documentation/devicetree/bindings/net/mediatek-net.txt
@@ -11,6 +11,7 @@ Required properties:
"mediatek,mt2701-eth": for MT2701 SoC
"mediatek,mt7623-eth", "mediatek,mt2701-eth": for MT7623 SoC
"mediatek,mt7622-eth": for MT7622 SoC
+ "mediatek,mt7629-eth": for MT7629 SoC
- reg: Address and length of the register set for the device
- interrupts: Should contain the three frame engines interrupts in numeric
order. These are fe_int0, fe_int1 and fe_int2.
@@ -19,14 +20,23 @@ Required properties:
"ethif", "esw", "gp2", "gp1" : For MT2701 and MT7623 SoC
"ethif", "esw", "gp0", "gp1", "gp2", "sgmii_tx250m", "sgmii_rx250m",
"sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii_ck", "eth2pll" : For MT7622 SoC
+ "ethif", "sgmiitop", "esw", "gp0", "gp1", "gp2", "fe", "sgmii_tx250m",
+ "sgmii_rx250m", "sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii2_tx250m",
+ "sgmii2_rx250m", "sgmii2_cdr_ref", "sgmii2_cdr_fb", "sgmii_ck",
+ "eth2pll" : For MT7629 SoC.
- power-domains: phandle to the power domain that the ethernet is part of
- resets: Should contain phandles to the ethsys reset signals
- reset-names: Should contain the names of reset signal listed in the resets
property
These are "fe", "gmac" and "ppe"
- mediatek,ethsys: phandle to the syscon node that handles the port setup
-- mediatek,sgmiisys: phandle to the syscon node that handles the SGMII setup
- which is required for those SoCs equipped with SGMII such as MT7622 SoC.
+- mediatek,infracfg: phandle to the syscon node that handles the path from
+ GMAC to PHY variants, which is required for MT7629 SoC.
+- mediatek,sgmiisys: a list of phandles to the syscon node that handles the
+ SGMII setup which is required for those SoCs equipped with SGMII such
+ as MT7622 and MT7629 SoC. And MT7622 have only one set of SGMII shared
+ by GMAC1 and GMAC2; MT7629 have two independent sets of SGMII directed
+ to GMAC1 and GMAC2, respectively.
- mediatek,pctl: phandle to the syscon node that handles the ports slew rate
and driver current: only for MT2701 and MT7623 SoC
diff --git a/Documentation/devicetree/bindings/net/phy.txt b/Documentation/devicetree/bindings/net/phy.txt
index 9b9e5b1765dd..2399ee60caed 100644
--- a/Documentation/devicetree/bindings/net/phy.txt
+++ b/Documentation/devicetree/bindings/net/phy.txt
@@ -1,79 +1 @@
-PHY nodes
-
-Required properties:
-
- - interrupts : interrupt specifier for the sole interrupt.
- - reg : The ID number for the phy, usually a small integer
-
-Optional Properties:
-
-- compatible: Compatible list, may contain
- "ethernet-phy-ieee802.3-c22" or "ethernet-phy-ieee802.3-c45" for
- PHYs that implement IEEE802.3 clause 22 or IEEE802.3 clause 45
- specifications. If neither of these are specified, the default is to
- assume clause 22.
-
- If the PHY reports an incorrect ID (or none at all) then the
- "compatible" list may contain an entry with the correct PHY ID in the
- form: "ethernet-phy-idAAAA.BBBB" where
- AAAA - The value of the 16 bit Phy Identifier 1 register as
- 4 hex digits. This is the chip vendor OUI bits 3:18
- BBBB - The value of the 16 bit Phy Identifier 2 register as
- 4 hex digits. This is the chip vendor OUI bits 19:24,
- followed by 10 bits of a vendor specific ID.
-
- The compatible list should not contain other values than those
- listed here.
-
-- max-speed: Maximum PHY supported speed (10, 100, 1000...)
-
-- broken-turn-around: If set, indicates the PHY device does not correctly
- release the turn around line low at the end of a MDIO transaction.
-
-- enet-phy-lane-swap: If set, indicates the PHY will swap the TX/RX lanes to
- compensate for the board being designed with the lanes swapped.
-
-- enet-phy-lane-no-swap: If set, indicates that PHY will disable swap of the
- TX/RX lanes. This property allows the PHY to work correcly after e.g. wrong
- bootstrap configuration caused by issues in PCB layout design.
-
-- eee-broken-100tx:
-- eee-broken-1000t:
-- eee-broken-10gt:
-- eee-broken-1000kx:
-- eee-broken-10gkx4:
-- eee-broken-10gkr:
- Mark the corresponding energy efficient ethernet mode as broken and
- request the ethernet to stop advertising it.
-
-- phy-is-integrated: If set, indicates that the PHY is integrated into the same
- physical package as the Ethernet MAC. If needed, muxers should be configured
- to ensure the integrated PHY is used. The absence of this property indicates
- the muxers should be configured so that the external PHY is used.
-
-- resets: The reset-controller phandle and specifier for the PHY reset signal.
-
-- reset-names: Must be "phy" for the PHY reset signal.
-
-- reset-gpios: The GPIO phandle and specifier for the PHY reset signal.
-
-- reset-assert-us: Delay after the reset was asserted in microseconds.
- If this property is missing the delay will be skipped.
-
-- reset-deassert-us: Delay after the reset was deasserted in microseconds.
- If this property is missing the delay will be skipped.
-
-Example:
-
-ethernet-phy@0 {
- compatible = "ethernet-phy-id0141.0e90", "ethernet-phy-ieee802.3-c22";
- interrupt-parent = <&PIC>;
- interrupts = <35 IRQ_TYPE_EDGE_RISING>;
- reg = <0>;
-
- resets = <&rst 8>;
- reset-names = "phy";
- reset-gpios = <&gpio1 4 GPIO_ACTIVE_LOW>;
- reset-assert-us = <1000>;
- reset-deassert-us = <2000>;
-};
+This file has moved to ethernet-phy.yaml.
diff --git a/Documentation/devicetree/bindings/net/qca,ar71xx.txt b/Documentation/devicetree/bindings/net/qca,ar71xx.txt
new file mode 100644
index 000000000000..2a33e71ba72b
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/qca,ar71xx.txt
@@ -0,0 +1,45 @@
+Required properties:
+- compatible: Should be "qca,<soc>-eth". Currently support compatibles are:
+ qca,ar7100-eth - Atheros AR7100
+ qca,ar7240-eth - Atheros AR7240
+ qca,ar7241-eth - Atheros AR7241
+ qca,ar7242-eth - Atheros AR7242
+ qca,ar9130-eth - Atheros AR9130
+ qca,ar9330-eth - Atheros AR9330
+ qca,ar9340-eth - Atheros AR9340
+ qca,qca9530-eth - Qualcomm Atheros QCA9530
+ qca,qca9550-eth - Qualcomm Atheros QCA9550
+ qca,qca9560-eth - Qualcomm Atheros QCA9560
+
+- reg : Address and length of the register set for the device
+- interrupts : Should contain eth interrupt
+- phy-mode : See ethernet.txt file in the same directory
+- clocks: the clock used by the core
+- clock-names: the names of the clock listed in the clocks property. These are
+ "eth" and "mdio".
+- resets: Should contain phandles to the reset signals
+- reset-names: Should contain the names of reset signal listed in the resets
+ property. These are "mac" and "mdio"
+
+Optional properties:
+- phy-handle : phandle to the PHY device connected to this device.
+- fixed-link : Assume a fixed link. See fixed-link.txt in the same directory.
+ Use instead of phy-handle.
+
+Optional subnodes:
+- mdio : specifies the mdio bus, used as a container for phy nodes
+ according to phy.txt in the same directory
+
+Example:
+
+ethernet@1a000000 {
+ compatible = "qca,ar9330-eth";
+ reg = <0x1a000000 0x200>;
+ interrupts = <5>;
+ resets = <&rst 13>, <&rst 23>;
+ reset-names = "mac", "mdio";
+ clocks = <&pll ATH79_CLK_AHB>, <&pll ATH79_CLK_MDIO>;
+ clock-names = "eth", "mdio";
+
+ phy-mode = "gmii";
+};
diff --git a/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt b/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt
index 7ef6118abd3d..68b67d9db63a 100644
--- a/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt
+++ b/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt
@@ -17,6 +17,7 @@ Optional properties for compatible string qcom,qca6174-bt:
- enable-gpios: gpio specifier used to enable chip
- clocks: clock provided to the controller (SUSCLK_32KHZ)
+ - firmware-name: specify the name of nvm firmware to load
Required properties for compatible string qcom,wcn399x-bt:
@@ -28,6 +29,7 @@ Required properties for compatible string qcom,wcn399x-bt:
Optional properties for compatible string qcom,wcn399x-bt:
- max-speed: see Documentation/devicetree/bindings/serial/slave-device.txt
+ - firmware-name: specify the name of nvm firmware to load
Examples:
@@ -40,6 +42,7 @@ serial@7570000 {
enable-gpios = <&pm8994_gpios 19 GPIO_ACTIVE_HIGH>;
clocks = <&divclk4>;
+ firmware-name = "nvm_00440302.bin";
};
};
@@ -52,5 +55,6 @@ serial@898000 {
vddrf-supply = <&vreg_l17a_1p3>;
vddch0-supply = <&vreg_l25a_3p3>;
max-speed = <3200000>;
+ firmware-name = "crnv21.bin";
};
};
diff --git a/Documentation/devicetree/bindings/net/snps,dwmac.yaml b/Documentation/devicetree/bindings/net/snps,dwmac.yaml
new file mode 100644
index 000000000000..76fea2be66ac
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/snps,dwmac.yaml
@@ -0,0 +1,411 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/snps,dwmac.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Synopsys DesignWare MAC Device Tree Bindings
+
+maintainers:
+ - Alexandre Torgue <alexandre.torgue@st.com>
+ - Giuseppe Cavallaro <peppe.cavallaro@st.com>
+ - Jose Abreu <joabreu@synopsys.com>
+
+# Select every compatible, including the deprecated ones. This way, we
+# will be able to report a warning when we have that compatible, since
+# we will validate the node thanks to the select, but won't report it
+# as a valid value in the compatible property description
+select:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - snps,dwmac
+ - snps,dwmac-3.50a
+ - snps,dwmac-3.610
+ - snps,dwmac-3.70a
+ - snps,dwmac-3.710
+ - snps,dwmac-4.00
+ - snps,dwmac-4.10a
+ - snps,dwxgmac
+ - snps,dwxgmac-2.10
+
+ # Deprecated
+ - st,spear600-gmac
+
+ required:
+ - compatible
+
+properties:
+
+ # We need to include all the compatibles from schemas that will
+ # include that schemas, otherwise compatible won't validate for
+ # those.
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun7i-a20-gmac
+ - allwinner,sun8i-a83t-emac
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-r40-emac
+ - allwinner,sun8i-v3s-emac
+ - allwinner,sun50i-a64-emac
+ - snps,dwmac
+ - snps,dwmac-3.50a
+ - snps,dwmac-3.610
+ - snps,dwmac-3.70a
+ - snps,dwmac-3.710
+ - snps,dwmac-4.00
+ - snps,dwmac-4.10a
+ - snps,dwxgmac
+ - snps,dwxgmac-2.10
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ minItems: 1
+ maxItems: 3
+ items:
+ - description: Combined signal for various interrupt events
+ - description: The interrupt to manage the remote wake-up packet detection
+ - description: The interrupt that occurs when Rx exits the LPI state
+
+ interrupt-names:
+ minItems: 1
+ maxItems: 3
+ items:
+ - const: macirq
+ - const: eth_wake_irq
+ - const: eth_lpi
+
+ clocks:
+ minItems: 1
+ maxItems: 3
+ items:
+ - description: GMAC main clock
+ - description: Peripheral registers interface clock
+ - description:
+ PTP reference clock. This clock is used for programming the
+ Timestamp Addend Register. If not passed then the system
+ clock will be used and this is fine on some platforms.
+
+ clock-names:
+ additionalItems: true
+ contains:
+ enum:
+ - stmmaceth
+ - pclk
+ - ptp_ref
+
+ resets:
+ maxItems: 1
+ description:
+ MAC Reset signal.
+
+ reset-names:
+ const: stmmaceth
+
+ snps,axi-config:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ AXI BUS Mode parameters. Phandle to a node that can contain the
+ following properties
+ * snps,lpi_en, enable Low Power Interface
+ * snps,xit_frm, unlock on WoL
+ * snps,wr_osr_lmt, max write outstanding req. limit
+ * snps,rd_osr_lmt, max read outstanding req. limit
+ * snps,kbbe, do not cross 1KiB boundary.
+ * snps,blen, this is a vector of supported burst length.
+ * snps,fb, fixed-burst
+ * snps,mb, mixed-burst
+ * snps,rb, rebuild INCRx Burst
+
+ snps,mtl-rx-config:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Multiple RX Queues parameters. Phandle to a node that can
+ contain the following properties
+ * snps,rx-queues-to-use, number of RX queues to be used in the
+ driver
+ * Choose one of these RX scheduling algorithms
+ * snps,rx-sched-sp, Strict priority
+ * snps,rx-sched-wsp, Weighted Strict priority
+ * For each RX queue
+ * Choose one of these modes
+ * snps,dcb-algorithm, Queue to be enabled as DCB
+ * snps,avb-algorithm, Queue to be enabled as AVB
+ * snps,map-to-dma-channel, Channel to map
+ * Specifiy specific packet routing
+ * snps,route-avcp, AV Untagged Control packets
+ * snps,route-ptp, PTP Packets
+ * snps,route-dcbcp, DCB Control Packets
+ * snps,route-up, Untagged Packets
+ * snps,route-multi-broad, Multicast & Broadcast Packets
+ * snps,priority, RX queue priority (Range 0x0 to 0xF)
+
+ snps,mtl-tx-config:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Multiple TX Queues parameters. Phandle to a node that can
+ contain the following properties
+ * snps,tx-queues-to-use, number of TX queues to be used in the
+ driver
+ * Choose one of these TX scheduling algorithms
+ * snps,tx-sched-wrr, Weighted Round Robin
+ * snps,tx-sched-wfq, Weighted Fair Queuing
+ * snps,tx-sched-dwrr, Deficit Weighted Round Robin
+ * snps,tx-sched-sp, Strict priority
+ * For each TX queue
+ * snps,weight, TX queue weight (if using a DCB weight
+ algorithm)
+ * Choose one of these modes
+ * snps,dcb-algorithm, TX queue will be working in DCB
+ * snps,avb-algorithm, TX queue will be working in AVB
+ [Attention] Queue 0 is reserved for legacy traffic
+ and so no AVB is available in this queue.
+ * Configure Credit Base Shaper (if AVB Mode selected)
+ * snps,send_slope, enable Low Power Interface
+ * snps,idle_slope, unlock on WoL
+ * snps,high_credit, max write outstanding req. limit
+ * snps,low_credit, max read outstanding req. limit
+ * snps,priority, TX queue priority (Range 0x0 to 0xF)
+
+ snps,reset-gpio:
+ deprecated: true
+ maxItems: 1
+ description:
+ PHY Reset GPIO
+
+ snps,reset-active-low:
+ deprecated: true
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Indicates that the PHY Reset is active low
+
+ snps,reset-delays-us:
+ deprecated: true
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32-array
+ - minItems: 3
+ maxItems: 3
+ description:
+ Triplet of delays. The 1st cell is reset pre-delay in micro
+ seconds. The 2nd cell is reset pulse in micro seconds. The 3rd
+ cell is reset post-delay in micro seconds.
+
+ snps,aal:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Use Address-Aligned Beats
+
+ snps,fixed-burst:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Program the DMA to use the fixed burst mode
+
+ snps,mixed-burst:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Program the DMA to use the mixed burst mode
+
+ snps,force_thresh_dma_mode:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Force DMA to use the threshold mode for both tx and rx
+
+ snps,force_sf_dma_mode:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Force DMA to use the Store and Forward mode for both tx and
+ rx. This flag is ignored if force_thresh_dma_mode is set.
+
+ snps,en-tx-lpi-clockgating:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Enable gating of the MAC TX clock during TX low-power mode
+
+ snps,multicast-filter-bins:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Number of multicast filter hash bins supported by this device
+ instance
+
+ snps,perfect-filter-entries:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Number of perfect filter entries supported by this device
+ instance
+
+ snps,ps-speed:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Port selection speed that can be passed to the core when PCS
+ is supported. For example, this is used in case of SGMII and
+ MAC2MAC connection.
+
+ mdio:
+ type: object
+ description:
+ Creates and registers an MDIO bus.
+
+ properties:
+ compatible:
+ const: snps,dwmac-mdio
+
+ required:
+ - compatible
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - phy-mode
+
+dependencies:
+ snps,reset-active-low: ["snps,reset-gpio"]
+ snps,reset-delay-us: ["snps,reset-gpio"]
+
+allOf:
+ - $ref: "ethernet-controller.yaml#"
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun7i-a20-gmac
+ - allwinner,sun8i-a83t-emac
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-r40-emac
+ - allwinner,sun8i-v3s-emac
+ - allwinner,sun50i-a64-emac
+ - snps,dwxgmac
+ - snps,dwxgmac-2.10
+ - st,spear600-gmac
+
+ then:
+ properties:
+ snps,pbl:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32
+ - enum: [2, 4, 8]
+ description:
+ Programmable Burst Length (tx and rx)
+
+ snps,txpbl:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32
+ - enum: [2, 4, 8]
+ description:
+ Tx Programmable Burst Length. If set, DMA tx will use this
+ value rather than snps,pbl.
+
+ snps,rxpbl:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32
+ - enum: [2, 4, 8]
+ description:
+ Rx Programmable Burst Length. If set, DMA rx will use this
+ value rather than snps,pbl.
+
+ snps,no-pbl-x8:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Don\'t multiply the pbl/txpbl/rxpbl values by 8. For core
+ rev < 3.50, don\'t multiply the values by 4.
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun7i-a20-gmac
+ - allwinner,sun8i-a83t-emac
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-r40-emac
+ - allwinner,sun8i-v3s-emac
+ - allwinner,sun50i-a64-emac
+ - snps,dwmac-4.00
+ - snps,dwmac-4.10a
+ - snps,dwxgmac
+ - snps,dwxgmac-2.10
+ - st,spear600-gmac
+
+ then:
+ snps,tso:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Enables the TSO feature otherwise it will be managed by
+ MAC HW capability register.
+
+examples:
+ - |
+ stmmac_axi_setup: stmmac-axi-config {
+ snps,wr_osr_lmt = <0xf>;
+ snps,rd_osr_lmt = <0xf>;
+ snps,blen = <256 128 64 32 0 0 0>;
+ };
+
+ mtl_rx_setup: rx-queues-config {
+ snps,rx-queues-to-use = <1>;
+ snps,rx-sched-sp;
+ queue0 {
+ snps,dcb-algorithm;
+ snps,map-to-dma-channel = <0x0>;
+ snps,priority = <0x0>;
+ };
+ };
+
+ mtl_tx_setup: tx-queues-config {
+ snps,tx-queues-to-use = <2>;
+ snps,tx-sched-wrr;
+ queue0 {
+ snps,weight = <0x10>;
+ snps,dcb-algorithm;
+ snps,priority = <0x0>;
+ };
+
+ queue1 {
+ snps,avb-algorithm;
+ snps,send_slope = <0x1000>;
+ snps,idle_slope = <0x1000>;
+ snps,high_credit = <0x3E800>;
+ snps,low_credit = <0xFFC18000>;
+ snps,priority = <0x1>;
+ };
+ };
+
+ gmac0: ethernet@e0800000 {
+ compatible = "snps,dwxgmac-2.10", "snps,dwxgmac";
+ reg = <0xe0800000 0x8000>;
+ interrupt-parent = <&vic1>;
+ interrupts = <24 23 22>;
+ interrupt-names = "macirq", "eth_wake_irq", "eth_lpi";
+ mac-address = [000000000000]; /* Filled in by U-Boot */
+ max-frame-size = <3800>;
+ phy-mode = "gmii";
+ snps,multicast-filter-bins = <256>;
+ snps,perfect-filter-entries = <128>;
+ rx-fifo-depth = <16384>;
+ tx-fifo-depth = <16384>;
+ clocks = <&clock>;
+ clock-names = "stmmaceth";
+ snps,axi-config = <&stmmac_axi_setup>;
+ snps,mtl-rx-config = <&mtl_rx_setup>;
+ snps,mtl-tx-config = <&mtl_tx_setup>;
+ mdio0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "snps,dwmac-mdio";
+ phy1: ethernet-phy@0 {
+ reg = <0>;
+ };
+ };
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/socfpga-dwmac.txt b/Documentation/devicetree/bindings/net/socfpga-dwmac.txt
index 17d6819669c8..612a8e8abc88 100644
--- a/Documentation/devicetree/bindings/net/socfpga-dwmac.txt
+++ b/Documentation/devicetree/bindings/net/socfpga-dwmac.txt
@@ -6,11 +6,17 @@ present in Documentation/devicetree/bindings/net/stmmac.txt.
The device node has additional properties:
Required properties:
- - compatible : Should contain "altr,socfpga-stmmac" along with
- "snps,dwmac" and any applicable more detailed
+ - compatible : For Cyclone5/Arria5 SoCs it should contain
+ "altr,socfpga-stmmac". For Arria10/Agilex/Stratix10 SoCs
+ "altr,socfpga-stmmac-a10-s10".
+ Along with "snps,dwmac" and any applicable more detailed
designware version numbers documented in stmmac.txt
- altr,sysmgr-syscon : Should be the phandle to the system manager node that
encompasses the glue register, the register offset, and the register shift.
+ On Cyclone5/Arria5, the register shift represents the PHY mode bits, while
+ on the Arria10/Stratix10/Agilex platforms, the register shift represents
+ bit for each emac to enable/disable signals from the FPGA fabric to the
+ EMAC modules.
- altr,f2h_ptp_ref_clk use f2h_ptp_ref_clk instead of default eosc1 clock
for ptp ref clk. This affects all emacs as the clock is common.
diff --git a/Documentation/devicetree/bindings/net/stmmac.txt b/Documentation/devicetree/bindings/net/stmmac.txt
index cb694062afff..7d48782767cb 100644
--- a/Documentation/devicetree/bindings/net/stmmac.txt
+++ b/Documentation/devicetree/bindings/net/stmmac.txt
@@ -1,178 +1 @@
-* STMicroelectronics 10/100/1000/2500/10000 Ethernet (GMAC/XGMAC)
-
-Required properties:
-- compatible: Should be "snps,dwmac-<ip_version>", "snps,dwmac" or
- "snps,dwxgmac-<ip_version>", "snps,dwxgmac".
- For backwards compatibility: "st,spear600-gmac" is also supported.
-- reg: Address and length of the register set for the device
-- interrupts: Should contain the STMMAC interrupts
-- interrupt-names: Should contain a list of interrupt names corresponding to
- the interrupts in the interrupts property, if available.
- Valid interrupt names are:
- - "macirq" (combined signal for various interrupt events)
- - "eth_wake_irq" (the interrupt to manage the remote wake-up packet detection)
- - "eth_lpi" (the interrupt that occurs when Rx exits the LPI state)
-- phy-mode: See ethernet.txt file in the same directory.
-- snps,reset-gpio gpio number for phy reset.
-- snps,reset-active-low boolean flag to indicate if phy reset is active low.
-- snps,reset-delays-us is triplet of delays
- The 1st cell is reset pre-delay in micro seconds.
- The 2nd cell is reset pulse in micro seconds.
- The 3rd cell is reset post-delay in micro seconds.
-
-Optional properties:
-- resets: Should contain a phandle to the STMMAC reset signal, if any
-- reset-names: Should contain the reset signal name "stmmaceth", if a
- reset phandle is given
-- max-frame-size: See ethernet.txt file in the same directory
-- clocks: If present, the first clock should be the GMAC main clock and
- the second clock should be peripheral's register interface clock. Further
- clocks may be specified in derived bindings.
-- clock-names: One name for each entry in the clocks property, the
- first one should be "stmmaceth" and the second one should be "pclk".
-- ptp_ref: this is the PTP reference clock; in case of the PTP is available
- this clock is used for programming the Timestamp Addend Register. If not
- passed then the system clock will be used and this is fine on some
- platforms.
-- tx-fifo-depth: See ethernet.txt file in the same directory
-- rx-fifo-depth: See ethernet.txt file in the same directory
-- snps,pbl Programmable Burst Length (tx and rx)
-- snps,txpbl Tx Programmable Burst Length. Only for GMAC and newer.
- If set, DMA tx will use this value rather than snps,pbl.
-- snps,rxpbl Rx Programmable Burst Length. Only for GMAC and newer.
- If set, DMA rx will use this value rather than snps,pbl.
-- snps,no-pbl-x8 Don't multiply the pbl/txpbl/rxpbl values by 8.
- For core rev < 3.50, don't multiply the values by 4.
-- snps,aal Address-Aligned Beats
-- snps,fixed-burst Program the DMA to use the fixed burst mode
-- snps,mixed-burst Program the DMA to use the mixed burst mode
-- snps,force_thresh_dma_mode Force DMA to use the threshold mode for
- both tx and rx
-- snps,force_sf_dma_mode Force DMA to use the Store and Forward
- mode for both tx and rx. This flag is
- ignored if force_thresh_dma_mode is set.
-- snps,en-tx-lpi-clockgating Enable gating of the MAC TX clock during
- TX low-power mode
-- snps,multicast-filter-bins: Number of multicast filter hash bins
- supported by this device instance
-- snps,perfect-filter-entries: Number of perfect filter entries supported
- by this device instance
-- snps,ps-speed: port selection speed that can be passed to the core when
- PCS is supported. For example, this is used in case of SGMII
- and MAC2MAC connection.
-- snps,tso: this enables the TSO feature otherwise it will be managed by
- MAC HW capability register. Only for GMAC4 and newer.
-- AXI BUS Mode parameters: below the list of all the parameters to program the
- AXI register inside the DMA module:
- - snps,lpi_en: enable Low Power Interface
- - snps,xit_frm: unlock on WoL
- - snps,wr_osr_lmt: max write outstanding req. limit
- - snps,rd_osr_lmt: max read outstanding req. limit
- - snps,kbbe: do not cross 1KiB boundary.
- - snps,blen: this is a vector of supported burst length.
- - snps,fb: fixed-burst
- - snps,mb: mixed-burst
- - snps,rb: rebuild INCRx Burst
-- mdio: with compatible = "snps,dwmac-mdio", create and register mdio bus.
-- Multiple RX Queues parameters: below the list of all the parameters to
- configure the multiple RX queues:
- - snps,rx-queues-to-use: number of RX queues to be used in the driver
- - Choose one of these RX scheduling algorithms:
- - snps,rx-sched-sp: Strict priority
- - snps,rx-sched-wsp: Weighted Strict priority
- - For each RX queue
- - Choose one of these modes:
- - snps,dcb-algorithm: Queue to be enabled as DCB
- - snps,avb-algorithm: Queue to be enabled as AVB
- - snps,map-to-dma-channel: Channel to map
- - Specifiy specific packet routing:
- - snps,route-avcp: AV Untagged Control packets
- - snps,route-ptp: PTP Packets
- - snps,route-dcbcp: DCB Control Packets
- - snps,route-up: Untagged Packets
- - snps,route-multi-broad: Multicast & Broadcast Packets
- - snps,priority: RX queue priority (Range: 0x0 to 0xF)
-- Multiple TX Queues parameters: below the list of all the parameters to
- configure the multiple TX queues:
- - snps,tx-queues-to-use: number of TX queues to be used in the driver
- - Choose one of these TX scheduling algorithms:
- - snps,tx-sched-wrr: Weighted Round Robin
- - snps,tx-sched-wfq: Weighted Fair Queuing
- - snps,tx-sched-dwrr: Deficit Weighted Round Robin
- - snps,tx-sched-sp: Strict priority
- - For each TX queue
- - snps,weight: TX queue weight (if using a DCB weight algorithm)
- - Choose one of these modes:
- - snps,dcb-algorithm: TX queue will be working in DCB
- - snps,avb-algorithm: TX queue will be working in AVB
- [Attention] Queue 0 is reserved for legacy traffic
- and so no AVB is available in this queue.
- - Configure Credit Base Shaper (if AVB Mode selected):
- - snps,send_slope: enable Low Power Interface
- - snps,idle_slope: unlock on WoL
- - snps,high_credit: max write outstanding req. limit
- - snps,low_credit: max read outstanding req. limit
- - snps,priority: TX queue priority (Range: 0x0 to 0xF)
-Examples:
-
- stmmac_axi_setup: stmmac-axi-config {
- snps,wr_osr_lmt = <0xf>;
- snps,rd_osr_lmt = <0xf>;
- snps,blen = <256 128 64 32 0 0 0>;
- };
-
- mtl_rx_setup: rx-queues-config {
- snps,rx-queues-to-use = <1>;
- snps,rx-sched-sp;
- queue0 {
- snps,dcb-algorithm;
- snps,map-to-dma-channel = <0x0>;
- snps,priority = <0x0>;
- };
- };
-
- mtl_tx_setup: tx-queues-config {
- snps,tx-queues-to-use = <2>;
- snps,tx-sched-wrr;
- queue0 {
- snps,weight = <0x10>;
- snps,dcb-algorithm;
- snps,priority = <0x0>;
- };
-
- queue1 {
- snps,avb-algorithm;
- snps,send_slope = <0x1000>;
- snps,idle_slope = <0x1000>;
- snps,high_credit = <0x3E800>;
- snps,low_credit = <0xFFC18000>;
- snps,priority = <0x1>;
- };
- };
-
- gmac0: ethernet@e0800000 {
- compatible = "st,spear600-gmac";
- reg = <0xe0800000 0x8000>;
- interrupt-parent = <&vic1>;
- interrupts = <24 23 22>;
- interrupt-names = "macirq", "eth_wake_irq", "eth_lpi";
- mac-address = [000000000000]; /* Filled in by U-Boot */
- max-frame-size = <3800>;
- phy-mode = "gmii";
- snps,multicast-filter-bins = <256>;
- snps,perfect-filter-entries = <128>;
- rx-fifo-depth = <16384>;
- tx-fifo-depth = <16384>;
- clocks = <&clock>;
- clock-names = "stmmaceth";
- snps,axi-config = <&stmmac_axi_setup>;
- mdio0 {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "snps,dwmac-mdio";
- phy1: ethernet-phy@0 {
- };
- };
- snps,mtl-rx-config = <&mtl_rx_setup>;
- snps,mtl-tx-config = <&mtl_tx_setup>;
- };
+This file has moved to snps,dwmac.yaml.
diff --git a/Documentation/devicetree/bindings/net/ti,dp83867.txt b/Documentation/devicetree/bindings/net/ti,dp83867.txt
index 9ef9338aaee1..db6aa3f2215b 100644
--- a/Documentation/devicetree/bindings/net/ti,dp83867.txt
+++ b/Documentation/devicetree/bindings/net/ti,dp83867.txt
@@ -11,6 +11,14 @@ Required properties:
- ti,fifo-depth - Transmitt FIFO depth- see dt-bindings/net/ti-dp83867.h
for applicable values
+Note: If the interface type is PHY_INTERFACE_MODE_RGMII the TX/RX clock delays
+ will be left at their default values, as set by the PHY's pin strapping.
+ The default strapping will use a delay of 2.00 ns. Thus
+ PHY_INTERFACE_MODE_RGMII, by default, does not behave as RGMII with no
+ internal delay, but as PHY_INTERFACE_MODE_RGMII_ID. The device tree
+ should use "rgmii-id" if internal delays are desired as this may be
+ changed in future to cause "rgmii" mode to disable delays.
+
Optional property:
- ti,min-output-impedance - MAC Interface Impedance control to set
the programmable output impedance to
@@ -25,8 +33,10 @@ Optional property:
software needs to take when this pin is
strapped in these modes. See data manual
for details.
- - ti,clk-output-sel - Muxing option for CLK_OUT pin - see dt-bindings/net/ti-dp83867.h
- for applicable values.
+ - ti,clk-output-sel - Muxing option for CLK_OUT pin. See dt-bindings/net/ti-dp83867.h
+ for applicable values. The CLK_OUT pin can also
+ be disabled by this property. When omitted, the
+ PHY's default will be left as is.
Note: ti,min-output-impedance and ti,max-output-impedance are mutually
exclusive. When both properties are present ti,max-output-impedance
diff --git a/Documentation/devicetree/bindings/net/wiznet,w5x00.txt b/Documentation/devicetree/bindings/net/wiznet,w5x00.txt
new file mode 100644
index 000000000000..e9665798c4be
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/wiznet,w5x00.txt
@@ -0,0 +1,50 @@
+* Wiznet w5x00
+
+This is a standalone 10/100 MBit Ethernet controller with SPI interface.
+
+For each device connected to a SPI bus, define a child node within
+the SPI master node.
+
+Required properties:
+- compatible: Should be one of the following strings:
+ "wiznet,w5100"
+ "wiznet,w5200"
+ "wiznet,w5500"
+- reg: Specify the SPI chip select the chip is wired to.
+- interrupts: Specify the interrupt index within the interrupt controller (referred
+ to above in interrupt-parent) and interrupt type. w5x00 natively
+ generates falling edge interrupts, however, additional board logic
+ might invert the signal.
+- pinctrl-names: List of assigned state names, see pinctrl binding documentation.
+- pinctrl-0: List of phandles to configure the GPIO pin used as interrupt line,
+ see also generic and your platform specific pinctrl binding
+ documentation.
+
+Optional properties:
+- spi-max-frequency: Maximum frequency of the SPI bus when accessing the w5500.
+ According to the w5500 datasheet, the chip allows a maximum of 80 MHz, however,
+ board designs may need to limit this value.
+- local-mac-address: See ethernet.txt in the same directory.
+
+
+Example (for Raspberry Pi with pin control stuff for GPIO irq):
+
+&spi {
+ ethernet@0: w5500@0 {
+ compatible = "wiznet,w5500";
+ reg = <0>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&eth1_pins>;
+ interrupt-parent = <&gpio>;
+ interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
+ spi-max-frequency = <30000000>;
+ };
+};
+
+&gpio {
+ eth1_pins: eth1_pins {
+ brcm,pins = <25>;
+ brcm,function = <0>; /* in */
+ brcm,pull = <0>; /* none */
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/xilinx_axienet.txt b/Documentation/devicetree/bindings/net/xilinx_axienet.txt
index 38f9ec076743..7360617cdedb 100644
--- a/Documentation/devicetree/bindings/net/xilinx_axienet.txt
+++ b/Documentation/devicetree/bindings/net/xilinx_axienet.txt
@@ -17,8 +17,15 @@ For more details about mdio please refer phy.txt file in the same directory.
Required properties:
- compatible : Must be one of "xlnx,axi-ethernet-1.00.a",
"xlnx,axi-ethernet-1.01.a", "xlnx,axi-ethernet-2.01.a"
-- reg : Address and length of the IO space.
-- interrupts : Should be a list of two interrupt, TX and RX.
+- reg : Address and length of the IO space, as well as the address
+ and length of the AXI DMA controller IO space, unless
+ axistream-connected is specified, in which case the reg
+ attribute of the node referenced by it is used.
+- interrupts : Should be a list of 2 or 3 interrupts: TX DMA, RX DMA,
+ and optionally Ethernet core. If axistream-connected is
+ specified, the TX/RX DMA interrupts should be on that node
+ instead, and only the Ethernet core interrupt is optionally
+ specified here.
- phy-handle : Should point to the external phy device.
See ethernet.txt file in the same directory.
- xlnx,rxmem : Set to allocated memory buffer for Rx/Tx in the hardware
@@ -31,15 +38,29 @@ Optional properties:
1 to enable partial TX checksum offload,
2 to enable full TX checksum offload
- xlnx,rxcsum : Same values as xlnx,txcsum but for RX checksum offload
+- clocks : AXI bus clock for the device. Refer to common clock bindings.
+ Used to calculate MDIO clock divisor. If not specified, it is
+ auto-detected from the CPU clock (but only on platforms where
+ this is possible). New device trees should specify this - the
+ auto detection is only for backward compatibility.
+- axistream-connected: Reference to another node which contains the resources
+ for the AXI DMA controller used by this device.
+ If this is specified, the DMA-related resources from that
+ device (DMA registers and DMA TX/RX interrupts) rather
+ than this one will be used.
+ - mdio : Child node for MDIO bus. Must be defined if PHY access is
+ required through the core's MDIO interface (i.e. always,
+ unless the PHY is accessed through a different bus).
Example:
axi_ethernet_eth: ethernet@40c00000 {
compatible = "xlnx,axi-ethernet-1.00.a";
device_type = "network";
interrupt-parent = <&microblaze_0_axi_intc>;
- interrupts = <2 0>;
+ interrupts = <2 0 1>;
+ clocks = <&axi_clk>;
phy-mode = "mii";
- reg = <0x40c00000 0x40000>;
+ reg = <0x40c00000 0x40000 0x50c00000 0x40000>;
xlnx,rxcsum = <0x2>;
xlnx,rxmem = <0x800>;
xlnx,txcsum = <0x2>;
diff --git a/Documentation/devicetree/bindings/nvmem/allwinner,sun4i-a10-sid.yaml b/Documentation/devicetree/bindings/nvmem/allwinner,sun4i-a10-sid.yaml
new file mode 100644
index 000000000000..c9efd6e2c134
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvmem/allwinner,sun4i-a10-sid.yaml
@@ -0,0 +1,51 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/nvmem/allwinner,sun4i-a10-sid.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 Security ID Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: "nvmem.yaml#"
+
+properties:
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-sid
+ - allwinner,sun7i-a20-sid
+ - allwinner,sun8i-a83t-sid
+ - allwinner,sun8i-h3-sid
+ - allwinner,sun50i-a64-sid
+ - allwinner,sun50i-h5-sid
+ - allwinner,sun50i-h6-sid
+
+ reg:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+examples:
+ - |
+ sid@1c23800 {
+ compatible = "allwinner,sun4i-a10-sid";
+ reg = <0x01c23800 0x10>;
+ };
+
+ - |
+ sid@1c23800 {
+ compatible = "allwinner,sun7i-a20-sid";
+ reg = <0x01c23800 0x200>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt b/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
deleted file mode 100644
index cfb18b4ef8f7..000000000000
--- a/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
+++ /dev/null
@@ -1,29 +0,0 @@
-Allwinner sunxi-sid
-
-Required properties:
-- compatible: Should be one of the following:
- "allwinner,sun4i-a10-sid"
- "allwinner,sun7i-a20-sid"
- "allwinner,sun8i-a83t-sid"
- "allwinner,sun8i-h3-sid"
- "allwinner,sun50i-a64-sid"
- "allwinner,sun50i-h5-sid"
- "allwinner,sun50i-h6-sid"
-
-- reg: Should contain registers location and length
-
-= Data cells =
-Are child nodes of sunxi-sid, bindings of which as described in
-bindings/nvmem/nvmem.txt
-
-Example for sun4i:
- sid@1c23800 {
- compatible = "allwinner,sun4i-a10-sid";
- reg = <0x01c23800 0x10>
- };
-
-Example for sun7i:
- sid@1c23800 {
- compatible = "allwinner,sun7i-a20-sid";
- reg = <0x01c23800 0x200>
- };
diff --git a/Documentation/devicetree/bindings/nvmem/imx-ocotp.txt b/Documentation/devicetree/bindings/nvmem/imx-ocotp.txt
index 68f7d6fdd140..96ffd06d2ca8 100644
--- a/Documentation/devicetree/bindings/nvmem/imx-ocotp.txt
+++ b/Documentation/devicetree/bindings/nvmem/imx-ocotp.txt
@@ -15,6 +15,7 @@ Required properties:
"fsl,imx6sll-ocotp" (i.MX6SLL),
"fsl,imx7ulp-ocotp" (i.MX7ULP),
"fsl,imx8mq-ocotp" (i.MX8MQ),
+ "fsl,imx8mm-ocotp" (i.MX8MM),
followed by "syscon".
- #address-cells : Should be 1
- #size-cells : Should be 1
diff --git a/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt b/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt
index b9165b72473c..3abeecf4983f 100644
--- a/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt
+++ b/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt
@@ -9,7 +9,6 @@ Freescale 83xx and 512x SOCs include the same PCI bridge core.
Example (MPC8313ERDB)
pci0: pci@e0008500 {
- cell-index = <1>;
interrupt-map-mask = <0xf800 0x0 0x0 0x7>;
interrupt-map = <
/* IDSEL 0x0E -mini PCI */
diff --git a/Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt b/Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt
index 12b18f82d441..efa2c8b9b85a 100644
--- a/Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt
@@ -3,7 +3,7 @@ Amlogic Meson AXG DWC PCIE SoC controller
Amlogic Meson PCIe host controller is based on the Synopsys DesignWare PCI core.
It shares common functions with the PCIe DesignWare core driver and
inherits common properties defined in
-Documentation/devicetree/bindings/pci/designware-pci.txt.
+Documentation/devicetree/bindings/pci/designware-pcie.txt.
Additional properties are described here:
diff --git a/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt b/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt
new file mode 100644
index 000000000000..d77e3f26f9e6
--- /dev/null
+++ b/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt
@@ -0,0 +1,21 @@
+* Freescale(NXP) IMX8 DDR performance monitor
+
+Required properties:
+
+- compatible: should be one of:
+ "fsl,imx8-ddr-pmu"
+ "fsl,imx8m-ddr-pmu"
+
+- reg: physical address and size
+
+- interrupts: single interrupt
+ generated by the control block
+
+Example:
+
+ ddr-pmu@5c020000 {
+ compatible = "fsl,imx8-ddr-pmu";
+ reg = <0x5c020000 0x10000>;
+ interrupt-parent = <&gic>;
+ interrupts = <GIC_SPI 131 IRQ_TYPE_LEVEL_HIGH>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/mixel,mipi-dsi-phy.txt b/Documentation/devicetree/bindings/phy/mixel,mipi-dsi-phy.txt
new file mode 100644
index 000000000000..9b23407233c0
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/mixel,mipi-dsi-phy.txt
@@ -0,0 +1,29 @@
+Mixel DSI PHY for i.MX8
+
+The Mixel MIPI-DSI PHY IP block is e.g. found on i.MX8 platforms (along the
+MIPI-DSI IP from Northwest Logic). It represents the physical layer for the
+electrical signals for DSI.
+
+Required properties:
+- compatible: Must be:
+ - "fsl,imx8mq-mipi-dphy"
+- clocks: Must contain an entry for each entry in clock-names.
+- clock-names: Must contain the following entries:
+ - "phy_ref": phandle and specifier referring to the DPHY ref clock
+- reg: the register range of the PHY controller
+- #phy-cells: number of cells in PHY, as defined in
+ Documentation/devicetree/bindings/phy/phy-bindings.txt
+ this must be <0>
+
+Optional properties:
+- power-domains: phandle to power domain
+
+Example:
+ dphy: dphy@30a0030 {
+ compatible = "fsl,imx8mq-mipi-dphy";
+ clocks = <&clk IMX8MQ_CLK_DSI_PHY_REF>;
+ clock-names = "phy_ref";
+ reg = <0x30a00300 0x100>;
+ power-domains = <&pd_mipi0>;
+ #phy-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/mxs-usb-phy.txt b/Documentation/devicetree/bindings/phy/mxs-usb-phy.txt
index 6ac98b3b5f57..c9f5c0caf8a9 100644
--- a/Documentation/devicetree/bindings/phy/mxs-usb-phy.txt
+++ b/Documentation/devicetree/bindings/phy/mxs-usb-phy.txt
@@ -7,6 +7,7 @@ Required properties:
* "fsl,imx6sl-usbphy" for imx6sl
* "fsl,vf610-usbphy" for Vybrid vf610
* "fsl,imx6sx-usbphy" for imx6sx
+ * "fsl,imx7ulp-usbphy" for imx7ulp
"fsl,imx23-usbphy" is still a fallback for other strings
- reg: Should contain registers location and length
- interrupts: Should contain phy interrupt
@@ -23,7 +24,7 @@ Optional properties:
the 17.78mA TX reference current. Default: 100
Example:
-usbphy1: usbphy@20c9000 {
+usbphy1: usb-phy@20c9000 {
compatible = "fsl,imx6q-usbphy", "fsl,imx23-usbphy";
reg = <0x020c9000 0x1000>;
interrupts = <0 44 0x04>;
diff --git a/Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt b/Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt
index daedb15f322e..9fb682e47c29 100644
--- a/Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt
+++ b/Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt
@@ -42,6 +42,18 @@ Required properties:
- reset-names: Must include the following entries:
- "padctl"
+For Tegra124:
+- avdd-pll-utmip-supply: UTMI PLL power supply. Must supply 1.8 V.
+- avdd-pll-erefe-supply: PLLE reference PLL power supply. Must supply 1.05 V.
+- avdd-pex-pll-supply: PCIe/USB3 PLL power supply. Must supply 1.05 V.
+- hvdd-pex-pll-e-supply: High-voltage PLLE power supply. Must supply 3.3 V.
+
+For Tegra210:
+- avdd-pll-utmip-supply: UTMI PLL power supply. Must supply 1.8 V.
+- avdd-pll-uerefe-supply: PLLE reference PLL power supply. Must supply 1.05 V.
+- dvdd-pex-pll-supply: PCIe/USB3 PLL power supply. Must supply 1.05 V.
+- hvdd-pex-pll-e-supply: High-voltage PLLE power supply. Must supply 1.8 V.
+
For Tegra186:
- avdd-pll-erefeut-supply: UPHY brick and reference clock as well as UTMI PHY
power supply. Must supply 1.8 V.
diff --git a/Documentation/devicetree/bindings/phy/phy-pxa-usb.txt b/Documentation/devicetree/bindings/phy/phy-pxa-usb.txt
new file mode 100644
index 000000000000..93fc09c12954
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/phy-pxa-usb.txt
@@ -0,0 +1,18 @@
+Marvell PXA USB PHY
+-------------------
+
+Required properties:
+- compatible: one of: "marvell,mmp2-usb-phy", "marvell,pxa910-usb-phy",
+ "marvell,pxa168-usb-phy",
+- #phy-cells: must be 0
+
+Example:
+ usb-phy: usbphy@d4207000 {
+ compatible = "marvell,mmp2-usb-phy";
+ reg = <0xd4207000 0x40>;
+ #phy-cells = <0>;
+ status = "okay";
+ };
+
+This document explains the device tree binding. For general
+information about PHY subsystem refer to Documentation/phy.txt
diff --git a/Documentation/devicetree/bindings/phy/qcom-pcie2-phy.txt b/Documentation/devicetree/bindings/phy/qcom-pcie2-phy.txt
new file mode 100644
index 000000000000..30064253f290
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/qcom-pcie2-phy.txt
@@ -0,0 +1,42 @@
+Qualcomm PCIe2 PHY controller
+=============================
+
+The Qualcomm PCIe2 PHY is a Synopsys based phy found in a number of Qualcomm
+platforms.
+
+Required properties:
+ - compatible: compatible list, should be:
+ "qcom,qcs404-pcie2-phy", "qcom,pcie2-phy"
+
+ - reg: offset and length of the PHY register set.
+ - #phy-cells: must be 0.
+
+ - clocks: a clock-specifier pair for the "pipe" clock
+
+ - vdda-vp-supply: phandle to low voltage regulator
+ - vdda-vph-supply: phandle to high voltage regulator
+
+ - resets: reset-specifier pairs for the "phy" and "pipe" resets
+ - reset-names: list of resets, should contain:
+ "phy" and "pipe"
+
+ - clock-output-names: name of the outgoing clock signal from the PHY PLL
+ - #clock-cells: must be 0
+
+Example:
+ phy@7786000 {
+ compatible = "qcom,qcs404-pcie2-phy", "qcom,pcie2-phy";
+ reg = <0x07786000 0xb8>;
+
+ clocks = <&gcc GCC_PCIE_0_PIPE_CLK>;
+ resets = <&gcc GCC_PCIEPHY_0_PHY_BCR>,
+ <&gcc GCC_PCIE_0_PIPE_ARES>;
+ reset-names = "phy", "pipe";
+
+ vdda-vp-supply = <&vreg_l3_1p05>;
+ vdda-vph-supply = <&vreg_l5_1p8>;
+
+ clock-output-names = "pcie_0_pipe_clk";
+ #clock-cells = <0>;
+ #phy-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt b/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt
index d46188f450bf..503a8cfb3184 100644
--- a/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt
+++ b/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt
@@ -1,10 +1,12 @@
* Renesas R-Car generation 3 USB 2.0 PHY
This file provides information on what the device node for the R-Car generation
-3, RZ/G1C and RZ/G2 USB 2.0 PHY contain.
+3, RZ/G1C, RZ/G2 and RZ/A2 USB 2.0 PHY contain.
Required properties:
-- compatible: "renesas,usb2-phy-r8a77470" if the device is a part of an R8A77470
+- compatible: "renesas,usb2-phy-r7s9210" if the device is a part of an R7S9210
+ SoC.
+ "renesas,usb2-phy-r8a77470" if the device is a part of an R8A77470
SoC.
"renesas,usb2-phy-r8a774a1" if the device is a part of an R8A774A1
SoC.
@@ -20,8 +22,8 @@ Required properties:
R8A77990 SoC.
"renesas,usb2-phy-r8a77995" if the device is a part of an
R8A77995 SoC.
- "renesas,rcar-gen3-usb2-phy" for a generic R-Car Gen3 or RZ/G2
- compatible device.
+ "renesas,rcar-gen3-usb2-phy" for a generic R-Car Gen3, RZ/G2 or
+ RZ/A2 compatible device.
When compatible with the generic version, nodes must list the
SoC-specific version corresponding to the platform first
@@ -46,6 +48,9 @@ channel as USB OTG:
regulator will be managed during the PHY power on/off sequence.
- renesas,no-otg-pins: boolean, specify when a board does not provide proper
otg pins.
+- dr_mode: string, indicates the working mode for the PHY. Can be "host",
+ "peripheral", or "otg". Should be set if otg controller is not used.
+
Example (R-Car H3):
diff --git a/Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt
index 83f4bbac94bb..a1264cc8660d 100644
--- a/Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt
@@ -213,4 +213,4 @@ pinctrl: pinctrl@f0800000 {
groups = "clkreq";
function = "clkreq";
};
-}; \ No newline at end of file
+};
diff --git a/Documentation/devicetree/bindings/property-units.txt b/Documentation/devicetree/bindings/property-units.txt
index bfd33734faca..e9b8360b3288 100644
--- a/Documentation/devicetree/bindings/property-units.txt
+++ b/Documentation/devicetree/bindings/property-units.txt
@@ -12,32 +12,32 @@ unit prefixes.
Time/Frequency
----------------------------------------
-mhz : megahertz
--hz : Hertz (preferred)
--sec : seconds
--ms : milliseconds
--us : microseconds
--ns : nanoseconds
+-hz : hertz (preferred)
+-sec : second
+-ms : millisecond
+-us : microsecond
+-ns : nanosecond
Distance
----------------------------------------
--mm : millimeters
+-mm : millimeter
Electricity
----------------------------------------
--microamp : micro amps
--microamp-hours : micro amp-hours
--ohms : Ohms
--micro-ohms : micro Ohms
--microwatt-hours: micro Watt-hours
--microvolt : micro volts
--picofarads : picofarads
--femtofarads : femtofarads
+-microamp : microampere
+-microamp-hours : microampere hour
+-ohms : ohm
+-micro-ohms : microohm
+-microwatt-hours: microwatt hour
+-microvolt : microvolt
+-picofarads : picofarad
+-femtofarads : femtofarad
Temperature
----------------------------------------
--celsius : Degrees Celsius
--millicelsius : Degreee milli-Celsius
+-celsius : degree Celsius
+-millicelsius : millidegree Celsius
Pressure
----------------------------------------
--kpascal : kiloPascal
+-kpascal : kilopascal
diff --git a/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt b/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
index 454c937076a2..d48f9eb3636e 100644
--- a/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
+++ b/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
@@ -4,6 +4,8 @@ General Properties:
- compatible Should be "fsl,etsec-ptp" for eTSEC
Should be "fsl,fman-ptp-timer" for DPAA FMan
+ Should be "fsl,dpaa2-ptp" for DPAA2
+ Should be "fsl,enetc-ptp" for ENETC
- reg Offset and length of the register set for the device
- interrupts There should be at least two interrupts. Some devices
have as many as four PTP related interrupts.
diff --git a/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt b/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt
index 7d9d3f90641b..493bec80d59b 100644
--- a/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt
+++ b/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt
@@ -2,10 +2,7 @@ Ingenic JZ47xx PWM Controller
=============================
Required properties:
-- compatible: One of:
- * "ingenic,jz4740-pwm"
- * "ingenic,jz4770-pwm"
- * "ingenic,jz4780-pwm"
+- compatible: Should be "ingenic,jz4740-pwm"
- #pwm-cells: Should be 3. See pwm.txt in this directory for a description
of the cells format.
- clocks : phandle to the external clock.
diff --git a/Documentation/devicetree/bindings/pwm/pwm-sifive.txt b/Documentation/devicetree/bindings/pwm/pwm-sifive.txt
new file mode 100644
index 000000000000..36447e3c9378
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-sifive.txt
@@ -0,0 +1,33 @@
+SiFive PWM controller
+
+Unlike most other PWM controllers, the SiFive PWM controller currently only
+supports one period for all channels in the PWM. All PWMs need to run at
+the same period. The period also has significant restrictions on the values
+it can achieve, which the driver rounds to the nearest achievable period.
+PWM RTL that corresponds to the IP block version numbers can be found
+here:
+
+https://github.com/sifive/sifive-blocks/tree/master/src/main/scala/devices/pwm
+
+Required properties:
+- compatible: Should be "sifive,<chip>-pwm" and "sifive,pwm<version>".
+ Supported compatible strings are: "sifive,fu540-c000-pwm" for the SiFive
+ PWM v0 as integrated onto the SiFive FU540 chip, and "sifive,pwm0" for the
+ SiFive PWM v0 IP block with no chip integration tweaks.
+ Please refer to sifive-blocks-ip-versioning.txt for details.
+- reg: physical base address and length of the controller's registers
+- clocks: Should contain a clock identifier for the PWM's parent clock.
+- #pwm-cells: Should be 3. See pwm.txt in this directory
+ for a description of the cell format.
+- interrupts: one interrupt per PWM channel
+
+Examples:
+
+pwm: pwm@10020000 {
+ compatible = "sifive,fu540-c000-pwm", "sifive,pwm0";
+ reg = <0x0 0x10020000 0x0 0x1000>;
+ clocks = <&tlclk>;
+ interrupt-parent = <&plic>;
+ interrupts = <42 43 44 45>;
+ #pwm-cells = <3>;
+};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt b/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
index bd23302e84be..6521bc44a74e 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
@@ -11,8 +11,10 @@ Required parameters:
bindings defined in pwm.txt.
Optional properties:
-- pinctrl-names: Set to "default".
-- pinctrl-0: Phandle pointing to pin configuration node for PWM.
+- pinctrl-names: Set to "default". An additional "sleep" state can be
+ defined to set pins in sleep state when in low power.
+- pinctrl-n: Phandle(s) pointing to pin configuration node for PWM,
+ respectively for "default" and "sleep" states.
Example:
timer@40002400 {
@@ -21,7 +23,8 @@ Example:
pwm {
compatible = "st,stm32-pwm-lp";
#pwm-cells = <3>;
- pinctrl-names = "default";
+ pinctrl-names = "default", "sleep";
pinctrl-0 = <&lppwm1_pins>;
+ pinctrl-1 = <&lppwm1_sleep_pins>;
};
};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-stm32.txt b/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
index 3e6d55018d7a..a8690bfa5e1f 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
@@ -8,6 +8,8 @@ Required parameters:
- pinctrl-names: Set to "default".
- pinctrl-0: List of phandles pointing to pin configuration nodes for PWM module.
For Pinctrl properties see ../pinctrl/pinctrl-bindings.txt
+- #pwm-cells: Should be set to 3. This PWM chip uses the default 3 cells
+ bindings defined in pwm.txt.
Optional parameters:
- st,breakinput: One or two <index level filter> to describe break input configurations.
@@ -28,6 +30,7 @@ Example:
pwm {
compatible = "st,stm32-pwm";
+ #pwm-cells = <3>;
pinctrl-0 = <&pwm1_pins>;
pinctrl-names = "default";
st,breakinput = <0 1 5>;
diff --git a/Documentation/devicetree/bindings/regulator/arizona-regulator.txt b/Documentation/devicetree/bindings/regulator/arizona-regulator.txt
index 443564d7784f..69bf41949b01 100644
--- a/Documentation/devicetree/bindings/regulator/arizona-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/arizona-regulator.txt
@@ -5,7 +5,8 @@ of analogue I/O.
This document lists regulator specific bindings, see the primary binding
document:
- ../mfd/arizona.txt
+ For Wolfson Microelectronic Arizona codecs: ../mfd/arizona.txt
+ For Cirrus Logic Madera codecs: ../mfd/madera.txt
Optional properties:
- wlf,ldoena : GPIO specifier for the GPIO controlling LDOENA
diff --git a/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml b/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
index d289c2f7455a..a650b457085d 100644
--- a/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
+++ b/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
@@ -12,10 +12,13 @@ maintainers:
description:
Any property defined as part of the core regulator binding, defined in
- regulator.txt, can also be used. However a fixed voltage regulator is
+ regulator.yaml, can also be used. However a fixed voltage regulator is
expected to have the regulator-min-microvolt and regulator-max-microvolt
to be the same.
+allOf:
+ - $ref: "regulator.yaml#"
+
properties:
compatible:
const: regulator-fixed
diff --git a/Documentation/devicetree/bindings/regulator/gpio-regulator.txt b/Documentation/devicetree/bindings/regulator/gpio-regulator.txt
deleted file mode 100644
index dd25e73b5d79..000000000000
--- a/Documentation/devicetree/bindings/regulator/gpio-regulator.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-GPIO controlled regulators
-
-Required properties:
-- compatible : Must be "regulator-gpio".
-- regulator-name : Defined in regulator.txt as optional, but required
- here.
-- gpios : Array of one or more GPIO pins used to select the
- regulator voltage/current listed in "states".
-- states : Selection of available voltages/currents provided by
- this regulator and matching GPIO configurations to
- achieve them. If there are no states in the "states"
- array, use a fixed regulator instead.
-
-Optional properties:
-- enable-gpios : GPIO used to enable/disable the regulator.
- Warning, the GPIO phandle flags are ignored and the
- GPIO polarity is controlled solely by the presence
- of "enable-active-high" DT property. This is due to
- compatibility with old DTs.
-- enable-active-high : Polarity of "enable-gpio" GPIO is active HIGH.
- Default is active LOW.
-- gpios-states : On operating systems, that don't support reading back
- gpio values in output mode (most notably linux), this
- array provides the state of GPIO pins set when
- requesting them from the gpio controller. Systems,
- that are capable of preserving state when requesting
- the lines, are free to ignore this property.
- 0: LOW, 1: HIGH. Default is LOW if nothing else
- is specified.
-- startup-delay-us : Startup time in microseconds.
-- regulator-type : Specifies what is being regulated, must be either
- "voltage" or "current", defaults to voltage.
-
-Any property defined as part of the core regulator binding defined in
-regulator.txt can also be used.
-
-Example:
-
- mmciv: gpio-regulator {
- compatible = "regulator-gpio";
-
- regulator-name = "mmci-gpio-supply";
- regulator-min-microvolt = <1800000>;
- regulator-max-microvolt = <2600000>;
- regulator-boot-on;
-
- enable-gpios = <&gpio0 23 0x4>;
- gpios = <&gpio0 24 0x4
- &gpio0 25 0x4>;
- states = <1800000 0x3
- 2200000 0x2
- 2600000 0x1
- 2900000 0x0>;
-
- startup-delay-us = <100000>;
- enable-active-high;
- };
diff --git a/Documentation/devicetree/bindings/regulator/gpio-regulator.yaml b/Documentation/devicetree/bindings/regulator/gpio-regulator.yaml
new file mode 100644
index 000000000000..9d3b28417fb6
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/gpio-regulator.yaml
@@ -0,0 +1,118 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/regulator/gpio-regulator.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: GPIO controlled regulators
+
+maintainers:
+ - Liam Girdwood <lgirdwood@gmail.com>
+ - Mark Brown <broonie@kernel.org>
+
+description:
+ Any property defined as part of the core regulator binding, defined in
+ regulator.txt, can also be used.
+
+allOf:
+ - $ref: "regulator.yaml#"
+
+properties:
+ compatible:
+ const: regulator-gpio
+
+ regulator-name: true
+
+ enable-gpios:
+ description: GPIO to use to enable/disable the regulator.
+ Warning, the GPIO phandle flags are ignored and the GPIO polarity is
+ controlled solely by the presence of "enable-active-high" DT property.
+ This is due to compatibility with old DTs.
+ maxItems: 1
+
+ gpios:
+ description: Array of one or more GPIO pins used to select the regulator
+ voltage/current listed in "states".
+ minItems: 1
+ maxItems: 8 # Should be enough...
+
+ gpios-states:
+ description: |
+ On operating systems, that don't support reading back gpio values in
+ output mode (most notably linux), this array provides the state of GPIO
+ pins set when requesting them from the gpio controller. Systems, that are
+ capable of preserving state when requesting the lines, are free to ignore
+ this property.
+ 0: LOW
+ 1: HIGH
+ Default is LOW if nothing else is specified.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+ - maxItems: 8
+ items:
+ enum: [ 0, 1 ]
+ default: 0
+
+ states:
+ description: Selection of available voltages/currents provided by this
+ regulator and matching GPIO configurations to achieve them. If there are
+ no states in the "states" array, use a fixed regulator instead.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-matrix
+ - maxItems: 8
+ items:
+ items:
+ - description: Voltage in microvolts
+ - description: GPIO group state value
+
+ startup-delay-us:
+ description: startup time in microseconds
+
+ enable-active-high:
+ description: Polarity of "enable-gpio" GPIO is active HIGH. Default is
+ active LOW.
+ type: boolean
+
+ gpio-open-drain:
+ description:
+ GPIO is open drain type. If this property is missing then default
+ assumption is false.
+ type: boolean
+
+ regulator-type:
+ description: Specifies what is being regulated.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/string
+ - enum:
+ - voltage
+ - current
+ default: voltage
+
+required:
+ - compatible
+ - regulator-name
+ - gpios
+ - states
+
+examples:
+ - |
+ gpio-regulator {
+ compatible = "regulator-gpio";
+
+ regulator-name = "mmci-gpio-supply";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <2600000>;
+ regulator-boot-on;
+
+ enable-gpios = <&gpio0 23 0x4>;
+ gpios = <&gpio0 24 0x4
+ &gpio0 25 0x4>;
+ states = <1800000 0x3>,
+ <2200000 0x2>,
+ <2600000 0x1>,
+ <2900000 0x0>;
+
+ startup-delay-us = <100000>;
+ enable-active-high;
+ };
+...
diff --git a/Documentation/devicetree/bindings/regulator/max8660.txt b/Documentation/devicetree/bindings/regulator/max8660.txt
deleted file mode 100644
index 8ba994d8a142..000000000000
--- a/Documentation/devicetree/bindings/regulator/max8660.txt
+++ /dev/null
@@ -1,47 +0,0 @@
-Maxim MAX8660 voltage regulator
-
-Required properties:
-- compatible: must be one of "maxim,max8660", "maxim,max8661"
-- reg: I2C slave address, usually 0x34
-- any required generic properties defined in regulator.txt
-
-Example:
-
- i2c_master {
- max8660@34 {
- compatible = "maxim,max8660";
- reg = <0x34>;
-
- regulators {
- regulator@0 {
- regulator-compatible= "V3(DCDC)";
- regulator-min-microvolt = <725000>;
- regulator-max-microvolt = <1800000>;
- };
-
- regulator@1 {
- regulator-compatible= "V4(DCDC)";
- regulator-min-microvolt = <725000>;
- regulator-max-microvolt = <1800000>;
- };
-
- regulator@2 {
- regulator-compatible= "V5(LDO)";
- regulator-min-microvolt = <1700000>;
- regulator-max-microvolt = <2000000>;
- };
-
- regulator@3 {
- regulator-compatible= "V6(LDO)";
- regulator-min-microvolt = <1800000>;
- regulator-max-microvolt = <3300000>;
- };
-
- regulator@4 {
- regulator-compatible= "V7(LDO)";
- regulator-min-microvolt = <1800000>;
- regulator-max-microvolt = <3300000>;
- };
- };
- };
- };
diff --git a/Documentation/devicetree/bindings/regulator/max8660.yaml b/Documentation/devicetree/bindings/regulator/max8660.yaml
new file mode 100644
index 000000000000..9c038698f880
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/max8660.yaml
@@ -0,0 +1,77 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/regulator/max8660.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Maxim MAX8660 voltage regulator
+
+maintainers:
+ - Daniel Mack <zonque@gmail.com>
+
+properties:
+ $nodename:
+ pattern: "pmic@[0-9a-f]{1,2}"
+ compatible:
+ enum:
+ - maxim,max8660
+ - maxim,max8661
+
+ reg:
+ maxItems: 1
+
+ regulators:
+ type: object
+
+ patternProperties:
+ "regulator-.+":
+ $ref: "regulator.yaml#"
+
+ additionalProperties: false
+
+additionalProperties: false
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ pmic@34 {
+ compatible = "maxim,max8660";
+ reg = <0x34>;
+
+ regulators {
+ regulator-V3 {
+ regulator-compatible= "V3(DCDC)";
+ regulator-min-microvolt = <725000>;
+ regulator-max-microvolt = <1800000>;
+ };
+
+ regulator-V4 {
+ regulator-compatible= "V4(DCDC)";
+ regulator-min-microvolt = <725000>;
+ regulator-max-microvolt = <1800000>;
+ };
+
+ regulator-V5 {
+ regulator-compatible= "V5(LDO)";
+ regulator-min-microvolt = <1700000>;
+ regulator-max-microvolt = <2000000>;
+ };
+
+ regulator-V6 {
+ regulator-compatible= "V6(LDO)";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ };
+
+ regulator-V7 {
+ regulator-compatible= "V7(LDO)";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ };
+ };
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/regulator/pv88060.txt b/Documentation/devicetree/bindings/regulator/pv88060.txt
index 10a6dadc008e..6a7c8a92fdb0 100644
--- a/Documentation/devicetree/bindings/regulator/pv88060.txt
+++ b/Documentation/devicetree/bindings/regulator/pv88060.txt
@@ -121,4 +121,4 @@ Example
regulator-max-microvolt = <5000000>;
};
};
- }; \ No newline at end of file
+ };
diff --git a/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt
index 7ef2dbe48e8a..14d2eee96b3d 100644
--- a/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt
@@ -97,7 +97,7 @@ Second Level Nodes - Regulators
sent for this regulator including those which are for a
strictly lower power state.
-Other properties defined in Documentation/devicetree/bindings/regulator.txt
+Other properties defined in Documentation/devicetree/bindings/regulator/regulator.txt
may also be used. regulator-initial-mode and regulator-allowed-modes may be
specified for VRM regulators using mode values from
include/dt-bindings/regulator/qcom,rpmh-regulator.h. regulator-allow-bypass
diff --git a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
index 406f2e570c50..430b8622bda1 100644
--- a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
@@ -4,11 +4,13 @@ Qualcomm SPMI Regulators
Usage: required
Value type: <string>
Definition: must be one of:
+ "qcom,pm8005-regulators"
"qcom,pm8841-regulators"
"qcom,pm8916-regulators"
"qcom,pm8941-regulators"
"qcom,pm8994-regulators"
"qcom,pmi8994-regulators"
+ "qcom,pms405-regulators"
- interrupts:
Usage: optional
@@ -110,6 +112,23 @@ Qualcomm SPMI Regulators
Definition: Reference to regulator supplying the input pin, as
described in the data sheet.
+- vdd_l1_l2-supply:
+- vdd_l3_l8-supply:
+- vdd_l4-supply:
+- vdd_l5_l6-supply:
+- vdd_l10_l11_l12_l13-supply:
+- vdd_l7-supply:
+- vdd_l9-supply:
+- vdd_s1-supply:
+- vdd_s2-supply:
+- vdd_s3-supply:
+- vdd_s4-supply:
+- vdd_s5-supply
+ Usage: optional (pms405 only)
+ Value type: <phandle>
+ Definition: Reference to regulator supplying the input pin, as
+ described in the data sheet.
+
- qcom,saw-reg:
Usage: optional
Value type: <phandle>
@@ -120,6 +139,9 @@ The regulator node houses sub-nodes for each regulator within the device. Each
sub-node is identified using the node's name, with valid values listed for each
of the PMICs below.
+pm8005:
+ s1, s2, s3, s4
+
pm8841:
s1, s2, s3, s4, s5, s6, s7, s8
diff --git a/Documentation/devicetree/bindings/regulator/regulator.txt b/Documentation/devicetree/bindings/regulator/regulator.txt
index 0a3f087d5844..487ccd8370b3 100644
--- a/Documentation/devicetree/bindings/regulator/regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/regulator.txt
@@ -1,139 +1 @@
-Voltage/Current Regulators
-
-Optional properties:
-- regulator-name: A string used as a descriptive name for regulator outputs
-- regulator-min-microvolt: smallest voltage consumers may set
-- regulator-max-microvolt: largest voltage consumers may set
-- regulator-microvolt-offset: Offset applied to voltages to compensate for voltage drops
-- regulator-min-microamp: smallest current consumers may set
-- regulator-max-microamp: largest current consumers may set
-- regulator-input-current-limit-microamp: maximum input current regulator allows
-- regulator-always-on: boolean, regulator should never be disabled
-- regulator-boot-on: bootloader/firmware enabled regulator
-- regulator-allow-bypass: allow the regulator to go into bypass mode
-- regulator-allow-set-load: allow the regulator performance level to be configured
-- <name>-supply: phandle to the parent supply/regulator node
-- regulator-ramp-delay: ramp delay for regulator(in uV/us)
- For hardware which supports disabling ramp rate, it should be explicitly
- initialised to zero (regulator-ramp-delay = <0>) for disabling ramp delay.
-- regulator-enable-ramp-delay: The time taken, in microseconds, for the supply
- rail to reach the target voltage, plus/minus whatever tolerance the board
- design requires. This property describes the total system ramp time
- required due to the combination of internal ramping of the regulator itself,
- and board design issues such as trace capacitance and load on the supply.
-- regulator-settling-time-us: Settling time, in microseconds, for voltage
- change if regulator have the constant time for any level voltage change.
- This is useful when regulator have exponential voltage change.
-- regulator-settling-time-up-us: Settling time, in microseconds, for voltage
- increase if the regulator needs a constant time to settle after voltage
- increases of any level. This is useful for regulators with exponential
- voltage changes.
-- regulator-settling-time-down-us: Settling time, in microseconds, for voltage
- decrease if the regulator needs a constant time to settle after voltage
- decreases of any level. This is useful for regulators with exponential
- voltage changes.
-- regulator-soft-start: Enable soft start so that voltage ramps slowly
-- regulator-state-standby sub-root node for Standby mode
- : equivalent with standby Linux sleep state, which provides energy savings
- with a relatively quick transition back time.
-- regulator-state-mem sub-root node for Suspend-to-RAM mode
- : suspend to memory, the device goes to sleep, but all data stored in memory,
- only some external interrupt can wake the device.
-- regulator-state-disk sub-root node for Suspend-to-DISK mode
- : suspend to disk, this state operates similarly to Suspend-to-RAM,
- but includes a final step of writing memory contents to disk.
-- regulator-state-[mem/disk/standby] node has following common properties:
- - regulator-on-in-suspend: regulator should be on in suspend state.
- - regulator-off-in-suspend: regulator should be off in suspend state.
- - regulator-suspend-min-microvolt: minimum voltage may be set in
- suspend state.
- - regulator-suspend-max-microvolt: maximum voltage may be set in
- suspend state.
- - regulator-suspend-microvolt: the default voltage which regulator
- would be set in suspend. This property is now deprecated, instead
- setting voltage for suspend mode via the API which regulator
- driver provides is recommended.
- - regulator-changeable-in-suspend: whether the default voltage and
- the regulator on/off in suspend can be changed in runtime.
- - regulator-mode: operating mode in the given suspend state.
- The set of possible operating modes depends on the capabilities of
- every hardware so the valid modes are documented on each regulator
- device tree binding document.
-- regulator-initial-mode: initial operating mode. The set of possible operating
- modes depends on the capabilities of every hardware so each device binding
- documentation explains which values the regulator supports.
-- regulator-allowed-modes: list of operating modes that software is allowed to
- configure for the regulator at run-time. Elements may be specified in any
- order. The set of possible operating modes depends on the capabilities of
- every hardware so each device binding document explains which values the
- regulator supports.
-- regulator-system-load: Load in uA present on regulator that is not captured by
- any consumer request.
-- regulator-pull-down: Enable pull down resistor when the regulator is disabled.
-- regulator-over-current-protection: Enable over current protection.
-- regulator-active-discharge: tristate, enable/disable active discharge of
- regulators. The values are:
- 0: Disable active discharge.
- 1: Enable active discharge.
- Absence of this property will leave configuration to default.
-- regulator-coupled-with: Regulators with which the regulator
- is coupled. The linkage is 2-way - all coupled regulators should be linked
- with each other. A regulator should not be coupled with its supplier.
-- regulator-coupled-max-spread: Array of maximum spread between voltages of
- coupled regulators in microvolts, each value in the array relates to the
- corresponding couple specified by the regulator-coupled-with property.
-- regulator-max-step-microvolt: Maximum difference between current and target
- voltages that can be changed safely in a single step.
-
-Deprecated properties:
-- regulator-compatible: If a regulator chip contains multiple
- regulators, and if the chip's binding contains a child node that
- describes each regulator, then this property indicates which regulator
- this child node is intended to configure. If this property is missing,
- the node's name will be used instead.
-
-Example:
-
- xyzreg: regulator@0 {
- regulator-min-microvolt = <1000000>;
- regulator-max-microvolt = <2500000>;
- regulator-always-on;
- vin-supply = <&vin>;
-
- regulator-state-mem {
- regulator-on-in-suspend;
- };
- };
-
-Regulator Consumers:
-Consumer nodes can reference one or more of its supplies/
-regulators using the below bindings.
-
-- <name>-supply: phandle to the regulator node
-
-These are the same bindings that a regulator in the above
-example used to reference its own supply, in which case
-its just seen as a special case of a regulator being a
-consumer itself.
-
-Example of a consumer device node (mmc) referencing two
-regulators (twl_reg1 and twl_reg2),
-
- twl_reg1: regulator@0 {
- ...
- ...
- ...
- };
-
- twl_reg2: regulator@1 {
- ...
- ...
- ...
- };
-
- mmc: mmc@0 {
- ...
- ...
- vmmc-supply = <&twl_reg1>;
- vmmcaux-supply = <&twl_reg2>;
- };
+This file has moved to regulator.yaml.
diff --git a/Documentation/devicetree/bindings/regulator/regulator.yaml b/Documentation/devicetree/bindings/regulator/regulator.yaml
new file mode 100644
index 000000000000..02c3043ce419
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/regulator.yaml
@@ -0,0 +1,200 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/regulator/regulator.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Voltage/Current Regulators
+
+maintainers:
+ - Liam Girdwood <lgirdwood@gmail.com>
+ - Mark Brown <broonie@kernel.org>
+
+properties:
+ regulator-name:
+ description: A string used as a descriptive name for regulator outputs
+ $ref: "/schemas/types.yaml#/definitions/string"
+
+ regulator-min-microvolt:
+ description: smallest voltage consumers may set
+
+ regulator-max-microvolt:
+ description: largest voltage consumers may set
+
+ regulator-microvolt-offset:
+ description: Offset applied to voltages to compensate for voltage drops
+
+ regulator-min-microamp:
+ description: smallest current consumers may set
+
+ regulator-max-microamp:
+ description: largest current consumers may set
+
+ regulator-input-current-limit-microamp:
+ description: maximum input current regulator allows
+
+ regulator-always-on:
+ description: boolean, regulator should never be disabled
+ type: boolean
+
+ regulator-boot-on:
+ description: bootloader/firmware enabled regulator
+ type: boolean
+
+ regulator-allow-bypass:
+ description: allow the regulator to go into bypass mode
+ type: boolean
+
+ regulator-allow-set-load:
+ description: allow the regulator performance level to be configured
+ type: boolean
+
+ regulator-ramp-delay:
+ description: ramp delay for regulator(in uV/us) For hardware which supports
+ disabling ramp rate, it should be explicitly initialised to zero (regulator-ramp-delay
+ = <0>) for disabling ramp delay.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-enable-ramp-delay:
+ description: The time taken, in microseconds, for the supply rail to
+ reach the target voltage, plus/minus whatever tolerance the board
+ design requires. This property describes the total system ramp time
+ required due to the combination of internal ramping of the regulator
+ itself, and board design issues such as trace capacitance and load
+ on the supply.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-settling-time-us:
+ description: Settling time, in microseconds, for voltage change if regulator
+ have the constant time for any level voltage change. This is useful
+ when regulator have exponential voltage change.
+
+ regulator-settling-time-up-us:
+ description: Settling time, in microseconds, for voltage increase if
+ the regulator needs a constant time to settle after voltage increases
+ of any level. This is useful for regulators with exponential voltage
+ changes.
+
+ regulator-settling-time-down-us:
+ description: Settling time, in microseconds, for voltage decrease if
+ the regulator needs a constant time to settle after voltage decreases
+ of any level. This is useful for regulators with exponential voltage
+ changes.
+
+ regulator-soft-start:
+ description: Enable soft start so that voltage ramps slowly
+ type: boolean
+
+ regulator-initial-mode:
+ description: initial operating mode. The set of possible operating modes
+ depends on the capabilities of every hardware so each device binding
+ documentation explains which values the regulator supports.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-allowed-modes:
+ description: list of operating modes that software is allowed to configure
+ for the regulator at run-time. Elements may be specified in any order.
+ The set of possible operating modes depends on the capabilities of
+ every hardware so each device binding document explains which values
+ the regulator supports.
+ $ref: "/schemas/types.yaml#/definitions/uint32-array"
+
+ regulator-system-load:
+ description: Load in uA present on regulator that is not captured by
+ any consumer request.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-pull-down:
+ description: Enable pull down resistor when the regulator is disabled.
+ type: boolean
+
+ regulator-over-current-protection:
+ description: Enable over current protection.
+ type: boolean
+
+ regulator-active-discharge:
+ description: |
+ tristate, enable/disable active discharge of regulators. The values are:
+ 0: Disable active discharge.
+ 1: Enable active discharge.
+ Absence of this property will leave configuration to default.
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum: [ 0, 1 ]
+
+ regulator-coupled-with:
+ description: Regulators with which the regulator is coupled. The linkage
+ is 2-way - all coupled regulators should be linked with each other.
+ A regulator should not be coupled with its supplier.
+ $ref: "/schemas/types.yaml#/definitions/phandle-array"
+
+ regulator-coupled-max-spread:
+ description: Array of maximum spread between voltages of coupled regulators
+ in microvolts, each value in the array relates to the corresponding
+ couple specified by the regulator-coupled-with property.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-max-step-microvolt:
+ description: Maximum difference between current and target voltages
+ that can be changed safely in a single step.
+
+patternProperties:
+ ".*-supply$":
+ description: Input supply phandle(s) for this node
+
+ regulator-state-(standby|mem|disk):
+ type: object
+ description:
+ sub-nodes for regulator state in Standby, Suspend-to-RAM, and
+ Suspend-to-DISK modes. Equivalent with standby, mem, and disk Linux
+ sleep states.
+
+ properties:
+ regulator-on-in-suspend:
+ description: regulator should be on in suspend state.
+ type: boolean
+
+ regulator-off-in-suspend:
+ description: regulator should be off in suspend state.
+ type: boolean
+
+ regulator-suspend-min-microvolt:
+ description: minimum voltage may be set in suspend state.
+
+ regulator-suspend-max-microvolt:
+ description: maximum voltage may be set in suspend state.
+
+ regulator-suspend-microvolt:
+ description: the default voltage which regulator would be set in
+ suspend. This property is now deprecated, instead setting voltage
+ for suspend mode via the API which regulator driver provides is
+ recommended.
+
+ regulator-changeable-in-suspend:
+ description: whether the default voltage and the regulator on/off
+ in suspend can be changed in runtime.
+ type: boolean
+
+ regulator-mode:
+ description: operating mode in the given suspend state. The set
+ of possible operating modes depends on the capabilities of every
+ hardware so the valid modes are documented on each regulator device
+ tree binding document.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ additionalProperties: false
+
+examples:
+ - |
+ xyzreg: regulator@0 {
+ regulator-min-microvolt = <1000000>;
+ regulator-max-microvolt = <2500000>;
+ regulator-always-on;
+ vin-supply = <&vin>;
+
+ regulator-state-mem {
+ regulator-on-in-suspend;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/regulator/slg51000.txt b/Documentation/devicetree/bindings/regulator/slg51000.txt
new file mode 100644
index 000000000000..aa0733e49b90
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/slg51000.txt
@@ -0,0 +1,88 @@
+* Dialog Semiconductor SLG51000 Voltage Regulator
+
+Required properties:
+- compatible : Should be "dlg,slg51000" for SLG51000
+- reg : Specifies the I2C slave address.
+- xxx-supply: Input voltage supply regulator for ldo3 to ldo7.
+ These entries are required if regulators are enabled for a device.
+ An absence of these properties can cause the regulator registration to fail.
+ If some of input supply is powered through battery or always-on supply then
+ also it is required to have these parameters with proper node handle of always
+ on power supply.
+ vin3-supply: Input supply for ldo3
+ vin4-supply: Input supply for ldo4
+ vin5-supply: Input supply for ldo5
+ vin6-supply: Input supply for ldo6
+ vin7-supply: Input supply for ldo7
+
+Optional properties:
+- interrupt-parent : Specifies the reference to the interrupt controller.
+- interrupts : IRQ line information.
+- dlg,cs-gpios : Specify a valid GPIO for chip select
+
+Sub-nodes:
+- regulators : This node defines the settings for the regulators.
+ The content of the sub-node is defined by the standard binding
+ for regulators; see regulator.txt.
+
+ The SLG51000 regulators are bound using their names listed below:
+ ldo1
+ ldo2
+ ldo3
+ ldo4
+ ldo5
+ ldo6
+ ldo7
+
+Optional properties for regulators:
+- enable-gpios : Specify a valid GPIO for platform control of the regulator.
+
+Example:
+ pmic: slg51000@75 {
+ compatible = "dlg,slg51000";
+ reg = <0x75>;
+
+ regulators {
+ ldo1 {
+ regulator-name = "ldo1";
+ regulator-min-microvolt = <2400000>;
+ regulator-max-microvolt = <3300000>;
+ };
+
+ ldo2 {
+ regulator-name = "ldo2";
+ regulator-min-microvolt = <2400000>;
+ regulator-max-microvolt = <3300000>;
+ };
+
+ ldo3 {
+ regulator-name = "ldo3";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3750000>;
+ };
+
+ ldo4 {
+ regulator-name = "ldo4";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3750000>;
+ };
+
+ ldo5 {
+ regulator-name = "ldo5";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1200000>;
+ };
+
+ ldo6 {
+ regulator-name = "ldo6";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1200000>;
+ };
+
+ ldo7 {
+ regulator-name = "ldo7";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3750000>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/st,stm32-booster.txt b/Documentation/devicetree/bindings/regulator/st,stm32-booster.txt
new file mode 100644
index 000000000000..479ad4c8758e
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/st,stm32-booster.txt
@@ -0,0 +1,18 @@
+STM32 BOOSTER - Booster for ADC analog input switches
+
+Some STM32 devices embed a 3.3V booster supplied by Vdda, that can be used
+to supply ADC analog input switches.
+
+Required properties:
+- compatible: Should be one of:
+ "st,stm32h7-booster"
+ "st,stm32mp1-booster"
+- st,syscfg: Phandle to system configuration controller.
+- vdda-supply: Phandle to the vdda input analog voltage.
+
+Example:
+ booster: regulator-booster {
+ compatible = "st,stm32mp1-booster";
+ st,syscfg = <&syscfg>;
+ vdda-supply = <&vdda>;
+ };
diff --git a/Documentation/devicetree/bindings/riscv/cpus.yaml b/Documentation/devicetree/bindings/riscv/cpus.yaml
new file mode 100644
index 000000000000..f97a4ecd7b91
--- /dev/null
+++ b/Documentation/devicetree/bindings/riscv/cpus.yaml
@@ -0,0 +1,170 @@
+# SPDX-License-Identifier: (GPL-2.0 OR MIT)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/riscv/cpus.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: RISC-V bindings for 'cpus' DT nodes
+
+maintainers:
+ - Paul Walmsley <paul.walmsley@sifive.com>
+ - Palmer Dabbelt <palmer@sifive.com>
+
+allOf:
+ - $ref: /schemas/cpus.yaml#
+
+properties:
+ $nodename:
+ const: cpus
+ description: Container of cpu nodes
+
+ '#address-cells':
+ const: 1
+ description: |
+ A single unsigned 32-bit integer uniquely identifies each RISC-V
+ hart in a system. (See the "reg" node under the "cpu" node,
+ below).
+
+ '#size-cells':
+ const: 0
+
+patternProperties:
+ '^cpu@[0-9a-f]+$':
+ properties:
+ compatible:
+ type: array
+ items:
+ - enum:
+ - sifive,rocket0
+ - sifive,e5
+ - sifive,e51
+ - sifive,u54-mc
+ - sifive,u54
+ - sifive,u5
+ - const: riscv
+ description:
+ Identifies that the hart uses the RISC-V instruction set
+ and identifies the type of the hart.
+
+ mmu-type:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum:
+ - riscv,sv32
+ - riscv,sv39
+ - riscv,sv48
+ description:
+ Identifies the MMU address translation mode used on this
+ hart. These values originate from the RISC-V Privileged
+ Specification document, available from
+ https://riscv.org/specifications/
+
+ riscv,isa:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum:
+ - rv64imac
+ - rv64imafdc
+ description:
+ Identifies the specific RISC-V instruction set architecture
+ supported by the hart. These are documented in the RISC-V
+ User-Level ISA document, available from
+ https://riscv.org/specifications/
+
+ timebase-frequency:
+ type: integer
+ minimum: 1
+ description:
+ Specifies the clock frequency of the system timer in Hz.
+ This value is common to all harts on a single system image.
+
+ interrupt-controller:
+ type: object
+ description: Describes the CPU's local interrupt controller
+
+ properties:
+ '#interrupt-cells':
+ const: 1
+
+ compatible:
+ const: riscv,cpu-intc
+
+ interrupt-controller: true
+
+ required:
+ - '#interrupt-cells'
+ - compatible
+ - interrupt-controller
+
+ required:
+ - riscv,isa
+ - timebase-frequency
+ - interrupt-controller
+
+examples:
+ - |
+ // Example 1: SiFive Freedom U540G Development Kit
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ timebase-frequency = <1000000>;
+ cpu@0 {
+ clock-frequency = <0>;
+ compatible = "sifive,rocket0", "riscv";
+ device_type = "cpu";
+ i-cache-block-size = <64>;
+ i-cache-sets = <128>;
+ i-cache-size = <16384>;
+ reg = <0>;
+ riscv,isa = "rv64imac";
+ cpu_intc0: interrupt-controller {
+ #interrupt-cells = <1>;
+ compatible = "riscv,cpu-intc";
+ interrupt-controller;
+ };
+ };
+ cpu@1 {
+ clock-frequency = <0>;
+ compatible = "sifive,rocket0", "riscv";
+ d-cache-block-size = <64>;
+ d-cache-sets = <64>;
+ d-cache-size = <32768>;
+ d-tlb-sets = <1>;
+ d-tlb-size = <32>;
+ device_type = "cpu";
+ i-cache-block-size = <64>;
+ i-cache-sets = <64>;
+ i-cache-size = <32768>;
+ i-tlb-sets = <1>;
+ i-tlb-size = <32>;
+ mmu-type = "riscv,sv39";
+ reg = <1>;
+ riscv,isa = "rv64imafdc";
+ tlb-split;
+ cpu_intc1: interrupt-controller {
+ #interrupt-cells = <1>;
+ compatible = "riscv,cpu-intc";
+ interrupt-controller;
+ };
+ };
+ };
+
+ - |
+ // Example 2: Spike ISA Simulator with 1 Hart
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ cpu@0 {
+ device_type = "cpu";
+ reg = <0>;
+ compatible = "riscv";
+ riscv,isa = "rv64imafdc";
+ mmu-type = "riscv,sv48";
+ interrupt-controller {
+ #interrupt-cells = <1>;
+ interrupt-controller;
+ compatible = "riscv,cpu-intc";
+ };
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/riscv/sifive.yaml b/Documentation/devicetree/bindings/riscv/sifive.yaml
new file mode 100644
index 000000000000..9d17dc2f3f84
--- /dev/null
+++ b/Documentation/devicetree/bindings/riscv/sifive.yaml
@@ -0,0 +1,25 @@
+# SPDX-License-Identifier: (GPL-2.0 OR MIT)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/riscv/sifive.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: SiFive SoC-based boards
+
+maintainers:
+ - Paul Walmsley <paul.walmsley@sifive.com>
+ - Palmer Dabbelt <palmer@sifive.com>
+
+description:
+ SiFive SoC-based boards
+
+properties:
+ $nodename:
+ const: '/'
+ compatible:
+ items:
+ - enum:
+ - sifive,freedom-unleashed-a00
+ - const: sifive,fu540-c000
+ - const: sifive,fu540
+...
diff --git a/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt b/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
index 0014da9145af..c223e54452da 100644
--- a/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
+++ b/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
@@ -2,6 +2,7 @@ HWRNG support for the iproc-rng200 driver
Required properties:
- compatible : Must be one of:
+ "brcm,bcm7211-rng200"
"brcm,bcm7278-rng200"
"brcm,iproc-rng200"
- reg : base address and size of control register block
diff --git a/Documentation/devicetree/bindings/serial/8250.txt b/Documentation/devicetree/bindings/serial/8250.txt
index 3cba12f855b7..20d351f268ef 100644
--- a/Documentation/devicetree/bindings/serial/8250.txt
+++ b/Documentation/devicetree/bindings/serial/8250.txt
@@ -53,6 +53,9 @@ Optional properties:
programmable TX FIFO thresholds.
- resets : phandle + reset specifier pairs
- overrun-throttle-ms : how long to pause uart rx when input overrun is encountered.
+- {rts,cts,dtr,dsr,rng,dcd}-gpios: specify a GPIO for RTS/CTS/DTR/DSR/RI/DCD
+ line respectively. It will use specified GPIO instead of the peripheral
+ function pin for the UART feature. If unsure, don't specify this property.
Note:
* fsl,ns16550:
@@ -74,3 +77,19 @@ Example:
interrupts = <10>;
reg-shift = <2>;
};
+
+Example for OMAP UART using GPIO-based modem control signals:
+
+ uart4: serial@49042000 {
+ compatible = "ti,omap3-uart";
+ reg = <0x49042000 0x400>;
+ interrupts = <80>;
+ ti,hwmods = "uart4";
+ clock-frequency = <48000000>;
+ cts-gpios = <&gpio3 5 GPIO_ACTIVE_LOW>;
+ rts-gpios = <&gpio3 6 GPIO_ACTIVE_LOW>;
+ dtr-gpios = <&gpio1 12 GPIO_ACTIVE_LOW>;
+ dsr-gpios = <&gpio1 13 GPIO_ACTIVE_LOW>;
+ dcd-gpios = <&gpio1 14 GPIO_ACTIVE_LOW>;
+ rng-gpios = <&gpio1 15 GPIO_ACTIVE_LOW>;
+ };
diff --git a/Documentation/devicetree/bindings/serial/mtk-uart.txt b/Documentation/devicetree/bindings/serial/mtk-uart.txt
index c6b5262eb352..6fdffb735fb9 100644
--- a/Documentation/devicetree/bindings/serial/mtk-uart.txt
+++ b/Documentation/devicetree/bindings/serial/mtk-uart.txt
@@ -23,7 +23,12 @@ Required properties:
- reg: The base address of the UART register bank.
-- interrupts: A single interrupt specifier.
+- interrupts:
+ index 0: an interrupt specifier for the UART controller itself
+ index 1: optional, an interrupt specifier with edge sensitivity on Rx pin to
+ support Rx in-band wake up. If one would like to use this feature,
+ one must create an addtional pinctrl to reconfigure Rx pin to normal
+ GPIO before suspend.
- clocks : Must contain an entry for each entry in clock-names.
See ../clocks/clock-bindings.txt for details.
@@ -39,7 +44,11 @@ Example:
uart0: serial@11006000 {
compatible = "mediatek,mt6589-uart", "mediatek,mt6577-uart";
reg = <0x11006000 0x400>;
- interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_LOW>;
+ interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 52 IRQ_TYPE_EDGE_FALLING>;
clocks = <&uart_clk>, <&bus_clk>;
clock-names = "baud", "bus";
+ pinctrl-names = "default", "sleep";
+ pinctrl-0 = <&uart_pin>;
+ pinctrl-1 = <&uart_pin_sleep>;
};
diff --git a/Documentation/devicetree/bindings/serial/st,stm32-usart.txt b/Documentation/devicetree/bindings/serial/st,stm32-usart.txt
index 9d3efed55deb..a6b19485c9dc 100644
--- a/Documentation/devicetree/bindings/serial/st,stm32-usart.txt
+++ b/Documentation/devicetree/bindings/serial/st,stm32-usart.txt
@@ -13,6 +13,7 @@ Required properties:
- clocks: The input clock of the USART instance
Optional properties:
+- resets: Must contain the phandle to the reset controller.
- pinctrl: The reference on the pins configuration
- st,hw-flow-ctrl: bool flag to enable hardware flow control.
- rs485-rts-delay, rs485-rx-during-tx, rs485-rts-active-low,
diff --git a/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-i2s.yaml b/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-i2s.yaml
new file mode 100644
index 000000000000..eb3992138eec
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-i2s.yaml
@@ -0,0 +1,132 @@
+# SPDX-License-Identifier: (GPL-2.0+ OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/sound/allwinner,sun4i-a10-i2s.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 I2S Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#sound-dai-cells":
+ const: 0
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-i2s
+ - const: allwinner,sun6i-a31-i2s
+ - const: allwinner,sun8i-a83t-i2s
+ - const: allwinner,sun8i-h3-i2s
+ - const: allwinner,sun50i-a64-codec-i2s
+ - items:
+ - const: allwinner,sun50i-a64-i2s
+ - const: allwinner,sun8i-h3-i2s
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: apb
+ - const: mod
+
+ # Even though it only applies to subschemas under the conditionals,
+ # not listing them here will trigger a warning because of the
+ # additionalsProperties set to false.
+ dmas: true
+ dma-names: true
+ resets:
+ maxItems: 1
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun6i-a31-i2s
+ - allwinner,sun8i-a83t-i2s
+ - allwinner,sun8i-h3-i2s
+ - allwinner,sun50i-a64-codec-i2s
+
+ then:
+ required:
+ - resets
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun8i-a83t-i2s
+
+ then:
+ properties:
+ dmas:
+ minItems: 1
+ maxItems: 2
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+ description:
+ Some controllers cannot receive but can only transmit
+ data. In such a case, the RX DMA channel is to be omitted.
+
+ dma-names:
+ oneOf:
+ - items:
+ - const: rx
+ - const: tx
+ - const: tx
+ description:
+ Some controllers cannot receive but can only transmit
+ data. In such a case, the RX name is to be omitted.
+
+ else:
+ properties:
+ dmas:
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+
+ dma-names:
+ items:
+ - const: rx
+ - const: tx
+
+required:
+ - "#sound-dai-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+ - dmas
+ - dma-names
+
+additionalProperties: false
+
+examples:
+ - |
+ i2s0: i2s@1c22400 {
+ #sound-dai-cells = <0>;
+ compatible = "allwinner,sun4i-a10-i2s";
+ reg = <0x01c22400 0x400>;
+ interrupts = <0 16 4>;
+ clocks = <&apb0_gates 3>, <&i2s0_clk>;
+ clock-names = "apb", "mod";
+ dmas = <&dma 0 3>, <&dma 0 3>;
+ dma-names = "rx", "tx";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-spdif.yaml b/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-spdif.yaml
new file mode 100644
index 000000000000..e0284d8c3b63
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-spdif.yaml
@@ -0,0 +1,120 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/sound/allwinner,sun4i-a10-spdif.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 S/PDIF Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Liam Girdwood <lgirdwood@gmail.com>
+ - Mark Brown <broonie@kernel.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#sound-dai-cells":
+ const: 0
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-spdif
+ - const: allwinner,sun6i-a31-spdif
+ - const: allwinner,sun8i-h3-spdif
+ - const: allwinner,sun50i-h6-spdif
+ - items:
+ - const: allwinner,sun8i-a83t-spdif
+ - const: allwinner,sun8i-h3-spdif
+ - items:
+ - const: allwinner,sun50i-a64-spdif
+ - const: allwinner,sun8i-h3-spdif
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: apb
+ - const: spdif
+
+ # Even though it only applies to subschemas under the conditionals,
+ # not listing them here will trigger a warning because of the
+ # additionalsProperties set to false.
+ dmas: true
+ dma-names: true
+ resets:
+ maxItems: 1
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun6i-a31-spdif
+ - allwinner,sun8i-h3-spdif
+
+ then:
+ required:
+ - resets
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun8i-h3-spdif
+
+ then:
+ properties:
+ dmas:
+ description: TX DMA Channel
+
+ dma-names:
+ const: tx
+
+ else:
+ properties:
+ dmas:
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+
+ dma-names:
+ items:
+ - const: rx
+ - const: tx
+
+required:
+ - "#sound-dai-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+ - dmas
+ - dma-names
+
+additionalProperties: false
+
+examples:
+ - |
+ spdif: spdif@1c21000 {
+ #sound-dai-cells = <0>;
+ compatible = "allwinner,sun4i-a10-spdif";
+ reg = <0x01c21000 0x40>;
+ interrupts = <13>;
+ clocks = <&apb0_gates 1>, <&spdif_clk>;
+ clock-names = "apb", "spdif";
+ dmas = <&dma 0 2>, <&dma 0 2>;
+ dma-names = "rx", "tx";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt b/Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt
index 3b94a715a0b9..8835a43edfbb 100644
--- a/Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt
+++ b/Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt
@@ -15,11 +15,15 @@ Required properties:
* "lrclk" : sample clock
* "lrclk_sel": sample clock input multiplexer
-Example of TDMOUT_A on the A113 SoC:
+Optional property:
+- resets: phandle to the dedicated reset line of the tdm formatter.
+
+Example of TDMOUT_A on the S905X2 SoC:
tdmout_a: audio-controller@500 {
compatible = "amlogic,axg-tdmout";
reg = <0x0 0x500 0x0 0x40>;
+ resets = <&clkc_audio AUD_RESET_TDMOUT_A>;
clocks = <&clkc_audio AUD_CLKID_TDMOUT_A>,
<&clkc_audio AUD_CLKID_TDMOUT_A_SCLK>,
<&clkc_audio AUD_CLKID_TDMOUT_A_SCLK_SEL>,
diff --git a/Documentation/devicetree/bindings/sound/amlogic,g12a-tohdmitx.txt b/Documentation/devicetree/bindings/sound/amlogic,g12a-tohdmitx.txt
new file mode 100644
index 000000000000..aa6c35570d31
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/amlogic,g12a-tohdmitx.txt
@@ -0,0 +1,55 @@
+* Amlogic HDMI Tx control glue
+
+Required properties:
+- compatible: "amlogic,g12a-tohdmitx"
+- reg: physical base address of the controller and length of memory
+ mapped region.
+- #sound-dai-cells: should be 1.
+
+Example on the S905X2 SoC:
+
+tohdmitx: audio-controller@744 {
+ compatible = "amlogic,g12a-tohdmitx";
+ reg = <0x0 0x744 0x0 0x4>;
+ #sound-dai-cells = <1>;
+};
+
+Example of an 'amlogic,axg-sound-card':
+
+sound {
+ compatible = "amlogic,axg-sound-card";
+
+[...]
+
+ dai-link-x {
+ sound-dai = <&tdmif_a>;
+ dai-format = "i2s";
+ dai-tdm-slot-tx-mask-0 = <1 1>;
+
+ codec-0 {
+ sound-dai = <&tohdmitx TOHDMITX_I2S_IN_A>;
+ };
+
+ codec-1 {
+ sound-dai = <&external_dac>;
+ };
+ };
+
+ dai-link-y {
+ sound-dai = <&tdmif_c>;
+ dai-format = "i2s";
+ dai-tdm-slot-tx-mask-0 = <1 1>;
+
+ codec {
+ sound-dai = <&tohdmitx TOHDMITX_I2S_IN_C>;
+ };
+ };
+
+ dai-link-z {
+ sound-dai = <&tohdmitx TOHDMITX_I2S_OUT>;
+
+ codec {
+ sound-dai = <&hdmi_tx>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/cs42l73.txt b/Documentation/devicetree/bindings/sound/cs42l73.txt
index 80ae910dbf6c..47b868b5ab01 100644
--- a/Documentation/devicetree/bindings/sound/cs42l73.txt
+++ b/Documentation/devicetree/bindings/sound/cs42l73.txt
@@ -19,4 +19,4 @@ codec: cs42l73@4a {
reg = <0x4a>;
reset_gpio = <&gpio 10 0>;
chgfreq = <0x05>;
-}; \ No newline at end of file
+};
diff --git a/Documentation/devicetree/bindings/sound/cs42xx8.txt b/Documentation/devicetree/bindings/sound/cs42xx8.txt
index 8619a156d038..bbfe39347c20 100644
--- a/Documentation/devicetree/bindings/sound/cs42xx8.txt
+++ b/Documentation/devicetree/bindings/sound/cs42xx8.txt
@@ -14,6 +14,11 @@ Required properties:
- VA-supply, VD-supply, VLS-supply, VLC-supply: power supplies for the device,
as covered in Documentation/devicetree/bindings/regulator/regulator.txt
+Optional properties:
+
+ - reset-gpios : a GPIO spec to define which pin is connected to the chip's
+ !RESET pin
+
Example:
cs42888: codec@48 {
@@ -25,4 +30,5 @@ cs42888: codec@48 {
VD-supply = <&reg_audio>;
VLS-supply = <&reg_audio>;
VLC-supply = <&reg_audio>;
+ reset-gpios = <&pca9557_b 1 GPIO_ACTIVE_LOW>;
};
diff --git a/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt b/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
index a58f79f5345c..c483dcec01f8 100644
--- a/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
+++ b/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
@@ -44,6 +44,9 @@ Optional properties:
please refer to pinctrl-bindings.txt
- fck_parent : Should contain a valid clock name which will be used as parent
for the McASP fck
+- auxclk-fs-ratio: When McASP is bus master indicates the ratio between AUCLK
+ and FS rate if applicable:
+ AUCLK rate = auxclk-fs-ratio * FS rate
Optional GPIO support:
If any McASP pin need to be used as GPIO then the McASP node must have:
diff --git a/Documentation/devicetree/bindings/sound/madera.txt b/Documentation/devicetree/bindings/sound/madera.txt
new file mode 100644
index 000000000000..5e669ce552f4
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/madera.txt
@@ -0,0 +1,67 @@
+Cirrus Logic Madera class audio codecs
+
+This describes audio configuration bindings for these codecs.
+
+See also the core bindings for the parent MFD driver:
+See Documentation/devicetree/bindings/mfd/madera.txt
+
+and defines for values used in these bindings:
+include/dt-bindings/sound/madera.h
+
+These properties are all contained in the parent MFD node.
+
+Optional properties:
+ - cirrus,dmic-ref : Indicates how the MICBIAS pins have been externally
+ connected to DMICs on each input, one cell per input.
+ <IN1 IN2 IN3 ...>
+ A value of 0 indicates MICVDD and is the default, other values depend on the
+ codec:
+ For CS47L35 one of the CS47L35_DMIC_REF_xxx values
+ For all other codecs one of the MADERA_DMIC_REF_xxx values
+ Also see the datasheet for a description of the INn_DMIC_SUP field.
+
+ - cirrus,inmode : A list of input mode settings for each input. A maximum of
+ 16 cells, with four cells per input in the order INnAL, INnAR INnBL INnBR.
+ For non-muxed inputs the first two cells for that input set the mode for
+ the left and right channel and the second two cells must be 0.
+ For muxed inputs the first two cells for that input set the mode of the
+ left and right A inputs and the second two cells set the mode of the left
+ and right B inputs.
+ Valid mode values are one of the MADERA_INMODE_xxx. If the array is shorter
+ than the number of inputs the unspecified inputs default to
+ MADERA_INMODE_DIFF.
+
+ - cirrus,out-mono : Mono bit for each output, maximum of six cells if the
+ array is shorter outputs will be set to stereo.
+
+ - cirrus,max-channels-clocked : Maximum number of channels that I2S clocks
+ will be generated for. Useful when clock master for systems where the I2S
+ bus has multiple data lines.
+ One cell for each AIF, use a value of zero for AIFs that should be handled
+ normally.
+
+ - cirrus,pdm-fmt : PDM speaker data format, must contain 2 cells
+ (OUT5 and OUT6). See the PDM_SPKn_FMT field in the datasheet for a
+ description of this value.
+ The second cell is ignored for codecs that do not have OUT6.
+
+ - cirrus,pdm-mute : PDM mute format, must contain 2 cells
+ (OUT5 and OUT6). See the PDM_SPKn_CTRL_1 register in the datasheet for a
+ description of this value.
+ The second cell is ignored for codecs that do not have OUT6.
+
+Example:
+
+cs47l35@0 {
+ compatible = "cirrus,cs47l35";
+
+ cirrus,dmic-ref = <0 0 CS47L35_DMIC_REF_MICBIAS1B 0>;
+ cirrus,inmode = <
+ MADERA_INMODE_DMIC MADERA_INMODE_DMIC /* IN1A digital */
+ MADERA_INMODE_SE MADERA_INMODE_SE /* IN1B single-ended */
+ MADERA_INMODE_DIFF MADERA_INMODE_DIFF /* IN2 differential */
+ 0 0 /* not used on this codec */
+ >;
+ cirrus,out-mono = <0 0 0 0 0 0>;
+ cirrus,max-channels-clocked = <2 0 0>;
+};
diff --git a/Documentation/devicetree/bindings/sound/max98357a.txt b/Documentation/devicetree/bindings/sound/max98357a.txt
index 28645a2ff885..4bce14ce806f 100644
--- a/Documentation/devicetree/bindings/sound/max98357a.txt
+++ b/Documentation/devicetree/bindings/sound/max98357a.txt
@@ -9,6 +9,10 @@ Optional properties:
- sdmode-gpios : GPIO specifier for the chip's SD_MODE pin.
If this option is not specified then driver does not manage
the pin state (e.g. chip is always on).
+- sdmode-delay : specify delay time for SD_MODE pin.
+ If this option is specified, which means it's required i2s clocks
+ ready before SD_MODE is unmuted in order to avoid the speaker pop noise.
+ It's observed that 5ms is sufficient.
Example:
diff --git a/Documentation/devicetree/bindings/sound/rt1011.txt b/Documentation/devicetree/bindings/sound/rt1011.txt
new file mode 100644
index 000000000000..35a23e60d679
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/rt1011.txt
@@ -0,0 +1,32 @@
+RT1011 Mono Class D Audio Amplifier
+
+This device supports I2C only.
+
+Required properties:
+
+- compatible : "realtek,rt1011".
+
+- reg : The I2C address of the device. This I2C address decide by
+ two input pins (ASEL1 and ASEL2).
+ -------------------------------------
+ | ASEL2 | ASEL1 | Address |
+ -------------------------------------
+ | 0 | 0 | 0x38 |
+ -------------------------------------
+ | 0 | 1 | 0x39 |
+ -------------------------------------
+ | 1 | 0 | 0x3a |
+ -------------------------------------
+ | 1 | 1 | 0x3b |
+ -------------------------------------
+
+Pins on the device (for linking into audio routes) for RT1011:
+
+ * SPO
+
+Example:
+
+rt1011: codec@38 {
+ compatible = "realtek,rt1011";
+ reg = <0x38>;
+};
diff --git a/Documentation/devicetree/bindings/sound/rt1308.txt b/Documentation/devicetree/bindings/sound/rt1308.txt
new file mode 100755
index 000000000000..2d46084afce4
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/rt1308.txt
@@ -0,0 +1,17 @@
+RT1308 audio Amplifier
+
+This device supports I2C only.
+
+Required properties:
+
+- compatible : "realtek,rt1308".
+
+- reg : The I2C address of the device.
+
+
+Example:
+
+rt1308: rt1308@10 {
+ compatible = "realtek,rt1308";
+ reg = <0x10>;
+};
diff --git a/Documentation/devicetree/bindings/sound/st,stm32-i2s.txt b/Documentation/devicetree/bindings/sound/st,stm32-i2s.txt
index 58c341300552..cbf24bcd1b8d 100644
--- a/Documentation/devicetree/bindings/sound/st,stm32-i2s.txt
+++ b/Documentation/devicetree/bindings/sound/st,stm32-i2s.txt
@@ -18,7 +18,7 @@ Required properties:
See Documentation/devicetree/bindings/dma/stm32-dma.txt.
- dma-names: Identifier for each DMA request line. Must be "tx" and "rx".
- pinctrl-names: should contain only value "default"
- - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt
+ - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
Optional properties:
- resets: Reference to a reset controller asserting the reset controller
diff --git a/Documentation/devicetree/bindings/sound/st,stm32-sai.txt b/Documentation/devicetree/bindings/sound/st,stm32-sai.txt
index 3f4467ff0aa2..944743dd9212 100644
--- a/Documentation/devicetree/bindings/sound/st,stm32-sai.txt
+++ b/Documentation/devicetree/bindings/sound/st,stm32-sai.txt
@@ -41,7 +41,7 @@ SAI subnodes required properties:
"tx": if sai sub-block is configured as playback DAI
"rx": if sai sub-block is configured as capture DAI
- pinctrl-names: should contain only value "default"
- - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt
+ - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
SAI subnodes Optional properties:
- st,sync: specify synchronization mode.
diff --git a/Documentation/devicetree/bindings/sound/sun4i-i2s.txt b/Documentation/devicetree/bindings/sound/sun4i-i2s.txt
deleted file mode 100644
index 61e71c1729e0..000000000000
--- a/Documentation/devicetree/bindings/sound/sun4i-i2s.txt
+++ /dev/null
@@ -1,45 +0,0 @@
-* Allwinner A10 I2S controller
-
-The I2S bus (Inter-IC sound bus) is a serial link for digital
-audio data transfer between devices in the system.
-
-Required properties:
-
-- compatible: should be one of the following:
- - "allwinner,sun4i-a10-i2s"
- - "allwinner,sun6i-a31-i2s"
- - "allwinner,sun8i-a83t-i2s"
- - "allwinner,sun8i-h3-i2s"
- - "allwinner,sun50i-a64-codec-i2s"
-- reg: physical base address of the controller and length of memory mapped
- region.
-- interrupts: should contain the I2S interrupt.
-- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
- Documentation/devicetree/bindings/dma/dma.txt
-- dma-names: should include "tx" and "rx".
-- clocks: a list of phandle + clock-specifer pairs, one for each entry in clock-names.
-- clock-names: should contain the following:
- - "apb" : clock for the I2S bus interface
- - "mod" : module clock for the I2S controller
-- #sound-dai-cells : Must be equal to 0
-
-Required properties for the following compatibles:
- - "allwinner,sun6i-a31-i2s"
- - "allwinner,sun8i-a83t-i2s"
- - "allwinner,sun8i-h3-i2s"
- - "allwinner,sun50i-a64-codec-i2s"
-- resets: phandle to the reset line for this codec
-
-Example:
-
-i2s0: i2s@1c22400 {
- #sound-dai-cells = <0>;
- compatible = "allwinner,sun4i-a10-i2s";
- reg = <0x01c22400 0x400>;
- interrupts = <GIC_SPI 16 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&apb0_gates 3>, <&i2s0_clk>;
- clock-names = "apb", "mod";
- dmas = <&dma SUN4I_DMA_NORMAL 3>,
- <&dma SUN4I_DMA_NORMAL 3>;
- dma-names = "rx", "tx";
-};
diff --git a/Documentation/devicetree/bindings/sound/sunxi,sun4i-spdif.txt b/Documentation/devicetree/bindings/sound/sunxi,sun4i-spdif.txt
deleted file mode 100644
index 0c64a209c2e9..000000000000
--- a/Documentation/devicetree/bindings/sound/sunxi,sun4i-spdif.txt
+++ /dev/null
@@ -1,42 +0,0 @@
-Allwinner Sony/Philips Digital Interface Format (S/PDIF) Controller
-
-The Allwinner S/PDIF audio block is a transceiver that allows the
-processor to receive and transmit digital audio via an coaxial cable or
-a fibre cable.
-For now only playback is supported.
-
-Required properties:
-
- - compatible : should be one of the following:
- - "allwinner,sun4i-a10-spdif": for the Allwinner A10 SoC
- - "allwinner,sun6i-a31-spdif": for the Allwinner A31 SoC
- - "allwinner,sun8i-h3-spdif": for the Allwinner H3 SoC
-
- - reg : Offset and length of the register set for the device.
-
- - interrupts : Contains the spdif interrupt.
-
- - dmas : Generic dma devicetree binding as described in
- Documentation/devicetree/bindings/dma/dma.txt.
-
- - dma-names : Two dmas have to be defined, "tx" and "rx".
-
- - clocks : Contains an entry for each entry in clock-names.
-
- - clock-names : Includes the following entries:
- "apb" clock for the spdif bus.
- "spdif" clock for spdif controller.
-
- - resets : reset specifier for the ahb reset (A31 and newer only)
-
-Example:
-
-spdif: spdif@1c21000 {
- compatible = "allwinner,sun4i-a10-spdif";
- reg = <0x01c21000 0x40>;
- interrupts = <13>;
- clocks = <&apb0_gates 1>, <&spdif_clk>;
- clock-names = "apb", "spdif";
- dmas = <&dma 0 2>, <&dma 0 2>;
- dma-names = "rx", "tx";
-};
diff --git a/Documentation/devicetree/bindings/spi/allwinner,sun4i-a10-spi.yaml b/Documentation/devicetree/bindings/spi/allwinner,sun4i-a10-spi.yaml
new file mode 100644
index 000000000000..c374fd4923a6
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/allwinner,sun4i-a10-spi.yaml
@@ -0,0 +1,86 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/allwinner,sun4i-a10-spi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 SPI Controller Device Tree Bindings
+
+allOf:
+ - $ref: "spi-controller.yaml"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#address-cells": true
+ "#size-cells": true
+
+ compatible:
+ const: allwinner,sun4i-a10-spi
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: ahb
+ - const: mod
+
+ dmas:
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+
+ dma-names:
+ items:
+ - const: rx
+ - const: tx
+
+ num-cs: true
+
+patternProperties:
+ "^.*@[0-9a-f]+":
+ properties:
+ reg:
+ items:
+ minimum: 0
+ maximum: 4
+
+ spi-rx-bus-width:
+ const: 1
+
+ spi-tx-bus-width:
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ - |
+ spi1: spi@1c06000 {
+ compatible = "allwinner,sun4i-a10-spi";
+ reg = <0x01c06000 0x1000>;
+ interrupts = <11>;
+ clocks = <&ahb_gates 21>, <&spi1_clk>;
+ clock-names = "ahb", "mod";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/spi/allwinner,sun6i-a31-spi.yaml b/Documentation/devicetree/bindings/spi/allwinner,sun6i-a31-spi.yaml
new file mode 100644
index 000000000000..bda7a5befd8b
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/allwinner,sun6i-a31-spi.yaml
@@ -0,0 +1,106 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/allwinner,sun6i-a31-spi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A31 SPI Controller Device Tree Bindings
+
+allOf:
+ - $ref: "spi-controller.yaml"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#address-cells": true
+ "#size-cells": true
+
+ compatible:
+ enum:
+ - allwinner,sun6i-a31-spi
+ - allwinner,sun8i-h3-spi
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: ahb
+ - const: mod
+
+ resets:
+ maxItems: 1
+
+ dmas:
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+
+ dma-names:
+ items:
+ - const: rx
+ - const: tx
+
+ num-cs: true
+
+patternProperties:
+ "^.*@[0-9a-f]+":
+ properties:
+ reg:
+ items:
+ minimum: 0
+ maximum: 4
+
+ spi-rx-bus-width:
+ const: 1
+
+ spi-tx-bus-width:
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ - |
+ spi1: spi@1c69000 {
+ compatible = "allwinner,sun6i-a31-spi";
+ reg = <0x01c69000 0x1000>;
+ interrupts = <0 66 4>;
+ clocks = <&ahb1_gates 21>, <&spi1_clk>;
+ clock-names = "ahb", "mod";
+ resets = <&ahb1_rst 21>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ - |
+ spi0: spi@1c68000 {
+ compatible = "allwinner,sun8i-h3-spi";
+ reg = <0x01c68000 0x1000>;
+ interrupts = <0 65 4>;
+ clocks = <&ccu 30>, <&ccu 82>;
+ clock-names = "ahb", "mod";
+ dmas = <&dma 23>, <&dma 23>;
+ dma-names = "rx", "tx";
+ resets = <&ccu 15>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/spi/spi-bus.txt b/Documentation/devicetree/bindings/spi/spi-bus.txt
index 1f6e86f787ef..e07783505498 100644
--- a/Documentation/devicetree/bindings/spi/spi-bus.txt
+++ b/Documentation/devicetree/bindings/spi/spi-bus.txt
@@ -1,111 +1 @@
-SPI (Serial Peripheral Interface) busses
-
-SPI busses can be described with a node for the SPI controller device
-and a set of child nodes for each SPI slave on the bus. The system's SPI
-controller may be described for use in SPI master mode or in SPI slave mode,
-but not for both at the same time.
-
-The SPI controller node requires the following properties:
-- compatible - Name of SPI bus controller following generic names
- recommended practice.
-
-In master mode, the SPI controller node requires the following additional
-properties:
-- #address-cells - number of cells required to define a chip select
- address on the SPI bus.
-- #size-cells - should be zero.
-
-In slave mode, the SPI controller node requires one additional property:
-- spi-slave - Empty property.
-
-No other properties are required in the SPI bus node. It is assumed
-that a driver for an SPI bus device will understand that it is an SPI bus.
-However, the binding does not attempt to define the specific method for
-assigning chip select numbers. Since SPI chip select configuration is
-flexible and non-standardized, it is left out of this binding with the
-assumption that board specific platform code will be used to manage
-chip selects. Individual drivers can define additional properties to
-support describing the chip select layout.
-
-Optional properties (master mode only):
-- cs-gpios - gpios chip select.
-- num-cs - total number of chipselects.
-
-If cs-gpios is used the number of chip selects will be increased automatically
-with max(cs-gpios > hw cs).
-
-So if for example the controller has 2 CS lines, and the cs-gpios
-property looks like this:
-
-cs-gpios = <&gpio1 0 0>, <0>, <&gpio1 1 0>, <&gpio1 2 0>;
-
-Then it should be configured so that num_chipselect = 4 with the
-following mapping:
-
-cs0 : &gpio1 0 0
-cs1 : native
-cs2 : &gpio1 1 0
-cs3 : &gpio1 2 0
-
-
-SPI slave nodes must be children of the SPI controller node.
-
-In master mode, one or more slave nodes (up to the number of chip selects) can
-be present. Required properties are:
-- compatible - Name of SPI device following generic names recommended
- practice.
-- reg - Chip select address of device.
-- spi-max-frequency - Maximum SPI clocking speed of device in Hz.
-
-In slave mode, the (single) slave node is optional.
-If present, it must be called "slave". Required properties are:
-- compatible - Name of SPI device following generic names recommended
- practice.
-
-All slave nodes can contain the following optional properties:
-- spi-cpol - Empty property indicating device requires inverse clock
- polarity (CPOL) mode.
-- spi-cpha - Empty property indicating device requires shifted clock
- phase (CPHA) mode.
-- spi-cs-high - Empty property indicating device requires chip select
- active high.
-- spi-3wire - Empty property indicating device requires 3-wire mode.
-- spi-lsb-first - Empty property indicating device requires LSB first mode.
-- spi-tx-bus-width - The bus width (number of data wires) that is used for MOSI.
- Defaults to 1 if not present.
-- spi-rx-bus-width - The bus width (number of data wires) that is used for MISO.
- Defaults to 1 if not present.
-- spi-rx-delay-us - Microsecond delay after a read transfer.
-- spi-tx-delay-us - Microsecond delay after a write transfer.
-
-Some SPI controllers and devices support Dual and Quad SPI transfer mode.
-It allows data in the SPI system to be transferred using 2 wires (DUAL) or 4
-wires (QUAD).
-Now the value that spi-tx-bus-width and spi-rx-bus-width can receive is
-only 1 (SINGLE), 2 (DUAL) and 4 (QUAD).
-Dual/Quad mode is not allowed when 3-wire mode is used.
-
-If a gpio chipselect is used for the SPI slave the gpio number will be passed
-via the SPI master node cs-gpios property.
-
-SPI example for an MPC5200 SPI bus:
- spi@f00 {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi";
- reg = <0xf00 0x20>;
- interrupts = <2 13 0 2 14 0>;
- interrupt-parent = <&mpc5200_pic>;
-
- ethernet-switch@0 {
- compatible = "micrel,ks8995m";
- spi-max-frequency = <1000000>;
- reg = <0>;
- };
-
- codec@1 {
- compatible = "ti,tlv320aic26";
- spi-max-frequency = <100000>;
- reg = <1>;
- };
- };
+This file has moved to spi-controller.yaml.
diff --git a/Documentation/devicetree/bindings/spi/spi-controller.yaml b/Documentation/devicetree/bindings/spi/spi-controller.yaml
new file mode 100644
index 000000000000..876c0623f322
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-controller.yaml
@@ -0,0 +1,161 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/spi-controller.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: SPI Controller Generic Binding
+
+maintainers:
+ - Mark Brown <broonie@kernel.org>
+
+description: |
+ SPI busses can be described with a node for the SPI controller device
+ and a set of child nodes for each SPI slave on the bus. The system SPI
+ controller may be described for use in SPI master mode or in SPI slave mode,
+ but not for both at the same time.
+
+properties:
+ $nodename:
+ pattern: "^spi(@.*|-[0-9a-f])*$"
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ cs-gpios:
+ description: |
+ GPIOs used as chip selects.
+ If that property is used, the number of chip selects will be
+ increased automatically with max(cs-gpios, hardware chip selects).
+
+ So if, for example, the controller has 2 CS lines, and the
+ cs-gpios looks like this
+ cs-gpios = <&gpio1 0 0>, <0>, <&gpio1 1 0>, <&gpio1 2 0>;
+
+ Then it should be configured so that num_chipselect = 4, with
+ the following mapping
+ cs0 : &gpio1 0 0
+ cs1 : native
+ cs2 : &gpio1 1 0
+ cs3 : &gpio1 2 0
+
+ num-cs:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ Total number of chip selects.
+
+ spi-slave:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The SPI controller acts as a slave, instead of a master.
+
+patternProperties:
+ "^slave$":
+ type: object
+
+ properties:
+ compatible:
+ description:
+ Compatible of the SPI device.
+
+ required:
+ - compatible
+
+ "^.*@[0-9a-f]+$":
+ type: object
+
+ properties:
+ compatible:
+ description:
+ Compatible of the SPI device.
+
+ reg:
+ maxItems: 1
+ minimum: 0
+ maximum: 256
+ description:
+ Chip select used by the device.
+
+ spi-3wire:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires 3-wire mode.
+
+ spi-cpha:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires shifted clock phase (CPHA) mode.
+
+ spi-cpol:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires inverse clock polarity (CPOL) mode.
+
+ spi-cs-high:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires the chip select active high.
+
+ spi-lsb-first:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires the LSB first mode.
+
+ spi-max-frequency:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ Maximum SPI clocking speed of the device in Hz.
+
+ spi-rx-bus-width:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [ 1, 2, 4 ]
+ - default: 1
+ description:
+ Bus width to the SPI bus used for MISO.
+
+ spi-rx-delay-us:
+ description:
+ Delay, in microseconds, after a read transfer.
+
+ spi-tx-bus-width:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [ 1, 2, 4 ]
+ - default: 1
+ description:
+ Bus width to the SPI bus used for MOSI.
+
+ spi-tx-delay-us:
+ description:
+ Delay, in microseconds, after a write transfer.
+
+ required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ spi@f00 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi";
+ reg = <0xf00 0x20>;
+ interrupts = <2 13 0 2 14 0>;
+ interrupt-parent = <&mpc5200_pic>;
+
+ ethernet-switch@0 {
+ compatible = "micrel,ks8995m";
+ spi-max-frequency = <1000000>;
+ reg = <0>;
+ };
+
+ codec@1 {
+ compatible = "ti,tlv320aic26";
+ spi-max-frequency = <100000>;
+ reg = <1>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/spi/spi-gpio.txt b/Documentation/devicetree/bindings/spi/spi-gpio.txt
deleted file mode 100644
index 52db562f17a4..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-gpio.txt
+++ /dev/null
@@ -1,43 +0,0 @@
-SPI-GPIO devicetree bindings
-
-This represents a group of 3-n GPIO lines used for bit-banged SPI on dedicated
-GPIO lines.
-
-Required properties:
-
- - compatible: should be set to "spi-gpio"
- - #address-cells: should be set to <0x1>
- - ranges
- - sck-gpios: GPIO spec for the SCK line to use
- - miso-gpios: GPIO spec for the MISO line to use
- - mosi-gpios: GPIO spec for the MOSI line to use
- - cs-gpios: GPIOs to use for chipselect lines.
- Not needed if num-chipselects = <0>.
- - num-chipselects: Number of chipselect lines. Should be <0> if a single device
- with no chip select is connected.
-
-Deprecated bindings:
-
-These legacy GPIO line bindings can alternatively be used to define the
-GPIO lines used, they should not be used in new device trees.
-
- - gpio-sck: GPIO spec for the SCK line to use
- - gpio-miso: GPIO spec for the MISO line to use
- - gpio-mosi: GPIO spec for the MOSI line to use
-
-Example:
-
- spi {
- compatible = "spi-gpio";
- #address-cells = <0x1>;
- ranges;
-
- sck-gpios = <&gpio 95 0>;
- miso-gpios = <&gpio 98 0>;
- mosi-gpios = <&gpio 97 0>;
- cs-gpios = <&gpio 125 0>;
- num-chipselects = <1>;
-
- /* clients */
- };
-
diff --git a/Documentation/devicetree/bindings/spi/spi-gpio.yaml b/Documentation/devicetree/bindings/spi/spi-gpio.yaml
new file mode 100644
index 000000000000..55c4f1705f07
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-gpio.yaml
@@ -0,0 +1,72 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/spi-gpio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: SPI-GPIO devicetree bindings
+
+maintainers:
+ - Rob Herring <robh@kernel.org>
+
+description:
+ This represents a group of 3-n GPIO lines used for bit-banged SPI on
+ dedicated GPIO lines.
+
+allOf:
+ - $ref: "/schemas/spi/spi-controller.yaml#"
+
+properties:
+ compatible:
+ const: spi-gpio
+
+ sck-gpios:
+ description: GPIO spec for the SCK line to use
+ maxItems: 1
+
+ miso-gpios:
+ description: GPIO spec for the MISO line to use
+ maxItems: 1
+
+ mosi-gpios:
+ description: GPIO spec for the MOSI line to use
+ maxItems: 1
+
+ cs-gpios:
+ description: GPIOs to use for chipselect lines.
+ Not needed if num-chipselects = <0>.
+ minItems: 1
+ maxItems: 1024
+
+ num-chipselects:
+ description: Number of chipselect lines. Should be <0> if a single device
+ with no chip select is connected.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ # Deprecated properties
+ gpio-sck: false
+ gpio-miso: false
+ gpio-mosi: false
+
+required:
+ - compatible
+ - num-chipselects
+ - sck-gpios
+
+examples:
+ - |
+ spi {
+ compatible = "spi-gpio";
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+
+ sck-gpios = <&gpio 95 0>;
+ miso-gpios = <&gpio 98 0>;
+ mosi-gpios = <&gpio 97 0>;
+ cs-gpios = <&gpio 125 0>;
+ num-chipselects = <1>;
+
+ /* clients */
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/spi/spi-pl022.yaml b/Documentation/devicetree/bindings/spi/spi-pl022.yaml
new file mode 100644
index 000000000000..dfb697c69341
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-pl022.yaml
@@ -0,0 +1,165 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/spi-pl022.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ARM PL022 SPI controller
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+
+allOf:
+ - $ref: "spi-controller.yaml#"
+
+# We need a select here so we don't match all nodes with 'arm,primecell'
+select:
+ properties:
+ compatible:
+ contains:
+ const: arm,pl022
+ required:
+ - compatible
+
+properties:
+ compatible:
+ items:
+ - const: arm,pl022
+ - const: arm,primecell
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 2
+
+ clock-names:
+ items:
+ - enum:
+ - SSPCLK
+ - sspclk
+ - const: apb_pclk
+
+ pl022,autosuspend-delay:
+ description: delay in ms following transfer completion before the
+ runtime power management system suspends the device. A setting of 0
+ indicates no delay and the device will be suspended immediately.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ pl022,rt:
+ description: indicates the controller should run the message pump with realtime
+ priority to minimise the transfer latency on the bus (boolean)
+ type: boolean
+
+ dmas:
+ description:
+ Two or more DMA channel specifiers following the convention outlined
+ in bindings/dma/dma.txt
+ minItems: 2
+ maxItems: 32
+
+ dma-names:
+ description:
+ There must be at least one channel named "tx" for transmit and named "rx"
+ for receive.
+ minItems: 2
+ maxItems: 32
+ additionalItems: true
+ items:
+ - const: rx
+ - const: tx
+
+patternProperties:
+ "^[a-zA-Z][a-zA-Z0-9,+\\-._]{0,63}@[0-9a-f]+$":
+ type: object
+ # SPI slave nodes must be children of the SPI master node and can
+ # contain the following properties.
+ properties:
+ pl022,interface:
+ description: SPI interface type
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum:
+ - 0 # SPI
+ - 1 # Texas Instruments Synchronous Serial Frame Format
+ - 2 # Microwire (Half Duplex)
+
+ pl022,com-mode:
+ description: Specifies the transfer mode
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum:
+ - 0 # interrupt mode
+ - 1 # polling mode
+ - 2 # DMA mode
+ default: 1
+
+ pl022,rx-level-trig:
+ description: Rx FIFO watermark level
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - minimum: 0
+ maximum: 4
+
+ pl022,tx-level-trig:
+ description: Tx FIFO watermark level
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - minimum: 0
+ maximum: 4
+
+ pl022,ctrl-len:
+ description: Microwire interface - Control length
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - minimum: 0x03
+ maximum: 0x1f
+
+ pl022,wait-state:
+ description: Microwire interface - Wait state
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum: [ 0, 1 ]
+
+ pl022,duplex:
+ description: Microwire interface - Full/Half duplex
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum: [ 0, 1 ]
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ spi@e0100000 {
+ compatible = "arm,pl022", "arm,primecell";
+ reg = <0xe0100000 0x1000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ interrupts = <0 31 0x4>;
+ dmas = <&dma_controller 23 1>,
+ <&dma_controller 24 0>;
+ dma-names = "rx", "tx";
+
+ m25p80@1 {
+ compatible = "st,m25p80";
+ reg = <1>;
+ spi-max-frequency = <12000000>;
+ spi-cpol;
+ spi-cpha;
+ pl022,interface = <0>;
+ pl022,com-mode = <0x2>;
+ pl022,rx-level-trig = <0>;
+ pl022,tx-level-trig = <0>;
+ pl022,ctrl-len = <0x11>;
+ pl022,wait-state = <0>;
+ pl022,duplex = <0>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt b/Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt
index adeeb63e84b9..bfc038b9478d 100644
--- a/Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt
@@ -19,8 +19,11 @@ Required properties:
- reg: chip-Select number (QSPI controller may connect 2 flashes)
- spi-max-frequency: max frequency of spi bus
-Optional property:
+Optional properties:
- spi-rx-bus-width: see ./spi-bus.txt for the description
+- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
+Documentation/devicetree/bindings/dma/dma.txt.
+- dma-names: DMA request names should include "tx" and "rx" if present.
Example:
diff --git a/Documentation/devicetree/bindings/spi/spi-sun4i.txt b/Documentation/devicetree/bindings/spi/spi-sun4i.txt
deleted file mode 100644
index c75d604a8290..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-sun4i.txt
+++ /dev/null
@@ -1,23 +0,0 @@
-Allwinner A10 SPI controller
-
-Required properties:
-- compatible: Should be "allwinner,sun4-a10-spi".
-- reg: Should contain register location and length.
-- interrupts: Should contain interrupt.
-- clocks: phandle to the clocks feeding the SPI controller. Two are
- needed:
- - "ahb": the gated AHB parent clock
- - "mod": the parent module clock
-- clock-names: Must contain the clock names described just above
-
-Example:
-
-spi1: spi@1c06000 {
- compatible = "allwinner,sun4i-a10-spi";
- reg = <0x01c06000 0x1000>;
- interrupts = <11>;
- clocks = <&ahb_gates 21>, <&spi1_clk>;
- clock-names = "ahb", "mod";
- #address-cells = <1>;
- #size-cells = <0>;
-};
diff --git a/Documentation/devicetree/bindings/spi/spi-sun6i.txt b/Documentation/devicetree/bindings/spi/spi-sun6i.txt
deleted file mode 100644
index 435a8e0731ac..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-sun6i.txt
+++ /dev/null
@@ -1,44 +0,0 @@
-Allwinner A31/H3 SPI controller
-
-Required properties:
-- compatible: Should be "allwinner,sun6i-a31-spi" or "allwinner,sun8i-h3-spi".
-- reg: Should contain register location and length.
-- interrupts: Should contain interrupt.
-- clocks: phandle to the clocks feeding the SPI controller. Two are
- needed:
- - "ahb": the gated AHB parent clock
- - "mod": the parent module clock
-- clock-names: Must contain the clock names described just above
-- resets: phandle to the reset controller asserting this device in
- reset
-
-Optional properties:
-- dmas: DMA specifiers for rx and tx dma. See the DMA client binding,
- Documentation/devicetree/bindings/dma/dma.txt
-- dma-names: DMA request names should include "rx" and "tx" if present.
-
-Example:
-
-spi1: spi@1c69000 {
- compatible = "allwinner,sun6i-a31-spi";
- reg = <0x01c69000 0x1000>;
- interrupts = <0 66 4>;
- clocks = <&ahb1_gates 21>, <&spi1_clk>;
- clock-names = "ahb", "mod";
- resets = <&ahb1_rst 21>;
-};
-
-spi0: spi@1c68000 {
- compatible = "allwinner,sun8i-h3-spi";
- reg = <0x01c68000 0x1000>;
- interrupts = <GIC_SPI 65 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&ccu CLK_BUS_SPI0>, <&ccu CLK_SPI0>;
- clock-names = "ahb", "mod";
- dmas = <&dma 23>, <&dma 23>;
- dma-names = "rx", "tx";
- pinctrl-names = "default";
- pinctrl-0 = <&spi0_pins>;
- resets = <&ccu RST_BUS_SPI0>;
- #address-cells = <1>;
- #size-cells = <0>;
-};
diff --git a/Documentation/devicetree/bindings/spi/spi-synquacer.txt b/Documentation/devicetree/bindings/spi/spi-synquacer.txt
new file mode 100644
index 000000000000..291dfa692d0a
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-synquacer.txt
@@ -0,0 +1,27 @@
+* Socionext Synquacer HS-SPI bindings
+
+Required Properties:
+- compatible: should be "socionext,synquacer-spi"
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- interrupts: should contain the "spi_rx", "spi_tx" and "spi_fault" interrupts.
+- clocks: core clock iHCLK. Optional rate clock iPCLK (default is iHCLK)
+- clock-names: Shall be "iHCLK" and "iPCLK" respectively
+
+Optional Properties:
+- socionext,use-rtm: boolean, if required to use "retimed clock" for RX
+- socionext,set-aces: boolean, if same active clock edges field to be set.
+
+Example:
+
+ spi0: spi@ff110000 {
+ compatible = "socionext,synquacer-spi";
+ reg = <0xff110000 0x1000>;
+ interrupts = <GIC_SPI 160 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 161 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 162 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&clk_hsspi>;
+ clock-names = "iHCLK";
+ socionext,use-rtm;
+ socionext,set-aces;
+ };
diff --git a/Documentation/devicetree/bindings/spi/spi_pl022.txt b/Documentation/devicetree/bindings/spi/spi_pl022.txt
deleted file mode 100644
index 7638b4968ddb..000000000000
--- a/Documentation/devicetree/bindings/spi/spi_pl022.txt
+++ /dev/null
@@ -1,70 +0,0 @@
-ARM PL022 SPI controller
-
-Required properties:
-- compatible : "arm,pl022", "arm,primecell"
-- reg : Offset and length of the register set for the device
-- interrupts : Should contain SPI controller interrupt
-- num-cs : total number of chipselects
-
-Optional properties:
-- cs-gpios : should specify GPIOs used for chipselects.
- The gpios will be referred to as reg = <index> in the SPI child nodes.
- If unspecified, a single SPI device without a chip select can be used.
-- pl022,autosuspend-delay : delay in ms following transfer completion before
- the runtime power management system suspends the
- device. A setting of 0 indicates no delay and the
- device will be suspended immediately
-- pl022,rt : indicates the controller should run the message pump with realtime
- priority to minimise the transfer latency on the bus (boolean)
-- dmas : Two or more DMA channel specifiers following the convention outlined
- in bindings/dma/dma.txt
-- dma-names: Names for the dma channels, if present. There must be at
- least one channel named "tx" for transmit and named "rx" for
- receive.
-
-
-SPI slave nodes must be children of the SPI master node and can
-contain the following properties.
-
-- pl022,interface : interface type:
- 0: SPI
- 1: Texas Instruments Synchronous Serial Frame Format
- 2: Microwire (Half Duplex)
-- pl022,com-mode : specifies the transfer mode:
- 0: interrupt mode
- 1: polling mode (default mode if property not present)
- 2: DMA mode
-- pl022,rx-level-trig : Rx FIFO watermark level
-- pl022,tx-level-trig : Tx FIFO watermark level
-- pl022,ctrl-len : Microwire interface: Control length
-- pl022,wait-state : Microwire interface: Wait state
-- pl022,duplex : Microwire interface: Full/Half duplex
-
-
-Example:
-
- spi@e0100000 {
- compatible = "arm,pl022", "arm,primecell";
- reg = <0xe0100000 0x1000>;
- #address-cells = <1>;
- #size-cells = <0>;
- interrupts = <0 31 0x4>;
- dmas = <&dma-controller 23 1>,
- <&dma-controller 24 0>;
- dma-names = "rx", "tx";
-
- m25p80@1 {
- compatible = "st,m25p80";
- reg = <1>;
- spi-max-frequency = <12000000>;
- spi-cpol;
- spi-cpha;
- pl022,interface = <0>;
- pl022,com-mode = <0x2>;
- pl022,rx-level-trig = <0>;
- pl022,tx-level-trig = <0>;
- pl022,ctrl-len = <0x11>;
- pl022,wait-state = <0>;
- pl022,duplex = <0>;
- };
- };
diff --git a/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt b/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt
new file mode 100644
index 000000000000..d57659996d62
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt
@@ -0,0 +1,25 @@
+NXP System Counter Module(sys_ctr)
+
+The system counter(sys_ctr) is a programmable system counter which provides
+a shared time base to Cortex A15, A7, A53, A73, etc. it is intended for use in
+applications where the counter is always powered and support multiple,
+unrelated clocks. The compare frame inside can be used for timer purpose.
+
+Required properties:
+
+- compatible : should be "nxp,sysctr-timer"
+- reg : Specifies the base physical address and size of the comapre
+ frame and the counter control, read & compare.
+- interrupts : should be the first compare frames' interrupt
+- clocks : Specifies the counter clock.
+- clock-names: Specifies the clock's name of this module
+
+Example:
+
+ system_counter: timer@306a0000 {
+ compatible = "nxp,sysctr-timer";
+ reg = <0x306a0000 0x20000>;/* system-counter-rd & compare */
+ clocks = <&clk_8m>;
+ clock-names = "per";
+ interrupts = <GIC_SPI 47 IRQ_TYPE_LEVEL_HIGH>;
+ };
diff --git a/Documentation/devicetree/bindings/trivial-devices.yaml b/Documentation/devicetree/bindings/trivial-devices.yaml
index 747fd3f689dc..2e742d399e87 100644
--- a/Documentation/devicetree/bindings/trivial-devices.yaml
+++ b/Documentation/devicetree/bindings/trivial-devices.yaml
@@ -52,6 +52,10 @@ properties:
- at,24c08
# i2c trusted platform module (TPM)
- atmel,at97sc3204t
+ # i2c h/w symmetric crypto module
+ - atmel,atsha204a
+ # i2c h/w elliptic curve crypto module
+ - atmel,atecc508a
# CM32181: Ambient Light Sensor
- capella,cm32181
# CM3232: Ambient Light Sensor
diff --git a/Documentation/devicetree/bindings/usb/dwc2.txt b/Documentation/devicetree/bindings/usb/dwc2.txt
index 49eac0dc86b0..aafff3a6904d 100644
--- a/Documentation/devicetree/bindings/usb/dwc2.txt
+++ b/Documentation/devicetree/bindings/usb/dwc2.txt
@@ -42,6 +42,8 @@ Refer to phy/phy-bindings.txt for generic phy consumer properties
- g-rx-fifo-size: size of rx fifo size in gadget mode.
- g-np-tx-fifo-size: size of non-periodic tx fifo size in gadget mode.
- g-tx-fifo-size: size of periodic tx fifo per endpoint (except ep0) in gadget mode.
+- snps,need-phy-for-wake: If present indicates that the phy needs to be left
+ on for remote wakeup during suspend.
- snps,reset-phy-on-wake: If present indicates that we need to reset the PHY when
we detect a wakeup. This is due to a hardware errata.
@@ -58,4 +60,5 @@ Example:
clock-names = "otg";
phys = <&usbphy>;
phy-names = "usb2-phy";
+ snps,need-phy-for-wake;
};
diff --git a/Documentation/devicetree/bindings/usb/dwc3.txt b/Documentation/devicetree/bindings/usb/dwc3.txt
index 8e5265e9f658..66780a47ad85 100644
--- a/Documentation/devicetree/bindings/usb/dwc3.txt
+++ b/Documentation/devicetree/bindings/usb/dwc3.txt
@@ -64,6 +64,8 @@ Optional properties:
- snps,dis_u2_susphy_quirk: when set core will disable USB2 suspend phy.
- snps,dis_enblslpm_quirk: when set clears the enblslpm in GUSB2PHYCFG,
disabling the suspend signal to the PHY.
+ - snps,dis-u1-entry-quirk: set if link entering into U1 needs to be disabled.
+ - snps,dis-u2-entry-quirk: set if link entering into U2 needs to be disabled.
- snps,dis_rxdet_inp3_quirk: when set core will disable receiver detection
in PHY P3 power state.
- snps,dis-u2-freeclk-exists-quirk: when set, clear the u2_freeclk_exists
diff --git a/Documentation/devicetree/bindings/usb/generic-ehci.yaml b/Documentation/devicetree/bindings/usb/generic-ehci.yaml
index d3b4f6415920..059f6ef1ad4a 100644
--- a/Documentation/devicetree/bindings/usb/generic-ehci.yaml
+++ b/Documentation/devicetree/bindings/usb/generic-ehci.yaml
@@ -74,7 +74,7 @@ additionalProperties: false
examples:
- |
- ehci@e0000300 {
+ usb@e0000300 {
compatible = "ibm,usb-ehci-440epx", "generic-ehci";
interrupt-parent = <&UIC0>;
interrupts = <0x1a 4>;
@@ -89,7 +89,6 @@ examples:
interrupts = <39>;
clocks = <&ahb_gates 1>;
phys = <&usbphy 1>;
- phy-names = "usb";
};
...
diff --git a/Documentation/devicetree/bindings/usb/renesas_usb3.txt b/Documentation/devicetree/bindings/usb/renesas,usb3.txt
index 35039e720515..35039e720515 100644
--- a/Documentation/devicetree/bindings/usb/renesas_usb3.txt
+++ b/Documentation/devicetree/bindings/usb/renesas,usb3.txt
diff --git a/Documentation/devicetree/bindings/usb/renesas_usbhs.txt b/Documentation/devicetree/bindings/usb/renesas,usbhs.txt
index b8acc2a994a8..e39255ea6e4f 100644
--- a/Documentation/devicetree/bindings/usb/renesas_usbhs.txt
+++ b/Documentation/devicetree/bindings/usb/renesas,usbhs.txt
@@ -20,9 +20,11 @@ Required properties:
- "renesas,usbhs-r8a77990" for r8a77990 (R-Car E3) compatible device
- "renesas,usbhs-r8a77995" for r8a77995 (R-Car D3) compatible device
- "renesas,usbhs-r7s72100" for r7s72100 (RZ/A1) compatible device
+ - "renesas,usbhs-r7s9210" for r7s9210 (RZ/A2) compatible device
- "renesas,rcar-gen2-usbhs" for R-Car Gen2 or RZ/G1 compatible devices
- "renesas,rcar-gen3-usbhs" for R-Car Gen3 or RZ/G2 compatible devices
- "renesas,rza1-usbhs" for RZ/A1 compatible device
+ - "renesas,rza2-usbhs" for RZ/A2 compatible device
When compatible with the generic version, nodes must list the
SoC-specific version corresponding to the platform first followed
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.yaml b/Documentation/devicetree/bindings/vendor-prefixes.yaml
index 33a65a45e319..18b79c4cf7d5 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.yaml
+++ b/Documentation/devicetree/bindings/vendor-prefixes.yaml
@@ -49,6 +49,8 @@ patternProperties:
description: Aeroflex Gaisler AB
"^al,.*":
description: Annapurna Labs
+ "^allegro,.*":
+ description: Allegro DVT
"^allo,.*":
description: Allo.com
"^allwinner,.*":
@@ -147,6 +149,8 @@ patternProperties:
description: Broadcom Corporation
"^buffalo,.*":
description: Buffalo, Inc.
+ "^bur,.*":
+ description: B&R Industrial Automation GmbH
"^bticino,.*":
description: Bticino International
"^calxeda,.*":
@@ -175,6 +179,8 @@ patternProperties:
description: Common Hardware Reference Platform
"^chunghwa,.*":
description: Chunghwa Picture Tubes Ltd.
+ "^chuwi,.*":
+ description: Chuwi Innovation Ltd.
"^ciaa,.*":
description: Computadora Industrial Abierta Argentina
"^cirrus,.*":
@@ -185,8 +191,12 @@ patternProperties:
description: Chips&Media, Inc.
"^cnxt,.*":
description: Conexant Systems, Inc.
+ "^colorfly,.*":
+ description: Colorful GRP, Shenzhen Xueyushi Technology Ltd.
"^compulab,.*":
description: CompuLab Ltd.
+ "^corpro,.*":
+ description: Chengdu Corpro Technology Co., Ltd.
"^cortina,.*":
description: Cortina Systems, Inc.
"^cosmic,.*":
@@ -199,6 +209,8 @@ patternProperties:
description: Crystalfontz America, Inc.
"^csky,.*":
description: Hangzhou C-SKY Microsystems Co., Ltd
+ "^csq,.*":
+ description: Shenzen Chuangsiqi Technology Co.,Ltd.
"^cubietech,.*":
description: Cubietech, Ltd.
"^cypress,.*":
@@ -219,6 +231,8 @@ patternProperties:
description: Devantech, Ltd.
"^dh,.*":
description: DH electronics GmbH
+ "^difrnce,.*":
+ description: Shenzhen Yagu Electronic Technology Co., Ltd.
"^digi,.*":
description: Digi International Inc.
"^digilent,.*":
@@ -241,6 +255,8 @@ patternProperties:
description: DPTechnics
"^dragino,.*":
description: Dragino Technology Co., Limited
+ "^dserve,.*":
+ description: dServe Technology B.V.
"^ea,.*":
description: Embedded Artists AB
"^ebs-systart,.*":
@@ -263,6 +279,8 @@ patternProperties:
description: Emlid, Ltd.
"^emmicro,.*":
description: EM Microelectronic
+ "^empire-electronix,.*":
+ description: Empire Electronix
"^emtrion,.*":
description: emtrion GmbH
"^endless,.*":
@@ -277,6 +295,8 @@ patternProperties:
description: Ecole Polytechnique Fédérale de Lausanne
"^epson,.*":
description: Seiko Epson Corp.
+ "^esp,.*":
+ description: Espressif Systems Co. Ltd.
"^est,.*":
description: ESTeem Wireless Modems
"^ettus,.*":
@@ -327,6 +347,8 @@ patternProperties:
description: GE Fanuc Intelligent Platforms Embedded Systems, Inc.
"^GEFanuc,.*":
description: GE Fanuc Intelligent Platforms Embedded Systems, Inc.
+ "^gemei,.*":
+ description: Gemei Digital Technology Co., Ltd.
"^geniatech,.*":
description: Geniatech, Inc.
"^giantec,.*":
@@ -373,10 +395,14 @@ patternProperties:
description: Honeywell
"^hp,.*":
description: Hewlett Packard
+ "^hsg,.*":
+ description: HannStar Display Co.
"^holtek,.*":
description: Holtek Semiconductor, Inc.
"^hwacom,.*":
description: HwaCom Systems Inc.
+ "^hyundai,.*":
+ description: Hyundai Technology
"^i2se,.*":
description: I2SE GmbH
"^ibm,.*":
@@ -391,6 +417,10 @@ patternProperties:
description: ILI Technology Corporation (ILITEK)
"^img,.*":
description: Imagination Technologies Ltd.
+ "^incircuit,.*":
+ description: In-Circuit GmbH
+ "^inet-tek,.*":
+ description: Shenzhen iNet Mobile Internet Technology Co., Ltd
"^infineon,.*":
description: Infineon Technologies
"^inforce,.*":
@@ -425,6 +455,8 @@ patternProperties:
description: Japan Display Inc.
"^jedec,.*":
description: JEDEC Solid State Technology Association
+ "^jesurun,.*":
+ description: Shenzhen Jesurun Electronics Business Dept.
"^jianda,.*":
description: Jiandangjing Technology Co., Ltd.
"^karo,.*":
@@ -449,6 +481,8 @@ patternProperties:
description: Rakuten Kobo Inc.
"^koe,.*":
description: Kaohsiung Opto-Electronics Inc.
+ "^kontron,.*":
+ description: Kontron S&T AG
"^kosagi,.*":
description: Sutajio Ko-Usagi PTE Ltd.
"^kyo,.*":
@@ -457,6 +491,8 @@ patternProperties:
description: LaCie
"^laird,.*":
description: Laird PLC
+ "^lamobo,.*":
+ description: Ketai Huajie Technology Co., Ltd.
"^lantiq,.*":
description: Lantiq Semiconductor
"^lattice,.*":
@@ -475,6 +511,8 @@ patternProperties:
description: Lichee Pi
"^linaro,.*":
description: Linaro Limited
+ "^linksprite,.*":
+ description: LinkSprite Technologies, Inc.
"^linksys,.*":
description: Belkin International, Inc. (Linksys)
"^linux,.*":
@@ -491,6 +529,8 @@ patternProperties:
description: Liebherr-Werk Nenzing GmbH
"^macnica,.*":
description: Macnica Americas
+ "^mapleboard,.*":
+ description: Mapleboard.org
"^marvell,.*":
description: Marvell Technology Group Ltd.
"^maxbotix,.*":
@@ -531,6 +571,8 @@ patternProperties:
description: Micron Technology Inc.
"^mikroe,.*":
description: MikroElektronika d.o.o.
+ "^miniand,.*":
+ description: Miniand Tech
"^minix,.*":
description: MINIX Technology Ltd.
"^miramems,.*":
@@ -661,24 +703,32 @@ patternProperties:
description: Picochip Ltd
"^pine64,.*":
description: Pine64
+ "^pineriver,.*":
+ description: Shenzhen PineRiver Designs Co., Ltd.
"^pixcir,.*":
description: PIXCIR MICROELECTRONICS Co., Ltd
"^plantower,.*":
description: Plantower Co., Ltd
"^plathome,.*":
- description: Plat'Home Co., Ltd.
+ description: Plat\'Home Co., Ltd.
"^plda,.*":
description: PLDA
"^plx,.*":
description: Broadcom Corporation (formerly PLX Technology)
"^pni,.*":
description: PNI Sensor Corporation
+ "^polaroid,.*":
+ description: Polaroid Corporation
"^portwell,.*":
description: Portwell Inc.
"^poslab,.*":
description: Poslab Technology Co., Ltd.
+ "^pov,.*":
+ description: Point of View International B.V.
"^powervr,.*":
description: PowerVR (deprecated, use img)
+ "^primux,.*":
+ description: Primux Trading, S.L.
"^probox2,.*":
description: PROBOX2 (by W2COMP Co., Ltd.)
"^pulsedlight,.*":
@@ -691,6 +741,8 @@ patternProperties:
description: QEMU, a generic and open source machine emulator and virtualizer
"^qi,.*":
description: Qi Hardware
+ "^qihua,.*":
+ description: Chengdu Kaixuan Information Technology Co., Ltd.
"^qiaodian,.*":
description: QiaoDian XianShi Corporation
"^qnap,.*":
@@ -713,6 +765,8 @@ patternProperties:
description: Realtek Semiconductor Corp.
"^renesas,.*":
description: Renesas Electronics Corporation
+ "^rervision,.*":
+ description: Shenzhen Rervision Technology Co., Ltd.
"^richtek,.*":
description: Richtek Technology Corporation
"^ricoh,.*":
@@ -781,8 +835,14 @@ patternProperties:
description: Silergy Corp.
"^siliconmitus,.*":
description: Silicon Mitus, Inc.
- "^simte,.*":
- description: k
+ "^simtek,.*":
+ description: Cypress Semiconductor Corporation (Simtek Corporation)
+ "^sinlinx,.*":
+ description: Sinlinx Electronics Technology Co., LTD
+ "^sinovoip,.*":
+ description: SinoVoip Co., Ltd
+ "^sipeed,.*":
+ description: Shenzhen Sipeed Technology Co., Ltd.
"^sirf,.*":
description: SiRF Technology, Inc.
"^sis,.*":
@@ -795,6 +855,8 @@ patternProperties:
description: Standard Microsystems Corporation
"^snps,.*":
description: Synopsys, Inc.
+ "^sochip,.*":
+ description: Shenzhen SoChip Technology Co., Ltd.
"^socionext,.*":
description: Socionext Inc.
"^solidrun,.*":
@@ -901,6 +963,8 @@ patternProperties:
description: United Radiant Technology Corporation
"^usi,.*":
description: Universal Scientific Industrial Co., Ltd.
+ "^utoo,.*":
+ description: Aigo Digital Technology Co., Ltd.
"^v3,.*":
description: V3 Semiconductor
"^vamrs,.*":
@@ -937,10 +1001,14 @@ patternProperties:
description: Winbond Electronics corp.
"^winstar,.*":
description: Winstar Display Corp.
+ "^wits,.*":
+ description: Shenzhen Merrii Technology Co., Ltd. (WITS)
"^wlf,.*":
description: Wolfson Microelectronics
"^wm,.*":
description: Wondermedia Technologies, Inc.
+ "^wobo,.*":
+ description: Wobo
"^x-powers,.*":
description: X-Powers
"^xes,.*":
@@ -951,6 +1019,8 @@ patternProperties:
description: Xilinx
"^xunlong,.*":
description: Shenzhen Xunlong Software CO.,Limited
+ "^yones-toptech,.*":
+ description: Yones Toptech Co., Ltd.
"^ysoft,.*":
description: Y Soft Corporation a.s.
"^zarlink,.*":
@@ -968,7 +1038,7 @@ patternProperties:
# Normal property name match without a comma
# These should catch all node/property names without a prefix
- "^[a-zA-Z0-9#][a-zA-Z0-9+\\-._@]{0,63}$": true
+ "^[a-zA-Z0-9#_][a-zA-Z0-9+\\-._@]{0,63}$": true
"^[a-zA-Z0-9+\\-._]*@[0-9a-zA-Z,]*$": true
"^#.*": true
diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt
index e86bd2f64117..60f8640f2b2f 100644
--- a/Documentation/devicetree/booting-without-of.txt
+++ b/Documentation/devicetree/booting-without-of.txt
@@ -277,7 +277,7 @@ it with special cases.
the decompressor (the real mode entry point goes to the same 32bit
entry point once it switched into protected mode). That entry point
supports one calling convention which is documented in
- Documentation/x86/boot.txt
+ Documentation/x86/boot.rst
The physical pointer to the device-tree block (defined in chapter II)
is passed via setup_data which requires at least boot protocol 2.09.
The type filed is defined as
diff --git a/Documentation/doc-guide/kernel-doc.rst b/Documentation/doc-guide/kernel-doc.rst
index f96059767c8c..192c36af39e2 100644
--- a/Documentation/doc-guide/kernel-doc.rst
+++ b/Documentation/doc-guide/kernel-doc.rst
@@ -359,7 +359,7 @@ Domain`_ references.
``monospaced font``.
Useful if you need to use special characters that would otherwise have some
- meaning either by kernel-doc script of by reStructuredText.
+ meaning either by kernel-doc script or by reStructuredText.
This is particularly useful if you need to use things like ``%ph`` inside
a function description.
diff --git a/Documentation/doc-guide/sphinx.rst b/Documentation/doc-guide/sphinx.rst
index c039224b404e..f71ddd592aaa 100644
--- a/Documentation/doc-guide/sphinx.rst
+++ b/Documentation/doc-guide/sphinx.rst
@@ -27,8 +27,7 @@ Sphinx Install
==============
The ReST markups currently used by the Documentation/ files are meant to be
-built with ``Sphinx`` version 1.3 or higher. If you desire to build
-PDF output, it is recommended to use version 1.4.6 or higher.
+built with ``Sphinx`` version 1.3 or higher.
There's a script that checks for the Sphinx requirements. Please see
:ref:`sphinx-pre-install` for further details.
@@ -56,13 +55,13 @@ or ``virtualenv``, depending on how your distribution packaged Python 3.
those expressions are written using LaTeX notation. It needs texlive
installed with amdfonts and amsmath in order to evaluate them.
-In summary, if you want to install Sphinx version 1.4.9, you should do::
+In summary, if you want to install Sphinx version 1.7.9, you should do::
- $ virtualenv sphinx_1.4
- $ . sphinx_1.4/bin/activate
- (sphinx_1.4) $ pip install -r Documentation/sphinx/requirements.txt
+ $ virtualenv sphinx_1.7.9
+ $ . sphinx_1.7.9/bin/activate
+ (sphinx_1.7.9) $ pip install -r Documentation/sphinx/requirements.txt
-After running ``. sphinx_1.4/bin/activate``, the prompt will change,
+After running ``. sphinx_1.7.9/bin/activate``, the prompt will change,
in order to indicate that you're using the new environment. If you
open a new shell, you need to rerun this command to enter again at
the virtual environment before building the documentation.
@@ -105,8 +104,8 @@ command line options for your distro::
You should run:
sudo dnf install -y texlive-luatex85
- /usr/bin/virtualenv sphinx_1.4
- . sphinx_1.4/bin/activate
+ /usr/bin/virtualenv sphinx_1.7.9
+ . sphinx_1.7.9/bin/activate
pip install -r Documentation/sphinx/requirements.txt
Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-install line 468.
@@ -218,7 +217,7 @@ Here are some specific guidelines for the kernel documentation:
examples, etc.), use ``::`` for anything that doesn't really benefit
from syntax highlighting, especially short snippets. Use
``.. code-block:: <language>`` for longer code blocks that benefit
- from highlighting.
+ from highlighting. For a short snippet of code embedded in the text, use \`\`.
the C domain
@@ -242,11 +241,14 @@ The C domain of the kernel-doc has some additional features. E.g. you can
The func-name (e.g. ioctl) remains in the output but the ref-name changed from
``ioctl`` to ``VIDIOC_LOG_STATUS``. The index entry for this function is also
-changed to ``VIDIOC_LOG_STATUS`` and the function can now referenced by:
-
-.. code-block:: rst
-
- :c:func:`VIDIOC_LOG_STATUS`
+changed to ``VIDIOC_LOG_STATUS``.
+
+Please note that there is no need to use ``c:func:`` to generate cross
+references to function documentation. Due to some Sphinx extension magic,
+the documentation build system will automatically turn a reference to
+``function()`` into a cross reference if an index entry for the given
+function name exists. If you see ``c:func:`` use in a kernel document,
+please feel free to remove it.
list tables
diff --git a/Documentation/docutils.conf b/Documentation/docutils.conf
index 2830772264c8..f1a180b97dec 100644
--- a/Documentation/docutils.conf
+++ b/Documentation/docutils.conf
@@ -4,4 +4,4 @@
# http://docutils.sourceforge.net/docs/user/config.html
[general]
-halt_level: severe \ No newline at end of file
+halt_level: severe
diff --git a/Documentation/driver-api/80211/mac80211-advanced.rst b/Documentation/driver-api/80211/mac80211-advanced.rst
index 70a89b2163c2..9f1c5bb7ac35 100644
--- a/Documentation/driver-api/80211/mac80211-advanced.rst
+++ b/Documentation/driver-api/80211/mac80211-advanced.rst
@@ -226,9 +226,6 @@ TBD
.. kernel-doc:: include/net/mac80211.h
:functions: ieee80211_tx_rate_control
-.. kernel-doc:: include/net/mac80211.h
- :functions: rate_control_send_low
-
TBD
This part of the book describes mac80211 internals.
diff --git a/Documentation/driver-api/basics.rst b/Documentation/driver-api/basics.rst
index e970fadf4d1a..1ba88c7b3984 100644
--- a/Documentation/driver-api/basics.rst
+++ b/Documentation/driver-api/basics.rst
@@ -115,9 +115,6 @@ Kernel utility functions
.. kernel-doc:: kernel/rcu/tree.c
:export:
-.. kernel-doc:: kernel/rcu/tree_plugin.h
- :export:
-
.. kernel-doc:: kernel/rcu/update.c
:export:
diff --git a/Documentation/driver-api/clk.rst b/Documentation/driver-api/clk.rst
index 593cca5058b1..3cad45d14187 100644
--- a/Documentation/driver-api/clk.rst
+++ b/Documentation/driver-api/clk.rst
@@ -175,9 +175,9 @@ the following::
To take advantage of your data you'll need to support valid operations
for your clk::
- struct clk_ops clk_foo_ops {
- .enable = &clk_foo_enable;
- .disable = &clk_foo_disable;
+ struct clk_ops clk_foo_ops = {
+ .enable = &clk_foo_enable,
+ .disable = &clk_foo_disable,
};
Implement the above functions using container_of::
diff --git a/Documentation/driver-api/firmware/other_interfaces.rst b/Documentation/driver-api/firmware/other_interfaces.rst
index a4ac54b5fd79..b81794e0cfbb 100644
--- a/Documentation/driver-api/firmware/other_interfaces.rst
+++ b/Documentation/driver-api/firmware/other_interfaces.rst
@@ -33,7 +33,7 @@ of the requests on to a secure monitor (EL3).
:functions: stratix10_svc_client_msg
.. kernel-doc:: include/linux/firmware/intel/stratix10-svc-client.h
- :functions: stratix10_svc_command_reconfig_payload
+ :functions: stratix10_svc_command_config_type
.. kernel-doc:: include/linux/firmware/intel/stratix10-svc-client.h
:functions: stratix10_svc_cb_data
diff --git a/Documentation/driver-api/gpio/board.rst b/Documentation/driver-api/gpio/board.rst
index b37f3f7b8926..ce91518bf9f4 100644
--- a/Documentation/driver-api/gpio/board.rst
+++ b/Documentation/driver-api/gpio/board.rst
@@ -101,7 +101,7 @@ with the help of _DSD (Device Specific Data), introduced in ACPI 5.1::
}
For more information about the ACPI GPIO bindings see
-Documentation/acpi/gpio-properties.txt.
+Documentation/firmware-guide/acpi/gpio-properties.rst.
Platform Data
-------------
diff --git a/Documentation/driver-api/gpio/consumer.rst b/Documentation/driver-api/gpio/consumer.rst
index 5e4d8aa68913..423492d125b9 100644
--- a/Documentation/driver-api/gpio/consumer.rst
+++ b/Documentation/driver-api/gpio/consumer.rst
@@ -283,8 +283,6 @@ To summarize::
gpiod_set_value(desc, 1); default (active high) high
gpiod_set_value(desc, 0); active low high
gpiod_set_value(desc, 1); active low low
- gpiod_set_value(desc, 0); default (active high) low
- gpiod_set_value(desc, 1); default (active high) high
gpiod_set_value(desc, 0); open drain low
gpiod_set_value(desc, 1); open drain high impedance
gpiod_set_value(desc, 0); open source high impedance
@@ -366,7 +364,7 @@ accessed sequentially.
The functions take three arguments:
* array_size - the number of array elements
* desc_array - an array of GPIO descriptors
- * array_info - optional information obtained from gpiod_array_get()
+ * array_info - optional information obtained from gpiod_get_array()
* value_bitmap - a bitmap to store the GPIOs' values (get) or
a bitmap of values to assign to the GPIOs (set)
@@ -437,7 +435,7 @@ case, it will be handled by the GPIO subsystem automatically. However, if the
_DSD is not present, the mappings between GpioIo()/GpioInt() resources and GPIO
connection IDs need to be provided by device drivers.
-For details refer to Documentation/acpi/gpio-properties.txt
+For details refer to Documentation/firmware-guide/acpi/gpio-properties.rst
Interacting With the Legacy GPIO Subsystem
diff --git a/Documentation/driver-api/gpio/driver.rst b/Documentation/driver-api/gpio/driver.rst
index f931597fe7be..349f2dc33029 100644
--- a/Documentation/driver-api/gpio/driver.rst
+++ b/Documentation/driver-api/gpio/driver.rst
@@ -235,7 +235,7 @@ means that a pull up or pull-down resistor is available on the output of the
GPIO line, and this resistor is software controlled.
In discrete designs, a pull-up or pull-down resistor is simply soldered on
-the circuit board. This is not something we deal or model in software. The
+the circuit board. This is not something we deal with or model in software. The
most you will think about these lines is that they will very likely be
configured as open drain or open source (see the section above).
@@ -292,18 +292,18 @@ We can divide GPIO irqchips in two broad categories:
- HIERARCHICAL INTERRUPT CHIPS: this means that each GPIO line has a dedicated
irq line to a parent interrupt controller one level up. There is no need
- to inquire the GPIO hardware to figure out which line has figured, but it
- may still be necessary to acknowledge the interrupt and set up the
- configuration such as edge sensitivity.
+ to inquire the GPIO hardware to figure out which line has fired, but it
+ may still be necessary to acknowledge the interrupt and set up configuration
+ such as edge sensitivity.
Realtime considerations: a realtime compliant GPIO driver should not use
spinlock_t or any sleepable APIs (like PM runtime) as part of its irqchip
implementation.
-- spinlock_t should be replaced with raw_spinlock_t [1].
+- spinlock_t should be replaced with raw_spinlock_t.[1]
- If sleepable APIs have to be used, these can be done from the .irq_bus_lock()
and .irq_bus_unlock() callbacks, as these are the only slowpath callbacks
- on an irqchip. Create the callbacks if needed [2].
+ on an irqchip. Create the callbacks if needed.[2]
Cascaded GPIO irqchips
@@ -361,7 +361,7 @@ Cascaded GPIO irqchips usually fall in one of three categories:
Realtime considerations: this kind of handlers will be forced threaded on -RT,
and as result the IRQ core will complain that generic_handle_irq() is called
- with IRQ enabled and the same work around as for "CHAINED GPIO irqchips" can
+ with IRQ enabled and the same work-around as for "CHAINED GPIO irqchips" can
be applied.
- NESTED THREADED GPIO IRQCHIPS: these are off-chip GPIO expanders and any
@@ -418,7 +418,7 @@ symbol:
If there is a need to exclude certain GPIO lines from the IRQ domain handled by
these helpers, we can set .irq.need_valid_mask of the gpiochip before
-[devm_]gpiochip_add_data() is called. This allocates an .irq.valid_mask with as
+``[devm_]gpiochip_add_data()`` is called. This allocates an .irq.valid_mask with as
many bits set as there are GPIO lines in the chip, each bit representing line
0..n-1. Drivers can exclude GPIO lines by clearing bits from this mask. The mask
must be filled in before gpiochip_irqchip_add() or gpiochip_irqchip_add_nested()
diff --git a/Documentation/driver-api/iio/hw-consumer.rst b/Documentation/driver-api/iio/hw-consumer.rst
index e0fe0b98230e..819fb9edc005 100644
--- a/Documentation/driver-api/iio/hw-consumer.rst
+++ b/Documentation/driver-api/iio/hw-consumer.rst
@@ -45,7 +45,6 @@ A typical IIO HW consumer setup looks like this::
More details
============
-.. kernel-doc:: include/linux/iio/hw-consumer.h
.. kernel-doc:: drivers/iio/buffer/industrialio-hw-consumer.c
:export:
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index d26308af6036..0dbaa987aa11 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -42,6 +42,7 @@ available subsections can be seen below.
target
mtdnand
miscellaneous
+ mei/index
w1
rapidio
s390-drivers
diff --git a/Documentation/driver-api/mei/hdcp.rst b/Documentation/driver-api/mei/hdcp.rst
new file mode 100644
index 000000000000..e85a065b1cdc
--- /dev/null
+++ b/Documentation/driver-api/mei/hdcp.rst
@@ -0,0 +1,32 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+HDCP:
+=====
+
+ME FW as a security engine provides the capability for setting up
+HDCP2.2 protocol negotiation between the Intel graphics device and
+an HDC2.2 sink.
+
+ME FW prepares HDCP2.2 negotiation parameters, signs and encrypts them
+according the HDCP 2.2 spec. The Intel graphics sends the created blob
+to the HDCP2.2 sink.
+
+Similarly, the HDCP2.2 sink's response is transferred to ME FW
+for decryption and verification.
+
+Once all the steps of HDCP2.2 negotiation are completed,
+upon request ME FW will configure the port as authenticated and supply
+the HDCP encryption keys to Intel graphics hardware.
+
+
+mei_hdcp driver
+---------------
+.. kernel-doc:: drivers/misc/mei/hdcp/mei_hdcp.c
+ :doc: MEI_HDCP Client Driver
+
+mei_hdcp api
+------------
+
+.. kernel-doc:: drivers/misc/mei/hdcp/mei_hdcp.c
+ :functions:
+
diff --git a/Documentation/driver-api/mei/iamt.rst b/Documentation/driver-api/mei/iamt.rst
new file mode 100644
index 000000000000..6ef3e613684b
--- /dev/null
+++ b/Documentation/driver-api/mei/iamt.rst
@@ -0,0 +1,101 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Intel(R) Active Management Technology (Intel AMT)
+=================================================
+
+Prominent usage of the Intel ME Interface is to communicate with Intel(R)
+Active Management Technology (Intel AMT) implemented in firmware running on
+the Intel ME.
+
+Intel AMT provides the ability to manage a host remotely out-of-band (OOB)
+even when the operating system running on the host processor has crashed or
+is in a sleep state.
+
+Some examples of Intel AMT usage are:
+ - Monitoring hardware state and platform components
+ - Remote power off/on (useful for green computing or overnight IT
+ maintenance)
+ - OS updates
+ - Storage of useful platform information such as software assets
+ - Built-in hardware KVM
+ - Selective network isolation of Ethernet and IP protocol flows based
+ on policies set by a remote management console
+ - IDE device redirection from remote management console
+
+Intel AMT (OOB) communication is based on SOAP (deprecated
+starting with Release 6.0) over HTTP/S or WS-Management protocol over
+HTTP/S that are received from a remote management console application.
+
+For more information about Intel AMT:
+https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
+
+
+Intel AMT Applications
+----------------------
+
+ 1) Intel Local Management Service (Intel LMS)
+
+ Applications running locally on the platform communicate with Intel AMT Release
+ 2.0 and later releases in the same way that network applications do via SOAP
+ over HTTP (deprecated starting with Release 6.0) or with WS-Management over
+ SOAP over HTTP. This means that some Intel AMT features can be accessed from a
+ local application using the same network interface as a remote application
+ communicating with Intel AMT over the network.
+
+ When a local application sends a message addressed to the local Intel AMT host
+ name, the Intel LMS, which listens for traffic directed to the host name,
+ intercepts the message and routes it to the Intel MEI.
+ For more information:
+ https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
+ Under "About Intel AMT" => "Local Access"
+
+ For downloading Intel LMS:
+ https://github.com/intel/lms
+
+ The Intel LMS opens a connection using the Intel MEI driver to the Intel LMS
+ firmware feature using a defined GUID and then communicates with the feature
+ using a protocol called Intel AMT Port Forwarding Protocol (Intel APF protocol).
+ The protocol is used to maintain multiple sessions with Intel AMT from a
+ single application.
+
+ See the protocol specification in the Intel AMT Software Development Kit (SDK)
+ https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
+ Under "SDK Resources" => "Intel(R) vPro(TM) Gateway (MPS)"
+ => "Information for Intel(R) vPro(TM) Gateway Developers"
+ => "Description of the Intel AMT Port Forwarding (APF) Protocol"
+
+ 2) Intel AMT Remote configuration using a Local Agent
+
+ A Local Agent enables IT personnel to configure Intel AMT out-of-the-box
+ without requiring installing additional data to enable setup. The remote
+ configuration process may involve an ISV-developed remote configuration
+ agent that runs on the host.
+ For more information:
+ https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
+ Under "Setup and Configuration of Intel AMT" =>
+ "SDK Tools Supporting Setup and Configuration" =>
+ "Using the Local Agent Sample"
+
+Intel AMT OS Health Watchdog
+----------------------------
+
+The Intel AMT Watchdog is an OS Health (Hang/Crash) watchdog.
+Whenever the OS hangs or crashes, Intel AMT will send an event
+to any subscriber to this event. This mechanism means that
+IT knows when a platform crashes even when there is a hard failure on the host.
+
+The Intel AMT Watchdog is composed of two parts:
+ 1) Firmware feature - receives the heartbeats
+ and sends an event when the heartbeats stop.
+ 2) Intel MEI iAMT watchdog driver - connects to the watchdog feature,
+ configures the watchdog and sends the heartbeats.
+
+The Intel iAMT watchdog MEI driver uses the kernel watchdog API to configure
+the Intel AMT Watchdog and to send heartbeats to it. The default timeout of the
+watchdog is 120 seconds.
+
+If the Intel AMT is not enabled in the firmware then the watchdog client won't enumerate
+on the me client bus and watchdog devices won't be exposed.
+
+---
+linux-mei@linux.intel.com
diff --git a/Documentation/driver-api/mei/index.rst b/Documentation/driver-api/mei/index.rst
new file mode 100644
index 000000000000..3a22b522ee78
--- /dev/null
+++ b/Documentation/driver-api/mei/index.rst
@@ -0,0 +1,23 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. include:: <isonum.txt>
+
+===================================================
+Intel(R) Management Engine Interface (Intel(R) MEI)
+===================================================
+
+**Copyright** |copy| 2019 Intel Corporation
+
+
+.. only:: html
+
+ .. class:: toc-title
+
+ Table of Contents
+
+.. toctree::
+ :maxdepth: 3
+
+ mei
+ mei-client-bus
+ iamt
diff --git a/Documentation/driver-api/mei/mei-client-bus.rst b/Documentation/driver-api/mei/mei-client-bus.rst
new file mode 100644
index 000000000000..f242b3f8d6aa
--- /dev/null
+++ b/Documentation/driver-api/mei/mei-client-bus.rst
@@ -0,0 +1,168 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============================================
+Intel(R) Management Engine (ME) Client bus API
+==============================================
+
+
+Rationale
+=========
+
+The MEI character device is useful for dedicated applications to send and receive
+data to the many FW appliance found in Intel's ME from the user space.
+However, for some of the ME functionalities it makes sense to leverage existing software
+stack and expose them through existing kernel subsystems.
+
+In order to plug seamlessly into the kernel device driver model we add kernel virtual
+bus abstraction on top of the MEI driver. This allows implementing Linux kernel drivers
+for the various MEI features as a stand alone entities found in their respective subsystem.
+Existing device drivers can even potentially be re-used by adding an MEI CL bus layer to
+the existing code.
+
+
+MEI CL bus API
+==============
+
+A driver implementation for an MEI Client is very similar to any other existing bus
+based device drivers. The driver registers itself as an MEI CL bus driver through
+the ``struct mei_cl_driver`` structure defined in :file:`include/linux/mei_cl_bus.c`
+
+.. code-block:: C
+
+ struct mei_cl_driver {
+ struct device_driver driver;
+ const char *name;
+
+ const struct mei_cl_device_id *id_table;
+
+ int (*probe)(struct mei_cl_device *dev, const struct mei_cl_id *id);
+ int (*remove)(struct mei_cl_device *dev);
+ };
+
+
+
+The mei_cl_device_id structure defined in :file:`include/linux/mod_devicetable.h` allows a
+driver to bind itself against a device name.
+
+.. code-block:: C
+
+ struct mei_cl_device_id {
+ char name[MEI_CL_NAME_SIZE];
+ uuid_le uuid;
+ __u8 version;
+ kernel_ulong_t driver_info;
+ };
+
+To actually register a driver on the ME Client bus one must call the :c:func:`mei_cl_add_driver`
+API. This is typically called at module initialization time.
+
+Once the driver is registered and bound to the device, a driver will typically
+try to do some I/O on this bus and this should be done through the :c:func:`mei_cl_send`
+and :c:func:`mei_cl_recv` functions. More detailed information is in :ref:`api` section.
+
+In order for a driver to be notified about pending traffic or event, the driver
+should register a callback via :c:func:`mei_cl_devev_register_rx_cb` and
+:c:func:`mei_cldev_register_notify_cb` function respectively.
+
+.. _api:
+
+API:
+----
+.. kernel-doc:: drivers/misc/mei/bus.c
+ :export: drivers/misc/mei/bus.c
+
+
+
+Example
+=======
+
+As a theoretical example let's pretend the ME comes with a "contact" NFC IP.
+The driver init and exit routines for this device would look like:
+
+.. code-block:: C
+
+ #define CONTACT_DRIVER_NAME "contact"
+
+ static struct mei_cl_device_id contact_mei_cl_tbl[] = {
+ { CONTACT_DRIVER_NAME, },
+
+ /* required last entry */
+ { }
+ };
+ MODULE_DEVICE_TABLE(mei_cl, contact_mei_cl_tbl);
+
+ static struct mei_cl_driver contact_driver = {
+ .id_table = contact_mei_tbl,
+ .name = CONTACT_DRIVER_NAME,
+
+ .probe = contact_probe,
+ .remove = contact_remove,
+ };
+
+ static int contact_init(void)
+ {
+ int r;
+
+ r = mei_cl_driver_register(&contact_driver);
+ if (r) {
+ pr_err(CONTACT_DRIVER_NAME ": driver registration failed\n");
+ return r;
+ }
+
+ return 0;
+ }
+
+ static void __exit contact_exit(void)
+ {
+ mei_cl_driver_unregister(&contact_driver);
+ }
+
+ module_init(contact_init);
+ module_exit(contact_exit);
+
+And the driver's simplified probe routine would look like that:
+
+.. code-block:: C
+
+ int contact_probe(struct mei_cl_device *dev, struct mei_cl_device_id *id)
+ {
+ [...]
+ mei_cldev_enable(dev);
+
+ mei_cldev_register_rx_cb(dev, contact_rx_cb);
+
+ return 0;
+ }
+
+In the probe routine the driver first enable the MEI device and then registers
+an rx handler which is as close as it can get to registering a threaded IRQ handler.
+The handler implementation will typically call :c:func:`mei_cldev_recv` and then
+process received data.
+
+.. code-block:: C
+
+ #define MAX_PAYLOAD 128
+ #define HDR_SIZE 4
+ static void conntact_rx_cb(struct mei_cl_device *cldev)
+ {
+ struct contact *c = mei_cldev_get_drvdata(cldev);
+ unsigned char payload[MAX_PAYLOAD];
+ ssize_t payload_sz;
+
+ payload_sz = mei_cldev_recv(cldev, payload, MAX_PAYLOAD)
+ if (reply_size < HDR_SIZE) {
+ return;
+ }
+
+ c->process_rx(payload);
+
+ }
+
+MEI Client Bus Drivers
+======================
+
+.. toctree::
+ :maxdepth: 2
+
+ hdcp
+ nfc
diff --git a/Documentation/driver-api/mei/mei.rst b/Documentation/driver-api/mei/mei.rst
new file mode 100644
index 000000000000..c800d8e5f422
--- /dev/null
+++ b/Documentation/driver-api/mei/mei.rst
@@ -0,0 +1,176 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Introduction
+============
+
+The Intel Management Engine (Intel ME) is an isolated and protected computing
+resource (Co-processor) residing inside certain Intel chipsets. The Intel ME
+provides support for computer/IT management and security features.
+The actual feature set depends on the Intel chipset SKU.
+
+The Intel Management Engine Interface (Intel MEI, previously known as HECI)
+is the interface between the Host and Intel ME. This interface is exposed
+to the host as a PCI device, actually multiple PCI devices might be exposed.
+The Intel MEI Driver is in charge of the communication channel between
+a host application and the Intel ME features.
+
+Each Intel ME feature, or Intel ME Client is addressed by a unique GUID and
+each client has its own protocol. The protocol is message-based with a
+header and payload up to maximal number of bytes advertised by the client,
+upon connection.
+
+Intel MEI Driver
+================
+
+The driver exposes a character device with device nodes /dev/meiX.
+
+An application maintains communication with an Intel ME feature while
+/dev/meiX is open. The binding to a specific feature is performed by calling
+:c:macro:`MEI_CONNECT_CLIENT_IOCTL`, which passes the desired GUID.
+The number of instances of an Intel ME feature that can be opened
+at the same time depends on the Intel ME feature, but most of the
+features allow only a single instance.
+
+The driver is transparent to data that are passed between firmware feature
+and host application.
+
+Because some of the Intel ME features can change the system
+configuration, the driver by default allows only a privileged
+user to access it.
+
+The session is terminated calling :c:func:`close(int fd)`.
+
+A code snippet for an application communicating with Intel AMTHI client:
+
+.. code-block:: C
+
+ struct mei_connect_client_data data;
+ fd = open(MEI_DEVICE);
+
+ data.d.in_client_uuid = AMTHI_GUID;
+
+ ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &data);
+
+ printf("Ver=%d, MaxLen=%ld\n",
+ data.d.in_client_uuid.protocol_version,
+ data.d.in_client_uuid.max_msg_length);
+
+ [...]
+
+ write(fd, amthi_req_data, amthi_req_data_len);
+
+ [...]
+
+ read(fd, &amthi_res_data, amthi_res_data_len);
+
+ [...]
+ close(fd);
+
+
+User space API
+
+IOCTLs:
+=======
+
+The Intel MEI Driver supports the following IOCTL commands:
+
+IOCTL_MEI_CONNECT_CLIENT
+-------------------------
+Connect to firmware Feature/Client.
+
+.. code-block:: none
+
+ Usage:
+
+ struct mei_connect_client_data client_data;
+
+ ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &client_data);
+
+ Inputs:
+
+ struct mei_connect_client_data - contain the following
+ Input field:
+
+ in_client_uuid - GUID of the FW Feature that needs
+ to connect to.
+ Outputs:
+ out_client_properties - Client Properties: MTU and Protocol Version.
+
+ Error returns:
+
+ ENOTTY No such client (i.e. wrong GUID) or connection is not allowed.
+ EINVAL Wrong IOCTL Number
+ ENODEV Device or Connection is not initialized or ready.
+ ENOMEM Unable to allocate memory to client internal data.
+ EFAULT Fatal Error (e.g. Unable to access user input data)
+ EBUSY Connection Already Open
+
+:Note:
+ max_msg_length (MTU) in client properties describes the maximum
+ data that can be sent or received. (e.g. if MTU=2K, can send
+ requests up to bytes 2k and received responses up to 2k bytes).
+
+
+IOCTL_MEI_NOTIFY_SET
+---------------------
+Enable or disable event notifications.
+
+
+.. code-block:: none
+
+ Usage:
+
+ uint32_t enable;
+
+ ioctl(fd, IOCTL_MEI_NOTIFY_SET, &enable);
+
+
+ uint32_t enable = 1;
+ or
+ uint32_t enable[disable] = 0;
+
+ Error returns:
+
+
+ EINVAL Wrong IOCTL Number
+ ENODEV Device is not initialized or the client not connected
+ ENOMEM Unable to allocate memory to client internal data.
+ EFAULT Fatal Error (e.g. Unable to access user input data)
+ EOPNOTSUPP if the device doesn't support the feature
+
+:Note:
+ The client must be connected in order to enable notification events
+
+
+IOCTL_MEI_NOTIFY_GET
+--------------------
+Retrieve event
+
+.. code-block:: none
+
+ Usage:
+ uint32_t event;
+ ioctl(fd, IOCTL_MEI_NOTIFY_GET, &event);
+
+ Outputs:
+ 1 - if an event is pending
+ 0 - if there is no even pending
+
+ Error returns:
+ EINVAL Wrong IOCTL Number
+ ENODEV Device is not initialized or the client not connected
+ ENOMEM Unable to allocate memory to client internal data.
+ EFAULT Fatal Error (e.g. Unable to access user input data)
+ EOPNOTSUPP if the device doesn't support the feature
+
+:Note:
+ The client must be connected and event notification has to be enabled
+ in order to receive an event
+
+
+
+Supported Chipsets
+==================
+82X38/X48 Express and newer
+
+linux-mei@linux.intel.com
diff --git a/Documentation/driver-api/mei/nfc.rst b/Documentation/driver-api/mei/nfc.rst
new file mode 100644
index 000000000000..b5b6fc96f85e
--- /dev/null
+++ b/Documentation/driver-api/mei/nfc.rst
@@ -0,0 +1,28 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+MEI NFC
+-------
+
+Some Intel 8 and 9 Serieses chipsets supports NFC devices connected behind
+the Intel Management Engine controller.
+MEI client bus exposes the NFC chips as NFC phy devices and enables
+binding with Microread and NXP PN544 NFC device driver from the Linux NFC
+subsystem.
+
+.. kernel-render:: DOT
+ :alt: MEI NFC digraph
+ :caption: **MEI NFC** Stack
+
+ digraph NFC {
+ cl_nfc -> me_cl_nfc;
+ "drivers/nfc/mei_phy" -> cl_nfc [lhead=bus];
+ "drivers/nfc/microread/mei" -> cl_nfc;
+ "drivers/nfc/microread/mei" -> "drivers/nfc/mei_phy";
+ "drivers/nfc/pn544/mei" -> cl_nfc;
+ "drivers/nfc/pn544/mei" -> "drivers/nfc/mei_phy";
+ "net/nfc" -> "drivers/nfc/microread/mei";
+ "net/nfc" -> "drivers/nfc/pn544/mei";
+ "neard" -> "net/nfc";
+ cl_nfc [label="mei/bus(nfc)"];
+ me_cl_nfc [label="me fw (nfc)"];
+ }
diff --git a/Documentation/pps/pps.txt b/Documentation/driver-api/pps.rst
index 99f5d8c4c652..1456d2c32ebd 100644
--- a/Documentation/pps/pps.txt
+++ b/Documentation/driver-api/pps.rst
@@ -1,8 +1,10 @@
+:orphan:
- PPS - Pulse Per Second
- ----------------------
+======================
+PPS - Pulse Per Second
+======================
-(C) Copyright 2007 Rodolfo Giometti <giometti@enneenne.com>
+Copyright (C) 2007 Rodolfo Giometti <giometti@enneenne.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -88,7 +90,7 @@ Coding example
--------------
To register a PPS source into the kernel you should define a struct
-pps_source_info as follows:
+pps_source_info as follows::
static struct pps_source_info pps_ktimer_info = {
.name = "ktimer",
@@ -101,12 +103,12 @@ pps_source_info as follows:
};
and then calling the function pps_register_source() in your
-initialization routine as follows:
+initialization routine as follows::
source = pps_register_source(&pps_ktimer_info,
PPS_CAPTUREASSERT | PPS_OFFSETASSERT);
-The pps_register_source() prototype is:
+The pps_register_source() prototype is::
int pps_register_source(struct pps_source_info *info, int default_params)
@@ -118,7 +120,7 @@ pps_source_info which describe the capabilities of the driver).
Once you have registered a new PPS source into the system you can
signal an assert event (for example in the interrupt handler routine)
-just using:
+just using::
pps_event(source, &ts, PPS_CAPTUREASSERT, ptr)
@@ -134,13 +136,13 @@ Please see the file drivers/pps/clients/pps-ktimer.c for example code.
SYSFS support
-------------
-If the SYSFS filesystem is enabled in the kernel it provides a new class:
+If the SYSFS filesystem is enabled in the kernel it provides a new class::
$ ls /sys/class/pps/
pps0/ pps1/ pps2/
Every directory is the ID of a PPS sources defined in the system and
-inside you find several files:
+inside you find several files::
$ ls -F /sys/class/pps/pps0/
assert dev mode path subsystem@
@@ -148,7 +150,7 @@ inside you find several files:
Inside each "assert" and "clear" file you can find the timestamp and a
-sequence number:
+sequence number::
$ cat /sys/class/pps/pps0/assert
1170026870.983207967#8
@@ -175,11 +177,11 @@ and the userland tools available in your distribution's pps-tools package,
http://linuxpps.org , or https://github.com/redlab-i/pps-tools.
Once you have enabled the compilation of pps-ktimer just modprobe it (if
-not statically compiled):
+not statically compiled)::
# modprobe pps-ktimer
-and the run ppstest as follow:
+and the run ppstest as follow::
$ ./ppstest /dev/pps1
trying PPS source "/dev/pps1"
@@ -204,26 +206,27 @@ nor affordable. The cheap way is to load a PPS generator on one of the
computers (master) and PPS clients on others (slaves), and use very simple
cables to deliver signals using parallel ports, for example.
-Parallel port cable pinout:
-pin name master slave
-1 STROBE *------ *
-2 D0 * | *
-3 D1 * | *
-4 D2 * | *
-5 D3 * | *
-6 D4 * | *
-7 D5 * | *
-8 D6 * | *
-9 D7 * | *
-10 ACK * ------*
-11 BUSY * *
-12 PE * *
-13 SEL * *
-14 AUTOFD * *
-15 ERROR * *
-16 INIT * *
-17 SELIN * *
-18-25 GND *-----------*
+Parallel port cable pinout::
+
+ pin name master slave
+ 1 STROBE *------ *
+ 2 D0 * | *
+ 3 D1 * | *
+ 4 D2 * | *
+ 5 D3 * | *
+ 6 D4 * | *
+ 7 D5 * | *
+ 8 D6 * | *
+ 9 D7 * | *
+ 10 ACK * ------*
+ 11 BUSY * *
+ 12 PE * *
+ 13 SEL * *
+ 14 AUTOFD * *
+ 15 ERROR * *
+ 16 INIT * *
+ 17 SELIN * *
+ 18-25 GND *-----------*
Please note that parallel port interrupt occurs only on high->low transition,
so it is used for PPS assert edge. PPS clear edge can be determined only
diff --git a/Documentation/ptp/ptp.txt b/Documentation/driver-api/ptp.rst
index 11e904ee073f..b6e65d66d37a 100644
--- a/Documentation/ptp/ptp.txt
+++ b/Documentation/driver-api/ptp.rst
@@ -1,5 +1,8 @@
+:orphan:
-* PTP hardware clock infrastructure for Linux
+===========================================
+PTP hardware clock infrastructure for Linux
+===========================================
This patch set introduces support for IEEE 1588 PTP clocks in
Linux. Together with the SO_TIMESTAMPING socket options, this
@@ -22,7 +25,8 @@
- Period output signals configurable from user space
- Synchronization of the Linux system time via the PPS subsystem
-** PTP hardware clock kernel API
+PTP hardware clock kernel API
+=============================
A PTP clock driver registers itself with the class driver. The
class driver handles all of the dealings with user space. The
@@ -36,7 +40,8 @@
development, it can be useful to have more than one clock in a
single system, in order to allow performance comparisons.
-** PTP hardware clock user space API
+PTP hardware clock user space API
+=================================
The class driver also creates a character device for each
registered clock. User space can use an open file descriptor from
@@ -49,7 +54,8 @@
ancillary clock features. User space can receive time stamped
events via blocking read() and poll().
-** Writing clock drivers
+Writing clock drivers
+=====================
Clock drivers include include/linux/ptp_clock_kernel.h and register
themselves by presenting a 'struct ptp_clock_info' to the
@@ -66,14 +72,17 @@
class driver, since the lock may also be needed by the clock
driver's interrupt service routine.
-** Supported hardware
+Supported hardware
+==================
+
+ * Freescale eTSEC gianfar
- + Freescale eTSEC gianfar
- 2 Time stamp external triggers, programmable polarity (opt. interrupt)
- 2 Alarm registers (optional interrupt)
- 3 Periodic signals (optional interrupt)
- + National DP83640
+ * National DP83640
+
- 6 GPIOs programmable as inputs or outputs
- 6 GPIOs with dedicated functions (LED/JTAG/clock) can also be
used as general inputs or outputs
@@ -81,6 +90,7 @@
- GPIO outputs can produce periodic signals
- 1 interrupt pin
- + Intel IXP465
+ * Intel IXP465
+
- Auxiliary Slave/Master Mode Snapshot (optional interrupt)
- Target Time (optional interrupt)
diff --git a/Documentation/driver-api/s390-drivers.rst b/Documentation/driver-api/s390-drivers.rst
index 30e6aa7e160b..5158577bc29b 100644
--- a/Documentation/driver-api/s390-drivers.rst
+++ b/Documentation/driver-api/s390-drivers.rst
@@ -27,7 +27,7 @@ not strictly considered I/O devices. They are considered here as well,
although they are not the focus of this document.
Some additional information can also be found in the kernel source under
-Documentation/s390/driver-model.txt.
+Documentation/s390/driver-model.rst.
The css bus
===========
@@ -38,7 +38,7 @@ into several categories:
* Standard I/O subchannels, for use by the system. They have a child
device on the ccw bus and are described below.
* I/O subchannels bound to the vfio-ccw driver. See
- Documentation/s390/vfio-ccw.txt.
+ Documentation/s390/vfio-ccw.rst.
* Message subchannels. No Linux driver currently exists.
* CHSC subchannels (at most one). The chsc subchannel driver can be used
to send asynchronous chsc commands.
diff --git a/Documentation/driver-api/soundwire/locking.rst b/Documentation/driver-api/soundwire/locking.rst
index 253f73555255..3a7ffb3d87f3 100644
--- a/Documentation/driver-api/soundwire/locking.rst
+++ b/Documentation/driver-api/soundwire/locking.rst
@@ -44,7 +44,9 @@ Message transfer.
b. Transfer message (Read/Write) to Slave1 or broadcast message on
Bus in case of bank switch.
- c. Release Message lock ::
+ c. Release Message lock
+
+ ::
+----------+ +---------+
| | | |
diff --git a/Documentation/driver-api/target.rst b/Documentation/driver-api/target.rst
index 4363611dd86d..620ec6173a93 100644
--- a/Documentation/driver-api/target.rst
+++ b/Documentation/driver-api/target.rst
@@ -10,8 +10,8 @@ TBD
Target core device interfaces
=============================
-.. kernel-doc:: drivers/target/target_core_device.c
- :export:
+This section is blank because no kerneldoc comments have been added to
+drivers/target/target_core_device.c.
Target core transport interfaces
================================
diff --git a/Documentation/driver-api/uio-howto.rst b/Documentation/driver-api/uio-howto.rst
index 25f50eace28b..8fecfa11d4ff 100644
--- a/Documentation/driver-api/uio-howto.rst
+++ b/Documentation/driver-api/uio-howto.rst
@@ -276,8 +276,8 @@ fields of ``struct uio_mem``:
- ``int memtype``: Required if the mapping is used. Set this to
``UIO_MEM_PHYS`` if you you have physical memory on your card to be
mapped. Use ``UIO_MEM_LOGICAL`` for logical memory (e.g. allocated
- with :c:func:`kmalloc()`). There's also ``UIO_MEM_VIRTUAL`` for
- virtual memory.
+ with :c:func:`__get_free_pages()` but not kmalloc()). There's also
+ ``UIO_MEM_VIRTUAL`` for virtual memory.
- ``phys_addr_t addr``: Required if the mapping is used. Fill in the
address of your memory block. This address is the one that appears in
diff --git a/Documentation/fault-injection/fault-injection.txt b/Documentation/fault-injection/fault-injection.rst
index a17517a083c3..f51bb21d20e4 100644
--- a/Documentation/fault-injection/fault-injection.txt
+++ b/Documentation/fault-injection/fault-injection.rst
@@ -1,3 +1,4 @@
+===========================================
Fault injection capabilities infrastructure
===========================================
@@ -7,36 +8,36 @@ See also drivers/md/md-faulty.c and "every_nth" module option for scsi_debug.
Available fault injection capabilities
--------------------------------------
-o failslab
+- failslab
injects slab allocation failures. (kmalloc(), kmem_cache_alloc(), ...)
-o fail_page_alloc
+- fail_page_alloc
injects page allocation failures. (alloc_pages(), get_free_pages(), ...)
-o fail_futex
+- fail_futex
injects futex deadlock and uaddr fault errors.
-o fail_make_request
+- fail_make_request
injects disk IO errors on devices permitted by setting
/sys/block/<device>/make-it-fail or
/sys/block/<device>/<partition>/make-it-fail. (generic_make_request())
-o fail_mmc_request
+- fail_mmc_request
injects MMC data errors on devices permitted by setting
debugfs entries under /sys/kernel/debug/mmc0/fail_mmc_request
-o fail_function
+- fail_function
injects error return on specific functions, which are marked by
ALLOW_ERROR_INJECTION() macro, by setting debugfs entries
under /sys/kernel/debug/fail_function. No boot option supported.
-o NVMe fault injection
+- NVMe fault injection
inject NVMe status code and retry flag on devices permitted by setting
debugfs entries under /sys/kernel/debug/nvme*/fault_inject. The default
@@ -47,7 +48,8 @@ o NVMe fault injection
Configure fault-injection capabilities behavior
-----------------------------------------------
-o debugfs entries
+debugfs entries
+^^^^^^^^^^^^^^^
fault-inject-debugfs kernel module provides some debugfs entries for runtime
configuration of fault-injection capabilities.
@@ -55,6 +57,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/probability:
likelihood of failure injection, in percent.
+
Format: <percent>
Note that one-failure-per-hundred is a very high error rate
@@ -83,6 +86,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/verbose
Format: { 0 | 1 | 2 }
+
specifies the verbosity of the messages when failure is
injected. '0' means no messages; '1' will print only a single
log line per failure; '2' will print a call trace too -- useful
@@ -91,14 +95,15 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/task-filter:
Format: { 'Y' | 'N' }
+
A value of 'N' disables filtering by process (default).
Any positive value limits failures to only processes indicated by
/proc/<pid>/make-it-fail==1.
-- /sys/kernel/debug/fail*/require-start:
-- /sys/kernel/debug/fail*/require-end:
-- /sys/kernel/debug/fail*/reject-start:
-- /sys/kernel/debug/fail*/reject-end:
+- /sys/kernel/debug/fail*/require-start,
+ /sys/kernel/debug/fail*/require-end,
+ /sys/kernel/debug/fail*/reject-start,
+ /sys/kernel/debug/fail*/reject-end:
specifies the range of virtual addresses tested during
stacktrace walking. Failure is injected only if some caller
@@ -116,6 +121,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_page_alloc/ignore-gfp-highmem:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' won't inject failures into
highmem/user allocations.
@@ -123,6 +129,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_page_alloc/ignore-gfp-wait:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' will inject failures
only into non-sleep allocations (GFP_ATOMIC allocations).
@@ -134,12 +141,14 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_futex/ignore-private:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' will disable failure injections
when dealing with private (address space) futexes.
- /sys/kernel/debug/fail_function/inject:
Format: { 'function-name' | '!function-name' | '' }
+
specifies the target function of error injection by name.
If the function name leads '!' prefix, given function is
removed from injection list. If nothing specified ('')
@@ -160,10 +169,11 @@ configuration of fault-injection capabilities.
function for given function. This will be created when
user specifies new injection entry.
-o Boot option
+Boot option
+^^^^^^^^^^^
In order to inject faults while debugfs is not available (early boot time),
-use the boot option:
+use the boot option::
failslab=
fail_page_alloc=
@@ -171,10 +181,11 @@ use the boot option:
fail_futex=
mmc_core.fail_request=<interval>,<probability>,<space>,<times>
-o proc entries
+proc entries
+^^^^^^^^^^^^
-- /proc/<pid>/fail-nth:
-- /proc/self/task/<tid>/fail-nth:
+- /proc/<pid>/fail-nth,
+ /proc/self/task/<tid>/fail-nth:
Write to this file of integer N makes N-th call in the task fail.
Read from this file returns a integer value. A value of '0' indicates
@@ -191,16 +202,16 @@ o proc entries
How to add new fault injection capability
-----------------------------------------
-o #include <linux/fault-inject.h>
+- #include <linux/fault-inject.h>
-o define the fault attributes
+- define the fault attributes
DECLARE_FAULT_ATTR(name);
Please see the definition of struct fault_attr in fault-inject.h
for details.
-o provide a way to configure fault attributes
+- provide a way to configure fault attributes
- boot option
@@ -222,126 +233,126 @@ o provide a way to configure fault attributes
single kernel module, it is better to provide module parameters to
configure the fault attributes.
-o add a hook to insert failures
+- add a hook to insert failures
- Upon should_fail() returning true, client code should inject a failure.
+ Upon should_fail() returning true, client code should inject a failure:
should_fail(attr, size);
Application Examples
--------------------
-o Inject slab allocation failures into module init/exit code
+- Inject slab allocation failures into module init/exit code::
-#!/bin/bash
+ #!/bin/bash
-FAILTYPE=failslab
-echo Y > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 10 > /sys/kernel/debug/$FAILTYPE/probability
-echo 100 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
+ FAILTYPE=failslab
+ echo Y > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 10 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 100 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
-faulty_system()
-{
+ faulty_system()
+ {
bash -c "echo 1 > /proc/self/make-it-fail && exec $*"
-}
+ }
-if [ $# -eq 0 ]
-then
+ if [ $# -eq 0 ]
+ then
echo "Usage: $0 modulename [ modulename ... ]"
exit 1
-fi
+ fi
-for m in $*
-do
+ for m in $*
+ do
echo inserting $m...
faulty_system modprobe $m
echo removing $m...
faulty_system modprobe -r $m
-done
+ done
------------------------------------------------------------------------------
-o Inject page allocation failures only for a specific module
+- Inject page allocation failures only for a specific module::
-#!/bin/bash
+ #!/bin/bash
-FAILTYPE=fail_page_alloc
-module=$1
+ FAILTYPE=fail_page_alloc
+ module=$1
-if [ -z $module ]
-then
+ if [ -z $module ]
+ then
echo "Usage: $0 <modulename>"
exit 1
-fi
+ fi
-modprobe $module
+ modprobe $module
-if [ ! -d /sys/module/$module/sections ]
-then
+ if [ ! -d /sys/module/$module/sections ]
+ then
echo Module $module is not loaded
exit 1
-fi
+ fi
-cat /sys/module/$module/sections/.text > /sys/kernel/debug/$FAILTYPE/require-start
-cat /sys/module/$module/sections/.data > /sys/kernel/debug/$FAILTYPE/require-end
+ cat /sys/module/$module/sections/.text > /sys/kernel/debug/$FAILTYPE/require-start
+ cat /sys/module/$module/sections/.data > /sys/kernel/debug/$FAILTYPE/require-end
-echo N > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 10 > /sys/kernel/debug/$FAILTYPE/probability
-echo 100 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-highmem
-echo 10 > /sys/kernel/debug/$FAILTYPE/stacktrace-depth
+ echo N > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 10 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 100 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-highmem
+ echo 10 > /sys/kernel/debug/$FAILTYPE/stacktrace-depth
-trap "echo 0 > /sys/kernel/debug/$FAILTYPE/probability" SIGINT SIGTERM EXIT
+ trap "echo 0 > /sys/kernel/debug/$FAILTYPE/probability" SIGINT SIGTERM EXIT
-echo "Injecting errors into the module $module... (interrupt to stop)"
-sleep 1000000
+ echo "Injecting errors into the module $module... (interrupt to stop)"
+ sleep 1000000
------------------------------------------------------------------------------
-o Inject open_ctree error while btrfs mount
-
-#!/bin/bash
-
-rm -f testfile.img
-dd if=/dev/zero of=testfile.img bs=1M seek=1000 count=1
-DEVICE=$(losetup --show -f testfile.img)
-mkfs.btrfs -f $DEVICE
-mkdir -p tmpmnt
-
-FAILTYPE=fail_function
-FAILFUNC=open_ctree
-echo $FAILFUNC > /sys/kernel/debug/$FAILTYPE/inject
-echo -12 > /sys/kernel/debug/$FAILTYPE/$FAILFUNC/retval
-echo N > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 100 > /sys/kernel/debug/$FAILTYPE/probability
-echo 0 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 1 > /sys/kernel/debug/$FAILTYPE/verbose
-
-mount -t btrfs $DEVICE tmpmnt
-if [ $? -ne 0 ]
-then
+- Inject open_ctree error while btrfs mount::
+
+ #!/bin/bash
+
+ rm -f testfile.img
+ dd if=/dev/zero of=testfile.img bs=1M seek=1000 count=1
+ DEVICE=$(losetup --show -f testfile.img)
+ mkfs.btrfs -f $DEVICE
+ mkdir -p tmpmnt
+
+ FAILTYPE=fail_function
+ FAILFUNC=open_ctree
+ echo $FAILFUNC > /sys/kernel/debug/$FAILTYPE/inject
+ echo -12 > /sys/kernel/debug/$FAILTYPE/$FAILFUNC/retval
+ echo N > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 100 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 0 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 1 > /sys/kernel/debug/$FAILTYPE/verbose
+
+ mount -t btrfs $DEVICE tmpmnt
+ if [ $? -ne 0 ]
+ then
echo "SUCCESS!"
-else
+ else
echo "FAILED!"
umount tmpmnt
-fi
+ fi
-echo > /sys/kernel/debug/$FAILTYPE/inject
+ echo > /sys/kernel/debug/$FAILTYPE/inject
-rmdir tmpmnt
-losetup -d $DEVICE
-rm testfile.img
+ rmdir tmpmnt
+ losetup -d $DEVICE
+ rm testfile.img
Tool to run command with failslab or fail_page_alloc
@@ -354,43 +365,43 @@ see the following examples.
Examples:
Run a command "make -C tools/testing/selftests/ run_tests" with injecting slab
-allocation failure.
+allocation failure::
# ./tools/testing/fault-injection/failcmd.sh \
-- make -C tools/testing/selftests/ run_tests
Same as above except to specify 100 times failures at most instead of one time
-at most by default.
+at most by default::
# ./tools/testing/fault-injection/failcmd.sh --times=100 \
-- make -C tools/testing/selftests/ run_tests
Same as above except to inject page allocation failure instead of slab
-allocation failure.
+allocation failure::
# env FAILCMD_TYPE=fail_page_alloc \
./tools/testing/fault-injection/failcmd.sh --times=100 \
- -- make -C tools/testing/selftests/ run_tests
+ -- make -C tools/testing/selftests/ run_tests
Systematic faults using fail-nth
---------------------------------
The following code systematically faults 0-th, 1-st, 2-nd and so on
-capabilities in the socketpair() system call.
-
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <sys/socket.h>
-#include <sys/syscall.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <errno.h>
-
-int main()
-{
+capabilities in the socketpair() system call::
+
+ #include <sys/types.h>
+ #include <sys/stat.h>
+ #include <sys/socket.h>
+ #include <sys/syscall.h>
+ #include <fcntl.h>
+ #include <unistd.h>
+ #include <string.h>
+ #include <stdlib.h>
+ #include <stdio.h>
+ #include <errno.h>
+
+ int main()
+ {
int i, err, res, fail_nth, fds[2];
char buf[128];
@@ -413,23 +424,23 @@ int main()
break;
}
return 0;
-}
-
-An example output:
-
-1-th fault Y: res=-1/23
-2-th fault Y: res=-1/23
-3-th fault Y: res=-1/12
-4-th fault Y: res=-1/12
-5-th fault Y: res=-1/23
-6-th fault Y: res=-1/23
-7-th fault Y: res=-1/23
-8-th fault Y: res=-1/12
-9-th fault Y: res=-1/12
-10-th fault Y: res=-1/12
-11-th fault Y: res=-1/12
-12-th fault Y: res=-1/12
-13-th fault Y: res=-1/12
-14-th fault Y: res=-1/12
-15-th fault Y: res=-1/12
-16-th fault N: res=0/12
+ }
+
+An example output::
+
+ 1-th fault Y: res=-1/23
+ 2-th fault Y: res=-1/23
+ 3-th fault Y: res=-1/12
+ 4-th fault Y: res=-1/12
+ 5-th fault Y: res=-1/23
+ 6-th fault Y: res=-1/23
+ 7-th fault Y: res=-1/23
+ 8-th fault Y: res=-1/12
+ 9-th fault Y: res=-1/12
+ 10-th fault Y: res=-1/12
+ 11-th fault Y: res=-1/12
+ 12-th fault Y: res=-1/12
+ 13-th fault Y: res=-1/12
+ 14-th fault Y: res=-1/12
+ 15-th fault Y: res=-1/12
+ 16-th fault N: res=0/12
diff --git a/Documentation/fault-injection/index.rst b/Documentation/fault-injection/index.rst
new file mode 100644
index 000000000000..92b5639ed07a
--- /dev/null
+++ b/Documentation/fault-injection/index.rst
@@ -0,0 +1,20 @@
+:orphan:
+
+===============
+fault-injection
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+ fault-injection
+ notifier-error-inject
+ nvme-fault-injection
+ provoke-crashes
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/fault-injection/notifier-error-inject.txt b/Documentation/fault-injection/notifier-error-inject.rst
index e861d761de24..1668b6e48d3a 100644
--- a/Documentation/fault-injection/notifier-error-inject.txt
+++ b/Documentation/fault-injection/notifier-error-inject.rst
@@ -14,7 +14,8 @@ modules that can be used to test the following notifiers.
PM notifier error injection module
----------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/pm/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/pm/actions/<notifier event>/error
Possible PM notifier events to be failed are:
@@ -22,7 +23,7 @@ Possible PM notifier events to be failed are:
* PM_SUSPEND_PREPARE
* PM_RESTORE_PREPARE
-Example: Inject PM suspend error (-12 = -ENOMEM)
+Example: Inject PM suspend error (-12 = -ENOMEM)::
# cd /sys/kernel/debug/notifier-error-inject/pm/
# echo -12 > actions/PM_SUSPEND_PREPARE/error
@@ -32,14 +33,15 @@ Example: Inject PM suspend error (-12 = -ENOMEM)
Memory hotplug notifier error injection module
----------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/memory/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/memory/actions/<notifier event>/error
Possible memory notifier events to be failed are:
* MEM_GOING_ONLINE
* MEM_GOING_OFFLINE
-Example: Inject memory hotplug offline error (-12 == -ENOMEM)
+Example: Inject memory hotplug offline error (-12 == -ENOMEM)::
# cd /sys/kernel/debug/notifier-error-inject/memory
# echo -12 > actions/MEM_GOING_OFFLINE/error
@@ -49,7 +51,8 @@ Example: Inject memory hotplug offline error (-12 == -ENOMEM)
powerpc pSeries reconfig notifier error injection module
--------------------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/pSeries-reconfig/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/pSeries-reconfig/actions/<notifier event>/error
Possible pSeries reconfig notifier events to be failed are:
@@ -61,7 +64,8 @@ Possible pSeries reconfig notifier events to be failed are:
Netdevice notifier error injection module
----------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/netdev/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/netdev/actions/<notifier event>/error
Netdevice notifier events which can be failed are:
@@ -75,7 +79,7 @@ Netdevice notifier events which can be failed are:
* NETDEV_PRECHANGEUPPER
* NETDEV_CHANGEUPPER
-Example: Inject netdevice mtu change error (-22 == -EINVAL)
+Example: Inject netdevice mtu change error (-22 == -EINVAL)::
# cd /sys/kernel/debug/notifier-error-inject/netdev
# echo -22 > actions/NETDEV_CHANGEMTU/error
diff --git a/Documentation/fault-injection/nvme-fault-injection.rst b/Documentation/fault-injection/nvme-fault-injection.rst
new file mode 100644
index 000000000000..cdb2e829228e
--- /dev/null
+++ b/Documentation/fault-injection/nvme-fault-injection.rst
@@ -0,0 +1,178 @@
+NVMe Fault Injection
+====================
+Linux's fault injection framework provides a systematic way to support
+error injection via debugfs in the /sys/kernel/debug directory. When
+enabled, the default NVME_SC_INVALID_OPCODE with no retry will be
+injected into the nvme_end_request. Users can change the default status
+code and no retry flag via the debugfs. The list of Generic Command
+Status can be found in include/linux/nvme.h
+
+Following examples show how to inject an error into the nvme.
+
+First, enable CONFIG_FAULT_INJECTION_DEBUG_FS kernel config,
+recompile the kernel. After booting up the kernel, do the
+following.
+
+Example 1: Inject default status code with no retry
+---------------------------------------------------
+
+::
+
+ mount /dev/nvme0n1 /mnt
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
+ echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
+ cp a.file /mnt
+
+Expected Result::
+
+ cp: cannot stat ‘/mnt/a.file’: Input/output error
+
+Message from dmesg::
+
+ FAULT_INJECTION: forcing a failure.
+ name fault_inject, interval 1, probability 100, space 0, times 1
+ CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.15.0-rc8+ #2
+ Hardware name: innotek GmbH VirtualBox/VirtualBox,
+ BIOS VirtualBox 12/01/2006
+ Call Trace:
+ <IRQ>
+ dump_stack+0x5c/0x7d
+ should_fail+0x148/0x170
+ nvme_should_fail+0x2f/0x50 [nvme_core]
+ nvme_process_cq+0xe7/0x1d0 [nvme]
+ nvme_irq+0x1e/0x40 [nvme]
+ __handle_irq_event_percpu+0x3a/0x190
+ handle_irq_event_percpu+0x30/0x70
+ handle_irq_event+0x36/0x60
+ handle_fasteoi_irq+0x78/0x120
+ handle_irq+0xa7/0x130
+ ? tick_irq_enter+0xa8/0xc0
+ do_IRQ+0x43/0xc0
+ common_interrupt+0xa2/0xa2
+ </IRQ>
+ RIP: 0010:native_safe_halt+0x2/0x10
+ RSP: 0018:ffffffff82003e90 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffdd
+ RAX: ffffffff817a10c0 RBX: ffffffff82012480 RCX: 0000000000000000
+ RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
+ RBP: 0000000000000000 R08: 000000008e38ce64 R09: 0000000000000000
+ R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82012480
+ R13: ffffffff82012480 R14: 0000000000000000 R15: 0000000000000000
+ ? __sched_text_end+0x4/0x4
+ default_idle+0x18/0xf0
+ do_idle+0x150/0x1d0
+ cpu_startup_entry+0x6f/0x80
+ start_kernel+0x4c4/0x4e4
+ ? set_init_arg+0x55/0x55
+ secondary_startup_64+0xa5/0xb0
+ print_req_error: I/O error, dev nvme0n1, sector 9240
+ EXT4-fs error (device nvme0n1): ext4_find_entry:1436:
+ inode #2: comm cp: reading directory lblock 0
+
+Example 2: Inject default status code with retry
+------------------------------------------------
+
+::
+
+ mount /dev/nvme0n1 /mnt
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
+ echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/status
+ echo 0 > /sys/kernel/debug/nvme0n1/fault_inject/dont_retry
+
+ cp a.file /mnt
+
+Expected Result::
+
+ command success without error
+
+Message from dmesg::
+
+ FAULT_INJECTION: forcing a failure.
+ name fault_inject, interval 1, probability 100, space 0, times 1
+ CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.15.0-rc8+ #4
+ Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
+ Call Trace:
+ <IRQ>
+ dump_stack+0x5c/0x7d
+ should_fail+0x148/0x170
+ nvme_should_fail+0x30/0x60 [nvme_core]
+ nvme_loop_queue_response+0x84/0x110 [nvme_loop]
+ nvmet_req_complete+0x11/0x40 [nvmet]
+ nvmet_bio_done+0x28/0x40 [nvmet]
+ blk_update_request+0xb0/0x310
+ blk_mq_end_request+0x18/0x60
+ flush_smp_call_function_queue+0x3d/0xf0
+ smp_call_function_single_interrupt+0x2c/0xc0
+ call_function_single_interrupt+0xa2/0xb0
+ </IRQ>
+ RIP: 0010:native_safe_halt+0x2/0x10
+ RSP: 0018:ffffc9000068bec0 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff04
+ RAX: ffffffff817a10c0 RBX: ffff88011a3c9680 RCX: 0000000000000000
+ RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
+ RBP: 0000000000000001 R08: 000000008e38c131 R09: 0000000000000000
+ R10: 0000000000000000 R11: 0000000000000000 R12: ffff88011a3c9680
+ R13: ffff88011a3c9680 R14: 0000000000000000 R15: 0000000000000000
+ ? __sched_text_end+0x4/0x4
+ default_idle+0x18/0xf0
+ do_idle+0x150/0x1d0
+ cpu_startup_entry+0x6f/0x80
+ start_secondary+0x187/0x1e0
+ secondary_startup_64+0xa5/0xb0
+
+Example 3: Inject an error into the 10th admin command
+------------------------------------------------------
+
+::
+
+ echo 100 > /sys/kernel/debug/nvme0/fault_inject/probability
+ echo 10 > /sys/kernel/debug/nvme0/fault_inject/space
+ echo 1 > /sys/kernel/debug/nvme0/fault_inject/times
+ nvme reset /dev/nvme0
+
+Expected Result::
+
+ After NVMe controller reset, the reinitialization may or may not succeed.
+ It depends on which admin command is actually forced to fail.
+
+Message from dmesg::
+
+ nvme nvme0: resetting controller
+ FAULT_INJECTION: forcing a failure.
+ name fault_inject, interval 1, probability 100, space 1, times 1
+ CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.2.0-rc2+ #2
+ Hardware name: MSI MS-7A45/B150M MORTAR ARCTIC (MS-7A45), BIOS 1.50 04/25/2017
+ Call Trace:
+ <IRQ>
+ dump_stack+0x63/0x85
+ should_fail+0x14a/0x170
+ nvme_should_fail+0x38/0x80 [nvme_core]
+ nvme_irq+0x129/0x280 [nvme]
+ ? blk_mq_end_request+0xb3/0x120
+ __handle_irq_event_percpu+0x84/0x1a0
+ handle_irq_event_percpu+0x32/0x80
+ handle_irq_event+0x3b/0x60
+ handle_edge_irq+0x7f/0x1a0
+ handle_irq+0x20/0x30
+ do_IRQ+0x4e/0xe0
+ common_interrupt+0xf/0xf
+ </IRQ>
+ RIP: 0010:cpuidle_enter_state+0xc5/0x460
+ Code: ff e8 8f 5f 86 ff 80 7d c7 00 74 17 9c 58 0f 1f 44 00 00 f6 c4 02 0f 85 69 03 00 00 31 ff e8 62 aa 8c ff fb 66 0f 1f 44 00 00 <45> 85 ed 0f 88 37 03 00 00 4c 8b 45 d0 4c 2b 45 b8 48 ba cf f7 53
+ RSP: 0018:ffffffff88c03dd0 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffdc
+ RAX: ffff9dac25a2ac80 RBX: ffffffff88d53760 RCX: 000000000000001f
+ RDX: 0000000000000000 RSI: 000000002d958403 RDI: 0000000000000000
+ RBP: ffffffff88c03e18 R08: fffffff75e35ffb7 R09: 00000a49a56c0b48
+ R10: ffffffff88c03da0 R11: 0000000000001b0c R12: ffff9dac25a34d00
+ R13: 0000000000000006 R14: 0000000000000006 R15: ffffffff88d53760
+ cpuidle_enter+0x2e/0x40
+ call_cpuidle+0x23/0x40
+ do_idle+0x201/0x280
+ cpu_startup_entry+0x1d/0x20
+ rest_init+0xaa/0xb0
+ arch_call_rest_init+0xe/0x1b
+ start_kernel+0x51c/0x53b
+ x86_64_start_reservations+0x24/0x26
+ x86_64_start_kernel+0x74/0x77
+ secondary_startup_64+0xa4/0xb0
+ nvme nvme0: Could not set queue count (16385)
+ nvme nvme0: IO queues not created
diff --git a/Documentation/fault-injection/nvme-fault-injection.txt b/Documentation/fault-injection/nvme-fault-injection.txt
deleted file mode 100644
index 8fbf3bf60b62..000000000000
--- a/Documentation/fault-injection/nvme-fault-injection.txt
+++ /dev/null
@@ -1,116 +0,0 @@
-NVMe Fault Injection
-====================
-Linux's fault injection framework provides a systematic way to support
-error injection via debugfs in the /sys/kernel/debug directory. When
-enabled, the default NVME_SC_INVALID_OPCODE with no retry will be
-injected into the nvme_end_request. Users can change the default status
-code and no retry flag via the debugfs. The list of Generic Command
-Status can be found in include/linux/nvme.h
-
-Following examples show how to inject an error into the nvme.
-
-First, enable CONFIG_FAULT_INJECTION_DEBUG_FS kernel config,
-recompile the kernel. After booting up the kernel, do the
-following.
-
-Example 1: Inject default status code with no retry
----------------------------------------------------
-
-mount /dev/nvme0n1 /mnt
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
-echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
-cp a.file /mnt
-
-Expected Result:
-
-cp: cannot stat ‘/mnt/a.file’: Input/output error
-
-Message from dmesg:
-
-FAULT_INJECTION: forcing a failure.
-name fault_inject, interval 1, probability 100, space 0, times 1
-CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.15.0-rc8+ #2
-Hardware name: innotek GmbH VirtualBox/VirtualBox,
-BIOS VirtualBox 12/01/2006
-Call Trace:
- <IRQ>
- dump_stack+0x5c/0x7d
- should_fail+0x148/0x170
- nvme_should_fail+0x2f/0x50 [nvme_core]
- nvme_process_cq+0xe7/0x1d0 [nvme]
- nvme_irq+0x1e/0x40 [nvme]
- __handle_irq_event_percpu+0x3a/0x190
- handle_irq_event_percpu+0x30/0x70
- handle_irq_event+0x36/0x60
- handle_fasteoi_irq+0x78/0x120
- handle_irq+0xa7/0x130
- ? tick_irq_enter+0xa8/0xc0
- do_IRQ+0x43/0xc0
- common_interrupt+0xa2/0xa2
- </IRQ>
-RIP: 0010:native_safe_halt+0x2/0x10
-RSP: 0018:ffffffff82003e90 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffdd
-RAX: ffffffff817a10c0 RBX: ffffffff82012480 RCX: 0000000000000000
-RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
-RBP: 0000000000000000 R08: 000000008e38ce64 R09: 0000000000000000
-R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82012480
-R13: ffffffff82012480 R14: 0000000000000000 R15: 0000000000000000
- ? __sched_text_end+0x4/0x4
- default_idle+0x18/0xf0
- do_idle+0x150/0x1d0
- cpu_startup_entry+0x6f/0x80
- start_kernel+0x4c4/0x4e4
- ? set_init_arg+0x55/0x55
- secondary_startup_64+0xa5/0xb0
- print_req_error: I/O error, dev nvme0n1, sector 9240
-EXT4-fs error (device nvme0n1): ext4_find_entry:1436:
-inode #2: comm cp: reading directory lblock 0
-
-Example 2: Inject default status code with retry
-------------------------------------------------
-
-mount /dev/nvme0n1 /mnt
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
-echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/status
-echo 0 > /sys/kernel/debug/nvme0n1/fault_inject/dont_retry
-
-cp a.file /mnt
-
-Expected Result:
-
-command success without error
-
-Message from dmesg:
-
-FAULT_INJECTION: forcing a failure.
-name fault_inject, interval 1, probability 100, space 0, times 1
-CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.15.0-rc8+ #4
-Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
-Call Trace:
- <IRQ>
- dump_stack+0x5c/0x7d
- should_fail+0x148/0x170
- nvme_should_fail+0x30/0x60 [nvme_core]
- nvme_loop_queue_response+0x84/0x110 [nvme_loop]
- nvmet_req_complete+0x11/0x40 [nvmet]
- nvmet_bio_done+0x28/0x40 [nvmet]
- blk_update_request+0xb0/0x310
- blk_mq_end_request+0x18/0x60
- flush_smp_call_function_queue+0x3d/0xf0
- smp_call_function_single_interrupt+0x2c/0xc0
- call_function_single_interrupt+0xa2/0xb0
- </IRQ>
-RIP: 0010:native_safe_halt+0x2/0x10
-RSP: 0018:ffffc9000068bec0 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff04
-RAX: ffffffff817a10c0 RBX: ffff88011a3c9680 RCX: 0000000000000000
-RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
-RBP: 0000000000000001 R08: 000000008e38c131 R09: 0000000000000000
-R10: 0000000000000000 R11: 0000000000000000 R12: ffff88011a3c9680
-R13: ffff88011a3c9680 R14: 0000000000000000 R15: 0000000000000000
- ? __sched_text_end+0x4/0x4
- default_idle+0x18/0xf0
- do_idle+0x150/0x1d0
- cpu_startup_entry+0x6f/0x80
- start_secondary+0x187/0x1e0
- secondary_startup_64+0xa5/0xb0
diff --git a/Documentation/fault-injection/provoke-crashes.rst b/Documentation/fault-injection/provoke-crashes.rst
new file mode 100644
index 000000000000..9279a3e12278
--- /dev/null
+++ b/Documentation/fault-injection/provoke-crashes.rst
@@ -0,0 +1,48 @@
+===============
+Provoke crashes
+===============
+
+The lkdtm module provides an interface to crash or injure the kernel at
+predefined crashpoints to evaluate the reliability of crash dumps obtained
+using different dumping solutions. The module uses KPROBEs to instrument
+crashing points, but can also crash the kernel directly without KRPOBE
+support.
+
+
+You can provide the way either through module arguments when inserting
+the module, or through a debugfs interface.
+
+Usage::
+
+ insmod lkdtm.ko [recur_count={>0}] cpoint_name=<> cpoint_type=<>
+ [cpoint_count={>0}]
+
+recur_count
+ Recursion level for the stack overflow test. Default is 10.
+
+cpoint_name
+ Crash point where the kernel is to be crashed. It can be
+ one of INT_HARDWARE_ENTRY, INT_HW_IRQ_EN, INT_TASKLET_ENTRY,
+ FS_DEVRW, MEM_SWAPOUT, TIMERADD, SCSI_DISPATCH_CMD,
+ IDE_CORE_CP, DIRECT
+
+cpoint_type
+ Indicates the action to be taken on hitting the crash point.
+ It can be one of PANIC, BUG, EXCEPTION, LOOP, OVERFLOW,
+ CORRUPT_STACK, UNALIGNED_LOAD_STORE_WRITE, OVERWRITE_ALLOCATION,
+ WRITE_AFTER_FREE,
+
+cpoint_count
+ Indicates the number of times the crash point is to be hit
+ to trigger an action. The default is 10.
+
+You can also induce failures by mounting debugfs and writing the type to
+<mountpoint>/provoke-crash/<crashpoint>. E.g.::
+
+ mount -t debugfs debugfs /mnt
+ echo EXCEPTION > /mnt/provoke-crash/INT_HARDWARE_ENTRY
+
+
+A special file is `DIRECT` which will induce the crash directly without
+KPROBE instrumentation. This mode is the only one available when the module
+is built on a kernel without KPROBEs support.
diff --git a/Documentation/fault-injection/provoke-crashes.txt b/Documentation/fault-injection/provoke-crashes.txt
deleted file mode 100644
index 7a9d3d81525b..000000000000
--- a/Documentation/fault-injection/provoke-crashes.txt
+++ /dev/null
@@ -1,38 +0,0 @@
-The lkdtm module provides an interface to crash or injure the kernel at
-predefined crashpoints to evaluate the reliability of crash dumps obtained
-using different dumping solutions. The module uses KPROBEs to instrument
-crashing points, but can also crash the kernel directly without KRPOBE
-support.
-
-
-You can provide the way either through module arguments when inserting
-the module, or through a debugfs interface.
-
-Usage: insmod lkdtm.ko [recur_count={>0}] cpoint_name=<> cpoint_type=<>
- [cpoint_count={>0}]
-
- recur_count : Recursion level for the stack overflow test. Default is 10.
-
- cpoint_name : Crash point where the kernel is to be crashed. It can be
- one of INT_HARDWARE_ENTRY, INT_HW_IRQ_EN, INT_TASKLET_ENTRY,
- FS_DEVRW, MEM_SWAPOUT, TIMERADD, SCSI_DISPATCH_CMD,
- IDE_CORE_CP, DIRECT
-
- cpoint_type : Indicates the action to be taken on hitting the crash point.
- It can be one of PANIC, BUG, EXCEPTION, LOOP, OVERFLOW,
- CORRUPT_STACK, UNALIGNED_LOAD_STORE_WRITE, OVERWRITE_ALLOCATION,
- WRITE_AFTER_FREE,
-
- cpoint_count : Indicates the number of times the crash point is to be hit
- to trigger an action. The default is 10.
-
-You can also induce failures by mounting debugfs and writing the type to
-<mountpoint>/provoke-crash/<crashpoint>. E.g.,
-
- mount -t debugfs debugfs /mnt
- echo EXCEPTION > /mnt/provoke-crash/INT_HARDWARE_ENTRY
-
-
-A special file is `DIRECT' which will induce the crash directly without
-KPROBE instrumentation. This mode is the only one available when the module
-is built on a kernel without KPROBEs support.
diff --git a/Documentation/fb/api.txt b/Documentation/fb/api.rst
index d52cf1e3b975..79ec33dded74 100644
--- a/Documentation/fb/api.txt
+++ b/Documentation/fb/api.rst
@@ -1,5 +1,6 @@
- The Frame Buffer Device API
- ---------------------------
+===========================
+The Frame Buffer Device API
+===========================
Last revised: June 21, 2011
@@ -21,13 +22,13 @@ deal with different behaviours.
---------------
Device and driver capabilities are reported in the fixed screen information
-capabilities field.
+capabilities field::
-struct fb_fix_screeninfo {
+ struct fb_fix_screeninfo {
...
__u16 capabilities; /* see FB_CAP_* */
...
-};
+ };
Application should use those capabilities to find out what features they can
expect from the device and driver.
@@ -151,9 +152,9 @@ fb_fix_screeninfo and fb_var_screeninfo structure respectively.
struct fb_fix_screeninfo stores device independent unchangeable information
about the frame buffer device and the current format. Those information can't
be directly modified by applications, but can be changed by the driver when an
-application modifies the format.
+application modifies the format::
-struct fb_fix_screeninfo {
+ struct fb_fix_screeninfo {
char id[16]; /* identification string eg "TT Builtin" */
unsigned long smem_start; /* Start of frame buffer mem */
/* (physical address) */
@@ -172,13 +173,13 @@ struct fb_fix_screeninfo {
/* specific chip/card we have */
__u16 capabilities; /* see FB_CAP_* */
__u16 reserved[2]; /* Reserved for future compatibility */
-};
+ };
struct fb_var_screeninfo stores device independent changeable information
about a frame buffer device, its current format and video mode, as well as
-other miscellaneous parameters.
+other miscellaneous parameters::
-struct fb_var_screeninfo {
+ struct fb_var_screeninfo {
__u32 xres; /* visible resolution */
__u32 yres;
__u32 xres_virtual; /* virtual resolution */
@@ -216,7 +217,7 @@ struct fb_var_screeninfo {
__u32 rotate; /* angle we rotate counter clockwise */
__u32 colorspace; /* colorspace for FOURCC-based modes */
__u32 reserved[4]; /* Reserved for future compatibility */
-};
+ };
To modify variable information, applications call the FBIOPUT_VSCREENINFO
ioctl with a pointer to a fb_var_screeninfo structure. If the call is
@@ -255,14 +256,14 @@ monochrome, grayscale or pseudocolor visuals, although this is not required.
- For truecolor and directcolor formats, applications set the grayscale field
to zero, and the red, blue, green and transp fields to describe the layout of
- color components in memory.
+ color components in memory::
-struct fb_bitfield {
+ struct fb_bitfield {
__u32 offset; /* beginning of bitfield */
__u32 length; /* length of bitfield */
__u32 msb_right; /* != 0 : Most significant bit is */
/* right */
-};
+ };
Pixel values are bits_per_pixel wide and are split in non-overlapping red,
green, blue and alpha (transparency) components. Location and size of each
diff --git a/Documentation/fb/arkfb.txt b/Documentation/fb/arkfb.rst
index e8487a9d6a05..aeca8773dd7e 100644
--- a/Documentation/fb/arkfb.txt
+++ b/Documentation/fb/arkfb.rst
@@ -1,6 +1,6 @@
-
- arkfb - fbdev driver for ARK Logic chips
- ========================================
+========================================
+arkfb - fbdev driver for ARK Logic chips
+========================================
Supported Hardware
@@ -47,7 +47,7 @@ Missing Features
(alias TODO list)
* secondary (not initialized by BIOS) device support
- * big endian support
+ * big endian support
* DPMS support
* MMIO support
* interlaced mode variant
diff --git a/Documentation/fb/aty128fb.txt b/Documentation/fb/aty128fb.rst
index b605204fcfe1..3f107718f933 100644
--- a/Documentation/fb/aty128fb.txt
+++ b/Documentation/fb/aty128fb.rst
@@ -1,8 +1,9 @@
-[This file is cloned from VesaFB/matroxfb]
-
+=================
What is aty128fb?
=================
+.. [This file is cloned from VesaFB/matroxfb]
+
This is a driver for a graphic framebuffer for ATI Rage128 based devices
on Intel and PPC boxes.
@@ -24,15 +25,15 @@ How to use it?
==============
Switching modes is done using the video=aty128fb:<resolution>... modedb
-boot parameter or using `fbset' program.
+boot parameter or using `fbset` program.
-See Documentation/fb/modedb.txt for more information on modedb
+See Documentation/fb/modedb.rst for more information on modedb
resolutions.
You should compile in both vgacon (to boot if you remove your Rage128 from
box) and aty128fb (for graphics mode). You should not compile-in vesafb
-unless you have primary display on non-Rage128 VBE2.0 device (see
-Documentation/fb/vesafb.txt for details).
+unless you have primary display on non-Rage128 VBE2.0 device (see
+Documentation/fb/vesafb.rst for details).
X11
@@ -48,16 +49,18 @@ Configuration
=============
You can pass kernel command line options to vesafb with
-`video=aty128fb:option1,option2:value2,option3' (multiple options should
-be separated by comma, values are separated from options by `:').
+`video=aty128fb:option1,option2:value2,option3` (multiple options should
+be separated by comma, values are separated from options by `:`).
Accepted options:
-noaccel - do not use acceleration engine. It is default.
-accel - use acceleration engine. Not finished.
-vmode:x - chooses PowerMacintosh video mode <x>. Deprecated.
-cmode:x - chooses PowerMacintosh colour mode <x>. Deprecated.
-<XxX@X> - selects startup videomode. See modedb.txt for detailed
- explanation. Default is 640x480x8bpp.
+========= =======================================================
+noaccel do not use acceleration engine. It is default.
+accel use acceleration engine. Not finished.
+vmode:x chooses PowerMacintosh video mode <x>. Deprecated.
+cmode:x chooses PowerMacintosh colour mode <x>. Deprecated.
+<XxX@X> selects startup videomode. See modedb.txt for detailed
+ explanation. Default is 640x480x8bpp.
+========= =======================================================
Limitations
@@ -65,8 +68,8 @@ Limitations
There are known and unknown bugs, features and misfeatures.
Currently there are following known bugs:
- + This driver is still experimental and is not finished. Too many
+
+ - This driver is still experimental and is not finished. Too many
bugs/errata to list here.
---
Brad Douglas <brad@neruo.com>
diff --git a/Documentation/fb/cirrusfb.txt b/Documentation/fb/cirrusfb.rst
index f75950d330a4..8c3e6c6cb114 100644
--- a/Documentation/fb/cirrusfb.txt
+++ b/Documentation/fb/cirrusfb.rst
@@ -1,32 +1,32 @@
+============================================
+Framebuffer driver for Cirrus Logic chipsets
+============================================
- Framebuffer driver for Cirrus Logic chipsets
- Copyright 1999 Jeff Garzik <jgarzik@pobox.com>
+Copyright 1999 Jeff Garzik <jgarzik@pobox.com>
-
-{ just a little something to get people going; contributors welcome! }
-
+.. just a little something to get people going; contributors welcome!
Chip families supported:
- SD64
- Piccolo
- Picasso
- Spectrum
- Alpine (GD-543x/4x)
- Picasso4 (GD-5446)
- GD-5480
- Laguna (GD-546x)
+ - SD64
+ - Piccolo
+ - Picasso
+ - Spectrum
+ - Alpine (GD-543x/4x)
+ - Picasso4 (GD-5446)
+ - GD-5480
+ - Laguna (GD-546x)
Bus's supported:
- PCI
- Zorro
+ - PCI
+ - Zorro
Architectures supported:
- i386
- Alpha
- PPC (Motorola Powerstack)
- m68k (Amiga)
+ - i386
+ - Alpha
+ - PPC (Motorola Powerstack)
+ - m68k (Amiga)
@@ -34,10 +34,9 @@ Default video modes
-------------------
At the moment, there are two kernel command line arguments supported:
-mode:640x480
-mode:800x600
- or
-mode:1024x768
+- mode:640x480
+- mode:800x600
+- mode:1024x768
Full support for startup video modes (modedb) will be integrated soon.
@@ -93,5 +92,3 @@ Version 1.9.4
Version 1.9.3
-------------
* Bundled with kernel 2.3.14-pre1 or later.
-
-
diff --git a/Documentation/fb/cmap_xfbdev.txt b/Documentation/fb/cmap_xfbdev.rst
index 55e1f0a3d2b4..5db5e9787361 100644
--- a/Documentation/fb/cmap_xfbdev.txt
+++ b/Documentation/fb/cmap_xfbdev.rst
@@ -1,26 +1,29 @@
+==========================
Understanding fbdev's cmap
---------------------------
+==========================
These notes explain how X's dix layer uses fbdev's cmap structures.
-*. example of relevant structures in fbdev as used for a 3-bit grayscale cmap
-struct fb_var_screeninfo {
- .bits_per_pixel = 8,
- .grayscale = 1,
- .red = { 4, 3, 0 },
- .green = { 0, 0, 0 },
- .blue = { 0, 0, 0 },
-}
-struct fb_fix_screeninfo {
- .visual = FB_VISUAL_STATIC_PSEUDOCOLOR,
-}
-for (i = 0; i < 8; i++)
+- example of relevant structures in fbdev as used for a 3-bit grayscale cmap::
+
+ struct fb_var_screeninfo {
+ .bits_per_pixel = 8,
+ .grayscale = 1,
+ .red = { 4, 3, 0 },
+ .green = { 0, 0, 0 },
+ .blue = { 0, 0, 0 },
+ }
+ struct fb_fix_screeninfo {
+ .visual = FB_VISUAL_STATIC_PSEUDOCOLOR,
+ }
+ for (i = 0; i < 8; i++)
info->cmap.red[i] = (((2*i)+1)*(0xFFFF))/16;
-memcpy(info->cmap.green, info->cmap.red, sizeof(u16)*8);
-memcpy(info->cmap.blue, info->cmap.red, sizeof(u16)*8);
+ memcpy(info->cmap.green, info->cmap.red, sizeof(u16)*8);
+ memcpy(info->cmap.blue, info->cmap.red, sizeof(u16)*8);
-*. X11 apps do something like the following when trying to use grayscale.
-for (i=0; i < 8; i++) {
+- X11 apps do something like the following when trying to use grayscale::
+
+ for (i=0; i < 8; i++) {
char colorspec[64];
memset(colorspec,0,64);
sprintf(colorspec, "rgb:%x/%x/%x", i*36,i*36,i*36);
@@ -28,26 +31,26 @@ for (i=0; i < 8; i++) {
printf("Can't get color %s\n",colorspec);
XAllocColor(outputDisplay, testColormap, &wantedColor);
grays[i] = wantedColor;
-}
+ }
+
There's also named equivalents like gray1..x provided you have an rgb.txt.
Somewhere in X's callchain, this results in a call to X code that handles the
colormap. For example, Xfbdev hits the following:
-xc-011010/programs/Xserver/dix/colormap.c:
+xc-011010/programs/Xserver/dix/colormap.c::
-FindBestPixel(pentFirst, size, prgb, channel)
+ FindBestPixel(pentFirst, size, prgb, channel)
-dr = (long) pent->co.local.red - prgb->red;
-dg = (long) pent->co.local.green - prgb->green;
-db = (long) pent->co.local.blue - prgb->blue;
-sq = dr * dr;
-UnsignedToBigNum (sq, &sum);
-BigNumAdd (&sum, &temp, &sum);
+ dr = (long) pent->co.local.red - prgb->red;
+ dg = (long) pent->co.local.green - prgb->green;
+ db = (long) pent->co.local.blue - prgb->blue;
+ sq = dr * dr;
+ UnsignedToBigNum (sq, &sum);
+ BigNumAdd (&sum, &temp, &sum);
co.local.red are entries that were brought in through FBIOGETCMAP which come
directly from the info->cmap.red that was listed above. The prgb is the rgb
that the app wants to match to. The above code is doing what looks like a least
squares matching function. That's why the cmap entries can't be set to the left
hand side boundaries of a color range.
-
diff --git a/Documentation/fb/deferred_io.txt b/Documentation/fb/deferred_io.rst
index 748328370250..7300cff255a3 100644
--- a/Documentation/fb/deferred_io.txt
+++ b/Documentation/fb/deferred_io.rst
@@ -1,5 +1,6 @@
+===========
Deferred IO
------------
+===========
Deferred IO is a way to delay and repurpose IO. It uses host memory as a
buffer and the MMU pagefault as a pretrigger for when to perform the device
@@ -16,7 +17,7 @@ works:
- app continues writing to that page with no additional cost. this is
the key benefit.
- the workqueue task comes in and mkcleans the pages on the list, then
- completes the work associated with updating the framebuffer. this is
+ completes the work associated with updating the framebuffer. this is
the real work talking to the device.
- app tries to write to the address (that has now been mkcleaned)
- get pagefault and the above sequence occurs again
@@ -47,29 +48,32 @@ How to use it: (for fbdev drivers)
----------------------------------
The following example may be helpful.
-1. Setup your structure. Eg:
+1. Setup your structure. Eg::
-static struct fb_deferred_io hecubafb_defio = {
- .delay = HZ,
- .deferred_io = hecubafb_dpy_deferred_io,
-};
+ static struct fb_deferred_io hecubafb_defio = {
+ .delay = HZ,
+ .deferred_io = hecubafb_dpy_deferred_io,
+ };
The delay is the minimum delay between when the page_mkwrite trigger occurs
and when the deferred_io callback is called. The deferred_io callback is
explained below.
-2. Setup your deferred IO callback. Eg:
-static void hecubafb_dpy_deferred_io(struct fb_info *info,
- struct list_head *pagelist)
+2. Setup your deferred IO callback. Eg::
+
+ static void hecubafb_dpy_deferred_io(struct fb_info *info,
+ struct list_head *pagelist)
The deferred_io callback is where you would perform all your IO to the display
device. You receive the pagelist which is the list of pages that were written
to during the delay. You must not modify this list. This callback is called
from a workqueue.
-3. Call init
+3. Call init::
+
info->fbdefio = &hecubafb_defio;
fb_deferred_io_init(info);
-4. Call cleanup
+4. Call cleanup::
+
fb_deferred_io_cleanup(info);
diff --git a/Documentation/fb/efifb.txt b/Documentation/fb/efifb.rst
index 1a85c1bdaf38..04840331a00e 100644
--- a/Documentation/fb/efifb.txt
+++ b/Documentation/fb/efifb.rst
@@ -1,6 +1,6 @@
-
+==============
What is efifb?
-===============
+==============
This is a generic EFI platform driver for Intel based Apple computers.
efifb is only for EFI booted Intel Macs.
@@ -8,16 +8,17 @@ efifb is only for EFI booted Intel Macs.
Supported Hardware
==================
-iMac 17"/20"
-Macbook
-Macbook Pro 15"/17"
-MacMini
+- iMac 17"/20"
+- Macbook
+- Macbook Pro 15"/17"
+- MacMini
How to use it?
==============
efifb does not have any kind of autodetection of your machine.
-You have to add the following kernel parameters in your elilo.conf:
+You have to add the following kernel parameters in your elilo.conf::
+
Macbook :
video=efifb:macbook
MacMini :
@@ -29,9 +30,10 @@ You have to add the following kernel parameters in your elilo.conf:
Accepted options:
+======= ===========================================================
nowc Don't map the framebuffer write combined. This can be used
to workaround side-effects and slowdowns on other CPU cores
when large amounts of console data are written.
+======= ===========================================================
---
Edgar Hucek <gimli@dark-green.com>
diff --git a/Documentation/fb/ep93xx-fb.txt b/Documentation/fb/ep93xx-fb.rst
index 5af1bd9effae..6f7767926d1a 100644
--- a/Documentation/fb/ep93xx-fb.txt
+++ b/Documentation/fb/ep93xx-fb.rst
@@ -4,7 +4,7 @@ Driver for EP93xx LCD controller
The EP93xx LCD controller can drive both standard desktop monitors and
embedded LCD displays. If you have a standard desktop monitor then you
-can use the standard Linux video mode database. In your board file:
+can use the standard Linux video mode database. In your board file::
static struct ep93xxfb_mach_info some_board_fb_info = {
.num_modes = EP93XXFB_USE_MODEDB,
@@ -12,7 +12,7 @@ can use the standard Linux video mode database. In your board file:
};
If you have an embedded LCD display then you need to define a video
-mode for it as follows:
+mode for it as follows::
static struct fb_videomode some_board_video_modes[] = {
{
@@ -23,11 +23,11 @@ mode for it as follows:
Note that the pixel clock value is in pico-seconds. You can use the
KHZ2PICOS macro to convert the pixel clock value. Most other values
-are in pixel clocks. See Documentation/fb/framebuffer.txt for further
+are in pixel clocks. See Documentation/fb/framebuffer.rst for further
details.
The ep93xxfb_mach_info structure for your board should look like the
-following:
+following::
static struct ep93xxfb_mach_info some_board_fb_info = {
.num_modes = ARRAY_SIZE(some_board_video_modes),
@@ -37,7 +37,7 @@ following:
};
The framebuffer device can be registered by adding the following to
-your board initialisation function:
+your board initialisation function::
ep93xx_register_fb(&some_board_fb_info);
@@ -50,6 +50,7 @@ to configure the controller. The video attributes flags are fully
documented in section 7 of the EP93xx users' guide. The following
flags are available:
+=============================== ==========================================
EP93XXFB_PCLK_FALLING Clock data on the falling edge of the
pixel clock. The default is to clock
data on the rising edge.
@@ -62,10 +63,12 @@ EP93XXFB_SYNC_HORIZ_HIGH Horizontal sync is active high. By
EP93XXFB_SYNC_VERT_HIGH Vertical sync is active high. By
default the vertical sync is active high.
+=============================== ==========================================
The physical address of the framebuffer can be controlled using the
following flags:
+=============================== ======================================
EP93XXFB_USE_SDCSN0 Use SDCSn[0] for the framebuffer. This
is the default setting.
@@ -74,6 +77,7 @@ EP93XXFB_USE_SDCSN1 Use SDCSn[1] for the framebuffer.
EP93XXFB_USE_SDCSN2 Use SDCSn[2] for the framebuffer.
EP93XXFB_USE_SDCSN3 Use SDCSn[3] for the framebuffer.
+=============================== ======================================
==================
Platform callbacks
@@ -87,7 +91,7 @@ blanked or unblanked.
The setup and teardown devices pass the platform_device structure as
an argument. The fb_info and ep93xxfb_mach_info structures can be
-obtained as follows:
+obtained as follows::
static int some_board_fb_setup(struct platform_device *pdev)
{
@@ -101,17 +105,17 @@ obtained as follows:
Setting the video mode
======================
-The video mode is set using the following syntax:
+The video mode is set using the following syntax::
video=XRESxYRES[-BPP][@REFRESH]
If the EP93xx video driver is built-in then the video mode is set on
-the Linux kernel command line, for example:
+the Linux kernel command line, for example::
video=ep93xx-fb:800x600-16@60
If the EP93xx video driver is built as a module then the video mode is
-set when the module is installed:
+set when the module is installed::
modprobe ep93xx-fb video=320x240
@@ -121,13 +125,14 @@ Screenpage bug
At least on the EP9315 there is a silicon bug which causes bit 27 of
the VIDSCRNPAGE (framebuffer physical offset) to be tied low. There is
-an unofficial errata for this bug at:
+an unofficial errata for this bug at::
+
http://marc.info/?l=linux-arm-kernel&m=110061245502000&w=2
By default the EP93xx framebuffer driver checks if the allocated physical
address has bit 27 set. If it does, then the memory is freed and an
error is returned. The check can be disabled by adding the following
-option when loading the driver:
+option when loading the driver::
ep93xx-fb.check_screenpage_bug=0
diff --git a/Documentation/fb/fbcon.txt b/Documentation/fb/fbcon.rst
index 60a5ec04e8f0..1da65b9000de 100644
--- a/Documentation/fb/fbcon.txt
+++ b/Documentation/fb/fbcon.rst
@@ -1,39 +1,41 @@
+=======================
The Framebuffer Console
=======================
- The framebuffer console (fbcon), as its name implies, is a text
+The framebuffer console (fbcon), as its name implies, is a text
console running on top of the framebuffer device. It has the functionality of
any standard text console driver, such as the VGA console, with the added
features that can be attributed to the graphical nature of the framebuffer.
- In the x86 architecture, the framebuffer console is optional, and
+In the x86 architecture, the framebuffer console is optional, and
some even treat it as a toy. For other architectures, it is the only available
display device, text or graphical.
- What are the features of fbcon? The framebuffer console supports
+What are the features of fbcon? The framebuffer console supports
high resolutions, varying font types, display rotation, primitive multihead,
etc. Theoretically, multi-colored fonts, blending, aliasing, and any feature
made available by the underlying graphics card are also possible.
A. Configuration
+================
- The framebuffer console can be enabled by using your favorite kernel
+The framebuffer console can be enabled by using your favorite kernel
configuration tool. It is under Device Drivers->Graphics Support->Frame
buffer Devices->Console display driver support->Framebuffer Console Support.
Select 'y' to compile support statically or 'm' for module support. The
module will be fbcon.
- In order for fbcon to activate, at least one framebuffer driver is
+In order for fbcon to activate, at least one framebuffer driver is
required, so choose from any of the numerous drivers available. For x86
systems, they almost universally have VGA cards, so vga16fb and vesafb will
always be available. However, using a chipset-specific driver will give you
more speed and features, such as the ability to change the video mode
dynamically.
- To display the penguin logo, choose any logo available in Graphics
+To display the penguin logo, choose any logo available in Graphics
support->Bootup logo.
- Also, you will need to select at least one compiled-in font, but if
+Also, you will need to select at least one compiled-in font, but if
you don't do anything, the kernel configuration tool will select one for you,
usually an 8x16 font.
@@ -44,6 +46,7 @@ fortunate to have a driver that does not alter the graphics chip, then you
will still get a VGA console.
B. Loading
+==========
Possible scenarios:
@@ -72,33 +75,33 @@ Possible scenarios:
C. Boot options
- The framebuffer console has several, largely unknown, boot options
- that can change its behavior.
+ The framebuffer console has several, largely unknown, boot options
+ that can change its behavior.
1. fbcon=font:<name>
- Select the initial font to use. The value 'name' can be any of the
- compiled-in fonts: 10x18, 6x10, 7x14, Acorn8x8, MINI4x6,
- PEARL8x8, ProFont6x11, SUN12x22, SUN8x16, VGA8x16, VGA8x8.
+ Select the initial font to use. The value 'name' can be any of the
+ compiled-in fonts: 10x18, 6x10, 7x14, Acorn8x8, MINI4x6,
+ PEARL8x8, ProFont6x11, SUN12x22, SUN8x16, TER16x32, VGA8x16, VGA8x8.
Note, not all drivers can handle font with widths not divisible by 8,
- such as vga16fb.
+ such as vga16fb.
2. fbcon=scrollback:<value>[k]
- The scrollback buffer is memory that is used to preserve display
- contents that has already scrolled past your view. This is accessed
- by using the Shift-PageUp key combination. The value 'value' is any
- integer. It defaults to 32KB. The 'k' suffix is optional, and will
- multiply the 'value' by 1024.
+ The scrollback buffer is memory that is used to preserve display
+ contents that has already scrolled past your view. This is accessed
+ by using the Shift-PageUp key combination. The value 'value' is any
+ integer. It defaults to 32KB. The 'k' suffix is optional, and will
+ multiply the 'value' by 1024.
3. fbcon=map:<0123>
- This is an interesting option. It tells which driver gets mapped to
- which console. The value '0123' is a sequence that gets repeated until
- the total length is 64 which is the number of consoles available. In
- the above example, it is expanded to 012301230123... and the mapping
- will be:
+ This is an interesting option. It tells which driver gets mapped to
+ which console. The value '0123' is a sequence that gets repeated until
+ the total length is 64 which is the number of consoles available. In
+ the above example, it is expanded to 012301230123... and the mapping
+ will be::
tty | 1 2 3 4 5 6 7 8 9 ...
fb | 0 1 2 3 0 1 2 3 0 ...
@@ -126,20 +129,20 @@ C. Boot options
4. fbcon=rotate:<n>
- This option changes the orientation angle of the console display. The
- value 'n' accepts the following:
+ This option changes the orientation angle of the console display. The
+ value 'n' accepts the following:
- 0 - normal orientation (0 degree)
- 1 - clockwise orientation (90 degrees)
- 2 - upside down orientation (180 degrees)
- 3 - counterclockwise orientation (270 degrees)
+ - 0 - normal orientation (0 degree)
+ - 1 - clockwise orientation (90 degrees)
+ - 2 - upside down orientation (180 degrees)
+ - 3 - counterclockwise orientation (270 degrees)
The angle can be changed anytime afterwards by 'echoing' the same
numbers to any one of the 2 attributes found in
/sys/class/graphics/fbcon:
- rotate - rotate the display of the active console
- rotate_all - rotate the display of all consoles
+ - rotate - rotate the display of the active console
+ - rotate_all - rotate the display of all consoles
Console rotation will only become available if Framebuffer Console
Rotation support is compiled in your kernel.
@@ -177,9 +180,9 @@ Before going on to how to attach, detach and unload the framebuffer console, an
illustration of the dependencies may help.
The console layer, as with most subsystems, needs a driver that interfaces with
-the hardware. Thus, in a VGA console:
+the hardware. Thus, in a VGA console::
-console ---> VGA driver ---> hardware.
+ console ---> VGA driver ---> hardware.
Assuming the VGA driver can be unloaded, one must first unbind the VGA driver
from the console layer before unloading the driver. The VGA driver cannot be
@@ -187,9 +190,9 @@ unloaded if it is still bound to the console layer. (See
Documentation/console/console.txt for more information).
This is more complicated in the case of the framebuffer console (fbcon),
-because fbcon is an intermediate layer between the console and the drivers:
+because fbcon is an intermediate layer between the console and the drivers::
-console ---> fbcon ---> fbdev drivers ---> hardware
+ console ---> fbcon ---> fbdev drivers ---> hardware
The fbdev drivers cannot be unloaded if bound to fbcon, and fbcon cannot
be unloaded if it's bound to the console layer.
@@ -204,12 +207,12 @@ So, how do we unbind fbcon from the console? Part of the answer is in
Documentation/console/console.txt. To summarize:
Echo a value to the bind file that represents the framebuffer console
-driver. So assuming vtcon1 represents fbcon, then:
+driver. So assuming vtcon1 represents fbcon, then::
-echo 1 > sys/class/vtconsole/vtcon1/bind - attach framebuffer console to
- console layer
-echo 0 > sys/class/vtconsole/vtcon1/bind - detach framebuffer console from
- console layer
+ echo 1 > sys/class/vtconsole/vtcon1/bind - attach framebuffer console to
+ console layer
+ echo 0 > sys/class/vtconsole/vtcon1/bind - detach framebuffer console from
+ console layer
If fbcon is detached from the console layer, your boot console driver (which is
usually VGA text mode) will take over. A few drivers (rivafb and i810fb) will
@@ -223,19 +226,19 @@ restored properly. The following is one of the several methods that you can do:
2. In your kernel configuration, ensure that CONFIG_FRAMEBUFFER_CONSOLE is set
to 'y' or 'm'. Enable one or more of your favorite framebuffer drivers.
-3. Boot into text mode and as root run:
+3. Boot into text mode and as root run::
vbetool vbestate save > <vga state file>
- The above command saves the register contents of your graphics
- hardware to <vga state file>. You need to do this step only once as
- the state file can be reused.
+ The above command saves the register contents of your graphics
+ hardware to <vga state file>. You need to do this step only once as
+ the state file can be reused.
-4. If fbcon is compiled as a module, load fbcon by doing:
+4. If fbcon is compiled as a module, load fbcon by doing::
modprobe fbcon
-5. Now to detach fbcon:
+5. Now to detach fbcon::
vbetool vbestate restore < <vga state file> && \
echo 0 > /sys/class/vtconsole/vtcon1/bind
@@ -243,7 +246,7 @@ restored properly. The following is one of the several methods that you can do:
6. That's it, you're back to VGA mode. And if you compiled fbcon as a module,
you can unload it by 'rmmod fbcon'.
-7. To reattach fbcon:
+7. To reattach fbcon::
echo 1 > /sys/class/vtconsole/vtcon1/bind
@@ -266,82 +269,82 @@ the following:
Variation 1:
- a. Before detaching fbcon, do
+ a. Before detaching fbcon, do::
- vbetool vbemode save > <vesa state file> # do once for each vesafb mode,
- # the file can be reused
+ vbetool vbemode save > <vesa state file> # do once for each vesafb mode,
+ # the file can be reused
b. Detach fbcon as in step 5.
- c. Attach fbcon
+ c. Attach fbcon::
- vbetool vbestate restore < <vesa state file> && \
+ vbetool vbestate restore < <vesa state file> && \
echo 1 > /sys/class/vtconsole/vtcon1/bind
Variation 2:
- a. Before detaching fbcon, do:
- echo <ID> > /sys/class/tty/console/bind
+ a. Before detaching fbcon, do::
+ echo <ID> > /sys/class/tty/console/bind
- vbetool vbemode get
+ vbetool vbemode get
b. Take note of the mode number
b. Detach fbcon as in step 5.
- c. Attach fbcon:
+ c. Attach fbcon::
- vbetool vbemode set <mode number> && \
- echo 1 > /sys/class/vtconsole/vtcon1/bind
+ vbetool vbemode set <mode number> && \
+ echo 1 > /sys/class/vtconsole/vtcon1/bind
Samples:
========
Here are 2 sample bash scripts that you can use to bind or unbind the
-framebuffer console driver if you are on an X86 box:
+framebuffer console driver if you are on an X86 box::
----------------------------------------------------------------------------
-#!/bin/bash
-# Unbind fbcon
+ #!/bin/bash
+ # Unbind fbcon
-# Change this to where your actual vgastate file is located
-# Or Use VGASTATE=$1 to indicate the state file at runtime
-VGASTATE=/tmp/vgastate
+ # Change this to where your actual vgastate file is located
+ # Or Use VGASTATE=$1 to indicate the state file at runtime
+ VGASTATE=/tmp/vgastate
-# path to vbetool
-VBETOOL=/usr/local/bin
+ # path to vbetool
+ VBETOOL=/usr/local/bin
-for (( i = 0; i < 16; i++))
-do
- if test -x /sys/class/vtconsole/vtcon$i; then
- if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
- = 1 ]; then
+ for (( i = 0; i < 16; i++))
+ do
+ if test -x /sys/class/vtconsole/vtcon$i; then
+ if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
+ = 1 ]; then
if test -x $VBETOOL/vbetool; then
echo Unbinding vtcon$i
$VBETOOL/vbetool vbestate restore < $VGASTATE
echo 0 > /sys/class/vtconsole/vtcon$i/bind
fi
- fi
- fi
-done
+ fi
+ fi
+ done
---------------------------------------------------------------------------
-#!/bin/bash
-# Bind fbcon
-
-for (( i = 0; i < 16; i++))
-do
- if test -x /sys/class/vtconsole/vtcon$i; then
- if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
- = 1 ]; then
+
+::
+
+ #!/bin/bash
+ # Bind fbcon
+
+ for (( i = 0; i < 16; i++))
+ do
+ if test -x /sys/class/vtconsole/vtcon$i; then
+ if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
+ = 1 ]; then
echo Unbinding vtcon$i
echo 1 > /sys/class/vtconsole/vtcon$i/bind
- fi
- fi
-done
----------------------------------------------------------------------------
+ fi
+ fi
+ done
---
Antonino Daplas <adaplas@pol.net>
diff --git a/Documentation/fb/framebuffer.txt b/Documentation/fb/framebuffer.rst
index 58c5ae2e9f59..7fe087310c82 100644
--- a/Documentation/fb/framebuffer.txt
+++ b/Documentation/fb/framebuffer.rst
@@ -1,7 +1,7 @@
- The Frame Buffer Device
- -----------------------
+=======================
+The Frame Buffer Device
+=======================
-Maintained by Geert Uytterhoeven <geert@linux-m68k.org>
Last revised: May 10, 2001
@@ -26,7 +26,7 @@ other device in /dev. It's a character device using major 29; the minor
specifies the frame buffer number.
By convention, the following device nodes are used (numbers indicate the device
-minor numbers):
+minor numbers)::
0 = /dev/fb0 First frame buffer
1 = /dev/fb1 Second frame buffer
@@ -34,15 +34,15 @@ minor numbers):
31 = /dev/fb31 32nd frame buffer
For backwards compatibility, you may want to create the following symbolic
-links:
+links::
/dev/fb0current -> fb0
/dev/fb1current -> fb1
and so on...
-The frame buffer devices are also `normal' memory devices, this means, you can
-read and write their contents. You can, for example, make a screen snapshot by
+The frame buffer devices are also `normal` memory devices, this means, you can
+read and write their contents. You can, for example, make a screen snapshot by::
cp /dev/fb0 myfile
@@ -54,11 +54,11 @@ Application software that uses the frame buffer device (e.g. the X server) will
use /dev/fb0 by default (older software uses /dev/fb0current). You can specify
an alternative frame buffer device by setting the environment variable
$FRAMEBUFFER to the path name of a frame buffer device, e.g. (for sh/bash
-users):
+users)::
export FRAMEBUFFER=/dev/fb1
-or (for csh users):
+or (for csh users)::
setenv FRAMEBUFFER /dev/fb1
@@ -90,9 +90,9 @@ which data structures they work. Here's just a brief overview:
possible).
- You can get and set parts of the color map. Communication is done with 16
- bits per color part (red, green, blue, transparency) to support all
- existing hardware. The driver does all the computations needed to apply
- it to the hardware (round it down to less bits, maybe throw away
+ bits per color part (red, green, blue, transparency) to support all
+ existing hardware. The driver does all the computations needed to apply
+ it to the hardware (round it down to less bits, maybe throw away
transparency).
All this hardware abstraction makes the implementation of application programs
@@ -113,10 +113,10 @@ much trouble...
3. Frame Buffer Resolution Maintenance
--------------------------------------
-Frame buffer resolutions are maintained using the utility `fbset'. It can
+Frame buffer resolutions are maintained using the utility `fbset`. It can
change the video mode properties of a frame buffer device. Its main usage is
-to change the current video mode, e.g. during boot up in one of your /etc/rc.*
-or /etc/init.d/* files.
+to change the current video mode, e.g. during boot up in one of your `/etc/rc.*`
+or `/etc/init.d/*` files.
Fbset uses a video mode database stored in a configuration file, so you can
easily add your own modes and refer to them with a simple identifier.
@@ -129,8 +129,8 @@ The X server (XF68_FBDev) is the most notable application program for the frame
buffer device. Starting with XFree86 release 3.2, the X server is part of
XFree86 and has 2 modes:
- - If the `Display' subsection for the `fbdev' driver in the /etc/XF86Config
- file contains a
+ - If the `Display` subsection for the `fbdev` driver in the /etc/XF86Config
+ file contains a::
Modes "default"
@@ -146,7 +146,7 @@ XFree86 and has 2 modes:
same virtual desktop size. The frame buffer device that's used is still
/dev/fb0current (or $FRAMEBUFFER), but the available resolutions are
defined by /etc/XF86Config now. The disadvantage is that you have to
- specify the timings in a different format (but `fbset -x' may help).
+ specify the timings in a different format (but `fbset -x` may help).
To tune a video mode, you can use fbset or xvidtune. Note that xvidtune doesn't
work 100% with XF68_FBDev: the reported clock values are always incorrect.
@@ -172,29 +172,29 @@ retrace, the electron beam is turned off (blanked).
The speed at which the electron beam paints the pixels is determined by the
dotclock in the graphics board. For a dotclock of e.g. 28.37516 MHz (millions
-of cycles per second), each pixel is 35242 ps (picoseconds) long:
+of cycles per second), each pixel is 35242 ps (picoseconds) long::
1/(28.37516E6 Hz) = 35.242E-9 s
-If the screen resolution is 640x480, it will take
+If the screen resolution is 640x480, it will take::
640*35.242E-9 s = 22.555E-6 s
to paint the 640 (xres) pixels on one scanline. But the horizontal retrace
-also takes time (e.g. 272 `pixels'), so a full scanline takes
+also takes time (e.g. 272 `pixels`), so a full scanline takes::
(640+272)*35.242E-9 s = 32.141E-6 s
-We'll say that the horizontal scanrate is about 31 kHz:
+We'll say that the horizontal scanrate is about 31 kHz::
1/(32.141E-6 s) = 31.113E3 Hz
A full screen counts 480 (yres) lines, but we have to consider the vertical
-retrace too (e.g. 49 `lines'). So a full screen will take
+retrace too (e.g. 49 `lines`). So a full screen will take::
(480+49)*32.141E-6 s = 17.002E-3 s
-The vertical scanrate is about 59 Hz:
+The vertical scanrate is about 59 Hz::
1/(17.002E-3 s) = 58.815 Hz
@@ -212,7 +212,7 @@ influenced by the moments at which the synchronization pulses occur.
The following picture summarizes all timings. The horizontal retrace time is
the sum of the left margin, the right margin and the hsync length, while the
vertical retrace time is the sum of the upper margin, the lower margin and the
-vsync length.
+vsync length::
+----------+---------------------------------------------+----------+-------+
| | ↑ | | |
@@ -256,7 +256,8 @@ The frame buffer device expects all horizontal timings in number of dotclocks
6. Converting XFree86 timing values info frame buffer device timings
--------------------------------------------------------------------
-An XFree86 mode line consists of the following fields:
+An XFree86 mode line consists of the following fields::
+
"800x600" 50 800 856 976 1040 600 637 643 666
< name > DCF HR SH1 SH2 HFL VR SV1 SV2 VFL
@@ -271,19 +272,27 @@ The frame buffer device uses the following fields:
- vsync_len: length of vertical sync
1) Pixelclock:
+
xfree: in MHz
+
fb: in picoseconds (ps)
pixclock = 1000000 / DCF
2) horizontal timings:
+
left_margin = HFL - SH2
+
right_margin = SH1 - HR
+
hsync_len = SH2 - SH1
3) vertical timings:
+
upper_margin = VFL - SV2
+
lower_margin = SV1 - VR
+
vsync_len = SV2 - SV1
Good examples for VESA timings can be found in the XFree86 source tree,
@@ -303,9 +312,10 @@ and to the following documentation:
- The manual pages for fbset: fbset(8), fb.modes(5)
- The manual pages for XFree86: XF68_FBDev(1), XF86Config(4/5)
- The mighty kernel sources:
- o linux/drivers/video/
- o linux/include/linux/fb.h
- o linux/include/video/
+
+ - linux/drivers/video/
+ - linux/include/linux/fb.h
+ - linux/include/video/
@@ -330,14 +340,14 @@ and on its mirrors.
The latest version of fbset can be found at
- http://www.linux-fbdev.org/
+ http://www.linux-fbdev.org/
+
+
+10. Credits
+-----------
-
-10. Credits
-----------
-
This readme was written by Geert Uytterhoeven, partly based on the original
-`X-framebuffer.README' by Roman Hodek and Martin Schaller. Section 6 was
+`X-framebuffer.README` by Roman Hodek and Martin Schaller. Section 6 was
provided by Frank Neumann.
The frame buffer device abstraction was designed by Martin Schaller.
diff --git a/Documentation/fb/gxfb.txt b/Documentation/fb/gxfb.rst
index 2f640903bbb2..5738709bccbb 100644
--- a/Documentation/fb/gxfb.txt
+++ b/Documentation/fb/gxfb.rst
@@ -1,7 +1,8 @@
-[This file is cloned from VesaFB/aty128fb]
-
+=============
What is gxfb?
-=================
+=============
+
+.. [This file is cloned from VesaFB/aty128fb]
This is a graphics framebuffer driver for AMD Geode GX2 based processors.
@@ -23,9 +24,9 @@ How to use it?
==============
Switching modes is done using gxfb.mode_option=<resolution>... boot
-parameter or using `fbset' program.
+parameter or using `fbset` program.
-See Documentation/fb/modedb.txt for more information on modedb
+See Documentation/fb/modedb.rst for more information on modedb
resolutions.
@@ -42,11 +43,12 @@ You can pass kernel command line options to gxfb with gxfb.<option>.
For example, gxfb.mode_option=800x600@75.
Accepted options:
-mode_option - specify the video mode. Of the form
- <x>x<y>[-<bpp>][@<refresh>]
-vram - size of video ram (normally auto-detected)
-vt_switch - enable vt switching during suspend/resume. The vt
- switch is slow, but harmless.
+================ ==================================================
+mode_option specify the video mode. Of the form
+ <x>x<y>[-<bpp>][@<refresh>]
+vram size of video ram (normally auto-detected)
+vt_switch enable vt switching during suspend/resume. The vt
+ switch is slow, but harmless.
+================ ==================================================
---
Andres Salomon <dilinger@debian.org>
diff --git a/Documentation/fb/index.rst b/Documentation/fb/index.rst
new file mode 100644
index 000000000000..d47313714635
--- /dev/null
+++ b/Documentation/fb/index.rst
@@ -0,0 +1,50 @@
+:orphan:
+
+============
+Frame Buffer
+============
+
+.. toctree::
+ :maxdepth: 1
+
+ api
+ arkfb
+ aty128fb
+ cirrusfb
+ cmap_xfbdev
+ deferred_io
+ efifb
+ ep93xx-fb
+ fbcon
+ framebuffer
+ gxfb
+ intel810
+ intelfb
+ internals
+ lxfb
+ matroxfb
+ metronomefb
+ modedb
+ pvr2fb
+ pxafb
+ s3fb
+ sa1100fb
+ sh7760fb
+ sisfb
+ sm501
+ sm712fb
+ sstfb
+ tgafb
+ tridentfb
+ udlfb
+ uvesafb
+ vesafb
+ viafb
+ vt8623fb
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/fb/intel810.txt b/Documentation/fb/intel810.rst
index a8e9f5bca6f3..eb86098db91f 100644
--- a/Documentation/fb/intel810.txt
+++ b/Documentation/fb/intel810.rst
@@ -1,26 +1,31 @@
+================================
Intel 810/815 Framebuffer driver
- Tony Daplas <adaplas@pol.net>
- http://i810fb.sourceforge.net
+================================
- March 17, 2002
+Tony Daplas <adaplas@pol.net>
- First Released: July 2001
- Last Update: September 12, 2005
-================================================================
+http://i810fb.sourceforge.net
+
+March 17, 2002
+
+First Released: July 2001
+Last Update: September 12, 2005
A. Introduction
+===============
This is a framebuffer driver for various Intel 810/815 compatible
graphics devices. These include:
- Intel 810
- Intel 810E
- Intel 810-DC100
- Intel 815 Internal graphics only, 100Mhz FSB
- Intel 815 Internal graphics only
- Intel 815 Internal graphics and AGP
+ - Intel 810
+ - Intel 810E
+ - Intel 810-DC100
+ - Intel 815 Internal graphics only, 100Mhz FSB
+ - Intel 815 Internal graphics only
+ - Intel 815 Internal graphics and AGP
B. Features
+============
- Choice of using Discrete Video Timings, VESA Generalized Timing
Formula, or a framebuffer specific database to set the video mode
@@ -45,10 +50,11 @@ B. Features
- Can concurrently run with xfree86 running with native i810 drivers
- Hardware Cursor Support
-
+
- Supports EDID probing either by DDC/I2C or through the BIOS
C. List of available options
+=============================
a. "video=i810fb"
enables the i810 driver
@@ -158,7 +164,7 @@ C. List of available options
(default = not set)
n. "dcolor"
- Use directcolor visual instead of truecolor for pixel depths greater
+ Use directcolor visual instead of truecolor for pixel depths greater
than 8 bpp. Useful for color tuning, such as gamma control.
Recommendation: do not set
@@ -167,35 +173,37 @@ C. List of available options
o. <xres>x<yres>[-<bpp>][@<refresh>]
The driver will now accept specification of boot mode option. If this
is specified, the options 'xres' and 'yres' will be ignored. See
- Documentation/fb/modedb.txt for usage.
+ Documentation/fb/modedb.rst for usage.
D. Kernel booting
+=================
Separate each option/option-pair by commas (,) and the option from its value
-with a colon (:) as in the following:
+with a colon (:) as in the following::
-video=i810fb:option1,option2:value2
+ video=i810fb:option1,option2:value2
Sample Usage
------------
-In /etc/lilo.conf, add the line:
+In /etc/lilo.conf, add the line::
-append="video=i810fb:vram:2,xres:1024,yres:768,bpp:8,hsync1:30,hsync2:55, \
- vsync1:50,vsync2:85,accel,mtrr"
+ append="video=i810fb:vram:2,xres:1024,yres:768,bpp:8,hsync1:30,hsync2:55, \
+ vsync1:50,vsync2:85,accel,mtrr"
This will initialize the framebuffer to 1024x768 at 8bpp. The framebuffer
will use 2 MB of System RAM. MTRR support will be enabled. The refresh rate
will be computed based on the hsync1/hsync2 and vsync1/vsync2 values.
IMPORTANT:
-You must include hsync1, hsync2, vsync1 and vsync2 to enable video modes
-better than 640x480 at 60Hz. HOWEVER, if your chipset/display combination
-supports I2C and has an EDID block, you can safely exclude hsync1, hsync2,
-vsync1 and vsync2 parameters. These parameters will be taken from the EDID
-block.
+ You must include hsync1, hsync2, vsync1 and vsync2 to enable video modes
+ better than 640x480 at 60Hz. HOWEVER, if your chipset/display combination
+ supports I2C and has an EDID block, you can safely exclude hsync1, hsync2,
+ vsync1 and vsync2 parameters. These parameters will be taken from the EDID
+ block.
E. Module options
+==================
The module parameters are essentially similar to the kernel
parameters. The main difference is that you need to include a Boolean value
@@ -206,31 +214,32 @@ Example, to enable MTRR, include "mtrr=1".
Sample Usage
------------
-Using the same setup as described above, load the module like this:
+Using the same setup as described above, load the module like this::
modprobe i810fb vram=2 xres=1024 bpp=8 hsync1=30 hsync2=55 vsync1=50 \
- vsync2=85 accel=1 mtrr=1
+ vsync2=85 accel=1 mtrr=1
-Or just add the following to a configuration file in /etc/modprobe.d/
+Or just add the following to a configuration file in /etc/modprobe.d/::
options i810fb vram=2 xres=1024 bpp=16 hsync1=30 hsync2=55 vsync1=50 \
vsync2=85 accel=1 mtrr=1
-and just do a
+and just do a::
modprobe i810fb
F. Setup
+=========
- a. Do your usual method of configuring the kernel.
+ a. Do your usual method of configuring the kernel
- make menuconfig/xconfig/config
+ make menuconfig/xconfig/config
b. Under "Code maturity level options" enable "Prompt for development
and/or incomplete code/drivers".
- c. Enable agpgart support for the Intel 810/815 on-board graphics.
+ c. Enable agpgart support for the Intel 810/815 on-board graphics.
This is required. The option is under "Character Devices".
d. Under "Graphics Support", select "Intel 810/815" either statically
@@ -242,7 +251,7 @@ F. Setup
set 'Enable DDC Support' to 'y'. To make this option appear, set
'use VESA Generalized Timing Formula' to 'y'.
- f. If you want a framebuffer console, enable it under "Console
+ f. If you want a framebuffer console, enable it under "Console
Drivers".
g. Compile your kernel.
@@ -253,6 +262,7 @@ F. Setup
patch to see the chipset in action (or inaction :-).
G. Acknowledgment:
+===================
1. Geert Uytterhoeven - his excellent howto and the virtual
framebuffer driver code made this possible.
@@ -269,10 +279,9 @@ G. Acknowledgment:
optimizations possible.
H. Home Page:
+==============
A more complete, and probably updated information is provided at
http://i810fb.sourceforge.net.
-###########################
Tony
-
diff --git a/Documentation/fb/intelfb.txt b/Documentation/fb/intelfb.rst
index feac4e4d6968..e2d0903f4efb 100644
--- a/Documentation/fb/intelfb.txt
+++ b/Documentation/fb/intelfb.rst
@@ -1,24 +1,28 @@
+=============================================================
Intel 830M/845G/852GM/855GM/865G/915G/945G Framebuffer driver
-================================================================
+=============================================================
A. Introduction
- This is a framebuffer driver for various Intel 8xx/9xx compatible
+===============
+
+This is a framebuffer driver for various Intel 8xx/9xx compatible
graphics devices. These would include:
- Intel 830M
- Intel 845G
- Intel 852GM
- Intel 855GM
- Intel 865G
- Intel 915G
- Intel 915GM
- Intel 945G
- Intel 945GM
- Intel 945GME
- Intel 965G
- Intel 965GM
+ - Intel 830M
+ - Intel 845G
+ - Intel 852GM
+ - Intel 855GM
+ - Intel 865G
+ - Intel 915G
+ - Intel 915GM
+ - Intel 945G
+ - Intel 945GM
+ - Intel 945GME
+ - Intel 965G
+ - Intel 965GM
B. List of available options
+=============================
a. "video=intelfb"
enables the intelfb driver
@@ -39,12 +43,12 @@ B. List of available options
(default = 4 MB)
d. "voffset=<value>"
- select at what offset in MB of the logical memory to allocate the
+ select at what offset in MB of the logical memory to allocate the
framebuffer memory. The intent is to avoid the memory blocks
used by standard graphics applications (XFree86). Depending on your
- usage, adjust the value up or down, (0 for maximum usage, 63/127 MB
- for the least amount). Note, an arbitrary setting may conflict
- with XFree86.
+ usage, adjust the value up or down, (0 for maximum usage, 63/127 MB
+ for the least amount). Note, an arbitrary setting may conflict
+ with XFree86.
Recommendation: do not set
(default = 48 MB)
@@ -80,18 +84,19 @@ B. List of available options
The default parameter (not named) is the mode.
C. Kernel booting
+=================
Separate each option/option-pair by commas (,) and the option from its value
-with an equals sign (=) as in the following:
+with an equals sign (=) as in the following::
-video=intelfb:option1,option2=value2
+ video=intelfb:option1,option2=value2
Sample Usage
------------
-In /etc/lilo.conf, add the line:
+In /etc/lilo.conf, add the line::
-append="video=intelfb:mode=800x600-32@75,accel,hwcursor,vram=8"
+ append="video=intelfb:mode=800x600-32@75,accel,hwcursor,vram=8"
This will initialize the framebuffer to 800x600 at 32bpp and 75Hz. The
framebuffer will use 8 MB of System RAM. hw acceleration of text and cursor
@@ -106,8 +111,9 @@ in this directory.
D. Module options
+==================
- The module parameters are essentially similar to the kernel
+The module parameters are essentially similar to the kernel
parameters. The main difference is that you need to include a Boolean value
(1 for TRUE, and 0 for FALSE) for those options which don't need a value.
@@ -116,23 +122,24 @@ Example, to enable MTRR, include "mtrr=1".
Sample Usage
------------
-Using the same setup as described above, load the module like this:
+Using the same setup as described above, load the module like this::
modprobe intelfb mode=800x600-32@75 vram=8 accel=1 hwcursor=1
-Or just add the following to a configuration file in /etc/modprobe.d/
+Or just add the following to a configuration file in /etc/modprobe.d/::
options intelfb mode=800x600-32@75 vram=8 accel=1 hwcursor=1
-and just do a
+and just do a::
modprobe intelfb
E. Acknowledgment:
+===================
1. Geert Uytterhoeven - his excellent howto and the virtual
- framebuffer driver code made this possible.
+ framebuffer driver code made this possible.
2. Jeff Hartmann for his agpgart code.
@@ -145,5 +152,4 @@ E. Acknowledgment:
6. Andrew Morton for his kernel patches maintenance.
-###########################
Sylvain
diff --git a/Documentation/fb/internals.txt b/Documentation/fb/internals.rst
index 9b2a2b2f3e57..696b50aa7c24 100644
--- a/Documentation/fb/internals.txt
+++ b/Documentation/fb/internals.rst
@@ -1,13 +1,19 @@
+=============================
+Frame Buffer device internals
+=============================
This is a first start for some documentation about frame buffer device
internals.
-Geert Uytterhoeven <geert@linux-m68k.org>, 21 July 1998
-James Simmons <jsimmons@user.sf.net>, Nov 26 2002
+Authors:
+
+- Geert Uytterhoeven <geert@linux-m68k.org>, 21 July 1998
+- James Simmons <jsimmons@user.sf.net>, Nov 26 2002
--------------------------------------------------------------------------------
- *** STRUCTURES USED BY THE FRAME BUFFER DEVICE API ***
+Structures used by the frame buffer device API
+==============================================
The following structures play a role in the game of frame buffer devices. They
are defined in <linux/fb.h>.
@@ -40,19 +46,18 @@ are defined in <linux/fb.h>.
Generic information, API and low level information about a specific frame
buffer device instance (slot number, board address, ...).
- - struct `par'
+ - struct `par`
Device dependent information that uniquely defines the video mode for this
particular piece of hardware.
---------------------------------------------------------------------------------
-
- *** VISUALS USED BY THE FRAME BUFFER DEVICE API ***
+Visuals used by the frame buffer device API
+===========================================
Monochrome (FB_VISUAL_MONO01 and FB_VISUAL_MONO10)
--------------------------------------------------
+--------------------------------------------------
Each pixel is either black or white.
@@ -70,7 +75,7 @@ The pixel value is broken up into red, green, and blue fields.
Direct color (FB_VISUAL_DIRECTCOLOR)
------------------------------------
-The pixel value is broken up into red, green, and blue fields, each of which
+The pixel value is broken up into red, green, and blue fields, each of which
are looked up in separate red, green, and blue lookup tables.
@@ -79,4 +84,3 @@ Grayscale displays
Grayscale and static grayscale are special variants of pseudo color and static
pseudo color, where the red, green and blue components are always equal to
each other.
-
diff --git a/Documentation/fb/lxfb.txt b/Documentation/fb/lxfb.rst
index 38b3ca6f6ca7..863e6b98fbae 100644
--- a/Documentation/fb/lxfb.txt
+++ b/Documentation/fb/lxfb.rst
@@ -1,7 +1,9 @@
-[This file is cloned from VesaFB/aty128fb]
-
+=============
What is lxfb?
-=================
+=============
+
+.. [This file is cloned from VesaFB/aty128fb]
+
This is a graphics framebuffer driver for AMD Geode LX based processors.
@@ -23,9 +25,9 @@ How to use it?
==============
Switching modes is done using lxfb.mode_option=<resolution>... boot
-parameter or using `fbset' program.
+parameter or using `fbset` program.
-See Documentation/fb/modedb.txt for more information on modedb
+See Documentation/fb/modedb.rst for more information on modedb
resolutions.
@@ -42,11 +44,12 @@ You can pass kernel command line options to lxfb with lxfb.<option>.
For example, lxfb.mode_option=800x600@75.
Accepted options:
-mode_option - specify the video mode. Of the form
- <x>x<y>[-<bpp>][@<refresh>]
-vram - size of video ram (normally auto-detected)
-vt_switch - enable vt switching during suspend/resume. The vt
- switch is slow, but harmless.
+================ ==================================================
+mode_option specify the video mode. Of the form
+ <x>x<y>[-<bpp>][@<refresh>]
+vram size of video ram (normally auto-detected)
+vt_switch enable vt switching during suspend/resume. The vt
+ switch is slow, but harmless.
+================ ==================================================
---
Andres Salomon <dilinger@debian.org>
diff --git a/Documentation/fb/matroxfb.rst b/Documentation/fb/matroxfb.rst
new file mode 100644
index 000000000000..f1859d98606e
--- /dev/null
+++ b/Documentation/fb/matroxfb.rst
@@ -0,0 +1,443 @@
+=================
+What is matroxfb?
+=================
+
+.. [This file is cloned from VesaFB. Thanks go to Gerd Knorr]
+
+
+This is a driver for a graphic framebuffer for Matrox devices on
+Alpha, Intel and PPC boxes.
+
+Advantages:
+
+ * It provides a nice large console (128 cols + 48 lines with 1024x768)
+ without using tiny, unreadable fonts.
+ * You can run XF{68,86}_FBDev or XFree86 fbdev driver on top of /dev/fb0
+ * Most important: boot logo :-)
+
+Disadvantages:
+
+ * graphic mode is slower than text mode... but you should not notice
+ if you use same resolution as you used in textmode.
+
+
+How to use it?
+==============
+
+Switching modes is done using the video=matroxfb:vesa:... boot parameter
+or using `fbset` program.
+
+If you want, for example, enable a resolution of 1280x1024x24bpp you should
+pass to the kernel this command line: "video=matroxfb:vesa:0x1BB".
+
+You should compile in both vgacon (to boot if you remove you Matrox from
+box) and matroxfb (for graphics mode). You should not compile-in vesafb
+unless you have primary display on non-Matrox VBE2.0 device (see
+Documentation/fb/vesafb.rst for details).
+
+Currently supported video modes are (through vesa:... interface, PowerMac
+has [as addon] compatibility code):
+
+
+Graphic modes
+-------------
+
+=== ======= ======= ======= ======= =======
+bpp 640x400 640x480 768x576 800x600 960x720
+=== ======= ======= ======= ======= =======
+ 4 0x12 0x102
+ 8 0x100 0x101 0x180 0x103 0x188
+ 15 0x110 0x181 0x113 0x189
+ 16 0x111 0x182 0x114 0x18A
+ 24 0x1B2 0x184 0x1B5 0x18C
+ 32 0x112 0x183 0x115 0x18B
+=== ======= ======= ======= ======= =======
+
+
+Graphic modes (continued)
+-------------------------
+
+=== ======== ======== ========= ========= =========
+bpp 1024x768 1152x864 1280x1024 1408x1056 1600x1200
+=== ======== ======== ========= ========= =========
+ 4 0x104 0x106
+ 8 0x105 0x190 0x107 0x198 0x11C
+ 15 0x116 0x191 0x119 0x199 0x11D
+ 16 0x117 0x192 0x11A 0x19A 0x11E
+ 24 0x1B8 0x194 0x1BB 0x19C 0x1BF
+ 32 0x118 0x193 0x11B 0x19B
+=== ======== ======== ========= ========= =========
+
+
+Text modes
+----------
+
+==== ======= ======= ======== ======== ========
+text 640x400 640x480 1056x344 1056x400 1056x480
+==== ======= ======= ======== ======== ========
+ 8x8 0x1C0 0x108 0x10A 0x10B 0x10C
+8x16 2, 3, 7 0x109
+==== ======= ======= ======== ======== ========
+
+You can enter these number either hexadecimal (leading `0x`) or decimal
+(0x100 = 256). You can also use value + 512 to achieve compatibility
+with your old number passed to vesafb.
+
+Non-listed number can be achieved by more complicated command-line, for
+example 1600x1200x32bpp can be specified by `video=matroxfb:vesa:0x11C,depth:32`.
+
+
+X11
+===
+
+XF{68,86}_FBDev should work just fine, but it is non-accelerated. On non-intel
+architectures there are some glitches for 24bpp videomodes. 8, 16 and 32bpp
+works fine.
+
+Running another (accelerated) X-Server like XF86_SVGA works too. But (at least)
+XFree servers have big troubles in multihead configurations (even on first
+head, not even talking about second). Running XFree86 4.x accelerated mga
+driver is possible, but you must not enable DRI - if you do, resolution and
+color depth of your X desktop must match resolution and color depths of your
+virtual consoles, otherwise X will corrupt accelerator settings.
+
+
+SVGALib
+=======
+
+Driver contains SVGALib compatibility code. It is turned on by choosing textual
+mode for console. You can do it at boot time by using videomode
+2,3,7,0x108-0x10C or 0x1C0. At runtime, `fbset -depth 0` does this work.
+Unfortunately, after SVGALib application exits, screen contents is corrupted.
+Switching to another console and back fixes it. I hope that it is SVGALib's
+problem and not mine, but I'm not sure.
+
+
+Configuration
+=============
+
+You can pass kernel command line options to matroxfb with
+`video=matroxfb:option1,option2:value2,option3` (multiple options should be
+separated by comma, values are separated from options by `:`).
+Accepted options:
+
+============ ===================================================================
+mem:X size of memory (X can be in megabytes, kilobytes or bytes)
+ You can only decrease value determined by driver because of
+ it always probe for memory. Default is to use whole detected
+ memory usable for on-screen display (i.e. max. 8 MB).
+disabled do not load driver; you can use also `off`, but `disabled`
+ is here too.
+enabled load driver, if you have `video=matroxfb:disabled` in LILO
+ configuration, you can override it by this (you cannot override
+ `off`). It is default.
+noaccel do not use acceleration engine. It does not work on Alphas.
+accel use acceleration engine. It is default.
+nopan create initial consoles with vyres = yres, thus disabling virtual
+ scrolling.
+pan create initial consoles as tall as possible (vyres = memory/vxres).
+ It is default.
+nopciretry disable PCI retries. It is needed for some broken chipsets,
+ it is autodetected for intel's 82437. In this case device does
+ not comply to PCI 2.1 specs (it will not guarantee that every
+ transaction terminate with success or retry in 32 PCLK).
+pciretry enable PCI retries. It is default, except for intel's 82437.
+novga disables VGA I/O ports. It is default if BIOS did not enable
+ device. You should not use this option, some boards then do not
+ restart without power off.
+vga preserve state of VGA I/O ports. It is default. Driver does not
+ enable VGA I/O if BIOS did not it (it is not safe to enable it in
+ most cases).
+nobios disables BIOS ROM. It is default if BIOS did not enable BIOS
+ itself. You should not use this option, some boards then do not
+ restart without power off.
+bios preserve state of BIOS ROM. It is default. Driver does not enable
+ BIOS if BIOS was not enabled before.
+noinit tells driver, that devices were already initialized. You should use
+ it if you have G100 and/or if driver cannot detect memory, you see
+ strange pattern on screen and so on. Devices not enabled by BIOS
+ are still initialized. It is default.
+init driver initializes every device it knows about.
+memtype specifies memory type, implies 'init'. This is valid only for G200
+ and G400 and has following meaning:
+
+ G200:
+ - 0 -> 2x128Kx32 chips, 2MB onboard, probably sgram
+ - 1 -> 2x128Kx32 chips, 4MB onboard, probably sgram
+ - 2 -> 2x256Kx32 chips, 4MB onboard, probably sgram
+ - 3 -> 2x256Kx32 chips, 8MB onboard, probably sgram
+ - 4 -> 2x512Kx16 chips, 8/16MB onboard, probably sdram only
+ - 5 -> same as above
+ - 6 -> 4x128Kx32 chips, 4MB onboard, probably sgram
+ - 7 -> 4x128Kx32 chips, 8MB onboard, probably sgram
+ G400:
+ - 0 -> 2x512Kx16 SDRAM, 16/32MB
+ - 2x512Kx32 SGRAM, 16/32MB
+ - 1 -> 2x256Kx32 SGRAM, 8/16MB
+ - 2 -> 4x128Kx32 SGRAM, 8/16MB
+ - 3 -> 4x512Kx32 SDRAM, 32MB
+ - 4 -> 4x256Kx32 SGRAM, 16/32MB
+ - 5 -> 2x1Mx32 SDRAM, 32MB
+ - 6 -> reserved
+ - 7 -> reserved
+
+ You should use sdram or sgram parameter in addition to memtype
+ parameter.
+nomtrr disables write combining on frame buffer. This slows down driver
+ but there is reported minor incompatibility between GUS DMA and
+ XFree under high loads if write combining is enabled (sound
+ dropouts).
+mtrr enables write combining on frame buffer. It speeds up video
+ accesses much. It is default. You must have MTRR support enabled
+ in kernel and your CPU must have MTRR (f.e. Pentium II have them).
+sgram tells to driver that you have Gxx0 with SGRAM memory. It has no
+ effect without `init`.
+sdram tells to driver that you have Gxx0 with SDRAM memory.
+ It is a default.
+inv24 change timings parameters for 24bpp modes on Millennium and
+ Millennium II. Specify this if you see strange color shadows
+ around characters.
+noinv24 use standard timings. It is the default.
+inverse invert colors on screen (for LCD displays)
+noinverse show true colors on screen. It is default.
+dev:X bind driver to device X. Driver numbers device from 0 up to N,
+ where device 0 is first `known` device found, 1 second and so on.
+ lspci lists devices in this order.
+ Default is `every` known device.
+nohwcursor disables hardware cursor (use software cursor instead).
+hwcursor enables hardware cursor. It is default. If you are using
+ non-accelerated mode (`noaccel` or `fbset -accel false`), software
+ cursor is used (except for text mode).
+noblink disables cursor blinking. Cursor in text mode always blinks (hw
+ limitation).
+blink enables cursor blinking. It is default.
+nofastfont disables fastfont feature. It is default.
+fastfont:X enables fastfont feature. X specifies size of memory reserved for
+ font data, it must be >= (fontwidth*fontheight*chars_in_font)/8.
+ It is faster on Gx00 series, but slower on older cards.
+grayscale enable grayscale summing. It works in PSEUDOCOLOR modes (text,
+ 4bpp, 8bpp). In DIRECTCOLOR modes it is limited to characters
+ displayed through putc/putcs. Direct accesses to framebuffer
+ can paint colors.
+nograyscale disable grayscale summing. It is default.
+cross4MB enables that pixel line can cross 4MB boundary. It is default for
+ non-Millennium.
+nocross4MB pixel line must not cross 4MB boundary. It is default for
+ Millennium I or II, because of these devices have hardware
+ limitations which do not allow this. But this option is
+ incompatible with some (if not all yet released) versions of
+ XF86_FBDev.
+dfp enables digital flat panel interface. This option is incompatible
+ with secondary (TV) output - if DFP is active, TV output must be
+ inactive and vice versa. DFP always uses same timing as primary
+ (monitor) output.
+dfp:X use settings X for digital flat panel interface. X is number from
+ 0 to 0xFF, and meaning of each individual bit is described in
+ G400 manual, in description of DAC register 0x1F. For normal
+ operation you should set all bits to zero, except lowest bit. This
+ lowest bit selects who is source of display clocks, whether G400,
+ or panel. Default value is now read back from hardware - so you
+ should specify this value only if you are also using `init`
+ parameter.
+outputs:XYZ set mapping between CRTC and outputs. Each letter can have value
+ of 0 (for no CRTC), 1 (CRTC1) or 2 (CRTC2), and first letter
+ corresponds to primary analog output, second letter to the
+ secondary analog output and third letter to the DVI output.
+ Default setting is 100 for cards below G400 or G400 without DFP,
+ 101 for G400 with DFP, and 111 for G450 and G550. You can set
+ mapping only on first card, use matroxset for setting up other
+ devices.
+vesa:X selects startup videomode. X is number from 0 to 0x1FF, see table
+ above for detailed explanation. Default is 640x480x8bpp if driver
+ has 8bpp support. Otherwise first available of 640x350x4bpp,
+ 640x480x15bpp, 640x480x24bpp, 640x480x32bpp or 80x25 text
+ (80x25 text is always available).
+============ ===================================================================
+
+If you are not satisfied with videomode selected by `vesa` option, you
+can modify it with these options:
+
+============ ===================================================================
+xres:X horizontal resolution, in pixels. Default is derived from `vesa`
+ option.
+yres:X vertical resolution, in pixel lines. Default is derived from `vesa`
+ option.
+upper:X top boundary: lines between end of VSYNC pulse and start of first
+ pixel line of picture. Default is derived from `vesa` option.
+lower:X bottom boundary: lines between end of picture and start of VSYNC
+ pulse. Default is derived from `vesa` option.
+vslen:X length of VSYNC pulse, in lines. Default is derived from `vesa`
+ option.
+left:X left boundary: pixels between end of HSYNC pulse and first pixel.
+ Default is derived from `vesa` option.
+right:X right boundary: pixels between end of picture and start of HSYNC
+ pulse. Default is derived from `vesa` option.
+hslen:X length of HSYNC pulse, in pixels. Default is derived from `vesa`
+ option.
+pixclock:X dotclocks, in ps (picoseconds). Default is derived from `vesa`
+ option and from `fh` and `fv` options.
+sync:X sync. pulse - bit 0 inverts HSYNC polarity, bit 1 VSYNC polarity.
+ If bit 3 (value 0x08) is set, composite sync instead of HSYNC is
+ generated. If bit 5 (value 0x20) is set, sync on green is turned
+ on. Do not forget that if you want sync on green, you also probably
+ want composite sync.
+ Default depends on `vesa`.
+depth:X Bits per pixel: 0=text, 4,8,15,16,24 or 32. Default depends on
+ `vesa`.
+============ ===================================================================
+
+If you know capabilities of your monitor, you can specify some (or all) of
+`maxclk`, `fh` and `fv`. In this case, `pixclock` is computed so that
+pixclock <= maxclk, real_fh <= fh and real_fv <= fv.
+
+============ ==================================================================
+maxclk:X maximum dotclock. X can be specified in MHz, kHz or Hz. Default is
+ `don`t care`.
+fh:X maximum horizontal synchronization frequency. X can be specified
+ in kHz or Hz. Default is `don't care`.
+fv:X maximum vertical frequency. X must be specified in Hz. Default is
+ 70 for modes derived from `vesa` with yres <= 400, 60Hz for
+ yres > 400.
+============ ==================================================================
+
+
+Limitations
+===========
+
+There are known and unknown bugs, features and misfeatures.
+Currently there are following known bugs:
+
+ - SVGALib does not restore screen on exit
+ - generic fbcon-cfbX procedures do not work on Alphas. Due to this,
+ `noaccel` (and cfb4 accel) driver does not work on Alpha. So everyone
+ with access to `/dev/fb*` on Alpha can hang machine (you should restrict
+ access to `/dev/fb*` - everyone with access to this device can destroy
+ your monitor, believe me...).
+ - 24bpp does not support correctly XF-FBDev on big-endian architectures.
+ - interlaced text mode is not supported; it looks like hardware limitation,
+ but I'm not sure.
+ - Gxx0 SGRAM/SDRAM is not autodetected.
+ - If you are using more than one framebuffer device, you must boot kernel
+ with 'video=scrollback:0'.
+ - maybe more...
+
+And following misfeatures:
+
+ - SVGALib does not restore screen on exit.
+ - pixclock for text modes is limited by hardware to
+
+ - 83 MHz on G200
+ - 66 MHz on Millennium I
+ - 60 MHz on Millennium II
+
+ Because I have no access to other devices, I do not know specific
+ frequencies for them. So driver does not check this and allows you to
+ set frequency higher that this. It causes sparks, black holes and other
+ pretty effects on screen. Device was not destroyed during tests. :-)
+ - my Millennium G200 oscillator has frequency range from 35 MHz to 380 MHz
+ (and it works with 8bpp on about 320 MHz dotclocks (and changed mclk)).
+ But Matrox says on product sheet that VCO limit is 50-250 MHz, so I believe
+ them (maybe that chip overheats, but it has a very big cooler (G100 has
+ none), so it should work).
+ - special mixed video/graphics videomodes of Mystique and Gx00 - 2G8V16 and
+ G16V16 are not supported
+ - color keying is not supported
+ - feature connector of Mystique and Gx00 is set to VGA mode (it is disabled
+ by BIOS)
+ - DDC (monitor detection) is supported through dualhead driver
+ - some check for input values are not so strict how it should be (you can
+ specify vslen=4000 and so on).
+ - maybe more...
+
+And following features:
+
+ - 4bpp is available only on Millennium I and Millennium II. It is hardware
+ limitation.
+ - selection between 1:5:5:5 and 5:6:5 16bpp videomode is done by -rgba
+ option of fbset: "fbset -depth 16 -rgba 5,5,5" selects 1:5:5:5, anything
+ else selects 5:6:5 mode.
+ - text mode uses 6 bit VGA palette instead of 8 bit (one of 262144 colors
+ instead of one of 16M colors). It is due to hardware limitation of
+ Millennium I/II and SVGALib compatibility.
+
+
+Benchmarks
+==========
+It is time to redraw whole screen 1000 times in 1024x768, 60Hz. It is
+time for draw 6144000 characters on screen through /dev/vcsa
+(for 32bpp it is about 3GB of data (exactly 3000 MB); for 8x16 font in
+16 seconds, i.e. 187 MBps).
+Times were obtained from one older version of driver, now they are about 3%
+faster, it is kernel-space only time on P-II/350 MHz, Millennium I in 33 MHz
+PCI slot, G200 in AGP 2x slot. I did not test vgacon::
+
+ NOACCEL
+ 8x16 12x22
+ Millennium I G200 Millennium I G200
+ 8bpp 16.42 9.54 12.33 9.13
+ 16bpp 21.00 15.70 19.11 15.02
+ 24bpp 36.66 36.66 35.00 35.00
+ 32bpp 35.00 30.00 33.85 28.66
+
+ ACCEL, nofastfont
+ 8x16 12x22 6x11
+ Millennium I G200 Millennium I G200 Millennium I G200
+ 8bpp 7.79 7.24 13.55 7.78 30.00 21.01
+ 16bpp 9.13 7.78 16.16 7.78 30.00 21.01
+ 24bpp 14.17 10.72 18.69 10.24 34.99 21.01
+ 32bpp 16.15 16.16 18.73 13.09 34.99 21.01
+
+ ACCEL, fastfont
+ 8x16 12x22 6x11
+ Millennium I G200 Millennium I G200 Millennium I G200
+ 8bpp 8.41 6.01 6.54 4.37 16.00 10.51
+ 16bpp 9.54 9.12 8.76 6.17 17.52 14.01
+ 24bpp 15.00 12.36 11.67 10.00 22.01 18.32
+ 32bpp 16.18 18.29* 12.71 12.74 24.44 21.00
+
+ TEXT
+ 8x16
+ Millennium I G200
+ TEXT 3.29 1.50
+
+ * Yes, it is slower than Millennium I.
+
+
+Dualhead G400
+=============
+Driver supports dualhead G400 with some limitations:
+ + secondary head shares videomemory with primary head. It is not problem
+ if you have 32MB of videoram, but if you have only 16MB, you may have
+ to think twice before choosing videomode (for example twice 1880x1440x32bpp
+ is not possible).
+ + due to hardware limitation, secondary head can use only 16 and 32bpp
+ videomodes.
+ + secondary head is not accelerated. There were bad problems with accelerated
+ XFree when secondary head used to use acceleration.
+ + secondary head always powerups in 640x480@60-32 videomode. You have to use
+ fbset to change this mode.
+ + secondary head always powerups in monitor mode. You have to use fbmatroxset
+ to change it to TV mode. Also, you must select at least 525 lines for
+ NTSC output and 625 lines for PAL output.
+ + kernel is not fully multihead ready. So some things are impossible to do.
+ + if you compiled it as module, you must insert i2c-matroxfb, matroxfb_maven
+ and matroxfb_crtc2 into kernel.
+
+
+Dualhead G450
+=============
+Driver supports dualhead G450 with some limitations:
+ + secondary head shares videomemory with primary head. It is not problem
+ if you have 32MB of videoram, but if you have only 16MB, you may have
+ to think twice before choosing videomode.
+ + due to hardware limitation, secondary head can use only 16 and 32bpp
+ videomodes.
+ + secondary head is not accelerated.
+ + secondary head always powerups in 640x480@60-32 videomode. You have to use
+ fbset to change this mode.
+ + TV output is not supported
+ + kernel is not fully multihead ready, so some things are impossible to do.
+ + if you compiled it as module, you must insert matroxfb_g450 and matroxfb_crtc2
+ into kernel.
+
+Petr Vandrovec <vandrove@vc.cvut.cz>
diff --git a/Documentation/fb/matroxfb.txt b/Documentation/fb/matroxfb.txt
deleted file mode 100644
index b95f5bb522f2..000000000000
--- a/Documentation/fb/matroxfb.txt
+++ /dev/null
@@ -1,413 +0,0 @@
-[This file is cloned from VesaFB. Thanks go to Gerd Knorr]
-
-What is matroxfb?
-=================
-
-This is a driver for a graphic framebuffer for Matrox devices on
-Alpha, Intel and PPC boxes.
-
-Advantages:
-
- * It provides a nice large console (128 cols + 48 lines with 1024x768)
- without using tiny, unreadable fonts.
- * You can run XF{68,86}_FBDev or XFree86 fbdev driver on top of /dev/fb0
- * Most important: boot logo :-)
-
-Disadvantages:
-
- * graphic mode is slower than text mode... but you should not notice
- if you use same resolution as you used in textmode.
-
-
-How to use it?
-==============
-
-Switching modes is done using the video=matroxfb:vesa:... boot parameter
-or using `fbset' program.
-
-If you want, for example, enable a resolution of 1280x1024x24bpp you should
-pass to the kernel this command line: "video=matroxfb:vesa:0x1BB".
-
-You should compile in both vgacon (to boot if you remove you Matrox from
-box) and matroxfb (for graphics mode). You should not compile-in vesafb
-unless you have primary display on non-Matrox VBE2.0 device (see
-Documentation/fb/vesafb.txt for details).
-
-Currently supported video modes are (through vesa:... interface, PowerMac
-has [as addon] compatibility code):
-
-
-[Graphic modes]
-
-bpp | 640x400 640x480 768x576 800x600 960x720
-----+--------------------------------------------
- 4 | 0x12 0x102
- 8 | 0x100 0x101 0x180 0x103 0x188
- 15 | 0x110 0x181 0x113 0x189
- 16 | 0x111 0x182 0x114 0x18A
- 24 | 0x1B2 0x184 0x1B5 0x18C
- 32 | 0x112 0x183 0x115 0x18B
-
-
-[Graphic modes (continued)]
-
-bpp | 1024x768 1152x864 1280x1024 1408x1056 1600x1200
-----+------------------------------------------------
- 4 | 0x104 0x106
- 8 | 0x105 0x190 0x107 0x198 0x11C
- 15 | 0x116 0x191 0x119 0x199 0x11D
- 16 | 0x117 0x192 0x11A 0x19A 0x11E
- 24 | 0x1B8 0x194 0x1BB 0x19C 0x1BF
- 32 | 0x118 0x193 0x11B 0x19B
-
-
-[Text modes]
-
-text | 640x400 640x480 1056x344 1056x400 1056x480
------+------------------------------------------------
- 8x8 | 0x1C0 0x108 0x10A 0x10B 0x10C
-8x16 | 2, 3, 7 0x109
-
-You can enter these number either hexadecimal (leading `0x') or decimal
-(0x100 = 256). You can also use value + 512 to achieve compatibility
-with your old number passed to vesafb.
-
-Non-listed number can be achieved by more complicated command-line, for
-example 1600x1200x32bpp can be specified by `video=matroxfb:vesa:0x11C,depth:32'.
-
-
-X11
-===
-
-XF{68,86}_FBDev should work just fine, but it is non-accelerated. On non-intel
-architectures there are some glitches for 24bpp videomodes. 8, 16 and 32bpp
-works fine.
-
-Running another (accelerated) X-Server like XF86_SVGA works too. But (at least)
-XFree servers have big troubles in multihead configurations (even on first
-head, not even talking about second). Running XFree86 4.x accelerated mga
-driver is possible, but you must not enable DRI - if you do, resolution and
-color depth of your X desktop must match resolution and color depths of your
-virtual consoles, otherwise X will corrupt accelerator settings.
-
-
-SVGALib
-=======
-
-Driver contains SVGALib compatibility code. It is turned on by choosing textual
-mode for console. You can do it at boot time by using videomode
-2,3,7,0x108-0x10C or 0x1C0. At runtime, `fbset -depth 0' does this work.
-Unfortunately, after SVGALib application exits, screen contents is corrupted.
-Switching to another console and back fixes it. I hope that it is SVGALib's
-problem and not mine, but I'm not sure.
-
-
-Configuration
-=============
-
-You can pass kernel command line options to matroxfb with
-`video=matroxfb:option1,option2:value2,option3' (multiple options should be
-separated by comma, values are separated from options by `:').
-Accepted options:
-
-mem:X - size of memory (X can be in megabytes, kilobytes or bytes)
- You can only decrease value determined by driver because of
- it always probe for memory. Default is to use whole detected
- memory usable for on-screen display (i.e. max. 8 MB).
-disabled - do not load driver; you can use also `off', but `disabled'
- is here too.
-enabled - load driver, if you have `video=matroxfb:disabled' in LILO
- configuration, you can override it by this (you cannot override
- `off'). It is default.
-noaccel - do not use acceleration engine. It does not work on Alphas.
-accel - use acceleration engine. It is default.
-nopan - create initial consoles with vyres = yres, thus disabling virtual
- scrolling.
-pan - create initial consoles as tall as possible (vyres = memory/vxres).
- It is default.
-nopciretry - disable PCI retries. It is needed for some broken chipsets,
- it is autodetected for intel's 82437. In this case device does
- not comply to PCI 2.1 specs (it will not guarantee that every
- transaction terminate with success or retry in 32 PCLK).
-pciretry - enable PCI retries. It is default, except for intel's 82437.
-novga - disables VGA I/O ports. It is default if BIOS did not enable device.
- You should not use this option, some boards then do not restart
- without power off.
-vga - preserve state of VGA I/O ports. It is default. Driver does not
- enable VGA I/O if BIOS did not it (it is not safe to enable it in
- most cases).
-nobios - disables BIOS ROM. It is default if BIOS did not enable BIOS itself.
- You should not use this option, some boards then do not restart
- without power off.
-bios - preserve state of BIOS ROM. It is default. Driver does not enable
- BIOS if BIOS was not enabled before.
-noinit - tells driver, that devices were already initialized. You should use
- it if you have G100 and/or if driver cannot detect memory, you see
- strange pattern on screen and so on. Devices not enabled by BIOS
- are still initialized. It is default.
-init - driver initializes every device it knows about.
-memtype - specifies memory type, implies 'init'. This is valid only for G200
- and G400 and has following meaning:
- G200: 0 -> 2x128Kx32 chips, 2MB onboard, probably sgram
- 1 -> 2x128Kx32 chips, 4MB onboard, probably sgram
- 2 -> 2x256Kx32 chips, 4MB onboard, probably sgram
- 3 -> 2x256Kx32 chips, 8MB onboard, probably sgram
- 4 -> 2x512Kx16 chips, 8/16MB onboard, probably sdram only
- 5 -> same as above
- 6 -> 4x128Kx32 chips, 4MB onboard, probably sgram
- 7 -> 4x128Kx32 chips, 8MB onboard, probably sgram
- G400: 0 -> 2x512Kx16 SDRAM, 16/32MB
- 2x512Kx32 SGRAM, 16/32MB
- 1 -> 2x256Kx32 SGRAM, 8/16MB
- 2 -> 4x128Kx32 SGRAM, 8/16MB
- 3 -> 4x512Kx32 SDRAM, 32MB
- 4 -> 4x256Kx32 SGRAM, 16/32MB
- 5 -> 2x1Mx32 SDRAM, 32MB
- 6 -> reserved
- 7 -> reserved
- You should use sdram or sgram parameter in addition to memtype
- parameter.
-nomtrr - disables write combining on frame buffer. This slows down driver but
- there is reported minor incompatibility between GUS DMA and XFree
- under high loads if write combining is enabled (sound dropouts).
-mtrr - enables write combining on frame buffer. It speeds up video accesses
- much. It is default. You must have MTRR support enabled in kernel
- and your CPU must have MTRR (f.e. Pentium II have them).
-sgram - tells to driver that you have Gxx0 with SGRAM memory. It has no
- effect without `init'.
-sdram - tells to driver that you have Gxx0 with SDRAM memory.
- It is a default.
-inv24 - change timings parameters for 24bpp modes on Millennium and
- Millennium II. Specify this if you see strange color shadows around
- characters.
-noinv24 - use standard timings. It is the default.
-inverse - invert colors on screen (for LCD displays)
-noinverse - show true colors on screen. It is default.
-dev:X - bind driver to device X. Driver numbers device from 0 up to N,
- where device 0 is first `known' device found, 1 second and so on.
- lspci lists devices in this order.
- Default is `every' known device.
-nohwcursor - disables hardware cursor (use software cursor instead).
-hwcursor - enables hardware cursor. It is default. If you are using
- non-accelerated mode (`noaccel' or `fbset -accel false'), software
- cursor is used (except for text mode).
-noblink - disables cursor blinking. Cursor in text mode always blinks (hw
- limitation).
-blink - enables cursor blinking. It is default.
-nofastfont - disables fastfont feature. It is default.
-fastfont:X - enables fastfont feature. X specifies size of memory reserved for
- font data, it must be >= (fontwidth*fontheight*chars_in_font)/8.
- It is faster on Gx00 series, but slower on older cards.
-grayscale - enable grayscale summing. It works in PSEUDOCOLOR modes (text,
- 4bpp, 8bpp). In DIRECTCOLOR modes it is limited to characters
- displayed through putc/putcs. Direct accesses to framebuffer
- can paint colors.
-nograyscale - disable grayscale summing. It is default.
-cross4MB - enables that pixel line can cross 4MB boundary. It is default for
- non-Millennium.
-nocross4MB - pixel line must not cross 4MB boundary. It is default for
- Millennium I or II, because of these devices have hardware
- limitations which do not allow this. But this option is
- incompatible with some (if not all yet released) versions of
- XF86_FBDev.
-dfp - enables digital flat panel interface. This option is incompatible with
- secondary (TV) output - if DFP is active, TV output must be
- inactive and vice versa. DFP always uses same timing as primary
- (monitor) output.
-dfp:X - use settings X for digital flat panel interface. X is number from
- 0 to 0xFF, and meaning of each individual bit is described in
- G400 manual, in description of DAC register 0x1F. For normal operation
- you should set all bits to zero, except lowest bit. This lowest bit
- selects who is source of display clocks, whether G400, or panel.
- Default value is now read back from hardware - so you should specify
- this value only if you are also using `init' parameter.
-outputs:XYZ - set mapping between CRTC and outputs. Each letter can have value
- of 0 (for no CRTC), 1 (CRTC1) or 2 (CRTC2), and first letter corresponds
- to primary analog output, second letter to the secondary analog output
- and third letter to the DVI output. Default setting is 100 for
- cards below G400 or G400 without DFP, 101 for G400 with DFP, and
- 111 for G450 and G550. You can set mapping only on first card,
- use matroxset for setting up other devices.
-vesa:X - selects startup videomode. X is number from 0 to 0x1FF, see table
- above for detailed explanation. Default is 640x480x8bpp if driver
- has 8bpp support. Otherwise first available of 640x350x4bpp,
- 640x480x15bpp, 640x480x24bpp, 640x480x32bpp or 80x25 text
- (80x25 text is always available).
-
-If you are not satisfied with videomode selected by `vesa' option, you
-can modify it with these options:
-
-xres:X - horizontal resolution, in pixels. Default is derived from `vesa'
- option.
-yres:X - vertical resolution, in pixel lines. Default is derived from `vesa'
- option.
-upper:X - top boundary: lines between end of VSYNC pulse and start of first
- pixel line of picture. Default is derived from `vesa' option.
-lower:X - bottom boundary: lines between end of picture and start of VSYNC
- pulse. Default is derived from `vesa' option.
-vslen:X - length of VSYNC pulse, in lines. Default is derived from `vesa'
- option.
-left:X - left boundary: pixels between end of HSYNC pulse and first pixel.
- Default is derived from `vesa' option.
-right:X - right boundary: pixels between end of picture and start of HSYNC
- pulse. Default is derived from `vesa' option.
-hslen:X - length of HSYNC pulse, in pixels. Default is derived from `vesa'
- option.
-pixclock:X - dotclocks, in ps (picoseconds). Default is derived from `vesa'
- option and from `fh' and `fv' options.
-sync:X - sync. pulse - bit 0 inverts HSYNC polarity, bit 1 VSYNC polarity.
- If bit 3 (value 0x08) is set, composite sync instead of HSYNC is
- generated. If bit 5 (value 0x20) is set, sync on green is turned on.
- Do not forget that if you want sync on green, you also probably
- want composite sync.
- Default depends on `vesa'.
-depth:X - Bits per pixel: 0=text, 4,8,15,16,24 or 32. Default depends on
- `vesa'.
-
-If you know capabilities of your monitor, you can specify some (or all) of
-`maxclk', `fh' and `fv'. In this case, `pixclock' is computed so that
-pixclock <= maxclk, real_fh <= fh and real_fv <= fv.
-
-maxclk:X - maximum dotclock. X can be specified in MHz, kHz or Hz. Default is
- `don't care'.
-fh:X - maximum horizontal synchronization frequency. X can be specified
- in kHz or Hz. Default is `don't care'.
-fv:X - maximum vertical frequency. X must be specified in Hz. Default is
- 70 for modes derived from `vesa' with yres <= 400, 60Hz for
- yres > 400.
-
-
-Limitations
-===========
-
-There are known and unknown bugs, features and misfeatures.
-Currently there are following known bugs:
- + SVGALib does not restore screen on exit
- + generic fbcon-cfbX procedures do not work on Alphas. Due to this,
- `noaccel' (and cfb4 accel) driver does not work on Alpha. So everyone
- with access to /dev/fb* on Alpha can hang machine (you should restrict
- access to /dev/fb* - everyone with access to this device can destroy
- your monitor, believe me...).
- + 24bpp does not support correctly XF-FBDev on big-endian architectures.
- + interlaced text mode is not supported; it looks like hardware limitation,
- but I'm not sure.
- + Gxx0 SGRAM/SDRAM is not autodetected.
- + If you are using more than one framebuffer device, you must boot kernel
- with 'video=scrollback:0'.
- + maybe more...
-And following misfeatures:
- + SVGALib does not restore screen on exit.
- + pixclock for text modes is limited by hardware to
- 83 MHz on G200
- 66 MHz on Millennium I
- 60 MHz on Millennium II
- Because I have no access to other devices, I do not know specific
- frequencies for them. So driver does not check this and allows you to
- set frequency higher that this. It causes sparks, black holes and other
- pretty effects on screen. Device was not destroyed during tests. :-)
- + my Millennium G200 oscillator has frequency range from 35 MHz to 380 MHz
- (and it works with 8bpp on about 320 MHz dotclocks (and changed mclk)).
- But Matrox says on product sheet that VCO limit is 50-250 MHz, so I believe
- them (maybe that chip overheats, but it has a very big cooler (G100 has
- none), so it should work).
- + special mixed video/graphics videomodes of Mystique and Gx00 - 2G8V16 and
- G16V16 are not supported
- + color keying is not supported
- + feature connector of Mystique and Gx00 is set to VGA mode (it is disabled
- by BIOS)
- + DDC (monitor detection) is supported through dualhead driver
- + some check for input values are not so strict how it should be (you can
- specify vslen=4000 and so on).
- + maybe more...
-And following features:
- + 4bpp is available only on Millennium I and Millennium II. It is hardware
- limitation.
- + selection between 1:5:5:5 and 5:6:5 16bpp videomode is done by -rgba
- option of fbset: "fbset -depth 16 -rgba 5,5,5" selects 1:5:5:5, anything
- else selects 5:6:5 mode.
- + text mode uses 6 bit VGA palette instead of 8 bit (one of 262144 colors
- instead of one of 16M colors). It is due to hardware limitation of
- Millennium I/II and SVGALib compatibility.
-
-
-Benchmarks
-==========
-It is time to redraw whole screen 1000 times in 1024x768, 60Hz. It is
-time for draw 6144000 characters on screen through /dev/vcsa
-(for 32bpp it is about 3GB of data (exactly 3000 MB); for 8x16 font in
-16 seconds, i.e. 187 MBps).
-Times were obtained from one older version of driver, now they are about 3%
-faster, it is kernel-space only time on P-II/350 MHz, Millennium I in 33 MHz
-PCI slot, G200 in AGP 2x slot. I did not test vgacon.
-
-NOACCEL
- 8x16 12x22
- Millennium I G200 Millennium I G200
-8bpp 16.42 9.54 12.33 9.13
-16bpp 21.00 15.70 19.11 15.02
-24bpp 36.66 36.66 35.00 35.00
-32bpp 35.00 30.00 33.85 28.66
-
-ACCEL, nofastfont
- 8x16 12x22 6x11
- Millennium I G200 Millennium I G200 Millennium I G200
-8bpp 7.79 7.24 13.55 7.78 30.00 21.01
-16bpp 9.13 7.78 16.16 7.78 30.00 21.01
-24bpp 14.17 10.72 18.69 10.24 34.99 21.01
-32bpp 16.15 16.16 18.73 13.09 34.99 21.01
-
-ACCEL, fastfont
- 8x16 12x22 6x11
- Millennium I G200 Millennium I G200 Millennium I G200
-8bpp 8.41 6.01 6.54 4.37 16.00 10.51
-16bpp 9.54 9.12 8.76 6.17 17.52 14.01
-24bpp 15.00 12.36 11.67 10.00 22.01 18.32
-32bpp 16.18 18.29* 12.71 12.74 24.44 21.00
-
-TEXT
- 8x16
- Millennium I G200
-TEXT 3.29 1.50
-
-* Yes, it is slower than Millennium I.
-
-
-Dualhead G400
-=============
-Driver supports dualhead G400 with some limitations:
- + secondary head shares videomemory with primary head. It is not problem
- if you have 32MB of videoram, but if you have only 16MB, you may have
- to think twice before choosing videomode (for example twice 1880x1440x32bpp
- is not possible).
- + due to hardware limitation, secondary head can use only 16 and 32bpp
- videomodes.
- + secondary head is not accelerated. There were bad problems with accelerated
- XFree when secondary head used to use acceleration.
- + secondary head always powerups in 640x480@60-32 videomode. You have to use
- fbset to change this mode.
- + secondary head always powerups in monitor mode. You have to use fbmatroxset
- to change it to TV mode. Also, you must select at least 525 lines for
- NTSC output and 625 lines for PAL output.
- + kernel is not fully multihead ready. So some things are impossible to do.
- + if you compiled it as module, you must insert i2c-matroxfb, matroxfb_maven
- and matroxfb_crtc2 into kernel.
-
-
-Dualhead G450
-=============
-Driver supports dualhead G450 with some limitations:
- + secondary head shares videomemory with primary head. It is not problem
- if you have 32MB of videoram, but if you have only 16MB, you may have
- to think twice before choosing videomode.
- + due to hardware limitation, secondary head can use only 16 and 32bpp
- videomodes.
- + secondary head is not accelerated.
- + secondary head always powerups in 640x480@60-32 videomode. You have to use
- fbset to change this mode.
- + TV output is not supported
- + kernel is not fully multihead ready, so some things are impossible to do.
- + if you compiled it as module, you must insert matroxfb_g450 and matroxfb_crtc2
- into kernel.
-
---
-Petr Vandrovec <vandrove@vc.cvut.cz>
diff --git a/Documentation/fb/metronomefb.txt b/Documentation/fb/metronomefb.rst
index 237ca412582d..63e1d31a7e54 100644
--- a/Documentation/fb/metronomefb.txt
+++ b/Documentation/fb/metronomefb.rst
@@ -1,6 +1,9 @@
- Metronomefb
- -----------
+===========
+Metronomefb
+===========
+
Maintained by Jaya Kumar <jayakumar.lkml.gmail.com>
+
Last revised: Mar 10, 2008
Metronomefb is a driver for the Metronome display controller. The controller
@@ -33,4 +36,3 @@ the physical media.
Metronomefb uses the deferred IO interface so that it can provide a memory
mappable frame buffer. It has been tested with tinyx (Xfbdev). It is known
to work at this time with xeyes, xclock, xloadimage, xpdf.
-
diff --git a/Documentation/fb/modedb.txt b/Documentation/fb/modedb.rst
index 16aa08453911..3c2397293977 100644
--- a/Documentation/fb/modedb.txt
+++ b/Documentation/fb/modedb.rst
@@ -1,6 +1,6 @@
-
-
- modedb default video mode support
+=================================
+modedb default video mode support
+=================================
Currently all frame buffer device drivers have their own video mode databases,
@@ -18,7 +18,7 @@ When a frame buffer device receives a video= option it doesn't know, it should
consider that to be a video mode option. If no frame buffer device is specified
in a video= option, fbmem considers that to be a global video mode option.
-Valid mode specifiers (mode_option argument):
+Valid mode specifiers (mode_option argument)::
<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]
<name>[-<bpp>][@<refresh>]
@@ -45,15 +45,18 @@ signals (e.g. HDMI and DVI-I). For other outputs it behaves like 'e'. If 'd'
is specified the output is disabled.
You can additionally specify which output the options matches to.
-To force the VGA output to be enabled and drive a specific mode say:
+To force the VGA output to be enabled and drive a specific mode say::
+
video=VGA-1:1280x1024@60me
-Specifying the option multiple times for different ports is possible, e.g.:
+Specifying the option multiple times for different ports is possible, e.g.::
+
video=LVDS-1:d video=HDMI-1:D
-***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo *****
+-----------------------------------------------------------------------------
What is the VESA(TM) Coordinated Video Timings (CVT)?
+=====================================================
From the VESA(TM) Website:
@@ -90,14 +93,14 @@ determined from its EDID. The version 1.3 of the EDID has extra 128-byte
blocks where additional timing information is placed. As of this time, there
is no support yet in the layer to parse this additional blocks.)
-CVT also introduced a new naming convention (should be seen from dmesg output):
+CVT also introduced a new naming convention (should be seen from dmesg output)::
<pix>M<a>[-R]
where: pix = total amount of pixels in MB (xres x yres)
- M = always present
- a = aspect ratio (3 - 4:3; 4 - 5:4; 9 - 15:9, 16:9; A - 16:10)
- -R = reduced blanking
+ M = always present
+ a = aspect ratio (3 - 4:3; 4 - 5:4; 9 - 15:9, 16:9; A - 16:10)
+ -R = reduced blanking
example: .48M3-R - 800x600 with reduced blanking
@@ -110,15 +113,15 @@ Note: VESA(TM) has restrictions on what is a standard CVT timing:
If one of the above are not satisfied, the kernel will print a warning but the
timings will still be calculated.
-***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo *****
+-----------------------------------------------------------------------------
-To find a suitable video mode, you just call
+To find a suitable video mode, you just call::
-int __init fb_find_mode(struct fb_var_screeninfo *var,
- struct fb_info *info, const char *mode_option,
- const struct fb_videomode *db, unsigned int dbsize,
- const struct fb_videomode *default_mode,
- unsigned int default_bpp)
+ int __init fb_find_mode(struct fb_var_screeninfo *var,
+ struct fb_info *info, const char *mode_option,
+ const struct fb_videomode *db, unsigned int dbsize,
+ const struct fb_videomode *default_mode,
+ unsigned int default_bpp)
with db/dbsize your non-standard video mode database, or NULL to use the
standard video mode database.
@@ -127,12 +130,13 @@ fb_find_mode() first tries the specified video mode (or any mode that matches,
e.g. there can be multiple 640x480 modes, each of them is tried). If that
fails, the default mode is tried. If that fails, it walks over all modes.
-To specify a video mode at bootup, use the following boot options:
+To specify a video mode at bootup, use the following boot options::
+
video=<driver>:<xres>x<yres>[-<bpp>][@refresh]
where <driver> is a name from the table below. Valid default modes can be
found in linux/drivers/video/modedb.c. Check your driver's documentation.
-There may be more modes.
+There may be more modes::
Drivers that support modedb boot options
Boot Name Cards Supported
diff --git a/Documentation/fb/pvr2fb.rst b/Documentation/fb/pvr2fb.rst
new file mode 100644
index 000000000000..fcf2c21c8fcf
--- /dev/null
+++ b/Documentation/fb/pvr2fb.rst
@@ -0,0 +1,66 @@
+===============
+What is pvr2fb?
+===============
+
+This is a driver for PowerVR 2 based graphics frame buffers, such as the
+one found in the Dreamcast.
+
+Advantages:
+
+ * It provides a nice large console (128 cols + 48 lines with 1024x768)
+ without using tiny, unreadable fonts (NOT on the Dreamcast)
+ * You can run XF86_FBDev on top of /dev/fb0
+ * Most important: boot logo :-)
+
+Disadvantages:
+
+ * Driver is largely untested on non-Dreamcast systems.
+
+Configuration
+=============
+
+You can pass kernel command line options to pvr2fb with
+`video=pvr2fb:option1,option2:value2,option3` (multiple options should be
+separated by comma, values are separated from options by `:`).
+
+Accepted options:
+
+========== ==================================================================
+font:X default font to use. All fonts are supported, including the
+ SUN12x22 font which is very nice at high resolutions.
+
+
+mode:X default video mode with format [xres]x[yres]-<bpp>@<refresh rate>
+ The following video modes are supported:
+ 640x640-16@60, 640x480-24@60, 640x480-32@60. The Dreamcast
+ defaults to 640x480-16@60. At the time of writing the
+ 24bpp and 32bpp modes function poorly. Work to fix that is
+ ongoing
+
+ Note: the 640x240 mode is currently broken, and should not be
+ used for any reason. It is only mentioned here as a reference.
+
+inverse invert colors on screen (for LCD displays)
+
+nomtrr disables write combining on frame buffer. This slows down driver
+ but there is reported minor incompatibility between GUS DMA and
+ XFree under high loads if write combining is enabled (sound
+ dropouts). MTRR is enabled by default on systems that have it
+ configured and that support it.
+
+cable:X cable type. This can be any of the following: vga, rgb, and
+ composite. If none is specified, we guess.
+
+output:X output type. This can be any of the following: pal, ntsc, and
+ vga. If none is specified, we guess.
+========== ==================================================================
+
+X11
+===
+
+XF86_FBDev has been shown to work on the Dreamcast in the past - though not yet
+on any 2.6 series kernel.
+
+Paul Mundt <lethal@linuxdc.org>
+
+Updated by Adrian McMenamin <adrian@mcmen.demon.co.uk>
diff --git a/Documentation/fb/pvr2fb.txt b/Documentation/fb/pvr2fb.txt
deleted file mode 100644
index 36bdeff585e2..000000000000
--- a/Documentation/fb/pvr2fb.txt
+++ /dev/null
@@ -1,65 +0,0 @@
-$Id: pvr2fb.txt,v 1.1 2001/05/24 05:09:16 mrbrown Exp $
-
-What is pvr2fb?
-===============
-
-This is a driver for PowerVR 2 based graphics frame buffers, such as the
-one found in the Dreamcast.
-
-Advantages:
-
- * It provides a nice large console (128 cols + 48 lines with 1024x768)
- without using tiny, unreadable fonts (NOT on the Dreamcast)
- * You can run XF86_FBDev on top of /dev/fb0
- * Most important: boot logo :-)
-
-Disadvantages:
-
- * Driver is largely untested on non-Dreamcast systems.
-
-Configuration
-=============
-
-You can pass kernel command line options to pvr2fb with
-`video=pvr2fb:option1,option2:value2,option3' (multiple options should be
-separated by comma, values are separated from options by `:').
-Accepted options:
-
-font:X - default font to use. All fonts are supported, including the
- SUN12x22 font which is very nice at high resolutions.
-
-
-mode:X - default video mode with format [xres]x[yres]-<bpp>@<refresh rate>
- The following video modes are supported:
- 640x640-16@60, 640x480-24@60, 640x480-32@60. The Dreamcast
- defaults to 640x480-16@60. At the time of writing the
- 24bpp and 32bpp modes function poorly. Work to fix that is
- ongoing
-
- Note: the 640x240 mode is currently broken, and should not be
- used for any reason. It is only mentioned here as a reference.
-
-inverse - invert colors on screen (for LCD displays)
-
-nomtrr - disables write combining on frame buffer. This slows down driver
- but there is reported minor incompatibility between GUS DMA and
- XFree under high loads if write combining is enabled (sound
- dropouts). MTRR is enabled by default on systems that have it
- configured and that support it.
-
-cable:X - cable type. This can be any of the following: vga, rgb, and
- composite. If none is specified, we guess.
-
-output:X - output type. This can be any of the following: pal, ntsc, and
- vga. If none is specified, we guess.
-
-X11
-===
-
-XF86_FBDev has been shown to work on the Dreamcast in the past - though not yet
-on any 2.6 series kernel.
-
---
-Paul Mundt <lethal@linuxdc.org>
-Updated by Adrian McMenamin <adrian@mcmen.demon.co.uk>
-
diff --git a/Documentation/fb/pxafb.txt b/Documentation/fb/pxafb.rst
index d143a0a749f9..90177f5e7e76 100644
--- a/Documentation/fb/pxafb.txt
+++ b/Documentation/fb/pxafb.rst
@@ -1,59 +1,82 @@
+================================
Driver for PXA25x LCD controller
================================
The driver supports the following options, either via
options=<OPTIONS> when modular or video=pxafb:<OPTIONS> when built in.
-For example:
+For example::
+
modprobe pxafb options=vmem:2M,mode:640x480-8,passive
-or on the kernel command line
+
+or on the kernel command line::
+
video=pxafb:vmem:2M,mode:640x480-8,passive
vmem: VIDEO_MEM_SIZE
+
Amount of video memory to allocate (can be suffixed with K or M
for kilobytes or megabytes)
mode:XRESxYRES[-BPP]
+
XRES == LCCR1_PPL + 1
+
YRES == LLCR2_LPP + 1
+
The resolution of the display in pixels
+
BPP == The bit depth. Valid values are 1, 2, 4, 8 and 16.
pixclock:PIXCLOCK
+
Pixel clock in picoseconds
left:LEFT == LCCR1_BLW + 1
+
right:RIGHT == LCCR1_ELW + 1
+
hsynclen:HSYNC == LCCR1_HSW + 1
+
upper:UPPER == LCCR2_BFW
+
lower:LOWER == LCCR2_EFR
+
vsynclen:VSYNC == LCCR2_VSW + 1
+
Display margins and sync times
color | mono => LCCR0_CMS
+
umm...
active | passive => LCCR0_PAS
+
Active (TFT) or Passive (STN) display
single | dual => LCCR0_SDS
+
Single or dual panel passive display
4pix | 8pix => LCCR0_DPD
+
4 or 8 pixel monochrome single panel data
-hsync:HSYNC
-vsync:VSYNC
+hsync:HSYNC, vsync:VSYNC
+
Horizontal and vertical sync. 0 => active low, 1 => active
high.
dpc:DPC
+
Double pixel clock. 1=>true, 0=>false
outputen:POLARITY
+
Output Enable Polarity. 0 => active low, 1 => active high
pixclockpol:POLARITY
+
pixel clock polarity
0 => falling edge, 1 => rising edge
@@ -76,44 +99,50 @@ Overlay Support for PXA27x and later LCD controllers
not for such purpose).
2. overlay framebuffer is allocated dynamically according to specified
- 'struct fb_var_screeninfo', the amount is decided by:
+ 'struct fb_var_screeninfo', the amount is decided by::
- var->xres_virtual * var->yres_virtual * bpp
+ var->xres_virtual * var->yres_virtual * bpp
bpp = 16 -- for RGB565 or RGBT555
- = 24 -- for YUV444 packed
- = 24 -- for YUV444 planar
- = 16 -- for YUV422 planar (1 pixel = 1 Y + 1/2 Cb + 1/2 Cr)
- = 12 -- for YUV420 planar (1 pixel = 1 Y + 1/4 Cb + 1/4 Cr)
+
+ bpp = 24 -- for YUV444 packed
+
+ bpp = 24 -- for YUV444 planar
+
+ bpp = 16 -- for YUV422 planar (1 pixel = 1 Y + 1/2 Cb + 1/2 Cr)
+
+ bpp = 12 -- for YUV420 planar (1 pixel = 1 Y + 1/4 Cb + 1/4 Cr)
NOTE:
a. overlay does not support panning in x-direction, thus
- var->xres_virtual will always be equal to var->xres
+ var->xres_virtual will always be equal to var->xres
b. line length of overlay(s) must be on a 32-bit word boundary,
- for YUV planar modes, it is a requirement for the component
+ for YUV planar modes, it is a requirement for the component
with minimum bits per pixel, e.g. for YUV420, Cr component
for one pixel is actually 2-bits, it means the line length
should be a multiple of 16-pixels
c. starting horizontal position (XPOS) should start on a 32-bit
- word boundary, otherwise the fb_check_var() will just fail.
+ word boundary, otherwise the fb_check_var() will just fail.
d. the rectangle of the overlay should be within the base plane,
- otherwise fail
+ otherwise fail
Applications should follow the sequence below to operate an overlay
framebuffer:
- a. open("/dev/fb[1-2]", ...)
+ a. open("/dev/fb[1-2]", ...)
b. ioctl(fd, FBIOGET_VSCREENINFO, ...)
c. modify 'var' with desired parameters:
+
1) var->xres and var->yres
2) larger var->yres_virtual if more memory is required,
usually for double-buffering
3) var->nonstd for starting (x, y) and color format
4) var->{red, green, blue, transp} if RGB mode is to be used
+
d. ioctl(fd, FBIOPUT_VSCREENINFO, ...)
e. ioctl(fd, FBIOGET_FSCREENINFO, ...)
f. mmap
@@ -124,19 +153,21 @@ Overlay Support for PXA27x and later LCD controllers
and lengths of each component within the framebuffer.
4. var->nonstd is used to pass starting (x, y) position and color format,
- the detailed bit fields are shown below:
+ the detailed bit fields are shown below::
- 31 23 20 10 0
- +-----------------+---+----------+----------+
- | ... unused ... |FOR| XPOS | YPOS |
- +-----------------+---+----------+----------+
+ 31 23 20 10 0
+ +-----------------+---+----------+----------+
+ | ... unused ... |FOR| XPOS | YPOS |
+ +-----------------+---+----------+----------+
FOR - color format, as defined by OVERLAY_FORMAT_* in pxafb.h
- 0 - RGB
- 1 - YUV444 PACKED
- 2 - YUV444 PLANAR
- 3 - YUV422 PLANAR
- 4 - YUR420 PLANAR
+
+ - 0 - RGB
+ - 1 - YUV444 PACKED
+ - 2 - YUV444 PLANAR
+ - 3 - YUV422 PLANAR
+ - 4 - YUR420 PLANAR
XPOS - starting horizontal position
+
YPOS - starting vertical position
diff --git a/Documentation/fb/s3fb.txt b/Documentation/fb/s3fb.rst
index 2c97770bdbaa..e809d69c21a7 100644
--- a/Documentation/fb/s3fb.txt
+++ b/Documentation/fb/s3fb.rst
@@ -1,6 +1,6 @@
-
- s3fb - fbdev driver for S3 Trio/Virge chips
- ===========================================
+===========================================
+s3fb - fbdev driver for S3 Trio/Virge chips
+===========================================
Supported Hardware
@@ -56,7 +56,7 @@ Missing Features
(alias TODO list)
* secondary (not initialized by BIOS) device support
- * big endian support
+ * big endian support
* Zorro bus support
* MMIO support
* 24 bpp mode support on more cards
diff --git a/Documentation/fb/sa1100fb.txt b/Documentation/fb/sa1100fb.rst
index f1b4220464df..67e2650e017d 100644
--- a/Documentation/fb/sa1100fb.txt
+++ b/Documentation/fb/sa1100fb.rst
@@ -1,17 +1,19 @@
-[This file is cloned from VesaFB/matroxfb]
-
+=================
What is sa1100fb?
=================
+.. [This file is cloned from VesaFB/matroxfb]
+
+
This is a driver for a graphic framebuffer for the SA-1100 LCD
controller.
Configuration
==============
-For most common passive displays, giving the option
+For most common passive displays, giving the option::
-video=sa1100fb:bpp:<value>,lccr0:<value>,lccr1:<value>,lccr2:<value>,lccr3:<value>
+ video=sa1100fb:bpp:<value>,lccr0:<value>,lccr1:<value>,lccr2:<value>,lccr3:<value>
on the kernel command line should be enough to configure the
controller. The bits per pixel (bpp) value should be 4, 8, 12, or
@@ -27,13 +29,12 @@ sa1100fb_init_fbinfo(), sa1100fb_activate_var(),
sa1100fb_disable_lcd_controller(), and sa1100fb_enable_lcd_controller()
will probably be necessary.
-Accepted options:
+Accepted options::
-bpp:<value> Configure for <value> bits per pixel
-lccr0:<value> Configure LCD control register 0 (11.7.3)
-lccr1:<value> Configure LCD control register 1 (11.7.4)
-lccr2:<value> Configure LCD control register 2 (11.7.5)
-lccr3:<value> Configure LCD control register 3 (11.7.6)
+ bpp:<value> Configure for <value> bits per pixel
+ lccr0:<value> Configure LCD control register 0 (11.7.3)
+ lccr1:<value> Configure LCD control register 1 (11.7.4)
+ lccr2:<value> Configure LCD control register 2 (11.7.5)
+ lccr3:<value> Configure LCD control register 3 (11.7.6)
---
Mark Huang <mhuang@livetoy.com>
diff --git a/Documentation/fb/sh7760fb.rst b/Documentation/fb/sh7760fb.rst
new file mode 100644
index 000000000000..c3266485f810
--- /dev/null
+++ b/Documentation/fb/sh7760fb.rst
@@ -0,0 +1,130 @@
+================================================
+SH7760/SH7763 integrated LCDC Framebuffer driver
+================================================
+
+0. Overview
+-----------
+The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which
+supports (in theory) resolutions ranging from 1x1 to 1024x1024,
+with color depths ranging from 1 to 16 bits, on STN, DSTN and TFT Panels.
+
+Caveats:
+
+* Framebuffer memory must be a large chunk allocated at the top
+ of Area3 (HW requirement). Because of this requirement you should NOT
+ make the driver a module since at runtime it may become impossible to
+ get a large enough contiguous chunk of memory.
+
+* The driver does not support changing resolution while loaded
+ (displays aren't hotpluggable anyway)
+
+* Heavy flickering may be observed
+ a) if you're using 15/16bit color modes at >= 640x480 px resolutions,
+ b) during PCMCIA (or any other slow bus) activity.
+
+* Rotation works only 90degress clockwise, and only if horizontal
+ resolution is <= 320 pixels.
+
+Files:
+ - drivers/video/sh7760fb.c
+ - include/asm-sh/sh7760fb.h
+ - Documentation/fb/sh7760fb.rst
+
+1. Platform setup
+-----------------
+SH7760:
+ Video data is fetched via the DMABRG DMA engine, so you have to
+ configure the SH DMAC for DMABRG mode (write 0x94808080 to the
+ DMARSRA register somewhere at boot).
+
+ PFC registers PCCR and PCDR must be set to peripheral mode.
+ (write zeros to both).
+
+The driver does NOT do the above for you since board setup is, well, job
+of the board setup code.
+
+2. Panel definitions
+--------------------
+The LCDC must explicitly be told about the type of LCD panel
+attached. Data must be wrapped in a "struct sh7760fb_platdata" and
+passed to the driver as platform_data.
+
+Suggest you take a closer look at the SH7760 Manual, Section 30.
+(http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf)
+
+The following code illustrates what needs to be done to
+get the framebuffer working on a 640x480 TFT::
+
+ #include <linux/fb.h>
+ #include <asm/sh7760fb.h>
+
+ /*
+ * NEC NL6440bc26-01 640x480 TFT
+ * dotclock 25175 kHz
+ * Xres 640 Yres 480
+ * Htotal 800 Vtotal 525
+ * HsynStart 656 VsynStart 490
+ * HsynLenn 30 VsynLenn 2
+ *
+ * The linux framebuffer layer does not use the syncstart/synclen
+ * values but right/left/upper/lower margin values. The comments
+ * for the x_margin explain how to calculate those from given
+ * panel sync timings.
+ */
+ static struct fb_videomode nl6448bc26 = {
+ .name = "NL6448BC26",
+ .refresh = 60,
+ .xres = 640,
+ .yres = 480,
+ .pixclock = 39683, /* in picoseconds! */
+ .hsync_len = 30,
+ .vsync_len = 2,
+ .left_margin = 114, /* HTOT - (HSYNSLEN + HSYNSTART) */
+ .right_margin = 16, /* HSYNSTART - XRES */
+ .upper_margin = 33, /* VTOT - (VSYNLEN + VSYNSTART) */
+ .lower_margin = 10, /* VSYNSTART - YRES */
+ .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
+ .vmode = FB_VMODE_NONINTERLACED,
+ .flag = 0,
+ };
+
+ static struct sh7760fb_platdata sh7760fb_nl6448 = {
+ .def_mode = &nl6448bc26,
+ .ldmtr = LDMTR_TFT_COLOR_16, /* 16bit TFT panel */
+ .lddfr = LDDFR_8BPP, /* we want 8bit output */
+ .ldpmmr = 0x0070,
+ .ldpspr = 0x0500,
+ .ldaclnr = 0,
+ .ldickr = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) |
+ LDICKR_CLKDIV(1),
+ .rotate = 0,
+ .novsync = 1,
+ .blank = NULL,
+ };
+
+ /* SH7760:
+ * 0xFE300800: 256 * 4byte xRGB palette ram
+ * 0xFE300C00: 42 bytes ctrl registers
+ */
+ static struct resource sh7760_lcdc_res[] = {
+ [0] = {
+ .start = 0xFE300800,
+ .end = 0xFE300CFF,
+ .flags = IORESOURCE_MEM,
+ },
+ [1] = {
+ .start = 65,
+ .end = 65,
+ .flags = IORESOURCE_IRQ,
+ },
+ };
+
+ static struct platform_device sh7760_lcdc_dev = {
+ .dev = {
+ .platform_data = &sh7760fb_nl6448,
+ },
+ .name = "sh7760-lcdc",
+ .id = -1,
+ .resource = sh7760_lcdc_res,
+ .num_resources = ARRAY_SIZE(sh7760_lcdc_res),
+ };
diff --git a/Documentation/fb/sh7760fb.txt b/Documentation/fb/sh7760fb.txt
deleted file mode 100644
index b994c3b10549..000000000000
--- a/Documentation/fb/sh7760fb.txt
+++ /dev/null
@@ -1,131 +0,0 @@
-SH7760/SH7763 integrated LCDC Framebuffer driver
-================================================
-
-0. Overview
------------
-The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which
-supports (in theory) resolutions ranging from 1x1 to 1024x1024,
-with color depths ranging from 1 to 16 bits, on STN, DSTN and TFT Panels.
-
-Caveats:
-* Framebuffer memory must be a large chunk allocated at the top
- of Area3 (HW requirement). Because of this requirement you should NOT
- make the driver a module since at runtime it may become impossible to
- get a large enough contiguous chunk of memory.
-
-* The driver does not support changing resolution while loaded
- (displays aren't hotpluggable anyway)
-
-* Heavy flickering may be observed
- a) if you're using 15/16bit color modes at >= 640x480 px resolutions,
- b) during PCMCIA (or any other slow bus) activity.
-
-* Rotation works only 90degress clockwise, and only if horizontal
- resolution is <= 320 pixels.
-
-files: drivers/video/sh7760fb.c
- include/asm-sh/sh7760fb.h
- Documentation/fb/sh7760fb.txt
-
-1. Platform setup
------------------
-SH7760:
- Video data is fetched via the DMABRG DMA engine, so you have to
- configure the SH DMAC for DMABRG mode (write 0x94808080 to the
- DMARSRA register somewhere at boot).
-
- PFC registers PCCR and PCDR must be set to peripheral mode.
- (write zeros to both).
-
-The driver does NOT do the above for you since board setup is, well, job
-of the board setup code.
-
-2. Panel definitions
---------------------
-The LCDC must explicitly be told about the type of LCD panel
-attached. Data must be wrapped in a "struct sh7760fb_platdata" and
-passed to the driver as platform_data.
-
-Suggest you take a closer look at the SH7760 Manual, Section 30.
-(http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf)
-
-The following code illustrates what needs to be done to
-get the framebuffer working on a 640x480 TFT:
-
-====================== cut here ======================================
-
-#include <linux/fb.h>
-#include <asm/sh7760fb.h>
-
-/*
- * NEC NL6440bc26-01 640x480 TFT
- * dotclock 25175 kHz
- * Xres 640 Yres 480
- * Htotal 800 Vtotal 525
- * HsynStart 656 VsynStart 490
- * HsynLenn 30 VsynLenn 2
- *
- * The linux framebuffer layer does not use the syncstart/synclen
- * values but right/left/upper/lower margin values. The comments
- * for the x_margin explain how to calculate those from given
- * panel sync timings.
- */
-static struct fb_videomode nl6448bc26 = {
- .name = "NL6448BC26",
- .refresh = 60,
- .xres = 640,
- .yres = 480,
- .pixclock = 39683, /* in picoseconds! */
- .hsync_len = 30,
- .vsync_len = 2,
- .left_margin = 114, /* HTOT - (HSYNSLEN + HSYNSTART) */
- .right_margin = 16, /* HSYNSTART - XRES */
- .upper_margin = 33, /* VTOT - (VSYNLEN + VSYNSTART) */
- .lower_margin = 10, /* VSYNSTART - YRES */
- .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
- .vmode = FB_VMODE_NONINTERLACED,
- .flag = 0,
-};
-
-static struct sh7760fb_platdata sh7760fb_nl6448 = {
- .def_mode = &nl6448bc26,
- .ldmtr = LDMTR_TFT_COLOR_16, /* 16bit TFT panel */
- .lddfr = LDDFR_8BPP, /* we want 8bit output */
- .ldpmmr = 0x0070,
- .ldpspr = 0x0500,
- .ldaclnr = 0,
- .ldickr = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) |
- LDICKR_CLKDIV(1),
- .rotate = 0,
- .novsync = 1,
- .blank = NULL,
-};
-
-/* SH7760:
- * 0xFE300800: 256 * 4byte xRGB palette ram
- * 0xFE300C00: 42 bytes ctrl registers
- */
-static struct resource sh7760_lcdc_res[] = {
- [0] = {
- .start = 0xFE300800,
- .end = 0xFE300CFF,
- .flags = IORESOURCE_MEM,
- },
- [1] = {
- .start = 65,
- .end = 65,
- .flags = IORESOURCE_IRQ,
- },
-};
-
-static struct platform_device sh7760_lcdc_dev = {
- .dev = {
- .platform_data = &sh7760fb_nl6448,
- },
- .name = "sh7760-lcdc",
- .id = -1,
- .resource = sh7760_lcdc_res,
- .num_resources = ARRAY_SIZE(sh7760_lcdc_res),
-};
-
-====================== cut here ======================================
diff --git a/Documentation/fb/sisfb.txt b/Documentation/fb/sisfb.rst
index 2e68e503e72f..8f4e502ea12e 100644
--- a/Documentation/fb/sisfb.txt
+++ b/Documentation/fb/sisfb.rst
@@ -1,4 +1,4 @@
-
+==============
What is sisfb?
==============
@@ -41,11 +41,11 @@ statement to add the parameters to the kernel command line. Please see lilo's
parameters are given with the modprobe (or insmod) command.
Example for sisfb as part of the static kernel: Add the following line to your
-lilo.conf:
+lilo.conf::
append="video=sisfb:mode:1024x768x16,mem:12288,rate:75"
-Example for sisfb as a module: Start sisfb by typing
+Example for sisfb as a module: Start sisfb by typing::
modprobe sisfb mode=1024x768x16 rate=75 mem=12288
@@ -57,7 +57,7 @@ described above or the vesa keyword instead of mode). If compiled as a module,
the parameter format reads mode=none or mode=1024x768x16 (or whatever mode you
want to use). Using a "=" for a ":" (and vice versa) is a huge difference!
Additionally: If you give more than one argument to the in-kernel sisfb, the
-arguments are separated with ",". For example:
+arguments are separated with ",". For example::
video=sisfb:mode:1024x768x16,rate:75,mem:12288
@@ -73,6 +73,7 @@ supported options including some explanation.
The desired display mode can be specified using the keyword "mode" with
a parameter in one of the following formats:
+
- XxYxDepth or
- XxY-Depth or
- XxY-Depth@Rate or
@@ -130,29 +131,30 @@ Configuration
(Some) accepted options:
-off - Disable sisfb. This option is only understood if sisfb is
- in-kernel, not a module.
-mem:X - size of memory for the console, rest will be used for DRI/DRM. X
- is in kilobytes. On 300 series, the default is 4096, 8192 or
+========= ==================================================================
+off Disable sisfb. This option is only understood if sisfb is
+ in-kernel, not a module.
+mem:X size of memory for the console, rest will be used for DRI/DRM. X
+ is in kilobytes. On 300 series, the default is 4096, 8192 or
16384 (each in kilobyte) depending on how much video ram the card
- has. On 315/330 series, the default is the maximum available ram
+ has. On 315/330 series, the default is the maximum available ram
(since DRI/DRM is not supported for these chipsets).
-noaccel - do not use 2D acceleration engine. (Default: use acceleration)
-noypan - disable y-panning and scroll by redrawing the entire screen.
- This is much slower than y-panning. (Default: use y-panning)
-vesa:X - selects startup videomode. X is number from 0 to 0x1FF and
- represents the VESA mode number (can be given in decimal or
+noaccel do not use 2D acceleration engine. (Default: use acceleration)
+noypan disable y-panning and scroll by redrawing the entire screen.
+ This is much slower than y-panning. (Default: use y-panning)
+vesa:X selects startup videomode. X is number from 0 to 0x1FF and
+ represents the VESA mode number (can be given in decimal or
hexadecimal form, the latter prefixed with "0x").
-mode:X - selects startup videomode. Please see above for the format of
- "X".
+mode:X selects startup videomode. Please see above for the format of
+ "X".
+========= ==================================================================
Boolean options such as "noaccel" or "noypan" are to be given without a
parameter if sisfb is in-kernel (for example "video=sisfb:noypan). If
sisfb is a module, these are to be set to 1 (for example "modprobe sisfb
noypan=1").
---
-Thomas Winischhofer <thomas@winischhofer.net>
-May 27, 2004
+Thomas Winischhofer <thomas@winischhofer.net>
+May 27, 2004
diff --git a/Documentation/fb/sm501.txt b/Documentation/fb/sm501.rst
index 187f3b3ccb6c..03e02c8042a7 100644
--- a/Documentation/fb/sm501.txt
+++ b/Documentation/fb/sm501.rst
@@ -1,6 +1,11 @@
+=======
+sm501fb
+=======
+
Configuration:
-You can pass the following kernel command line options to sm501 videoframebuffer:
+You can pass the following kernel command line options to sm501
+videoframebuffer::
sm501fb.bpp= SM501 Display driver:
Specify bits-per-pixel if not specified by 'mode'
diff --git a/Documentation/fb/sm712fb.txt b/Documentation/fb/sm712fb.rst
index c388442edf51..994dad3b0238 100644
--- a/Documentation/fb/sm712fb.txt
+++ b/Documentation/fb/sm712fb.rst
@@ -1,5 +1,6 @@
+================
What is sm712fb?
-=================
+================
This is a graphics framebuffer driver for Silicon Motion SM712 based processors.
@@ -15,13 +16,16 @@ You should not compile-in vesafb.
Currently supported video modes are:
-[Graphic modes]
+Graphic modes
+-------------
-bpp | 640x480 800x600 1024x768 1280x1024
-----+--------------------------------------------
- 8 | 0x301 0x303 0x305 0x307
- 16 | 0x311 0x314 0x317 0x31A
- 24 | 0x312 0x315 0x318 0x31B
+=== ======= ======= ======== =========
+bpp 640x480 800x600 1024x768 1280x1024
+=== ======= ======= ======== =========
+ 8 0x301 0x303 0x305 0x307
+ 16 0x311 0x314 0x317 0x31A
+ 24 0x312 0x315 0x318 0x31B
+=== ======= ======= ======== =========
Missing Features
================
diff --git a/Documentation/fb/sstfb.rst b/Documentation/fb/sstfb.rst
new file mode 100644
index 000000000000..8e8c1b940359
--- /dev/null
+++ b/Documentation/fb/sstfb.rst
@@ -0,0 +1,207 @@
+=====
+sstfb
+=====
+
+Introduction
+============
+
+This is a frame buffer device driver for 3dfx' Voodoo Graphics
+(aka voodoo 1, aka sst1) and Voodoo² (aka Voodoo 2, aka CVG) based
+video boards. It's highly experimental code, but is guaranteed to work
+on my computer, with my "Maxi Gamer 3D" and "Maxi Gamer 3d²" boards,
+and with me "between chair and keyboard". Some people tested other
+combinations and it seems that it works.
+The main page is located at <http://sstfb.sourceforge.net>, and if
+you want the latest version, check out the CVS, as the driver is a work
+in progress, I feel uncomfortable with releasing tarballs of something
+not completely working...Don't worry, it's still more than usable
+(I eat my own dog food)
+
+Please read the Bug section, and report any success or failure to me
+(Ghozlane Toumi <gtoumi@laposte.net>).
+BTW, If you have only one monitor , and you don't feel like playing
+with the vga passthrou cable, I can only suggest borrowing a screen
+somewhere...
+
+
+Installation
+============
+
+This driver (should) work on ix86, with "late" 2.2.x kernel (tested
+with x = 19) and "recent" 2.4.x kernel, as a module or compiled in.
+It has been included in mainstream kernel since the infamous 2.4.10.
+You can apply the patches found in `sstfb/kernel/*-2.{2|4}.x.patch`,
+and copy sstfb.c to linux/drivers/video/, or apply a single patch,
+`sstfb/patch-2.{2|4}.x-sstfb-yymmdd` to your linux source tree.
+
+Then configure your kernel as usual: choose "m" or "y" to 3Dfx Voodoo
+Graphics in section "console". Compile, install, have fun... and please
+drop me a report :)
+
+
+Module Usage
+============
+
+.. warning::
+
+ #. You should read completely this section before issuing any command.
+
+ #. If you have only one monitor to play with, once you insmod the
+ module, the 3dfx takes control of the output, so you'll have to
+ plug the monitor to the "normal" video board in order to issue
+ the commands, or you can blindly use sst_dbg_vgapass
+ in the tools directory (See Tools). The latest solution is pass the
+ parameter vgapass=1 when insmodding the driver. (See Kernel/Modules
+ Options)
+
+Module insertion
+----------------
+
+ #. insmod sstfb.o
+
+ you should see some strange output from the board:
+ a big blue square, a green and a red small squares and a vertical
+ white rectangle. why? the function's name is self-explanatory:
+ "sstfb_test()"...
+ (if you don't have a second monitor, you'll have to plug your monitor
+ directly to the 2D videocard to see what you're typing)
+
+ #. con2fb /dev/fbx /dev/ttyx
+
+ bind a tty to the new frame buffer. if you already have a frame
+ buffer driver, the voodoo fb will likely be /dev/fb1. if not,
+ the device will be /dev/fb0. You can check this by doing a
+ cat /proc/fb. You can find a copy of con2fb in tools/ directory.
+ if you don't have another fb device, this step is superfluous,
+ as the console subsystem automagicaly binds ttys to the fb.
+ #. switch to the virtual console you just mapped. "tadaaa" ...
+
+Module removal
+--------------
+
+ #. con2fb /dev/fbx /dev/ttyx
+
+ bind the tty to the old frame buffer so the module can be removed.
+ (how does it work with vgacon ? short answer : it doesn't work)
+
+ #. rmmod sstfb
+
+
+Kernel/Modules Options
+----------------------
+
+You can pass some options to the sstfb module, and via the kernel
+command line when the driver is compiled in:
+for module : insmod sstfb.o option1=value1 option2=value2 ...
+in kernel : video=sstfb:option1,option2:value2,option3 ...
+
+sstfb supports the following options:
+
+=============== =============== ===============================================
+Module Kernel Description
+=============== =============== ===============================================
+vgapass=0 vganopass Enable or disable VGA passthrou cable.
+vgapass=1 vgapass When enabled, the monitor will get the signal
+ from the VGA board and not from the voodoo.
+
+ Default: nopass
+
+mem=x mem:x Force frame buffer memory in MiB
+ allowed values: 0, 1, 2, 4.
+
+ Default: 0 (= autodetect)
+
+inverse=1 inverse Supposed to enable inverse console.
+ doesn't work yet...
+
+clipping=1 clipping Enable or disable clipping.
+clipping=0 noclipping With clipping enabled, all offscreen
+ reads and writes are discarded.
+
+ Default: enable clipping.
+
+gfxclk=x gfxclk:x Force graphic clock frequency (in MHz).
+ Be careful with this option, it may be
+ DANGEROUS.
+
+ Default: auto
+
+ - 50Mhz for Voodoo 1,
+ - 75MHz for Voodoo 2.
+
+slowpci=1 fastpci Enable or disable fast PCI read/writes.
+slowpci=1 slowpci Default : fastpci
+
+dev=x dev:x Attach the driver to device number x.
+ 0 is the first compatible board (in
+ lspci order)
+=============== =============== ===============================================
+
+Tools
+=====
+
+These tools are mostly for debugging purposes, but you can
+find some of these interesting:
+
+- `con2fb`, maps a tty to a fbramebuffer::
+
+ con2fb /dev/fb1 /dev/tty5
+
+- `sst_dbg_vgapass`, changes vga passthrou. You have to recompile the
+ driver with SST_DEBUG and SST_DEBUG_IOCTL set to 1::
+
+ sst_dbg_vgapass /dev/fb1 1 (enables vga cable)
+ sst_dbg_vgapass /dev/fb1 0 (disables vga cable)
+
+- `glide_reset`, resets the voodoo using glide
+ use this after rmmoding sstfb, if the module refuses to
+ reinsert.
+
+Bugs
+====
+
+- DO NOT use glide while the sstfb module is in, you'll most likely
+ hang your computer.
+- If you see some artefacts (pixels not cleaning and stuff like that),
+ try turning off clipping (clipping=0), and/or using slowpci
+- the driver don't detect the 4Mb frame buffer voodoos, it seems that
+ the 2 last Mbs wrap around. looking into that .
+- The driver is 16 bpp only, 24/32 won't work.
+- The driver is not your_favorite_toy-safe. this includes SMP...
+
+ [Actually from inspection it seems to be safe - Alan]
+
+- When using XFree86 FBdev (X over fbdev) you may see strange color
+ patterns at the border of your windows (the pixels lose the lowest
+ byte -> basically the blue component and some of the green). I'm unable
+ to reproduce this with XFree86-3.3, but one of the testers has this
+ problem with XFree86-4. Apparently recent Xfree86-4.x solve this
+ problem.
+- I didn't really test changing the palette, so you may find some weird
+ things when playing with that.
+- Sometimes the driver will not recognise the DAC, and the
+ initialisation will fail. This is specifically true for
+ voodoo 2 boards, but it should be solved in recent versions. Please
+ contact me.
+- The 24/32 is not likely to work anytime soon, knowing that the
+ hardware does ... unusual things in 24/32 bpp.
+- When used with another video board, current limitations of the linux
+ console subsystem can cause some troubles, specifically, you should
+ disable software scrollback, as it can oops badly ...
+
+Todo
+====
+
+- Get rid of the previous paragraph.
+- Buy more coffee.
+- test/port to other arch.
+- try to add panning using tweeks with front and back buffer .
+- try to implement accel on voodoo2, this board can actually do a
+ lot in 2D even if it was sold as a 3D only board ...
+
+Ghozlane Toumi <gtoumi@laposte.net>
+
+
+Date: 2002/05/09 20:11:45
+
+http://sstfb.sourceforge.net/README
diff --git a/Documentation/fb/sstfb.txt b/Documentation/fb/sstfb.txt
deleted file mode 100644
index 13db1075e4a5..000000000000
--- a/Documentation/fb/sstfb.txt
+++ /dev/null
@@ -1,174 +0,0 @@
-
-Introduction
-
- This is a frame buffer device driver for 3dfx' Voodoo Graphics
- (aka voodoo 1, aka sst1) and Voodoo² (aka Voodoo 2, aka CVG) based
- video boards. It's highly experimental code, but is guaranteed to work
- on my computer, with my "Maxi Gamer 3D" and "Maxi Gamer 3d²" boards,
- and with me "between chair and keyboard". Some people tested other
- combinations and it seems that it works.
- The main page is located at <http://sstfb.sourceforge.net>, and if
- you want the latest version, check out the CVS, as the driver is a work
- in progress, I feel uncomfortable with releasing tarballs of something
- not completely working...Don't worry, it's still more than usable
- (I eat my own dog food)
-
- Please read the Bug section, and report any success or failure to me
- (Ghozlane Toumi <gtoumi@laposte.net>).
- BTW, If you have only one monitor , and you don't feel like playing
- with the vga passthrou cable, I can only suggest borrowing a screen
- somewhere...
-
-
-Installation
-
- This driver (should) work on ix86, with "late" 2.2.x kernel (tested
- with x = 19) and "recent" 2.4.x kernel, as a module or compiled in.
- It has been included in mainstream kernel since the infamous 2.4.10.
- You can apply the patches found in sstfb/kernel/*-2.{2|4}.x.patch,
- and copy sstfb.c to linux/drivers/video/, or apply a single patch,
- sstfb/patch-2.{2|4}.x-sstfb-yymmdd to your linux source tree.
-
- Then configure your kernel as usual: choose "m" or "y" to 3Dfx Voodoo
- Graphics in section "console". Compile, install, have fun... and please
- drop me a report :)
-
-
-Module Usage
-
- Warnings.
- # You should read completely this section before issuing any command.
- # If you have only one monitor to play with, once you insmod the
- module, the 3dfx takes control of the output, so you'll have to
- plug the monitor to the "normal" video board in order to issue
- the commands, or you can blindly use sst_dbg_vgapass
- in the tools directory (See Tools). The latest solution is pass the
- parameter vgapass=1 when insmodding the driver. (See Kernel/Modules
- Options)
-
- Module insertion:
- # insmod sstfb.o
- you should see some strange output from the board:
- a big blue square, a green and a red small squares and a vertical
- white rectangle. why? the function's name is self-explanatory:
- "sstfb_test()"...
- (if you don't have a second monitor, you'll have to plug your monitor
- directly to the 2D videocard to see what you're typing)
- # con2fb /dev/fbx /dev/ttyx
- bind a tty to the new frame buffer. if you already have a frame
- buffer driver, the voodoo fb will likely be /dev/fb1. if not,
- the device will be /dev/fb0. You can check this by doing a
- cat /proc/fb. You can find a copy of con2fb in tools/ directory.
- if you don't have another fb device, this step is superfluous,
- as the console subsystem automagicaly binds ttys to the fb.
- # switch to the virtual console you just mapped. "tadaaa" ...
-
- Module removal:
- # con2fb /dev/fbx /dev/ttyx
- bind the tty to the old frame buffer so the module can be removed.
- (how does it work with vgacon ? short answer : it doesn't work)
- # rmmod sstfb
-
-
-Kernel/Modules Options
-
- You can pass some options to the sstfb module, and via the kernel
- command line when the driver is compiled in:
- for module : insmod sstfb.o option1=value1 option2=value2 ...
- in kernel : video=sstfb:option1,option2:value2,option3 ...
-
- sstfb supports the following options :
-
-Module Kernel Description
-
-vgapass=0 vganopass Enable or disable VGA passthrou cable.
-vgapass=1 vgapass When enabled, the monitor will get the signal
- from the VGA board and not from the voodoo.
- Default: nopass
-
-mem=x mem:x Force frame buffer memory in MiB
- allowed values: 0, 1, 2, 4.
- Default: 0 (= autodetect)
-
-inverse=1 inverse Supposed to enable inverse console.
- doesn't work yet...
-
-clipping=1 clipping Enable or disable clipping.
-clipping=0 noclipping With clipping enabled, all offscreen
- reads and writes are discarded.
- Default: enable clipping.
-
-gfxclk=x gfxclk:x Force graphic clock frequency (in MHz).
- Be careful with this option, it may be
- DANGEROUS.
- Default: auto
- 50Mhz for Voodoo 1,
- 75MHz for Voodoo 2.
-
-slowpci=1 fastpci Enable or disable fast PCI read/writes.
-slowpci=1 slowpci Default : fastpci
-
-dev=x dev:x Attach the driver to device number x.
- 0 is the first compatible board (in
- lspci order)
-
-Tools
-
- These tools are mostly for debugging purposes, but you can
- find some of these interesting :
- - con2fb , maps a tty to a fbramebuffer .
- con2fb /dev/fb1 /dev/tty5
- - sst_dbg_vgapass , changes vga passthrou. You have to recompile the
- driver with SST_DEBUG and SST_DEBUG_IOCTL set to 1
- sst_dbg_vgapass /dev/fb1 1 (enables vga cable)
- sst_dbg_vgapass /dev/fb1 0 (disables vga cable)
- - glide_reset , resets the voodoo using glide
- use this after rmmoding sstfb, if the module refuses to
- reinsert .
-
-Bugs
-
- - DO NOT use glide while the sstfb module is in, you'll most likely
- hang your computer.
- - If you see some artefacts (pixels not cleaning and stuff like that),
- try turning off clipping (clipping=0), and/or using slowpci
- - the driver don't detect the 4Mb frame buffer voodoos, it seems that
- the 2 last Mbs wrap around. looking into that .
- - The driver is 16 bpp only, 24/32 won't work.
- - The driver is not your_favorite_toy-safe. this includes SMP...
- [Actually from inspection it seems to be safe - Alan]
- - When using XFree86 FBdev (X over fbdev) you may see strange color
- patterns at the border of your windows (the pixels lose the lowest
- byte -> basically the blue component and some of the green). I'm unable
- to reproduce this with XFree86-3.3, but one of the testers has this
- problem with XFree86-4. Apparently recent Xfree86-4.x solve this
- problem.
- - I didn't really test changing the palette, so you may find some weird
- things when playing with that.
- - Sometimes the driver will not recognise the DAC, and the
- initialisation will fail. This is specifically true for
- voodoo 2 boards, but it should be solved in recent versions. Please
- contact me.
- - The 24/32 is not likely to work anytime soon, knowing that the
- hardware does ... unusual things in 24/32 bpp.
- - When used with another video board, current limitations of the linux
- console subsystem can cause some troubles, specifically, you should
- disable software scrollback, as it can oops badly ...
-
-Todo
-
- - Get rid of the previous paragraph.
- - Buy more coffee.
- - test/port to other arch.
- - try to add panning using tweeks with front and back buffer .
- - try to implement accel on voodoo2, this board can actually do a
- lot in 2D even if it was sold as a 3D only board ...
-
-ghoz.
-
---
-Ghozlane Toumi <gtoumi@laposte.net>
-
-
-$Date: 2002/05/09 20:11:45 $
-http://sstfb.sourceforge.net/README
diff --git a/Documentation/fb/tgafb.txt b/Documentation/fb/tgafb.rst
index 250083ada8fb..0c50d2134aa4 100644
--- a/Documentation/fb/tgafb.txt
+++ b/Documentation/fb/tgafb.rst
@@ -1,15 +1,14 @@
-$Id: tgafb.txt,v 1.1.2.2 2000/04/04 06:50:18 mato Exp $
-
+==============
What is tgafb?
-===============
+==============
This is a driver for DECChip 21030 based graphics framebuffers, a.k.a. TGA
cards, which are usually found in older Digital Alpha systems. The
following models are supported:
-ZLxP-E1 (8bpp, 2 MB VRAM)
-ZLxP-E2 (32bpp, 8 MB VRAM)
-ZLxP-E3 (32bpp, 16 MB VRAM, Zbuffer)
+- ZLxP-E1 (8bpp, 2 MB VRAM)
+- ZLxP-E2 (32bpp, 8 MB VRAM)
+- ZLxP-E3 (32bpp, 16 MB VRAM, Zbuffer)
This version is an almost complete rewrite of the code written by Geert
Uytterhoeven, which was based on the original TGA console code written by
@@ -18,7 +17,7 @@ Jay Estabrook.
Major new features since Linux 2.0.x:
* Support for multiple resolutions
- * Support for fixed-frequency and other oddball monitors
+ * Support for fixed-frequency and other oddball monitors
(by allowing the video mode to be set at boot time)
User-visible changes since Linux 2.2.x:
@@ -36,19 +35,22 @@ Configuration
=============
You can pass kernel command line options to tgafb with
-`video=tgafb:option1,option2:value2,option3' (multiple options should be
-separated by comma, values are separated from options by `:').
+`video=tgafb:option1,option2:value2,option3` (multiple options should be
+separated by comma, values are separated from options by `:`).
+
Accepted options:
-font:X - default font to use. All fonts are supported, including the
- SUN12x22 font which is very nice at high resolutions.
+========== ============================================================
+font:X default font to use. All fonts are supported, including the
+ SUN12x22 font which is very nice at high resolutions.
-mode:X - default video mode. The following video modes are supported:
- 640x480-60, 800x600-56, 640x480-72, 800x600-60, 800x600-72,
+mode:X default video mode. The following video modes are supported:
+ 640x480-60, 800x600-56, 640x480-72, 800x600-60, 800x600-72,
1024x768-60, 1152x864-60, 1024x768-70, 1024x768-76,
1152x864-70, 1280x1024-61, 1024x768-85, 1280x1024-70,
1152x864-84, 1280x1024-76, 1280x1024-85
-
+========== ============================================================
+
Known Issues
============
diff --git a/Documentation/fb/tridentfb.txt b/Documentation/fb/tridentfb.rst
index 45d9de5b13a3..7921c9dee78c 100644
--- a/Documentation/fb/tridentfb.txt
+++ b/Documentation/fb/tridentfb.rst
@@ -1,3 +1,7 @@
+=========
+Tridentfb
+=========
+
Tridentfb is a framebuffer driver for some Trident chip based cards.
The following list of chips is thought to be supported although not all are
@@ -17,6 +21,7 @@ limited comparing to the range if acceleration is disabled (see list
of parameters below).
Known bugs:
+
1. The driver randomly locks up on 3DImage975 chip with acceleration
enabled. The same happens in X11 (Xorg).
2. The ramdac speeds require some more fine tuning. It is possible to
@@ -26,28 +31,30 @@ Known bugs:
How to use it?
==============
-When booting you can pass the video parameter.
-video=tridentfb
+When booting you can pass the video parameter::
+
+ video=tridentfb
-The parameters for tridentfb are concatenated with a ':' as in this example.
+The parameters for tridentfb are concatenated with a ':' as in this example::
-video=tridentfb:800x600-16@75,noaccel
+ video=tridentfb:800x600-16@75,noaccel
The second level parameters that tridentfb understands are:
-noaccel - turns off acceleration (when it doesn't work for your card)
+======== =====================================================================
+noaccel turns off acceleration (when it doesn't work for your card)
-fp - use flat panel related stuff
-crt - assume monitor is present instead of fp
+fp use flat panel related stuff
+crt assume monitor is present instead of fp
-center - for flat panels and resolutions smaller than native size center the
+center for flat panels and resolutions smaller than native size center the
image, otherwise use
stretch
-memsize - integer value in KB, use if your card's memory size is misdetected.
+memsize integer value in KB, use if your card's memory size is misdetected.
look at the driver output to see what it says when initializing.
-memdiff - integer value in KB, should be nonzero if your card reports
+memdiff integer value in KB, should be nonzero if your card reports
more memory than it actually has. For instance mine is 192K less than
detection says in all three BIOS selectable situations 2M, 4M, 8M.
Only use if your video memory is taken from main memory hence of
@@ -56,12 +63,13 @@ memdiff - integer value in KB, should be nonzero if your card reports
at the bottom this might help by not letting change to that mode
anymore.
-nativex - the width in pixels of the flat panel.If you know it (usually 1024
+nativex the width in pixels of the flat panel.If you know it (usually 1024
800 or 1280) and it is not what the driver seems to detect use it.
-bpp - bits per pixel (8,16 or 32)
-mode - a mode name like 800x600-8@75 as described in
- Documentation/fb/modedb.txt
+bpp bits per pixel (8,16 or 32)
+mode a mode name like 800x600-8@75 as described in
+ Documentation/fb/modedb.rst
+======== =====================================================================
Using insane values for the above parameters will probably result in driver
misbehaviour so take care(for instance memsize=12345678 or memdiff=23784 or
diff --git a/Documentation/fb/udlfb.txt b/Documentation/fb/udlfb.rst
index c985cb65dd06..732b37db3504 100644
--- a/Documentation/fb/udlfb.txt
+++ b/Documentation/fb/udlfb.rst
@@ -1,6 +1,6 @@
-
+==============
What is udlfb?
-===============
+==============
This is a driver for DisplayLink USB 2.0 era graphics chips.
@@ -100,6 +100,7 @@ options udlfb fb_defio=0 console=1 shadow=1
Accepted boolean options:
+=============== ================================================================
fb_defio Make use of the fb_defio (CONFIG_FB_DEFERRED_IO) kernel
module to track changed areas of the framebuffer by page faults.
Standard fbdev applications that use mmap but that do not
@@ -109,7 +110,7 @@ fb_defio Make use of the fb_defio (CONFIG_FB_DEFERRED_IO) kernel
more stable, and higher performance.
default: fb_defio=1
-console Allow fbcon to attach to udlfb provided framebuffers.
+console Allow fbcon to attach to udlfb provided framebuffers.
Can be disabled if fbcon and other clients
(e.g. X with --shared-vt) are in conflict.
default: console=1
@@ -119,6 +120,7 @@ shadow Allocate a 2nd framebuffer to shadow what's currently across
do not transmit. Spends host memory to save USB transfers.
Enabled by default. Only disable on very low memory systems.
default: shadow=1
+=============== ================================================================
Sysfs Attributes
================
@@ -126,34 +128,35 @@ Sysfs Attributes
Udlfb creates several files in /sys/class/graphics/fb?
Where ? is the sequential framebuffer id of the particular DisplayLink device
-edid If a valid EDID blob is written to this file (typically
- by a udev rule), then udlfb will use this EDID as a
- backup in case reading the actual EDID of the monitor
- attached to the DisplayLink device fails. This is
- especially useful for fixed panels, etc. that cannot
- communicate their capabilities via EDID. Reading
- this file returns the current EDID of the attached
- monitor (or last backup value written). This is
- useful to get the EDID of the attached monitor,
- which can be passed to utilities like parse-edid.
+======================== ========================================================
+edid If a valid EDID blob is written to this file (typically
+ by a udev rule), then udlfb will use this EDID as a
+ backup in case reading the actual EDID of the monitor
+ attached to the DisplayLink device fails. This is
+ especially useful for fixed panels, etc. that cannot
+ communicate their capabilities via EDID. Reading
+ this file returns the current EDID of the attached
+ monitor (or last backup value written). This is
+ useful to get the EDID of the attached monitor,
+ which can be passed to utilities like parse-edid.
-metrics_bytes_rendered 32-bit count of pixel bytes rendered
+metrics_bytes_rendered 32-bit count of pixel bytes rendered
-metrics_bytes_identical 32-bit count of how many of those bytes were found to be
- unchanged, based on a shadow framebuffer check
+metrics_bytes_identical 32-bit count of how many of those bytes were found to be
+ unchanged, based on a shadow framebuffer check
-metrics_bytes_sent 32-bit count of how many bytes were transferred over
- USB to communicate the resulting changed pixels to the
- hardware. Includes compression and protocol overhead
+metrics_bytes_sent 32-bit count of how many bytes were transferred over
+ USB to communicate the resulting changed pixels to the
+ hardware. Includes compression and protocol overhead
metrics_cpu_kcycles_used 32-bit count of CPU cycles used in processing the
- above pixels (in thousands of cycles).
+ above pixels (in thousands of cycles).
-metrics_reset Write-only. Any write to this file resets all metrics
- above to zero. Note that the 32-bit counters above
- roll over very quickly. To get reliable results, design
- performance tests to start and finish in a very short
- period of time (one minute or less is safe).
+metrics_reset Write-only. Any write to this file resets all metrics
+ above to zero. Note that the 32-bit counters above
+ roll over very quickly. To get reliable results, design
+ performance tests to start and finish in a very short
+ period of time (one minute or less is safe).
+======================== ========================================================
---
Bernie Thompson <bernie@plugable.com>
diff --git a/Documentation/fb/uvesafb.txt b/Documentation/fb/uvesafb.rst
index aa924196c366..d1c2523fbb33 100644
--- a/Documentation/fb/uvesafb.txt
+++ b/Documentation/fb/uvesafb.rst
@@ -1,4 +1,4 @@
-
+==========================================================
uvesafb - A Generic Driver for VBE2+ compliant video cards
==========================================================
@@ -49,7 +49,7 @@ The most important limitations are:
uvesafb can be compiled either as a module, or directly into the kernel.
In both cases it supports the same set of configuration options, which
-are either given on the kernel command line or as module parameters, e.g.:
+are either given on the kernel command line or as module parameters, e.g.::
video=uvesafb:1024x768-32,mtrr:3,ywrap (compiled into the kernel)
@@ -57,85 +57,90 @@ are either given on the kernel command line or as module parameters, e.g.:
Accepted options:
+======= =========================================================
ypan Enable display panning using the VESA protected mode
- interface. The visible screen is just a window of the
- video memory, console scrolling is done by changing the
- start of the window. This option is available on x86
- only and is the default option on that architecture.
+ interface. The visible screen is just a window of the
+ video memory, console scrolling is done by changing the
+ start of the window. This option is available on x86
+ only and is the default option on that architecture.
ywrap Same as ypan, but assumes your gfx board can wrap-around
- the video memory (i.e. starts reading from top if it
- reaches the end of video memory). Faster than ypan.
- Available on x86 only.
+ the video memory (i.e. starts reading from top if it
+ reaches the end of video memory). Faster than ypan.
+ Available on x86 only.
redraw Scroll by redrawing the affected part of the screen, this
- is the default on non-x86.
+ is the default on non-x86.
+======= =========================================================
(If you're using uvesafb as a module, the above three options are
- used a parameter of the scroll option, e.g. scroll=ypan.)
+used a parameter of the scroll option, e.g. scroll=ypan.)
-vgapal Use the standard VGA registers for palette changes.
+=========== ====================================================================
+vgapal Use the standard VGA registers for palette changes.
-pmipal Use the protected mode interface for palette changes.
- This is the default if the protected mode interface is
- available. Available on x86 only.
+pmipal Use the protected mode interface for palette changes.
+ This is the default if the protected mode interface is
+ available. Available on x86 only.
-mtrr:n Setup memory type range registers for the framebuffer
- where n:
- 0 - disabled (equivalent to nomtrr)
- 3 - write-combining (default)
+mtrr:n Setup memory type range registers for the framebuffer
+ where n:
- Values other than 0 and 3 will result in a warning and will be
- treated just like 3.
+ - 0 - disabled (equivalent to nomtrr)
+ - 3 - write-combining (default)
-nomtrr Do not use memory type range registers.
+ Values other than 0 and 3 will result in a warning and will be
+ treated just like 3.
+
+nomtrr Do not use memory type range registers.
vremap:n
- Remap 'n' MiB of video RAM. If 0 or not specified, remap memory
- according to video mode.
-
-vtotal:n
- If the video BIOS of your card incorrectly determines the total
- amount of video RAM, use this option to override the BIOS (in MiB).
-
-<mode> The mode you want to set, in the standard modedb format. Refer to
- modedb.txt for a detailed description. When uvesafb is compiled as
- a module, the mode string should be provided as a value of the
- 'mode_option' option.
-
-vbemode:x
- Force the use of VBE mode x. The mode will only be set if it's
- found in the VBE-provided list of supported modes.
- NOTE: The mode number 'x' should be specified in VESA mode number
- notation, not the Linux kernel one (eg. 257 instead of 769).
- HINT: If you use this option because normal <mode> parameter does
- not work for you and you use a X server, you'll probably want to
- set the 'nocrtc' option to ensure that the video mode is properly
- restored after console <-> X switches.
-
-nocrtc Do not use CRTC timings while setting the video mode. This option
- has any effect only if the Video BIOS is VBE 3.0 compliant. Use it
- if you have problems with modes set the standard way. Note that
- using this option implies that any refresh rate adjustments will
- be ignored and the refresh rate will stay at your BIOS default (60 Hz).
-
-noedid Do not try to fetch and use EDID-provided modes.
-
-noblank Disable hardware blanking.
-
-v86d:path
- Set path to the v86d executable. This option is only available as
- a module parameter, and not as a part of the video= string. If you
- need to use it and have uvesafb built into the kernel, use
- uvesafb.v86d="path".
+ Remap 'n' MiB of video RAM. If 0 or not specified, remap memory
+ according to video mode.
+
+vtotal:n If the video BIOS of your card incorrectly determines the total
+ amount of video RAM, use this option to override the BIOS (in MiB).
+
+<mode> The mode you want to set, in the standard modedb format. Refer to
+ modedb.txt for a detailed description. When uvesafb is compiled as
+ a module, the mode string should be provided as a value of the
+ 'mode_option' option.
+
+vbemode:x Force the use of VBE mode x. The mode will only be set if it's
+ found in the VBE-provided list of supported modes.
+ NOTE: The mode number 'x' should be specified in VESA mode number
+ notation, not the Linux kernel one (eg. 257 instead of 769).
+ HINT: If you use this option because normal <mode> parameter does
+ not work for you and you use a X server, you'll probably want to
+ set the 'nocrtc' option to ensure that the video mode is properly
+ restored after console <-> X switches.
+
+nocrtc Do not use CRTC timings while setting the video mode. This option
+ has any effect only if the Video BIOS is VBE 3.0 compliant. Use it
+ if you have problems with modes set the standard way. Note that
+ using this option implies that any refresh rate adjustments will
+ be ignored and the refresh rate will stay at your BIOS default
+ (60 Hz).
+
+noedid Do not try to fetch and use EDID-provided modes.
+
+noblank Disable hardware blanking.
+
+v86d:path Set path to the v86d executable. This option is only available as
+ a module parameter, and not as a part of the video= string. If you
+ need to use it and have uvesafb built into the kernel, use
+ uvesafb.v86d="path".
+=========== ====================================================================
Additionally, the following parameters may be provided. They all override the
EDID-provided values and BIOS defaults. Refer to your monitor's specs to get
the correct values for maxhf, maxvf and maxclk for your hardware.
+=========== ======================================
maxhf:n Maximum horizontal frequency (in kHz).
maxvf:n Maximum vertical frequency (in Hz).
maxclk:n Maximum pixel clock (in MHz).
+=========== ======================================
4. The sysfs interface
----------------------
@@ -146,27 +151,26 @@ additional information.
Driver attributes:
/sys/bus/platform/drivers/uvesafb
- - v86d (default: /sbin/v86d)
+ v86d
+ (default: /sbin/v86d)
+
Path to the v86d executable. v86d is started by uvesafb
if an instance of the daemon isn't already running.
Device attributes:
/sys/bus/platform/drivers/uvesafb/uvesafb.0
- - nocrtc
+ nocrtc
Use the default refresh rate (60 Hz) if set to 1.
- - oem_product_name
- - oem_product_rev
- - oem_string
- - oem_vendor
+ oem_product_name, oem_product_rev, oem_string, oem_vendor
Information about the card and its maker.
- - vbe_modes
+ vbe_modes
A list of video modes supported by the Video BIOS along with their
VBE mode numbers in hex.
- - vbe_version
+ vbe_version
A BCD value indicating the implemented VBE standard.
5. Miscellaneous
@@ -176,9 +180,9 @@ Uvesafb will set a video mode with the default refresh rate and timings
from the Video BIOS if you set pixclock to 0 in fb_var_screeninfo.
---
+
Michal Januszewski <spock@gentoo.org>
+
Last updated: 2017-10-10
Documentation of the uvesafb options is loosely based on vesafb.txt.
-
diff --git a/Documentation/fb/vesafb.txt b/Documentation/fb/vesafb.rst
index 413bb73235be..2ed0dfb661cf 100644
--- a/Documentation/fb/vesafb.txt
+++ b/Documentation/fb/vesafb.rst
@@ -1,4 +1,4 @@
-
+===============
What is vesafb?
===============
@@ -40,30 +40,35 @@ The graphic modes are NOT in the list which you get if you boot with
vga=ask and hit return. The mode you wish to use is derived from the
VESA mode number. Here are those VESA mode numbers:
- | 640x480 800x600 1024x768 1280x1024
-----+-------------------------------------
-256 | 0x101 0x103 0x105 0x107
-32k | 0x110 0x113 0x116 0x119
-64k | 0x111 0x114 0x117 0x11A
-16M | 0x112 0x115 0x118 0x11B
+====== ======= ======= ======== =========
+colors 640x480 800x600 1024x768 1280x1024
+====== ======= ======= ======== =========
+256 0x101 0x103 0x105 0x107
+32k 0x110 0x113 0x116 0x119
+64k 0x111 0x114 0x117 0x11A
+16M 0x112 0x115 0x118 0x11B
+====== ======= ======= ======== =========
+
The video mode number of the Linux kernel is the VESA mode number plus
-0x200.
-
+0x200:
+
Linux_kernel_mode_number = VESA_mode_number + 0x200
So the table for the Kernel mode numbers are:
- | 640x480 800x600 1024x768 1280x1024
-----+-------------------------------------
-256 | 0x301 0x303 0x305 0x307
-32k | 0x310 0x313 0x316 0x319
-64k | 0x311 0x314 0x317 0x31A
-16M | 0x312 0x315 0x318 0x31B
+====== ======= ======= ======== =========
+colors 640x480 800x600 1024x768 1280x1024
+====== ======= ======= ======== =========
+256 0x301 0x303 0x305 0x307
+32k 0x310 0x313 0x316 0x319
+64k 0x311 0x314 0x317 0x31A
+16M 0x312 0x315 0x318 0x31B
+====== ======= ======= ======== =========
To enable one of those modes you have to specify "vga=ask" in the
lilo.conf file and rerun LILO. Then you can type in the desired
-mode at the "vga=ask" prompt. For example if you like to use
+mode at the "vga=ask" prompt. For example if you like to use
1024x768x256 colors you have to say "305" at this prompt.
If this does not work, this might be because your BIOS does not support
@@ -72,10 +77,10 @@ Even if your board does, it might be the BIOS which does not. VESA BIOS
Extensions v2.0 are required, 1.2 is NOT sufficient. You will get a
"bad mode number" message if something goes wrong.
-1. Note: LILO cannot handle hex, for booting directly with
- "vga=mode-number" you have to transform the numbers to decimal.
+1. Note: LILO cannot handle hex, for booting directly with
+ "vga=mode-number" you have to transform the numbers to decimal.
2. Note: Some newer versions of LILO appear to work with those hex values,
- if you set the 0x in front of the numbers.
+ if you set the 0x in front of the numbers.
X11
===
@@ -120,62 +125,68 @@ Accepted options:
inverse use inverse color map
-ypan enable display panning using the VESA protected mode
- interface. The visible screen is just a window of the
- video memory, console scrolling is done by changing the
- start of the window.
- pro: * scrolling (fullscreen) is fast, because there is
+========= ======================================================================
+ypan enable display panning using the VESA protected mode
+ interface. The visible screen is just a window of the
+ video memory, console scrolling is done by changing the
+ start of the window.
+
+ pro:
+
+ * scrolling (fullscreen) is fast, because there is
no need to copy around data.
* You'll get scrollback (the Shift-PgUp thing),
the video memory can be used as scrollback buffer
- kontra: * scrolling only parts of the screen causes some
+
+ kontra:
+
+ * scrolling only parts of the screen causes some
ugly flicker effects (boot logo flickers for
example).
-ywrap Same as ypan, but assumes your gfx board can wrap-around
- the video memory (i.e. starts reading from top if it
- reaches the end of video memory). Faster than ypan.
+ywrap Same as ypan, but assumes your gfx board can wrap-around
+ the video memory (i.e. starts reading from top if it
+ reaches the end of video memory). Faster than ypan.
-redraw scroll by redrawing the affected part of the screen, this
- is the safe (and slow) default.
+redraw Scroll by redrawing the affected part of the screen, this
+ is the safe (and slow) default.
-vgapal Use the standard vga registers for palette changes.
- This is the default.
-pmipal Use the protected mode interface for palette changes.
+vgapal Use the standard vga registers for palette changes.
+ This is the default.
+pmipal Use the protected mode interface for palette changes.
-mtrr:n setup memory type range registers for the vesafb framebuffer
- where n:
- 0 - disabled (equivalent to nomtrr) (default)
- 1 - uncachable
- 2 - write-back
- 3 - write-combining
- 4 - write-through
+mtrr:n Setup memory type range registers for the vesafb framebuffer
+ where n:
- If you see the following in dmesg, choose the type that matches the
- old one. In this example, use "mtrr:2".
+ - 0 - disabled (equivalent to nomtrr) (default)
+ - 1 - uncachable
+ - 2 - write-back
+ - 3 - write-combining
+ - 4 - write-through
+
+ If you see the following in dmesg, choose the type that matches the
+ old one. In this example, use "mtrr:2".
...
-mtrr: type mismatch for e0000000,8000000 old: write-back new: write-combining
+mtrr: type mismatch for e0000000,8000000 old: write-back new:
+ write-combining
...
-nomtrr disable mtrr
+nomtrr disable mtrr
vremap:n
- remap 'n' MiB of video RAM. If 0 or not specified, remap memory
- according to video mode. (2.5.66 patch/idea by Antonino Daplas
- reversed to give override possibility (allocate more fb memory
- than the kernel would) to 2.4 by tmb@iki.fi)
+ Remap 'n' MiB of video RAM. If 0 or not specified, remap memory
+ according to video mode. (2.5.66 patch/idea by Antonino Daplas
+ reversed to give override possibility (allocate more fb memory
+ than the kernel would) to 2.4 by tmb@iki.fi)
-vtotal:n
- if the video BIOS of your card incorrectly determines the total
- amount of video RAM, use this option to override the BIOS (in MiB).
+vtotal:n If the video BIOS of your card incorrectly determines the total
+ amount of video RAM, use this option to override the BIOS (in MiB).
+========= ======================================================================
Have fun!
- Gerd
-
---
Gerd Knorr <kraxel@goldbach.in-berlin.de>
-Minor (mostly typo) changes
+Minor (mostly typo) changes
by Nico Schmoigl <schmoigl@rumms.uni-mannheim.de>
diff --git a/Documentation/fb/viafb.rst b/Documentation/fb/viafb.rst
new file mode 100644
index 000000000000..8eb7a3bb068c
--- /dev/null
+++ b/Documentation/fb/viafb.rst
@@ -0,0 +1,297 @@
+=======================================================
+VIA Integration Graphic Chip Console Framebuffer Driver
+=======================================================
+
+Platform
+--------
+ The console framebuffer driver is for graphics chips of
+ VIA UniChrome Family
+ (CLE266, PM800 / CN400 / CN300,
+ P4M800CE / P4M800Pro / CN700 / VN800,
+ CX700 / VX700, K8M890, P4M890,
+ CN896 / P4M900, VX800, VX855)
+
+Driver features
+---------------
+ Device: CRT, LCD, DVI
+
+ Support viafb_mode::
+
+ CRT:
+ 640x480(60, 75, 85, 100, 120 Hz), 720x480(60 Hz),
+ 720x576(60 Hz), 800x600(60, 75, 85, 100, 120 Hz),
+ 848x480(60 Hz), 856x480(60 Hz), 1024x512(60 Hz),
+ 1024x768(60, 75, 85, 100 Hz), 1152x864(75 Hz),
+ 1280x768(60 Hz), 1280x960(60 Hz), 1280x1024(60, 75, 85 Hz),
+ 1440x1050(60 Hz), 1600x1200(60, 75 Hz), 1280x720(60 Hz),
+ 1920x1080(60 Hz), 1400x1050(60 Hz), 800x480(60 Hz)
+
+ color depth: 8 bpp, 16 bpp, 32 bpp supports.
+
+ Support 2D hardware accelerator.
+
+Using the viafb module
+----------------------
+ Start viafb with default settings::
+
+ #modprobe viafb
+
+ Start viafb with user options::
+
+ #modprobe viafb viafb_mode=800x600 viafb_bpp=16 viafb_refresh=60
+ viafb_active_dev=CRT+DVI viafb_dvi_port=DVP1
+ viafb_mode1=1024x768 viafb_bpp=16 viafb_refresh1=60
+ viafb_SAMM_ON=1
+
+ viafb_mode:
+ - 640x480 (default)
+ - 720x480
+ - 800x600
+ - 1024x768
+
+ viafb_bpp:
+ - 8, 16, 32 (default:32)
+
+ viafb_refresh:
+ - 60, 75, 85, 100, 120 (default:60)
+
+ viafb_lcd_dsp_method:
+ - 0 : expansion (default)
+ - 1 : centering
+
+ viafb_lcd_mode:
+ 0 : LCD panel with LSB data format input (default)
+ 1 : LCD panel with MSB data format input
+
+ viafb_lcd_panel_id:
+ - 0 : Resolution: 640x480, Channel: single, Dithering: Enable
+ - 1 : Resolution: 800x600, Channel: single, Dithering: Enable
+ - 2 : Resolution: 1024x768, Channel: single, Dithering: Enable (default)
+ - 3 : Resolution: 1280x768, Channel: single, Dithering: Enable
+ - 4 : Resolution: 1280x1024, Channel: dual, Dithering: Enable
+ - 5 : Resolution: 1400x1050, Channel: dual, Dithering: Enable
+ - 6 : Resolution: 1600x1200, Channel: dual, Dithering: Enable
+
+ - 8 : Resolution: 800x480, Channel: single, Dithering: Enable
+ - 9 : Resolution: 1024x768, Channel: dual, Dithering: Enable
+ - 10: Resolution: 1024x768, Channel: single, Dithering: Disable
+ - 11: Resolution: 1024x768, Channel: dual, Dithering: Disable
+ - 12: Resolution: 1280x768, Channel: single, Dithering: Disable
+ - 13: Resolution: 1280x1024, Channel: dual, Dithering: Disable
+ - 14: Resolution: 1400x1050, Channel: dual, Dithering: Disable
+ - 15: Resolution: 1600x1200, Channel: dual, Dithering: Disable
+ - 16: Resolution: 1366x768, Channel: single, Dithering: Disable
+ - 17: Resolution: 1024x600, Channel: single, Dithering: Enable
+ - 18: Resolution: 1280x768, Channel: dual, Dithering: Enable
+ - 19: Resolution: 1280x800, Channel: single, Dithering: Enable
+
+ viafb_accel:
+ - 0 : No 2D Hardware Acceleration
+ - 1 : 2D Hardware Acceleration (default)
+
+ viafb_SAMM_ON:
+ - 0 : viafb_SAMM_ON disable (default)
+ - 1 : viafb_SAMM_ON enable
+
+ viafb_mode1: (secondary display device)
+ - 640x480 (default)
+ - 720x480
+ - 800x600
+ - 1024x768
+
+ viafb_bpp1: (secondary display device)
+ - 8, 16, 32 (default:32)
+
+ viafb_refresh1: (secondary display device)
+ - 60, 75, 85, 100, 120 (default:60)
+
+ viafb_active_dev:
+ This option is used to specify active devices.(CRT, DVI, CRT+LCD...)
+ DVI stands for DVI or HDMI, E.g., If you want to enable HDMI,
+ set viafb_active_dev=DVI. In SAMM case, the previous of
+ viafb_active_dev is primary device, and the following is
+ secondary device.
+
+ For example:
+
+ To enable one device, such as DVI only, we can use::
+
+ modprobe viafb viafb_active_dev=DVI
+
+ To enable two devices, such as CRT+DVI::
+
+ modprobe viafb viafb_active_dev=CRT+DVI;
+
+ For DuoView case, we can use::
+
+ modprobe viafb viafb_active_dev=CRT+DVI
+
+ OR::
+
+ modprobe viafb viafb_active_dev=DVI+CRT...
+
+ For SAMM case:
+
+ If CRT is primary and DVI is secondary, we should use::
+
+ modprobe viafb viafb_active_dev=CRT+DVI viafb_SAMM_ON=1...
+
+ If DVI is primary and CRT is secondary, we should use::
+
+ modprobe viafb viafb_active_dev=DVI+CRT viafb_SAMM_ON=1...
+
+ viafb_display_hardware_layout:
+ This option is used to specify display hardware layout for CX700 chip.
+
+ - 1 : LCD only
+ - 2 : DVI only
+ - 3 : LCD+DVI (default)
+ - 4 : LCD1+LCD2 (internal + internal)
+ - 16: LCD1+ExternalLCD2 (internal + external)
+
+ viafb_second_size:
+ This option is used to set second device memory size(MB) in SAMM case.
+ The minimal size is 16.
+
+ viafb_platform_epia_dvi:
+ This option is used to enable DVI on EPIA - M
+
+ - 0 : No DVI on EPIA - M (default)
+ - 1 : DVI on EPIA - M
+
+ viafb_bus_width:
+ When using 24 - Bit Bus Width Digital Interface,
+ this option should be set.
+
+ - 12: 12-Bit LVDS or 12-Bit TMDS (default)
+ - 24: 24-Bit LVDS or 24-Bit TMDS
+
+ viafb_device_lcd_dualedge:
+ When using Dual Edge Panel, this option should be set.
+
+ - 0 : No Dual Edge Panel (default)
+ - 1 : Dual Edge Panel
+
+ viafb_lcd_port:
+ This option is used to specify LCD output port,
+ available values are "DVP0" "DVP1" "DFP_HIGHLOW" "DFP_HIGH" "DFP_LOW".
+
+ for external LCD + external DVI on CX700(External LCD is on DVP0),
+ we should use::
+
+ modprobe viafb viafb_lcd_port=DVP0...
+
+Notes:
+ 1. CRT may not display properly for DuoView CRT & DVI display at
+ the "640x480" PAL mode with DVI overscan enabled.
+ 2. SAMM stands for single adapter multi monitors. It is different from
+ multi-head since SAMM support multi monitor at driver layers, thus fbcon
+ layer doesn't even know about it; SAMM's second screen doesn't have a
+ device node file, thus a user mode application can't access it directly.
+ When SAMM is enabled, viafb_mode and viafb_mode1, viafb_bpp and
+ viafb_bpp1, viafb_refresh and viafb_refresh1 can be different.
+ 3. When console is depending on viafbinfo1, dynamically change resolution
+ and bpp, need to call VIAFB specified ioctl interface VIAFB_SET_DEVICE
+ instead of calling common ioctl function FBIOPUT_VSCREENINFO since
+ viafb doesn't support multi-head well, or it will cause screen crush.
+
+
+Configure viafb with "fbset" tool
+---------------------------------
+
+ "fbset" is an inbox utility of Linux.
+
+ 1. Inquire current viafb information, type::
+
+ # fbset -i
+
+ 2. Set various resolutions and viafb_refresh rates::
+
+ # fbset <resolution-vertical_sync>
+
+ example::
+
+ # fbset "1024x768-75"
+
+ or::
+
+ # fbset -g 1024 768 1024 768 32
+
+ Check the file "/etc/fb.modes" to find display modes available.
+
+ 3. Set the color depth::
+
+ # fbset -depth <value>
+
+ example::
+
+ # fbset -depth 16
+
+
+Configure viafb via /proc
+-------------------------
+ The following files exist in /proc/viafb
+
+ supported_output_devices
+ This read-only file contains a full ',' separated list containing all
+ output devices that could be available on your platform. It is likely
+ that not all of those have a connector on your hardware but it should
+ provide a good starting point to figure out which of those names match
+ a real connector.
+
+ Example::
+
+ # cat /proc/viafb/supported_output_devices
+
+ iga1/output_devices, iga2/output_devices
+ These two files are readable and writable. iga1 and iga2 are the two
+ independent units that produce the screen image. Those images can be
+ forwarded to one or more output devices. Reading those files is a way
+ to query which output devices are currently used by an iga.
+
+ Example::
+
+ # cat /proc/viafb/iga1/output_devices
+
+ If there are no output devices printed the output of this iga is lost.
+ This can happen for example if only one (the other) iga is used.
+ Writing to these files allows adjusting the output devices during
+ runtime. One can add new devices, remove existing ones or switch
+ between igas. Essentially you can write a ',' separated list of device
+ names (or a single one) in the same format as the output to those
+ files. You can add a '+' or '-' as a prefix allowing simple addition
+ and removal of devices. So a prefix '+' adds the devices from your list
+ to the already existing ones, '-' removes the listed devices from the
+ existing ones and if no prefix is given it replaces all existing ones
+ with the listed ones. If you remove devices they are expected to turn
+ off. If you add devices that are already part of the other iga they are
+ removed there and added to the new one.
+
+ Examples:
+
+ Add CRT as output device to iga1::
+
+ # echo +CRT > /proc/viafb/iga1/output_devices
+
+ Remove (turn off) DVP1 and LVDS1 as output devices of iga2::
+
+ # echo -DVP1,LVDS1 > /proc/viafb/iga2/output_devices
+
+ Replace all iga1 output devices by CRT::
+
+ # echo CRT > /proc/viafb/iga1/output_devices
+
+
+Bootup with viafb
+-----------------
+
+Add the following line to your grub.conf::
+
+ append = "video=viafb:viafb_mode=1024x768,viafb_bpp=32,viafb_refresh=85"
+
+
+VIA Framebuffer modes
+=====================
+
+.. include:: viafb.modes
+ :literal:
diff --git a/Documentation/fb/viafb.txt b/Documentation/fb/viafb.txt
deleted file mode 100644
index 1cb2462a71ce..000000000000
--- a/Documentation/fb/viafb.txt
+++ /dev/null
@@ -1,252 +0,0 @@
-
- VIA Integration Graphic Chip Console Framebuffer Driver
-
-[Platform]
------------------------
- The console framebuffer driver is for graphics chips of
- VIA UniChrome Family(CLE266, PM800 / CN400 / CN300,
- P4M800CE / P4M800Pro / CN700 / VN800,
- CX700 / VX700, K8M890, P4M890,
- CN896 / P4M900, VX800, VX855)
-
-[Driver features]
-------------------------
- Device: CRT, LCD, DVI
-
- Support viafb_mode:
- CRT:
- 640x480(60, 75, 85, 100, 120 Hz), 720x480(60 Hz),
- 720x576(60 Hz), 800x600(60, 75, 85, 100, 120 Hz),
- 848x480(60 Hz), 856x480(60 Hz), 1024x512(60 Hz),
- 1024x768(60, 75, 85, 100 Hz), 1152x864(75 Hz),
- 1280x768(60 Hz), 1280x960(60 Hz), 1280x1024(60, 75, 85 Hz),
- 1440x1050(60 Hz), 1600x1200(60, 75 Hz), 1280x720(60 Hz),
- 1920x1080(60 Hz), 1400x1050(60 Hz), 800x480(60 Hz)
-
- color depth: 8 bpp, 16 bpp, 32 bpp supports.
-
- Support 2D hardware accelerator.
-
-[Using the viafb module]
--- -- --------------------
- Start viafb with default settings:
- #modprobe viafb
-
- Start viafb with user options:
- #modprobe viafb viafb_mode=800x600 viafb_bpp=16 viafb_refresh=60
- viafb_active_dev=CRT+DVI viafb_dvi_port=DVP1
- viafb_mode1=1024x768 viafb_bpp=16 viafb_refresh1=60
- viafb_SAMM_ON=1
-
- viafb_mode:
- 640x480 (default)
- 720x480
- 800x600
- 1024x768
- ......
-
- viafb_bpp:
- 8, 16, 32 (default:32)
-
- viafb_refresh:
- 60, 75, 85, 100, 120 (default:60)
-
- viafb_lcd_dsp_method:
- 0 : expansion (default)
- 1 : centering
-
- viafb_lcd_mode:
- 0 : LCD panel with LSB data format input (default)
- 1 : LCD panel with MSB data format input
-
- viafb_lcd_panel_id:
- 0 : Resolution: 640x480, Channel: single, Dithering: Enable
- 1 : Resolution: 800x600, Channel: single, Dithering: Enable
- 2 : Resolution: 1024x768, Channel: single, Dithering: Enable (default)
- 3 : Resolution: 1280x768, Channel: single, Dithering: Enable
- 4 : Resolution: 1280x1024, Channel: dual, Dithering: Enable
- 5 : Resolution: 1400x1050, Channel: dual, Dithering: Enable
- 6 : Resolution: 1600x1200, Channel: dual, Dithering: Enable
-
- 8 : Resolution: 800x480, Channel: single, Dithering: Enable
- 9 : Resolution: 1024x768, Channel: dual, Dithering: Enable
- 10: Resolution: 1024x768, Channel: single, Dithering: Disable
- 11: Resolution: 1024x768, Channel: dual, Dithering: Disable
- 12: Resolution: 1280x768, Channel: single, Dithering: Disable
- 13: Resolution: 1280x1024, Channel: dual, Dithering: Disable
- 14: Resolution: 1400x1050, Channel: dual, Dithering: Disable
- 15: Resolution: 1600x1200, Channel: dual, Dithering: Disable
- 16: Resolution: 1366x768, Channel: single, Dithering: Disable
- 17: Resolution: 1024x600, Channel: single, Dithering: Enable
- 18: Resolution: 1280x768, Channel: dual, Dithering: Enable
- 19: Resolution: 1280x800, Channel: single, Dithering: Enable
-
- viafb_accel:
- 0 : No 2D Hardware Acceleration
- 1 : 2D Hardware Acceleration (default)
-
- viafb_SAMM_ON:
- 0 : viafb_SAMM_ON disable (default)
- 1 : viafb_SAMM_ON enable
-
- viafb_mode1: (secondary display device)
- 640x480 (default)
- 720x480
- 800x600
- 1024x768
- ... ...
-
- viafb_bpp1: (secondary display device)
- 8, 16, 32 (default:32)
-
- viafb_refresh1: (secondary display device)
- 60, 75, 85, 100, 120 (default:60)
-
- viafb_active_dev:
- This option is used to specify active devices.(CRT, DVI, CRT+LCD...)
- DVI stands for DVI or HDMI, E.g., If you want to enable HDMI,
- set viafb_active_dev=DVI. In SAMM case, the previous of
- viafb_active_dev is primary device, and the following is
- secondary device.
-
- For example:
- To enable one device, such as DVI only, we can use:
- modprobe viafb viafb_active_dev=DVI
- To enable two devices, such as CRT+DVI:
- modprobe viafb viafb_active_dev=CRT+DVI;
-
- For DuoView case, we can use:
- modprobe viafb viafb_active_dev=CRT+DVI
- OR
- modprobe viafb viafb_active_dev=DVI+CRT...
-
- For SAMM case:
- If CRT is primary and DVI is secondary, we should use:
- modprobe viafb viafb_active_dev=CRT+DVI viafb_SAMM_ON=1...
- If DVI is primary and CRT is secondary, we should use:
- modprobe viafb viafb_active_dev=DVI+CRT viafb_SAMM_ON=1...
-
- viafb_display_hardware_layout:
- This option is used to specify display hardware layout for CX700 chip.
- 1 : LCD only
- 2 : DVI only
- 3 : LCD+DVI (default)
- 4 : LCD1+LCD2 (internal + internal)
- 16: LCD1+ExternalLCD2 (internal + external)
-
- viafb_second_size:
- This option is used to set second device memory size(MB) in SAMM case.
- The minimal size is 16.
-
- viafb_platform_epia_dvi:
- This option is used to enable DVI on EPIA - M
- 0 : No DVI on EPIA - M (default)
- 1 : DVI on EPIA - M
-
- viafb_bus_width:
- When using 24 - Bit Bus Width Digital Interface,
- this option should be set.
- 12: 12-Bit LVDS or 12-Bit TMDS (default)
- 24: 24-Bit LVDS or 24-Bit TMDS
-
- viafb_device_lcd_dualedge:
- When using Dual Edge Panel, this option should be set.
- 0 : No Dual Edge Panel (default)
- 1 : Dual Edge Panel
-
- viafb_lcd_port:
- This option is used to specify LCD output port,
- available values are "DVP0" "DVP1" "DFP_HIGHLOW" "DFP_HIGH" "DFP_LOW".
- for external LCD + external DVI on CX700(External LCD is on DVP0),
- we should use:
- modprobe viafb viafb_lcd_port=DVP0...
-
-Notes:
- 1. CRT may not display properly for DuoView CRT & DVI display at
- the "640x480" PAL mode with DVI overscan enabled.
- 2. SAMM stands for single adapter multi monitors. It is different from
- multi-head since SAMM support multi monitor at driver layers, thus fbcon
- layer doesn't even know about it; SAMM's second screen doesn't have a
- device node file, thus a user mode application can't access it directly.
- When SAMM is enabled, viafb_mode and viafb_mode1, viafb_bpp and
- viafb_bpp1, viafb_refresh and viafb_refresh1 can be different.
- 3. When console is depending on viafbinfo1, dynamically change resolution
- and bpp, need to call VIAFB specified ioctl interface VIAFB_SET_DEVICE
- instead of calling common ioctl function FBIOPUT_VSCREENINFO since
- viafb doesn't support multi-head well, or it will cause screen crush.
-
-
-[Configure viafb with "fbset" tool]
------------------------------------
- "fbset" is an inbox utility of Linux.
- 1. Inquire current viafb information, type,
- # fbset -i
-
- 2. Set various resolutions and viafb_refresh rates,
- # fbset <resolution-vertical_sync>
-
- example,
- # fbset "1024x768-75"
- or
- # fbset -g 1024 768 1024 768 32
- Check the file "/etc/fb.modes" to find display modes available.
-
- 3. Set the color depth,
- # fbset -depth <value>
-
- example,
- # fbset -depth 16
-
-
-[Configure viafb via /proc]
----------------------------
- The following files exist in /proc/viafb
-
- supported_output_devices
-
- This read-only file contains a full ',' separated list containing all
- output devices that could be available on your platform. It is likely
- that not all of those have a connector on your hardware but it should
- provide a good starting point to figure out which of those names match
- a real connector.
- Example:
- # cat /proc/viafb/supported_output_devices
-
- iga1/output_devices
- iga2/output_devices
-
- These two files are readable and writable. iga1 and iga2 are the two
- independent units that produce the screen image. Those images can be
- forwarded to one or more output devices. Reading those files is a way
- to query which output devices are currently used by an iga.
- Example:
- # cat /proc/viafb/iga1/output_devices
- If there are no output devices printed the output of this iga is lost.
- This can happen for example if only one (the other) iga is used.
- Writing to these files allows adjusting the output devices during
- runtime. One can add new devices, remove existing ones or switch
- between igas. Essentially you can write a ',' separated list of device
- names (or a single one) in the same format as the output to those
- files. You can add a '+' or '-' as a prefix allowing simple addition
- and removal of devices. So a prefix '+' adds the devices from your list
- to the already existing ones, '-' removes the listed devices from the
- existing ones and if no prefix is given it replaces all existing ones
- with the listed ones. If you remove devices they are expected to turn
- off. If you add devices that are already part of the other iga they are
- removed there and added to the new one.
- Examples:
- Add CRT as output device to iga1
- # echo +CRT > /proc/viafb/iga1/output_devices
-
- Remove (turn off) DVP1 and LVDS1 as output devices of iga2
- # echo -DVP1,LVDS1 > /proc/viafb/iga2/output_devices
-
- Replace all iga1 output devices by CRT
- # echo CRT > /proc/viafb/iga1/output_devices
-
-
-[Bootup with viafb]:
---------------------
- Add the following line to your grub.conf:
- append = "video=viafb:viafb_mode=1024x768,viafb_bpp=32,viafb_refresh=85"
-
diff --git a/Documentation/fb/vt8623fb.txt b/Documentation/fb/vt8623fb.rst
index f654576c56b7..ba1730937dd8 100644
--- a/Documentation/fb/vt8623fb.txt
+++ b/Documentation/fb/vt8623fb.rst
@@ -1,13 +1,13 @@
-
- vt8623fb - fbdev driver for graphics core in VIA VT8623 chipset
- ===============================================================
+===============================================================
+vt8623fb - fbdev driver for graphics core in VIA VT8623 chipset
+===============================================================
Supported Hardware
==================
- VIA VT8623 [CLE266] chipset and its graphics core
- (known as CastleRock or Unichrome)
+VIA VT8623 [CLE266] chipset and its graphics core
+(known as CastleRock or Unichrome)
I tested vt8623fb on VIA EPIA ML-6000
diff --git a/Documentation/features/debug/stackprotector/arch-support.txt b/Documentation/features/debug/stackprotector/arch-support.txt
index 9999ea521f3e..32bbdfc64c32 100644
--- a/Documentation/features/debug/stackprotector/arch-support.txt
+++ b/Documentation/features/debug/stackprotector/arch-support.txt
@@ -22,7 +22,7 @@
| nios2: | TODO |
| openrisc: | TODO |
| parisc: | TODO |
- | powerpc: | TODO |
+ | powerpc: | ok |
| riscv: | TODO |
| s390: | TODO |
| sh: | ok |
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index dac435575384..204dd3ea36bb 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -361,8 +361,6 @@ so fl_release_private called on a lease should not block.
----------------------- lock_manager_operations ---------------------------
prototypes:
- int (*lm_compare_owner)(struct file_lock *, struct file_lock *);
- unsigned long (*lm_owner_key)(struct file_lock *);
void (*lm_notify)(struct file_lock *); /* unblock callback */
int (*lm_grant)(struct file_lock *, struct file_lock *, int);
void (*lm_break)(struct file_lock *); /* break_lease callback */
@@ -371,23 +369,11 @@ prototypes:
locking rules:
inode->i_lock blocked_lock_lock may block
-lm_compare_owner: yes[1] maybe no
-lm_owner_key yes[1] yes no
lm_notify: yes yes no
lm_grant: no no no
lm_break: yes no no
lm_change yes no no
-[1]: ->lm_compare_owner and ->lm_owner_key are generally called with
-*an* inode->i_lock held. It may not be the i_lock of the inode
-associated with either file_lock argument! This is the case with deadlock
-detection, since the code has to chase down the owners of locks that may
-be entirely unrelated to the one on which the lock is being acquired.
-For deadlock detection however, the blocked_lock_lock is also held. The
-fact that these locks are held ensures that the file_locks do not
-disappear out from under you while doing the comparison or generating an
-owner key.
-
--------------------------- buffer_head -----------------------------------
prototypes:
void (*b_end_io)(struct buffer_head *bh, int uptodate);
diff --git a/Documentation/filesystems/api-summary.rst b/Documentation/filesystems/api-summary.rst
index aa51ffcfa029..bbb0c1c0e5cf 100644
--- a/Documentation/filesystems/api-summary.rst
+++ b/Documentation/filesystems/api-summary.rst
@@ -89,9 +89,6 @@ Other Functions
.. kernel-doc:: fs/direct-io.c
:export:
-.. kernel-doc:: fs/file_table.c
- :export:
-
.. kernel-doc:: fs/libfs.c
:export:
diff --git a/Documentation/filesystems/ext2.txt b/Documentation/filesystems/ext2.txt
index a19973a4dd1e..94c2cf0292f5 100644
--- a/Documentation/filesystems/ext2.txt
+++ b/Documentation/filesystems/ext2.txt
@@ -57,7 +57,13 @@ noacl Don't support POSIX ACLs.
nobh Do not attach buffer_heads to file pagecache.
-grpquota,noquota,quota,usrquota Quota options are silently ignored by ext2.
+quota, usrquota Enable user disk quota support
+ (requires CONFIG_QUOTA).
+
+grpquota Enable group disk quota support
+ (requires CONFIG_QUOTA).
+
+noquota option ls silently ignored by ext2.
Specification
diff --git a/Documentation/filesystems/ext4/index.rst b/Documentation/filesystems/ext4/index.rst
index 3be3e54d480d..705d813d558f 100644
--- a/Documentation/filesystems/ext4/index.rst
+++ b/Documentation/filesystems/ext4/index.rst
@@ -8,7 +8,7 @@ ext4 Data Structures and Algorithms
:maxdepth: 6
:numbered:
- about.rst
- overview.rst
- globals.rst
- dynamic.rst
+ about
+ overview
+ globals
+ dynamic
diff --git a/Documentation/filesystems/fscrypt.rst b/Documentation/filesystems/fscrypt.rst
index 08c23b60e016..82efa41b0e6c 100644
--- a/Documentation/filesystems/fscrypt.rst
+++ b/Documentation/filesystems/fscrypt.rst
@@ -191,7 +191,9 @@ Currently, the following pairs of encryption modes are supported:
If unsure, you should use the (AES-256-XTS, AES-256-CTS-CBC) pair.
AES-128-CBC was added only for low-powered embedded devices with
-crypto accelerators such as CAAM or CESA that do not support XTS.
+crypto accelerators such as CAAM or CESA that do not support XTS. To
+use AES-128-CBC, CONFIG_CRYPTO_SHA256 (or another SHA-256
+implementation) must be enabled so that ESSIV can be used.
Adiantum is a (primarily) stream cipher-based mode that is fast even
on CPUs without dedicated crypto instructions. It's also a true
@@ -647,3 +649,42 @@ Note that the precise way that filenames are presented to userspace
without the key is subject to change in the future. It is only meant
as a way to temporarily present valid filenames so that commands like
``rm -r`` work as expected on encrypted directories.
+
+Tests
+=====
+
+To test fscrypt, use xfstests, which is Linux's de facto standard
+filesystem test suite. First, run all the tests in the "encrypt"
+group on the relevant filesystem(s). For example, to test ext4 and
+f2fs encryption using `kvm-xfstests
+<https://github.com/tytso/xfstests-bld/blob/master/Documentation/kvm-quickstart.md>`_::
+
+ kvm-xfstests -c ext4,f2fs -g encrypt
+
+UBIFS encryption can also be tested this way, but it should be done in
+a separate command, and it takes some time for kvm-xfstests to set up
+emulated UBI volumes::
+
+ kvm-xfstests -c ubifs -g encrypt
+
+No tests should fail. However, tests that use non-default encryption
+modes (e.g. generic/549 and generic/550) will be skipped if the needed
+algorithms were not built into the kernel's crypto API. Also, tests
+that access the raw block device (e.g. generic/399, generic/548,
+generic/549, generic/550) will be skipped on UBIFS.
+
+Besides running the "encrypt" group tests, for ext4 and f2fs it's also
+possible to run most xfstests with the "test_dummy_encryption" mount
+option. This option causes all new files to be automatically
+encrypted with a dummy key, without having to make any API calls.
+This tests the encrypted I/O paths more thoroughly. To do this with
+kvm-xfstests, use the "encrypt" filesystem configuration::
+
+ kvm-xfstests -c ext4/encrypt,f2fs/encrypt -g auto
+
+Because this runs many more tests than "-g encrypt" does, it takes
+much longer to run; so also consider using `gce-xfstests
+<https://github.com/tytso/xfstests-bld/blob/master/Documentation/gce-xfstests.md>`_
+instead of kvm-xfstests::
+
+ gce-xfstests -c ext4/encrypt,f2fs/encrypt -g auto
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index 1131c34d77f6..2de2fe2ab078 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -16,7 +16,8 @@ algorithms work.
.. toctree::
:maxdepth: 2
- path-lookup.rst
+ vfs
+ path-lookup
api-summary
splice
@@ -31,13 +32,3 @@ filesystem implementations.
journalling
fscrypt
-
-Filesystem-specific documentation
-=================================
-
-Documentation for individual filesystem types can be found here.
-
-.. toctree::
- :maxdepth: 2
-
- binderfs.rst
diff --git a/Documentation/filesystems/overlayfs.txt b/Documentation/filesystems/overlayfs.txt
index eef7d9d259e8..1da2f1668f08 100644
--- a/Documentation/filesystems/overlayfs.txt
+++ b/Documentation/filesystems/overlayfs.txt
@@ -336,8 +336,20 @@ the copied layers will fail the verification of the lower root file handle.
Non-standard behavior
---------------------
-Overlayfs can now act as a POSIX compliant filesystem with the following
-features turned on:
+Current version of overlayfs can act as a mostly POSIX compliant
+filesystem.
+
+This is the list of cases that overlayfs doesn't currently handle:
+
+a) POSIX mandates updating st_atime for reads. This is currently not
+done in the case when the file resides on a lower layer.
+
+b) If a file residing on a lower layer is opened for read-only and then
+memory mapped with MAP_SHARED, then subsequent changes to the file are not
+reflected in the memory mapping.
+
+The following options allow overlayfs to act more like a standards
+compliant filesystem:
1) "redirect_dir"
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting
index 3bd1148d8bb6..2813a19389fe 100644
--- a/Documentation/filesystems/porting
+++ b/Documentation/filesystems/porting
@@ -330,14 +330,14 @@ unreferenced dentries, and is now only called when the dentry refcount goes to
[mandatory]
.d_compare() calling convention and locking rules are significantly
-changed. Read updated documentation in Documentation/filesystems/vfs.txt (and
+changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
look at examples of other filesystems) for guidance.
---
[mandatory]
.d_hash() calling convention and locking rules are significantly
-changed. Read updated documentation in Documentation/filesystems/vfs.txt (and
+changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
look at examples of other filesystems) for guidance.
---
@@ -377,12 +377,12 @@ where possible.
the filesystem provides it), which requires dropping out of rcu-walk mode. This
may now be called in rcu-walk mode (nd->flags & LOOKUP_RCU). -ECHILD should be
returned if the filesystem cannot handle rcu-walk. See
-Documentation/filesystems/vfs.txt for more details.
+Documentation/filesystems/vfs.rst for more details.
permission is an inode permission check that is called on many or all
directory inodes on the way down a path walk (to check for exec permission). It
must now be rcu-walk aware (mask & MAY_NOT_BLOCK). See
-Documentation/filesystems/vfs.txt for more details.
+Documentation/filesystems/vfs.rst for more details.
--
[mandatory]
@@ -625,7 +625,7 @@ in your dentry operations instead.
--
[mandatory]
->clone_file_range() and ->dedupe_file_range have been replaced with
- ->remap_file_range(). See Documentation/filesystems/vfs.txt for more
+ ->remap_file_range(). See Documentation/filesystems/vfs.rst for more
information.
--
[recommended]
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 66cad5c86171..d750b6926899 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -45,6 +45,7 @@ Table of Contents
3.9 /proc/<pid>/map_files - Information about memory mapped files
3.10 /proc/<pid>/timerslack_ns - Task timerslack value
3.11 /proc/<pid>/patch_state - Livepatch patch operation state
+ 3.12 /proc/<pid>/arch_status - Task architecture specific information
4 Configuring procfs
4.1 Mount options
@@ -153,9 +154,11 @@ Table 1-1: Process specific entries in /proc
symbol the task is blocked in - or "0" if not blocked.
pagemap Page table
stack Report full stack trace, enable via CONFIG_STACKTRACE
- smaps an extension based on maps, showing the memory consumption of
+ smaps An extension based on maps, showing the memory consumption of
each mapping and flags associated with it
- numa_maps an extension based on maps, showing the memory locality and
+ smaps_rollup Accumulated smaps stats for all mappings of the process. This
+ can be derived from smaps, but is faster and more convenient
+ numa_maps An extension based on maps, showing the memory locality and
binding policy as well as mem usage (in pages) of each mapping.
..............................................................................
@@ -365,7 +368,7 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
exit_code the thread's exit_code in the form reported by the waitpid system call
..............................................................................
-The /proc/PID/maps file containing the currently mapped memory regions and
+The /proc/PID/maps file contains the currently mapped memory regions and
their access permissions.
The format is:
@@ -416,11 +419,14 @@ is not associated with a file:
or if empty, the mapping is anonymous.
The /proc/PID/smaps is an extension based on maps, showing the memory
-consumption for each of the process's mappings. For each of mappings there
-is a series of lines such as the following:
+consumption for each of the process's mappings. For each mapping (aka Virtual
+Memory Area, or VMA) there is a series of lines such as the following:
08048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash
+
Size: 1084 kB
+KernelPageSize: 4 kB
+MMUPageSize: 4 kB
Rss: 892 kB
Pss: 374 kB
Shared_Clean: 892 kB
@@ -442,11 +448,14 @@ Locked: 0 kB
THPeligible: 0
VmFlags: rd ex mr mw me dw
-the first of these lines shows the same information as is displayed for the
-mapping in /proc/PID/maps. The remaining lines show the size of the mapping
-(size), the amount of the mapping that is currently resident in RAM (RSS), the
-process' proportional share of this mapping (PSS), the number of clean and
-dirty private pages in the mapping.
+The first of these lines shows the same information as is displayed for the
+mapping in /proc/PID/maps. Following lines show the size of the mapping
+(size); the size of each page allocated when backing a VMA (KernelPageSize),
+which is usually the same as the size in the page table entries; the page size
+used by the MMU when backing a VMA (in most cases, the same as KernelPageSize);
+the amount of the mapping that is currently resident in RAM (RSS); the
+process' proportional share of this mapping (PSS); and the number of clean and
+dirty shared and private pages in the mapping.
The "proportional set size" (PSS) of a process is the count of pages it has
in memory, where each page is divided by the number of processes sharing it.
@@ -531,6 +540,19 @@ guarantees:
2) If there is something at a given vaddr during the entirety of the
life of the smaps/maps walk, there will be some output for it.
+The /proc/PID/smaps_rollup file includes the same fields as /proc/PID/smaps,
+but their values are the sums of the corresponding values for all mappings of
+the process. Additionally, it contains these fields:
+
+Pss_Anon
+Pss_File
+Pss_Shmem
+
+They represent the proportional shares of anonymous, file, and shmem pages, as
+described for smaps above. These fields are omitted in smaps since each
+mapping identifies the type (anon, file, or shmem) of all pages it contains.
+Thus all information in smaps_rollup can be derived from smaps, but at a
+significantly higher cost.
The /proc/PID/clear_refs is used to reset the PG_Referenced and ACCESSED/YOUNG
bits on both physical and virtual pages associated with a process, and the
@@ -1948,6 +1970,45 @@ patched. If the patch is being enabled, then the task has already been
patched. If the patch is being disabled, then the task hasn't been
unpatched yet.
+3.12 /proc/<pid>/arch_status - task architecture specific status
+-------------------------------------------------------------------
+When CONFIG_PROC_PID_ARCH_STATUS is enabled, this file displays the
+architecture specific status of the task.
+
+Example
+-------
+ $ cat /proc/6753/arch_status
+ AVX512_elapsed_ms: 8
+
+Description
+-----------
+
+x86 specific entries:
+---------------------
+ AVX512_elapsed_ms:
+ ------------------
+ If AVX512 is supported on the machine, this entry shows the milliseconds
+ elapsed since the last time AVX512 usage was recorded. The recording
+ happens on a best effort basis when a task is scheduled out. This means
+ that the value depends on two factors:
+
+ 1) The time which the task spent on the CPU without being scheduled
+ out. With CPU isolation and a single runnable task this can take
+ several seconds.
+
+ 2) The time since the task was scheduled out last. Depending on the
+ reason for being scheduled out (time slice exhausted, syscall ...)
+ this can be arbitrary long time.
+
+ As a consequence the value cannot be considered precise and authoritative
+ information. The application which uses this information has to be aware
+ of the overall scenario on the system in order to determine whether a
+ task is a real AVX512 user or not. Precise information can be obtained
+ with performance counters.
+
+ A special value of '-1' indicates that no AVX512 usage was recorded, thus
+ the task is unlikely an AVX512 user, but depends on the workload and the
+ scheduling scenario, it also could be a false negative mentioned above.
------------------------------------------------------------------------------
Configuring procfs
diff --git a/Documentation/filesystems/tmpfs.txt b/Documentation/filesystems/tmpfs.txt
index d06e9a59a9f4..cad797a8a39e 100644
--- a/Documentation/filesystems/tmpfs.txt
+++ b/Documentation/filesystems/tmpfs.txt
@@ -98,7 +98,7 @@ A memory policy with a valid NodeList will be saved, as specified, for
use at file creation time. When a task allocates a file in the file
system, the mount option memory policy will be applied with a NodeList,
if any, modified by the calling task's cpuset constraints
-[See Documentation/cgroup-v1/cpusets.txt] and any optional flags, listed
+[See Documentation/cgroup-v1/cpusets.rst] and any optional flags, listed
below. If the resulting NodeLists is the empty set, the effective memory
policy for the file will revert to "default" policy.
diff --git a/Documentation/filesystems/ubifs-authentication.md b/Documentation/filesystems/ubifs-authentication.md
index 028b3e2e25f9..23e698167141 100644
--- a/Documentation/filesystems/ubifs-authentication.md
+++ b/Documentation/filesystems/ubifs-authentication.md
@@ -417,9 +417,9 @@ will then have to be provided beforehand in the normal way.
[DMC-CBC-ATTACK] http://www.jakoblell.com/blog/2013/12/22/practical-malleability-attack-against-cbc-encrypted-luks-partitions/
-[DM-INTEGRITY] https://www.kernel.org/doc/Documentation/device-mapper/dm-integrity.txt
+[DM-INTEGRITY] https://www.kernel.org/doc/Documentation/device-mapper/dm-integrity.rst
-[DM-VERITY] https://www.kernel.org/doc/Documentation/device-mapper/verity.txt
+[DM-VERITY] https://www.kernel.org/doc/Documentation/device-mapper/verity.rst
[FSCRYPT-POLICY2] https://www.spinics.net/lists/linux-ext4/msg58710.html
diff --git a/Documentation/filesystems/vfs.rst b/Documentation/filesystems/vfs.rst
new file mode 100644
index 000000000000..0f85ab21c2ca
--- /dev/null
+++ b/Documentation/filesystems/vfs.rst
@@ -0,0 +1,1428 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================================
+Overview of the Linux Virtual File System
+=========================================
+
+Original author: Richard Gooch <rgooch@atnf.csiro.au>
+
+- Copyright (C) 1999 Richard Gooch
+- Copyright (C) 2005 Pekka Enberg
+
+
+Introduction
+============
+
+The Virtual File System (also known as the Virtual Filesystem Switch) is
+the software layer in the kernel that provides the filesystem interface
+to userspace programs. It also provides an abstraction within the
+kernel which allows different filesystem implementations to coexist.
+
+VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so on
+are called from a process context. Filesystem locking is described in
+the document Documentation/filesystems/Locking.
+
+
+Directory Entry Cache (dcache)
+------------------------------
+
+The VFS implements the open(2), stat(2), chmod(2), and similar system
+calls. The pathname argument that is passed to them is used by the VFS
+to search through the directory entry cache (also known as the dentry
+cache or dcache). This provides a very fast look-up mechanism to
+translate a pathname (filename) into a specific dentry. Dentries live
+in RAM and are never saved to disc: they exist only for performance.
+
+The dentry cache is meant to be a view into your entire filespace. As
+most computers cannot fit all dentries in the RAM at the same time, some
+bits of the cache are missing. In order to resolve your pathname into a
+dentry, the VFS may have to resort to creating dentries along the way,
+and then loading the inode. This is done by looking up the inode.
+
+
+The Inode Object
+----------------
+
+An individual dentry usually has a pointer to an inode. Inodes are
+filesystem objects such as regular files, directories, FIFOs and other
+beasts. They live either on the disc (for block device filesystems) or
+in the memory (for pseudo filesystems). Inodes that live on the disc
+are copied into the memory when required and changes to the inode are
+written back to disc. A single inode can be pointed to by multiple
+dentries (hard links, for example, do this).
+
+To look up an inode requires that the VFS calls the lookup() method of
+the parent directory inode. This method is installed by the specific
+filesystem implementation that the inode lives in. Once the VFS has the
+required dentry (and hence the inode), we can do all those boring things
+like open(2) the file, or stat(2) it to peek at the inode data. The
+stat(2) operation is fairly simple: once the VFS has the dentry, it
+peeks at the inode data and passes some of it back to userspace.
+
+
+The File Object
+---------------
+
+Opening a file requires another operation: allocation of a file
+structure (this is the kernel-side implementation of file descriptors).
+The freshly allocated file structure is initialized with a pointer to
+the dentry and a set of file operation member functions. These are
+taken from the inode data. The open() file method is then called so the
+specific filesystem implementation can do its work. You can see that
+this is another switch performed by the VFS. The file structure is
+placed into the file descriptor table for the process.
+
+Reading, writing and closing files (and other assorted VFS operations)
+is done by using the userspace file descriptor to grab the appropriate
+file structure, and then calling the required file structure method to
+do whatever is required. For as long as the file is open, it keeps the
+dentry in use, which in turn means that the VFS inode is still in use.
+
+
+Registering and Mounting a Filesystem
+=====================================
+
+To register and unregister a filesystem, use the following API
+functions:
+
+.. code-block:: c
+
+ #include <linux/fs.h>
+
+ extern int register_filesystem(struct file_system_type *);
+ extern int unregister_filesystem(struct file_system_type *);
+
+The passed struct file_system_type describes your filesystem. When a
+request is made to mount a filesystem onto a directory in your
+namespace, the VFS will call the appropriate mount() method for the
+specific filesystem. New vfsmount referring to the tree returned by
+->mount() will be attached to the mountpoint, so that when pathname
+resolution reaches the mountpoint it will jump into the root of that
+vfsmount.
+
+You can see all filesystems that are registered to the kernel in the
+file /proc/filesystems.
+
+
+struct file_system_type
+-----------------------
+
+This describes the filesystem. As of kernel 2.6.39, the following
+members are defined:
+
+.. code-block:: c
+
+ struct file_system_operations {
+ const char *name;
+ int fs_flags;
+ struct dentry *(*mount) (struct file_system_type *, int,
+ const char *, void *);
+ void (*kill_sb) (struct super_block *);
+ struct module *owner;
+ struct file_system_type * next;
+ struct list_head fs_supers;
+ struct lock_class_key s_lock_key;
+ struct lock_class_key s_umount_key;
+ };
+
+``name``
+ the name of the filesystem type, such as "ext2", "iso9660",
+ "msdos" and so on
+
+``fs_flags``
+ various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.)
+
+``mount``
+ the method to call when a new instance of this filesystem should
+ be mounted
+
+``kill_sb``
+ the method to call when an instance of this filesystem should be
+ shut down
+
+
+``owner``
+ for internal VFS use: you should initialize this to THIS_MODULE
+ in most cases.
+
+``next``
+ for internal VFS use: you should initialize this to NULL
+
+ s_lock_key, s_umount_key: lockdep-specific
+
+The mount() method has the following arguments:
+
+``struct file_system_type *fs_type``
+ describes the filesystem, partly initialized by the specific
+ filesystem code
+
+``int flags``
+ mount flags
+
+``const char *dev_name``
+ the device name we are mounting.
+
+``void *data``
+ arbitrary mount options, usually comes as an ASCII string (see
+ "Mount Options" section)
+
+The mount() method must return the root dentry of the tree requested by
+caller. An active reference to its superblock must be grabbed and the
+superblock must be locked. On failure it should return ERR_PTR(error).
+
+The arguments match those of mount(2) and their interpretation depends
+on filesystem type. E.g. for block filesystems, dev_name is interpreted
+as block device name, that device is opened and if it contains a
+suitable filesystem image the method creates and initializes struct
+super_block accordingly, returning its root dentry to caller.
+
+->mount() may choose to return a subtree of existing filesystem - it
+doesn't have to create a new one. The main result from the caller's
+point of view is a reference to dentry at the root of (sub)tree to be
+attached; creation of new superblock is a common side effect.
+
+The most interesting member of the superblock structure that the mount()
+method fills in is the "s_op" field. This is a pointer to a "struct
+super_operations" which describes the next level of the filesystem
+implementation.
+
+Usually, a filesystem uses one of the generic mount() implementations
+and provides a fill_super() callback instead. The generic variants are:
+
+``mount_bdev``
+ mount a filesystem residing on a block device
+
+``mount_nodev``
+ mount a filesystem that is not backed by a device
+
+``mount_single``
+ mount a filesystem which shares the instance between all mounts
+
+A fill_super() callback implementation has the following arguments:
+
+``struct super_block *sb``
+ the superblock structure. The callback must initialize this
+ properly.
+
+``void *data``
+ arbitrary mount options, usually comes as an ASCII string (see
+ "Mount Options" section)
+
+``int silent``
+ whether or not to be silent on error
+
+
+The Superblock Object
+=====================
+
+A superblock object represents a mounted filesystem.
+
+
+struct super_operations
+-----------------------
+
+This describes how the VFS can manipulate the superblock of your
+filesystem. As of kernel 2.6.22, the following members are defined:
+
+.. code-block:: c
+
+ struct super_operations {
+ struct inode *(*alloc_inode)(struct super_block *sb);
+ void (*destroy_inode)(struct inode *);
+
+ void (*dirty_inode) (struct inode *, int flags);
+ int (*write_inode) (struct inode *, int);
+ void (*drop_inode) (struct inode *);
+ void (*delete_inode) (struct inode *);
+ void (*put_super) (struct super_block *);
+ int (*sync_fs)(struct super_block *sb, int wait);
+ int (*freeze_fs) (struct super_block *);
+ int (*unfreeze_fs) (struct super_block *);
+ int (*statfs) (struct dentry *, struct kstatfs *);
+ int (*remount_fs) (struct super_block *, int *, char *);
+ void (*clear_inode) (struct inode *);
+ void (*umount_begin) (struct super_block *);
+
+ int (*show_options)(struct seq_file *, struct dentry *);
+
+ ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
+ ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
+ int (*nr_cached_objects)(struct super_block *);
+ void (*free_cached_objects)(struct super_block *, int);
+ };
+
+All methods are called without any locks being held, unless otherwise
+noted. This means that most methods can block safely. All methods are
+only called from a process context (i.e. not from an interrupt handler
+or bottom half).
+
+``alloc_inode``
+ this method is called by alloc_inode() to allocate memory for
+ struct inode and initialize it. If this function is not
+ defined, a simple 'struct inode' is allocated. Normally
+ alloc_inode will be used to allocate a larger structure which
+ contains a 'struct inode' embedded within it.
+
+``destroy_inode``
+ this method is called by destroy_inode() to release resources
+ allocated for struct inode. It is only required if
+ ->alloc_inode was defined and simply undoes anything done by
+ ->alloc_inode.
+
+``dirty_inode``
+ this method is called by the VFS to mark an inode dirty.
+
+``write_inode``
+ this method is called when the VFS needs to write an inode to
+ disc. The second parameter indicates whether the write should
+ be synchronous or not, not all filesystems check this flag.
+
+``drop_inode``
+ called when the last access to the inode is dropped, with the
+ inode->i_lock spinlock held.
+
+ This method should be either NULL (normal UNIX filesystem
+ semantics) or "generic_delete_inode" (for filesystems that do
+ not want to cache inodes - causing "delete_inode" to always be
+ called regardless of the value of i_nlink)
+
+ The "generic_delete_inode()" behavior is equivalent to the old
+ practice of using "force_delete" in the put_inode() case, but
+ does not have the races that the "force_delete()" approach had.
+
+``delete_inode``
+ called when the VFS wants to delete an inode
+
+``put_super``
+ called when the VFS wishes to free the superblock
+ (i.e. unmount). This is called with the superblock lock held
+
+``sync_fs``
+ called when VFS is writing out all dirty data associated with a
+ superblock. The second parameter indicates whether the method
+ should wait until the write out has been completed. Optional.
+
+``freeze_fs``
+ called when VFS is locking a filesystem and forcing it into a
+ consistent state. This method is currently used by the Logical
+ Volume Manager (LVM).
+
+``unfreeze_fs``
+ called when VFS is unlocking a filesystem and making it writable
+ again.
+
+``statfs``
+ called when the VFS needs to get filesystem statistics.
+
+``remount_fs``
+ called when the filesystem is remounted. This is called with
+ the kernel lock held
+
+``clear_inode``
+ called then the VFS clears the inode. Optional
+
+``umount_begin``
+ called when the VFS is unmounting a filesystem.
+
+``show_options``
+ called by the VFS to show mount options for /proc/<pid>/mounts.
+ (see "Mount Options" section)
+
+``quota_read``
+ called by the VFS to read from filesystem quota file.
+
+``quota_write``
+ called by the VFS to write to filesystem quota file.
+
+``nr_cached_objects``
+ called by the sb cache shrinking function for the filesystem to
+ return the number of freeable cached objects it contains.
+ Optional.
+
+``free_cache_objects``
+ called by the sb cache shrinking function for the filesystem to
+ scan the number of objects indicated to try to free them.
+ Optional, but any filesystem implementing this method needs to
+ also implement ->nr_cached_objects for it to be called
+ correctly.
+
+ We can't do anything with any errors that the filesystem might
+ encountered, hence the void return type. This will never be
+ called if the VM is trying to reclaim under GFP_NOFS conditions,
+ hence this method does not need to handle that situation itself.
+
+ Implementations must include conditional reschedule calls inside
+ any scanning loop that is done. This allows the VFS to
+ determine appropriate scan batch sizes without having to worry
+ about whether implementations will cause holdoff problems due to
+ large scan batch sizes.
+
+Whoever sets up the inode is responsible for filling in the "i_op"
+field. This is a pointer to a "struct inode_operations" which describes
+the methods that can be performed on individual inodes.
+
+
+struct xattr_handlers
+---------------------
+
+On filesystems that support extended attributes (xattrs), the s_xattr
+superblock field points to a NULL-terminated array of xattr handlers.
+Extended attributes are name:value pairs.
+
+``name``
+ Indicates that the handler matches attributes with the specified
+ name (such as "system.posix_acl_access"); the prefix field must
+ be NULL.
+
+``prefix``
+ Indicates that the handler matches all attributes with the
+ specified name prefix (such as "user."); the name field must be
+ NULL.
+
+``list``
+ Determine if attributes matching this xattr handler should be
+ listed for a particular dentry. Used by some listxattr
+ implementations like generic_listxattr.
+
+``get``
+ Called by the VFS to get the value of a particular extended
+ attribute. This method is called by the getxattr(2) system
+ call.
+
+``set``
+ Called by the VFS to set the value of a particular extended
+ attribute. When the new value is NULL, called to remove a
+ particular extended attribute. This method is called by the the
+ setxattr(2) and removexattr(2) system calls.
+
+When none of the xattr handlers of a filesystem match the specified
+attribute name or when a filesystem doesn't support extended attributes,
+the various ``*xattr(2)`` system calls return -EOPNOTSUPP.
+
+
+The Inode Object
+================
+
+An inode object represents an object within the filesystem.
+
+
+struct inode_operations
+-----------------------
+
+This describes how the VFS can manipulate an inode in your filesystem.
+As of kernel 2.6.22, the following members are defined:
+
+.. code-block:: c
+
+ struct inode_operations {
+ int (*create) (struct inode *,struct dentry *, umode_t, bool);
+ struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
+ int (*link) (struct dentry *,struct inode *,struct dentry *);
+ int (*unlink) (struct inode *,struct dentry *);
+ int (*symlink) (struct inode *,struct dentry *,const char *);
+ int (*mkdir) (struct inode *,struct dentry *,umode_t);
+ int (*rmdir) (struct inode *,struct dentry *);
+ int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
+ int (*rename) (struct inode *, struct dentry *,
+ struct inode *, struct dentry *, unsigned int);
+ int (*readlink) (struct dentry *, char __user *,int);
+ const char *(*get_link) (struct dentry *, struct inode *,
+ struct delayed_call *);
+ int (*permission) (struct inode *, int);
+ int (*get_acl)(struct inode *, int);
+ int (*setattr) (struct dentry *, struct iattr *);
+ int (*getattr) (const struct path *, struct kstat *, u32, unsigned int);
+ ssize_t (*listxattr) (struct dentry *, char *, size_t);
+ void (*update_time)(struct inode *, struct timespec *, int);
+ int (*atomic_open)(struct inode *, struct dentry *, struct file *,
+ unsigned open_flag, umode_t create_mode);
+ int (*tmpfile) (struct inode *, struct dentry *, umode_t);
+ };
+
+Again, all methods are called without any locks being held, unless
+otherwise noted.
+
+``create``
+ called by the open(2) and creat(2) system calls. Only required
+ if you want to support regular files. The dentry you get should
+ not have an inode (i.e. it should be a negative dentry). Here
+ you will probably call d_instantiate() with the dentry and the
+ newly created inode
+
+``lookup``
+ called when the VFS needs to look up an inode in a parent
+ directory. The name to look for is found in the dentry. This
+ method must call d_add() to insert the found inode into the
+ dentry. The "i_count" field in the inode structure should be
+ incremented. If the named inode does not exist a NULL inode
+ should be inserted into the dentry (this is called a negative
+ dentry). Returning an error code from this routine must only be
+ done on a real error, otherwise creating inodes with system
+ calls like create(2), mknod(2), mkdir(2) and so on will fail.
+ If you wish to overload the dentry methods then you should
+ initialise the "d_dop" field in the dentry; this is a pointer to
+ a struct "dentry_operations". This method is called with the
+ directory inode semaphore held
+
+``link``
+ called by the link(2) system call. Only required if you want to
+ support hard links. You will probably need to call
+ d_instantiate() just as you would in the create() method
+
+``unlink``
+ called by the unlink(2) system call. Only required if you want
+ to support deleting inodes
+
+``symlink``
+ called by the symlink(2) system call. Only required if you want
+ to support symlinks. You will probably need to call
+ d_instantiate() just as you would in the create() method
+
+``mkdir``
+ called by the mkdir(2) system call. Only required if you want
+ to support creating subdirectories. You will probably need to
+ call d_instantiate() just as you would in the create() method
+
+``rmdir``
+ called by the rmdir(2) system call. Only required if you want
+ to support deleting subdirectories
+
+``mknod``
+ called by the mknod(2) system call to create a device (char,
+ block) inode or a named pipe (FIFO) or socket. Only required if
+ you want to support creating these types of inodes. You will
+ probably need to call d_instantiate() just as you would in the
+ create() method
+
+``rename``
+ called by the rename(2) system call to rename the object to have
+ the parent and name given by the second inode and dentry.
+
+ The filesystem must return -EINVAL for any unsupported or
+ unknown flags. Currently the following flags are implemented:
+ (1) RENAME_NOREPLACE: this flag indicates that if the target of
+ the rename exists the rename should fail with -EEXIST instead of
+ replacing the target. The VFS already checks for existence, so
+ for local filesystems the RENAME_NOREPLACE implementation is
+ equivalent to plain rename.
+ (2) RENAME_EXCHANGE: exchange source and target. Both must
+ exist; this is checked by the VFS. Unlike plain rename, source
+ and target may be of different type.
+
+``get_link``
+ called by the VFS to follow a symbolic link to the inode it
+ points to. Only required if you want to support symbolic links.
+ This method returns the symlink body to traverse (and possibly
+ resets the current position with nd_jump_link()). If the body
+ won't go away until the inode is gone, nothing else is needed;
+ if it needs to be otherwise pinned, arrange for its release by
+ having get_link(..., ..., done) do set_delayed_call(done,
+ destructor, argument). In that case destructor(argument) will
+ be called once VFS is done with the body you've returned. May
+ be called in RCU mode; that is indicated by NULL dentry
+ argument. If request can't be handled without leaving RCU mode,
+ have it return ERR_PTR(-ECHILD).
+
+ If the filesystem stores the symlink target in ->i_link, the
+ VFS may use it directly without calling ->get_link(); however,
+ ->get_link() must still be provided. ->i_link must not be
+ freed until after an RCU grace period. Writing to ->i_link
+ post-iget() time requires a 'release' memory barrier.
+
+``readlink``
+ this is now just an override for use by readlink(2) for the
+ cases when ->get_link uses nd_jump_link() or object is not in
+ fact a symlink. Normally filesystems should only implement
+ ->get_link for symlinks and readlink(2) will automatically use
+ that.
+
+``permission``
+ called by the VFS to check for access rights on a POSIX-like
+ filesystem.
+
+ May be called in rcu-walk mode (mask & MAY_NOT_BLOCK). If in
+ rcu-walk mode, the filesystem must check the permission without
+ blocking or storing to the inode.
+
+ If a situation is encountered that rcu-walk cannot handle,
+ return
+ -ECHILD and it will be called again in ref-walk mode.
+
+``setattr``
+ called by the VFS to set attributes for a file. This method is
+ called by chmod(2) and related system calls.
+
+``getattr``
+ called by the VFS to get attributes of a file. This method is
+ called by stat(2) and related system calls.
+
+``listxattr``
+ called by the VFS to list all extended attributes for a given
+ file. This method is called by the listxattr(2) system call.
+
+``update_time``
+ called by the VFS to update a specific time or the i_version of
+ an inode. If this is not defined the VFS will update the inode
+ itself and call mark_inode_dirty_sync.
+
+``atomic_open``
+ called on the last component of an open. Using this optional
+ method the filesystem can look up, possibly create and open the
+ file in one atomic operation. If it wants to leave actual
+ opening to the caller (e.g. if the file turned out to be a
+ symlink, device, or just something filesystem won't do atomic
+ open for), it may signal this by returning finish_no_open(file,
+ dentry). This method is only called if the last component is
+ negative or needs lookup. Cached positive dentries are still
+ handled by f_op->open(). If the file was created, FMODE_CREATED
+ flag should be set in file->f_mode. In case of O_EXCL the
+ method must only succeed if the file didn't exist and hence
+ FMODE_CREATED shall always be set on success.
+
+``tmpfile``
+ called in the end of O_TMPFILE open(). Optional, equivalent to
+ atomically creating, opening and unlinking a file in given
+ directory.
+
+
+The Address Space Object
+========================
+
+The address space object is used to group and manage pages in the page
+cache. It can be used to keep track of the pages in a file (or anything
+else) and also track the mapping of sections of the file into process
+address spaces.
+
+There are a number of distinct yet related services that an
+address-space can provide. These include communicating memory pressure,
+page lookup by address, and keeping track of pages tagged as Dirty or
+Writeback.
+
+The first can be used independently to the others. The VM can try to
+either write dirty pages in order to clean them, or release clean pages
+in order to reuse them. To do this it can call the ->writepage method
+on dirty pages, and ->releasepage on clean pages with PagePrivate set.
+Clean pages without PagePrivate and with no external references will be
+released without notice being given to the address_space.
+
+To achieve this functionality, pages need to be placed on an LRU with
+lru_cache_add and mark_page_active needs to be called whenever the page
+is used.
+
+Pages are normally kept in a radix tree index by ->index. This tree
+maintains information about the PG_Dirty and PG_Writeback status of each
+page, so that pages with either of these flags can be found quickly.
+
+The Dirty tag is primarily used by mpage_writepages - the default
+->writepages method. It uses the tag to find dirty pages to call
+->writepage on. If mpage_writepages is not used (i.e. the address
+provides its own ->writepages) , the PAGECACHE_TAG_DIRTY tag is almost
+unused. write_inode_now and sync_inode do use it (through
+__sync_single_inode) to check if ->writepages has been successful in
+writing out the whole address_space.
+
+The Writeback tag is used by filemap*wait* and sync_page* functions, via
+filemap_fdatawait_range, to wait for all writeback to complete.
+
+An address_space handler may attach extra information to a page,
+typically using the 'private' field in the 'struct page'. If such
+information is attached, the PG_Private flag should be set. This will
+cause various VM routines to make extra calls into the address_space
+handler to deal with that data.
+
+An address space acts as an intermediate between storage and
+application. Data is read into the address space a whole page at a
+time, and provided to the application either by copying of the page, or
+by memory-mapping the page. Data is written into the address space by
+the application, and then written-back to storage typically in whole
+pages, however the address_space has finer control of write sizes.
+
+The read process essentially only requires 'readpage'. The write
+process is more complicated and uses write_begin/write_end or
+set_page_dirty to write data into the address_space, and writepage and
+writepages to writeback data to storage.
+
+Adding and removing pages to/from an address_space is protected by the
+inode's i_mutex.
+
+When data is written to a page, the PG_Dirty flag should be set. It
+typically remains set until writepage asks for it to be written. This
+should clear PG_Dirty and set PG_Writeback. It can be actually written
+at any point after PG_Dirty is clear. Once it is known to be safe,
+PG_Writeback is cleared.
+
+Writeback makes use of a writeback_control structure to direct the
+operations. This gives the the writepage and writepages operations some
+information about the nature of and reason for the writeback request,
+and the constraints under which it is being done. It is also used to
+return information back to the caller about the result of a writepage or
+writepages request.
+
+
+Handling errors during writeback
+--------------------------------
+
+Most applications that do buffered I/O will periodically call a file
+synchronization call (fsync, fdatasync, msync or sync_file_range) to
+ensure that data written has made it to the backing store. When there
+is an error during writeback, they expect that error to be reported when
+a file sync request is made. After an error has been reported on one
+request, subsequent requests on the same file descriptor should return
+0, unless further writeback errors have occurred since the previous file
+syncronization.
+
+Ideally, the kernel would report errors only on file descriptions on
+which writes were done that subsequently failed to be written back. The
+generic pagecache infrastructure does not track the file descriptions
+that have dirtied each individual page however, so determining which
+file descriptors should get back an error is not possible.
+
+Instead, the generic writeback error tracking infrastructure in the
+kernel settles for reporting errors to fsync on all file descriptions
+that were open at the time that the error occurred. In a situation with
+multiple writers, all of them will get back an error on a subsequent
+fsync, even if all of the writes done through that particular file
+descriptor succeeded (or even if there were no writes on that file
+descriptor at all).
+
+Filesystems that wish to use this infrastructure should call
+mapping_set_error to record the error in the address_space when it
+occurs. Then, after writing back data from the pagecache in their
+file->fsync operation, they should call file_check_and_advance_wb_err to
+ensure that the struct file's error cursor has advanced to the correct
+point in the stream of errors emitted by the backing device(s).
+
+
+struct address_space_operations
+-------------------------------
+
+This describes how the VFS can manipulate mapping of a file to page
+cache in your filesystem. The following members are defined:
+
+.. code-block:: c
+
+ struct address_space_operations {
+ int (*writepage)(struct page *page, struct writeback_control *wbc);
+ int (*readpage)(struct file *, struct page *);
+ int (*writepages)(struct address_space *, struct writeback_control *);
+ int (*set_page_dirty)(struct page *page);
+ int (*readpages)(struct file *filp, struct address_space *mapping,
+ struct list_head *pages, unsigned nr_pages);
+ int (*write_begin)(struct file *, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned flags,
+ struct page **pagep, void **fsdata);
+ int (*write_end)(struct file *, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned copied,
+ struct page *page, void *fsdata);
+ sector_t (*bmap)(struct address_space *, sector_t);
+ void (*invalidatepage) (struct page *, unsigned int, unsigned int);
+ int (*releasepage) (struct page *, int);
+ void (*freepage)(struct page *);
+ ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
+ /* isolate a page for migration */
+ bool (*isolate_page) (struct page *, isolate_mode_t);
+ /* migrate the contents of a page to the specified target */
+ int (*migratepage) (struct page *, struct page *);
+ /* put migration-failed page back to right list */
+ void (*putback_page) (struct page *);
+ int (*launder_page) (struct page *);
+
+ int (*is_partially_uptodate) (struct page *, unsigned long,
+ unsigned long);
+ void (*is_dirty_writeback) (struct page *, bool *, bool *);
+ int (*error_remove_page) (struct mapping *mapping, struct page *page);
+ int (*swap_activate)(struct file *);
+ int (*swap_deactivate)(struct file *);
+ };
+
+``writepage``
+ called by the VM to write a dirty page to backing store. This
+ may happen for data integrity reasons (i.e. 'sync'), or to free
+ up memory (flush). The difference can be seen in
+ wbc->sync_mode. The PG_Dirty flag has been cleared and
+ PageLocked is true. writepage should start writeout, should set
+ PG_Writeback, and should make sure the page is unlocked, either
+ synchronously or asynchronously when the write operation
+ completes.
+
+ If wbc->sync_mode is WB_SYNC_NONE, ->writepage doesn't have to
+ try too hard if there are problems, and may choose to write out
+ other pages from the mapping if that is easier (e.g. due to
+ internal dependencies). If it chooses not to start writeout, it
+ should return AOP_WRITEPAGE_ACTIVATE so that the VM will not
+ keep calling ->writepage on that page.
+
+ See the file "Locking" for more details.
+
+``readpage``
+ called by the VM to read a page from backing store. The page
+ will be Locked when readpage is called, and should be unlocked
+ and marked uptodate once the read completes. If ->readpage
+ discovers that it needs to unlock the page for some reason, it
+ can do so, and then return AOP_TRUNCATED_PAGE. In this case,
+ the page will be relocated, relocked and if that all succeeds,
+ ->readpage will be called again.
+
+``writepages``
+ called by the VM to write out pages associated with the
+ address_space object. If wbc->sync_mode is WBC_SYNC_ALL, then
+ the writeback_control will specify a range of pages that must be
+ written out. If it is WBC_SYNC_NONE, then a nr_to_write is
+ given and that many pages should be written if possible. If no
+ ->writepages is given, then mpage_writepages is used instead.
+ This will choose pages from the address space that are tagged as
+ DIRTY and will pass them to ->writepage.
+
+``set_page_dirty``
+ called by the VM to set a page dirty. This is particularly
+ needed if an address space attaches private data to a page, and
+ that data needs to be updated when a page is dirtied. This is
+ called, for example, when a memory mapped page gets modified.
+ If defined, it should set the PageDirty flag, and the
+ PAGECACHE_TAG_DIRTY tag in the radix tree.
+
+``readpages``
+ called by the VM to read pages associated with the address_space
+ object. This is essentially just a vector version of readpage.
+ Instead of just one page, several pages are requested.
+ readpages is only used for read-ahead, so read errors are
+ ignored. If anything goes wrong, feel free to give up.
+
+``write_begin``
+ Called by the generic buffered write code to ask the filesystem
+ to prepare to write len bytes at the given offset in the file.
+ The address_space should check that the write will be able to
+ complete, by allocating space if necessary and doing any other
+ internal housekeeping. If the write will update parts of any
+ basic-blocks on storage, then those blocks should be pre-read
+ (if they haven't been read already) so that the updated blocks
+ can be written out properly.
+
+ The filesystem must return the locked pagecache page for the
+ specified offset, in ``*pagep``, for the caller to write into.
+
+ It must be able to cope with short writes (where the length
+ passed to write_begin is greater than the number of bytes copied
+ into the page).
+
+ flags is a field for AOP_FLAG_xxx flags, described in
+ include/linux/fs.h.
+
+ A void * may be returned in fsdata, which then gets passed into
+ write_end.
+
+ Returns 0 on success; < 0 on failure (which is the error code),
+ in which case write_end is not called.
+
+``write_end``
+ After a successful write_begin, and data copy, write_end must be
+ called. len is the original len passed to write_begin, and
+ copied is the amount that was able to be copied.
+
+ The filesystem must take care of unlocking the page and
+ releasing it refcount, and updating i_size.
+
+ Returns < 0 on failure, otherwise the number of bytes (<=
+ 'copied') that were able to be copied into pagecache.
+
+``bmap``
+ called by the VFS to map a logical block offset within object to
+ physical block number. This method is used by the FIBMAP ioctl
+ and for working with swap-files. To be able to swap to a file,
+ the file must have a stable mapping to a block device. The swap
+ system does not go through the filesystem but instead uses bmap
+ to find out where the blocks in the file are and uses those
+ addresses directly.
+
+``invalidatepage``
+ If a page has PagePrivate set, then invalidatepage will be
+ called when part or all of the page is to be removed from the
+ address space. This generally corresponds to either a
+ truncation, punch hole or a complete invalidation of the address
+ space (in the latter case 'offset' will always be 0 and 'length'
+ will be PAGE_SIZE). Any private data associated with the page
+ should be updated to reflect this truncation. If offset is 0
+ and length is PAGE_SIZE, then the private data should be
+ released, because the page must be able to be completely
+ discarded. This may be done by calling the ->releasepage
+ function, but in this case the release MUST succeed.
+
+``releasepage``
+ releasepage is called on PagePrivate pages to indicate that the
+ page should be freed if possible. ->releasepage should remove
+ any private data from the page and clear the PagePrivate flag.
+ If releasepage() fails for some reason, it must indicate failure
+ with a 0 return value. releasepage() is used in two distinct
+ though related cases. The first is when the VM finds a clean
+ page with no active users and wants to make it a free page. If
+ ->releasepage succeeds, the page will be removed from the
+ address_space and become free.
+
+ The second case is when a request has been made to invalidate
+ some or all pages in an address_space. This can happen through
+ the fadvise(POSIX_FADV_DONTNEED) system call or by the
+ filesystem explicitly requesting it as nfs and 9fs do (when they
+ believe the cache may be out of date with storage) by calling
+ invalidate_inode_pages2(). If the filesystem makes such a call,
+ and needs to be certain that all pages are invalidated, then its
+ releasepage will need to ensure this. Possibly it can clear the
+ PageUptodate bit if it cannot free private data yet.
+
+``freepage``
+ freepage is called once the page is no longer visible in the
+ page cache in order to allow the cleanup of any private data.
+ Since it may be called by the memory reclaimer, it should not
+ assume that the original address_space mapping still exists, and
+ it should not block.
+
+``direct_IO``
+ called by the generic read/write routines to perform direct_IO -
+ that is IO requests which bypass the page cache and transfer
+ data directly between the storage and the application's address
+ space.
+
+``isolate_page``
+ Called by the VM when isolating a movable non-lru page. If page
+ is successfully isolated, VM marks the page as PG_isolated via
+ __SetPageIsolated.
+
+``migrate_page``
+ This is used to compact the physical memory usage. If the VM
+ wants to relocate a page (maybe off a memory card that is
+ signalling imminent failure) it will pass a new page and an old
+ page to this function. migrate_page should transfer any private
+ data across and update any references that it has to the page.
+
+``putback_page``
+ Called by the VM when isolated page's migration fails.
+
+``launder_page``
+ Called before freeing a page - it writes back the dirty page.
+ To prevent redirtying the page, it is kept locked during the
+ whole operation.
+
+``is_partially_uptodate``
+ Called by the VM when reading a file through the pagecache when
+ the underlying blocksize != pagesize. If the required block is
+ up to date then the read can complete without needing the IO to
+ bring the whole page up to date.
+
+``is_dirty_writeback``
+ Called by the VM when attempting to reclaim a page. The VM uses
+ dirty and writeback information to determine if it needs to
+ stall to allow flushers a chance to complete some IO.
+ Ordinarily it can use PageDirty and PageWriteback but some
+ filesystems have more complex state (unstable pages in NFS
+ prevent reclaim) or do not set those flags due to locking
+ problems. This callback allows a filesystem to indicate to the
+ VM if a page should be treated as dirty or writeback for the
+ purposes of stalling.
+
+``error_remove_page``
+ normally set to generic_error_remove_page if truncation is ok
+ for this address space. Used for memory failure handling.
+ Setting this implies you deal with pages going away under you,
+ unless you have them locked or reference counts increased.
+
+``swap_activate``
+ Called when swapon is used on a file to allocate space if
+ necessary and pin the block lookup information in memory. A
+ return value of zero indicates success, in which case this file
+ can be used to back swapspace.
+
+``swap_deactivate``
+ Called during swapoff on files where swap_activate was
+ successful.
+
+
+The File Object
+===============
+
+A file object represents a file opened by a process. This is also known
+as an "open file description" in POSIX parlance.
+
+
+struct file_operations
+----------------------
+
+This describes how the VFS can manipulate an open file. As of kernel
+4.18, the following members are defined:
+
+.. code-block:: c
+
+ struct file_operations {
+ struct module *owner;
+ loff_t (*llseek) (struct file *, loff_t, int);
+ ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
+ ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
+ ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
+ ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
+ int (*iopoll)(struct kiocb *kiocb, bool spin);
+ int (*iterate) (struct file *, struct dir_context *);
+ int (*iterate_shared) (struct file *, struct dir_context *);
+ __poll_t (*poll) (struct file *, struct poll_table_struct *);
+ long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
+ long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
+ int (*mmap) (struct file *, struct vm_area_struct *);
+ int (*open) (struct inode *, struct file *);
+ int (*flush) (struct file *, fl_owner_t id);
+ int (*release) (struct inode *, struct file *);
+ int (*fsync) (struct file *, loff_t, loff_t, int datasync);
+ int (*fasync) (int, struct file *, int);
+ int (*lock) (struct file *, int, struct file_lock *);
+ ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
+ unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
+ int (*check_flags)(int);
+ int (*flock) (struct file *, int, struct file_lock *);
+ ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
+ ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
+ int (*setlease)(struct file *, long, struct file_lock **, void **);
+ long (*fallocate)(struct file *file, int mode, loff_t offset,
+ loff_t len);
+ void (*show_fdinfo)(struct seq_file *m, struct file *f);
+ #ifndef CONFIG_MMU
+ unsigned (*mmap_capabilities)(struct file *);
+ #endif
+ ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int);
+ loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
+ struct file *file_out, loff_t pos_out,
+ loff_t len, unsigned int remap_flags);
+ int (*fadvise)(struct file *, loff_t, loff_t, int);
+ };
+
+Again, all methods are called without any locks being held, unless
+otherwise noted.
+
+``llseek``
+ called when the VFS needs to move the file position index
+
+``read``
+ called by read(2) and related system calls
+
+``read_iter``
+ possibly asynchronous read with iov_iter as destination
+
+``write``
+ called by write(2) and related system calls
+
+``write_iter``
+ possibly asynchronous write with iov_iter as source
+
+``iopoll``
+ called when aio wants to poll for completions on HIPRI iocbs
+
+``iterate``
+ called when the VFS needs to read the directory contents
+
+``iterate_shared``
+ called when the VFS needs to read the directory contents when
+ filesystem supports concurrent dir iterators
+
+``poll``
+ called by the VFS when a process wants to check if there is
+ activity on this file and (optionally) go to sleep until there
+ is activity. Called by the select(2) and poll(2) system calls
+
+``unlocked_ioctl``
+ called by the ioctl(2) system call.
+
+``compat_ioctl``
+ called by the ioctl(2) system call when 32 bit system calls are
+ used on 64 bit kernels.
+
+``mmap``
+ called by the mmap(2) system call
+
+``open``
+ called by the VFS when an inode should be opened. When the VFS
+ opens a file, it creates a new "struct file". It then calls the
+ open method for the newly allocated file structure. You might
+ think that the open method really belongs in "struct
+ inode_operations", and you may be right. I think it's done the
+ way it is because it makes filesystems simpler to implement.
+ The open() method is a good place to initialize the
+ "private_data" member in the file structure if you want to point
+ to a device structure
+
+``flush``
+ called by the close(2) system call to flush a file
+
+``release``
+ called when the last reference to an open file is closed
+
+``fsync``
+ called by the fsync(2) system call. Also see the section above
+ entitled "Handling errors during writeback".
+
+``fasync``
+ called by the fcntl(2) system call when asynchronous
+ (non-blocking) mode is enabled for a file
+
+``lock``
+ called by the fcntl(2) system call for F_GETLK, F_SETLK, and
+ F_SETLKW commands
+
+``get_unmapped_area``
+ called by the mmap(2) system call
+
+``check_flags``
+ called by the fcntl(2) system call for F_SETFL command
+
+``flock``
+ called by the flock(2) system call
+
+``splice_write``
+ called by the VFS to splice data from a pipe to a file. This
+ method is used by the splice(2) system call
+
+``splice_read``
+ called by the VFS to splice data from file to a pipe. This
+ method is used by the splice(2) system call
+
+``setlease``
+ called by the VFS to set or release a file lock lease. setlease
+ implementations should call generic_setlease to record or remove
+ the lease in the inode after setting it.
+
+``fallocate``
+ called by the VFS to preallocate blocks or punch a hole.
+
+``copy_file_range``
+ called by the copy_file_range(2) system call.
+
+``remap_file_range``
+ called by the ioctl(2) system call for FICLONERANGE and FICLONE
+ and FIDEDUPERANGE commands to remap file ranges. An
+ implementation should remap len bytes at pos_in of the source
+ file into the dest file at pos_out. Implementations must handle
+ callers passing in len == 0; this means "remap to the end of the
+ source file". The return value should the number of bytes
+ remapped, or the usual negative error code if errors occurred
+ before any bytes were remapped. The remap_flags parameter
+ accepts REMAP_FILE_* flags. If REMAP_FILE_DEDUP is set then the
+ implementation must only remap if the requested file ranges have
+ identical contents. If REMAP_CAN_SHORTEN is set, the caller is
+ ok with the implementation shortening the request length to
+ satisfy alignment or EOF requirements (or any other reason).
+
+``fadvise``
+ possibly called by the fadvise64() system call.
+
+Note that the file operations are implemented by the specific
+filesystem in which the inode resides. When opening a device node
+(character or block special) most filesystems will call special
+support routines in the VFS which will locate the required device
+driver information. These support routines replace the filesystem file
+operations with those for the device driver, and then proceed to call
+the new open() method for the file. This is how opening a device file
+in the filesystem eventually ends up calling the device driver open()
+method.
+
+
+Directory Entry Cache (dcache)
+==============================
+
+
+struct dentry_operations
+------------------------
+
+This describes how a filesystem can overload the standard dentry
+operations. Dentries and the dcache are the domain of the VFS and the
+individual filesystem implementations. Device drivers have no business
+here. These methods may be set to NULL, as they are either optional or
+the VFS uses a default. As of kernel 2.6.22, the following members are
+defined:
+
+.. code-block:: c
+
+ struct dentry_operations {
+ int (*d_revalidate)(struct dentry *, unsigned int);
+ int (*d_weak_revalidate)(struct dentry *, unsigned int);
+ int (*d_hash)(const struct dentry *, struct qstr *);
+ int (*d_compare)(const struct dentry *,
+ unsigned int, const char *, const struct qstr *);
+ int (*d_delete)(const struct dentry *);
+ int (*d_init)(struct dentry *);
+ void (*d_release)(struct dentry *);
+ void (*d_iput)(struct dentry *, struct inode *);
+ char *(*d_dname)(struct dentry *, char *, int);
+ struct vfsmount *(*d_automount)(struct path *);
+ int (*d_manage)(const struct path *, bool);
+ struct dentry *(*d_real)(struct dentry *, const struct inode *);
+ };
+
+``d_revalidate``
+ called when the VFS needs to revalidate a dentry. This is
+ called whenever a name look-up finds a dentry in the dcache.
+ Most local filesystems leave this as NULL, because all their
+ dentries in the dcache are valid. Network filesystems are
+ different since things can change on the server without the
+ client necessarily being aware of it.
+
+ This function should return a positive value if the dentry is
+ still valid, and zero or a negative error code if it isn't.
+
+ d_revalidate may be called in rcu-walk mode (flags &
+ LOOKUP_RCU). If in rcu-walk mode, the filesystem must
+ revalidate the dentry without blocking or storing to the dentry,
+ d_parent and d_inode should not be used without care (because
+ they can change and, in d_inode case, even become NULL under
+ us).
+
+ If a situation is encountered that rcu-walk cannot handle,
+ return
+ -ECHILD and it will be called again in ref-walk mode.
+
+``_weak_revalidate``
+ called when the VFS needs to revalidate a "jumped" dentry. This
+ is called when a path-walk ends at dentry that was not acquired
+ by doing a lookup in the parent directory. This includes "/",
+ "." and "..", as well as procfs-style symlinks and mountpoint
+ traversal.
+
+ In this case, we are less concerned with whether the dentry is
+ still fully correct, but rather that the inode is still valid.
+ As with d_revalidate, most local filesystems will set this to
+ NULL since their dcache entries are always valid.
+
+ This function has the same return code semantics as
+ d_revalidate.
+
+ d_weak_revalidate is only called after leaving rcu-walk mode.
+
+``d_hash``
+ called when the VFS adds a dentry to the hash table. The first
+ dentry passed to d_hash is the parent directory that the name is
+ to be hashed into.
+
+ Same locking and synchronisation rules as d_compare regarding
+ what is safe to dereference etc.
+
+``d_compare``
+ called to compare a dentry name with a given name. The first
+ dentry is the parent of the dentry to be compared, the second is
+ the child dentry. len and name string are properties of the
+ dentry to be compared. qstr is the name to compare it with.
+
+ Must be constant and idempotent, and should not take locks if
+ possible, and should not or store into the dentry. Should not
+ dereference pointers outside the dentry without lots of care
+ (eg. d_parent, d_inode, d_name should not be used).
+
+ However, our vfsmount is pinned, and RCU held, so the dentries
+ and inodes won't disappear, neither will our sb or filesystem
+ module. ->d_sb may be used.
+
+ It is a tricky calling convention because it needs to be called
+ under "rcu-walk", ie. without any locks or references on things.
+
+``d_delete``
+ called when the last reference to a dentry is dropped and the
+ dcache is deciding whether or not to cache it. Return 1 to
+ delete immediately, or 0 to cache the dentry. Default is NULL
+ which means to always cache a reachable dentry. d_delete must
+ be constant and idempotent.
+
+``d_init``
+ called when a dentry is allocated
+
+``d_release``
+ called when a dentry is really deallocated
+
+``d_iput``
+ called when a dentry loses its inode (just prior to its being
+ deallocated). The default when this is NULL is that the VFS
+ calls iput(). If you define this method, you must call iput()
+ yourself
+
+``d_dname``
+ called when the pathname of a dentry should be generated.
+ Useful for some pseudo filesystems (sockfs, pipefs, ...) to
+ delay pathname generation. (Instead of doing it when dentry is
+ created, it's done only when the path is needed.). Real
+ filesystems probably dont want to use it, because their dentries
+ are present in global dcache hash, so their hash should be an
+ invariant. As no lock is held, d_dname() should not try to
+ modify the dentry itself, unless appropriate SMP safety is used.
+ CAUTION : d_path() logic is quite tricky. The correct way to
+ return for example "Hello" is to put it at the end of the
+ buffer, and returns a pointer to the first char.
+ dynamic_dname() helper function is provided to take care of
+ this.
+
+ Example :
+
+.. code-block:: c
+
+ static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen)
+ {
+ return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
+ dentry->d_inode->i_ino);
+ }
+
+``d_automount``
+ called when an automount dentry is to be traversed (optional).
+ This should create a new VFS mount record and return the record
+ to the caller. The caller is supplied with a path parameter
+ giving the automount directory to describe the automount target
+ and the parent VFS mount record to provide inheritable mount
+ parameters. NULL should be returned if someone else managed to
+ make the automount first. If the vfsmount creation failed, then
+ an error code should be returned. If -EISDIR is returned, then
+ the directory will be treated as an ordinary directory and
+ returned to pathwalk to continue walking.
+
+ If a vfsmount is returned, the caller will attempt to mount it
+ on the mountpoint and will remove the vfsmount from its
+ expiration list in the case of failure. The vfsmount should be
+ returned with 2 refs on it to prevent automatic expiration - the
+ caller will clean up the additional ref.
+
+ This function is only used if DCACHE_NEED_AUTOMOUNT is set on
+ the dentry. This is set by __d_instantiate() if S_AUTOMOUNT is
+ set on the inode being added.
+
+``d_manage``
+ called to allow the filesystem to manage the transition from a
+ dentry (optional). This allows autofs, for example, to hold up
+ clients waiting to explore behind a 'mountpoint' while letting
+ the daemon go past and construct the subtree there. 0 should be
+ returned to let the calling process continue. -EISDIR can be
+ returned to tell pathwalk to use this directory as an ordinary
+ directory and to ignore anything mounted on it and not to check
+ the automount flag. Any other error code will abort pathwalk
+ completely.
+
+ If the 'rcu_walk' parameter is true, then the caller is doing a
+ pathwalk in RCU-walk mode. Sleeping is not permitted in this
+ mode, and the caller can be asked to leave it and call again by
+ returning -ECHILD. -EISDIR may also be returned to tell
+ pathwalk to ignore d_automount or any mounts.
+
+ This function is only used if DCACHE_MANAGE_TRANSIT is set on
+ the dentry being transited from.
+
+``d_real``
+ overlay/union type filesystems implement this method to return
+ one of the underlying dentries hidden by the overlay. It is
+ used in two different modes:
+
+ Called from file_dentry() it returns the real dentry matching
+ the inode argument. The real dentry may be from a lower layer
+ already copied up, but still referenced from the file. This
+ mode is selected with a non-NULL inode argument.
+
+ With NULL inode the topmost real underlying dentry is returned.
+
+Each dentry has a pointer to its parent dentry, as well as a hash list
+of child dentries. Child dentries are basically like files in a
+directory.
+
+
+Directory Entry Cache API
+--------------------------
+
+There are a number of functions defined which permit a filesystem to
+manipulate dentries:
+
+``dget``
+ open a new handle for an existing dentry (this just increments
+ the usage count)
+
+``dput``
+ close a handle for a dentry (decrements the usage count). If
+ the usage count drops to 0, and the dentry is still in its
+ parent's hash, the "d_delete" method is called to check whether
+ it should be cached. If it should not be cached, or if the
+ dentry is not hashed, it is deleted. Otherwise cached dentries
+ are put into an LRU list to be reclaimed on memory shortage.
+
+``d_drop``
+ this unhashes a dentry from its parents hash list. A subsequent
+ call to dput() will deallocate the dentry if its usage count
+ drops to 0
+
+``d_delete``
+ delete a dentry. If there are no other open references to the
+ dentry then the dentry is turned into a negative dentry (the
+ d_iput() method is called). If there are other references, then
+ d_drop() is called instead
+
+``d_add``
+ add a dentry to its parents hash list and then calls
+ d_instantiate()
+
+``d_instantiate``
+ add a dentry to the alias hash list for the inode and updates
+ the "d_inode" member. The "i_count" member in the inode
+ structure should be set/incremented. If the inode pointer is
+ NULL, the dentry is called a "negative dentry". This function
+ is commonly called when an inode is created for an existing
+ negative dentry
+
+``d_lookup``
+ look up a dentry given its parent and path name component It
+ looks up the child of that given name from the dcache hash
+ table. If it is found, the reference count is incremented and
+ the dentry is returned. The caller must use dput() to free the
+ dentry when it finishes using it.
+
+
+Mount Options
+=============
+
+
+Parsing options
+---------------
+
+On mount and remount the filesystem is passed a string containing a
+comma separated list of mount options. The options can have either of
+these forms:
+
+ option
+ option=value
+
+The <linux/parser.h> header defines an API that helps parse these
+options. There are plenty of examples on how to use it in existing
+filesystems.
+
+
+Showing options
+---------------
+
+If a filesystem accepts mount options, it must define show_options() to
+show all the currently active options. The rules are:
+
+ - options MUST be shown which are not default or their values differ
+ from the default
+
+ - options MAY be shown which are enabled by default or have their
+ default value
+
+Options used only internally between a mount helper and the kernel (such
+as file descriptors), or which only have an effect during the mounting
+(such as ones controlling the creation of a journal) are exempt from the
+above rules.
+
+The underlying reason for the above rules is to make sure, that a mount
+can be accurately replicated (e.g. umounting and mounting again) based
+on the information found in /proc/mounts.
+
+
+Resources
+=========
+
+(Note some of these resources are not up-to-date with the latest kernel
+ version.)
+
+Creating Linux virtual filesystems. 2002
+ <http://lwn.net/Articles/13325/>
+
+The Linux Virtual File-system Layer by Neil Brown. 1999
+ <http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html>
+
+A tour of the Linux VFS by Michael K. Johnson. 1996
+ <http://www.tldp.org/LDP/khg/HyperNews/get/fs/vfstour.html>
+
+A small trail through the Linux kernel by Andries Brouwer. 2001
+ <http://www.win.tue.nl/~aeb/linux/vfs/trail.html>
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
deleted file mode 100644
index 57fc576b1f3e..000000000000
--- a/Documentation/filesystems/vfs.txt
+++ /dev/null
@@ -1,1268 +0,0 @@
-
- Overview of the Linux Virtual File System
-
- Original author: Richard Gooch <rgooch@atnf.csiro.au>
-
- Copyright (C) 1999 Richard Gooch
- Copyright (C) 2005 Pekka Enberg
-
- This file is released under the GPLv2.
-
-
-Introduction
-============
-
-The Virtual File System (also known as the Virtual Filesystem Switch)
-is the software layer in the kernel that provides the filesystem
-interface to userspace programs. It also provides an abstraction
-within the kernel which allows different filesystem implementations to
-coexist.
-
-VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so
-on are called from a process context. Filesystem locking is described
-in the document Documentation/filesystems/Locking.
-
-
-Directory Entry Cache (dcache)
-------------------------------
-
-The VFS implements the open(2), stat(2), chmod(2), and similar system
-calls. The pathname argument that is passed to them is used by the VFS
-to search through the directory entry cache (also known as the dentry
-cache or dcache). This provides a very fast look-up mechanism to
-translate a pathname (filename) into a specific dentry. Dentries live
-in RAM and are never saved to disc: they exist only for performance.
-
-The dentry cache is meant to be a view into your entire filespace. As
-most computers cannot fit all dentries in the RAM at the same time,
-some bits of the cache are missing. In order to resolve your pathname
-into a dentry, the VFS may have to resort to creating dentries along
-the way, and then loading the inode. This is done by looking up the
-inode.
-
-
-The Inode Object
-----------------
-
-An individual dentry usually has a pointer to an inode. Inodes are
-filesystem objects such as regular files, directories, FIFOs and other
-beasts. They live either on the disc (for block device filesystems)
-or in the memory (for pseudo filesystems). Inodes that live on the
-disc are copied into the memory when required and changes to the inode
-are written back to disc. A single inode can be pointed to by multiple
-dentries (hard links, for example, do this).
-
-To look up an inode requires that the VFS calls the lookup() method of
-the parent directory inode. This method is installed by the specific
-filesystem implementation that the inode lives in. Once the VFS has
-the required dentry (and hence the inode), we can do all those boring
-things like open(2) the file, or stat(2) it to peek at the inode
-data. The stat(2) operation is fairly simple: once the VFS has the
-dentry, it peeks at the inode data and passes some of it back to
-userspace.
-
-
-The File Object
----------------
-
-Opening a file requires another operation: allocation of a file
-structure (this is the kernel-side implementation of file
-descriptors). The freshly allocated file structure is initialized with
-a pointer to the dentry and a set of file operation member functions.
-These are taken from the inode data. The open() file method is then
-called so the specific filesystem implementation can do its work. You
-can see that this is another switch performed by the VFS. The file
-structure is placed into the file descriptor table for the process.
-
-Reading, writing and closing files (and other assorted VFS operations)
-is done by using the userspace file descriptor to grab the appropriate
-file structure, and then calling the required file structure method to
-do whatever is required. For as long as the file is open, it keeps the
-dentry in use, which in turn means that the VFS inode is still in use.
-
-
-Registering and Mounting a Filesystem
-=====================================
-
-To register and unregister a filesystem, use the following API
-functions:
-
- #include <linux/fs.h>
-
- extern int register_filesystem(struct file_system_type *);
- extern int unregister_filesystem(struct file_system_type *);
-
-The passed struct file_system_type describes your filesystem. When a
-request is made to mount a filesystem onto a directory in your namespace,
-the VFS will call the appropriate mount() method for the specific
-filesystem. New vfsmount referring to the tree returned by ->mount()
-will be attached to the mountpoint, so that when pathname resolution
-reaches the mountpoint it will jump into the root of that vfsmount.
-
-You can see all filesystems that are registered to the kernel in the
-file /proc/filesystems.
-
-
-struct file_system_type
------------------------
-
-This describes the filesystem. As of kernel 2.6.39, the following
-members are defined:
-
-struct file_system_type {
- const char *name;
- int fs_flags;
- struct dentry *(*mount) (struct file_system_type *, int,
- const char *, void *);
- void (*kill_sb) (struct super_block *);
- struct module *owner;
- struct file_system_type * next;
- struct list_head fs_supers;
- struct lock_class_key s_lock_key;
- struct lock_class_key s_umount_key;
-};
-
- name: the name of the filesystem type, such as "ext2", "iso9660",
- "msdos" and so on
-
- fs_flags: various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.)
-
- mount: the method to call when a new instance of this
- filesystem should be mounted
-
- kill_sb: the method to call when an instance of this filesystem
- should be shut down
-
- owner: for internal VFS use: you should initialize this to THIS_MODULE in
- most cases.
-
- next: for internal VFS use: you should initialize this to NULL
-
- s_lock_key, s_umount_key: lockdep-specific
-
-The mount() method has the following arguments:
-
- struct file_system_type *fs_type: describes the filesystem, partly initialized
- by the specific filesystem code
-
- int flags: mount flags
-
- const char *dev_name: the device name we are mounting.
-
- void *data: arbitrary mount options, usually comes as an ASCII
- string (see "Mount Options" section)
-
-The mount() method must return the root dentry of the tree requested by
-caller. An active reference to its superblock must be grabbed and the
-superblock must be locked. On failure it should return ERR_PTR(error).
-
-The arguments match those of mount(2) and their interpretation
-depends on filesystem type. E.g. for block filesystems, dev_name is
-interpreted as block device name, that device is opened and if it
-contains a suitable filesystem image the method creates and initializes
-struct super_block accordingly, returning its root dentry to caller.
-
-->mount() may choose to return a subtree of existing filesystem - it
-doesn't have to create a new one. The main result from the caller's
-point of view is a reference to dentry at the root of (sub)tree to
-be attached; creation of new superblock is a common side effect.
-
-The most interesting member of the superblock structure that the
-mount() method fills in is the "s_op" field. This is a pointer to
-a "struct super_operations" which describes the next level of the
-filesystem implementation.
-
-Usually, a filesystem uses one of the generic mount() implementations
-and provides a fill_super() callback instead. The generic variants are:
-
- mount_bdev: mount a filesystem residing on a block device
-
- mount_nodev: mount a filesystem that is not backed by a device
-
- mount_single: mount a filesystem which shares the instance between
- all mounts
-
-A fill_super() callback implementation has the following arguments:
-
- struct super_block *sb: the superblock structure. The callback
- must initialize this properly.
-
- void *data: arbitrary mount options, usually comes as an ASCII
- string (see "Mount Options" section)
-
- int silent: whether or not to be silent on error
-
-
-The Superblock Object
-=====================
-
-A superblock object represents a mounted filesystem.
-
-
-struct super_operations
------------------------
-
-This describes how the VFS can manipulate the superblock of your
-filesystem. As of kernel 2.6.22, the following members are defined:
-
-struct super_operations {
- struct inode *(*alloc_inode)(struct super_block *sb);
- void (*destroy_inode)(struct inode *);
-
- void (*dirty_inode) (struct inode *, int flags);
- int (*write_inode) (struct inode *, int);
- void (*drop_inode) (struct inode *);
- void (*delete_inode) (struct inode *);
- void (*put_super) (struct super_block *);
- int (*sync_fs)(struct super_block *sb, int wait);
- int (*freeze_fs) (struct super_block *);
- int (*unfreeze_fs) (struct super_block *);
- int (*statfs) (struct dentry *, struct kstatfs *);
- int (*remount_fs) (struct super_block *, int *, char *);
- void (*clear_inode) (struct inode *);
- void (*umount_begin) (struct super_block *);
-
- int (*show_options)(struct seq_file *, struct dentry *);
-
- ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
- ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
- int (*nr_cached_objects)(struct super_block *);
- void (*free_cached_objects)(struct super_block *, int);
-};
-
-All methods are called without any locks being held, unless otherwise
-noted. This means that most methods can block safely. All methods are
-only called from a process context (i.e. not from an interrupt handler
-or bottom half).
-
- alloc_inode: this method is called by alloc_inode() to allocate memory
- for struct inode and initialize it. If this function is not
- defined, a simple 'struct inode' is allocated. Normally
- alloc_inode will be used to allocate a larger structure which
- contains a 'struct inode' embedded within it.
-
- destroy_inode: this method is called by destroy_inode() to release
- resources allocated for struct inode. It is only required if
- ->alloc_inode was defined and simply undoes anything done by
- ->alloc_inode.
-
- dirty_inode: this method is called by the VFS to mark an inode dirty.
-
- write_inode: this method is called when the VFS needs to write an
- inode to disc. The second parameter indicates whether the write
- should be synchronous or not, not all filesystems check this flag.
-
- drop_inode: called when the last access to the inode is dropped,
- with the inode->i_lock spinlock held.
-
- This method should be either NULL (normal UNIX filesystem
- semantics) or "generic_delete_inode" (for filesystems that do not
- want to cache inodes - causing "delete_inode" to always be
- called regardless of the value of i_nlink)
-
- The "generic_delete_inode()" behavior is equivalent to the
- old practice of using "force_delete" in the put_inode() case,
- but does not have the races that the "force_delete()" approach
- had.
-
- delete_inode: called when the VFS wants to delete an inode
-
- put_super: called when the VFS wishes to free the superblock
- (i.e. unmount). This is called with the superblock lock held
-
- sync_fs: called when VFS is writing out all dirty data associated with
- a superblock. The second parameter indicates whether the method
- should wait until the write out has been completed. Optional.
-
- freeze_fs: called when VFS is locking a filesystem and
- forcing it into a consistent state. This method is currently
- used by the Logical Volume Manager (LVM).
-
- unfreeze_fs: called when VFS is unlocking a filesystem and making it writable
- again.
-
- statfs: called when the VFS needs to get filesystem statistics.
-
- remount_fs: called when the filesystem is remounted. This is called
- with the kernel lock held
-
- clear_inode: called then the VFS clears the inode. Optional
-
- umount_begin: called when the VFS is unmounting a filesystem.
-
- show_options: called by the VFS to show mount options for
- /proc/<pid>/mounts. (see "Mount Options" section)
-
- quota_read: called by the VFS to read from filesystem quota file.
-
- quota_write: called by the VFS to write to filesystem quota file.
-
- nr_cached_objects: called by the sb cache shrinking function for the
- filesystem to return the number of freeable cached objects it contains.
- Optional.
-
- free_cache_objects: called by the sb cache shrinking function for the
- filesystem to scan the number of objects indicated to try to free them.
- Optional, but any filesystem implementing this method needs to also
- implement ->nr_cached_objects for it to be called correctly.
-
- We can't do anything with any errors that the filesystem might
- encountered, hence the void return type. This will never be called if
- the VM is trying to reclaim under GFP_NOFS conditions, hence this
- method does not need to handle that situation itself.
-
- Implementations must include conditional reschedule calls inside any
- scanning loop that is done. This allows the VFS to determine
- appropriate scan batch sizes without having to worry about whether
- implementations will cause holdoff problems due to large scan batch
- sizes.
-
-Whoever sets up the inode is responsible for filling in the "i_op" field. This
-is a pointer to a "struct inode_operations" which describes the methods that
-can be performed on individual inodes.
-
-struct xattr_handlers
----------------------
-
-On filesystems that support extended attributes (xattrs), the s_xattr
-superblock field points to a NULL-terminated array of xattr handlers. Extended
-attributes are name:value pairs.
-
- name: Indicates that the handler matches attributes with the specified name
- (such as "system.posix_acl_access"); the prefix field must be NULL.
-
- prefix: Indicates that the handler matches all attributes with the specified
- name prefix (such as "user."); the name field must be NULL.
-
- list: Determine if attributes matching this xattr handler should be listed
- for a particular dentry. Used by some listxattr implementations like
- generic_listxattr.
-
- get: Called by the VFS to get the value of a particular extended attribute.
- This method is called by the getxattr(2) system call.
-
- set: Called by the VFS to set the value of a particular extended attribute.
- When the new value is NULL, called to remove a particular extended
- attribute. This method is called by the the setxattr(2) and
- removexattr(2) system calls.
-
-When none of the xattr handlers of a filesystem match the specified attribute
-name or when a filesystem doesn't support extended attributes, the various
-*xattr(2) system calls return -EOPNOTSUPP.
-
-
-The Inode Object
-================
-
-An inode object represents an object within the filesystem.
-
-
-struct inode_operations
------------------------
-
-This describes how the VFS can manipulate an inode in your
-filesystem. As of kernel 2.6.22, the following members are defined:
-
-struct inode_operations {
- int (*create) (struct inode *,struct dentry *, umode_t, bool);
- struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
- int (*link) (struct dentry *,struct inode *,struct dentry *);
- int (*unlink) (struct inode *,struct dentry *);
- int (*symlink) (struct inode *,struct dentry *,const char *);
- int (*mkdir) (struct inode *,struct dentry *,umode_t);
- int (*rmdir) (struct inode *,struct dentry *);
- int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
- int (*rename) (struct inode *, struct dentry *,
- struct inode *, struct dentry *, unsigned int);
- int (*readlink) (struct dentry *, char __user *,int);
- const char *(*get_link) (struct dentry *, struct inode *,
- struct delayed_call *);
- int (*permission) (struct inode *, int);
- int (*get_acl)(struct inode *, int);
- int (*setattr) (struct dentry *, struct iattr *);
- int (*getattr) (const struct path *, struct kstat *, u32, unsigned int);
- ssize_t (*listxattr) (struct dentry *, char *, size_t);
- void (*update_time)(struct inode *, struct timespec *, int);
- int (*atomic_open)(struct inode *, struct dentry *, struct file *,
- unsigned open_flag, umode_t create_mode);
- int (*tmpfile) (struct inode *, struct dentry *, umode_t);
-};
-
-Again, all methods are called without any locks being held, unless
-otherwise noted.
-
- create: called by the open(2) and creat(2) system calls. Only
- required if you want to support regular files. The dentry you
- get should not have an inode (i.e. it should be a negative
- dentry). Here you will probably call d_instantiate() with the
- dentry and the newly created inode
-
- lookup: called when the VFS needs to look up an inode in a parent
- directory. The name to look for is found in the dentry. This
- method must call d_add() to insert the found inode into the
- dentry. The "i_count" field in the inode structure should be
- incremented. If the named inode does not exist a NULL inode
- should be inserted into the dentry (this is called a negative
- dentry). Returning an error code from this routine must only
- be done on a real error, otherwise creating inodes with system
- calls like create(2), mknod(2), mkdir(2) and so on will fail.
- If you wish to overload the dentry methods then you should
- initialise the "d_dop" field in the dentry; this is a pointer
- to a struct "dentry_operations".
- This method is called with the directory inode semaphore held
-
- link: called by the link(2) system call. Only required if you want
- to support hard links. You will probably need to call
- d_instantiate() just as you would in the create() method
-
- unlink: called by the unlink(2) system call. Only required if you
- want to support deleting inodes
-
- symlink: called by the symlink(2) system call. Only required if you
- want to support symlinks. You will probably need to call
- d_instantiate() just as you would in the create() method
-
- mkdir: called by the mkdir(2) system call. Only required if you want
- to support creating subdirectories. You will probably need to
- call d_instantiate() just as you would in the create() method
-
- rmdir: called by the rmdir(2) system call. Only required if you want
- to support deleting subdirectories
-
- mknod: called by the mknod(2) system call to create a device (char,
- block) inode or a named pipe (FIFO) or socket. Only required
- if you want to support creating these types of inodes. You
- will probably need to call d_instantiate() just as you would
- in the create() method
-
- rename: called by the rename(2) system call to rename the object to
- have the parent and name given by the second inode and dentry.
-
- The filesystem must return -EINVAL for any unsupported or
- unknown flags. Currently the following flags are implemented:
- (1) RENAME_NOREPLACE: this flag indicates that if the target
- of the rename exists the rename should fail with -EEXIST
- instead of replacing the target. The VFS already checks for
- existence, so for local filesystems the RENAME_NOREPLACE
- implementation is equivalent to plain rename.
- (2) RENAME_EXCHANGE: exchange source and target. Both must
- exist; this is checked by the VFS. Unlike plain rename,
- source and target may be of different type.
-
- get_link: called by the VFS to follow a symbolic link to the
- inode it points to. Only required if you want to support
- symbolic links. This method returns the symlink body
- to traverse (and possibly resets the current position with
- nd_jump_link()). If the body won't go away until the inode
- is gone, nothing else is needed; if it needs to be otherwise
- pinned, arrange for its release by having get_link(..., ..., done)
- do set_delayed_call(done, destructor, argument).
- In that case destructor(argument) will be called once VFS is
- done with the body you've returned.
- May be called in RCU mode; that is indicated by NULL dentry
- argument. If request can't be handled without leaving RCU mode,
- have it return ERR_PTR(-ECHILD).
-
- If the filesystem stores the symlink target in ->i_link, the
- VFS may use it directly without calling ->get_link(); however,
- ->get_link() must still be provided. ->i_link must not be
- freed until after an RCU grace period. Writing to ->i_link
- post-iget() time requires a 'release' memory barrier.
-
- readlink: this is now just an override for use by readlink(2) for the
- cases when ->get_link uses nd_jump_link() or object is not in
- fact a symlink. Normally filesystems should only implement
- ->get_link for symlinks and readlink(2) will automatically use
- that.
-
- permission: called by the VFS to check for access rights on a POSIX-like
- filesystem.
-
- May be called in rcu-walk mode (mask & MAY_NOT_BLOCK). If in rcu-walk
- mode, the filesystem must check the permission without blocking or
- storing to the inode.
-
- If a situation is encountered that rcu-walk cannot handle, return
- -ECHILD and it will be called again in ref-walk mode.
-
- setattr: called by the VFS to set attributes for a file. This method
- is called by chmod(2) and related system calls.
-
- getattr: called by the VFS to get attributes of a file. This method
- is called by stat(2) and related system calls.
-
- listxattr: called by the VFS to list all extended attributes for a
- given file. This method is called by the listxattr(2) system call.
-
- update_time: called by the VFS to update a specific time or the i_version of
- an inode. If this is not defined the VFS will update the inode itself
- and call mark_inode_dirty_sync.
-
- atomic_open: called on the last component of an open. Using this optional
- method the filesystem can look up, possibly create and open the file in
- one atomic operation. If it wants to leave actual opening to the
- caller (e.g. if the file turned out to be a symlink, device, or just
- something filesystem won't do atomic open for), it may signal this by
- returning finish_no_open(file, dentry). This method is only called if
- the last component is negative or needs lookup. Cached positive dentries
- are still handled by f_op->open(). If the file was created,
- FMODE_CREATED flag should be set in file->f_mode. In case of O_EXCL
- the method must only succeed if the file didn't exist and hence FMODE_CREATED
- shall always be set on success.
-
- tmpfile: called in the end of O_TMPFILE open(). Optional, equivalent to
- atomically creating, opening and unlinking a file in given directory.
-
-The Address Space Object
-========================
-
-The address space object is used to group and manage pages in the page
-cache. It can be used to keep track of the pages in a file (or
-anything else) and also track the mapping of sections of the file into
-process address spaces.
-
-There are a number of distinct yet related services that an
-address-space can provide. These include communicating memory
-pressure, page lookup by address, and keeping track of pages tagged as
-Dirty or Writeback.
-
-The first can be used independently to the others. The VM can try to
-either write dirty pages in order to clean them, or release clean
-pages in order to reuse them. To do this it can call the ->writepage
-method on dirty pages, and ->releasepage on clean pages with
-PagePrivate set. Clean pages without PagePrivate and with no external
-references will be released without notice being given to the
-address_space.
-
-To achieve this functionality, pages need to be placed on an LRU with
-lru_cache_add and mark_page_active needs to be called whenever the
-page is used.
-
-Pages are normally kept in a radix tree index by ->index. This tree
-maintains information about the PG_Dirty and PG_Writeback status of
-each page, so that pages with either of these flags can be found
-quickly.
-
-The Dirty tag is primarily used by mpage_writepages - the default
-->writepages method. It uses the tag to find dirty pages to call
-->writepage on. If mpage_writepages is not used (i.e. the address
-provides its own ->writepages) , the PAGECACHE_TAG_DIRTY tag is
-almost unused. write_inode_now and sync_inode do use it (through
-__sync_single_inode) to check if ->writepages has been successful in
-writing out the whole address_space.
-
-The Writeback tag is used by filemap*wait* and sync_page* functions,
-via filemap_fdatawait_range, to wait for all writeback to complete.
-
-An address_space handler may attach extra information to a page,
-typically using the 'private' field in the 'struct page'. If such
-information is attached, the PG_Private flag should be set. This will
-cause various VM routines to make extra calls into the address_space
-handler to deal with that data.
-
-An address space acts as an intermediate between storage and
-application. Data is read into the address space a whole page at a
-time, and provided to the application either by copying of the page,
-or by memory-mapping the page.
-Data is written into the address space by the application, and then
-written-back to storage typically in whole pages, however the
-address_space has finer control of write sizes.
-
-The read process essentially only requires 'readpage'. The write
-process is more complicated and uses write_begin/write_end or
-set_page_dirty to write data into the address_space, and writepage
-and writepages to writeback data to storage.
-
-Adding and removing pages to/from an address_space is protected by the
-inode's i_mutex.
-
-When data is written to a page, the PG_Dirty flag should be set. It
-typically remains set until writepage asks for it to be written. This
-should clear PG_Dirty and set PG_Writeback. It can be actually
-written at any point after PG_Dirty is clear. Once it is known to be
-safe, PG_Writeback is cleared.
-
-Writeback makes use of a writeback_control structure to direct the
-operations. This gives the the writepage and writepages operations some
-information about the nature of and reason for the writeback request,
-and the constraints under which it is being done. It is also used to
-return information back to the caller about the result of a writepage or
-writepages request.
-
-Handling errors during writeback
---------------------------------
-Most applications that do buffered I/O will periodically call a file
-synchronization call (fsync, fdatasync, msync or sync_file_range) to
-ensure that data written has made it to the backing store. When there
-is an error during writeback, they expect that error to be reported when
-a file sync request is made. After an error has been reported on one
-request, subsequent requests on the same file descriptor should return
-0, unless further writeback errors have occurred since the previous file
-syncronization.
-
-Ideally, the kernel would report errors only on file descriptions on
-which writes were done that subsequently failed to be written back. The
-generic pagecache infrastructure does not track the file descriptions
-that have dirtied each individual page however, so determining which
-file descriptors should get back an error is not possible.
-
-Instead, the generic writeback error tracking infrastructure in the
-kernel settles for reporting errors to fsync on all file descriptions
-that were open at the time that the error occurred. In a situation with
-multiple writers, all of them will get back an error on a subsequent fsync,
-even if all of the writes done through that particular file descriptor
-succeeded (or even if there were no writes on that file descriptor at all).
-
-Filesystems that wish to use this infrastructure should call
-mapping_set_error to record the error in the address_space when it
-occurs. Then, after writing back data from the pagecache in their
-file->fsync operation, they should call file_check_and_advance_wb_err to
-ensure that the struct file's error cursor has advanced to the correct
-point in the stream of errors emitted by the backing device(s).
-
-struct address_space_operations
--------------------------------
-
-This describes how the VFS can manipulate mapping of a file to page cache in
-your filesystem. The following members are defined:
-
-struct address_space_operations {
- int (*writepage)(struct page *page, struct writeback_control *wbc);
- int (*readpage)(struct file *, struct page *);
- int (*writepages)(struct address_space *, struct writeback_control *);
- int (*set_page_dirty)(struct page *page);
- int (*readpages)(struct file *filp, struct address_space *mapping,
- struct list_head *pages, unsigned nr_pages);
- int (*write_begin)(struct file *, struct address_space *mapping,
- loff_t pos, unsigned len, unsigned flags,
- struct page **pagep, void **fsdata);
- int (*write_end)(struct file *, struct address_space *mapping,
- loff_t pos, unsigned len, unsigned copied,
- struct page *page, void *fsdata);
- sector_t (*bmap)(struct address_space *, sector_t);
- void (*invalidatepage) (struct page *, unsigned int, unsigned int);
- int (*releasepage) (struct page *, int);
- void (*freepage)(struct page *);
- ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
- /* isolate a page for migration */
- bool (*isolate_page) (struct page *, isolate_mode_t);
- /* migrate the contents of a page to the specified target */
- int (*migratepage) (struct page *, struct page *);
- /* put migration-failed page back to right list */
- void (*putback_page) (struct page *);
- int (*launder_page) (struct page *);
-
- int (*is_partially_uptodate) (struct page *, unsigned long,
- unsigned long);
- void (*is_dirty_writeback) (struct page *, bool *, bool *);
- int (*error_remove_page) (struct mapping *mapping, struct page *page);
- int (*swap_activate)(struct file *);
- int (*swap_deactivate)(struct file *);
-};
-
- writepage: called by the VM to write a dirty page to backing store.
- This may happen for data integrity reasons (i.e. 'sync'), or
- to free up memory (flush). The difference can be seen in
- wbc->sync_mode.
- The PG_Dirty flag has been cleared and PageLocked is true.
- writepage should start writeout, should set PG_Writeback,
- and should make sure the page is unlocked, either synchronously
- or asynchronously when the write operation completes.
-
- If wbc->sync_mode is WB_SYNC_NONE, ->writepage doesn't have to
- try too hard if there are problems, and may choose to write out
- other pages from the mapping if that is easier (e.g. due to
- internal dependencies). If it chooses not to start writeout, it
- should return AOP_WRITEPAGE_ACTIVATE so that the VM will not keep
- calling ->writepage on that page.
-
- See the file "Locking" for more details.
-
- readpage: called by the VM to read a page from backing store.
- The page will be Locked when readpage is called, and should be
- unlocked and marked uptodate once the read completes.
- If ->readpage discovers that it needs to unlock the page for
- some reason, it can do so, and then return AOP_TRUNCATED_PAGE.
- In this case, the page will be relocated, relocked and if
- that all succeeds, ->readpage will be called again.
-
- writepages: called by the VM to write out pages associated with the
- address_space object. If wbc->sync_mode is WBC_SYNC_ALL, then
- the writeback_control will specify a range of pages that must be
- written out. If it is WBC_SYNC_NONE, then a nr_to_write is given
- and that many pages should be written if possible.
- If no ->writepages is given, then mpage_writepages is used
- instead. This will choose pages from the address space that are
- tagged as DIRTY and will pass them to ->writepage.
-
- set_page_dirty: called by the VM to set a page dirty.
- This is particularly needed if an address space attaches
- private data to a page, and that data needs to be updated when
- a page is dirtied. This is called, for example, when a memory
- mapped page gets modified.
- If defined, it should set the PageDirty flag, and the
- PAGECACHE_TAG_DIRTY tag in the radix tree.
-
- readpages: called by the VM to read pages associated with the address_space
- object. This is essentially just a vector version of
- readpage. Instead of just one page, several pages are
- requested.
- readpages is only used for read-ahead, so read errors are
- ignored. If anything goes wrong, feel free to give up.
-
- write_begin:
- Called by the generic buffered write code to ask the filesystem to
- prepare to write len bytes at the given offset in the file. The
- address_space should check that the write will be able to complete,
- by allocating space if necessary and doing any other internal
- housekeeping. If the write will update parts of any basic-blocks on
- storage, then those blocks should be pre-read (if they haven't been
- read already) so that the updated blocks can be written out properly.
-
- The filesystem must return the locked pagecache page for the specified
- offset, in *pagep, for the caller to write into.
-
- It must be able to cope with short writes (where the length passed to
- write_begin is greater than the number of bytes copied into the page).
-
- flags is a field for AOP_FLAG_xxx flags, described in
- include/linux/fs.h.
-
- A void * may be returned in fsdata, which then gets passed into
- write_end.
-
- Returns 0 on success; < 0 on failure (which is the error code), in
- which case write_end is not called.
-
- write_end: After a successful write_begin, and data copy, write_end must
- be called. len is the original len passed to write_begin, and copied
- is the amount that was able to be copied.
-
- The filesystem must take care of unlocking the page and releasing it
- refcount, and updating i_size.
-
- Returns < 0 on failure, otherwise the number of bytes (<= 'copied')
- that were able to be copied into pagecache.
-
- bmap: called by the VFS to map a logical block offset within object to
- physical block number. This method is used by the FIBMAP
- ioctl and for working with swap-files. To be able to swap to
- a file, the file must have a stable mapping to a block
- device. The swap system does not go through the filesystem
- but instead uses bmap to find out where the blocks in the file
- are and uses those addresses directly.
-
- invalidatepage: If a page has PagePrivate set, then invalidatepage
- will be called when part or all of the page is to be removed
- from the address space. This generally corresponds to either a
- truncation, punch hole or a complete invalidation of the address
- space (in the latter case 'offset' will always be 0 and 'length'
- will be PAGE_SIZE). Any private data associated with the page
- should be updated to reflect this truncation. If offset is 0 and
- length is PAGE_SIZE, then the private data should be released,
- because the page must be able to be completely discarded. This may
- be done by calling the ->releasepage function, but in this case the
- release MUST succeed.
-
- releasepage: releasepage is called on PagePrivate pages to indicate
- that the page should be freed if possible. ->releasepage
- should remove any private data from the page and clear the
- PagePrivate flag. If releasepage() fails for some reason, it must
- indicate failure with a 0 return value.
- releasepage() is used in two distinct though related cases. The
- first is when the VM finds a clean page with no active users and
- wants to make it a free page. If ->releasepage succeeds, the
- page will be removed from the address_space and become free.
-
- The second case is when a request has been made to invalidate
- some or all pages in an address_space. This can happen
- through the fadvise(POSIX_FADV_DONTNEED) system call or by the
- filesystem explicitly requesting it as nfs and 9fs do (when
- they believe the cache may be out of date with storage) by
- calling invalidate_inode_pages2().
- If the filesystem makes such a call, and needs to be certain
- that all pages are invalidated, then its releasepage will
- need to ensure this. Possibly it can clear the PageUptodate
- bit if it cannot free private data yet.
-
- freepage: freepage is called once the page is no longer visible in
- the page cache in order to allow the cleanup of any private
- data. Since it may be called by the memory reclaimer, it
- should not assume that the original address_space mapping still
- exists, and it should not block.
-
- direct_IO: called by the generic read/write routines to perform
- direct_IO - that is IO requests which bypass the page cache
- and transfer data directly between the storage and the
- application's address space.
-
- isolate_page: Called by the VM when isolating a movable non-lru page.
- If page is successfully isolated, VM marks the page as PG_isolated
- via __SetPageIsolated.
-
- migrate_page: This is used to compact the physical memory usage.
- If the VM wants to relocate a page (maybe off a memory card
- that is signalling imminent failure) it will pass a new page
- and an old page to this function. migrate_page should
- transfer any private data across and update any references
- that it has to the page.
-
- putback_page: Called by the VM when isolated page's migration fails.
-
- launder_page: Called before freeing a page - it writes back the dirty page. To
- prevent redirtying the page, it is kept locked during the whole
- operation.
-
- is_partially_uptodate: Called by the VM when reading a file through the
- pagecache when the underlying blocksize != pagesize. If the required
- block is up to date then the read can complete without needing the IO
- to bring the whole page up to date.
-
- is_dirty_writeback: Called by the VM when attempting to reclaim a page.
- The VM uses dirty and writeback information to determine if it needs
- to stall to allow flushers a chance to complete some IO. Ordinarily
- it can use PageDirty and PageWriteback but some filesystems have
- more complex state (unstable pages in NFS prevent reclaim) or
- do not set those flags due to locking problems. This callback
- allows a filesystem to indicate to the VM if a page should be
- treated as dirty or writeback for the purposes of stalling.
-
- error_remove_page: normally set to generic_error_remove_page if truncation
- is ok for this address space. Used for memory failure handling.
- Setting this implies you deal with pages going away under you,
- unless you have them locked or reference counts increased.
-
- swap_activate: Called when swapon is used on a file to allocate
- space if necessary and pin the block lookup information in
- memory. A return value of zero indicates success,
- in which case this file can be used to back swapspace.
-
- swap_deactivate: Called during swapoff on files where swap_activate
- was successful.
-
-
-The File Object
-===============
-
-A file object represents a file opened by a process. This is also known
-as an "open file description" in POSIX parlance.
-
-
-struct file_operations
-----------------------
-
-This describes how the VFS can manipulate an open file. As of kernel
-4.18, the following members are defined:
-
-struct file_operations {
- struct module *owner;
- loff_t (*llseek) (struct file *, loff_t, int);
- ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
- ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
- ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
- ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
- int (*iopoll)(struct kiocb *kiocb, bool spin);
- int (*iterate) (struct file *, struct dir_context *);
- int (*iterate_shared) (struct file *, struct dir_context *);
- __poll_t (*poll) (struct file *, struct poll_table_struct *);
- long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
- long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
- int (*mmap) (struct file *, struct vm_area_struct *);
- int (*open) (struct inode *, struct file *);
- int (*flush) (struct file *, fl_owner_t id);
- int (*release) (struct inode *, struct file *);
- int (*fsync) (struct file *, loff_t, loff_t, int datasync);
- int (*fasync) (int, struct file *, int);
- int (*lock) (struct file *, int, struct file_lock *);
- ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
- unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
- int (*check_flags)(int);
- int (*flock) (struct file *, int, struct file_lock *);
- ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
- ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
- int (*setlease)(struct file *, long, struct file_lock **, void **);
- long (*fallocate)(struct file *file, int mode, loff_t offset,
- loff_t len);
- void (*show_fdinfo)(struct seq_file *m, struct file *f);
-#ifndef CONFIG_MMU
- unsigned (*mmap_capabilities)(struct file *);
-#endif
- ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int);
- loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
- struct file *file_out, loff_t pos_out,
- loff_t len, unsigned int remap_flags);
- int (*fadvise)(struct file *, loff_t, loff_t, int);
-};
-
-Again, all methods are called without any locks being held, unless
-otherwise noted.
-
- llseek: called when the VFS needs to move the file position index
-
- read: called by read(2) and related system calls
-
- read_iter: possibly asynchronous read with iov_iter as destination
-
- write: called by write(2) and related system calls
-
- write_iter: possibly asynchronous write with iov_iter as source
-
- iopoll: called when aio wants to poll for completions on HIPRI iocbs
-
- iterate: called when the VFS needs to read the directory contents
-
- iterate_shared: called when the VFS needs to read the directory contents
- when filesystem supports concurrent dir iterators
-
- poll: called by the VFS when a process wants to check if there is
- activity on this file and (optionally) go to sleep until there
- is activity. Called by the select(2) and poll(2) system calls
-
- unlocked_ioctl: called by the ioctl(2) system call.
-
- compat_ioctl: called by the ioctl(2) system call when 32 bit system calls
- are used on 64 bit kernels.
-
- mmap: called by the mmap(2) system call
-
- open: called by the VFS when an inode should be opened. When the VFS
- opens a file, it creates a new "struct file". It then calls the
- open method for the newly allocated file structure. You might
- think that the open method really belongs in
- "struct inode_operations", and you may be right. I think it's
- done the way it is because it makes filesystems simpler to
- implement. The open() method is a good place to initialize the
- "private_data" member in the file structure if you want to point
- to a device structure
-
- flush: called by the close(2) system call to flush a file
-
- release: called when the last reference to an open file is closed
-
- fsync: called by the fsync(2) system call. Also see the section above
- entitled "Handling errors during writeback".
-
- fasync: called by the fcntl(2) system call when asynchronous
- (non-blocking) mode is enabled for a file
-
- lock: called by the fcntl(2) system call for F_GETLK, F_SETLK, and F_SETLKW
- commands
-
- get_unmapped_area: called by the mmap(2) system call
-
- check_flags: called by the fcntl(2) system call for F_SETFL command
-
- flock: called by the flock(2) system call
-
- splice_write: called by the VFS to splice data from a pipe to a file. This
- method is used by the splice(2) system call
-
- splice_read: called by the VFS to splice data from file to a pipe. This
- method is used by the splice(2) system call
-
- setlease: called by the VFS to set or release a file lock lease. setlease
- implementations should call generic_setlease to record or remove
- the lease in the inode after setting it.
-
- fallocate: called by the VFS to preallocate blocks or punch a hole.
-
- copy_file_range: called by the copy_file_range(2) system call.
-
- remap_file_range: called by the ioctl(2) system call for FICLONERANGE and
- FICLONE and FIDEDUPERANGE commands to remap file ranges. An
- implementation should remap len bytes at pos_in of the source file into
- the dest file at pos_out. Implementations must handle callers passing
- in len == 0; this means "remap to the end of the source file". The
- return value should the number of bytes remapped, or the usual
- negative error code if errors occurred before any bytes were remapped.
- The remap_flags parameter accepts REMAP_FILE_* flags. If
- REMAP_FILE_DEDUP is set then the implementation must only remap if the
- requested file ranges have identical contents. If REMAP_CAN_SHORTEN is
- set, the caller is ok with the implementation shortening the request
- length to satisfy alignment or EOF requirements (or any other reason).
-
- fadvise: possibly called by the fadvise64() system call.
-
-Note that the file operations are implemented by the specific
-filesystem in which the inode resides. When opening a device node
-(character or block special) most filesystems will call special
-support routines in the VFS which will locate the required device
-driver information. These support routines replace the filesystem file
-operations with those for the device driver, and then proceed to call
-the new open() method for the file. This is how opening a device file
-in the filesystem eventually ends up calling the device driver open()
-method.
-
-
-Directory Entry Cache (dcache)
-==============================
-
-
-struct dentry_operations
-------------------------
-
-This describes how a filesystem can overload the standard dentry
-operations. Dentries and the dcache are the domain of the VFS and the
-individual filesystem implementations. Device drivers have no business
-here. These methods may be set to NULL, as they are either optional or
-the VFS uses a default. As of kernel 2.6.22, the following members are
-defined:
-
-struct dentry_operations {
- int (*d_revalidate)(struct dentry *, unsigned int);
- int (*d_weak_revalidate)(struct dentry *, unsigned int);
- int (*d_hash)(const struct dentry *, struct qstr *);
- int (*d_compare)(const struct dentry *,
- unsigned int, const char *, const struct qstr *);
- int (*d_delete)(const struct dentry *);
- int (*d_init)(struct dentry *);
- void (*d_release)(struct dentry *);
- void (*d_iput)(struct dentry *, struct inode *);
- char *(*d_dname)(struct dentry *, char *, int);
- struct vfsmount *(*d_automount)(struct path *);
- int (*d_manage)(const struct path *, bool);
- struct dentry *(*d_real)(struct dentry *, const struct inode *);
-};
-
- d_revalidate: called when the VFS needs to revalidate a dentry. This
- is called whenever a name look-up finds a dentry in the
- dcache. Most local filesystems leave this as NULL, because all their
- dentries in the dcache are valid. Network filesystems are different
- since things can change on the server without the client necessarily
- being aware of it.
-
- This function should return a positive value if the dentry is still
- valid, and zero or a negative error code if it isn't.
-
- d_revalidate may be called in rcu-walk mode (flags & LOOKUP_RCU).
- If in rcu-walk mode, the filesystem must revalidate the dentry without
- blocking or storing to the dentry, d_parent and d_inode should not be
- used without care (because they can change and, in d_inode case, even
- become NULL under us).
-
- If a situation is encountered that rcu-walk cannot handle, return
- -ECHILD and it will be called again in ref-walk mode.
-
- d_weak_revalidate: called when the VFS needs to revalidate a "jumped" dentry.
- This is called when a path-walk ends at dentry that was not acquired by
- doing a lookup in the parent directory. This includes "/", "." and "..",
- as well as procfs-style symlinks and mountpoint traversal.
-
- In this case, we are less concerned with whether the dentry is still
- fully correct, but rather that the inode is still valid. As with
- d_revalidate, most local filesystems will set this to NULL since their
- dcache entries are always valid.
-
- This function has the same return code semantics as d_revalidate.
-
- d_weak_revalidate is only called after leaving rcu-walk mode.
-
- d_hash: called when the VFS adds a dentry to the hash table. The first
- dentry passed to d_hash is the parent directory that the name is
- to be hashed into.
-
- Same locking and synchronisation rules as d_compare regarding
- what is safe to dereference etc.
-
- d_compare: called to compare a dentry name with a given name. The first
- dentry is the parent of the dentry to be compared, the second is
- the child dentry. len and name string are properties of the dentry
- to be compared. qstr is the name to compare it with.
-
- Must be constant and idempotent, and should not take locks if
- possible, and should not or store into the dentry.
- Should not dereference pointers outside the dentry without
- lots of care (eg. d_parent, d_inode, d_name should not be used).
-
- However, our vfsmount is pinned, and RCU held, so the dentries and
- inodes won't disappear, neither will our sb or filesystem module.
- ->d_sb may be used.
-
- It is a tricky calling convention because it needs to be called under
- "rcu-walk", ie. without any locks or references on things.
-
- d_delete: called when the last reference to a dentry is dropped and the
- dcache is deciding whether or not to cache it. Return 1 to delete
- immediately, or 0 to cache the dentry. Default is NULL which means to
- always cache a reachable dentry. d_delete must be constant and
- idempotent.
-
- d_init: called when a dentry is allocated
-
- d_release: called when a dentry is really deallocated
-
- d_iput: called when a dentry loses its inode (just prior to its
- being deallocated). The default when this is NULL is that the
- VFS calls iput(). If you define this method, you must call
- iput() yourself
-
- d_dname: called when the pathname of a dentry should be generated.
- Useful for some pseudo filesystems (sockfs, pipefs, ...) to delay
- pathname generation. (Instead of doing it when dentry is created,
- it's done only when the path is needed.). Real filesystems probably
- dont want to use it, because their dentries are present in global
- dcache hash, so their hash should be an invariant. As no lock is
- held, d_dname() should not try to modify the dentry itself, unless
- appropriate SMP safety is used. CAUTION : d_path() logic is quite
- tricky. The correct way to return for example "Hello" is to put it
- at the end of the buffer, and returns a pointer to the first char.
- dynamic_dname() helper function is provided to take care of this.
-
- Example :
-
- static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen)
- {
- return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
- dentry->d_inode->i_ino);
- }
-
- d_automount: called when an automount dentry is to be traversed (optional).
- This should create a new VFS mount record and return the record to the
- caller. The caller is supplied with a path parameter giving the
- automount directory to describe the automount target and the parent
- VFS mount record to provide inheritable mount parameters. NULL should
- be returned if someone else managed to make the automount first. If
- the vfsmount creation failed, then an error code should be returned.
- If -EISDIR is returned, then the directory will be treated as an
- ordinary directory and returned to pathwalk to continue walking.
-
- If a vfsmount is returned, the caller will attempt to mount it on the
- mountpoint and will remove the vfsmount from its expiration list in
- the case of failure. The vfsmount should be returned with 2 refs on
- it to prevent automatic expiration - the caller will clean up the
- additional ref.
-
- This function is only used if DCACHE_NEED_AUTOMOUNT is set on the
- dentry. This is set by __d_instantiate() if S_AUTOMOUNT is set on the
- inode being added.
-
- d_manage: called to allow the filesystem to manage the transition from a
- dentry (optional). This allows autofs, for example, to hold up clients
- waiting to explore behind a 'mountpoint' while letting the daemon go
- past and construct the subtree there. 0 should be returned to let the
- calling process continue. -EISDIR can be returned to tell pathwalk to
- use this directory as an ordinary directory and to ignore anything
- mounted on it and not to check the automount flag. Any other error
- code will abort pathwalk completely.
-
- If the 'rcu_walk' parameter is true, then the caller is doing a
- pathwalk in RCU-walk mode. Sleeping is not permitted in this mode,
- and the caller can be asked to leave it and call again by returning
- -ECHILD. -EISDIR may also be returned to tell pathwalk to
- ignore d_automount or any mounts.
-
- This function is only used if DCACHE_MANAGE_TRANSIT is set on the
- dentry being transited from.
-
- d_real: overlay/union type filesystems implement this method to return one of
- the underlying dentries hidden by the overlay. It is used in two
- different modes:
-
- Called from file_dentry() it returns the real dentry matching the inode
- argument. The real dentry may be from a lower layer already copied up,
- but still referenced from the file. This mode is selected with a
- non-NULL inode argument.
-
- With NULL inode the topmost real underlying dentry is returned.
-
-Each dentry has a pointer to its parent dentry, as well as a hash list
-of child dentries. Child dentries are basically like files in a
-directory.
-
-
-Directory Entry Cache API
---------------------------
-
-There are a number of functions defined which permit a filesystem to
-manipulate dentries:
-
- dget: open a new handle for an existing dentry (this just increments
- the usage count)
-
- dput: close a handle for a dentry (decrements the usage count). If
- the usage count drops to 0, and the dentry is still in its
- parent's hash, the "d_delete" method is called to check whether
- it should be cached. If it should not be cached, or if the dentry
- is not hashed, it is deleted. Otherwise cached dentries are put
- into an LRU list to be reclaimed on memory shortage.
-
- d_drop: this unhashes a dentry from its parents hash list. A
- subsequent call to dput() will deallocate the dentry if its
- usage count drops to 0
-
- d_delete: delete a dentry. If there are no other open references to
- the dentry then the dentry is turned into a negative dentry
- (the d_iput() method is called). If there are other
- references, then d_drop() is called instead
-
- d_add: add a dentry to its parents hash list and then calls
- d_instantiate()
-
- d_instantiate: add a dentry to the alias hash list for the inode and
- updates the "d_inode" member. The "i_count" member in the
- inode structure should be set/incremented. If the inode
- pointer is NULL, the dentry is called a "negative
- dentry". This function is commonly called when an inode is
- created for an existing negative dentry
-
- d_lookup: look up a dentry given its parent and path name component
- It looks up the child of that given name from the dcache
- hash table. If it is found, the reference count is incremented
- and the dentry is returned. The caller must use dput()
- to free the dentry when it finishes using it.
-
-Mount Options
-=============
-
-Parsing options
----------------
-
-On mount and remount the filesystem is passed a string containing a
-comma separated list of mount options. The options can have either of
-these forms:
-
- option
- option=value
-
-The <linux/parser.h> header defines an API that helps parse these
-options. There are plenty of examples on how to use it in existing
-filesystems.
-
-Showing options
----------------
-
-If a filesystem accepts mount options, it must define show_options()
-to show all the currently active options. The rules are:
-
- - options MUST be shown which are not default or their values differ
- from the default
-
- - options MAY be shown which are enabled by default or have their
- default value
-
-Options used only internally between a mount helper and the kernel
-(such as file descriptors), or which only have an effect during the
-mounting (such as ones controlling the creation of a journal) are exempt
-from the above rules.
-
-The underlying reason for the above rules is to make sure, that a
-mount can be accurately replicated (e.g. umounting and mounting again)
-based on the information found in /proc/mounts.
-
-Resources
-=========
-
-(Note some of these resources are not up-to-date with the latest kernel
- version.)
-
-Creating Linux virtual filesystems. 2002
- <http://lwn.net/Articles/13325/>
-
-The Linux Virtual File-system Layer by Neil Brown. 1999
- <http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html>
-
-A tour of the Linux VFS by Michael K. Johnson. 1996
- <http://www.tldp.org/LDP/khg/HyperNews/get/fs/vfstour.html>
-
-A small trail through the Linux kernel by Andries Brouwer. 2001
- <http://www.win.tue.nl/~aeb/linux/vfs/trail.html>
diff --git a/Documentation/filesystems/xfs-delayed-logging-design.txt b/Documentation/filesystems/xfs-delayed-logging-design.txt
index 2ce36439c09f..9a6dd289b17b 100644
--- a/Documentation/filesystems/xfs-delayed-logging-design.txt
+++ b/Documentation/filesystems/xfs-delayed-logging-design.txt
@@ -34,7 +34,7 @@ transaction:
D A+B+C+D X+n+m+o
<object written to disk>
E E Y (> X+n+m+o)
- F E+F Yٍ+p
+ F E+F Y+p
In other words, each time an object is relogged, the new transaction contains
the aggregation of all the previous changes currently held only in the log.
diff --git a/Documentation/firmware-guide/acpi/enumeration.rst b/Documentation/firmware-guide/acpi/enumeration.rst
index 850be9696931..1252617b520f 100644
--- a/Documentation/firmware-guide/acpi/enumeration.rst
+++ b/Documentation/firmware-guide/acpi/enumeration.rst
@@ -339,7 +339,7 @@ a code like this::
There are also devm_* versions of these functions which release the
descriptors once the device is released.
-See Documentation/acpi/gpio-properties.txt for more information about the
+See Documentation/firmware-guide/acpi/gpio-properties.rst for more information about the
_DSD binding related to GPIOs.
MFD devices
diff --git a/Documentation/extcon/intel-int3496.txt b/Documentation/firmware-guide/acpi/extcon-intel-int3496.rst
index 8155dbc7fad3..5137ca834b54 100644
--- a/Documentation/extcon/intel-int3496.txt
+++ b/Documentation/firmware-guide/acpi/extcon-intel-int3496.rst
@@ -1,5 +1,6 @@
+=====================================================
Intel INT3496 ACPI device extcon driver documentation
------------------------------------------------------
+=====================================================
The Intel INT3496 ACPI device extcon driver is a driver for ACPI
devices with an acpi-id of INT3496, such as found for example on
@@ -13,15 +14,20 @@ between an USB host and an USB peripheral controller.
The ACPI devices exposes this functionality by returning an array with up
to 3 gpio descriptors from its ACPI _CRS (Current Resource Settings) call:
-Index 0: The input gpio for the id-pin, this is always present and valid
-Index 1: The output gpio for enabling Vbus output from the device to the otg
+======= =====================================================================
+Index 0 The input gpio for the id-pin, this is always present and valid
+Index 1 The output gpio for enabling Vbus output from the device to the otg
port, write 1 to enable the Vbus output (this gpio descriptor may
be absent or invalid)
-Index 2: The output gpio for muxing of the data pins between the USB host and
+Index 2 The output gpio for muxing of the data pins between the USB host and
the USB peripheral controller, write 1 to mux to the peripheral
controller
+======= =====================================================================
There is a mapping between indices and GPIO connection IDs as follows
+
+ ======= =======
id index 0
vbus index 1
mux index 2
+ ======= =======
diff --git a/Documentation/firmware-guide/acpi/index.rst b/Documentation/firmware-guide/acpi/index.rst
index ae609eec4679..90c90d42d9ad 100644
--- a/Documentation/firmware-guide/acpi/index.rst
+++ b/Documentation/firmware-guide/acpi/index.rst
@@ -24,3 +24,4 @@ ACPI Support
acpi-lid
lpit
video_extension
+ extcon-intel-int3496
diff --git a/Documentation/firmware-guide/acpi/method-tracing.rst b/Documentation/firmware-guide/acpi/method-tracing.rst
index d0b077b73f5f..0aa7e2c5d32a 100644
--- a/Documentation/firmware-guide/acpi/method-tracing.rst
+++ b/Documentation/firmware-guide/acpi/method-tracing.rst
@@ -68,7 +68,7 @@ c. Filter out the debug layer/level matched logs when the specified
Where:
0xXXXXXXXX/0xYYYYYYYY
- Refer to Documentation/acpi/debug.txt for possible debug layer/level
+ Refer to Documentation/firmware-guide/acpi/debug.rst for possible debug layer/level
masking values.
\PPPP.AAAA.TTTT.HHHH
Full path of a control method that can be found in the ACPI namespace.
diff --git a/Documentation/fmc/API.txt b/Documentation/fmc/API.txt
deleted file mode 100644
index 06b06b92c794..000000000000
--- a/Documentation/fmc/API.txt
+++ /dev/null
@@ -1,47 +0,0 @@
-Functions Exported by fmc.ko
-****************************
-
-The FMC core exports the usual 4 functions that are needed for a bus to
-work, and a few more:
-
- int fmc_driver_register(struct fmc_driver *drv);
- void fmc_driver_unregister(struct fmc_driver *drv);
- int fmc_device_register(struct fmc_device *fmc);
- void fmc_device_unregister(struct fmc_device *fmc);
-
- int fmc_device_register_n(struct fmc_device **fmc, int n);
- void fmc_device_unregister_n(struct fmc_device **fmc, int n);
-
- uint32_t fmc_readl(struct fmc_device *fmc, int offset);
- void fmc_writel(struct fmc_device *fmc, uint32_t val, int off);
- void *fmc_get_drvdata(struct fmc_device *fmc);
- void fmc_set_drvdata(struct fmc_device *fmc, void *data);
-
- int fmc_reprogram(struct fmc_device *f, struct fmc_driver *d, char *gw,
- int sdb_entry);
-
-The data structure that describe a device is detailed in *note FMC
-Device::, the one that describes a driver is detailed in *note FMC
-Driver::. Please note that structures of type fmc_device must be
-allocated by the caller, but must not be released after unregistering.
-The fmc-bus itself takes care of releasing the structure when their use
-count reaches zero - actually, the device model does that in lieu of us.
-
-The functions to register and unregister n devices are meant to be used
-by carriers that host more than one mezzanine. The devices must all be
-registered at the same time because if the FPGA is reprogrammed, all
-devices in the array are affected. Usually, the driver matching the
-first device will reprogram the FPGA, so other devices must know they
-are already driven by a reprogrammed FPGA.
-
-If a carrier hosts slots that are driven by different FPGA devices, it
-should register as a group only mezzanines that are driven by the same
-FPGA, for the reason outlined above.
-
-Finally, the fmc_reprogram function calls the reprogram method (see
-*note The API Offered by Carriers:: and also scans the memory area for
-an SDB tree. You can pass -1 as sdb_entry to disable such scan.
-Otherwise, the function fails if no tree is found at the specified
-entry point. The function is meant to factorize common code, and by
-the time you read this it is already used by the spec-sw and fine-delay
-modules.
diff --git a/Documentation/fmc/FMC-and-SDB.txt b/Documentation/fmc/FMC-and-SDB.txt
deleted file mode 100644
index fa14e0b24521..000000000000
--- a/Documentation/fmc/FMC-and-SDB.txt
+++ /dev/null
@@ -1,88 +0,0 @@
-
-FMC (FPGA Mezzanine Card) is the standard we use for our I/O devices,
-in the context of White Rabbit and related hardware.
-
-In our I/O environments we need to write drivers for each mezzanine
-card, and such drivers must work regardless of the carrier being used.
-To achieve this, we abstract the FMC interface.
-
-We have a carrier for PCI-E called SPEC and one for VME called SVEC,
-but more are planned. Also, we support stand-alone devices (usually
-plugged on a SPEC card), controlled through Etherbone, developed by GSI.
-
-Code and documentation for the FMC bus was born as part of the spec-sw
-project, but now it lives in its own project. Other projects, i.e.
-software support for the various carriers, should include this as a
-submodule.
-
-The most up to date version of code and documentation is always
-available from the repository you can clone from:
-
- git://ohwr.org/fmc-projects/fmc-bus.git (read-only)
- git@ohwr.org:fmc-projects/fmc-bus.git (read-write for developers)
-
-Selected versions of the documentation, as well as complete tar
-archives for selected revisions are placed to the Files section of the
-project: `http://www.ohwr.org/projects/fmc-bus/files'
-
-
-What is FMC
-***********
-
-FMC, as said, stands for "FPGA Mezzanine Card". It is a standard
-developed by the VME consortium called VITA (VMEbus International Trade
-Association and ratified by ANSI, the American National Standard
-Institute. The official documentation is called "ANSI-VITA 57.1".
-
-The FMC card is an almost square PCB, around 70x75 millimeters, that is
-called mezzanine in this document. It usually lives plugged into
-another PCB for power supply and control; such bigger circuit board is
-called carrier from now on, and a single carrier may host more than one
-mezzanine.
-
-In the typical application the mezzanine is mostly analog while the
-carrier is mostly digital, and hosts an FPGA that must be configured to
-match the specific mezzanine and the desired application. Thus, you may
-need to load different FPGA images to drive different instances of the
-same mezzanine.
-
-FMC, as such, is not a bus in the usual meaning of the term, because
-most carriers have only one connector, and carriers with several
-connectors have completely separate electrical connections to them.
-This package, however, implements a bus as a software abstraction.
-
-
-What is SDB
-***********
-
-SDB (Self Describing Bus) is a set of data structures that we use for
-enumerating the internal structure of an FPGA image. We also use it as
-a filesystem inside the FMC EEPROM.
-
-SDB is not mandatory for use of this FMC kernel bus, but if you have SDB
-this package can make good use of it. SDB itself is developed in the
-fpga-config-space OHWR project. The link to the repository is
-`git://ohwr.org/hdl-core-lib/fpga-config-space.git' and what is used in
-this project lives in the sdbfs subdirectory in there.
-
-SDB support for FMC is described in *note FMC Identification:: and
-*note SDB Support::
-
-
-SDB Support
-***********
-
-The fmc.ko bus driver exports a few functions to help drivers taking
-advantage of the SDB information that may be present in your own FPGA
-memory image.
-
-The module exports the following functions, in the special header
-<linux/fmc-sdb.h>. The linux/ prefix in the name is there because we
-plan to submit it upstream in the future, and don't want to force
-changes on our drivers if that happens.
-
- int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address);
- void fmc_show_sdb_tree(struct fmc_device *fmc);
- signed long fmc_find_sdb_device(struct sdb_array *tree, uint64_t vendor,
- uint32_t device, unsigned long *sz);
- int fmc_free_sdb_tree(struct fmc_device *fmc);
diff --git a/Documentation/fmc/carrier.txt b/Documentation/fmc/carrier.txt
deleted file mode 100644
index 5e4f1dd3e98b..000000000000
--- a/Documentation/fmc/carrier.txt
+++ /dev/null
@@ -1,311 +0,0 @@
-FMC Device
-**********
-
-Within the Linux bus framework, the FMC device is created and
-registered by the carrier driver. For example, the PCI driver for the
-SPEC card fills a data structure for each SPEC that it drives, and
-registers an associated FMC device for each card. The SVEC driver can
-do exactly the same for the VME carrier (actually, it should do it
-twice, because the SVEC carries two FMC mezzanines). Similarly, an
-Etherbone driver will be able to register its own FMC devices, offering
-communication primitives through frame exchange.
-
-The contents of the EEPROM within the FMC are used for identification
-purposes, i.e. for matching the device with its own driver. For this
-reason the device structure includes a complete copy of the EEPROM
-(actually, the carrier driver may choose whether or not to return it -
-for example we most likely won't have the whole EEPROM available for
-Etherbone devices.
-
-The following listing shows the current structure defining a device.
-Please note that all the machinery is in place but some details may
-still change in the future. For this reason, there is a version field
-at the beginning of the structure. As usual, the minor number will
-change for compatible changes (like a new flag) and the major number
-will increase when an incompatible change happens (for example, a
-change in layout of some fmc data structures). Device writers should
-just set it to the value FMC_VERSION, and be ready to get back -EINVAL
-at registration time.
-
- struct fmc_device {
- unsigned long version;
- unsigned long flags;
- struct module *owner; /* char device must pin it */
- struct fmc_fru_id id; /* for EEPROM-based match */
- struct fmc_operations *op; /* carrier-provided */
- int irq; /* according to host bus. 0 == none */
- int eeprom_len; /* Usually 8kB, may be less */
- int eeprom_addr; /* 0x50, 0x52 etc */
- uint8_t *eeprom; /* Full contents or leading part */
- char *carrier_name; /* "SPEC" or similar, for special use */
- void *carrier_data; /* "struct spec *" or equivalent */
- __iomem void *fpga_base; /* May be NULL (Etherbone) */
- __iomem void *slot_base; /* Set by the driver */
- struct fmc_device **devarray; /* Allocated by the bus */
- int slot_id; /* Index in the slot array */
- int nr_slots; /* Number of slots in this carrier */
- unsigned long memlen; /* Used for the char device */
- struct device dev; /* For Linux use */
- struct device *hwdev; /* The underlying hardware device */
- unsigned long sdbfs_entry;
- struct sdb_array *sdb;
- uint32_t device_id; /* Filled by the device */
- char *mezzanine_name; /* Defaults to ``fmc'' */
- void *mezzanine_data;
- };
-
-The meaning of most fields is summarized in the code comment above.
-
-The following fields must be filled by the carrier driver before
-registration:
-
- * version: must be set to FMC_VERSION.
-
- * owner: set to MODULE_OWNER.
-
- * op: the operations to act on the device.
-
- * irq: number for the mezzanine; may be zero.
-
- * eeprom_len: length of the following array.
-
- * eeprom_addr: 0x50 for first mezzanine and so on.
-
- * eeprom: the full content of the I2C EEPROM.
-
- * carrier_name.
-
- * carrier_data: a unique pointer for the carrier.
-
- * fpga_base: the I/O memory address (may be NULL).
-
- * slot_id: the index of this slot (starting from zero).
-
- * memlen: if fpga_base is valid, the length of I/O memory.
-
- * hwdev: to be used in some dev_err() calls.
-
- * device_id: a slot-specific unique integer number.
-
-
-Please note that the carrier should read its own EEPROM memory before
-registering the device, as well as fill all other fields listed above.
-
-The following fields should not be assigned, because they are filled
-later by either the bus or the device driver:
-
- * flags.
-
- * fru_id: filled by the bus, parsing the eeprom.
-
- * slot_base: filled and used by the driver, if useful to it.
-
- * devarray: an array og all mezzanines driven by a singe FPGA.
-
- * nr_slots: set by the core at registration time.
-
- * dev: used by Linux.
-
- * sdb: FPGA contents, scanned according to driver's directions.
-
- * sdbfs_entry: SDB entry point in EEPROM: autodetected.
-
- * mezzanine_data: available for the driver.
-
- * mezzanine_name: filled by fmc-bus during identification.
-
-
-Note: mezzanine_data may be redundant, because Linux offers the drvdata
-approach, so the field may be removed in later versions of this bus
-implementation.
-
-As I write this, she SPEC carrier is already completely functional in
-the fmc-bus environment, and is a good reference to look at.
-
-
-The API Offered by Carriers
-===========================
-
-The carrier provides a number of methods by means of the
-`fmc_operations' structure, which currently is defined like this
-(again, it is a moving target, please refer to the header rather than
-this document):
-
- struct fmc_operations {
- uint32_t (*readl)(struct fmc_device *fmc, int offset);
- void (*writel)(struct fmc_device *fmc, uint32_t value, int offset);
- int (*reprogram)(struct fmc_device *f, struct fmc_driver *d, char *gw);
- int (*validate)(struct fmc_device *fmc, struct fmc_driver *drv);
- int (*irq_request)(struct fmc_device *fmc, irq_handler_t h,
- char *name, int flags);
- void (*irq_ack)(struct fmc_device *fmc);
- int (*irq_free)(struct fmc_device *fmc);
- int (*gpio_config)(struct fmc_device *fmc, struct fmc_gpio *gpio,
- int ngpio);
- int (*read_ee)(struct fmc_device *fmc, int pos, void *d, int l);
- int (*write_ee)(struct fmc_device *fmc, int pos, const void *d, int l);
- };
-
-The individual methods perform the following tasks:
-
-`readl'
-`writel'
- These functions access FPGA registers by whatever means the
- carrier offers. They are not expected to fail, and most of the time
- they will just make a memory access to the host bus. If the
- carrier provides a fpga_base pointer, the driver may use direct
- access through that pointer. For this reason the header offers the
- inline functions fmc_readl and fmc_writel that access fpga_base if
- the respective method is NULL. A driver that wants to be portable
- and efficient should use fmc_readl and fmc_writel. For Etherbone,
- or other non-local carriers, error-management is still to be
- defined.
-
-`validate'
- Module parameters are used to manage different applications for
- two or more boards of the same kind. Validation is based on the
- busid module parameter, if provided, and returns the matching
- index in the associated array. See *note Module Parameters:: in in
- doubt. If no match is found, `-ENOENT' is returned; if the user
- didn't pass `busid=', all devices will pass validation. The value
- returned by the validate method can be used as index into other
- parameters (for example, some drivers use the `lm32=' parameter in
- this way). Such "generic parameters" are documented in *note
- Module Parameters::, below. The validate method is used by
- `fmc-trivial.ko', described in *note fmc-trivial::.
-
-`reprogram'
- The carrier enumerates FMC devices by loading a standard (or
- golden) FPGA binary that allows EEPROM access. Each driver, then,
- will need to reprogram the FPGA by calling this function. If the
- name argument is NULL, the carrier should reprogram the golden
- binary. If the gateware name has been overridden through module
- parameters (in a carrier-specific way) the file loaded will match
- the parameters. Per-device gateware names can be specified using
- the `gateware=' parameter, see *note Module Parameters::. Note:
- Clients should call rhe new helper, fmc_reprogram, which both
- calls this method and parse the SDB tree of the FPGA.
-
-`irq_request'
-`irq_ack'
-`irq_free'
- Interrupt management is carrier-specific, so it is abstracted as
- operations. The interrupt number is listed in the device
- structure, and for the mezzanine driver the number is only
- informative. The handler will receive the fmc pointer as dev_id;
- the flags argument is passed to the Linux request_irq function,
- but fmc-specific flags may be added in the future. You'll most
- likely want to pass the `IRQF_SHARED' flag.
-
-`gpio_config'
- The method allows to configure a GPIO pin in the carrier, and read
- its current value if it is configured as input. See *note The GPIO
- Abstraction:: for details.
-
-`read_ee'
-`write_ee'
- Read or write the EEPROM. The functions are expected to be only
- called before reprogramming and the carrier should refuse them
- with `ENODEV' after reprogramming. The offset is expected to be
- within 8kB (the current size), but addresses up to 1MB are
- reserved to fit bigger I2C devices in the future. Carriers may
- offer access to other internal flash memories using these same
- methods: for example the SPEC driver may define that its carrier
- I2C memory is seen at offset 1M and the internal SPI flash is seen
- at offset 16M. This multiplexing of several flash memories in the
- same address space is carrier-specific and should only be used
- by a driver that has verified the `carrier_name' field.
-
-
-
-The GPIO Abstraction
-====================
-
-Support for GPIO pins in the fmc-bus environment is not very
-straightforward and deserves special discussion.
-
-While the general idea of a carrier-independent driver seems to fly,
-configuration of specific signals within the carrier needs at least
-some knowledge of the carrier itself. For this reason, the specific
-driver can request to configure carrier-specific GPIO pins, numbered
-from 0 to at most 4095. Configuration is performed by passing a
-pointer to an array of struct fmc_gpio items, as well as the length of
-the array. This is the data structure:
-
- struct fmc_gpio {
- char *carrier_name;
- int gpio;
- int _gpio; /* internal use by the carrier */
- int mode; /* GPIOF_DIR_OUT etc, from <linux/gpio.h> */
- int irqmode; /* IRQF_TRIGGER_LOW and so on */
- };
-
-By specifying a carrier_name for each pin, the driver may access
-different pins in different carriers. The gpio_config method is
-expected to return the number of pins successfully configured, ignoring
-requests for other carriers. However, if no pin is configured (because
-no structure at all refers to the current carrier_name), the operation
-returns an error so the caller will know that it is running under a
-yet-unsupported carrier.
-
-So, for example, a driver that has been developed and tested on both
-the SPEC and the SVEC may request configuration of two different GPIO
-pins, and expect one such configuration to succeed - if none succeeds
-it most likely means that the current carrier is a still-unknown one.
-
-If, however, your GPIO pin has a specific known role, you can pass a
-special number in the gpio field, using one of the following macros:
-
- #define FMC_GPIO_RAW(x) (x) /* 4096 of them */
- #define FMC_GPIO_IRQ(x) ((x) + 0x1000) /* 256 of them */
- #define FMC_GPIO_LED(x) ((x) + 0x1100) /* 256 of them */
- #define FMC_GPIO_KEY(x) ((x) + 0x1200) /* 256 of them */
- #define FMC_GPIO_TP(x) ((x) + 0x1300) /* 256 of them */
- #define FMC_GPIO_USER(x) ((x) + 0x1400) /* 256 of them */
-
-Use of virtual GPIO numbers (anything but FMC_GPIO_RAW) is allowed
-provided the carrier_name field in the data structure is left
-unspecified (NULL). Each carrier is responsible for providing a mapping
-between virtual and physical GPIO numbers. The carrier may then use the
-_gpio field to cache the result of this mapping.
-
-All carriers must map their I/O lines to the sets above starting from
-zero. The SPEC, for example, maps interrupt pins 0 and 1, and test
-points 0 through 3 (even if the test points on the PCB are called
-5,6,7,8).
-
-If, for example, a driver requires a free LED and a test point (for a
-scope probe to be plugged at some point during development) it may ask
-for FMC_GPIO_LED(0) and FMC_GPIO_TP(0). Each carrier will provide
-suitable GPIO pins. Clearly, the person running the drivers will know
-the order used by the specific carrier driver in assigning leds and
-testpoints, so to make a carrier-dependent use of the diagnostic tools.
-
-In theory, some form of autodetection should be possible: a driver like
-the wr-nic (which uses IRQ(1) on the SPEC card) should configure
-IRQ(0), make a test with software-generated interrupts and configure
-IRQ(1) if the test fails. This probing step should be used because even
-if the wr-nic gateware is known to use IRQ1 on the SPEC, the driver
-should be carrier-independent and thus use IRQ(0) as a first bet -
-actually, the knowledge that IRQ0 may fail is carrier-dependent
-information, but using it doesn't make the driver unsuitable for other
-carriers.
-
-The return value of gpio_config is defined as follows:
-
- * If no pin in the array can be used by the carrier, `-ENODEV'.
-
- * If at least one virtual GPIO number cannot be mapped, `-ENOENT'.
-
- * On success, 0 or positive. The value returned is the number of
- high input bits (if no input is configured, the value for success
- is 0).
-
-While I admit the procedure is not completely straightforward, it
-allows configuration, input and output with a single carrier operation.
-Given the typical use case of FMC devices, GPIO operations are not
-expected to ever by in hot paths, and GPIO access so fare has only been
-used to configure the interrupt pin, mode and polarity. Especially
-reading inputs is not expected to be common. If your device has GPIO
-capabilities in the hot path, you should consider using the kernel's
-GPIO mechanisms.
diff --git a/Documentation/fmc/fmc-chardev.txt b/Documentation/fmc/fmc-chardev.txt
deleted file mode 100644
index d9ccb278e597..000000000000
--- a/Documentation/fmc/fmc-chardev.txt
+++ /dev/null
@@ -1,64 +0,0 @@
-fmc-chardev
-===========
-
-This is a simple generic driver, that allows user access by means of a
-character device (actually, one for each mezzanine it takes hold of).
-
-The char device is created as a misc device. Its name in /dev (as
-created by udev) is the same name as the underlying FMC device. Thus,
-the name can be a silly fmc-0000 look-alike if the device has no
-identifiers nor bus_id, a more specific fmc-0400 if the device has a
-bus-specific address but no associated name, or something like
-fdelay-0400 if the FMC core can rely on both a mezzanine name and a bus
-address.
-
-Currently the driver only supports read and write: you can lseek to the
-desired address and read or write a register.
-
-The driver assumes all registers are 32-bit in size, and only accepts a
-single read or write per system call. However, as a result of Unix read
-and write semantics, users can simply fread or fwrite bigger areas in
-order to dump or store bigger memory areas.
-
-There is currently no support for mmap, user-space interrupt management
-and DMA buffers. They may be added in later versions, if the need
-arises.
-
-The example below shows raw access to a SPEC card programmed with its
-golden FPGA file, that features an SDB structure at offset 256 - i.e.
-64 words. The mezzanine's EEPROM in this case is not programmed, so the
-default name is fmc-<bus><devfn>, and there are two cards in the system:
-
- spusa.root# insmod fmc-chardev.ko
- [ 1073.339332] spec 0000:02:00.0: Driver has no ID: matches all
- [ 1073.345051] spec 0000:02:00.0: Created misc device "fmc-0200"
- [ 1073.350821] spec 0000:04:00.0: Driver has no ID: matches all
- [ 1073.356525] spec 0000:04:00.0: Created misc device "fmc-0400"
- spusa.root# ls -l /dev/fmc*
- crw------- 1 root root 10, 58 Nov 20 19:23 /dev/fmc-0200
- crw------- 1 root root 10, 57 Nov 20 19:23 /dev/fmc-0400
- spusa.root# dd bs=4 skip=64 count=1 if=/dev/fmc-0200 2> /dev/null | od -t x1z
- 0000000 2d 42 44 53 >-BDS<
- 0000004
-
-The simple program tools/fmc-mem in this package can access an FMC char
-device and read or write a word or a whole area. Actually, the program
-is not specific to FMC at all, it just uses lseek, read and write.
-
-Its first argument is the device name, the second the offset, the third
-(if any) the value to write and the optional last argument that must
-begin with "+" is the number of bytes to read or write. In case of
-repeated reading data is written to stdout; repeated writes read from
-stdin and the value argument is ignored.
-
-The following examples show reading the SDB magic number and the first
-SDB record from a SPEC device programmed with its golden image:
-
- spusa.root# ./fmc-mem /dev/fmc-0200 100
- 5344422d
- spusa.root# ./fmc-mem /dev/fmc-0200 100 +40 | od -Ax -t x1z
- 000000 2d 42 44 53 00 01 02 00 00 00 00 00 00 00 00 00 >-BDS............<
- 000010 00 00 00 00 ff 01 00 00 00 00 00 00 51 06 00 00 >............Q...<
- 000020 c9 42 a5 e6 02 00 00 00 11 05 12 20 2d 34 42 57 >.B......... -4BW<
- 000030 73 6f 72 43 72 61 62 73 49 53 47 2d 00 20 20 20 >sorCrabsISG-. <
- 000040
diff --git a/Documentation/fmc/fmc-fakedev.txt b/Documentation/fmc/fmc-fakedev.txt
deleted file mode 100644
index e85b74a4ae30..000000000000
--- a/Documentation/fmc/fmc-fakedev.txt
+++ /dev/null
@@ -1,36 +0,0 @@
-fmc-fakedev
-===========
-
-This package includes a software-only device, called fmc-fakedev, which
-is able to register up to 4 mezzanines (by default it registers one).
-Unlike the SPEC driver, which creates an FMC device for each PCI cards
-it manages, this module creates a single instance of its set of
-mezzanines.
-
-It is meant as the simplest possible example of how a driver should be
-written, and it includes a fake EEPROM image (built using the tools
-described in *note FMC Identification::),, which by default is
-replicated for each fake mezzanine.
-
-You can also use this device to verify the match algorithms, by asking
-it to test your own EEPROM image. You can provide the image by means of
-the eeprom= module parameter: the new EEPROM image is loaded, as usual,
-by means of the firmware loader. This example shows the defaults and a
-custom EEPROM image:
-
- spusa.root# insmod fmc-fakedev.ko
- [ 99.971247] fake-fmc-carrier: mezzanine 0
- [ 99.975393] Manufacturer: fake-vendor
- [ 99.979624] Product name: fake-design-for-testing
- spusa.root# rmmod fmc-fakedev
- spusa.root# insmod fmc-fakedev.ko eeprom=fdelay-eeprom.bin
- [ 121.447464] fake-fmc-carrier: Mezzanine 0: eeprom "fdelay-eeprom.bin"
- [ 121.462725] fake-fmc-carrier: mezzanine 0
- [ 121.466858] Manufacturer: CERN
- [ 121.470477] Product name: FmcDelay1ns4cha
- spusa.root# rmmod fmc-fakedev
-
-After loading the device, you can use the write_ee method do modify its
-own internal fake EEPROM: whenever the image is overwritten starting at
-offset 0, the module will unregister and register again the FMC device.
-This is shown in fmc-write-eeprom.txt
diff --git a/Documentation/fmc/fmc-trivial.txt b/Documentation/fmc/fmc-trivial.txt
deleted file mode 100644
index d1910bc67159..000000000000
--- a/Documentation/fmc/fmc-trivial.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-fmc-trivial
-===========
-
-The simple module fmc-trivial is just a simple client that registers an
-interrupt handler. I used it to verify the basic mechanism of the FMC
-bus and how interrupts worked.
-
-The module implements the generic FMC parameters, so it can program a
-different gateware file in each card. The whole list of parameters it
-accepts are:
-
-`busid='
-`gateware='
- Generic parameters. See mezzanine.txt
-
-
-This driver is worth reading, in my opinion.
diff --git a/Documentation/fmc/fmc-write-eeprom.txt b/Documentation/fmc/fmc-write-eeprom.txt
deleted file mode 100644
index e0a9712156aa..000000000000
--- a/Documentation/fmc/fmc-write-eeprom.txt
+++ /dev/null
@@ -1,98 +0,0 @@
-fmc-write-eeprom
-================
-
-This module is designed to load a binary file from /lib/firmware and to
-write it to the internal EEPROM of the mezzanine card. This driver uses
-the `busid' generic parameter.
-
-Overwriting the EEPROM is not something you should do daily, and it is
-expected to only happen during manufacturing. For this reason, the
-module makes it unlikely for the random user to change a working EEPROM.
-
-However, since the EEPROM may include application-specific information
-other than the identification, later versions of this packages added
-write-support through sysfs. See *note Accessing the EEPROM::.
-
-To avoid damaging the EEPROM content, the module takes the following
-measures:
-
- * It accepts a `file=' argument (within /lib/firmware) and if no
- such argument is received, it doesn't write anything to EEPROM
- (i.e. there is no default file name).
-
- * If the file name ends with `.bin' it is written verbatim starting
- at offset 0.
-
- * If the file name ends with `.tlv' it is interpreted as
- type-length-value (i.e., it allows writev(2)-like operation).
-
- * If the file name doesn't match any of the patterns above, it is
- ignored and no write is performed.
-
- * Only cards listed with `busid=' are written to. If no busid is
- specified, no programming is done (and the probe function of the
- driver will fail).
-
-
-Each TLV tuple is formatted in this way: the header is 5 bytes,
-followed by data. The first byte is `w' for write, the next two bytes
-represent the address, in little-endian byte order, and the next two
-represent the data length, in little-endian order. The length does not
-include the header (it is the actual number of bytes to be written).
-
-This is a real example: that writes 5 bytes at position 0x110:
-
- spusa.root# od -t x1 -Ax /lib/firmware/try.tlv
- 000000 77 10 01 05 00 30 31 32 33 34
- 00000a
- spusa.root# insmod /tmp/fmc-write-eeprom.ko busid=0x0200 file=try.tlv
- [19983.391498] spec 0000:03:00.0: write 5 bytes at 0x0110
- [19983.414615] spec 0000:03:00.0: write_eeprom: success
-
-Please note that you'll most likely want to use SDBFS to build your
-EEPROM image, at least if your mezzanines are being used in the White
-Rabbit environment. For this reason the TLV format is not expected to
-be used much and is not expected to be developed further.
-
-If you want to try reflashing fake EEPROM devices, you can use the
-fmc-fakedev.ko module (see *note fmc-fakedev::). Whenever you change
-the image starting at offset 0, it will deregister and register again
-after two seconds. Please note, however, that if fmc-write-eeprom is
-still loaded, the system will associate it to the new device, which
-will be reprogrammed and thus will be unloaded after two seconds. The
-following example removes the module after it reflashed fakedev the
-first time.
-
- spusa.root# insmod fmc-fakedev.ko
- [ 72.984733] fake-fmc: Manufacturer: fake-vendor
- [ 72.989434] fake-fmc: Product name: fake-design-for-testing
- spusa.root# insmod fmc-write-eeprom.ko busid=0 file=fdelay-eeprom.bin; \
- rmmod fmc-write-eeprom
- [ 130.874098] fake-fmc: Matching a generic driver (no ID)
- [ 130.887845] fake-fmc: programming 6155 bytes
- [ 130.894567] fake-fmc: write_eeprom: success
- [ 132.895794] fake-fmc: Manufacturer: CERN
- [ 132.899872] fake-fmc: Product name: FmcDelay1ns4cha
-
-
-Accessing the EEPROM
-=====================
-
-The bus creates a sysfs binary file called eeprom for each mezzanine it
-knows about:
-
- spusa.root# cd /sys/bus/fmc/devices; ls -l */eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcAdc100m14b4cha-0800/eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDelay1ns4cha-0200/eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDio5cha-0400/eeprom
-
-Everybody can read the files and the superuser can also modify it, but
-the operation may on the carrier driver, if the carrier is unable to
-access the I2C bus. For example, the spec driver can access the bus
-only with its golden gateware: after a mezzanine driver reprogrammed
-the FPGA with a custom circuit, the carrier is unable to access the
-EEPROM and returns ENOTSUPP.
-
-An alternative way to write the EEPROM is the mezzanine driver
-fmc-write-eeprom (See *note fmc-write-eeprom::), but the procedure is
-more complex.
diff --git a/Documentation/fmc/identifiers.txt b/Documentation/fmc/identifiers.txt
deleted file mode 100644
index 3bb577ff0d52..000000000000
--- a/Documentation/fmc/identifiers.txt
+++ /dev/null
@@ -1,168 +0,0 @@
-FMC Identification
-******************
-
-The FMC standard requires every compliant mezzanine to carry
-identification information in an I2C EEPROM. The information must be
-laid out according to the "IPMI Platform Management FRU Information",
-where IPMI is a lie I'd better not expand, and FRU means "Field
-Replaceable Unit".
-
-The FRU information is an intricate unreadable binary blob that must
-live at offset 0 of the EEPROM, and typically extends for a few hundred
-bytes. The standard allows the application to use all the remaining
-storage area of the EEPROM as it wants.
-
-This chapter explains how to create your own EEPROM image and how to
-write it in your mezzanine, as well as how devices and drivers are
-paired at run time. EEPROM programming uses tools that are part of this
-package and SDB (part of the fpga-config-space package).
-
-The first sections are only interesting for manufacturers who need to
-write the EEPROM. If you are just a software developer writing an FMC
-device or driver, you may jump straight to *note SDB Support::.
-
-
-Building the FRU Structure
-==========================
-
-If you want to know the internals of the FRU structure and despair, you
-can retrieve the document from
-`http://download.intel.com/design/servers/ipmi/FRU1011.pdf' . The
-standard is awful and difficult without reason, so we only support the
-minimum mandatory subset - we create a simple structure and parse it
-back at run time, but we are not able to either generate or parse more
-arcane features like non-english languages and 6-bit text. If you need
-more items of the FRU standard for your boards, please submit patches.
-
-This package includes the Python script that Matthieu Cattin wrote to
-generate the FRU binary blob, based on an helper libipmi by Manohar
-Vanga and Matthieu himself. I changed the test script to receive
-parameters from the command line or from the environment (the command
-line takes precedence)
-
-To make a long story short, in order to build a standard-compliant
-binary file to be burned in your EEPROM, you need the following items:
-
- Environment Opt Official Name Default
----------------------------------------------------------------------
- FRU_VENDOR -v "Board Manufacturer" fmc-example
- FRU_NAME -n "Board Product Name" mezzanine
- FRU_SERIAL -s `Board Serial Number" 0001
- FRU_PART -p "Board Part Number" sample-part
- FRU_OUTPUT -o not applicable /dev/stdout
-
-The "Official Name" above is what you find in the FRU official
-documentation, chapter 11, page 7 ("Board Info Area Format"). The
-output option is used to save the generated binary to a specific file
-name instead of stdout.
-
-You can pass the items to the FRU generator either in the environment
-or on the command line. This package has currently no support for
-specifying power consumption or such stuff, but I plan to add it as
-soon as I find some time for that.
-
-FIXME: consumption etc for FRU are here or in PTS?
-
-The following example creates a binary image for a specific board:
-
- ./tools/fru-generator -v CERN -n FmcAdc100m14b4cha \
- -s HCCFFIA___-CR000003 -p EDA-02063-V5-0 > eeprom.bin
-
-The following example shows a script that builds several binary EEPROM
-images for a series of boards, changing the serial number for each of
-them. The script uses a mix of environment variables and command line
-options, and uses the same string patterns shown above.
-
- #!/bin/sh
-
- export FRU_VENDOR="CERN"
- export FRU_NAME="FmcAdc100m14b4cha"
- export FRU_PART="EDA-02063-V5-0"
-
- serial="HCCFFIA___-CR"
-
- for number in $(seq 1 50); do
- # build number-string "ns"
- ns="$(printf %06d $number)"
- ./fru-generator -s "${serial}${ns}" > eeprom-${ns}.bin
- done
-
-
-Using SDB-FS in the EEPROM
-==========================
-
-If you want to use SDB as a filesystem in the EEPROM device within the
-mezzanine, you should create one such filesystem using gensdbfs, from
-the fpga-config-space package on OHWR.
-
-By using an SBD filesystem you can cluster several files in a single
-EEPROM, so both the host system and a soft-core running in the FPGA (if
-any) can access extra production-time information.
-
-We chose to use SDB as a storage filesystem because the format is very
-simple, and both the host system and the soft-core will likely already
-include support code for such format. The SDB library offered by the
-fpga-config-space is less than 1kB under LM32, so it proves quite up to
-the task.
-
-The SDB entry point (which acts as a directory listing) cannot live at
-offset zero in the flash device, because the FRU information must live
-there. To avoid wasting precious storage space while still allowing
-for more-than-minimal FRU structures, the fmc.ko will look for the SDB
-record at address 256, 512 and 1024.
-
-In order to generate the complete EEPROM image you'll need a
-configuration file for gensdbfs: you tell the program where to place
-the sdb entry point, and you must force the FRU data file to be placed
-at the beginning of the storage device. If needed, you can also place
-other files at a special offset (we sometimes do it for backward
-compatibility with drivers we wrote before implementing SDB for flash
-memory).
-
-The directory tools/sdbfs of this package includes a well-commented
-example that you may want to use as a starting point (the comments are
-in the file called -SDB-CONFIG-). Reading documentation for gensdbfs
-is a suggested first step anyways.
-
-This package (generic FMC bus support) only accesses two files in the
-EEPROM: the FRU information, at offset zero, with a suggested filename
-of IPMI-FRU and the short name for the mezzanine, in a file called
-name. The IPMI-FRU name is not mandatory, but a strongly suggested
-choice; the name filename is mandatory, because this is the preferred
-short name used by the FMC core. For example, a name of "fdelay" may
-supplement a Product Name like "FmcDelay1ns4cha" - exactly as
-demonstrated in `tools/sdbfs'.
-
-Note: SDB access to flash memory is not yet supported, so the short
-name currently in use is just the "Product Name" FRU string.
-
-The example in tools/sdbfs includes an extra file, that is needed by
-the fine-delay driver, and must live at a known address of 0x1800. By
-running gensdbfs on that directory you can output your binary EEPROM
-image (here below spusa$ is the shell prompt):
-
- spusa$ ../fru-generator -v CERN -n FmcDelay1ns4cha -s proto-0 \
- -p EDA-02267-V3 > IPMI-FRU
- spusa$ ls -l
- total 16
- -rw-rw-r-- 1 rubini staff 975 Nov 19 18:08 --SDB-CONFIG--
- -rw-rw-r-- 1 rubini staff 216 Nov 19 18:13 IPMI-FRU
- -rw-rw-r-- 1 rubini staff 11 Nov 19 18:04 fd-calib
- -rw-rw-r-- 1 rubini staff 7 Nov 19 18:04 name
- spusa$ sudo gensdbfs . /lib/firmware/fdelay-eeprom.bin
- spusa$ sdb-read -l -e 0x100 /lib/firmware/fdelay-eeprom.bin
- /home/rubini/wip/sdbfs/userspace/sdb-read: listing format is to be defined
- 46696c6544617461:2e202020 00000100-000018ff .
- 46696c6544617461:6e616d65 00000200-00000206 name
- 46696c6544617461:66642d63 00001800-000018ff fd-calib
- 46696c6544617461:49504d49 00000000-000000d7 IPMI-FRU
- spusa$ ../fru-dump /lib/firmware/fdelay-eeprom.bin
- /lib/firmware/fdelay-eeprom.bin: manufacturer: CERN
- /lib/firmware/fdelay-eeprom.bin: product-name: FmcDelay1ns4cha
- /lib/firmware/fdelay-eeprom.bin: serial-number: proto-0
- /lib/firmware/fdelay-eeprom.bin: part-number: EDA-02267-V3
-
-As expected, the output file is both a proper sdbfs object and an IPMI
-FRU information blob. The fd-calib file lives at offset 0x1800 and is
-over-allocated to 256 bytes, according to the configuration file for
-gensdbfs.
diff --git a/Documentation/fmc/mezzanine.txt b/Documentation/fmc/mezzanine.txt
deleted file mode 100644
index 87910dbfc91e..000000000000
--- a/Documentation/fmc/mezzanine.txt
+++ /dev/null
@@ -1,123 +0,0 @@
-FMC Driver
-**********
-
-An FMC driver is concerned with the specific mezzanine and associated
-gateware. As such, it is expected to be independent of the carrier
-being used: it will perform I/O accesses only by means of
-carrier-provided functions.
-
-The matching between device and driver is based on the content of the
-EEPROM (as mandated by the FMC standard) or by the actual cores
-configured in the FPGA; the latter technique is used when the FPGA is
-already programmed when the device is registered to the bus core.
-
-In some special cases it is possible for a driver to directly access
-FPGA registers, by means of the `fpga_base' field of the device
-structure. This may be needed for high-bandwidth peripherals like fast
-ADC cards. If the device module registered a remote device (for example
-by means of Etherbone), the `fpga_base' pointer will be NULL.
-Therefore, drivers must be ready to deal with NULL base pointers, and
-fail gracefully. Most driver, however, are not expected to access the
-pointer directly but run fmc_readl and fmc_writel instead, which will
-work in any case.
-
-In even more special cases, the driver may access carrier-specific
-functionality: the `carrier_name' string allows the driver to check
-which is the current carrier and make use of the `carrier_data'
-pointer. We chose to use carrier names rather than numeric identifiers
-for greater flexibility, but also to avoid a central registry within
-the `fmc.h' file - we hope other users will exploit our framework with
-their own carriers. An example use of carrier names is in GPIO setup
-(see *note The GPIO Abstraction::), although the name match is not
-expected to be performed by the driver. If you depend on specific
-carriers, please check the carrier name and fail gracefully if your
-driver finds it is running in a yet-unknown-to-it environment.
-
-
-ID Table
-========
-
-Like most other Linux drivers, and FMC driver must list all the devices
-which it is able to drive. This is usually done by means of a device
-table, but in FMC we can match hardware based either on the contents of
-their EEPROM or on the actual FPGA cores that can be enumerated.
-Therefore, we have two tables of identifiers.
-
-Matching of FRU information depends on two names, the manufacturer (or
-vendor) and the device (see *note FMC Identification::); for
-flexibility during production (i.e. before writing to the EEPROM) the
-bus supports a catch-all driver that specifies NULL strings. For this
-reason, the table is specified as pointer-and-length, not a a
-null-terminated array - the entry with NULL names can be a valid entry.
-
-Matching on FPGA cores depends on two numeric fields: the 64-bit vendor
-number and the 32-bit device number. Support for matching based on
-class is not yet implemented. Each device is expected to be uniquely
-identified by an array of cores (it matches if all of the cores are
-instantiated), and for consistency the list is passed as
-pointer-and-length. Several similar devices can be driven by the same
-driver, and thus the driver specifies and array of such arrays.
-
-The complete set of involved data structures is thus the following:
-
- struct fmc_fru_id { char *manufacturer; char *product_name; };
- struct fmc_sdb_one_id { uint64_t vendor; uint32_t device; };
- struct fmc_sdb_id { struct fmc_sdb_one_id *cores; int cores_nr; };
-
- struct fmc_device_id {
- struct fmc_fru_id *fru_id; int fru_id_nr;
- struct fmc_sdb_id *sdb_id; int sdb_id_nr;
- };
-
-A better reference, with full explanation, is the <linux/fmc.h> header.
-
-
-Module Parameters
-=================
-
-Most of the FMC drivers need the same set of kernel parameters. This
-package includes support to implement common parameters by means of
-fields in the `fmc_driver' structure and simple macro definitions.
-
-The parameters are carrier-specific, in that they rely on the busid
-concept, that varies among carriers. For the SPEC, the identifier is a
-PCI bus and devfn number, 16 bits wide in total; drivers for other
-carriers will most likely offer something similar but not identical,
-and some code duplication is unavoidable.
-
-This is the list of parameters that are common to several modules to
-see how they are actually used, please look at spec-trivial.c.
-
-`busid='
- This is an array of integers, listing carrier-specific
- identification numbers. For PIC, for example, `0x0400' represents
- bus 4, slot 0. If any such ID is specified, the driver will only
- accept to drive cards that appear in the list (even if the FMC ID
- matches). This is accomplished by the validate carrier method.
-
-`gateware='
- The argument is an array of strings. If no busid= is specified,
- the first string of gateware= is used for all cards; otherwise the
- identifiers and gateware names are paired one by one, in the order
- specified.
-
-`show_sdb='
- For modules supporting it, this parameter asks to show the SDB
- internal structure by means of kernel messages. It is disabled by
- default because those lines tend to hide more important messages,
- if you look at the system console while loading the drivers.
- Note: the parameter is being obsoleted, because fmc.ko itself now
- supports dump_sdb= that applies to every client driver.
-
-
-For example, if you are using the trivial driver to load two different
-gateware files to two different cards, you can use the following
-parameters to load different binaries to the cards, after looking up
-the PCI identifiers. This has been tested with a SPEC carrier.
-
- insmod fmc-trivial.ko \
- busid=0x0200,0x0400 \
- gateware=fmc/fine-delay.bin,fmc/simple-dio.bin
-
-Please note that not all sub-modules support all of those parameters.
-You can use modinfo to check what is supported by each module.
diff --git a/Documentation/fmc/parameters.txt b/Documentation/fmc/parameters.txt
deleted file mode 100644
index 59edf088e3a4..000000000000
--- a/Documentation/fmc/parameters.txt
+++ /dev/null
@@ -1,56 +0,0 @@
-Module Parameters in fmc.ko
-***************************
-
-The core driver receives two module parameters, meant to help debugging
-client modules. Both parameters can be modified by writing to
-/sys/module/fmc/parameters/, because they are used when client drivers
-are devices are registered, not when fmc.ko is loaded.
-
-`dump_eeprom='
- If not zero, the parameter asks the bus controller to dump the
- EEPROM of any device that is registered, using printk.
-
-`dump_sdb='
- If not zero, the parameter prints the SDB tree of every FPGA it is
- loaded by fmc_reprogram(). If greater than one, it asks to dump
- the binary content of SDB records. This currently only dumps the
- top-level SDB array, though.
-
-
-EEPROM dumping avoids repeating lines, since most of the contents is
-usually empty and all bits are one or zero. This is an example of the
-output:
-
- [ 6625.850480] spec 0000:02:00.0: FPGA programming successful
- [ 6626.139949] spec 0000:02:00.0: Manufacturer: CERN
- [ 6626.144666] spec 0000:02:00.0: Product name: FmcDelay1ns4cha
- [ 6626.150370] FMC: mezzanine 0: 0000:02:00.0 on SPEC
- [ 6626.155179] FMC: dumping eeprom 0x2000 (8192) bytes
- [ 6626.160087] 0000: 01 00 00 01 00 0b 00 f3 01 0a 00 a5 85 87 c4 43
- [ 6626.167069] 0010: 45 52 4e cf 46 6d 63 44 65 6c 61 79 31 6e 73 34
- [ 6626.174019] 0020: 63 68 61 c7 70 72 6f 74 6f 2d 30 cc 45 44 41 2d
- [ 6626.180975] 0030: 30 32 32 36 37 2d 56 33 da 32 30 31 32 2d 31 31
- [...]
- [ 6626.371366] 0200: 66 64 65 6c 61 79 0a 00 00 00 00 00 00 00 00 00
- [ 6626.378359] 0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
- [ 6626.385361] [...]
- [ 6626.387308] 1800: 70 6c 61 63 65 68 6f 6c 64 65 72 ff ff ff ff ff
- [ 6626.394259] 1810: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
- [ 6626.401250] [...]
-
-The dump of SDB looks like the following; the example shows the simple
-golden gateware for the SPEC card, removing the leading timestamps to
-fit the page:
-
- spec 0000:02:00.0: SDB: 00000651:e6a542c9 WB4-Crossbar-GSI
- spec 0000:02:00.0: SDB: 0000ce42:ff07fc47 WR-Periph-Syscon (00000000-000000ff)
- FMC: mezzanine 0: 0000:02:00.0 on SPEC
- FMC: poor dump of sdb first level:
- 0000: 53 44 42 2d 00 02 01 00 00 00 00 00 00 00 00 00
- 0010: 00 00 00 00 00 00 01 ff 00 00 00 00 00 00 06 51
- 0020: e6 a5 42 c9 00 00 00 02 20 12 05 11 57 42 34 2d
- 0030: 43 72 6f 73 73 62 61 72 2d 47 53 49 20 20 20 00
- 0040: 00 00 01 01 00 00 00 07 00 00 00 00 00 00 00 00
- 0050: 00 00 00 00 00 00 00 ff 00 00 00 00 00 00 ce 42
- 0060: ff 07 fc 47 00 00 00 01 20 12 03 05 57 52 2d 50
- 0070: 65 72 69 70 68 2d 53 79 73 63 6f 6e 20 20 20 01
diff --git a/Documentation/fpga/dfl.txt b/Documentation/fpga/dfl.rst
index 6df4621c3f2a..2f125abd777f 100644
--- a/Documentation/fpga/dfl.txt
+++ b/Documentation/fpga/dfl.rst
@@ -1,9 +1,12 @@
-===============================================================================
- FPGA Device Feature List (DFL) Framework Overview
--------------------------------------------------------------------------------
- Enno Luebbers <enno.luebbers@intel.com>
- Xiao Guangrong <guangrong.xiao@linux.intel.com>
- Wu Hao <hao.wu@intel.com>
+=================================================
+FPGA Device Feature List (DFL) Framework Overview
+=================================================
+
+Authors:
+
+- Enno Luebbers <enno.luebbers@intel.com>
+- Xiao Guangrong <guangrong.xiao@linux.intel.com>
+- Wu Hao <hao.wu@intel.com>
The Device Feature List (DFL) FPGA framework (and drivers according to this
this framework) hides the very details of low layer hardwares and provides
@@ -19,7 +22,7 @@ Device Feature List (DFL) defines a linked list of feature headers within the
device MMIO space to provide an extensible way of adding features. Software can
walk through these predefined data structures to enumerate FPGA features:
FPGA Interface Unit (FIU), Accelerated Function Unit (AFU) and Private Features,
-as illustrated below:
+as illustrated below::
Header Header Header Header
+----------+ +-->+----------+ +-->+----------+ +-->+----------+
@@ -81,9 +84,9 @@ and release it using close().
The following functions are exposed through ioctls:
- Get driver API version (DFL_FPGA_GET_API_VERSION)
- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
- Program bitstream (DFL_FPGA_FME_PORT_PR)
+- Get driver API version (DFL_FPGA_GET_API_VERSION)
+- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
+- Program bitstream (DFL_FPGA_FME_PORT_PR)
More functions are exposed through sysfs
(/sys/class/fpga_region/regionX/dfl-fme.n/):
@@ -118,18 +121,19 @@ port by using open() on the port device node and release it using close().
The following functions are exposed through ioctls:
- Get driver API version (DFL_FPGA_GET_API_VERSION)
- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
- Get port info (DFL_FPGA_PORT_GET_INFO)
- Get MMIO region info (DFL_FPGA_PORT_GET_REGION_INFO)
- Map DMA buffer (DFL_FPGA_PORT_DMA_MAP)
- Unmap DMA buffer (DFL_FPGA_PORT_DMA_UNMAP)
- Reset AFU (*DFL_FPGA_PORT_RESET)
+- Get driver API version (DFL_FPGA_GET_API_VERSION)
+- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
+- Get port info (DFL_FPGA_PORT_GET_INFO)
+- Get MMIO region info (DFL_FPGA_PORT_GET_REGION_INFO)
+- Map DMA buffer (DFL_FPGA_PORT_DMA_MAP)
+- Unmap DMA buffer (DFL_FPGA_PORT_DMA_UNMAP)
+- Reset AFU (DFL_FPGA_PORT_RESET)
-*DFL_FPGA_PORT_RESET: reset the FPGA Port and its AFU. Userspace can do Port
-reset at any time, e.g. during DMA or Partial Reconfiguration. But it should
-never cause any system level issue, only functional failure (e.g. DMA or PR
-operation failure) and be recoverable from the failure.
+DFL_FPGA_PORT_RESET:
+ reset the FPGA Port and its AFU. Userspace can do Port
+ reset at any time, e.g. during DMA or Partial Reconfiguration. But it should
+ never cause any system level issue, only functional failure (e.g. DMA or PR
+ operation failure) and be recoverable from the failure.
User-space applications can also mmap() accelerator MMIO regions.
@@ -143,6 +147,8 @@ More functions are exposed through sysfs:
DFL Framework Overview
======================
+::
+
+----------+ +--------+ +--------+ +--------+
| FME | | AFU | | AFU | | AFU |
| Module | | Module | | Module | | Module |
@@ -151,7 +157,7 @@ DFL Framework Overview
| FPGA Container Device | Device Feature List
| (FPGA Base Region) | Framework
+-----------------------+
---------------------------------------------------------------------
+ ------------------------------------------------------------------
+----------------------------+
| FPGA DFL Device Module |
| (e.g. PCIE/Platform Device)|
@@ -220,7 +226,7 @@ the sysfs hierarchy under /sys/class/fpga_region.
In the example below, two DFL based FPGA devices are installed in the host. Each
fpga device has one FME and two ports (AFUs).
-FPGA regions are created under /sys/class/fpga_region/
+FPGA regions are created under /sys/class/fpga_region/::
/sys/class/fpga_region/region0
/sys/class/fpga_region/region1
@@ -231,7 +237,7 @@ Application needs to search each regionX folder, if feature device is found,
(e.g. "dfl-port.n" or "dfl-fme.m" is found), then it's the base
fpga region which represents the FPGA device.
-Each base region has one FME and two ports (AFUs) as child devices:
+Each base region has one FME and two ports (AFUs) as child devices::
/sys/class/fpga_region/region0/dfl-fme.0
/sys/class/fpga_region/region0/dfl-port.0
@@ -243,7 +249,7 @@ Each base region has one FME and two ports (AFUs) as child devices:
/sys/class/fpga_region/region3/dfl-port.3
...
-In general, the FME/AFU sysfs interfaces are named as follows:
+In general, the FME/AFU sysfs interfaces are named as follows::
/sys/class/fpga_region/<regionX>/<dfl-fme.n>/
/sys/class/fpga_region/<regionX>/<dfl-port.m>/
@@ -251,7 +257,7 @@ In general, the FME/AFU sysfs interfaces are named as follows:
with 'n' consecutively numbering all FMEs and 'm' consecutively numbering all
ports.
-The device nodes used for ioctl() or mmap() can be referenced through:
+The device nodes used for ioctl() or mmap() can be referenced through::
/sys/class/fpga_region/<regionX>/<dfl-fme.n>/dev
/sys/class/fpga_region/<regionX>/<dfl-port.n>/dev
diff --git a/Documentation/fpga/index.rst b/Documentation/fpga/index.rst
new file mode 100644
index 000000000000..2c87d1ea084f
--- /dev/null
+++ b/Documentation/fpga/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+====
+fpga
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ dfl
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/gpu/msm-crash-dump.rst b/Documentation/gpu/msm-crash-dump.rst
index 757cd257e0d8..240ef200f76c 100644
--- a/Documentation/gpu/msm-crash-dump.rst
+++ b/Documentation/gpu/msm-crash-dump.rst
@@ -1,3 +1,5 @@
+:orphan:
+
=====================
MSM Crash Dump Format
=====================
diff --git a/Documentation/hid/hid-alps.txt b/Documentation/hid/hid-alps.rst
index 6b02a2447c77..e2f4c4c11e3f 100644
--- a/Documentation/hid/hid-alps.txt
+++ b/Documentation/hid/hid-alps.rst
@@ -1,19 +1,26 @@
+==========================
ALPS HID Touchpad Protocol
-----------------------
+==========================
Introduction
------------
Currently ALPS HID driver supports U1 Touchpad device.
-U1 devuce basic information.
+U1 device basic information.
+
+========== ======
Vender ID 0x044E
Product ID 0x120B
Version ID 0x0121
+========== ======
HID Descriptor
-------------
+--------------
+
+======= ==================== ===== =======================================
Byte Field Value Notes
+======= ==================== ===== =======================================
0 wHIDDescLength 001E Length of HID Descriptor : 30 bytes
2 bcdVersion 0100 Compliant with Version 1.00
4 wReportDescLength 00B2 Report Descriptor is 178 Bytes (0x00B2)
@@ -28,32 +35,42 @@ Byte Field Value Notes
22 wProductID 120B Product ID 0x120B
24 wVersionID 0121 Version 01.21
26 RESERVED 0000 RESERVED
+======= ==================== ===== =======================================
Report ID
-------------
-ReportID-1 (Input Reports) (HIDUsage-Mouse) for TP&SP
-ReportID-2 (Input Reports) (HIDUsage-keyboard) for TP
-ReportID-3 (Input Reports) (Vendor Usage: Max 10 finger data) for TP
-ReportID-4 (Input Reports) (Vendor Usage: ON bit data) for GP
-ReportID-5 (Feature Reports) Feature Reports
-ReportID-6 (Input Reports) (Vendor Usage: StickPointer data) for SP
-ReportID-7 (Feature Reports) Flash update (Bootloader)
+---------
+
+========== ================= =========================================
+ReportID-1 (Input Reports) (HIDUsage-Mouse) for TP&SP
+ReportID-2 (Input Reports) (HIDUsage-keyboard) for TP
+ReportID-3 (Input Reports) (Vendor Usage: Max 10 finger data) for TP
+ReportID-4 (Input Reports) (Vendor Usage: ON bit data) for GP
+ReportID-5 (Feature Reports) Feature Reports
+ReportID-6 (Input Reports) (Vendor Usage: StickPointer data) for SP
+ReportID-7 (Feature Reports) Flash update (Bootloader)
+========== ================= =========================================
Data pattern
------------
+
+===== ========== ===== =================
Case1 ReportID_1 TP/SP Relative/Relative
Case2 ReportID_3 TP Absolute
ReportID_6 SP Absolute
+===== ========== ===== =================
Command Read/Write
------------------
To read/write to RAM, need to send a commands to the device.
+
The command format is as below.
DataByte(SET_REPORT)
+
+===== ======================
Byte1 Command Byte
Byte2 Address - Byte 0 (LSB)
Byte3 Address - Byte 1
@@ -61,13 +78,19 @@ Byte4 Address - Byte 2
Byte5 Address - Byte 3 (MSB)
Byte6 Value Byte
Byte7 Checksum
+===== ======================
Command Byte is read=0xD1/write=0xD2 .
+
Address is read/write RAM address.
+
Value Byte is writing data when you send the write commands.
+
When you read RAM, there is no meaning.
DataByte(GET_REPORT)
+
+===== ======================
Byte1 Response Byte
Byte2 Address - Byte 0 (LSB)
Byte3 Address - Byte 1
@@ -75,6 +98,7 @@ Byte4 Address - Byte 2
Byte5 Address - Byte 3 (MSB)
Byte6 Value Byte
Byte7 Checksum
+===== ======================
Read value is stored in Value Byte.
@@ -82,7 +106,11 @@ Read value is stored in Value Byte.
Packet Format
Touchpad data byte
------------------
- b7 b6 b5 b4 b3 b2 b1 b0
+
+
+======= ======= ======= ======= ======= ======= ======= ======= =====
+- b7 b6 b5 b4 b3 b2 b1 b0
+======= ======= ======= ======= ======= ======= ======= ======= =====
1 0 0 SW6 SW5 SW4 SW3 SW2 SW1
2 0 0 0 Fcv Fn3 Fn2 Fn1 Fn0
3 Xa0_7 Xa0_6 Xa0_5 Xa0_4 Xa0_3 Xa0_2 Xa0_1 Xa0_0
@@ -114,17 +142,25 @@ Touchpad data byte
25 Ya4_7 Ya4_6 Ya4_5 Ya4_4 Ya4_3 Ya4_2 Ya4_1 Ya4_0
26 Ya4_15 Ya4_14 Ya4_13 Ya4_12 Ya4_11 Ya4_10 Ya4_9 Ya4_8
27 LFB4 Zs4_6 Zs4_5 Zs4_4 Zs4_3 Zs4_2 Zs4_1 Zs4_0
+======= ======= ======= ======= ======= ======= ======= ======= =====
-SW1-SW6: SW ON/OFF status
-Xan_15-0(16bit):X Absolute data of the "n"th finger
-Yan_15-0(16bit):Y Absolute data of the "n"th finger
-Zsn_6-0(7bit): Operation area of the "n"th finger
+SW1-SW6:
+ SW ON/OFF status
+Xan_15-0(16bit):
+ X Absolute data of the "n"th finger
+Yan_15-0(16bit):
+ Y Absolute data of the "n"th finger
+Zsn_6-0(7bit):
+ Operation area of the "n"th finger
StickPointer data byte
-------------------
- b7 b6 b5 b4 b3 b2 b1 b0
+----------------------
+
+======= ======= ======= ======= ======= ======= ======= ======= =====
+- b7 b6 b5 b4 b3 b2 b1 b0
+======= ======= ======= ======= ======= ======= ======= ======= =====
Byte1 1 1 1 0 1 SW3 SW2 SW1
Byte2 X7 X6 X5 X4 X3 X2 X1 X0
Byte3 X15 X14 X13 X12 X11 X10 X9 X8
@@ -132,8 +168,13 @@ Byte4 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
Byte5 Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8
Byte6 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0
Byte7 T&P Z14 Z13 Z12 Z11 Z10 Z9 Z8
-
-SW1-SW3: SW ON/OFF status
-Xn_15-0(16bit):X Absolute data
-Yn_15-0(16bit):Y Absolute data
-Zn_14-0(15bit):Z
+======= ======= ======= ======= ======= ======= ======= ======= =====
+
+SW1-SW3:
+ SW ON/OFF status
+Xn_15-0(16bit):
+ X Absolute data
+Yn_15-0(16bit):
+ Y Absolute data
+Zn_14-0(15bit):
+ Z
diff --git a/Documentation/hid/hid-sensor.txt b/Documentation/hid/hid-sensor.rst
index b287752a31cd..758972e34971 100644
--- a/Documentation/hid/hid-sensor.txt
+++ b/Documentation/hid/hid-sensor.rst
@@ -1,6 +1,6 @@
-
+=====================
HID Sensors Framework
-======================
+=====================
HID sensor framework provides necessary interfaces to implement sensor drivers,
which are connected to a sensor hub. The sensor hub is a HID device and it provides
a report descriptor conforming to HID 1.12 sensor usage tables.
@@ -15,22 +15,22 @@ the drivers themselves."
This specification describes many usage IDs, which describe the type of sensor
and also the individual data fields. Each sensor can have variable number of
data fields. The length and order is specified in the report descriptor. For
-example a part of report descriptor can look like:
-
- INPUT(1)[INPUT]
- ..
- Field(2)
- Physical(0020.0073)
- Usage(1)
- 0020.045f
- Logical Minimum(-32767)
- Logical Maximum(32767)
- Report Size(8)
- Report Count(1)
- Report Offset(16)
- Flags(Variable Absolute)
-..
-..
+example a part of report descriptor can look like::
+
+ INPUT(1)[INPUT]
+ ..
+ Field(2)
+ Physical(0020.0073)
+ Usage(1)
+ 0020.045f
+ Logical Minimum(-32767)
+ Logical Maximum(32767)
+ Report Size(8)
+ Report Count(1)
+ Report Offset(16)
+ Flags(Variable Absolute)
+ ..
+ ..
The report is indicating "sensor page (0x20)" contains an accelerometer-3D (0x73).
This accelerometer-3D has some fields. Here for example field 2 is motion intensity
@@ -40,13 +40,14 @@ data will use this format.
Implementation
-=================
+==============
This specification defines many different types of sensors with different sets of
data fields. It is difficult to have a common input event to user space applications,
for different sensors. For example an accelerometer can send X,Y and Z data, whereas
an ambient light sensor can send illumination data.
So the implementation has two parts:
+
- Core hid driver
- Individual sensor processing part (sensor drivers)
@@ -55,8 +56,11 @@ Core driver
The core driver registers (hid-sensor-hub) registers as a HID driver. It parses
report descriptors and identifies all the sensors present. It adds an MFD device
with name HID-SENSOR-xxxx (where xxxx is usage id from the specification).
-For example
+
+For example:
+
HID-SENSOR-200073 is registered for an Accelerometer 3D driver.
+
So if any driver with this name is inserted, then the probe routine for that
function will be called. So an accelerometer processing driver can register
with this name and will be probed if there is an accelerometer-3D detected.
@@ -66,7 +70,8 @@ drivers to register and get events for that usage id. Also it provides parsing
functions, which get and set each input/feature/output report.
Individual sensor processing part (sensor drivers)
------------
+--------------------------------------------------
+
The processing driver will use an interface provided by the core driver to parse
the report and get the indexes of the fields and also can get events. This driver
can use IIO interface to use the standard ABI defined for a type of sensor.
@@ -75,31 +80,34 @@ can use IIO interface to use the standard ABI defined for a type of sensor.
Core driver Interface
=====================
-Callback structure:
-Each processing driver can use this structure to set some callbacks.
+Callback structure::
+
+ Each processing driver can use this structure to set some callbacks.
int (*suspend)(..): Callback when HID suspend is received
int (*resume)(..): Callback when HID resume is received
int (*capture_sample)(..): Capture a sample for one of its data fields
int (*send_event)(..): One complete event is received which can have
multiple data fields.
-Registration functions:
-int sensor_hub_register_callback(struct hid_sensor_hub_device *hsdev,
+Registration functions::
+
+ int sensor_hub_register_callback(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
struct hid_sensor_hub_callbacks *usage_callback):
Registers callbacks for an usage id. The callback functions are not allowed
-to sleep.
+to sleep::
-int sensor_hub_remove_callback(struct hid_sensor_hub_device *hsdev,
+ int sensor_hub_remove_callback(struct hid_sensor_hub_device *hsdev,
u32 usage_id):
Removes callbacks for an usage id.
-Parsing function:
-int sensor_hub_input_get_attribute_info(struct hid_sensor_hub_device *hsdev,
+Parsing function::
+
+ int sensor_hub_input_get_attribute_info(struct hid_sensor_hub_device *hsdev,
u8 type,
u32 usage_id, u32 attr_usage_id,
struct hid_sensor_hub_attribute_info *info);
@@ -110,26 +118,27 @@ so that fields can be set or get individually.
These indexes avoid searching every time and getting field index to get or set.
-Set Feature report
-int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
+Set Feature report::
+
+ int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
u32 field_index, s32 value);
This interface is used to set a value for a field in feature report. For example
if there is a field report_interval, which is parsed by a call to
-sensor_hub_input_get_attribute_info before, then it can directly set that individual
-field.
+sensor_hub_input_get_attribute_info before, then it can directly set that
+individual field::
-int sensor_hub_get_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
+ int sensor_hub_get_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
u32 field_index, s32 *value);
This interface is used to get a value for a field in input report. For example
if there is a field report_interval, which is parsed by a call to
-sensor_hub_input_get_attribute_info before, then it can directly get that individual
-field value.
+sensor_hub_input_get_attribute_info before, then it can directly get that
+individual field value::
-int sensor_hub_input_attr_get_raw_value(struct hid_sensor_hub_device *hsdev,
+ int sensor_hub_input_attr_get_raw_value(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
u32 attr_usage_id, u32 report_id);
@@ -143,6 +152,8 @@ registered callback function to process the sample.
----------
HID Custom and generic Sensors
+------------------------------
+
HID Sensor specification defines two special sensor usage types. Since they
don't represent a standard sensor, it is not possible to define using Linux IIO
@@ -158,66 +169,73 @@ keyboard attached/detached or lid open/close.
To allow application to utilize these sensors, here they are exported uses sysfs
attribute groups, attributes and misc device interface.
-An example of this representation on sysfs:
-/sys/devices/pci0000:00/INT33C2:00/i2c-0/i2c-INT33D1:00/0018:8086:09FA.0001/HID-SENSOR-2000e1.6.auto$ tree -R
-.
-????????? enable_sensor
-????????? feature-0-200316
-??????? ????????? feature-0-200316-maximum
-??????? ????????? feature-0-200316-minimum
-??????? ????????? feature-0-200316-name
-??????? ????????? feature-0-200316-size
-??????? ????????? feature-0-200316-unit-expo
-??????? ????????? feature-0-200316-units
-??????? ????????? feature-0-200316-value
-????????? feature-1-200201
-??????? ????????? feature-1-200201-maximum
-??????? ????????? feature-1-200201-minimum
-??????? ????????? feature-1-200201-name
-??????? ????????? feature-1-200201-size
-??????? ????????? feature-1-200201-unit-expo
-??????? ????????? feature-1-200201-units
-??????? ????????? feature-1-200201-value
-????????? input-0-200201
-??????? ????????? input-0-200201-maximum
-??????? ????????? input-0-200201-minimum
-??????? ????????? input-0-200201-name
-??????? ????????? input-0-200201-size
-??????? ????????? input-0-200201-unit-expo
-??????? ????????? input-0-200201-units
-??????? ????????? input-0-200201-value
-????????? input-1-200202
-??????? ????????? input-1-200202-maximum
-??????? ????????? input-1-200202-minimum
-??????? ????????? input-1-200202-name
-??????? ????????? input-1-200202-size
-??????? ????????? input-1-200202-unit-expo
-??????? ????????? input-1-200202-units
-??????? ????????? input-1-200202-value
+An example of this representation on sysfs::
+
+ /sys/devices/pci0000:00/INT33C2:00/i2c-0/i2c-INT33D1:00/0018:8086:09FA.0001/HID-SENSOR-2000e1.6.auto$ tree -R
+ .
+ │   ├── enable_sensor
+ │   │   ├── feature-0-200316
+ │   │   │   ├── feature-0-200316-maximum
+ │   │   │   ├── feature-0-200316-minimum
+ │   │   │   ├── feature-0-200316-name
+ │   │   │   ├── feature-0-200316-size
+ │   │   │   ├── feature-0-200316-unit-expo
+ │   │   │   ├── feature-0-200316-units
+ │   │   │   ├── feature-0-200316-value
+ │   │   ├── feature-1-200201
+ │   │   │   ├── feature-1-200201-maximum
+ │   │   │   ├── feature-1-200201-minimum
+ │   │   │   ├── feature-1-200201-name
+ │   │   │   ├── feature-1-200201-size
+ │   │   │   ├── feature-1-200201-unit-expo
+ │   │   │   ├── feature-1-200201-units
+ │   │   │   ├── feature-1-200201-value
+ │   │   ├── input-0-200201
+ │   │   │   ├── input-0-200201-maximum
+ │   │   │   ├── input-0-200201-minimum
+ │   │   │   ├── input-0-200201-name
+ │   │   │   ├── input-0-200201-size
+ │   │   │   ├── input-0-200201-unit-expo
+ │   │   │   ├── input-0-200201-units
+ │   │   │   ├── input-0-200201-value
+ │   │   ├── input-1-200202
+ │   │   │   ├── input-1-200202-maximum
+ │   │   │   ├── input-1-200202-minimum
+ │   │   │   ├── input-1-200202-name
+ │   │   │   ├── input-1-200202-size
+ │   │   │   ├── input-1-200202-unit-expo
+ │   │   │   ├── input-1-200202-units
+ │   │   │   ├── input-1-200202-value
Here there is a custom sensors with four fields, two feature and two inputs.
Each field is represented by a set of attributes. All fields except the "value"
are read only. The value field is a RW field.
-Example
-/sys/bus/platform/devices/HID-SENSOR-2000e1.6.auto/feature-0-200316$ grep -r . *
-feature-0-200316-maximum:6
-feature-0-200316-minimum:0
-feature-0-200316-name:property-reporting-state
-feature-0-200316-size:1
-feature-0-200316-unit-expo:0
-feature-0-200316-units:25
-feature-0-200316-value:1
+
+Example::
+
+ /sys/bus/platform/devices/HID-SENSOR-2000e1.6.auto/feature-0-200316$ grep -r . *
+ feature-0-200316-maximum:6
+ feature-0-200316-minimum:0
+ feature-0-200316-name:property-reporting-state
+ feature-0-200316-size:1
+ feature-0-200316-unit-expo:0
+ feature-0-200316-units:25
+ feature-0-200316-value:1
How to enable such sensor?
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
By default sensor can be power gated. To enable sysfs attribute "enable" can be
-used.
-$ echo 1 > enable_sensor
+used::
+
+ $ echo 1 > enable_sensor
Once enabled and powered on, sensor can report value using HID reports.
-These reports are pushed using misc device interface in a FIFO order.
-/dev$ tree | grep HID-SENSOR-2000e1.6.auto
-??????? ????????? 10:53 -> ../HID-SENSOR-2000e1.6.auto
-????????? HID-SENSOR-2000e1.6.auto
+These reports are pushed using misc device interface in a FIFO order::
+
+ /dev$ tree | grep HID-SENSOR-2000e1.6.auto
+ │   │   │   ├── 10:53 -> ../HID-SENSOR-2000e1.6.auto
+ │   ├── HID-SENSOR-2000e1.6.auto
Each reports can be of variable length preceded by a header. This header
consist of a 32 bit usage id, 64 bit time stamp and 32 bit length field of raw
diff --git a/Documentation/hid/hid-transport.txt b/Documentation/hid/hid-transport.rst
index 3dcba9fd4a3a..0fe526f36db6 100644
--- a/Documentation/hid/hid-transport.txt
+++ b/Documentation/hid/hid-transport.rst
@@ -1,5 +1,6 @@
- HID I/O Transport Drivers
- ===========================
+=========================
+HID I/O Transport Drivers
+=========================
The HID subsystem is independent of the underlying transport driver. Initially,
only USB was supported, but other specifications adopted the HID design and
@@ -16,6 +17,8 @@ transport and device setup/management. HID core is responsible of
report-parsing, report interpretation and the user-space API. Device specifics
and quirks are handled by all layers depending on the quirk.
+::
+
+-----------+ +-----------+ +-----------+ +-----------+
| Device #1 | | Device #i | | Device #j | | Device #k |
+-----------+ +-----------+ +-----------+ +-----------+
@@ -42,8 +45,9 @@ and quirks are handled by all layers depending on the quirk.
+----------------+ +-----------+ +------------------+ +------------------+
Example Drivers:
- I/O: USB, I2C, Bluetooth-l2cap
- Transport: USB-HID, I2C-HID, BT-HIDP
+
+ - I/O: USB, I2C, Bluetooth-l2cap
+ - Transport: USB-HID, I2C-HID, BT-HIDP
Everything below "HID Core" is simplified in this graph as it is only of
interest to HID device drivers. Transport drivers do not need to know the
@@ -183,7 +187,7 @@ Other ctrl-channel requests are supported by USB-HID but are not available
-------------------
Transport drivers normally use the following procedure to register a new device
-with HID core:
+with HID core::
struct hid_device *hid;
int ret;
@@ -194,9 +198,9 @@ with HID core:
goto err_<...>;
}
- strlcpy(hid->name, <device-name-src>, 127);
- strlcpy(hid->phys, <device-phys-src>, 63);
- strlcpy(hid->uniq, <device-uniq-src>, 63);
+ strscpy(hid->name, <device-name-src>, sizeof(hid->name));
+ strscpy(hid->phys, <device-phys-src>, sizeof(hid->phys));
+ strscpy(hid->uniq, <device-uniq-src>, sizeof(hid->uniq));
hid->ll_driver = &custom_ll_driver;
hid->bus = <device-bus>;
@@ -215,7 +219,7 @@ Once hid_add_device() is entered, HID core might use the callbacks provided in
"custom_ll_driver". Note that fields like "country" can be ignored by underlying
transport-drivers if not supported.
-To unregister a device, use:
+To unregister a device, use::
hid_destroy_device(hid);
@@ -226,73 +230,110 @@ driver callbacks.
-----------------------------
The available HID callbacks are:
- - int (*start) (struct hid_device *hdev)
+
+ ::
+
+ int (*start) (struct hid_device *hdev)
+
Called from HID device drivers once they want to use the device. Transport
drivers can choose to setup their device in this callback. However, normally
devices are already set up before transport drivers register them to HID core
so this is mostly only used by USB-HID.
- - void (*stop) (struct hid_device *hdev)
+ ::
+
+ void (*stop) (struct hid_device *hdev)
+
Called from HID device drivers once they are done with a device. Transport
drivers can free any buffers and deinitialize the device. But note that
->start() might be called again if another HID device driver is loaded on the
device.
+
Transport drivers are free to ignore it and deinitialize devices after they
destroyed them via hid_destroy_device().
- - int (*open) (struct hid_device *hdev)
+ ::
+
+ int (*open) (struct hid_device *hdev)
+
Called from HID device drivers once they are interested in data reports.
Usually, while user-space didn't open any input API/etc., device drivers are
not interested in device data and transport drivers can put devices asleep.
However, once ->open() is called, transport drivers must be ready for I/O.
->open() calls are nested for each client that opens the HID device.
- - void (*close) (struct hid_device *hdev)
+ ::
+
+ void (*close) (struct hid_device *hdev)
+
Called from HID device drivers after ->open() was called but they are no
longer interested in device reports. (Usually if user-space closed any input
devices of the driver).
+
Transport drivers can put devices asleep and terminate any I/O of all
->open() calls have been followed by a ->close() call. However, ->start() may
be called again if the device driver is interested in input reports again.
- - int (*parse) (struct hid_device *hdev)
+ ::
+
+ int (*parse) (struct hid_device *hdev)
+
Called once during device setup after ->start() has been called. Transport
drivers must read the HID report-descriptor from the device and tell HID core
about it via hid_parse_report().
- - int (*power) (struct hid_device *hdev, int level)
+ ::
+
+ int (*power) (struct hid_device *hdev, int level)
+
Called by HID core to give PM hints to transport drivers. Usually this is
analogical to the ->open() and ->close() hints and redundant.
- - void (*request) (struct hid_device *hdev, struct hid_report *report,
- int reqtype)
+ ::
+
+ void (*request) (struct hid_device *hdev, struct hid_report *report,
+ int reqtype)
+
Send an HID request on the ctrl channel. "report" contains the report that
should be sent and "reqtype" the request type. Request-type can be
HID_REQ_SET_REPORT or HID_REQ_GET_REPORT.
+
This callback is optional. If not provided, HID core will assemble a raw
report following the HID specs and send it via the ->raw_request() callback.
The transport driver is free to implement this asynchronously.
- - int (*wait) (struct hid_device *hdev)
+ ::
+
+ int (*wait) (struct hid_device *hdev)
+
Used by HID core before calling ->request() again. A transport driver can use
it to wait for any pending requests to complete if only one request is
allowed at a time.
- - int (*raw_request) (struct hid_device *hdev, unsigned char reportnum,
- __u8 *buf, size_t count, unsigned char rtype,
- int reqtype)
+ ::
+
+ int (*raw_request) (struct hid_device *hdev, unsigned char reportnum,
+ __u8 *buf, size_t count, unsigned char rtype,
+ int reqtype)
+
Same as ->request() but provides the report as raw buffer. This request shall
be synchronous. A transport driver must not use ->wait() to complete such
requests. This request is mandatory and hid core will reject the device if
it is missing.
- - int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t len)
+ ::
+
+ int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t len)
+
Send raw output report via intr channel. Used by some HID device drivers
which require high throughput for outgoing requests on the intr channel. This
must not cause SET_REPORT calls! This must be implemented as asynchronous
output report on the intr channel!
- - int (*idle) (struct hid_device *hdev, int report, int idle, int reqtype)
+ ::
+
+ int (*idle) (struct hid_device *hdev, int report, int idle, int reqtype)
+
Perform SET/GET_IDLE request. Only used by USB-HID, do not implement!
2.3) Data Path
@@ -314,4 +355,5 @@ transport driver and not passed to hid_input_report().
Acknowledgements to SET_REPORT requests are not of interest to HID core.
----------------------------------------------------
+
Written 2013, David Herrmann <dh.herrmann@gmail.com>
diff --git a/Documentation/hid/hiddev.txt b/Documentation/hid/hiddev.rst
index 638448707aa2..209e6ba4e019 100644
--- a/Documentation/hid/hiddev.txt
+++ b/Documentation/hid/hiddev.rst
@@ -1,6 +1,9 @@
+================================================
Care and feeding of your Human Interface Devices
+================================================
-INTRODUCTION
+Introduction
+============
In addition to the normal input type HID devices, USB also uses the
human interface device protocols for things that are not really human
@@ -16,38 +19,40 @@ normalised event interface - see Documentation/input/input.rst
* the hiddev interface, which provides fairly raw HID events
The data flow for a HID event produced by a device is something like
-the following :
+the following::
usb.c ---> hid-core.c ----> hid-input.c ----> [keyboard/mouse/joystick/event]
|
|
- --> hiddev.c ----> POWER / MONITOR CONTROL
+ --> hiddev.c ----> POWER / MONITOR CONTROL
In addition, other subsystems (apart from USB) can potentially feed
events into the input subsystem, but these have no effect on the hid
device interface.
-USING THE HID DEVICE INTERFACE
+Using the HID Device Interface
+==============================
The hiddev interface is a char interface using the normal USB major,
with the minor numbers starting at 96 and finishing at 111. Therefore,
-you need the following commands:
-mknod /dev/usb/hiddev0 c 180 96
-mknod /dev/usb/hiddev1 c 180 97
-mknod /dev/usb/hiddev2 c 180 98
-mknod /dev/usb/hiddev3 c 180 99
-mknod /dev/usb/hiddev4 c 180 100
-mknod /dev/usb/hiddev5 c 180 101
-mknod /dev/usb/hiddev6 c 180 102
-mknod /dev/usb/hiddev7 c 180 103
-mknod /dev/usb/hiddev8 c 180 104
-mknod /dev/usb/hiddev9 c 180 105
-mknod /dev/usb/hiddev10 c 180 106
-mknod /dev/usb/hiddev11 c 180 107
-mknod /dev/usb/hiddev12 c 180 108
-mknod /dev/usb/hiddev13 c 180 109
-mknod /dev/usb/hiddev14 c 180 110
-mknod /dev/usb/hiddev15 c 180 111
+you need the following commands::
+
+ mknod /dev/usb/hiddev0 c 180 96
+ mknod /dev/usb/hiddev1 c 180 97
+ mknod /dev/usb/hiddev2 c 180 98
+ mknod /dev/usb/hiddev3 c 180 99
+ mknod /dev/usb/hiddev4 c 180 100
+ mknod /dev/usb/hiddev5 c 180 101
+ mknod /dev/usb/hiddev6 c 180 102
+ mknod /dev/usb/hiddev7 c 180 103
+ mknod /dev/usb/hiddev8 c 180 104
+ mknod /dev/usb/hiddev9 c 180 105
+ mknod /dev/usb/hiddev10 c 180 106
+ mknod /dev/usb/hiddev11 c 180 107
+ mknod /dev/usb/hiddev12 c 180 108
+ mknod /dev/usb/hiddev13 c 180 109
+ mknod /dev/usb/hiddev14 c 180 110
+ mknod /dev/usb/hiddev15 c 180 111
So you point your hiddev compliant user-space program at the correct
interface for your device, and it all just works.
@@ -56,7 +61,9 @@ Assuming that you have a hiddev compliant user-space program, of
course. If you need to write one, read on.
-THE HIDDEV API
+The HIDDEV API
+==============
+
This description should be read in conjunction with the HID
specification, freely available from http://www.usb.org, and
conveniently linked of http://www.linux-usb.org.
@@ -69,12 +76,14 @@ each of which can have one or more "usages". In the hid-core,
each one of these usages has a single signed 32 bit value.
read():
+-------
+
This is the event interface. When the HID device's state changes,
it performs an interrupt transfer containing a report which contains
the changed value. The hid-core.c module parses the report, and
returns to hiddev.c the individual usages that have changed within
the report. In its basic mode, the hiddev will make these individual
-usage changes available to the reader using a struct hiddev_event:
+usage changes available to the reader using a struct hiddev_event::
struct hiddev_event {
unsigned hid;
@@ -90,13 +99,19 @@ behavior of the read() function can be modified using the HIDIOCSFLAG
ioctl() described below.
-ioctl():
-This is the control interface. There are a number of controls:
+ioctl():
+--------
+
+This is the control interface. There are a number of controls:
+
+HIDIOCGVERSION
+ - int (read)
+
+ Gets the version code out of the hiddev driver.
-HIDIOCGVERSION - int (read)
-Gets the version code out of the hiddev driver.
+HIDIOCAPPLICATION
+ - (none)
-HIDIOCAPPLICATION - (none)
This ioctl call returns the HID application usage associated with the
hid device. The third argument to ioctl() specifies which application
index to get. This is useful when the device has more than one
@@ -104,25 +119,33 @@ application collection. If the index is invalid (greater or equal to
the number of application collections this device has) the ioctl
returns -1. You can find out beforehand how many application
collections the device has from the num_applications field from the
-hiddev_devinfo structure.
+hiddev_devinfo structure.
+
+HIDIOCGCOLLECTIONINFO
+ - struct hiddev_collection_info (read/write)
-HIDIOCGCOLLECTIONINFO - struct hiddev_collection_info (read/write)
This returns a superset of the information above, providing not only
application collections, but all the collections the device has. It
also returns the level the collection lives in the hierarchy.
-The user passes in a hiddev_collection_info struct with the index
-field set to the index that should be returned. The ioctl fills in
-the other fields. If the index is larger than the last collection
+The user passes in a hiddev_collection_info struct with the index
+field set to the index that should be returned. The ioctl fills in
+the other fields. If the index is larger than the last collection
index, the ioctl returns -1 and sets errno to -EINVAL.
-HIDIOCGDEVINFO - struct hiddev_devinfo (read)
+HIDIOCGDEVINFO
+ - struct hiddev_devinfo (read)
+
Gets a hiddev_devinfo structure which describes the device.
-HIDIOCGSTRING - struct hiddev_string_descriptor (read/write)
+HIDIOCGSTRING
+ - struct hiddev_string_descriptor (read/write)
+
Gets a string descriptor from the device. The caller must fill in the
"index" field to indicate which descriptor should be returned.
-HIDIOCINITREPORT - (none)
+HIDIOCINITREPORT
+ - (none)
+
Instructs the kernel to retrieve all input and feature report values
from the device. At this point, all the usage structures will contain
current values for the device, and will maintain it as the device
@@ -130,21 +153,29 @@ changes. Note that the use of this ioctl is unnecessary in general,
since later kernels automatically initialize the reports from the
device at attach time.
-HIDIOCGNAME - string (variable length)
+HIDIOCGNAME
+ - string (variable length)
+
Gets the device name
-HIDIOCGREPORT - struct hiddev_report_info (write)
+HIDIOCGREPORT
+ - struct hiddev_report_info (write)
+
Instructs the kernel to get a feature or input report from the device,
in order to selectively update the usage structures (in contrast to
INITREPORT).
-HIDIOCSREPORT - struct hiddev_report_info (write)
+HIDIOCSREPORT
+ - struct hiddev_report_info (write)
+
Instructs the kernel to send a report to the device. This report can
be filled in by the user through HIDIOCSUSAGE calls (below) to fill in
individual usage values in the report before sending the report in full
-to the device.
+to the device.
+
+HIDIOCGREPORTINFO
+ - struct hiddev_report_info (read/write)
-HIDIOCGREPORTINFO - struct hiddev_report_info (read/write)
Fills in a hiddev_report_info structure for the user. The report is
looked up by type (input, output or feature) and id, so these fields
must be filled in by the user. The ID can be absolute -- the actual
@@ -154,52 +185,67 @@ report_id) for the next report after report_id. Without a-priori
information about report ids, the right way to use this ioctl is to
use the relative IDs above to enumerate the valid IDs. The ioctl
returns non-zero when there is no more next ID. The real report ID is
-filled into the returned hiddev_report_info structure.
+filled into the returned hiddev_report_info structure.
+
+HIDIOCGFIELDINFO
+ - struct hiddev_field_info (read/write)
-HIDIOCGFIELDINFO - struct hiddev_field_info (read/write)
Returns the field information associated with a report in a
hiddev_field_info structure. The user must fill in report_id and
report_type in this structure, as above. The field_index should also
be filled in, which should be a number from 0 and maxfield-1, as
-returned from a previous HIDIOCGREPORTINFO call.
+returned from a previous HIDIOCGREPORTINFO call.
+
+HIDIOCGUCODE
+ - struct hiddev_usage_ref (read/write)
-HIDIOCGUCODE - struct hiddev_usage_ref (read/write)
Returns the usage_code in a hiddev_usage_ref structure, given that
given its report type, report id, field index, and index within the
field have already been filled into the structure.
-HIDIOCGUSAGE - struct hiddev_usage_ref (read/write)
+HIDIOCGUSAGE
+ - struct hiddev_usage_ref (read/write)
+
Returns the value of a usage in a hiddev_usage_ref structure. The
usage to be retrieved can be specified as above, or the user can
choose to fill in the report_type field and specify the report_id as
HID_REPORT_ID_UNKNOWN. In this case, the hiddev_usage_ref will be
filled in with the report and field information associated with this
-usage if it is found.
+usage if it is found.
+
+HIDIOCSUSAGE
+ - struct hiddev_usage_ref (write)
-HIDIOCSUSAGE - struct hiddev_usage_ref (write)
Sets the value of a usage in an output report. The user fills in
the hiddev_usage_ref structure as above, but additionally fills in
the value field.
-HIDIOGCOLLECTIONINDEX - struct hiddev_usage_ref (write)
+HIDIOGCOLLECTIONINDEX
+ - struct hiddev_usage_ref (write)
+
Returns the collection index associated with this usage. This
indicates where in the collection hierarchy this usage sits.
-HIDIOCGFLAG - int (read)
-HIDIOCSFLAG - int (write)
+HIDIOCGFLAG
+ - int (read)
+HIDIOCSFLAG
+ - int (write)
+
These operations respectively inspect and replace the mode flags
that influence the read() call above. The flags are as follows:
- HIDDEV_FLAG_UREF - read() calls will now return
+ HIDDEV_FLAG_UREF
+ - read() calls will now return
struct hiddev_usage_ref instead of struct hiddev_event.
This is a larger structure, but in situations where the
device has more than one usage in its reports with the
same usage code, this mode serves to resolve such
ambiguity.
- HIDDEV_FLAG_REPORT - This flag can only be used in conjunction
+ HIDDEV_FLAG_REPORT
+ - This flag can only be used in conjunction
with HIDDEV_FLAG_UREF. With this flag set, when the device
sends a report, a struct hiddev_usage_ref will be returned
- to read() filled in with the report_type and report_id, but
+ to read() filled in with the report_type and report_id, but
with field_index set to FIELD_INDEX_NONE. This serves as
additional notification when the device has sent a report.
diff --git a/Documentation/hid/hidraw.txt b/Documentation/hid/hidraw.rst
index c8436e354f44..4a4a0ba1f362 100644
--- a/Documentation/hid/hidraw.txt
+++ b/Documentation/hid/hidraw.rst
@@ -1,5 +1,6 @@
- HIDRAW - Raw Access to USB and Bluetooth Human Interface Devices
- ==================================================================
+================================================================
+HIDRAW - Raw Access to USB and Bluetooth Human Interface Devices
+================================================================
The hidraw driver provides a raw interface to USB and Bluetooth Human
Interface Devices (HIDs). It differs from hiddev in that reports sent and
@@ -31,6 +32,7 @@ directly under /dev (eg: /dev/hidraw0). As this location is distribution-
and udev rule-dependent, applications should use libudev to locate hidraw
devices attached to the system. There is a tutorial on libudev with a
working example at:
+
http://www.signal11.us/oss/udev/
The HIDRAW API
@@ -51,7 +53,7 @@ byte. For devices which do not use numbered reports, the report data
will begin at the first byte.
write()
---------
+-------
The write() function will write a report to the device. For USB devices, if
the device has an INTERRUPT OUT endpoint, the report will be sent on that
endpoint. If it does not, the report will be sent over the control endpoint,
@@ -62,38 +64,52 @@ number. If the device does not use numbered reports, the first byte should
be set to 0. The report data itself should begin at the second byte.
ioctl()
---------
+-------
Hidraw supports the following ioctls:
-HIDIOCGRDESCSIZE: Get Report Descriptor Size
+HIDIOCGRDESCSIZE:
+ Get Report Descriptor Size
+
This ioctl will get the size of the device's report descriptor.
-HIDIOCGRDESC: Get Report Descriptor
+HIDIOCGRDESC:
+ Get Report Descriptor
+
This ioctl returns the device's report descriptor using a
hidraw_report_descriptor struct. Make sure to set the size field of the
hidraw_report_descriptor struct to the size returned from HIDIOCGRDESCSIZE.
-HIDIOCGRAWINFO: Get Raw Info
+HIDIOCGRAWINFO:
+ Get Raw Info
+
This ioctl will return a hidraw_devinfo struct containing the bus type, the
vendor ID (VID), and product ID (PID) of the device. The bus type can be one
-of:
- BUS_USB
- BUS_HIL
- BUS_BLUETOOTH
- BUS_VIRTUAL
+of::
+
+ - BUS_USB
+ - BUS_HIL
+ - BUS_BLUETOOTH
+ - BUS_VIRTUAL
+
which are defined in uapi/linux/input.h.
-HIDIOCGRAWNAME(len): Get Raw Name
+HIDIOCGRAWNAME(len):
+ Get Raw Name
+
This ioctl returns a string containing the vendor and product strings of
the device. The returned string is Unicode, UTF-8 encoded.
-HIDIOCGRAWPHYS(len): Get Physical Address
+HIDIOCGRAWPHYS(len):
+ Get Physical Address
+
This ioctl returns a string representing the physical address of the device.
For USB devices, the string contains the physical path to the device (the
USB controller, hubs, ports, etc). For Bluetooth devices, the string
contains the hardware (MAC) address of the device.
-HIDIOCSFEATURE(len): Send a Feature Report
+HIDIOCSFEATURE(len):
+ Send a Feature Report
+
This ioctl will send a feature report to the device. Per the HID
specification, feature reports are always sent using the control endpoint.
Set the first byte of the supplied buffer to the report number. For devices
@@ -101,7 +117,9 @@ which do not use numbered reports, set the first byte to 0. The report data
begins in the second byte. Make sure to set len accordingly, to one more
than the length of the report (to account for the report number).
-HIDIOCGFEATURE(len): Get a Feature Report
+HIDIOCGFEATURE(len):
+ Get a Feature Report
+
This ioctl will request a feature report from the device using the control
endpoint. The first byte of the supplied buffer should be set to the report
number of the requested report. For devices which do not use numbered
@@ -109,11 +127,12 @@ reports, set the first byte to 0. The report will be returned starting at
the first byte of the buffer (ie: the report number is not returned).
Example
----------
+-------
In samples/, find hid-example.c, which shows examples of read(), write(),
and all the ioctls for hidraw. The code may be used by anyone for any
purpose, and can serve as a starting point for developing applications using
hidraw.
Document by:
+
Alan Ott <alan@signal11.us>, Signal 11 Software
diff --git a/Documentation/hid/index.rst b/Documentation/hid/index.rst
new file mode 100644
index 000000000000..af4324902622
--- /dev/null
+++ b/Documentation/hid/index.rst
@@ -0,0 +1,18 @@
+:orphan:
+
+=============================
+Human Interface Devices (HID)
+=============================
+
+.. toctree::
+ :maxdepth: 1
+
+ hiddev
+ hidraw
+ hid-sensor
+ hid-transport
+
+ uhid
+
+ hid-alps
+ intel-ish-hid
diff --git a/Documentation/hid/intel-ish-hid.rst b/Documentation/hid/intel-ish-hid.rst
new file mode 100644
index 000000000000..cccbf4be17d7
--- /dev/null
+++ b/Documentation/hid/intel-ish-hid.rst
@@ -0,0 +1,485 @@
+=================================
+Intel Integrated Sensor Hub (ISH)
+=================================
+
+A sensor hub enables the ability to offload sensor polling and algorithm
+processing to a dedicated low power co-processor. This allows the core
+processor to go into low power modes more often, resulting in the increased
+battery life.
+
+There are many vendors providing external sensor hubs confirming to HID
+Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops
+and embedded products. Linux had this support since Linux 3.9.
+
+Intel® introduced integrated sensor hubs as a part of the SoC starting from
+Cherry Trail and now supported on multiple generations of CPU packages. There
+are many commercial devices already shipped with Integrated Sensor Hubs (ISH).
+These ISH also comply to HID sensor specification, but the difference is the
+transport protocol used for communication. The current external sensor hubs
+mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB.
+
+1. Overview
+===========
+
+Using a analogy with a usbhid implementation, the ISH follows a similar model
+for a very high speed communication::
+
+ ----------------- ----------------------
+ | USB HID | --> | ISH HID |
+ ----------------- ----------------------
+ ----------------- ----------------------
+ | USB protocol | --> | ISH Transport |
+ ----------------- ----------------------
+ ----------------- ----------------------
+ | EHCI/XHCI | --> | ISH IPC |
+ ----------------- ----------------------
+ PCI PCI
+ ----------------- ----------------------
+ |Host controller| --> | ISH processor |
+ ----------------- ----------------------
+ USB Link
+ ----------------- ----------------------
+ | USB End points| --> | ISH Clients |
+ ----------------- ----------------------
+
+Like USB protocol provides a method for device enumeration, link management
+and user data encapsulation, the ISH also provides similar services. But it is
+very light weight tailored to manage and communicate with ISH client
+applications implemented in the firmware.
+
+The ISH allows multiple sensor management applications executing in the
+firmware. Like USB endpoints the messaging can be to/from a client. As part of
+enumeration process, these clients are identified. These clients can be simple
+HID sensor applications, sensor calibration application or senor firmware
+update application.
+
+The implementation model is similar, like USB bus, ISH transport is also
+implemented as a bus. Each client application executing in the ISH processor
+is registered as a device on this bus. The driver, which binds each device
+(ISH HID driver) identifies the device type and registers with the hid core.
+
+2. ISH Implementation: Block Diagram
+====================================
+
+::
+
+ ---------------------------
+ | User Space Applications |
+ ---------------------------
+
+ ----------------IIO ABI----------------
+ --------------------------
+ | IIO Sensor Drivers |
+ --------------------------
+ --------------------------
+ | IIO core |
+ --------------------------
+ --------------------------
+ | HID Sensor Hub MFD |
+ --------------------------
+ --------------------------
+ | HID Core |
+ --------------------------
+ --------------------------
+ | HID over ISH Client |
+ --------------------------
+ --------------------------
+ | ISH Transport (ISHTP) |
+ --------------------------
+ --------------------------
+ | IPC Drivers |
+ --------------------------
+ OS
+ ---------------- PCI -----------------
+ Hardware + Firmware
+ ----------------------------
+ | ISH Hardware/Firmware(FW) |
+ ----------------------------
+
+3. High level processing in above blocks
+========================================
+
+3.1 Hardware Interface
+----------------------
+
+The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI
+product and vendor IDs are changed from different generations of processors. So
+the source code which enumerate drivers needs to update from generation to
+generation.
+
+3.2 Inter Processor Communication (IPC) driver
+----------------------------------------------
+
+Location: drivers/hid/intel-ish-hid/ipc
+
+The IPC message used memory mapped I/O. The registers are defined in
+hw-ish-regs.h.
+
+3.2.1 IPC/FW message types
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+There are two types of messages, one for management of link and other messages
+are to and from transport layers.
+
+TX and RX of Transport messages
+...............................
+
+A set of memory mapped register offers support of multi byte messages TX and
+RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains
+internal queues to sequence messages and send them in order to the FW.
+Optionally the caller can register handler to get notification of completion.
+A door bell mechanism is used in messaging to trigger processing in host and
+client firmware side. When ISH interrupt handler is called, the ISH2HOST
+doorbell register is used by host drivers to determine that the interrupt
+is for ISH.
+
+Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell
+register has the following format:
+Bits 0..6: fragment length (7 bits are used)
+Bits 10..13: encapsulated protocol
+Bits 16..19: management command (for IPC management protocol)
+Bit 31: doorbell trigger (signal H/W interrupt to the other side)
+Other bits are reserved, should be 0.
+
+3.2.2 Transport layer interface
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+To abstract HW level IPC communication, a set of callbacks are registered.
+The transport layer uses them to send and receive messages.
+Refer to struct ishtp_hw_ops for callbacks.
+
+3.3 ISH Transport layer
+-----------------------
+
+Location: drivers/hid/intel-ish-hid/ishtp/
+
+3.3.1 A Generic Transport Layer
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The transport layer is a bi-directional protocol, which defines:
+- Set of commands to start, stop, connect, disconnect and flow control
+(ishtp/hbm.h) for details
+- A flow control mechanism to avoid buffer overflows
+
+This protocol resembles bus messages described in the following document:
+http://www.intel.com/content/dam/www/public/us/en/documents/technical-\
+specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer"
+
+3.3.2 Connection and Flow Control Mechanism
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Each FW client and a protocol is identified by an UUID. In order to communicate
+to a FW client, a connection must be established using connect request and
+response bus messages. If successful, a pair (host_client_id and fw_client_id)
+will identify the connection.
+
+Once connection is established, peers send each other flow control bus messages
+independently. Every peer may send a message only if it has received a
+flow-control credit before. Once it sent a message, it may not send another one
+before receiving the next flow control credit.
+Either side can send disconnect request bus message to end communication. Also
+the link will be dropped if major FW reset occurs.
+
+3.3.3 Peer to Peer data transfer
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Peer to Peer data transfer can happen with or without using DMA. Depending on
+the sensor bandwidth requirement DMA can be enabled by using module parameter
+ishtp_use_dma under intel_ishtp.
+
+Each side (host and FW) manages its DMA transfer memory independently. When an
+ISHTP client from either host or FW side wants to send something, it decides
+whether to send over IPC or over DMA; for each transfer the decision is
+independent. The sending side sends DMA_XFER message when the message is in
+the respective host buffer (TX when host client sends, RX when FW client
+sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating
+the sender that the memory region for that message may be reused.
+
+DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message
+(that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
+Additionally to DMA address communication, this sequence checks capabilities:
+if thw host doesn't support DMA, then it won't send DMA allocation, so FW can't
+send DMA; if FW doesn't support DMA then it won't respond with
+DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers.
+Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER,
+it's request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means
+that it already did DMA and the message resides at host. Thus, DMA_XFER
+and DMA_XFER_ACK act as ownership indicators.
+
+At initial state all outgoing memory belongs to the sender (TX to host, RX to
+FW), DMA_XFER transfers ownership on the region that contains ISHTP message to
+the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender
+needs not wait for previous DMA_XFER to be ack'ed, and may send another message
+as long as remaining continuous memory in its ownership is enough.
+In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once
+(up to IPC MTU), thus allowing for interrupt throttling.
+Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC
+fragments and via IPC otherwise.
+
+3.3.4 Ring Buffers
+^^^^^^^^^^^^^^^^^^
+
+When a client initiate a connection, a ring or RX and TX buffers are allocated.
+The size of ring can be specified by the client. HID client set 16 and 32 for
+TX and RX buffers respectively. On send request from client, the data to be
+sent is copied to one of the send ring buffer and scheduled to be sent using
+bus message protocol. These buffers are required because the FW may have not
+have processed the last message and may not have enough flow control credits
+to send. Same thing holds true on receive side and flow control is required.
+
+3.3.5 Host Enumeration
+^^^^^^^^^^^^^^^^^^^^^^
+
+The host enumeration bus command allow discovery of clients present in the FW.
+There can be multiple sensor clients and clients for calibration function.
+
+To ease in implantation and allow independent driver handle each client
+this transport layer takes advantage of Linux Bus driver model. Each
+client is registered as device on the the transport bus (ishtp bus).
+
+Enumeration sequence of messages:
+
+- Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.
+- FW responds with HOST_START_RES_CMD
+- Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)
+- FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW
+ client IDs
+- For each FW ID found in that bitmap host sends
+ HOST_CLIENT_PROPERTIES_REQ_CMD
+- FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID,
+ max ISHTP message size, etc.
+- Once host received properties for that last discovered client, it considers
+ ISHTP device fully functional (and allocates DMA buffers)
+
+3.4 HID over ISH Client
+-----------------------
+
+Location: drivers/hid/intel-ish-hid
+
+The ISHTP client driver is responsible for:
+
+- enumerate HID devices under FW ISH client
+- Get Report descriptor
+- Register with HID core as a LL driver
+- Process Get/Set feature request
+- Get input reports
+
+3.5 HID Sensor Hub MFD and IIO sensor drivers
+---------------------------------------------
+
+The functionality in these drivers is the same as an external sensor hub.
+Refer to
+Documentation/hid/hid-sensor.rst for HID sensor
+Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space
+
+3.6 End to End HID transport Sequence Diagram
+---------------------------------------------
+
+::
+
+ HID-ISH-CLN ISHTP IPC HW
+ | | | |
+ | | |-----WAKE UP------------------>|
+ | | | |
+ | | |-----HOST READY--------------->|
+ | | | |
+ | | |<----MNG_RESET_NOTIFY_ACK----- |
+ | | | |
+ | |<----ISHTP_START------ | |
+ | | | |
+ | |<-----------------HOST_START_RES_CMD-------------------|
+ | | | |
+ | |------------------QUERY_SUBSCRIBER-------------------->|
+ | | | |
+ | |------------------HOST_ENUM_REQ_CMD------------------->|
+ | | | |
+ | |<-----------------HOST_ENUM_RES_CMD--------------------|
+ | | | |
+ | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
+ | | | |
+ | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
+ | Create new device on in ishtp bus | |
+ | | | |
+ | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
+ | | | |
+ | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
+ | Create new device on in ishtp bus | |
+ | | | |
+ | |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one--|
+ | | | |
+ probed()
+ |----ishtp_cl_connect--->|----------------- CLIENT_CONNECT_REQ_CMD-------------->|
+ | | | |
+ | |<----------------CLIENT_CONNECT_RES_CMD----------------|
+ | | | |
+ |register event callback | | |
+ | | | |
+ |ishtp_cl_send(
+ HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct write to HW----- >|
+ | | | |
+ | | |<-----IRQ(IPC_PROTOCOL_ISHTP---|
+ | | | |
+ |<--ENUM_DEVICE RSP------| | |
+ | | | |
+ for each enumerated device
+ |ishtp_cl_send(
+ HOSTIF_GET_HID_DESCRIPTOR|----------fill ishtp_msg_hdr struct write to HW----- >|
+ | | | |
+ ...Response
+ | | | |
+ for each enumerated device
+ |ishtp_cl_send(
+ HOSTIF_GET_REPORT_DESCRIPTOR|--------------fill ishtp_msg_hdr struct write to HW-- >|
+ | | | |
+ | | | |
+ hid_allocate_device
+ | | | |
+ hid_add_device | | |
+ | | | |
+
+
+3.7 ISH Debugging
+-----------------
+
+To debug ISH, event tracing mechanism is used. To enable debug logs
+echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable
+cat sys/kernel/debug/tracing/trace
+
+3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260
+-----------------------------------------------------
+
+::
+
+ root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
+ /sys/bus/iio/devices/
+ ├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0
+ │   ├── buffer
+ │   │   ├── enable
+ │   │   ├── length
+ │   │   └── watermark
+ ...
+ │   ├── in_accel_hysteresis
+ │   ├── in_accel_offset
+ │   ├── in_accel_sampling_frequency
+ │   ├── in_accel_scale
+ │   ├── in_accel_x_raw
+ │   ├── in_accel_y_raw
+ │   ├── in_accel_z_raw
+ │   ├── name
+ │   ├── scan_elements
+ │   │   ├── in_accel_x_en
+ │   │   ├── in_accel_x_index
+ │   │   ├── in_accel_x_type
+ │   │   ├── in_accel_y_en
+ │   │   ├── in_accel_y_index
+ │   │   ├── in_accel_y_type
+ │   │   ├── in_accel_z_en
+ │   │   ├── in_accel_z_index
+ │   │   └── in_accel_z_type
+ ...
+ │   │   ├── devices
+ │   │   │   │   ├── buffer
+ │   │   │   │   │   ├── enable
+ │   │   │   │   │   ├── length
+ │   │   │   │   │   └── watermark
+ │   │   │   │   ├── dev
+ │   │   │   │   ├── in_intensity_both_raw
+ │   │   │   │   ├── in_intensity_hysteresis
+ │   │   │   │   ├── in_intensity_offset
+ │   │   │   │   ├── in_intensity_sampling_frequency
+ │   │   │   │   ├── in_intensity_scale
+ │   │   │   │   ├── name
+ │   │   │   │   ├── scan_elements
+ │   │   │   │   │   ├── in_intensity_both_en
+ │   │   │   │   │   ├── in_intensity_both_index
+ │   │   │   │   │   └── in_intensity_both_type
+ │   │   │   │   ├── trigger
+ │   │   │   │   │   └── current_trigger
+ ...
+ │   │   │   │   ├── buffer
+ │   │   │   │   │   ├── enable
+ │   │   │   │   │   ├── length
+ │   │   │   │   │   └── watermark
+ │   │   │   │   ├── dev
+ │   │   │   │   ├── in_magn_hysteresis
+ │   │   │   │   ├── in_magn_offset
+ │   │   │   │   ├── in_magn_sampling_frequency
+ │   │   │   │   ├── in_magn_scale
+ │   │   │   │   ├── in_magn_x_raw
+ │   │   │   │   ├── in_magn_y_raw
+ │   │   │   │   ├── in_magn_z_raw
+ │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_raw
+ │   │   │   │   ├── in_rot_hysteresis
+ │   │   │   │   ├── in_rot_offset
+ │   │   │   │   ├── in_rot_sampling_frequency
+ │   │   │   │   ├── in_rot_scale
+ │   │   │   │   ├── name
+ ...
+ │   │   │   │   ├── scan_elements
+ │   │   │   │   │   ├── in_magn_x_en
+ │   │   │   │   │   ├── in_magn_x_index
+ │   │   │   │   │   ├── in_magn_x_type
+ │   │   │   │   │   ├── in_magn_y_en
+ │   │   │   │   │   ├── in_magn_y_index
+ │   │   │   │   │   ├── in_magn_y_type
+ │   │   │   │   │   ├── in_magn_z_en
+ │   │   │   │   │   ├── in_magn_z_index
+ │   │   │   │   │   ├── in_magn_z_type
+ │   │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_en
+ │   │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_index
+ │   │   │   │   │   └── in_rot_from_north_magnetic_tilt_comp_type
+ │   │   │   │   ├── trigger
+ │   │   │   │   │   └── current_trigger
+ ...
+ │   │   │   │   ├── buffer
+ │   │   │   │   │   ├── enable
+ │   │   │   │   │   ├── length
+ │   │   │   │   │   └── watermark
+ │   │   │   │   ├── dev
+ │   │   │   │   ├── in_anglvel_hysteresis
+ │   │   │   │   ├── in_anglvel_offset
+ │   │   │   │   ├── in_anglvel_sampling_frequency
+ │   │   │   │   ├── in_anglvel_scale
+ │   │   │   │   ├── in_anglvel_x_raw
+ │   │   │   │   ├── in_anglvel_y_raw
+ │   │   │   │   ├── in_anglvel_z_raw
+ │   │   │   │   ├── name
+ │   │   │   │   ├── scan_elements
+ │   │   │   │   │   ├── in_anglvel_x_en
+ │   │   │   │   │   ├── in_anglvel_x_index
+ │   │   │   │   │   ├── in_anglvel_x_type
+ │   │   │   │   │   ├── in_anglvel_y_en
+ │   │   │   │   │   ├── in_anglvel_y_index
+ │   │   │   │   │   ├── in_anglvel_y_type
+ │   │   │   │   │   ├── in_anglvel_z_en
+ │   │   │   │   │   ├── in_anglvel_z_index
+ │   │   │   │   │   └── in_anglvel_z_type
+ │   │   │   │   ├── trigger
+ │   │   │   │   │   └── current_trigger
+ ...
+ │   │   │   │   ├── buffer
+ │   │   │   │   │   ├── enable
+ │   │   │   │   │   ├── length
+ │   │   │   │   │   └── watermark
+ │   │   │   │   ├── dev
+ │   │   │   │   ├── in_anglvel_hysteresis
+ │   │   │   │   ├── in_anglvel_offset
+ │   │   │   │   ├── in_anglvel_sampling_frequency
+ │   │   │   │   ├── in_anglvel_scale
+ │   │   │   │   ├── in_anglvel_x_raw
+ │   │   │   │   ├── in_anglvel_y_raw
+ │   │   │   │   ├── in_anglvel_z_raw
+ │   │   │   │   ├── name
+ │   │   │   │   ├── scan_elements
+ │   │   │   │   │   ├── in_anglvel_x_en
+ │   │   │   │   │   ├── in_anglvel_x_index
+ │   │   │   │   │   ├── in_anglvel_x_type
+ │   │   │   │   │   ├── in_anglvel_y_en
+ │   │   │   │   │   ├── in_anglvel_y_index
+ │   │   │   │   │   ├── in_anglvel_y_type
+ │   │   │   │   │   ├── in_anglvel_z_en
+ │   │   │   │   │   ├── in_anglvel_z_index
+ │   │   │   │   │   └── in_anglvel_z_type
+ │   │   │   │   ├── trigger
+ │   │   │   │   │   └── current_trigger
+ ...
diff --git a/Documentation/hid/intel-ish-hid.txt b/Documentation/hid/intel-ish-hid.txt
deleted file mode 100644
index d48b21c71ddd..000000000000
--- a/Documentation/hid/intel-ish-hid.txt
+++ /dev/null
@@ -1,454 +0,0 @@
-Intel Integrated Sensor Hub (ISH)
-===============================
-
-A sensor hub enables the ability to offload sensor polling and algorithm
-processing to a dedicated low power co-processor. This allows the core
-processor to go into low power modes more often, resulting in the increased
-battery life.
-
-There are many vendors providing external sensor hubs confirming to HID
-Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops
-and embedded products. Linux had this support since Linux 3.9.
-
-Intel® introduced integrated sensor hubs as a part of the SoC starting from
-Cherry Trail and now supported on multiple generations of CPU packages. There
-are many commercial devices already shipped with Integrated Sensor Hubs (ISH).
-These ISH also comply to HID sensor specification, but the difference is the
-transport protocol used for communication. The current external sensor hubs
-mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB.
-
-1. Overview
-
-Using a analogy with a usbhid implementation, the ISH follows a similar model
-for a very high speed communication:
-
- ----------------- ----------------------
- | USB HID | --> | ISH HID |
- ----------------- ----------------------
- ----------------- ----------------------
- | USB protocol | --> | ISH Transport |
- ----------------- ----------------------
- ----------------- ----------------------
- | EHCI/XHCI | --> | ISH IPC |
- ----------------- ----------------------
- PCI PCI
- ----------------- ----------------------
- |Host controller| --> | ISH processor |
- ----------------- ----------------------
- USB Link
- ----------------- ----------------------
- | USB End points| --> | ISH Clients |
- ----------------- ----------------------
-
-Like USB protocol provides a method for device enumeration, link management
-and user data encapsulation, the ISH also provides similar services. But it is
-very light weight tailored to manage and communicate with ISH client
-applications implemented in the firmware.
-
-The ISH allows multiple sensor management applications executing in the
-firmware. Like USB endpoints the messaging can be to/from a client. As part of
-enumeration process, these clients are identified. These clients can be simple
-HID sensor applications, sensor calibration application or senor firmware
-update application.
-
-The implementation model is similar, like USB bus, ISH transport is also
-implemented as a bus. Each client application executing in the ISH processor
-is registered as a device on this bus. The driver, which binds each device
-(ISH HID driver) identifies the device type and registers with the hid core.
-
-2. ISH Implementation: Block Diagram
-
- ---------------------------
- | User Space Applications |
- ---------------------------
-
-----------------IIO ABI----------------
- --------------------------
- | IIO Sensor Drivers |
- --------------------------
- --------------------------
- | IIO core |
- --------------------------
- --------------------------
- | HID Sensor Hub MFD |
- --------------------------
- --------------------------
- | HID Core |
- --------------------------
- --------------------------
- | HID over ISH Client |
- --------------------------
- --------------------------
- | ISH Transport (ISHTP) |
- --------------------------
- --------------------------
- | IPC Drivers |
- --------------------------
-OS
----------------- PCI -----------------
-Hardware + Firmware
- ----------------------------
- | ISH Hardware/Firmware(FW) |
- ----------------------------
-
-3. High level processing in above blocks
-
-3.1 Hardware Interface
-
-The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI
-product and vendor IDs are changed from different generations of processors. So
-the source code which enumerate drivers needs to update from generation to
-generation.
-
-3.2 Inter Processor Communication (IPC) driver
-Location: drivers/hid/intel-ish-hid/ipc
-
-The IPC message used memory mapped I/O. The registers are defined in
-hw-ish-regs.h.
-
-3.2.1 IPC/FW message types
-
-There are two types of messages, one for management of link and other messages
-are to and from transport layers.
-
-TX and RX of Transport messages
-
-A set of memory mapped register offers support of multi byte messages TX and
-RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains
-internal queues to sequence messages and send them in order to the FW.
-Optionally the caller can register handler to get notification of completion.
-A door bell mechanism is used in messaging to trigger processing in host and
-client firmware side. When ISH interrupt handler is called, the ISH2HOST
-doorbell register is used by host drivers to determine that the interrupt
-is for ISH.
-
-Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell
-register has the following format:
-Bits 0..6: fragment length (7 bits are used)
-Bits 10..13: encapsulated protocol
-Bits 16..19: management command (for IPC management protocol)
-Bit 31: doorbell trigger (signal H/W interrupt to the other side)
-Other bits are reserved, should be 0.
-
-3.2.2 Transport layer interface
-
-To abstract HW level IPC communication, a set of callbacks are registered.
-The transport layer uses them to send and receive messages.
-Refer to struct ishtp_hw_ops for callbacks.
-
-3.3 ISH Transport layer
-Location: drivers/hid/intel-ish-hid/ishtp/
-
-3.3.1 A Generic Transport Layer
-
-The transport layer is a bi-directional protocol, which defines:
-- Set of commands to start, stop, connect, disconnect and flow control
-(ishtp/hbm.h) for details
-- A flow control mechanism to avoid buffer overflows
-
-This protocol resembles bus messages described in the following document:
-http://www.intel.com/content/dam/www/public/us/en/documents/technical-\
-specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer"
-
-3.3.2 Connection and Flow Control Mechanism
-
-Each FW client and a protocol is identified by an UUID. In order to communicate
-to a FW client, a connection must be established using connect request and
-response bus messages. If successful, a pair (host_client_id and fw_client_id)
-will identify the connection.
-
-Once connection is established, peers send each other flow control bus messages
-independently. Every peer may send a message only if it has received a
-flow-control credit before. Once it sent a message, it may not send another one
-before receiving the next flow control credit.
-Either side can send disconnect request bus message to end communication. Also
-the link will be dropped if major FW reset occurs.
-
-3.3.3 Peer to Peer data transfer
-
-Peer to Peer data transfer can happen with or without using DMA. Depending on
-the sensor bandwidth requirement DMA can be enabled by using module parameter
-ishtp_use_dma under intel_ishtp.
-
-Each side (host and FW) manages its DMA transfer memory independently. When an
-ISHTP client from either host or FW side wants to send something, it decides
-whether to send over IPC or over DMA; for each transfer the decision is
-independent. The sending side sends DMA_XFER message when the message is in
-the respective host buffer (TX when host client sends, RX when FW client
-sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating
-the sender that the memory region for that message may be reused.
-
-DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message
-(that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
-Additionally to DMA address communication, this sequence checks capabilities:
-if thw host doesn't support DMA, then it won't send DMA allocation, so FW can't
-send DMA; if FW doesn't support DMA then it won't respond with
-DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers.
-Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER,
-it's request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means
-that it already did DMA and the message resides at host. Thus, DMA_XFER
-and DMA_XFER_ACK act as ownership indicators.
-
-At initial state all outgoing memory belongs to the sender (TX to host, RX to
-FW), DMA_XFER transfers ownership on the region that contains ISHTP message to
-the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender
-needs not wait for previous DMA_XFER to be ack'ed, and may send another message
-as long as remaining continuous memory in its ownership is enough.
-In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once
-(up to IPC MTU), thus allowing for interrupt throttling.
-Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC
-fragments and via IPC otherwise.
-
-3.3.4 Ring Buffers
-
-When a client initiate a connection, a ring or RX and TX buffers are allocated.
-The size of ring can be specified by the client. HID client set 16 and 32 for
-TX and RX buffers respectively. On send request from client, the data to be
-sent is copied to one of the send ring buffer and scheduled to be sent using
-bus message protocol. These buffers are required because the FW may have not
-have processed the last message and may not have enough flow control credits
-to send. Same thing holds true on receive side and flow control is required.
-
-3.3.5 Host Enumeration
-
-The host enumeration bus command allow discovery of clients present in the FW.
-There can be multiple sensor clients and clients for calibration function.
-
-To ease in implantation and allow independent driver handle each client
-this transport layer takes advantage of Linux Bus driver model. Each
-client is registered as device on the the transport bus (ishtp bus).
-
-Enumeration sequence of messages:
-- Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.
-- FW responds with HOST_START_RES_CMD
-- Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)
-- FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW
-client IDs
-- For each FW ID found in that bitmap host sends
-HOST_CLIENT_PROPERTIES_REQ_CMD
-- FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID,
-max ISHTP message size, etc.
-- Once host received properties for that last discovered client, it considers
-ISHTP device fully functional (and allocates DMA buffers)
-
-3.4 HID over ISH Client
-Location: drivers/hid/intel-ish-hid
-
-The ISHTP client driver is responsible for:
-- enumerate HID devices under FW ISH client
-- Get Report descriptor
-- Register with HID core as a LL driver
-- Process Get/Set feature request
-- Get input reports
-
-3.5 HID Sensor Hub MFD and IIO sensor drivers
-
-The functionality in these drivers is the same as an external sensor hub.
-Refer to
-Documentation/hid/hid-sensor.txt for HID sensor
-Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space
-
-3.6 End to End HID transport Sequence Diagram
-
-HID-ISH-CLN ISHTP IPC HW
- | | | |
- | | |-----WAKE UP------------------>|
- | | | |
- | | |-----HOST READY--------------->|
- | | | |
- | | |<----MNG_RESET_NOTIFY_ACK----- |
- | | | |
- | |<----ISHTP_START------ | |
- | | | |
- | |<-----------------HOST_START_RES_CMD-------------------|
- | | | |
- | |------------------QUERY_SUBSCRIBER-------------------->|
- | | | |
- | |------------------HOST_ENUM_REQ_CMD------------------->|
- | | | |
- | |<-----------------HOST_ENUM_RES_CMD--------------------|
- | | | |
- | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
- | | | |
- | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
- | Create new device on in ishtp bus | |
- | | | |
- | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
- | | | |
- | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
- | Create new device on in ishtp bus | |
- | | | |
- | |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one--|
- | | | |
- probed()
- |----ishtp_cl_connect-->|----------------- CLIENT_CONNECT_REQ_CMD-------------->|
- | | | |
- | |<----------------CLIENT_CONNECT_RES_CMD----------------|
- | | | |
- |register event callback| | |
- | | | |
- |ishtp_cl_send(
- HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct write to HW----- >|
- | | | |
- | | |<-----IRQ(IPC_PROTOCOL_ISHTP---|
- | | | |
- |<--ENUM_DEVICE RSP-----| | |
- | | | |
-for each enumerated device
- |ishtp_cl_send(
- HOSTIF_GET_HID_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW--- >|
- | | | |
- ...Response
- | | | |
-for each enumerated device
- |ishtp_cl_send(
- HOSTIF_GET_REPORT_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW- >|
- | | | |
- | | | |
- hid_allocate_device
- | | | |
- hid_add_device | | |
- | | | |
-
-
-3.7 ISH Debugging
-
-To debug ISH, event tracing mechanism is used. To enable debug logs
-echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable
-cat sys/kernel/debug/tracing/trace
-
-3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260
-
-root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
-/sys/bus/iio/devices/
-├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0
-│   ├── buffer
-│   │   ├── enable
-│   │   ├── length
-│   │   └── watermark
-...
-│   ├── in_accel_hysteresis
-│   ├── in_accel_offset
-│   ├── in_accel_sampling_frequency
-│   ├── in_accel_scale
-│   ├── in_accel_x_raw
-│   ├── in_accel_y_raw
-│   ├── in_accel_z_raw
-│   ├── name
-│   ├── scan_elements
-│   │   ├── in_accel_x_en
-│   │   ├── in_accel_x_index
-│   │   ├── in_accel_x_type
-│   │   ├── in_accel_y_en
-│   │   ├── in_accel_y_index
-│   │   ├── in_accel_y_type
-│   │   ├── in_accel_z_en
-│   │   ├── in_accel_z_index
-│   │   └── in_accel_z_type
-...
-│   │   ├── devices
-│   │   │   │   ├── buffer
-│   │   │   │   │   ├── enable
-│   │   │   │   │   ├── length
-│   │   │   │   │   └── watermark
-│   │   │   │   ├── dev
-│   │   │   │   ├── in_intensity_both_raw
-│   │   │   │   ├── in_intensity_hysteresis
-│   │   │   │   ├── in_intensity_offset
-│   │   │   │   ├── in_intensity_sampling_frequency
-│   │   │   │   ├── in_intensity_scale
-│   │   │   │   ├── name
-│   │   │   │   ├── scan_elements
-│   │   │   │   │   ├── in_intensity_both_en
-│   │   │   │   │   ├── in_intensity_both_index
-│   │   │   │   │   └── in_intensity_both_type
-│   │   │   │   ├── trigger
-│   │   │   │   │   └── current_trigger
-...
-│   │   │   │   ├── buffer
-│   │   │   │   │   ├── enable
-│   │   │   │   │   ├── length
-│   │   │   │   │   └── watermark
-│   │   │   │   ├── dev
-│   │   │   │   ├── in_magn_hysteresis
-│   │   │   │   ├── in_magn_offset
-│   │   │   │   ├── in_magn_sampling_frequency
-│   │   │   │   ├── in_magn_scale
-│   │   │   │   ├── in_magn_x_raw
-│   │   │   │   ├── in_magn_y_raw
-│   │   │   │   ├── in_magn_z_raw
-│   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_raw
-│   │   │   │   ├── in_rot_hysteresis
-│   │   │   │   ├── in_rot_offset
-│   │   │   │   ├── in_rot_sampling_frequency
-│   │   │   │   ├── in_rot_scale
-│   │   │   │   ├── name
-...
-│   │   │   │   ├── scan_elements
-│   │   │   │   │   ├── in_magn_x_en
-│   │   │   │   │   ├── in_magn_x_index
-│   │   │   │   │   ├── in_magn_x_type
-│   │   │   │   │   ├── in_magn_y_en
-│   │   │   │   │   ├── in_magn_y_index
-│   │   │   │   │   ├── in_magn_y_type
-│   │   │   │   │   ├── in_magn_z_en
-│   │   │   │   │   ├── in_magn_z_index
-│   │   │   │   │   ├── in_magn_z_type
-│   │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_en
-│   │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_index
-│   │   │   │   │   └── in_rot_from_north_magnetic_tilt_comp_type
-│   │   │   │   ├── trigger
-│   │   │   │   │   └── current_trigger
-...
-│   │   │   │   ├── buffer
-│   │   │   │   │   ├── enable
-│   │   │   │   │   ├── length
-│   │   │   │   │   └── watermark
-│   │   │   │   ├── dev
-│   │   │   │   ├── in_anglvel_hysteresis
-│   │   │   │   ├── in_anglvel_offset
-│   │   │   │   ├── in_anglvel_sampling_frequency
-│   │   │   │   ├── in_anglvel_scale
-│   │   │   │   ├── in_anglvel_x_raw
-│   │   │   │   ├── in_anglvel_y_raw
-│   │   │   │   ├── in_anglvel_z_raw
-│   │   │   │   ├── name
-│   │   │   │   ├── scan_elements
-│   │   │   │   │   ├── in_anglvel_x_en
-│   │   │   │   │   ├── in_anglvel_x_index
-│   │   │   │   │   ├── in_anglvel_x_type
-│   │   │   │   │   ├── in_anglvel_y_en
-│   │   │   │   │   ├── in_anglvel_y_index
-│   │   │   │   │   ├── in_anglvel_y_type
-│   │   │   │   │   ├── in_anglvel_z_en
-│   │   │   │   │   ├── in_anglvel_z_index
-│   │   │   │   │   └── in_anglvel_z_type
-│   │   │   │   ├── trigger
-│   │   │   │   │   └── current_trigger
-...
-│   │   │   │   ├── buffer
-│   │   │   │   │   ├── enable
-│   │   │   │   │   ├── length
-│   │   │   │   │   └── watermark
-│   │   │   │   ├── dev
-│   │   │   │   ├── in_anglvel_hysteresis
-│   │   │   │   ├── in_anglvel_offset
-│   │   │   │   ├── in_anglvel_sampling_frequency
-│   │   │   │   ├── in_anglvel_scale
-│   │   │   │   ├── in_anglvel_x_raw
-│   │   │   │   ├── in_anglvel_y_raw
-│   │   │   │   ├── in_anglvel_z_raw
-│   │   │   │   ├── name
-│   │   │   │   ├── scan_elements
-│   │   │   │   │   ├── in_anglvel_x_en
-│   │   │   │   │   ├── in_anglvel_x_index
-│   │   │   │   │   ├── in_anglvel_x_type
-│   │   │   │   │   ├── in_anglvel_y_en
-│   │   │   │   │   ├── in_anglvel_y_index
-│   │   │   │   │   ├── in_anglvel_y_type
-│   │   │   │   │   ├── in_anglvel_z_en
-│   │   │   │   │   ├── in_anglvel_z_index
-│   │   │   │   │   └── in_anglvel_z_type
-│   │   │   │   ├── trigger
-│   │   │   │   │   └── current_trigger
-...
diff --git a/Documentation/hid/uhid.txt b/Documentation/hid/uhid.rst
index 958fff945304..b18cb96c885f 100644
--- a/Documentation/hid/uhid.txt
+++ b/Documentation/hid/uhid.rst
@@ -1,5 +1,6 @@
- UHID - User-space I/O driver support for HID subsystem
- ========================================================
+======================================================
+UHID - User-space I/O driver support for HID subsystem
+======================================================
UHID allows user-space to implement HID transport drivers. Please see
hid-transport.txt for an introduction into HID transport drivers. This document
@@ -22,9 +23,9 @@ If a new device is detected by your HID I/O Driver and you want to register this
device with the HID subsystem, then you need to open /dev/uhid once for each
device you want to register. All further communication is done by read()'ing or
write()'ing "struct uhid_event" objects. Non-blocking operations are supported
-by setting O_NONBLOCK.
+by setting O_NONBLOCK::
-struct uhid_event {
+ struct uhid_event {
__u32 type;
union {
struct uhid_create2_req create2;
@@ -32,7 +33,7 @@ struct uhid_event {
struct uhid_input2_req input2;
...
} u;
-};
+ };
The "type" field contains the ID of the event. Depending on the ID different
payloads are sent. You must not split a single event across multiple read()'s or
@@ -86,31 +87,31 @@ the request was handled successfully. O_NONBLOCK does not affect write() as
writes are always handled immediately in a non-blocking fashion. Future requests
might make use of O_NONBLOCK, though.
- UHID_CREATE2:
+UHID_CREATE2:
This creates the internal HID device. No I/O is possible until you send this
event to the kernel. The payload is of type struct uhid_create2_req and
contains information about your device. You can start I/O now.
- UHID_DESTROY:
+UHID_DESTROY:
This destroys the internal HID device. No further I/O will be accepted. There
may still be pending messages that you can receive with read() but no further
UHID_INPUT events can be sent to the kernel.
You can create a new device by sending UHID_CREATE2 again. There is no need to
reopen the character device.
- UHID_INPUT2:
+UHID_INPUT2:
You must send UHID_CREATE2 before sending input to the kernel! This event
contains a data-payload. This is the raw data that you read from your device
on the interrupt channel. The kernel will parse the HID reports.
- UHID_GET_REPORT_REPLY:
+UHID_GET_REPORT_REPLY:
If you receive a UHID_GET_REPORT request you must answer with this request.
You must copy the "id" field from the request into the answer. Set the "err"
field to 0 if no error occurred or to EIO if an I/O error occurred.
If "err" is 0 then you should fill the buffer of the answer with the results
of the GET_REPORT request and set "size" correspondingly.
- UHID_SET_REPORT_REPLY:
+UHID_SET_REPORT_REPLY:
This is the SET_REPORT equivalent of UHID_GET_REPORT_REPLY. Unlike GET_REPORT,
SET_REPORT never returns a data buffer, therefore, it's sufficient to set the
"id" and "err" fields correctly.
@@ -120,16 +121,18 @@ read()
read() will return a queued output report. No reaction is required to any of
them but you should handle them according to your needs.
- UHID_START:
+UHID_START:
This is sent when the HID device is started. Consider this as an answer to
UHID_CREATE2. This is always the first event that is sent. Note that this
event might not be available immediately after write(UHID_CREATE2) returns.
Device drivers might required delayed setups.
This event contains a payload of type uhid_start_req. The "dev_flags" field
describes special behaviors of a device. The following flags are defined:
- UHID_DEV_NUMBERED_FEATURE_REPORTS:
- UHID_DEV_NUMBERED_OUTPUT_REPORTS:
- UHID_DEV_NUMBERED_INPUT_REPORTS:
+
+ - UHID_DEV_NUMBERED_FEATURE_REPORTS
+ - UHID_DEV_NUMBERED_OUTPUT_REPORTS
+ - UHID_DEV_NUMBERED_INPUT_REPORTS
+
Each of these flags defines whether a given report-type uses numbered
reports. If numbered reports are used for a type, all messages from
the kernel already have the report-number as prefix. Otherwise, no
@@ -137,33 +140,35 @@ them but you should handle them according to your needs.
For messages sent by user-space to the kernel, you must adjust the
prefixes according to these flags.
- UHID_STOP:
+UHID_STOP:
This is sent when the HID device is stopped. Consider this as an answer to
UHID_DESTROY.
+
If you didn't destroy your device via UHID_DESTROY, but the kernel sends an
UHID_STOP event, this should usually be ignored. It means that the kernel
reloaded/changed the device driver loaded on your HID device (or some other
maintenance actions happened).
+
You can usually ignored any UHID_STOP events safely.
- UHID_OPEN:
+UHID_OPEN:
This is sent when the HID device is opened. That is, the data that the HID
device provides is read by some other process. You may ignore this event but
it is useful for power-management. As long as you haven't received this event
there is actually no other process that reads your data so there is no need to
send UHID_INPUT2 events to the kernel.
- UHID_CLOSE:
+UHID_CLOSE:
This is sent when there are no more processes which read the HID data. It is
the counterpart of UHID_OPEN and you may as well ignore this event.
- UHID_OUTPUT:
+UHID_OUTPUT:
This is sent if the HID device driver wants to send raw data to the I/O
device on the interrupt channel. You should read the payload and forward it to
the device. The payload is of type "struct uhid_output_req".
This may be received even though you haven't received UHID_OPEN, yet.
- UHID_GET_REPORT:
+UHID_GET_REPORT:
This event is sent if the kernel driver wants to perform a GET_REPORT request
on the control channeld as described in the HID specs. The report-type and
report-number are available in the payload.
@@ -177,11 +182,12 @@ them but you should handle them according to your needs.
timed out, the kernel will ignore the response silently. The "id" field is
never re-used, so conflicts cannot happen.
- UHID_SET_REPORT:
+UHID_SET_REPORT:
This is the SET_REPORT equivalent of UHID_GET_REPORT. On receipt, you shall
send a SET_REPORT request to your hid device. Once it replies, you must tell
the kernel about it via UHID_SET_REPORT_REPLY.
The same restrictions as for UHID_GET_REPORT apply.
----------------------------------------------------
+
Written 2012, David Herrmann <dh.herrmann@gmail.com>
diff --git a/Documentation/hwmon/pxe1610 b/Documentation/hwmon/pxe1610
new file mode 100644
index 000000000000..211cedeefb44
--- /dev/null
+++ b/Documentation/hwmon/pxe1610
@@ -0,0 +1,90 @@
+Kernel driver pxe1610
+=====================
+
+Supported chips:
+ * Infineon PXE1610
+ Prefix: 'pxe1610'
+ Addresses scanned: -
+ Datasheet: Datasheet is not publicly available.
+
+ * Infineon PXE1110
+ Prefix: 'pxe1110'
+ Addresses scanned: -
+ Datasheet: Datasheet is not publicly available.
+
+ * Infineon PXM1310
+ Prefix: 'pxm1310'
+ Addresses scanned: -
+ Datasheet: Datasheet is not publicly available.
+
+Author: Vijay Khemka <vijaykhemka@fb.com>
+
+
+Description
+-----------
+
+PXE1610/PXE1110 are Multi-rail/Multiphase Digital Controllers
+and compliant to
+ -- Intel VR13 DC-DC converter specifications.
+ -- Intel SVID protocol.
+Used for Vcore power regulation for Intel VR13 based microprocessors
+ -- Servers, Workstations, and High-end desktops
+
+PXM1310 is a Multi-rail Controller and it is compliant to
+ -- Intel VR13 DC-DC converter specifications.
+ -- Intel SVID protocol.
+Used for DDR3/DDR4 Memory power regulation for Intel VR13 and
+IMVP8 based systems
+
+
+Usage Notes
+-----------
+
+This driver does not probe for PMBus devices. You will have
+to instantiate devices explicitly.
+
+Example: the following commands will load the driver for an PXE1610
+at address 0x70 on I2C bus #4:
+
+# modprobe pxe1610
+# echo pxe1610 0x70 > /sys/bus/i2c/devices/i2c-4/new_device
+
+It can also be instantiated by declaring in device tree
+
+
+Sysfs attributes
+----------------
+
+curr1_label "iin"
+curr1_input Measured input current
+curr1_alarm Current high alarm
+
+curr[2-4]_label "iout[1-3]"
+curr[2-4]_input Measured output current
+curr[2-4]_crit Critical maximum current
+curr[2-4]_crit_alarm Current critical high alarm
+
+in1_label "vin"
+in1_input Measured input voltage
+in1_crit Critical maximum input voltage
+in1_crit_alarm Input voltage critical high alarm
+
+in[2-4]_label "vout[1-3]"
+in[2-4]_input Measured output voltage
+in[2-4]_lcrit Critical minimum output voltage
+in[2-4]_lcrit_alarm Output voltage critical low alarm
+in[2-4]_crit Critical maximum output voltage
+in[2-4]_crit_alarm Output voltage critical high alarm
+
+power1_label "pin"
+power1_input Measured input power
+power1_alarm Input power high alarm
+
+power[2-4]_label "pout[1-3]"
+power[2-4]_input Measured output power
+
+temp[1-3]_input Measured temperature
+temp[1-3]_crit Critical high temperature
+temp[1-3]_crit_alarm Chip temperature critical high alarm
+temp[1-3]_max Maximum temperature
+temp[1-3]_max_alarm Chip temperature high alarm
diff --git a/Documentation/i2c/instantiating-devices b/Documentation/i2c/instantiating-devices
index 0d85ac1935b7..345e9ea8281a 100644
--- a/Documentation/i2c/instantiating-devices
+++ b/Documentation/i2c/instantiating-devices
@@ -85,7 +85,7 @@ Method 1c: Declare the I2C devices via ACPI
-------------------------------------------
ACPI can also describe I2C devices. There is special documentation for this
-which is currently located at Documentation/acpi/enumeration.txt.
+which is currently located at Documentation/firmware-guide/acpi/enumeration.rst.
Method 2: Instantiate the devices explicitly
@@ -137,7 +137,7 @@ static int usb_hcd_nxp_probe(struct platform_device *pdev)
(...)
i2c_adap = i2c_get_adapter(2);
memset(&i2c_info, 0, sizeof(struct i2c_board_info));
- strlcpy(i2c_info.type, "isp1301_nxp", I2C_NAME_SIZE);
+ strscpy(i2c_info.type, "isp1301_nxp", sizeof(i2c_info.type));
isp1301_i2c_client = i2c_new_probed_device(i2c_adap, &i2c_info,
normal_i2c, NULL);
i2c_put_adapter(i2c_adap);
diff --git a/Documentation/i2c/upgrading-clients b/Documentation/i2c/upgrading-clients
index ccba3ffd6e80..96392cc5b5c7 100644
--- a/Documentation/i2c/upgrading-clients
+++ b/Documentation/i2c/upgrading-clients
@@ -43,7 +43,7 @@ static int example_attach(struct i2c_adapter *adap, int addr, int kind)
example->client.adapter = adap;
i2c_set_clientdata(&state->i2c_client, state);
- strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
+ strscpy(client->i2c_client.name, "example", sizeof(client->i2c_client.name));
ret = i2c_attach_client(&state->i2c_client);
if (ret < 0) {
@@ -138,7 +138,7 @@ can be removed:
- example->client.flags = 0;
- example->client.adapter = adap;
-
-- strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
+- strscpy(client->i2c_client.name, "example", sizeof(client->i2c_client.name));
The i2c_set_clientdata is now:
diff --git a/Documentation/ide/changelogs.rst b/Documentation/ide/changelogs.rst
new file mode 100644
index 000000000000..fdf9d0fb8027
--- /dev/null
+++ b/Documentation/ide/changelogs.rst
@@ -0,0 +1,17 @@
+Changelog for ide cd
+--------------------
+
+ .. include:: ChangeLog.ide-cd.1994-2004
+ :literal:
+
+Changelog for ide floppy
+------------------------
+
+ .. include:: ChangeLog.ide-floppy.1996-2002
+ :literal:
+
+Changelog for ide tape
+----------------------
+
+ .. include:: ChangeLog.ide-tape.1995-2002
+ :literal:
diff --git a/Documentation/ide/ide-tape.txt b/Documentation/ide/ide-tape.rst
index 3f348a0b21d8..3e061d9c0e38 100644
--- a/Documentation/ide/ide-tape.txt
+++ b/Documentation/ide/ide-tape.rst
@@ -1,4 +1,6 @@
-IDE ATAPI streaming tape driver.
+===============================
+IDE ATAPI streaming tape driver
+===============================
This driver is a part of the Linux ide driver.
@@ -10,14 +12,14 @@ to the request-list of the block device, and waits for their completion.
The block device major and minor numbers are determined from the
tape's relative position in the ide interfaces, as explained in ide.c.
-The character device interface consists of the following devices:
+The character device interface consists of the following devices::
-ht0 major 37, minor 0 first IDE tape, rewind on close.
-ht1 major 37, minor 1 second IDE tape, rewind on close.
-...
-nht0 major 37, minor 128 first IDE tape, no rewind on close.
-nht1 major 37, minor 129 second IDE tape, no rewind on close.
-...
+ ht0 major 37, minor 0 first IDE tape, rewind on close.
+ ht1 major 37, minor 1 second IDE tape, rewind on close.
+ ...
+ nht0 major 37, minor 128 first IDE tape, no rewind on close.
+ nht1 major 37, minor 129 second IDE tape, no rewind on close.
+ ...
The general magnetic tape commands compatible interface, as defined by
include/linux/mtio.h, is accessible through the character device.
@@ -40,9 +42,10 @@ Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
Here are some words from the first releases of hd.c, which are quoted
in ide.c and apply here as well:
-| Special care is recommended. Have Fun!
+* Special care is recommended. Have Fun!
-Possible improvements:
+Possible improvements
+=====================
1. Support for the ATAPI overlap protocol.
diff --git a/Documentation/ide/ide.txt b/Documentation/ide/ide.rst
index 7aca987c23d9..88bdcba92f7d 100644
--- a/Documentation/ide/ide.txt
+++ b/Documentation/ide/ide.rst
@@ -1,41 +1,43 @@
-
- Information regarding the Enhanced IDE drive in Linux 2.6
-
-==============================================================================
-
+============================================
+Information regarding the Enhanced IDE drive
+============================================
The hdparm utility can be used to control various IDE features on a
running system. It is packaged separately. Please Look for it on popular
linux FTP sites.
+-------------------------------------------------------------------------------
+
+.. important::
+
+ BUGGY IDE CHIPSETS CAN CORRUPT DATA!!
+
+ PCI versions of the CMD640 and RZ1000 interfaces are now detected
+ automatically at startup when PCI BIOS support is configured.
+
+ Linux disables the "prefetch" ("readahead") mode of the RZ1000
+ to prevent data corruption possible due to hardware design flaws.
+
+ For the CMD640, linux disables "IRQ unmasking" (hdparm -u1) on any
+ drive for which the "prefetch" mode of the CMD640 is turned on.
+ If "prefetch" is disabled (hdparm -p8), then "IRQ unmasking" can be
+ used again.
+
+ For the CMD640, linux disables "32bit I/O" (hdparm -c1) on any drive
+ for which the "prefetch" mode of the CMD640 is turned off.
+ If "prefetch" is enabled (hdparm -p9), then "32bit I/O" can be
+ used again.
+
+ The CMD640 is also used on some Vesa Local Bus (VLB) cards, and is *NOT*
+ automatically detected by Linux. For safe, reliable operation with such
+ interfaces, one *MUST* use the "cmd640.probe_vlb" kernel option.
+
+ Use of the "serialize" option is no longer necessary.
+-------------------------------------------------------------------------------
-*** IMPORTANT NOTICES: BUGGY IDE CHIPSETS CAN CORRUPT DATA!!
-*** =================
-*** PCI versions of the CMD640 and RZ1000 interfaces are now detected
-*** automatically at startup when PCI BIOS support is configured.
-***
-*** Linux disables the "prefetch" ("readahead") mode of the RZ1000
-*** to prevent data corruption possible due to hardware design flaws.
-***
-*** For the CMD640, linux disables "IRQ unmasking" (hdparm -u1) on any
-*** drive for which the "prefetch" mode of the CMD640 is turned on.
-*** If "prefetch" is disabled (hdparm -p8), then "IRQ unmasking" can be
-*** used again.
-***
-*** For the CMD640, linux disables "32bit I/O" (hdparm -c1) on any drive
-*** for which the "prefetch" mode of the CMD640 is turned off.
-*** If "prefetch" is enabled (hdparm -p9), then "32bit I/O" can be
-*** used again.
-***
-*** The CMD640 is also used on some Vesa Local Bus (VLB) cards, and is *NOT*
-*** automatically detected by Linux. For safe, reliable operation with such
-*** interfaces, one *MUST* use the "cmd640.probe_vlb" kernel option.
-***
-*** Use of the "serialize" option is no longer necessary.
-
-================================================================================
-Common pitfalls:
+Common pitfalls
+===============
- 40-conductor IDE cables are capable of transferring data in DMA modes up to
udma2, but no faster.
@@ -49,19 +51,18 @@ Common pitfalls:
- Even better try to stick to the same vendor and device type on the same
cable.
-================================================================================
-
-This is the multiple IDE interface driver, as evolved from hd.c.
+This is the multiple IDE interface driver, as evolved from hd.c
+===============================================================
It supports up to 9 IDE interfaces per default, on one or more IRQs (usually
-14 & 15). There can be up to two drives per interface, as per the ATA-6 spec.
+14 & 15). There can be up to two drives per interface, as per the ATA-6 spec.::
-Primary: ide0, port 0x1f0; major=3; hda is minor=0; hdb is minor=64
-Secondary: ide1, port 0x170; major=22; hdc is minor=0; hdd is minor=64
-Tertiary: ide2, port 0x1e8; major=33; hde is minor=0; hdf is minor=64
-Quaternary: ide3, port 0x168; major=34; hdg is minor=0; hdh is minor=64
-fifth.. ide4, usually PCI, probed
-sixth.. ide5, usually PCI, probed
+ Primary: ide0, port 0x1f0; major=3; hda is minor=0; hdb is minor=64
+ Secondary: ide1, port 0x170; major=22; hdc is minor=0; hdd is minor=64
+ Tertiary: ide2, port 0x1e8; major=33; hde is minor=0; hdf is minor=64
+ Quaternary: ide3, port 0x168; major=34; hdg is minor=0; hdh is minor=64
+ fifth.. ide4, usually PCI, probed
+ sixth.. ide5, usually PCI, probed
To access devices on interfaces > ide0, device entries please make sure that
device files for them are present in /dev. If not, please create such
@@ -80,12 +81,15 @@ seldom occurs. Be careful, and if in doubt, don't do it!
Drives are normally found by auto-probing and/or examining the CMOS/BIOS data.
For really weird situations, the apparent (fdisk) geometry can also be specified
-on the kernel "command line" using LILO. The format of such lines is:
+on the kernel "command line" using LILO. The format of such lines is::
ide_core.chs=[interface_number.device_number]:cyls,heads,sects
-or ide_core.cdrom=[interface_number.device_number]
-For example:
+or::
+
+ ide_core.cdrom=[interface_number.device_number]
+
+For example::
ide_core.chs=1.0:1050,32,64 ide_core.cdrom=1.1
@@ -96,10 +100,12 @@ geometry for partitioning purposes (fdisk).
If the auto-probing during boot time confuses a drive (ie. the drive works
with hd.c but not with ide.c), then an command line option may be specified
for each drive for which you'd like the drive to skip the hardware
-probe/identification sequence. For example:
+probe/identification sequence. For example::
ide_core.noprobe=0.1
-or
+
+or::
+
ide_core.chs=1.0:768,16,32
ide_core.noprobe=1.0
@@ -115,22 +121,24 @@ Such drives will be identified at boot time, just like a hard disk.
If for some reason your cdrom drive is *not* found at boot time, you can force
the probe to look harder by supplying a kernel command line parameter
-via LILO, such as:
+via LILO, such as:::
ide_core.cdrom=1.0 /* "master" on second interface (hdc) */
-or
+
+or::
+
ide_core.cdrom=1.1 /* "slave" on second interface (hdd) */
For example, a GW2000 system might have a hard drive on the primary
interface (/dev/hda) and an IDE cdrom drive on the secondary interface
-(/dev/hdc). To mount a CD in the cdrom drive, one would use something like:
+(/dev/hdc). To mount a CD in the cdrom drive, one would use something like::
ln -sf /dev/hdc /dev/cdrom
mkdir /mnt/cdrom
mount /dev/cdrom /mnt/cdrom -t iso9660 -o ro
If, after doing all of the above, mount doesn't work and you see
-errors from the driver (with dmesg) complaining about `status=0xff',
+errors from the driver (with dmesg) complaining about `status=0xff`,
this means that the hardware is not responding to the driver's attempts
to read it. One of the following is probably the problem:
@@ -165,7 +173,7 @@ drivers can always be compiled as loadable modules, the chipset drivers
can only be compiled into the kernel, and the core code (ide.c) can be
compiled as a loadable module provided no chipset support is needed.
-When using ide.c as a module in combination with kmod, add:
+When using ide.c as a module in combination with kmod, add::
alias block-major-3 ide-probe
@@ -176,10 +184,8 @@ driver using the "options=" keyword to insmod, while replacing any ',' with
';'.
-================================================================================
-
Summary of ide driver parameters for kernel command line
---------------------------------------------------------
+========================================================
For legacy IDE VLB host drivers (ali14xx/dtc2278/ht6560b/qd65xx/umc8672)
you need to explicitly enable probing by using "probe" kernel parameter,
@@ -226,28 +232,31 @@ Other kernel parameters for ide_core are:
* "chs=[interface_number.device_number]" to force device as a disk (using CHS)
-================================================================================
Some Terminology
-----------------
-IDE = Integrated Drive Electronics, meaning that each drive has a built-in
-controller, which is why an "IDE interface card" is not a "controller card".
+================
-ATA = AT (the old IBM 286 computer) Attachment Interface, a draft American
-National Standard for connecting hard drives to PCs. This is the official
-name for "IDE".
+IDE
+ Integrated Drive Electronics, meaning that each drive has a built-in
+ controller, which is why an "IDE interface card" is not a "controller card".
-The latest standards define some enhancements, known as the ATA-6 spec,
-which grew out of vendor-specific "Enhanced IDE" (EIDE) implementations.
+ATA
+ AT (the old IBM 286 computer) Attachment Interface, a draft American
+ National Standard for connecting hard drives to PCs. This is the official
+ name for "IDE".
-ATAPI = ATA Packet Interface, a new protocol for controlling the drives,
-similar to SCSI protocols, created at the same time as the ATA2 standard.
-ATAPI is currently used for controlling CDROM, TAPE and FLOPPY (ZIP or
-LS120/240) devices, removable R/W cartridges, and for high capacity hard disk
-drives.
+ The latest standards define some enhancements, known as the ATA-6 spec,
+ which grew out of vendor-specific "Enhanced IDE" (EIDE) implementations.
+
+ATAPI
+ ATA Packet Interface, a new protocol for controlling the drives,
+ similar to SCSI protocols, created at the same time as the ATA2 standard.
+ ATAPI is currently used for controlling CDROM, TAPE and FLOPPY (ZIP or
+ LS120/240) devices, removable R/W cartridges, and for high capacity hard disk
+ drives.
mlord@pobox.com
---
+
Wed Apr 17 22:52:44 CEST 2002 edited by Marcin Dalecki, the current
maintainer.
diff --git a/Documentation/ide/index.rst b/Documentation/ide/index.rst
new file mode 100644
index 000000000000..45bc12d3957f
--- /dev/null
+++ b/Documentation/ide/index.rst
@@ -0,0 +1,21 @@
+:orphan:
+
+==================================
+Integrated Drive Electronics (IDE)
+==================================
+
+.. toctree::
+ :maxdepth: 1
+
+ ide
+ ide-tape
+ warm-plug-howto
+
+ changelogs
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/ide/warm-plug-howto.txt b/Documentation/ide/warm-plug-howto.rst
index 98152bcd515a..c245242ef2f1 100644
--- a/Documentation/ide/warm-plug-howto.txt
+++ b/Documentation/ide/warm-plug-howto.rst
@@ -1,14 +1,14 @@
-
+===================
IDE warm-plug HOWTO
===================
-To warm-plug devices on a port 'idex':
+To warm-plug devices on a port 'idex'::
-# echo -n "1" > /sys/class/ide_port/idex/delete_devices
+ # echo -n "1" > /sys/class/ide_port/idex/delete_devices
-unplug old device(s) and plug new device(s)
+unplug old device(s) and plug new device(s)::
-# echo -n "1" > /sys/class/ide_port/idex/scan
+ # echo -n "1" > /sys/class/ide_port/idex/scan
done
diff --git a/Documentation/iio/ep93xx_adc.txt b/Documentation/iio/ep93xx_adc.rst
index 23053e7817bd..4fd8dea3f6b8 100644
--- a/Documentation/iio/ep93xx_adc.txt
+++ b/Documentation/iio/ep93xx_adc.rst
@@ -1,12 +1,16 @@
-Cirrus Logic EP93xx ADC driver.
+==============================
+Cirrus Logic EP93xx ADC driver
+==============================
1. Overview
+===========
The driver is intended to work on both low-end (EP9301, EP9302) devices with
5-channel ADC and high-end (EP9307, EP9312, EP9315) devices with 10-channel
touchscreen/ADC module.
2. Channel numbering
+====================
Numbering scheme for channels 0..4 is defined in EP9301 and EP9302 datasheets.
EP9307, EP9312 and EP9312 have 3 channels more (total 8), but the numbering is
@@ -17,13 +21,20 @@ Assuming ep93xx_adc is IIO device0, you'd find the following entries under
+-----------------+---------------+
| sysfs entry | ball/pin name |
- +-----------------+---------------+
+ +=================+===============+
| in_voltage0_raw | YM |
+ +-----------------+---------------+
| in_voltage1_raw | SXP |
+ +-----------------+---------------+
| in_voltage2_raw | SXM |
+ +-----------------+---------------+
| in_voltage3_raw | SYP |
+ +-----------------+---------------+
| in_voltage4_raw | SYM |
+ +-----------------+---------------+
| in_voltage5_raw | XP |
+ +-----------------+---------------+
| in_voltage6_raw | XM |
+ +-----------------+---------------+
| in_voltage7_raw | YP |
+-----------------+---------------+
diff --git a/Documentation/iio/iio_configfs.txt b/Documentation/iio/iio_configfs.rst
index 4e5f101837a8..ecbfdb3afef7 100644
--- a/Documentation/iio/iio_configfs.txt
+++ b/Documentation/iio/iio_configfs.rst
@@ -1,6 +1,9 @@
+===============================
Industrial IIO configfs support
+===============================
1. Overview
+===========
Configfs is a filesystem-based manager of kernel objects. IIO uses some
objects that could be easily configured using configfs (e.g.: devices,
@@ -10,20 +13,22 @@ See Documentation/filesystems/configfs/configfs.txt for more information
about how configfs works.
2. Usage
+========
In order to use configfs support in IIO we need to select it at compile
time via CONFIG_IIO_CONFIGFS config option.
-Then, mount the configfs filesystem (usually under /config directory):
+Then, mount the configfs filesystem (usually under /config directory)::
-$ mkdir /config
-$ mount -t configfs none /config
+ $ mkdir /config
+ $ mount -t configfs none /config
At this point, all default IIO groups will be created and can be accessed
under /config/iio. Next chapters will describe available IIO configuration
objects.
3. Software triggers
+====================
One of the IIO default configfs groups is the "triggers" group. It is
automagically accessible when the configfs is mounted and can be found
@@ -31,40 +36,40 @@ under /config/iio/triggers.
IIO software triggers implementation offers support for creating multiple
trigger types. A new trigger type is usually implemented as a separate
-kernel module following the interface in include/linux/iio/sw_trigger.h:
+kernel module following the interface in include/linux/iio/sw_trigger.h::
-/*
- * drivers/iio/trigger/iio-trig-sample.c
- * sample kernel module implementing a new trigger type
- */
-#include <linux/iio/sw_trigger.h>
+ /*
+ * drivers/iio/trigger/iio-trig-sample.c
+ * sample kernel module implementing a new trigger type
+ */
+ #include <linux/iio/sw_trigger.h>
-static struct iio_sw_trigger *iio_trig_sample_probe(const char *name)
-{
+ static struct iio_sw_trigger *iio_trig_sample_probe(const char *name)
+ {
/*
* This allocates and registers an IIO trigger plus other
* trigger type specific initialization.
*/
-}
+ }
-static int iio_trig_hrtimer_remove(struct iio_sw_trigger *swt)
-{
+ static int iio_trig_hrtimer_remove(struct iio_sw_trigger *swt)
+ {
/*
* This undoes the actions in iio_trig_sample_probe
*/
-}
+ }
-static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
+ static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
.probe = iio_trig_sample_probe,
.remove = iio_trig_sample_remove,
-};
+ };
-static struct iio_sw_trigger_type iio_trig_sample = {
+ static struct iio_sw_trigger_type iio_trig_sample = {
.name = "trig-sample",
.owner = THIS_MODULE,
.ops = &iio_trig_sample_ops,
-};
+ };
module_iio_sw_trigger_driver(iio_trig_sample);
@@ -73,21 +78,24 @@ iio-trig-sample module will create 'trig-sample' trigger type directory
/config/iio/triggers/trig-sample.
We support the following interrupt sources (trigger types):
+
* hrtimer, uses high resolution timers as interrupt source
3.1 Hrtimer triggers creation and destruction
+---------------------------------------------
Loading iio-trig-hrtimer module will register hrtimer trigger types allowing
users to create hrtimer triggers under /config/iio/triggers/hrtimer.
-e.g:
+e.g::
-$ mkdir /config/iio/triggers/hrtimer/instance1
-$ rmdir /config/iio/triggers/hrtimer/instance1
+ $ mkdir /config/iio/triggers/hrtimer/instance1
+ $ rmdir /config/iio/triggers/hrtimer/instance1
Each trigger can have one or more attributes specific to the trigger type.
3.2 "hrtimer" trigger types attributes
+--------------------------------------
"hrtimer" trigger type doesn't have any configurable attribute from /config dir.
It does introduce the sampling_frequency attribute to trigger directory.
diff --git a/Documentation/iio/index.rst b/Documentation/iio/index.rst
new file mode 100644
index 000000000000..0593dca89a94
--- /dev/null
+++ b/Documentation/iio/index.rst
@@ -0,0 +1,12 @@
+:orphan:
+
+==============
+Industrial I/O
+==============
+
+.. toctree::
+ :maxdepth: 1
+
+ iio_configfs
+
+ ep93xx_adc
diff --git a/Documentation/index.rst b/Documentation/index.rst
index a7566ef62411..216dc0e1e6f2 100644
--- a/Documentation/index.rst
+++ b/Documentation/index.rst
@@ -101,6 +101,7 @@ needed).
filesystems/index
vm/index
bpf/index
+ usb/index
misc-devices/index
Architecture-specific documentation
@@ -112,7 +113,6 @@ implementation.
.. toctree::
:maxdepth: 2
- x86/index
sh/index
x86/index
diff --git a/Documentation/input/input.rst b/Documentation/input/input.rst
index 47f86a4bf16c..0eb61e67a7b7 100644
--- a/Documentation/input/input.rst
+++ b/Documentation/input/input.rst
@@ -188,7 +188,7 @@ LCDs and many other purposes.
The monitor and speaker controls should be easy to add to the hid/input
interface, but for the UPSs and LCDs it doesn't make much sense. For this,
-the hiddev interface was designed. See Documentation/hid/hiddev.txt
+the hiddev interface was designed. See Documentation/hid/hiddev.rst
for more information about it.
The usage of the usbhid module is very simple, it takes no parameters,
diff --git a/Documentation/interconnect/interconnect.rst b/Documentation/interconnect/interconnect.rst
index b8107dcc4cd3..56e331dab70e 100644
--- a/Documentation/interconnect/interconnect.rst
+++ b/Documentation/interconnect/interconnect.rst
@@ -1,5 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0
+:orphan:
+
=====================================
GENERIC SYSTEM INTERCONNECT SUBSYSTEM
=====================================
@@ -89,6 +91,5 @@ Interconnect consumers
Interconnect consumers are the clients which use the interconnect APIs to
get paths between endpoints and set their bandwidth/latency/QoS requirements
-for these interconnect paths.
-
-.. kernel-doc:: include/linux/interconnect.h
+for these interconnect paths. These interfaces are not currently
+documented.
diff --git a/Documentation/iostats.txt b/Documentation/iostats.txt
index 49df45f90e8a..5d63b18bd6d1 100644
--- a/Documentation/iostats.txt
+++ b/Documentation/iostats.txt
@@ -97,6 +97,10 @@ Field 9 -- # of I/Os currently in progress
Field 10 -- # of milliseconds spent doing I/Os
This field increases so long as field 9 is nonzero.
+ Since 5.0 this field counts jiffies when at least one request was
+ started or completed. If request runs more than 2 jiffies then some
+ I/O time will not be accounted unless there are other requests.
+
Field 11 -- weighted # of milliseconds spent doing I/Os
This field is incremented at each I/O start, I/O completion, I/O
merge, or read of these stats by the number of I/Os in progress
diff --git a/Documentation/isdn/HiSax.cert b/Documentation/isdn/HiSax.cert
deleted file mode 100644
index f2a6fcb8efee..000000000000
--- a/Documentation/isdn/HiSax.cert
+++ /dev/null
@@ -1,96 +0,0 @@
------BEGIN PGP SIGNED MESSAGE-----
-
-First:
-
- HiSax is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
-However, if you wish to modify the HiSax sources, please note the following:
-
-HiSax has passed the ITU approval test suite with ELSA Quickstep ISDN cards
-and Eicon Technology Diva 2.01 PCI card.
-The certification is only valid for the combination of the tested software
-version and the tested hardware. Any changes to the HiSax source code may
-therefore affect the certification.
-
-Additional ITU approval tests have been carried out for all generic cards
-using Colognechip single chip solutions HFC-S PCI A for PCI cards as well
-as HFC-S USB based USB ISDN ta adapters.
-These tests included all layers 1-3 and as well all functional tests for
-the layer 1. Because all hardware based on these chips are complete ISDN
-solutions in one chip all cards and USB-TAs using these chips are to be
-regarded as approved for those tests. Some additional electrical tests
-of the layer 1 which are independent of the driver and related to a
-special hardware used will be regarded as approved if at least one
-solution has been tested including those electrical tests. So if cards
-or tas have been completely approved for any other os, the approval
-for those electrical tests is valid for linux, too.
-Please send any questions regarding this drivers or approval abouts to
-werner@isdn-development.de
-Additional information and the type approval documents will be found
-shortly on the Colognechip website www.colognechip.com
-
-If you change the main files of the HiSax ISDN stack, the certification will
-become invalid. Because in most countries it is illegal to connect
-unapproved ISDN equipment to the public network, I have to guarantee that
-changes in HiSax do not affect the certification.
-
-In order to make a valid certification apparent to the user, I have built in
-some validation checks that are made during the make process. The HiSax main
-files are protected by md5 checksums and the md5sum file is pgp signed by
-myself:
-
-KeyID 1024/FF992F6D 1997/01/16 Karsten Keil <kkeil@suse.de>
-Key fingerprint = 92 6B F7 58 EE 86 28 C8 C4 1A E6 DC 39 89 F2 AA
-
-Only if the checksums are OK, and the signature of the file
-"drivers/isdn/hisax/md5sums.asc" match, is the certification valid; a
-message confirming this is then displayed during the hisax init process.
-
-The affected files are:
-
-drivers/isdn/hisax/isac.c
-drivers/isdn/hisax/isdnl1.c
-drivers/isdn/hisax/isdnl2.c
-drivers/isdn/hisax/isdnl3.c
-drivers/isdn/hisax/tei.c
-drivers/isdn/hisax/callc.c
-drivers/isdn/hisax/l3dss1.c
-drivers/isdn/hisax/l3_1tr6.c
-drivers/isdn/hisax/cert.c
-drivers/isdn/hisax/elsa.c
-drivers/isdn/hisax/diva.c
-drivers/isdn/hisax/hfc_pci.c
-
-Please send any changes, bugfixes and patches to me rather than implementing
-them directly into the HiSax sources.
-
-This does not reduce your rights granted by the GNU General Public License.
-If you wish to change the sources, go ahead; but note that then the
-certification is invalid even if you use one of the approved cards.
-
-Here are the certification registration numbers for ELSA Quickstep cards:
-German D133361J CETECOM ICT Services GmbH 0682
-European D133362J CETECOM ICT Services GmbH 0682
-
-
-Karsten Keil
-keil@isdn4linux.de
-
------BEGIN PGP SIGNATURE-----
-Version: 2.6.3i
-Charset: noconv
-
-iQCVAwUBOFAwqTpxHvX/mS9tAQFI2QP9GLDK2iy/KBhwReE3F7LeO+tVhffTVZ3a
-20q5/z/WcIg/pnH0uTkl2UgDXBFXYl45zJyDGNpAposIFmT+Edd14o7Vj1w/BBdn
-Y+5rBmJf+gyBu61da5d6bv0lpymwRa/um+ri+ilYnZ/XPfg5JKhdjGSBCJuJAElM
-d2jFbTrsMYw=
-=LNf9
------END PGP SIGNATURE-----
diff --git a/Documentation/isdn/INTERFACE b/Documentation/isdn/INTERFACE
deleted file mode 100644
index 5df17e5b25c8..000000000000
--- a/Documentation/isdn/INTERFACE
+++ /dev/null
@@ -1,759 +0,0 @@
-$Id: INTERFACE,v 1.15.8.2 2001/03/13 16:17:07 kai Exp $
-
-Description of the Interface between Linklevel and Hardwarelevel
- of isdn4linux:
-
-
- The Communication between Linklevel (LL) and Hardwarelevel (HL)
- is based on the struct isdn_if (defined in isdnif.h).
-
- An HL-driver can register itself at LL by calling the function
- register_isdn() with a pointer to that struct. Prior to that, it has
- to preset some of the fields of isdn_if. The LL sets the rest of
- the fields. All further communication is done via callbacks using
- the function-pointers defined in isdn_if.
-
- Changes/Version numbering:
-
- During development of the ISDN subsystem, several changes have been
- made to the interface. Before it went into kernel, the package
- had a unique version number. The last version, distributed separately
- was 0.7.4. When the subsystem went into kernel, every functional unit
- got a separate version number. These numbers are shown at initialization,
- separated by slashes:
-
- c.c/t.t/n.n/p.p/a.a/v.v
-
- where
-
- c.c is the revision of the common code.
- t.t is the revision of the tty related code.
- n.n is the revision of the network related code.
- p.p is the revision of the ppp related code.
- a.a is the revision of the audio related code.
- v.v is the revision of the V.110 related code.
-
- Changes in this document are marked with '***CHANGEx' where x representing
- the version number. If that number starts with 0, it refers to the old,
- separately distributed package. If it starts with one of the letters
- above, it refers to the revision of the corresponding module.
- ***CHANGEIx refers to the revision number of the isdnif.h
-
-1. Description of the fields of isdn_if:
-
- int channels;
-
- This field has to be set by the HL-driver to the number of channels
- supported prior to calling register_isdn(). Upon return of the call,
- the LL puts an id there, which has to be used by the HL-driver when
- invoking the other callbacks.
-
- int maxbufsize;
-
- ***CHANGE0.6: New since this version.
-
- Also to be preset by the HL-driver. With this value the HL-driver
- tells the LL the maximum size of a data-packet it will accept.
-
- unsigned long features;
-
- To be preset by the HL-driver. Using this field, the HL-driver
- announces the features supported. At the moment this is limited to
- report the supported layer2 and layer3-protocols. For setting this
- field the constants ISDN_FEATURE..., declared in isdnif.h have to be
- used.
-
- ***CHANGE0.7.1: The line type (1TR6, EDSS1) has to be set.
-
- unsigned short hl_hdrlen;
-
- ***CHANGE0.7.4: New field.
-
- To be preset by the HL-driver, if it supports sk_buff's. The driver
- should put here the amount of additional space needed in sk_buff's for
- its internal purposes. Drivers not supporting sk_buff's should
- initialize this field to 0.
-
- void (*rcvcallb_skb)(int, int, struct sk_buff *)
-
- ***CHANGE0.7.4: New field.
-
- This field will be set by LL. The HL-driver delivers received data-
- packets by calling this function. Upon calling, the HL-driver must
- already have its private data pulled off the head of the sk_buff.
-
- Parameter:
- int driver-Id
- int Channel-number locally to the driver. (starting with 0)
- struct sk_buff * Pointer to sk_buff, containing received data.
-
- int (*statcallb)(isdn_ctrl*);
-
- This field will be set by LL. This function has to be called by the
- HL-driver for signaling status-changes or other events to the LL.
-
- Parameter:
- isdn_ctrl*
-
- The struct isdn_ctrl also defined in isdn_if. The exact meanings of its
- fields are described together with the descriptions of the possible
- events. Here is only a short description of the fields:
-
- driver = driver Id.
- command = event-type. (one of the constants ISDN_STAT_...)
- arg = depends on event-type.
- num = depends on event-type.
-
- Returnvalue:
- 0 on success, else -1
-
- int (*command)(isdn_ctrl*);
-
- This field has to be preset by the HL-driver. It points to a function,
- to be called by LL to perform functions like dialing, B-channel
- setup, etc. The exact meaning of the parameters is described with the
- descriptions of the possible commands.
-
- Parameter:
- isdn_ctrl*
- driver = driver-Id
- command = command to perform. (one of the constants ISDN_CMD_...)
- arg = depends on command.
- num = depends on command.
-
- Returnvalue:
- >=0 on success, else error-code (-ENODEV etc.)
-
- int (*writebuf_skb)(int, int, int, struct sk_buff *)
-
- ***CHANGE0.7.4: New field.
- ***CHANGEI.1.21: New field.
-
- This field has to be preset by the HL-driver. The given function will
- be called by the LL for delivering data to be send via B-Channel.
-
-
- Parameter:
- int driver-Id ***CHANGE0.7.4: New parameter.
- int channel-number locally to the HL-driver. (starts with 0)
- int ack ***ChangeI1.21: New parameter
- If this is !0, the driver has to signal the delivery
- by sending an ISDN_STAT_BSENT. If this is 0, the driver
- MUST NOT send an ISDN_STAT_BSENT.
- struct sk_buff * Pointer to sk_buff containing data to be send via
- B-channel.
-
- Returnvalue:
- Length of data accepted on success, else error-code (-EINVAL on
- oversized packets etc.)
-
- int (*writecmd)(u_char*, int, int, int, int);
-
- This field has to be preset by the HL-driver. The given function will be
- called to perform write-requests on /dev/isdnctrl (i.e. sending commands
- to the card) The data-format is hardware-specific. This function is
- intended for debugging only. It is not necessary for normal operation
- and never will be called by the tty-emulation- or network-code. If
- this function is not supported, the driver has to set NULL here.
-
- Parameter:
- u_char* pointer to data.
- int length of data.
- int flag: 0 = call from within kernel-space. (HL-driver must use
- memcpy, may NOT use schedule())
- 1 = call from user-space. (HL-driver must use
- memcpy_fromfs, use of schedule() allowed)
- int driver-Id.
- int channel-number locally to the HL-driver. (starts with 0)
-
-***CHANGEI1.14: The driver-Id and channel-number are new since this revision.
-
- Returnvalue:
- Length of data accepted on success, else error-code (-EINVAL etc.)
-
- int (*readstat)(u_char*, int, int, int, int);
-
- This field has to be preset by the HL-driver. The given function will be
- called to perform read-requests on /dev/isdnctrl (i.e. reading replies
- from the card) The data-format is hardware-specific. This function is
- intended for debugging only. It is not necessary for normal operation
- and never will be called by the tty-emulation- or network-code. If
- this function is not supported, the driver has to set NULL here.
-
- Parameter:
- u_char* pointer to data.
- int length of data.
- int flag: 0 = call from within kernel-space. (HL-driver must use
- memcpy, may NOT use schedule())
- 1 = call from user-space. (HL-driver must use
- memcpy_fromfs, use of schedule() allowed)
- int driver-Id.
- int channel-number locally to the HL-driver. (starts with 0)
-
-***CHANGEI1.14: The driver-Id and channel-number are new since this revision.
-
- Returnvalue:
- Length of data on success, else error-code (-EINVAL etc.)
-
- char id[20];
- ***CHANGE0.7: New since this version.
-
- This string has to be preset by the HL-driver. Its purpose is for
- identification of the driver by the user. Eg.: it is shown in the
- status-info of /dev/isdninfo. Furthermore it is used as Id for binding
- net-interfaces to a specific channel. If a string of length zero is
- given, upon return, isdn4linux will replace it by a generic name. (line0,
- line1 etc.) It is recommended to make this string configurable during
- module-load-time. (copy a global variable to this string.) For doing that,
- modules 1.2.8 or newer are necessary.
-
-2. Description of the commands, a HL-driver has to support:
-
- All commands will be performed by calling the function command() described
- above from within the LL. The field command of the struct-parameter will
- contain the desired command, the field driver is always set to the
- appropriate driver-Id.
-
- Until now, the following commands are defined:
-
-***CHANGEI1.34: The parameter "num" has been replaced by a union "parm" containing
- the old "num" and a new setup_type struct used for ISDN_CMD_DIAL
- and ISDN_STAT_ICALL callback.
-
- ISDN_CMD_IOCTL:
-
- This command is intended for performing ioctl-calls for configuring
- hardware or similar purposes (setting port-addresses, loading firmware
- etc.) For this purpose, in the LL all ioctl-calls with an argument
- >= IIOCDRVCTL (0x100) will be handed transparently to this
- function after subtracting 0x100 and placing the result in arg.
- Example:
- If a userlevel-program calls ioctl(0x101,...) the function gets
- called with the field command set to 1.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_IOCTL
- arg = Original ioctl-cmd - IIOCDRVCTL
- parm.num = first bytes filled with (unsigned long)arg
-
- Returnvalue:
- Depending on driver.
-
-
- ISDN_CMD_DIAL:
-
- This command is used to tell the HL-driver it should dial a given
- number.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_DIAL
- arg = channel-number locally to the driver. (starting with 0)
-
- parm.setup.phone = An ASCII-String containing the number to dial.
- parm.setup.eazmsn = An ASCII-Sting containing the own EAZ or MSN.
- parm.setup.si1 = The Service-Indicator.
- parm.setup.si2 = Additional Service-Indicator.
-
- If the Line has been designed as SPV (a special german
- feature, meaning semi-leased-line) the phone has to
- start with an "S".
- ***CHANGE0.6: In previous versions the EAZ has been given in the
- highbyte of arg.
- ***CHANGE0.7.1: New since this version: ServiceIndicator and AddInfo.
-
- ISDN_CMD_ACCEPTD:
-
- With this command, the HL-driver is told to accept a D-Channel-setup.
- (Response to an incoming call)
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_ACCEPTD
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_CMD_ACCEPTB:
-
- With this command, the HL-driver is told to perform a B-Channel-setup.
- (after establishing D-Channel-Connection)
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_ACCEPTB
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_CMD_HANGUP:
-
- With this command, the HL-driver is told to hangup (B-Channel if
- established first, then D-Channel). This command is also used for
- actively rejecting an incoming call.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_HANGUP
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_CMD_CLREAZ:
-
- With this command, the HL-driver is told not to signal incoming
- calls to the LL.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_CLREAZ
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_CMD_SETEAZ:
-
- With this command, the HL-driver is told to signal incoming calls for
- the given EAZs/MSNs to the LL.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETEAZ
- arg = channel-number locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing the desired EAZ's/MSN's
- (comma-separated). If an empty String is given, the
- HL-driver should respond to ALL incoming calls,
- regardless of the destination-address.
- ***CHANGE0.6: New since this version the "empty-string"-feature.
-
- ISDN_CMD_GETEAZ: (currently unused)
-
- With this command, the HL-driver is told to report the current setting
- given with ISDN_CMD_SETEAZ.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_GETEAZ
- arg = channel-number locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing the current EAZ's/MSN's
-
- ISDN_CMD_SETSIL: (currently unused)
-
- With this command, the HL-driver is told to signal only incoming
- calls with the given Service-Indicators.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETSIL
- arg = channel-number locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing the desired Service-Indicators.
-
- ISDN_CMD_GETSIL: (currently unused)
-
- With this command, the HL-driver is told to return the current
- Service-Indicators it will respond to.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETSIL
- arg = channel-number locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing the current Service-Indicators.
-
- ISDN_CMD_SETL2:
-
- With this command, the HL-driver is told to select the given Layer-2-
- protocol. This command is issued by the LL prior to ISDN_CMD_DIAL or
- ISDN_CMD_ACCEPTD.
-
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETL2
- arg = channel-number locally to the driver. (starting with 0)
- logical or'ed with (protocol-Id << 8)
- protocol-Id is one of the constants ISDN_PROTO_L2...
- parm = unused.
-
- ISDN_CMD_GETL2: (currently unused)
-
- With this command, the HL-driver is told to return the current
- setting of the Layer-2-protocol.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_GETL2
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
- Returnvalue:
- current protocol-Id (one of the constants ISDN_L2_PROTO)
-
- ISDN_CMD_SETL3:
-
- With this command, the HL-driver is told to select the given Layer-3-
- protocol. This command is issued by the LL prior to ISDN_CMD_DIAL or
- ISDN_CMD_ACCEPTD.
-
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETL3
- arg = channel-number locally to the driver. (starting with 0)
- logical or'ed with (protocol-Id << 8)
- protocol-Id is one of the constants ISDN_PROTO_L3...
- parm.fax = Pointer to T30_s fax struct. (fax usage only)
-
- ISDN_CMD_GETL2: (currently unused)
-
- With this command, the HL-driver is told to return the current
- setting of the Layer-3-protocol.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_GETL3
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
- Returnvalue:
- current protocol-Id (one of the constants ISDN_L3_PROTO)
-
- ISDN_CMD_PROCEED:
-
- With this command, the HL-driver is told to proceed with a incoming call.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_PROCEED
- arg = channel-number locally to the driver. (starting with 0)
- setup.eazmsn= empty string or string send as uus1 in DSS1 with
- PROCEED message
-
- ISDN_CMD_ALERT:
-
- With this command, the HL-driver is told to alert a proceeding call.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_ALERT
- arg = channel-number locally to the driver. (starting with 0)
- setup.eazmsn= empty string or string send as uus1 in DSS1 with
- ALERT message
-
- ISDN_CMD_REDIR:
-
- With this command, the HL-driver is told to redirect a call in proceeding
- or alerting state.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_REDIR
- arg = channel-number locally to the driver. (starting with 0)
- setup.eazmsn= empty string or string send as uus1 in DSS1 protocol
- setup.screen= screening indicator
- setup.phone = redirected to party number
-
- ISDN_CMD_PROT_IO:
-
- With this call, the LL-driver invokes protocol specific features through
- the LL.
- The call is not implicitely bound to a connection.
-
- Parameter:
- driver = driver-Id
- command = ISDN_CMD_PROT_IO
- arg = The lower 8 Bits define the addressed protocol as defined
- in ISDN_PTYPE..., the upper bits are used to differentiate
- the protocol specific CMD.
-
- para = protocol and function specific. See isdnif.h for detail.
-
-
- ISDN_CMD_FAXCMD:
-
- With this command the HL-driver receives a fax sub-command.
- For details refer to INTERFACE.fax
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_FAXCMD
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
-
-3. Description of the events to be signaled by the HL-driver to the LL.
-
- All status-changes are signaled via calling the previously described
- function statcallb(). The field command of the struct isdn_cmd has
- to be set by the HL-driver with the appropriate Status-Id (event-number).
- The field arg has to be set to the channel-number (locally to the driver,
- starting with 0) to which this event applies. (Exception: STAVAIL-event)
-
- Until now, the following Status-Ids are defined:
-
- ISDN_STAT_AVAIL:
-
- With this call, the HL-driver signals the availability of new data
- for readstat(). Used only for debugging-purposes, see description
- of readstat().
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_STAVAIL
- arg = length of available data.
- parm = unused.
-
- ISDN_STAT_ICALL:
- ISDN_STAT_ICALLW:
-
- With this call, the HL-driver signals an incoming call to the LL.
- If ICALLW is signalled the incoming call is a waiting call without
- a available B-chan.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_ICALL
- arg = channel-number, locally to the driver. (starting with 0)
- para.setup.phone = Callernumber.
- para.setup.eazmsn = CalledNumber.
- para.setup.si1 = Service Indicator.
- para.setup.si2 = Additional Service Indicator.
- para.setup.plan = octet 3 from Calling party number Information Element.
- para.setup.screen = octet 3a from Calling party number Information Element.
-
- Return:
- 0 = No device matching this call.
- 1 = At least one device matching this call (RING on ttyI).
- HL-driver may send ALERTING on the D-channel in this case.
- 2 = Call will be rejected.
- 3 = Incoming called party number is currently incomplete.
- Additional digits are required.
- Used for signalling with PtP connections.
- 4 = Call will be held in a proceeding state
- (HL driver sends PROCEEDING)
- Used when a user space prog needs time to interpret a call
- para.setup.eazmsn may be filled with an uus1 message of
- 30 octets maximum. Empty string if no uus.
- 5 = Call will be actively deflected to another party
- Only available in DSS1/EURO protocol
- para.setup.phone must be set to destination party number
- para.setup.eazmsn may be filled with an uus1 message of
- 30 octets maximum. Empty string if no uus.
- -1 = An error happened. (Invalid parameters for example.)
- The keypad support now is included in the dial command.
-
-
- ISDN_STAT_RUN:
-
- With this call, the HL-driver signals availability of the ISDN-card.
- (after initializing, loading firmware)
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_RUN
- arg = unused.
- parm = unused.
-
- ISDN_STAT_STOP:
-
- With this call, the HL-driver signals unavailability of the ISDN-card.
- (before unloading, while resetting/reconfiguring the card)
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_STOP
- arg = unused.
- parm = unused.
-
- ISDN_STAT_DCONN:
-
- With this call, the HL-driver signals the successful establishment of
- a D-Channel-connection. (Response to ISDN_CMD_ACCEPTD or ISDN_CMD_DIAL)
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_DCONN
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_STAT_BCONN:
-
- With this call, the HL-driver signals the successful establishment of
- a B-Channel-connection. (Response to ISDN_CMD_ACCEPTB or because the
- remote-station has initiated establishment)
-
- The HL driver should call this when the logical l2/l3 protocol
- connection on top of the physical B-channel is established.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_BCONN
- arg = channel-number, locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing type of connection (for analog
- modem only). This will be appended to the CONNECT message
- e.g. 14400/V.32bis
-
- ISDN_STAT_DHUP:
-
- With this call, the HL-driver signals the shutdown of a
- D-Channel-connection. This could be a response to a prior ISDN_CMD_HANGUP,
- or caused by a remote-hangup or if the remote-station has actively
- rejected a call.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_DHUP
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_STAT_BHUP:
-
- With this call, the HL-driver signals the shutdown of a
- B-Channel-connection. This could be a response to a prior ISDN_CMD_HANGUP,
- or caused by a remote-hangup.
-
- The HL driver should call this as soon as the logical l2/l3 protocol
- connection on top of the physical B-channel is released.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_BHUP
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_STAT_CINF:
-
- With this call, the HL-driver delivers charge-unit information to the
- LL.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_CINF
- arg = channel-number, locally to the driver. (starting with 0)
- parm.num = ASCII string containing charge-units (digits only).
-
- ISDN_STAT_LOAD: (currently unused)
-
- ISDN_STAT_UNLOAD:
-
- With this call, the HL-driver signals that it will be unloaded now. This
- tells the LL to release all corresponding data-structures.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_UNLOAD
- arg = unused.
- parm = unused.
-
- ISDN_STAT_BSENT:
-
- With this call the HL-driver signals the delivery of a data-packet.
- This callback is used by the network-interfaces only, tty-Emulation
- does not need this call.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_BSENT
- arg = channel-number, locally to the driver. (starting with 0)
- parm.length = ***CHANGEI.1.21: New field.
- the driver has to set this to the original length
- of the skb at the time of receiving it from the linklevel.
-
- ISDN_STAT_NODCH:
-
- With this call, the driver has to respond to a prior ISDN_CMD_DIAL, if
- no D-Channel is available.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_NODCH
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_STAT_ADDCH:
-
- This call is for HL-drivers, which are unable to check card-type
- or numbers of supported channels before they have loaded any firmware
- using ioctl. Those HL-driver simply set the channel-parameter to a
- minimum channel-number when registering, and later if they know
- the real amount, perform this call, allocating additional channels.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_ADDCH
- arg = number of channels to be added.
- parm = unused.
-
- ISDN_STAT_CAUSE:
-
- With this call, the HL-driver delivers CAUSE-messages to the LL.
- Currently the LL does not use this messages. Their contents is simply
- logged via kernel-messages. Therefore, currently the format of the
- messages is completely free. However they should be printable.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_NODCH
- arg = channel-number, locally to the driver. (starting with 0)
- parm.num = ASCII string containing CAUSE-message.
-
- ISDN_STAT_DISPLAY:
-
- With this call, the HL-driver delivers DISPLAY-messages to the LL.
- Currently the LL does not use this messages.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_DISPLAY
- arg = channel-number, locally to the driver. (starting with 0)
- para.display= string containing DISPLAY-message.
-
- ISDN_STAT_PROT:
-
- With this call, the HL-driver delivers protocol specific infos to the LL.
- The call is not implicitely bound to a connection.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_PROT
- arg = The lower 8 Bits define the addressed protocol as defined
- in ISDN_PTYPE..., the upper bits are used to differentiate
- the protocol specific STAT.
-
- para = protocol and function specific. See isdnif.h for detail.
-
- ISDN_STAT_DISCH:
-
- With this call, the HL-driver signals the LL to disable or enable the
- use of supplied channel and driver.
- The call may be used to reduce the available number of B-channels after
- loading the driver. The LL has to ignore a disabled channel when searching
- for free channels. The HL driver itself never delivers STAT callbacks for
- disabled channels.
- The LL returns a nonzero code if the operation was not successful or the
- selected channel is actually regarded as busy.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_DISCH
- arg = channel-number, locally to the driver. (starting with 0)
- parm.num[0] = 0 if channel shall be disabled, else enabled.
-
- ISDN_STAT_L1ERR:
-
- ***CHANGEI1.21 new status message.
- A signal can be sent to the linklevel if an Layer1-error results in
- packet-loss on receive or send. The field errcode of the cmd.parm
- union describes the error more precisely.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_L1ERR
- arg = channel-number, locally to the driver. (starting with 0)
- parm.errcode= ISDN_STAT_L1ERR_SEND: Packet lost while sending.
- ISDN_STAT_L1ERR_RECV: Packet lost while receiving.
- ISDN_STAT_FAXIND:
-
- With this call the HL-driver signals a fax sub-command to the LL.
- For details refer to INTERFACE.fax
-
- Parameter:
- driver = driver-Id.
- command = ISDN_STAT_FAXIND
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
diff --git a/Documentation/isdn/INTERFACE.fax b/Documentation/isdn/INTERFACE.fax
deleted file mode 100644
index 9c8c6d914ec7..000000000000
--- a/Documentation/isdn/INTERFACE.fax
+++ /dev/null
@@ -1,163 +0,0 @@
-$Id: INTERFACE.fax,v 1.2 2000/08/06 09:22:50 armin Exp $
-
-
-Description of the fax-subinterface between linklevel and hardwarelevel of
- isdn4linux.
-
- The communication between linklevel (LL) and hardwarelevel (HL) for fax
- is based on the struct T30_s (defined in isdnif.h).
- This struct is allocated in the LL.
- In order to use fax, the LL provides the pointer to this struct with the
- command ISDN_CMD_SETL3 (parm.fax). This pointer expires in case of hangup
- and when a new channel to a new connection is assigned.
-
-
-Data handling:
- In send-mode the HL-driver has to handle the <DLE> codes and the bit-order
- conversion by itself.
- In receive-mode the LL-driver takes care of the bit-order conversion
- (specified by +FBOR)
-
-Structure T30_s description:
-
- This structure stores the values (set by AT-commands), the remote-
- capability-values and the command-codes between LL and HL.
-
- If the HL-driver receives ISDN_CMD_FAXCMD, all needed information
- is in this struct set by the LL.
- To signal information to the LL, the HL-driver has to set the
- parameters and use ISDN_STAT_FAXIND.
- (Please refer to INTERFACE)
-
-Structure T30_s:
-
- All members are 8-bit unsigned (__u8)
-
- - resolution
- - rate
- - width
- - length
- - compression
- - ecm
- - binary
- - scantime
- - id[]
- Local faxmachine's parameters, set by +FDIS, +FDCS, +FLID, ...
-
- - r_resolution
- - r_rate
- - r_width
- - r_length
- - r_compression
- - r_ecm
- - r_binary
- - r_scantime
- - r_id[]
- Remote faxmachine's parameters. To be set by HL-driver.
-
- - phase
- Defines the actual state of fax connection. Set by HL or LL
- depending on progress and type of connection.
- If the phase changes because of an AT command, the LL driver
- changes this value. Otherwise the HL-driver takes care of it, but
- only necessary on call establishment (from IDLE to PHASE_A).
- (one of the constants ISDN_FAX_PHASE_[IDLE,A,B,C,D,E])
-
- - direction
- Defines outgoing/send or incoming/receive connection.
- (ISDN_TTY_FAX_CONN_[IN,OUT])
-
- - code
- Commands from LL to HL; possible constants :
- ISDN_TTY_FAX_DR signals +FDR command to HL
-
- ISDN_TTY_FAX_DT signals +FDT command to HL
-
- ISDN_TTY_FAX_ET signals +FET command to HL
-
-
- Other than that the "code" is set with the hangup-code value at
- the end of connection for the +FHNG message.
-
- - r_code
- Commands from HL to LL; possible constants :
- ISDN_TTY_FAX_CFR output of +FCFR message.
-
- ISDN_TTY_FAX_RID output of remote ID set in r_id[]
- (+FCSI/+FTSI on send/receive)
-
- ISDN_TTY_FAX_DCS output of +FDCS and CONNECT message,
- switching to phase C.
-
- ISDN_TTY_FAX_ET signals end of data,
- switching to phase D.
-
- ISDN_TTY_FAX_FCON signals the established, outgoing connection,
- switching to phase B.
-
- ISDN_TTY_FAX_FCON_I signals the established, incoming connection,
- switching to phase B.
-
- ISDN_TTY_FAX_DIS output of +FDIS message and values.
-
- ISDN_TTY_FAX_SENT signals that all data has been sent
- and <DLE><ETX> is acknowledged,
- OK message will be sent.
-
- ISDN_TTY_FAX_PTS signals a msg-confirmation (page sent successful),
- depending on fet value:
- 0: output OK message (more pages follow)
- 1: switching to phase B (next document)
-
- ISDN_TTY_FAX_TRAIN_OK output of +FDCS and OK message (for receive mode).
-
- ISDN_TTY_FAX_EOP signals end of data in receive mode,
- switching to phase D.
-
- ISDN_TTY_FAX_HNG output of the +FHNG and value set by code and
- OK message, switching to phase E.
-
-
- - badlin
- Value of +FBADLIN
-
- - badmul
- Value of +FBADMUL
-
- - bor
- Value of +FBOR
-
- - fet
- Value of +FET command in send-mode.
- Set by HL in receive-mode for +FET message.
-
- - pollid[]
- ID-string, set by +FCIG
-
- - cq
- Value of +FCQ
-
- - cr
- Value of +FCR
-
- - ctcrty
- Value of +FCTCRTY
-
- - minsp
- Value of +FMINSP
-
- - phcto
- Value of +FPHCTO
-
- - rel
- Value of +FREL
-
- - nbc
- Value of +FNBC (0,1)
- (+FNBC is not a known class 2 fax command, I added this to change the
- automatic "best capabilities" connection in the eicon HL-driver)
-
-
-Armin
-mac@melware.de
-
diff --git a/Documentation/isdn/README b/Documentation/isdn/README
deleted file mode 100644
index 74bd2bdb455b..000000000000
--- a/Documentation/isdn/README
+++ /dev/null
@@ -1,599 +0,0 @@
-README for the ISDN-subsystem
-
-1. Preface
-
- 1.1 Introduction
-
- This README describes how to set up and how to use the different parts
- of the ISDN-subsystem.
-
- For using the ISDN-subsystem, some additional userlevel programs are
- necessary. Those programs and some contributed utilities are available
- at
-
- ftp.isdn4linux.de
-
- /pub/isdn4linux/isdn4k-utils-<VersionNumber>.tar.gz
-
-
- We also have set up a mailing-list:
-
- The isdn4linux-project originates in Germany, and therefore by historical
- reasons, the mailing-list's primary language is german. However mails
- written in english have been welcome all the time.
-
- to subscribe: write a email to majordomo@listserv.isdn4linux.de,
- Subject irrelevant, in the message body:
- subscribe isdn4linux <your_email_address>
-
- To write to the mailing-list, write to isdn4linux@listserv.isdn4linux.de
-
- This mailinglist is bidirectionally gated to the newsgroup
-
- de.alt.comm.isdn4linux
-
- There is also a well maintained FAQ in English available at
- https://www.mhessler.de/i4lfaq/
- It can be viewed online, or downloaded in sgml/text/html format.
- The FAQ can also be viewed online at
- https://www.isdn4linux.de/faq/i4lfaq.html
- or downloaded from
- ftp://ftp.isdn4linux.de/pub/isdn4linux/FAQ/
-
- 1.1 Technical details
-
- In the following Text, the terms MSN and EAZ are used.
-
- MSN is the abbreviation for (M)ultiple(S)ubscriber(N)umber, and applies
- to Euro(EDSS1)-type lines. Usually it is simply the phone number.
-
- EAZ is the abbreviation of (E)ndgeraete(A)uswahl(Z)iffer and
- applies to German 1TR6-type lines. This is a one-digit string,
- simply appended to the base phone number
-
- The internal handling is nearly identical, so replace the appropriate
- term to that one, which applies to your local ISDN-environment.
-
- When the link-level-module isdn.o is loaded, it supports up to 16
- low-level-modules with up to 64 channels. (The number 64 is arbitrarily
- chosen and can be configured at compile-time --ISDN_MAX in isdn.h).
- A low-level-driver can register itself through an interface (which is
- defined in isdnif.h) and gets assigned a slot.
- The following char-devices are made available for each channel:
-
- A raw-control-device with the following functions:
- write: raw D-channel-messages (format: depends on driver).
- read: raw D-channel-messages (format: depends on driver).
- ioctl: depends on driver, i.e. for the ICN-driver, the base-address of
- the ports and the shared memory on the card can be set and read
- also the boot-code and the protocol software can be loaded into
- the card.
-
- O N L Y !!! for debugging (no locking against other devices):
- One raw-data-device with the following functions:
- write: data to B-channel.
- read: data from B-channel.
-
- In addition the following devices are made available:
-
- 128 tty-devices (64 cuix and 64 ttyIx) with integrated modem-emulator:
- The functionality is almost the same as that of a serial device
- (the line-discs are handled by the kernel), which lets you run
- SLIP, CSLIP and asynchronous PPP through the devices. We have tested
- Seyon, minicom, CSLIP (uri-dip) PPP, mgetty, XCept and Hylafax.
-
- The modem-emulation supports the following:
- 1.3.1 Commands:
-
- ATA Answer incoming call.
- ATD<No.> Dial, the number may contain:
- [0-9] and [,#.*WPT-S]
- the latter are ignored until 'S'.
- The 'S' must precede the number, if
- the line is a SPV (German 1TR6).
- ATE0 Echo off.
- ATE1 Echo on (default).
- ATH Hang-up.
- ATH1 Off hook (ignored).
- ATH0 Hang-up.
- ATI Return "ISDN for Linux...".
- ATI0 "
- ATI1 "
- ATI2 Report of last connection.
- ATO On line (data mode).
- ATQ0 Enable result codes (default).
- ATQ1 Disable result codes (default).
- ATSx=y Set register x to y.
- ATSx? Show contents of register x.
- ATV0 Numeric responses.
- ATV1 English responses (default).
- ATZ Load registers and EAZ/MSN from Profile.
- AT&Bx Set Send-Packet-size to x (max. 4000)
- The real packet-size may be limited by the
- low-level-driver used. e.g. the HiSax-Module-
- limit is 2000. You will get NO Error-Message,
- if you set it to higher values, because at the
- time of giving this command the corresponding
- driver may not be selected (see "Automatic
- Assignment") however the size of outgoing packets
- will be limited correctly.
- AT&D0 Ignore DTR
- AT&D2 DTR-low-edge: Hang up and return to
- command mode (default).
- AT&D3 Same as AT&D2 but also resets all registers.
- AT&Ex Set the EAZ/MSN for this channel to x.
- AT&F Reset all registers and profile to "factory-defaults"
- AT&Lx Set list of phone numbers to listen on. x is a
- list of wildcard patterns separated by semicolon.
- If this is set, it has precedence over the MSN set
- by AT&E.
- AT&Rx Select V.110 bitrate adaption.
- This command enables V.110 protocol with 9600 baud
- (x=9600), 19200 baud (x=19200) or 38400 baud
- (x=38400). A value of x=0 disables V.110 switching
- back to default X.75. This command sets the following
- Registers:
- Reg 14 (Layer-2 protocol):
- x = 0: 0
- x = 9600: 7
- x = 19200: 8
- x = 38400: 9
- Reg 18.2 = 1
- Reg 19 (Additional Service Indicator):
- x = 0: 0
- x = 9600: 197
- x = 19200: 199
- x = 38400: 198
- Note on value in Reg 19:
- There is _NO_ common convention for 38400 baud.
- The value 198 is chosen arbitrarily. Users
- _MUST_ negotiate this value before establishing
- a connection.
- AT&Sx Set window-size (x = 1..8) (not yet implemented)
- AT&V Show all settings.
- AT&W0 Write registers and EAZ/MSN to profile. See also
- iprofd (5.c in this README).
- AT&X0 BTX-mode and T.70-mode off (default)
- AT&X1 BTX-mode on. (S13.1=1, S13.5=0 S14=0, S16=7, S18=7, S19=0)
- AT&X2 T.70-mode on. (S13.1=1, S13.5=1, S14=0, S16=7, S18=7, S19=0)
- AT+Rx Resume a suspended call with CallID x (x = 1,2,3...)
- AT+Sx Suspend a call with CallID x (x = 1,2,3...)
-
- For voice-mode commands refer to README.audio
-
- 1.3.2 Escape sequence:
- During a connection, the emulation reacts just like
- a normal modem to the escape sequence <DELAY>+++<DELAY>.
- (The escape character - default '+' - can be set in the
- register 2).
- The DELAY must at least be 1.5 seconds long and delay
- between the escape characters must not exceed 0.5 seconds.
-
- 1.3.3 Registers:
-
- Nr. Default Description
- 0 0 Answer on ring number.
- (no auto-answer if S0=0).
- 1 0 Count of rings.
- 2 43 Escape character.
- (a value >= 128 disables the escape sequence).
- 3 13 Carriage return character (ASCII).
- 4 10 Line feed character (ASCII).
- 5 8 Backspace character (ASCII).
- 6 3 Delay in seconds before dialing.
- 7 60 Wait for carrier.
- 8 2 Pause time for comma (ignored)
- 9 6 Carrier detect time (ignored)
- 10 7 Carrier loss to disconnect time (ignored).
- 11 70 Touch tone timing (ignored).
- 12 69 Bit coded register:
- Bit 0: 0 = Suppress response messages.
- 1 = Show response messages.
- Bit 1: 0 = English response messages.
- 1 = Numeric response messages.
- Bit 2: 0 = Echo off.
- 1 = Echo on.
- Bit 3 0 = DCD always on.
- 1 = DCD follows carrier.
- Bit 4 0 = CTS follows RTS
- 1 = Ignore RTS, CTS always on.
- Bit 5 0 = return to command mode on DTR low.
- 1 = Same as 0 but also resets all
- registers.
- See also register 13, bit 2
- Bit 6 0 = DSR always on.
- 1 = DSR only on if channel is available.
- Bit 7 0 = Cisco-PPP-flag-hack off (default).
- 1 = Cisco-PPP-flag-hack on.
- 13 0 Bit coded register:
- Bit 0: 0 = Use delayed tty-send-algorithm
- 1 = Direct tty-send.
- Bit 1: 0 = T.70 protocol (Only for BTX!) off
- 1 = T.70 protocol (Only for BTX!) on
- Bit 2: 0 = Don't hangup on DTR low.
- 1 = Hangup on DTR low.
- Bit 3: 0 = Standard response messages
- 1 = Extended response messages
- Bit 4: 0 = CALLER NUMBER before every RING.
- 1 = CALLER NUMBER after first RING.
- Bit 5: 0 = T.70 extended protocol off
- 1 = T.70 extended protocol on
- Bit 6: 0 = Special RUNG Message off
- 1 = Special RUNG Message on
- "RUNG" is delivered on a ttyI, if
- an incoming call happened (RING) and
- the remote party hung up before any
- local ATA was given.
- Bit 7: 0 = Don't show display messages from net
- 1 = Show display messages from net
- (S12 Bit 1 must be 0 too)
- 14 0 Layer-2 protocol:
- 0 = X75/LAPB with I-frames
- 1 = X75/LAPB with UI-frames
- 2 = X75/LAPB with BUI-frames
- 3 = HDLC
- 4 = Transparent (audio)
- 7 = V.110, 9600 baud
- 8 = V.110, 19200 baud
- 9 = V.110, 38400 baud
- 10 = Analog Modem (only if hardware supports this)
- 11 = Fax G3 (only if hardware supports this)
- 15 0 Layer-3 protocol:
- 0 = transparent
- 1 = transparent with audio features (e.g. DSP)
- 2 = Fax G3 Class 2 commands (S14 has to be set to 11)
- 3 = Fax G3 Class 1 commands (S14 has to be set to 11)
- 16 250 Send-Packet-size/16
- 17 8 Window-size (not yet implemented)
- 18 4 Bit coded register, Service-Octet-1 to accept,
- or to be used on dialout:
- Bit 0: Service 1 (audio) when set.
- Bit 1: Service 5 (BTX) when set.
- Bit 2: Service 7 (data) when set.
- Note: It is possible to set more than one
- bit. In this case, on incoming calls
- the selected services are accepted,
- and if the service is "audio", the
- Layer-2-protocol is automatically
- changed to 4 regardless of the setting
- of register 14. On outgoing calls,
- the most significant 1-bit is chosen to
- select the outgoing service octet.
- 19 0 Service-Octet-2
- 20 0 Bit coded register (readonly)
- Service-Octet-1 of last call.
- Bit mapping is the same as register 18
- 21 0 Bit coded register (readonly)
- Set on incoming call (during RING) to
- octet 3 of calling party number IE (Numbering plan)
- See section 4.5.10 of ITU Q.931
- 22 0 Bit coded register (readonly)
- Set on incoming call (during RING) to
- octet 3a of calling party number IE (Screening info)
- See section 4.5.10 of ITU Q.931
- 23 0 Bit coded register:
- Bit 0: 0 = Add CPN to RING message off
- 1 = Add CPN to RING message on
- Bit 1: 0 = Add CPN to FCON message off
- 1 = Add CPN to FCON message on
- Bit 2: 0 = Add CDN to RING/FCON message off
- 1 = Add CDN to RING/FCON message on
-
- Last but not least a (at the moment fairly primitive) device to request
- the line-status (/dev/isdninfo) is made available.
-
- Automatic assignment of devices to lines:
-
- All inactive physical lines are listening to all EAZs for incoming
- calls and are NOT assigned to a specific tty or network interface.
- When an incoming call is detected, the driver looks first for a network
- interface and then for an opened tty which:
-
- 1. is configured for the same EAZ.
- 2. has the same protocol settings for the B-channel.
- 3. (only for network interfaces if the security flag is set)
- contains the caller number in its access list.
- 4. Either the channel is not bound exclusively to another Net-interface, or
- it is bound AND the other checks apply to exactly this interface.
- (For usage of the bind-features, refer to the isdnctrl-man-page)
-
- Only when a matching interface or tty is found is the call accepted
- and the "connection" between the low-level-layer and the link-level-layer
- is established and kept until the end of the connection.
- In all other cases no connection is established. Isdn4linux can be
- configured to either do NOTHING in this case (which is useful, if
- other, external devices with the same EAZ/MSN are connected to the bus)
- or to reject the call actively. (isdnctrl busreject ...)
-
- For an outgoing call, the inactive physical lines are searched.
- The call is placed on the first physical line, which supports the
- requested protocols for the B-channel. If a net-interface, however
- is pre-bound to a channel, this channel is used directly.
-
- This makes it possible to configure several network interfaces and ttys
- for one EAZ, if the network interfaces are set to secure operation.
- If an incoming call matches one network interface, it gets connected to it.
- If another incoming call for the same EAZ arrives, which does not match
- a network interface, the first tty gets a "RING" and so on.
-
-2 System prerequisites:
-
- ATTENTION!
-
- Always use the latest module utilities. The current version is
- named in Documentation/Changes. Some old versions of insmod
- are not capable of setting the driver-Ids correctly.
-
-3. Lowlevel-driver configuration.
-
- Configuration depends on how the drivers are built. See the
- README.<yourDriver> for information on driver-specific setup.
-
-4. Device-inodes
-
- The major and minor numbers and their names are described in
- Documentation/admin-guide/devices.rst. The major numbers are:
-
- 43 for the ISDN-tty's.
- 44 for the ISDN-callout-tty's.
- 45 for control/info/debug devices.
-
-5. Application
-
- a) For some card-types, firmware has to be loaded into the cards, before
- proceeding with device-independent setup. See README.<yourDriver>
- for how to do that.
-
- b) If you only intend to use ttys, you are nearly ready now.
-
- c) If you want to have really permanent "Modem"-settings on disk, you
- can start the daemon iprofd. Give it a path to a file at the command-
- line. It will store the profile-settings in this file every time
- an AT&W0 is performed on any ISDN-tty. If the file already exists,
- all profiles are initialized from this file. If you want to unload
- any of the modules, kill iprofd first.
-
- d) For networking, continue: Create an interface:
- isdnctrl addif isdn0
-
- e) Set the EAZ (or MSN for Euro-ISDN):
- isdnctrl eaz isdn0 2
-
- (For 1TR6 a single digit is allowed, for Euro-ISDN the number is your
- real MSN e.g.: Phone-Number)
-
- f) Set the number for outgoing calls on the interface:
- isdnctrl addphone isdn0 out 1234567
- ... (this can be executed more than once, all assigned numbers are
- tried in order)
- and the number(s) for incoming calls:
- isdnctrl addphone isdn0 in 1234567
-
- g) Set the timeout for hang-up:
- isdnctrl huptimeout isdn0 <timeout_in_seconds>
-
- h) additionally you may activate charge-hang-up (= Hang up before
- next charge-info, this only works, if your isdn-provider transmits
- the charge-info during and after the connection):
- isdnctrl chargehup isdn0 on
-
- i) Set the dial mode of the interface:
- isdnctrl dialmode isdn0 auto
- "off" means that you (or the system) cannot make any connection
- (neither incoming or outgoing connections are possible). Use
- this if you want to be sure that no connections will be made.
- "auto" means that the interface is in auto-dial mode, and will
- attempt to make a connection whenever a network data packet needs
- the interface's link. Note that this can cause unexpected dialouts,
- and lead to a high phone bill! Some daemons or other pc's that use
- this interface can cause this.
- Incoming connections are also possible.
- "manual" is a dial mode created to prevent the unexpected dialouts.
- In this mode, the interface will never make any connections on its
- own. You must explicitly initiate a connection with "isdnctrl dial
- isdn0". However, after an idle time of no traffic as configured for
- the huptimeout value with isdnctrl, the connection _will_ be ended.
- If you don't want any automatic hangup, set the huptimeout value to 0.
- "manual" is the default.
-
- j) Setup the interface with ifconfig as usual, and set a route to it.
-
- k) (optional) If you run X11 and have Tcl/Tk-wish version 4.0, you can use
- the script tools/tcltk/isdnmon. You can add actions for line-status
- changes. See the comments at the beginning of the script for how to
- do that. There are other tty-based tools in the tools-subdirectory
- contributed by Michael Knigge (imon), Volker Götz (imontty) and
- Andreas Kool (isdnmon).
-
- l) For initial testing, you can set the verbose-level to 2 (default: 0).
- Then all incoming calls are logged, even if they are not addressed
- to one of the configured net-interfaces:
- isdnctrl verbose 2
-
- Now you are ready! A ping to the set address should now result in an
- automatic dial-out (look at syslog kernel-messages).
- The phone numbers and EAZs can be assigned at any time with isdnctrl.
- You can add as many interfaces as you like with addif following the
- directions above. Of course, there may be some limitations. But we have
- tested as many as 20 interfaces without any problem. However, if you
- don't give an interface name to addif, the kernel will assign a name
- which starts with "eth". The number of "eth"-interfaces is limited by
- the kernel.
-
-5. Additional options for isdnctrl:
-
- "isdnctrl secure <InterfaceName> on"
- Only incoming calls, for which the caller-id is listed in the access
- list of the interface are accepted. You can add caller-id's With the
- command "isdnctrl addphone <InterfaceName> in <caller-id>"
- Euro-ISDN does not transmit the leading '0' of the caller-id for an
- incoming call, therefore you should configure it accordingly.
- If the real number for the dialout e.g. is "09311234567" the number
- to configure here is "9311234567". The pattern-match function
- works similar to the shell mechanism.
-
- ? one arbitrary digit
- * zero or arbitrary many digits
- [123] one of the digits in the list
- [1-5] one digit between '1' and '5'
- a '^' as the first character in a list inverts the list
-
-
- "isdnctrl secure <InterfaceName> off"
- Switch off secure operation (default).
-
- "isdnctrl ihup <InterfaceName> [on|off]"
- Switch the hang-up-timer for incoming calls on or off.
-
- "isdnctrl eaz <InterfaceName>"
- Returns the EAZ of an interface.
-
- "isdnctrl delphone <InterfaceName> in|out <number>"
- Deletes a number from one of the access-lists of the interface.
-
- "isdnctrl delif <InterfaceName>"
- Removes the interface (and possible slaves) from the kernel.
- (You have to unregister it with "ifconfig <InterfaceName> down" before).
-
- "isdnctrl callback <InterfaceName> [on|off]"
- Switches an interface to callback-mode. In this mode, an incoming call
- will be rejected and after this the remote-station will be called. If
- you test this feature by using ping, some routers will re-dial very
- quickly, so that the callback from isdn4linux may not be recognized.
- In this case use ping with the option -i <sec> to increase the interval
- between echo-packets.
-
- "isdnctrl cbdelay <InterfaceName> [seconds]"
- Sets the delay (default 5 sec) between an incoming call and start of
- dialing when callback is enabled.
-
- "isdnctrl cbhup <InterfaceName> [on|off]"
- This enables (default) or disables an active hangup (reject) when getting an
- incoming call for an interface which is configured for callback.
-
- "isdnctrl encap <InterfaceName> <EncapType>"
- Selects the type of packet-encapsulation. The encapsulation can be changed
- only while an interface is down.
-
- At the moment the following values are supported:
-
- rawip (Default) Selects raw-IP-encapsulation. This means, MAC-headers
- are stripped off.
- ip IP with type-field. Same as IP but the type-field of the MAC-header
- is preserved.
- x25iface X.25 interface encapsulation (first byte semantics as defined in
- ../networking/x25-iface.txt). Use this for running the linux
- X.25 network protocol stack (AF_X25 sockets) on top of isdn.
- cisco-h A special-mode for communicating with a Cisco, which is configured
- to do "hdlc"
- ethernet No stripping. Packets are sent with full MAC-header.
- The Ethernet-address of the interface is faked, from its
- IP-address: fc:fc:i1:i2:i3:i4, where i1-4 are the IP-addr.-values.
- syncppp Synchronous PPP
-
- uihdlc HDLC with UI-frame-header (for use with DOS ISPA, option -h1)
-
-
- NOTE: x25iface encapsulation is currently experimental. Please
- read README.x25 for further details
-
-
- Watching packets, using standard-tcpdump will fail for all encapsulations
- except ethernet because tcpdump does not know how to handle packets
- without MAC-header. A patch for tcpdump is included in the utility-package
- mentioned above.
-
- "isdnctrl l2_prot <InterfaceName> <L2-ProtocolName>"
- Selects a layer-2-protocol.
- (With the ICN-driver and the HiSax-driver, "x75i" and "hdlc" is available.
- With other drivers, "x75ui", "x75bui", "x25dte", "x25dce" may be
- possible too. See README.x25 for x25 related l2 protocols.)
-
- isdnctrl l3_prot <InterfaceName> <L3-ProtocolName>
- The same for layer-3. (At the moment only "trans" is allowed)
-
- "isdnctrl list <InterfaceName>"
- Shows all parameters of an interface and the charge-info.
- Try "all" as the interface name.
-
- "isdnctrl hangup <InterfaceName>"
- Forces hangup of an interface.
-
- "isdnctrl bind <InterfaceName> <DriverId>,<ChannelNumber> [exclusive]"
- If you are using more than one ISDN card, it is sometimes necessary to
- dial out using a specific card or even preserve a specific channel for
- dialout of a specific net-interface. This can be done with the above
- command. Replace <DriverId> by whatever you assigned while loading the
- module. The <ChannelNumber> is counted from zero. The upper limit
- depends on the card used. At the moment no card supports more than
- 2 channels, so the upper limit is one.
-
- "isdnctrl unbind <InterfaceName>"
- unbinds a previously bound interface.
-
- "isdnctrl busreject <DriverId> on|off"
- If switched on, isdn4linux replies a REJECT to incoming calls, it
- cannot match to any configured interface.
- If switched off, nothing happens in this case.
- You normally should NOT enable this feature, if the ISDN adapter is not
- the only device connected to the S0-bus. Otherwise it could happen that
- isdn4linux rejects an incoming call, which belongs to another device on
- the bus.
-
- "isdnctrl addslave <InterfaceName> <SlaveName>
- Creates a slave interface for channel-bundling. Slave interfaces are
- not seen by the kernel, but their ISDN-part can be configured with
- isdnctrl as usual. (Phone numbers, EAZ/MSN, timeouts etc.) If more
- than two channels are to be bundled, feel free to create as many as you
- want. InterfaceName must be a real interface, NOT a slave. Slave interfaces
- start dialing, if the master interface resp. the previous slave interface
- has a load of more than 7000 cps. They hangup if the load goes under 7000
- cps, according to their "huptimeout"-parameter.
-
- "isdnctrl sdelay <InterfaceName> secs."
- This sets the minimum time an Interface has to be fully loaded, until
- it sends a dial-request to its slave.
-
- "isdnctrl dial <InterfaceName>"
- Forces an interface to start dialing even if no packets are to be
- transferred.
-
- "isdnctrl mapping <DriverId> MSN0,MSN1,MSN2,...MSN9"
- This installs a mapping table for EAZ<->MSN-mapping for a single line.
- Missing MSN's have to be given as "-" or can be omitted, if at the end
- of the commandline.
- With this command, it's now possible to have an interface listening to
- mixed 1TR6- and Euro-Type lines. In this case, the interface has to be
- configured to a 1TR6-type EAZ (one digit). The mapping is also valid
- for tty-emulation. Seen from the interface/tty-level the mapping
- CAN be used, however it's possible to use single tty's/interfaces with
- real MSN's (more digits) also, in which case the mapping will be ignored.
- Here is an example:
-
- You have a 1TR6-type line with base-nr. 1234567 and a Euro-line with
- MSN's 987654, 987655 and 987656. The DriverId for the Euro-line is "EURO".
-
- isdnctrl mapping EURO -,987654,987655,987656,-,987655
- ...
- isdnctrl eaz isdn0 1 # listen on 12345671(1tr6) and 987654(euro)
- ...
- isdnctrl eaz isdn1 4 # listen on 12345674(1tr6) only.
- ...
- isdnctrl eaz isdn2 987654 # listen on 987654(euro) only.
-
- Same scheme is used with AT&E... at the tty's.
-
-6. If you want to write a new low-level-driver, you are welcome.
- The interface to the link-level-module is described in the file INTERFACE.
- If the interface should be expanded for any reason, don't do it
- on your own, send me a mail containing the proposed changes and
- some reasoning about them.
- If other drivers will not be affected, I will include the changes
- in the next release.
- For developers only, there is a second mailing-list. Write to me
- (fritz@isdn4linux.de), if you want to join that list.
-
-Have fun!
-
- -Fritz
-
diff --git a/Documentation/isdn/README.FAQ b/Documentation/isdn/README.FAQ
deleted file mode 100644
index e5dd1addacdd..000000000000
--- a/Documentation/isdn/README.FAQ
+++ /dev/null
@@ -1,26 +0,0 @@
-
-The FAQ for isdn4linux
-======================
-
-Please note that there is a big FAQ available in the isdn4k-utils.
-You find it in:
- isdn4k-utils/FAQ/i4lfaq.sgml
-
-In case you just want to see the FAQ online, or download the newest version,
-you can have a look at my website:
-https://www.mhessler.de/i4lfaq/ (view + download)
-or:
-https://www.isdn4linux.de/faq/4lfaq.html (view)
-
-As the extension tells, the FAQ is in SGML format, and you can convert it
-into text/html/... format by using the sgml2txt/sgml2html/... tools.
-Alternatively, you can also do a 'configure; make all' in the FAQ directory.
-
-
-Please have a look at the FAQ before posting anything in the Mailinglist,
-or the newsgroup!
-
-
-Matthias Hessler
-hessler@isdn4linux.de
-
diff --git a/Documentation/isdn/README.HiSax b/Documentation/isdn/README.HiSax
deleted file mode 100644
index b1a573cf4472..000000000000
--- a/Documentation/isdn/README.HiSax
+++ /dev/null
@@ -1,659 +0,0 @@
-HiSax is a Linux hardware-level driver for passive ISDN cards with Siemens
-chipset (ISAC_S 2085/2086/2186, HSCX SAB 82525). It is based on the Teles
-driver from Jan den Ouden.
-It is meant to be used with isdn4linux, an ISDN link-level module for Linux
-written by Fritz Elfert.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-
-
-Supported cards
----------------
-
-Teles 8.0/16.0/16.3 and compatible ones
-Teles 16.3c
-Teles S0/PCMCIA
-Teles PCI
-Teles S0Box
-Creatix S0Box
-Creatix PnP S0
-Compaq ISDN S0 ISA card
-AVM A1 (Fritz, Teledat 150)
-AVM Fritz PCMCIA
-AVM Fritz PnP
-AVM Fritz PCI
-ELSA Microlink PCC-16, PCF, PCF-Pro, PCC-8
-ELSA Quickstep 1000
-ELSA Quickstep 1000PCI
-ELSA Quickstep 3000 (same settings as QS1000)
-ELSA Quickstep 3000PCI
-ELSA PCMCIA
-ITK ix1-micro Rev.2
-Eicon Diva 2.0 ISA and PCI (S0 and U interface, no PRO version)
-Eicon Diva 2.01 ISA and PCI
-Eicon Diva 2.02 PCI
-Eicon Diva Piccola
-ASUSCOM NETWORK INC. ISDNLink 128K PC adapter (order code I-IN100-ST-D)
-Dynalink IS64PH (OEM version of ASUSCOM NETWORK INC. ISDNLink 128K adapter)
-PCBIT-DP (OEM version of ASUSCOM NETWORK INC. ISDNLink)
-HFC-2BS0 based cards (TeleInt SA1)
-Sedlbauer Speed Card (Speed Win, Teledat 100, PCI, Fax+)
-Sedlbauer Speed Star/Speed Star2 (PCMCIA)
-Sedlbauer ISDN-Controller PC/104
-USR Sportster internal TA (compatible Stollmann tina-pp V3)
-USR internal TA PCI
-ith Kommunikationstechnik GmbH MIC 16 ISA card
-Traverse Technologie NETjet PCI S0 card and NETspider U card
-Ovislink ISDN sc100-p card (NETjet driver)
-Dr. Neuhaus Niccy PnP/PCI
-Siemens I-Surf 1.0
-Siemens I-Surf 2.0 (with IPAC, try type 12 asuscom)
-ACER P10
-HST Saphir
-Berkom Telekom A4T
-Scitel Quadro
-Gazel ISDN cards
-HFC-PCI based cards
-Winbond W6692 based cards
-HFC-S+, HFC-SP/PCMCIA cards
-formula-n enternow
-Gerdes Power ISDN
-
-Note: PCF, PCF-Pro: up to now, only the ISDN part is supported
- PCC-8: not tested yet
- Eicon.Diehl Diva U interface not tested
-
-If you know other passive cards with the Siemens chipset, please let me know.
-You can combine any card, if there is no conflict between the resources
-(io, mem, irq).
-
-
-Configuring the driver
-----------------------
-
-The HiSax driver can either be built directly into the kernel or as a module.
-It can be configured using the command line feature while loading the kernel
-with LILO or LOADLIN or, if built as a module, using insmod/modprobe with
-parameters.
-There is also some config needed before you compile the kernel and/or
-modules. It is included in the normal "make [menu]config" target at the
-kernel. Don't forget it, especially to select the right D-channel protocol.
-
-Please note: In older versions of the HiSax driver, all PnP cards
-needed to be configured with isapnp and worked only with the HiSax
-driver used as a module.
-
-In the current version, HiSax will automatically use the in-kernel
-ISAPnP support, provided you selected it during kernel configuration
-(CONFIG_ISAPNP), if you don't give the io=, irq= command line parameters.
-
-The affected card types are: 4,7,12,14,19,27-30
-
-a) when built as a module
--------------------------
-
-insmod/modprobe hisax.o \
- io=iobase irq=IRQ mem=membase type=card_type \
- protocol=D_channel_protocol id=idstring
-
-or, if several cards are installed:
-
-insmod/modprobe hisax.o \
- io=iobase1,iobase2,... irq=IRQ1,IRQ2,... mem=membase1,membase2,... \
- type=card_type1,card_type2,... \
- protocol=D_channel_protocol1,D_channel_protocol2,... \
- id=idstring1%idstring2 ...
-
-where "iobaseN" represents the I/O base address of the Nth card, "membaseN"
-the memory base address of the Nth card, etc.
-
-The reason for the delimiter "%" being used in the idstrings is that ","
-won't work with the current modules package.
-
-The parameters may be specified in any order. For example, the "io"
-parameter may precede the "irq" parameter, or vice versa. If several
-cards are installed, the ordering within the comma separated parameter
-lists must of course be consistent.
-
-Only parameters applicable to the card type need to be specified. For
-example, the Teles 16.3 card is not memory-mapped, so the "mem"
-parameter may be omitted for this card. Sometimes it may be necessary
-to specify a dummy parameter, however. This is the case when there is
-a card of a different type later in the list that needs a parameter
-which the preceding card does not. For instance, if a Teles 16.0 card
-is listed after a Teles 16.3 card, a dummy memory base parameter of 0
-must be specified for the 16.3. Instead of a dummy value, the parameter
-can also be skipped by simply omitting the value. For example:
-mem=,0xd0000. See example 6 below.
-
-The parameter for the D-Channel protocol may be omitted if you selected the
-correct one during kernel config. Valid values are "1" for German 1TR6,
-"2" for EDSS1 (Euro ISDN), "3" for leased lines (no D-Channel) and "4"
-for US NI1.
-With US NI1 you have to include your SPID into the MSN setting in the form
-<MSN>:<SPID> for example (your phonenumber is 1234 your SPID 5678):
-AT&E1234:5678 on ttyI interfaces
-isdnctrl eaz ippp0 1234:5678 on network devices
-
-The Creatix/Teles PnP cards use io1= and io2= instead of io= for specifying
-the I/O addresses of the ISAC and HSCX chips, respectively.
-
-Card types:
-
- Type Required parameters (in addition to type and protocol)
-
- 1 Teles 16.0 irq, mem, io
- 2 Teles 8.0 irq, mem
- 3 Teles 16.3 (non PnP) irq, io
- 4 Creatix/Teles PnP irq, io0 (ISAC), io1 (HSCX)
- 5 AVM A1 (Fritz) irq, io
- 6 ELSA PCC/PCF cards io or nothing for autodetect (the iobase is
- required only if you have more than one ELSA
- card in your PC)
- 7 ELSA Quickstep 1000 irq, io (from isapnp setup)
- 8 Teles 16.3 PCMCIA irq, io
- 9 ITK ix1-micro Rev.2 irq, io
- 10 ELSA PCMCIA irq, io (set with card manager)
- 11 Eicon.Diehl Diva ISA PnP irq, io
- 11 Eicon.Diehl Diva PCI no parameter
- 12 ASUS COM ISDNLink irq, io (from isapnp setup)
- 13 HFC-2BS0 based cards irq, io
- 14 Teles 16.3c PnP irq, io
- 15 Sedlbauer Speed Card irq, io
- 15 Sedlbauer PC/104 irq, io
- 15 Sedlbauer Speed PCI no parameter
- 16 USR Sportster internal irq, io
- 17 MIC card irq, io
- 18 ELSA Quickstep 1000PCI no parameter
- 19 Compaq ISDN S0 ISA card irq, io0, io1, io (from isapnp setup io=IO2)
- 20 NETjet PCI card no parameter
- 21 Teles PCI no parameter
- 22 Sedlbauer Speed Star (PCMCIA) irq, io (set with card manager)
- 24 Dr. Neuhaus Niccy PnP irq, io0, io1 (from isapnp setup)
- 24 Dr. Neuhaus Niccy PCI no parameter
- 25 Teles S0Box irq, io (of the used lpt port)
- 26 AVM A1 PCMCIA (Fritz!) irq, io (set with card manager)
- 27 AVM PnP (Fritz!PnP) irq, io (from isapnp setup)
- 27 AVM PCI (Fritz!PCI) no parameter
- 28 Sedlbauer Speed Fax+ irq, io (from isapnp setup)
- 29 Siemens I-Surf 1.0 irq, io, memory (from isapnp setup)
- 30 ACER P10 irq, io (from isapnp setup)
- 31 HST Saphir irq, io
- 32 Telekom A4T none
- 33 Scitel Quadro subcontroller (4*S0, subctrl 1...4)
- 34 Gazel ISDN cards (ISA) irq,io
- 34 Gazel ISDN cards (PCI) none
- 35 HFC 2BDS0 PCI none
- 36 W6692 based PCI cards none
- 37 HFC 2BDS0 S+, SP irq,io
- 38 NETspider U PCI card none
- 39 HFC 2BDS0 SP/PCMCIA irq,io (set with cardmgr)
- 40 hotplug interface
- 41 Formula-n enter:now PCI none
-
-At the moment IRQ sharing is only possible with PCI cards. Please make sure
-that your IRQ is free and enabled for ISA use.
-
-
-Examples for module loading
-
-1. Teles 16.3, Euro ISDN, I/O base 280 hex, IRQ 10
- modprobe hisax type=3 protocol=2 io=0x280 irq=10
-
-2. Teles 16.0, 1TR6 ISDN, I/O base d80 hex, IRQ 5, Memory d0000 hex
- modprobe hisax protocol=1 type=1 io=0xd80 mem=0xd0000 irq=5
-
-3. Fritzcard, Euro ISDN, I/O base 340 hex, IRQ 10 and ELSA PCF, Euro ISDN
- modprobe hisax type=5,6 protocol=2,2 io=0x340 irq=10 id=Fritz%Elsa
-
-4. Any ELSA PCC/PCF card, Euro ISDN
- modprobe hisax type=6 protocol=2
-
-5. Teles 16.3 PnP, Euro ISDN, with isapnp configured
- isapnp config: (INT 0 (IRQ 10 (MODE +E)))
- (IO 0 (BASE 0x0580))
- (IO 1 (BASE 0x0180))
- modprobe hisax type=4 protocol=2 irq=10 io0=0x580 io1=0x180
-
- In the current version of HiSax, you can instead simply use
-
- modprobe hisax type=4 protocol=2
-
- if you configured your kernel for ISAPnP. Don't run isapnp in
- this case!
-
-6. Teles 16.3, Euro ISDN, I/O base 280 hex, IRQ 12 and
- Teles 16.0, 1TR6, IRQ 5, Memory d0000 hex
- modprobe hisax type=3,1 protocol=2,1 io=0x280 mem=0,0xd0000
-
- Please note the dummy 0 memory address for the Teles 16.3, used as a
- placeholder as described above, in the last example.
-
-7. Teles PCMCIA, Euro ISDN, I/O base 180 hex, IRQ 15 (default values)
- modprobe hisax type=8 protocol=2 io=0x180 irq=15
-
-
-b) using LILO/LOADLIN, with the driver compiled directly into the kernel
-------------------------------------------------------------------------
-
-hisax=typ1,dp1,pa_1,pb_1,pc_1[,typ2,dp2,pa_2 ... \
- typn,dpn,pa_n,pb_n,pc_n][,idstring1[,idstring2,...,idstringn]]
-
-where
- typ1 = type of 1st card (default depends on kernel settings)
- dp1 = D-Channel protocol of 1st card. 1=1TR6, 2=EDSS1, 3=leased
- pa_1 = 1st parameter (depending on the type of the card)
- pb_1 = 2nd parameter ( " " " " " " " )
- pc_1 = 3rd parameter ( " " " " " " " )
-
- typ2,dp2,pa_2,pb_2,pc_2 = Parameters of the second card (defaults: none)
- typn,dpn,pa_n,pb_n,pc_n = Parameters of the n'th card (up to 16 cards are
- supported)
-
- idstring = Driver ID for accessing the particular card with utility
- programs and for identification when using a line monitor
- (default: "HiSax")
-
- Note: the ID string must start with an alphabetical character!
-
-Card types:
-
-type
- 1 Teles 16.0 pa=irq pb=membase pc=iobase
- 2 Teles 8.0 pa=irq pb=membase
- 3 Teles 16.3 pa=irq pb=iobase
- 4 Creatix/Teles PNP ONLY WORKS AS A MODULE !
- 5 AVM A1 (Fritz) pa=irq pb=iobase
- 6 ELSA PCC/PCF cards pa=iobase or nothing for autodetect
- 7 ELSA Quickstep 1000 ONLY WORKS AS A MODULE !
- 8 Teles S0 PCMCIA pa=irq pb=iobase
- 9 ITK ix1-micro Rev.2 pa=irq pb=iobase
- 10 ELSA PCMCIA pa=irq, pb=io (set with card manager)
- 11 Eicon.Diehl Diva ISAPnP ONLY WORKS AS A MODULE !
- 11 Eicon.Diehl Diva PCI no parameter
- 12 ASUS COM ISDNLink ONLY WORKS AS A MODULE !
- 13 HFC-2BS0 based cards pa=irq pb=io
- 14 Teles 16.3c PnP ONLY WORKS AS A MODULE !
- 15 Sedlbauer Speed Card pa=irq pb=io (Speed Win only as module !)
- 15 Sedlbauer PC/104 pa=irq pb=io
- 15 Sedlbauer Speed PCI no parameter
- 16 USR Sportster internal pa=irq pb=io
- 17 MIC card pa=irq pb=io
- 18 ELSA Quickstep 1000PCI no parameter
- 19 Compaq ISDN S0 ISA card ONLY WORKS AS A MODULE !
- 20 NETjet PCI card no parameter
- 21 Teles PCI no parameter
- 22 Sedlbauer Speed Star (PCMCIA) pa=irq, pb=io (set with card manager)
- 24 Dr. Neuhaus Niccy PnP ONLY WORKS AS A MODULE !
- 24 Dr. Neuhaus Niccy PCI no parameter
- 25 Teles S0Box pa=irq, pb=io (of the used lpt port)
- 26 AVM A1 PCMCIA (Fritz!) pa=irq, pb=io (set with card manager)
- 27 AVM PnP (Fritz!PnP) ONLY WORKS AS A MODULE !
- 27 AVM PCI (Fritz!PCI) no parameter
- 28 Sedlbauer Speed Fax+ ONLY WORKS AS A MODULE !
- 29 Siemens I-Surf 1.0 ONLY WORKS AS A MODULE !
- 30 ACER P10 ONLY WORKS AS A MODULE !
- 31 HST Saphir pa=irq, pb=io
- 32 Telekom A4T no parameter
- 33 Scitel Quadro subcontroller (4*S0, subctrl 1...4)
- 34 Gazel ISDN cards (ISA) pa=irq, pb=io
- 34 Gazel ISDN cards (PCI) no parameter
- 35 HFC 2BDS0 PCI no parameter
- 36 W6692 based PCI cards none
- 37 HFC 2BDS0 S+,SP/PCMCIA ONLY WORKS AS A MODULE !
- 38 NETspider U PCI card none
- 39 HFC 2BDS0 SP/PCMCIA ONLY WORKS AS A MODULE !
- 40 hotplug interface ONLY WORKS AS A MODULE !
- 41 Formula-n enter:now PCI none
-
-Running the driver
-------------------
-
-When you insmod isdn.o and hisax.o (or with the in-kernel version, during
-boot time), a few lines should appear in your syslog. Look for something like:
-
-Apr 13 21:01:59 kke01 kernel: HiSax: Driver for Siemens chip set ISDN cards
-Apr 13 21:01:59 kke01 kernel: HiSax: Version 2.9
-Apr 13 21:01:59 kke01 kernel: HiSax: Revisions 1.14/1.9/1.10/1.25/1.8
-Apr 13 21:01:59 kke01 kernel: HiSax: Total 1 card defined
-Apr 13 21:01:59 kke01 kernel: HiSax: Card 1 Protocol EDSS1 Id=HiSax1 (0)
-Apr 13 21:01:59 kke01 kernel: HiSax: Elsa driver Rev. 1.13
-...
-Apr 13 21:01:59 kke01 kernel: Elsa: PCF-Pro found at 0x360 Rev.:C IRQ 10
-Apr 13 21:01:59 kke01 kernel: Elsa: timer OK; resetting card
-Apr 13 21:01:59 kke01 kernel: Elsa: HSCX version A: V2.1 B: V2.1
-Apr 13 21:01:59 kke01 kernel: Elsa: ISAC 2086/2186 V1.1
-...
-Apr 13 21:01:59 kke01 kernel: HiSax: DSS1 Rev. 1.14
-Apr 13 21:01:59 kke01 kernel: HiSax: 2 channels added
-
-This means that the card is ready for use.
-Cabling problems or line-downs are not detected, and only some ELSA cards can
-detect the S0 power.
-
-Remember that, according to the new strategy for accessing low-level drivers
-from within isdn4linux, you should also define a driver ID while doing
-insmod: Simply append hisax_id=<SomeString> to the insmod command line. This
-string MUST NOT start with a digit or a small 'x'!
-
-At this point you can run a 'cat /dev/isdnctrl0' and view debugging messages.
-
-At the moment, debugging messages are enabled with the hisaxctrl tool:
-
- hisaxctrl <DriverId> DebugCmd <debugging_flags>
-
-<DriverId> default is HiSax, if you didn't specify one.
-
-DebugCmd is 1 for generic debugging
- 11 for layer 1 development debugging
- 13 for layer 3 development debugging
-
-where <debugging_flags> is the integer sum of the following debugging
-options you wish enabled:
-
-With DebugCmd set to 1:
-
- 0x0001 Link-level <--> hardware-level communication
- 0x0002 Top state machine
- 0x0004 D-Channel Frames for isdnlog
- 0x0008 D-Channel Q.921
- 0x0010 B-Channel X.75
- 0x0020 D-Channel l2
- 0x0040 B-Channel l2
- 0x0080 D-Channel link state debugging
- 0x0100 B-Channel link state debugging
- 0x0200 TEI debug
- 0x0400 LOCK debug in callc.c
- 0x0800 More paranoid debug in callc.c (not for normal use)
- 0x1000 D-Channel l1 state debugging
- 0x2000 B-Channel l1 state debugging
-
-With DebugCmd set to 11:
-
- 0x0001 Warnings (default: on)
- 0x0002 IRQ status
- 0x0004 ISAC
- 0x0008 ISAC FIFO
- 0x0010 HSCX
- 0x0020 HSCX FIFO (attention: full B-Channel output!)
- 0x0040 D-Channel LAPD frame types
- 0x0080 IPAC debug
- 0x0100 HFC receive debug
- 0x0200 ISAC monitor debug
- 0x0400 D-Channel frames for isdnlog (set with 1 0x4 too)
- 0x0800 D-Channel message verbose
-
-With DebugCmd set to 13:
-
- 1 Warnings (default: on)
- 2 l3 protocol descriptor errors
- 4 l3 state machine
- 8 charge info debugging (1TR6)
-
-For example, 'hisaxctrl HiSax 1 0x3ff' enables full generic debugging.
-
-Because of some obscure problems with some switch equipment, the delay
-between the CONNECT message and sending the first data on the B-channel is now
-configurable with
-
-hisaxctrl <DriverId> 2 <delay>
-<delay> in ms Value between 50 and 800 ms is recommended.
-
-Downloading Firmware
---------------------
-At the moment, the Sedlbauer speed fax+ is the only card, which
-needs to download firmware.
-The firmware is downloaded with the hisaxctrl tool:
-
- hisaxctrl <DriverId> 9 <firmware_filename>
-
-<DriverId> default is HiSax, if you didn't specify one,
-
-where <firmware_filename> is the filename of the firmware file.
-
-For example, 'hisaxctrl HiSax 9 ISAR.BIN' downloads the firmware for
-ISAR based cards (like the Sedlbauer speed fax+).
-
-Warning
--------
-HiSax is a work in progress and may crash your machine.
-For certification look at HiSax.cert file.
-
-Limitations
------------
-At this time, HiSax only works on Euro ISDN lines and German 1TR6 lines.
-For leased lines see appendix.
-
-Bugs
-----
-If you find any, please let me know.
-
-
-Thanks
-------
-Special thanks to:
-
- Emil Stephan for the name HiSax which is a mix of HSCX and ISAC.
-
- Fritz Elfert, Jan den Ouden, Michael Hipp, Michael Wein,
- Andreas Kool, Pekka Sarnila, Sim Yskes, Johan Myrre'en,
- Klaus-Peter Nischke (ITK AG), Christof Petig, Werner Fehn (ELSA GmbH),
- Volker Schmidt
- Edgar Toernig and Marcus Niemann for the Sedlbauer driver
- Stephan von Krawczynski
- Juergen Quade for the Leased Line part
- Klaus Lichtenwalder (Klaus.Lichtenwalder@WebForum.DE), for ELSA PCMCIA support
- Enrik Berkhan (enrik@starfleet.inka.de) for S0BOX specific stuff
- Ton van Rosmalen for Teles PCI
- Petr Novak <petr.novak@i.cz> for Winbond W6692 support
- Werner Cornelius <werner@isdn4linux.de> for HFC-PCI, HFC-S(+/P) and supplementary services support
- and more people who are hunting bugs. (If I forgot somebody, please
- send me a mail).
-
- Firma ELSA GmbH
- Firma Eicon.Diehl GmbH
- Firma Dynalink NL
- Firma ASUSCOM NETWORK INC. Taiwan
- Firma S.u.S.E
- Firma ith Kommunikationstechnik GmbH
- Firma Traverse Technologie Australia
- Firma Medusa GmbH (www.medusa.de).
- Firma Quant-X Austria for sponsoring a DEC Alpha board+CPU
- Firma Cologne Chip Designs GmbH
-
- My girl friend and partner in life Ute for her patience with me.
-
-
-Enjoy,
-
-Karsten Keil
-keil@isdn4linux.de
-
-
-Appendix: Teles PCMCIA driver
------------------------------
-
-See
- http://www.linux.no/teles_cs.txt
-for instructions.
-
-Appendix: Linux and ISDN-leased lines
--------------------------------------
-
-Original from Juergen Quade, new version KKe.
-
-Attention NEW VERSION, the old leased line syntax won't work !!!
-
-You can use HiSax to connect your Linux-Box via an ISDN leased line
-to e.g. the Internet:
-
-1. Build a kernel which includes the HiSax driver either as a module
- or as part of the kernel.
- cd /usr/src/linux
- make menuconfig
- <ISDN subsystem - ISDN support -- HiSax>
- make clean; make zImage; make modules; make modules_install
-2. Install the new kernel
- cp /usr/src/linux/arch/x86/boot/zImage /etc/kernel/linux.isdn
- vi /etc/lilo.conf
- <add new kernel in the bootable image section>
- lilo
-3. in case the hisax driver is a "fixed" part of the kernel, configure
- the driver with lilo:
- vi /etc/lilo.conf
- <add HiSax driver parameter in the global section (see below)>
- lilo
- Your lilo.conf _might_ look like the following:
-
- # LILO configuration-file
- # global section
- # teles 16.0 on IRQ=5, MEM=0xd8000, PORT=0xd80
- append="hisax=1,3,5,0xd8000,0xd80,HiSax"
- # teles 16.3 (non pnp) on IRQ=15, PORT=0xd80
- # append="hisax=3,3,5,0xd8000,0xd80,HiSax"
- boot=/dev/sda
- compact # faster, but won't work on all systems.
- linear
- read-only
- prompt
- timeout=100
- vga = normal # force sane state
- # Linux bootable partition config begins
- image = /etc/kernel/linux.isdn
- root = /dev/sda1
- label = linux.isdn
- #
- image = /etc/kernel/linux-2.0.30
- root = /dev/sda1
- label = linux.secure
-
- In the line starting with "append" you have to adapt the parameters
- according to your card (see above in this file)
-
-3. boot the new linux.isdn kernel
-4. start the ISDN subsystem:
- a) load - if necessary - the modules (depends, whether you compiled
- the ISDN driver as module or not)
- According to the type of card you have to specify the necessary
- driver parameter (irq, io, mem, type, protocol).
- For the leased line the protocol is "3". See the table above for
- the parameters, which you have to specify depending on your card.
- b) configure i4l
- /sbin/isdnctrl addif isdn0
- # EAZ 1 -- B1 channel 2 --B2 channel
- /sbin/isdnctrl eaz isdn0 1
- /sbin/isdnctrl secure isdn0 on
- /sbin/isdnctrl huptimeout isdn0 0
- /sbin/isdnctrl l2_prot isdn0 hdlc
- # Attention you must not set an outgoing number !!! This won't work !!!
- # The incoming number is LEASED0 for the first card, LEASED1 for the
- # second and so on.
- /sbin/isdnctrl addphone isdn0 in LEASED0
- # Here is no need to bind the channel.
- c) in case the remote partner is a CISCO:
- /sbin/isdnctrl encap isdn0 cisco-h
- d) configure the interface
- /sbin/ifconfig isdn0 ${LOCAL_IP} pointopoint ${REMOTE_IP}
- e) set the routes
- /sbin/route add -host ${REMOTE_IP} isdn0
- /sbin/route add default gw ${REMOTE_IP}
- f) switch the card into leased mode for each used B-channel
- /sbin/hisaxctrl HiSax 5 1
-
-Remarks:
-a) Use state of the art isdn4k-utils
-
-Here an example script:
-#!/bin/sh
-# Start/Stop ISDN leased line connection
-
-I4L_AS_MODULE=yes
-I4L_REMOTE_IS_CISCO=no
-I4L_MODULE_PARAMS="type=16 io=0x268 irq=7 "
-I4L_DEBUG=no
-I4L_LEASED_128K=yes
-LOCAL_IP=192.168.1.1
-REMOTE_IP=192.168.2.1
-
-case "$1" in
- start)
- echo "Starting ISDN ..."
- if [ ${I4L_AS_MODULE} = "yes" ]; then
- echo "loading modules..."
- /sbin/modprobe hisax ${I4L_MODULE_PARAMS}
- fi
- # configure interface
- /sbin/isdnctrl addif isdn0
- /sbin/isdnctrl secure isdn0 on
- if [ ${I4L_DEBUG} = "yes" ]; then
- /sbin/isdnctrl verbose 7
- /sbin/hisaxctrl HiSax 1 0xffff
- /sbin/hisaxctrl HiSax 11 0xff
- cat /dev/isdnctrl >/tmp/lea.log &
- fi
- if [ ${I4L_REMOTE_IS_CISCO} = "yes" ]; then
- /sbin/isdnctrl encap isdn0 cisco-h
- fi
- /sbin/isdnctrl huptimeout isdn0 0
- # B-CHANNEL 1
- /sbin/isdnctrl eaz isdn0 1
- /sbin/isdnctrl l2_prot isdn0 hdlc
- # 1. card
- /sbin/isdnctrl addphone isdn0 in LEASED0
- if [ ${I4L_LEASED_128K} = "yes" ]; then
- /sbin/isdnctrl addslave isdn0 isdn0s
- /sbin/isdnctrl secure isdn0s on
- /sbin/isdnctrl huptimeout isdn0s 0
- # B-CHANNEL 2
- /sbin/isdnctrl eaz isdn0s 2
- /sbin/isdnctrl l2_prot isdn0s hdlc
- # 1. card
- /sbin/isdnctrl addphone isdn0s in LEASED0
- if [ ${I4L_REMOTE_IS_CISCO} = "yes" ]; then
- /sbin/isdnctrl encap isdn0s cisco-h
- fi
- fi
- /sbin/isdnctrl dialmode isdn0 manual
- # configure tcp/ip
- /sbin/ifconfig isdn0 ${LOCAL_IP} pointopoint ${REMOTE_IP}
- /sbin/route add -host ${REMOTE_IP} isdn0
- /sbin/route add default gw ${REMOTE_IP}
- # switch to leased mode
- # B-CHANNEL 1
- /sbin/hisaxctrl HiSax 5 1
- if [ ${I4L_LEASED_128K} = "yes" ]; then
- # B-CHANNEL 2
- sleep 10; /* Wait for master */
- /sbin/hisaxctrl HiSax 5 2
- fi
- ;;
- stop)
- /sbin/ifconfig isdn0 down
- /sbin/isdnctrl delif isdn0
- if [ ${I4L_DEBUG} = "yes" ]; then
- killall cat
- fi
- if [ ${I4L_AS_MODULE} = "yes" ]; then
- /sbin/rmmod hisax
- /sbin/rmmod isdn
- /sbin/rmmod ppp
- /sbin/rmmod slhc
- fi
- ;;
- *)
- echo "Usage: $0 {start|stop}"
- exit 1
-esac
-exit 0
diff --git a/Documentation/isdn/README.audio b/Documentation/isdn/README.audio
deleted file mode 100644
index 8ebca19290d9..000000000000
--- a/Documentation/isdn/README.audio
+++ /dev/null
@@ -1,138 +0,0 @@
-$Id: README.audio,v 1.8 1999/07/11 17:17:29 armin Exp $
-
-ISDN subsystem for Linux.
- Description of audio mode.
-
-When enabled during kernel configuration, the tty emulator of the ISDN
-subsystem is capable of a reduced set of commands to support audio.
-This document describes the commands supported and the format of
-audio data.
-
-Commands for enabling/disabling audio mode:
-
- AT+FCLASS=8 Enable audio mode.
- This affects the following registers:
- S18: Bits 0 and 2 are set.
- S16: Set to 48 and any further change to
- larger values is blocked.
- AT+FCLASS=0 Disable audio mode.
- Register 18 is set to 4.
- AT+FCLASS=? Show possible modes.
- AT+FCLASS? Report current mode (0 or 8).
-
-Commands supported in audio mode:
-
-All audio mode commands have one of the following forms:
-
- AT+Vxx? Show current setting.
- AT+Vxx=? Show possible settings.
- AT+Vxx=v Set simple parameter.
- AT+Vxx=v,v ... Set complex parameter.
-
-where xx is a two-character code and v are alphanumerical parameters.
-The following commands are supported:
-
- AT+VNH=x Auto hangup setting. NO EFFECT, supported
- for compatibility only.
- AT+VNH? Always reporting "1"
- AT+VNH=? Always reporting "1"
-
- AT+VIP Reset all audio parameters.
-
- AT+VLS=x Line select. x is one of the following:
- 0 = No device.
- 2 = Phone line.
- AT+VLS=? Always reporting "0,2"
- AT+VLS? Show current line.
-
- AT+VRX Start recording. Emulator responds with
- CONNECT and starts sending audio data to
- the application. See below for data format
-
- AT+VSD=x,y Set silence-detection parameters.
- Possible parameters:
- x = 0 ... 31 sensitivity threshold level.
- (default 0 , deactivated)
- y = 0 ... 255 range of interval in units
- of 0.1 second. (default 70)
- AT+VSD=? Report possible parameters.
- AT+VSD? Show current parameters.
-
- AT+VDD=x,y Set DTMF-detection parameters.
- Only possible if online and during this connection.
- Possible parameters:
- x = 0 ... 15 sensitivity threshold level.
- (default 0 , I4L soft-decode)
- (1-15 soft-decode off, hardware on)
- y = 0 ... 255 tone duration in units of 5ms.
- Not for I4L soft decode (default 8, 40ms)
- AT+VDD=? Report possible parameters.
- AT+VDD? Show current parameters.
-
- AT+VSM=x Select audio data format.
- Possible parameters:
- 2 = ADPCM-2
- 3 = ADPCM-3
- 4 = ADPCM-4
- 5 = aLAW
- 6 = uLAW
- AT+VSM=? Show possible audio formats.
-
- AT+VTX Start audio playback. Emulator responds
- with CONNECT and starts sending audio data
- received from the application via phone line.
-General behavior and description of data formats/protocol.
- when a connection is made:
-
- On incoming calls, if the application responds to a RING
- with ATA, depending on the calling service, the emulator
- responds with either CONNECT (data call) or VCON (voice call).
-
- On outgoing voice calls, the emulator responds with VCON
- upon connection setup.
-
- Audio recording.
-
- When receiving audio data, a kind of bisync protocol is used.
- Upon AT+VRX command, the emulator responds with CONNECT, and
- starts sending audio data to the application. There are several
- escape sequences defined, all using DLE (0x10) as Escape char:
-
- <DLE><ETX> End of audio data. (i.e. caused by a
- hangup of the remote side) Emulator stops
- recording, responding with VCON.
- <DLE><DC4> Abort recording, (send by appl.) Emulator
- stops recording, sends DLE,ETX.
- <DLE><DLE> Escape sequence for DLE in data stream.
- <DLE>0 Touchtone "0" received.
- ...
- <DLE>9 Touchtone "9" received.
- <DLE># Touchtone "#" received.
- <DLE>* Touchtone "*" received.
- <DLE>A Touchtone "A" received.
- <DLE>B Touchtone "B" received.
- <DLE>C Touchtone "C" received.
- <DLE>D Touchtone "D" received.
-
- <DLE>q quiet. Silence detected after non-silence.
- <DLE>s silence. Silence detected from the
- start of recording.
-
- Currently unsupported DLE sequences:
-
- <DLE>c FAX calling tone received.
- <DLE>b busy tone received.
-
- Audio playback.
-
- When sending audio data, upon AT+VTX command, emulator responds with
- CONNECT, and starts transferring data from application to the phone line.
- The same DLE sequences apply to this mode.
-
- Full-Duplex-Audio:
-
- When _both_ commands for recording and playback are given in _one_
- AT-command-line (i.e.: "AT+VTX+VRX"), full-duplex-mode is selected.
- In this mode, the only way to stop recording is sending <DLE><DC4>
- and the only way to stop playback is to send <DLE><ETX>.
-
diff --git a/Documentation/isdn/README.concap b/Documentation/isdn/README.concap
deleted file mode 100644
index a76d74845a4c..000000000000
--- a/Documentation/isdn/README.concap
+++ /dev/null
@@ -1,259 +0,0 @@
-Description of the "concap" encapsulation protocol interface
-============================================================
-
-The "concap" interface is intended to be used by network device
-drivers that need to process an encapsulation protocol.
-It is assumed that the protocol interacts with a linux network device by
-- data transmission
-- connection control (establish, release)
-Thus, the mnemonic: "CONnection CONtrolling eNCAPsulation Protocol".
-
-This is currently only used inside the isdn subsystem. But it might
-also be useful to other kinds of network devices. Thus, if you want
-to suggest changes that improve usability or performance of the
-interface, please let me know. I'm willing to include them in future
-releases (even if I needed to adapt the current isdn code to the
-changed interface).
-
-
-Why is this useful?
-===================
-
-The encapsulation protocol used on top of WAN connections or permanent
-point-to-point links are frequently chosen upon bilateral agreement.
-Thus, a device driver for a certain type of hardware must support
-several different encapsulation protocols at once.
-
-The isdn device driver did already support several different
-encapsulation protocols. The encapsulation protocol is configured by a
-user space utility (isdnctrl). The isdn network interface code then
-uses several case statements which select appropriate actions
-depending on the currently configured encapsulation protocol.
-
-In contrast, LAN network interfaces always used a single encapsulation
-protocol which is unique to the hardware type of the interface. The LAN
-encapsulation is usually done by just sticking a header on the data. Thus,
-traditional linux network device drivers used to process the
-encapsulation protocol directly (usually by just providing a hard_header()
-method in the device structure) using some hardware type specific support
-functions. This is simple, direct and efficient. But it doesn't fit all
-the requirements for complex WAN encapsulations.
-
-
- The configurability of the encapsulation protocol to be used
- makes isdn network interfaces more flexible, but also much more
- complex than traditional lan network interfaces.
-
-
-Many Encapsulation protocols used on top of WAN connections will not just
-stick a header on the data. They also might need to set up or release
-the WAN connection. They also might want to send other data for their
-private purpose over the wire, e.g. ppp does a lot of link level
-negotiation before the first piece of user data can be transmitted.
-Such encapsulation protocols for WAN devices are typically more complex
-than encapsulation protocols for lan devices. Thus, network interface
-code for typical WAN devices also tends to be more complex.
-
-
-In order to support Linux' x25 PLP implementation on top of
-isdn network interfaces I could have introduced yet another branch to
-the various case statements inside drivers/isdn/isdn_net.c.
-This eventually made isdn_net.c even more complex. In addition, it made
-isdn_net.c harder to maintain. Thus, by identifying an abstract
-interface between the network interface code and the encapsulation
-protocol, complexity could be reduced and maintainability could be
-increased.
-
-
-Likewise, a similar encapsulation protocol will frequently be needed by
-several different interfaces of even different hardware type, e.g. the
-synchronous ppp implementation used by the isdn driver and the
-asynchronous ppp implementation used by the ppp driver have a lot of
-similar code in them. By cleanly separating the encapsulation protocol
-from the hardware specific interface stuff such code could be shared
-better in future.
-
-
-When operating over dial-up-connections (e.g. telephone lines via modem,
-non-permanent virtual circuits of wide area networks, ISDN) many
-encapsulation protocols will need to control the connection. Therefore,
-some basic connection control primitives are supported. The type and
-semantics of the connection (i.e the ISO layer where connection service
-is provided) is outside our scope and might be different depending on
-the encapsulation protocol used, e.g. for a ppp module using our service
-on top of a modem connection a connect_request will result in dialing
-a (somewhere else configured) remote phone number. For an X25-interface
-module (LAPB semantics, as defined in Documentation/networking/x25-iface.txt)
-a connect_request will ask for establishing a reliable lapb
-datalink connection.
-
-
-The encapsulation protocol currently provides the following
-service primitives to the network device.
-
-- create a new encapsulation protocol instance
-- delete encapsulation protocol instance and free all its resources
-- initialize (open) the encapsulation protocol instance for use.
-- deactivate (close) an encapsulation protocol instance.
-- process (xmit) data handed down by upper protocol layer
-- receive data from lower (hardware) layer
-- process connect indication from lower (hardware) layer
-- process disconnect indication from lower (hardware) layer
-
-
-The network interface driver accesses those primitives via callbacks
-provided by the encapsulation protocol instance within a
-struct concap_proto_ops.
-
-struct concap_proto_ops{
-
- /* create a new encapsulation protocol instance of same type */
- struct concap_proto * (*proto_new) (void);
-
- /* delete encapsulation protocol instance and free all its resources.
- cprot may no longer be referenced after calling this */
- void (*proto_del)(struct concap_proto *cprot);
-
- /* initialize the protocol's data. To be called at interface startup
- or when the device driver resets the interface. All services of the
- encapsulation protocol may be used after this*/
- int (*restart)(struct concap_proto *cprot,
- struct net_device *ndev,
- struct concap_device_ops *dops);
-
- /* deactivate an encapsulation protocol instance. The encapsulation
- protocol may not call any *dops methods after this. */
- int (*close)(struct concap_proto *cprot);
-
- /* process a frame handed down to us by upper layer */
- int (*encap_and_xmit)(struct concap_proto *cprot, struct sk_buff *skb);
-
- /* to be called for each data entity received from lower layer*/
- int (*data_ind)(struct concap_proto *cprot, struct sk_buff *skb);
-
- /* to be called when a connection was set up/down.
- Protocols that don't process these primitives might fill in
- dummy methods here */
- int (*connect_ind)(struct concap_proto *cprot);
- int (*disconn_ind)(struct concap_proto *cprot);
-};
-
-
-The data structures are defined in the header file include/linux/concap.h.
-
-
-A Network interface using encapsulation protocols must also provide
-some service primitives to the encapsulation protocol:
-
-- request data being submitted by lower layer (device hardware)
-- request a connection being set up by lower layer
-- request a connection being released by lower layer
-
-The encapsulation protocol accesses those primitives via callbacks
-provided by the network interface within a struct concap_device_ops.
-
-struct concap_device_ops{
-
- /* to request data be submitted by device */
- int (*data_req)(struct concap_proto *, struct sk_buff *);
-
- /* Control methods must be set to NULL by devices which do not
- support connection control. */
- /* to request a connection be set up */
- int (*connect_req)(struct concap_proto *);
-
- /* to request a connection be released */
- int (*disconn_req)(struct concap_proto *);
-};
-
-The network interface does not explicitly provide a receive service
-because the encapsulation protocol directly calls netif_rx().
-
-
-
-
-An encapsulation protocol itself is actually the
-struct concap_proto{
- struct net_device *net_dev; /* net device using our service */
- struct concap_device_ops *dops; /* callbacks provided by device */
- struct concap_proto_ops *pops; /* callbacks provided by us */
- int flags;
- void *proto_data; /* protocol specific private data, to
- be accessed via *pops methods only*/
- /*
- :
- whatever
- :
- */
-};
-
-Most of this is filled in when the device requests the protocol to
-be reset (opend). The network interface must provide the net_dev and
-dops pointers. Other concap_proto members should be considered private
-data that are only accessed by the pops callback functions. Likewise,
-a concap proto should access the network device's private data
-only by means of the callbacks referred to by the dops pointer.
-
-
-A possible extended device structure which uses the connection controlling
-encapsulation services could look like this:
-
-struct concap_device{
- struct net_device net_dev;
- struct my_priv /* device->local stuff */
- /* the my_priv struct might contain a
- struct concap_device_ops *dops;
- to provide the device specific callbacks
- */
- struct concap_proto *cprot; /* callbacks provided by protocol */
-};
-
-
-
-Misc Thoughts
-=============
-
-The concept of the concap proto might help to reuse protocol code and
-reduce the complexity of certain network interface implementations.
-The trade off is that it introduces yet another procedure call layer
-when processing the protocol. This has of course some impact on
-performance. However, typically the concap interface will be used by
-devices attached to slow lines (like telephone, isdn, leased synchronous
-lines). For such slow lines, the overhead is probably negligible.
-This might no longer hold for certain high speed WAN links (like
-ATM).
-
-
-If general linux network interfaces explicitly supported concap
-protocols (e.g. by a member struct concap_proto* in struct net_device)
-then the interface of the service function could be changed
-by passing a pointer of type (struct net_device*) instead of
-type (struct concap_proto*). Doing so would make many of the service
-functions compatible to network device support functions.
-
-e.g. instead of the concap protocol's service function
-
- int (*encap_and_xmit)(struct concap_proto *cprot, struct sk_buff *skb);
-
-we could have
-
- int (*encap_and_xmit)(struct net_device *ndev, struct sk_buff *skb);
-
-As this is compatible to the dev->hard_start_xmit() method, the device
-driver could directly register the concap protocol's encap_and_xmit()
-function as its hard_start_xmit() method. This would eliminate one
-procedure call layer.
-
-
-The device's data request function could also be defined as
-
- int (*data_req)(struct net_device *ndev, struct sk_buff *skb);
-
-This might even allow for some protocol stacking. And the network
-interface might even register the same data_req() function directly
-as its hard_start_xmit() method when a zero layer encapsulation
-protocol is configured. Thus, eliminating the performance penalty
-of the concap interface when a trivial concap protocol is used.
-Nevertheless, the device remains able to support encapsulation
-protocol configuration.
-
diff --git a/Documentation/isdn/README.diversion b/Documentation/isdn/README.diversion
deleted file mode 100644
index bddcd5fb86ff..000000000000
--- a/Documentation/isdn/README.diversion
+++ /dev/null
@@ -1,127 +0,0 @@
-The isdn diversion services are a supporting module working together with
-the isdn4linux and the HiSax module for passive cards.
-Active cards, TAs and cards using a own or other driver than the HiSax
-module need to be adapted to the HL<->LL interface described in a separate
-document. The diversion services may be used with all cards supported by
-the HiSax driver.
-The diversion kernel interface and controlling tool divertctrl were written
-by Werner Cornelius (werner@isdn4linux.de or werner@titro.de) under the
-GNU General Public License.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-
-Table of contents
-=================
-
-1. Features of the i4l diversion services
- (Or what can the i4l diversion services do for me)
-
-2. Required hard- and software
-
-3. Compiling, installing and loading/unloading the module
- Tracing calling and diversion information
-
-4. Tracing calling and diversion information
-
-5. Format of the divert device ASCII output
-
-
-1. Features of the i4l diversion services
- (Or what can the i4l diversion services do for me)
-
- The i4l diversion services offers call forwarding and logging normally
- only supported by isdn phones. Incoming calls may be diverted
- unconditionally (CFU), when not reachable (CFNR) or on busy condition
- (CFB).
- The diversions may be invoked statically in the providers exchange
- as normally done by isdn phones. In this case all incoming calls
- with a special (or all) service identifiers are forwarded if the
- forwarding reason is met. Activated static services may also be
- interrogated (queried).
- The i4l diversion services additionally offers a dynamic version of
- call forwarding which is not preprogrammed inside the providers exchange
- but dynamically activated by i4l.
- In this case all incoming calls are checked by rules that may be
- compared to the mechanism of ipfwadm or ipchains. If a given rule matches
- the checking process is finished and the rule matching will be applied
- to the call.
- The rules include primary and secondary service identifiers, called
- number and subaddress, callers number and subaddress and whether the rule
- matches to all filtered calls or only those when all B-channel resources
- are exhausted.
- Actions that may be invoked by a rule are ignore, proceed, reject,
- direct divert or delayed divert of a call.
- All incoming calls matching a rule except the ignore rule a reported and
- logged as ASCII via the proc filesystem (/proc/net/isdn/divert). If proceed
- is selected the call will be held in a proceeding state (without ringing)
- for a certain amount of time to let an external program or client decide
- how to handle the call.
-
-
-2. Required hard- and software
-
- For using the i4l diversion services the isdn line must be of a EURO/DSS1
- type. Additionally the i4l services only work together with the HiSax
- driver for passive isdn cards. All HiSax supported cards may be used for
- the diversion purposes.
- The static diversion services require the provider having static services
- CFU, CFNR, CFB activated on an MSN-line. The static services may not be
- used on a point-to-point connection. Further the static services are only
- available in some countries (for example germany). Countries requiring the
- keypad protocol for activating static diversions (like the netherlands) are
- not supported but may use the tty devices for this purpose.
- The dynamic diversion services may be used in all countries if the provider
- enables the feature CF (call forwarding). This should work on both MSN- and
- point-to-point lines.
- To add and delete rules the additional divertctrl program is needed. This
- program is part of the isdn4kutils package.
-
-3. Compiling, installing and loading/unloading the module
- Tracing calling and diversion information
-
-
- To compile the i4l code with diversion support you need to say yes to the
- DSS1 diversion services when selecting the i4l options in the kernel
- config (menuconfig or config).
- After having properly activated a make modules and make modules_install all
- required modules will be correctly installed in the needed modules dirs.
- As the diversion services are currently not included in the scripts of most
- standard distributions you will have to add a "insmod dss1_divert" after
- having loaded the global isdn module.
- The module can be loaded without any command line parameters.
- If the module is actually loaded and active may be checked with a
- "cat /proc/modules" or "ls /proc/net/isdn/divert". The divert file is
- dynamically created by the diversion module and removed when the module is
- unloaded.
-
-
-4. Tracing calling and diversion information
-
- You also may put a "cat /proc/net/isdn/divert" in the background with the
- output redirected to a file. Then all actions of the module are logged.
- The divert file in the proc system may be opened more than once, so in
- conjunction with inetd and a small remote client on other machines inside
- your network incoming calls and reactions by the module may be shown on
- every listening machine.
- If a call is reported as proceeding an external program or client may
- specify during a certain amount of time (normally 4 to 10 seconds) what
- to do with that call.
- To unload the module all open files to the device in the proc system must
- be closed. Otherwise the module (and isdn.o) may not be unloaded.
-
-5. Format of the divert device ASCII output
-
- To be done later
-
diff --git a/Documentation/isdn/README.fax b/Documentation/isdn/README.fax
deleted file mode 100644
index 5314958a8a6e..000000000000
--- a/Documentation/isdn/README.fax
+++ /dev/null
@@ -1,45 +0,0 @@
-
-Fax with isdn4linux
-===================
-
-When enabled during kernel configuration, the tty emulator
-of the ISDN subsystem is capable of the Fax Class 2 commands.
-
-This only makes sense under the following conditions :
-
-- You need the commands as dummy, because you are using
- hylafax (with patch) for AVM capi.
-- You want to use the fax capabilities of your isdn-card.
- (supported cards are listed below)
-
-
-NOTE: This implementation does *not* support fax with passive
- ISDN-cards (known as softfax). The low-level driver of
- the ISDN-card and/or the card itself must support this.
-
-
-Supported ISDN-Cards
---------------------
-
-Eicon DIVA Server BRI/PCI
- - full support with both B-channels.
-
-Eicon DIVA Server 4BRI/PCI
- - full support with all B-channels.
-
-Eicon DIVA Server PRI/PCI
- - full support on amount of B-channels
- depending on DSPs on board.
-
-
-
-The command set is known as Class 2 (not Class 2.0) and
-can be activated by AT+FCLASS=2
-
-
-The interface between the link-level-module and the hardware-level driver
-is described in the files INTERFACE.fax and INTERFACE.
-
-Armin
-mac@melware.de
-
diff --git a/Documentation/isdn/README.gigaset b/Documentation/isdn/README.gigaset
index 9b1ce277ca3d..f6184b637182 100644
--- a/Documentation/isdn/README.gigaset
+++ b/Documentation/isdn/README.gigaset
@@ -48,9 +48,8 @@ GigaSet 307x Device Driver
1.2. Software
--------
- The driver works with the Kernel CAPI subsystem as well as the old
- ISDN4Linux subsystem, so it can be used with any software which is able
- to use CAPI 2.0 or ISDN4Linux for ISDN connections (voice or data).
+ The driver works with the Kernel CAPI subsystem and can be used with any
+ software which is able to use CAPI 2.0 for ISDN connections (voice or data).
There are some user space tools available at
https://sourceforge.net/projects/gigaset307x/
@@ -92,7 +91,7 @@ GigaSet 307x Device Driver
gigaset debug debug level (see section 3.2.)
startmode initial operation mode (see section 2.5.):
- bas_gigaset ) 1=ISDN4linux/CAPI (default), 0=Unimodem
+ bas_gigaset ) 1=CAPI (default), 0=Unimodem
ser_gigaset )
usb_gigaset ) cidmode initial Call-ID mode setting (see section
2.5.): 1=on (default), 0=off
@@ -154,18 +153,10 @@ GigaSet 307x Device Driver
2.3. CAPI
----
- If the driver is compiled with CAPI support (kernel configuration option
- GIGASET_CAPI) the devices will show up as CAPI controllers as soon as the
- corresponding driver module is loaded, and can then be used with CAPI 2.0
- kernel and user space applications. For user space access, the module
- capi.ko must be loaded.
-
- Legacy ISDN4Linux applications are supported via the capidrv
- compatibility driver. The kernel module capidrv.ko must be loaded
- explicitly with the command
- modprobe capidrv
- if needed, and cannot be unloaded again without unloading the driver
- first. (These are limitations of capidrv.)
+ The devices will show up as CAPI controllers as soon as the
+ corresponding driver module is loaded, and can then be used with
+ CAPI 2.0 kernel and user space applications. For user space access,
+ the module capi.ko must be loaded.
Most distributions handle loading and unloading of the various CAPI
modules automatically via the command capiinit(1) from the capi4k-utils
@@ -173,16 +164,6 @@ GigaSet 307x Device Driver
Gigaset drivers because it doesn't support more than one module per
driver.
-2.4. ISDN4Linux
- ----------
- If the driver is compiled without CAPI support (native ISDN4Linux
- variant), it registers the device with the legacy ISDN4Linux subsystem
- after loading the module. It can then be used with ISDN4Linux
- applications only. Most distributions provide some configuration utility
- for setting up that subsystem. Otherwise you can use some HOWTOs like
- http://www.linuxhaven.de/dlhp/HOWTO/DE-ISDN-HOWTO-5.html
-
-
2.5. Unimodem mode
-------------
In this mode the device works like a modem connected to a serial port
@@ -281,8 +262,7 @@ GigaSet 307x Device Driver
number. Dialing "***" (three asterisks) calls all extensions
simultaneously (global call).
- This holds for both CAPI 2.0 and ISDN4Linux applications. Unimodem mode
- does not support internal calls.
+ Unimodem mode does not support internal calls.
2.8. Unregistered Wireless Devices (M101/M105)
-----------------------------------------
diff --git a/Documentation/isdn/README.hfc-pci b/Documentation/isdn/README.hfc-pci
deleted file mode 100644
index e8a4ef0226e8..000000000000
--- a/Documentation/isdn/README.hfc-pci
+++ /dev/null
@@ -1,41 +0,0 @@
-The driver for the HFC-PCI and HFC-PCI-A chips from CCD may be used
-for many OEM cards using this chips.
-Additionally the driver has a special feature which makes it possible
-to read the echo-channel of the isdn bus. So all frames in both directions
-may be logged.
-When the echo logging feature is used the number of available B-channels
-for a HFC-PCI card is reduced to 1. Of course this is only relevant to
-the card, not to the isdn line.
-To activate the echo mode the following ioctls must be entered:
-
-hisaxctrl <driver/cardname> 10 1
-
-This reduces the available channels to 1. There must not be open connections
-through this card when entering the command.
-And then:
-
-hisaxctrl <driver/cardname> 12 1
-
-This enables the echo mode. If Hex logging is activated the isdnctrlx
-devices show a output with a line beginning of HEX: for the providers
-exchange and ECHO: for isdn devices sending to the provider.
-
-If more than one HFC-PCI cards are installed, a specific card may be selected
-at the hisax module load command line. Supply the load command with the desired
-IO-address of the desired card.
-Example:
-There tree cards installed in your machine at IO-base addresses 0xd000, 0xd400
-and 0xdc00
-If you want to use the card at 0xd400 standalone you should supply the insmod
-or depmod with type=35 io=0xd400.
-If you want to use all three cards, but the order needs to be at 0xdc00,0xd400,
-0xd000 you may give the parameters type=35,35,35 io=0xdc00,0xd400,0xd00
-Then the desired card will be the initialised in the desired order.
-If the io parameter is used the io addresses of all used cards should be
-supplied else the parameter is assumed 0 and a auto search for a free card is
-invoked which may not give the wanted result.
-
-Comments and reports to werner@isdn4linux.de or werner@isdn-development.de
-
-
-
diff --git a/Documentation/isdn/README.syncppp b/Documentation/isdn/README.syncppp
deleted file mode 100644
index 27d260095cce..000000000000
--- a/Documentation/isdn/README.syncppp
+++ /dev/null
@@ -1,58 +0,0 @@
-Some additional information for setting up a syncPPP
-connection using network interfaces.
----------------------------------------------------------------
-
-You need one thing beside the isdn4linux package:
-
- a patched pppd .. (I called it ipppd to show the difference)
-
-Compiling isdn4linux with sync PPP:
------------------------------------
-To compile isdn4linux with the sync PPP part, you have
-to answer the appropriate question when doing a "make config"
-Don't forget to load the slhc.o
-module before the isdn.o module, if VJ-compression support
-is not compiled into your kernel. (e.g if you have no PPP or
-CSLIP in the kernel)
-
-Using isdn4linux with sync PPP:
--------------------------------
-Sync PPP is just another encapsulation for isdn4linux. The
-name to enable sync PPP encapsulation is 'syncppp' .. e.g:
-
- /sbin/isdnctrl encap ippp0 syncppp
-
-The name of the interface is here 'ippp0'. You need
-one interface with the name 'ippp0' to saturate the
-ipppd, which checks the ppp version via this interface.
-Currently, all devices must have the name ipppX where
-'X' is a decimal value.
-
-To set up a PPP connection you need the ipppd .. You must start
-the ipppd once after installing the modules. The ipppd
-communicates with the isdn4linux link-level driver using the
-/dev/ippp0 to /dev/ippp15 devices. One ipppd can handle
-all devices at once. If you want to use two PPP connections
-at the same time, you have to connect the ipppd to two
-devices .. and so on.
-I've implemented one additional option for the ipppd:
- 'useifip' will get (if set to not 0.0.0.0) the IP address
- for the negotiation from the attached network-interface.
-(also: ipppd will try to negotiate pointopoint IP as remote IP)
-You must disable BSD-compression, this implementation can't
-handle compressed packets.
-
-Check the etc/rc.isdn.syncppp in the isdn4kernel-util package
-for an example setup script.
-
-To use the MPPP stuff, you must configure a slave device
-with isdn4linux. Now call the ipppd with the '+mp' option.
-To increase the number of links, you must use the
-'addlink' option of the isdnctrl tool. (rc.isdn.syncppp.MPPP is
-an example script)
-
-enjoy it,
- michael
-
-
-
diff --git a/Documentation/isdn/README.x25 b/Documentation/isdn/README.x25
deleted file mode 100644
index e561a77c4e22..000000000000
--- a/Documentation/isdn/README.x25
+++ /dev/null
@@ -1,184 +0,0 @@
-
-X.25 support within isdn4linux
-==============================
-
-This is alpha/beta test code. Use it completely at your own risk.
-As new versions appear, the stuff described here might suddenly change
-or become invalid without notice.
-
-Keep in mind:
-
-You are using several new parts of the 2.2.x kernel series which
-have not been tested in a large scale. Therefore, you might encounter
-more bugs as usual.
-
-- If you connect to an X.25 neighbour not operated by yourself, ASK the
- other side first. Be prepared that bugs in the protocol implementation
- might result in problems.
-
-- This implementation has never wiped out my whole hard disk yet. But as
- this is experimental code, don't blame me if that happened to you.
- Backing up important data will never harm.
-
-- Monitor your isdn connections while using this software. This should
- prevent you from undesired phone bills in case of driver problems.
-
-
-
-
-How to configure the kernel
-===========================
-
-The ITU-T (former CCITT) X.25 network protocol layer has been implemented
-in the Linux source tree since version 2.1.16. The isdn subsystem might be
-useful to run X.25 on top of ISDN. If you want to try it, select
-
- "CCITT X.25 Packet Layer"
-
-from the networking options as well as
-
- "ISDN Support" and "X.25 PLP on Top of ISDN"
-
-from the ISDN subsystem options when you configure your kernel for
-compilation. You currently also need to enable
-"Prompt for development and/or incomplete code/drivers" from the
-"Code maturity level options" menu. For the x25trace utility to work
-you also need to enable "Packet socket".
-
-For local testing it is also recommended to enable the isdnloop driver
-from the isdn subsystem's configuration menu.
-
-For testing, it is recommended that all isdn drivers and the X.25 PLP
-protocol are compiled as loadable modules. Like this, you can recover
-from certain errors by simply unloading and reloading the modules.
-
-
-
-What's it for? How to use it?
-=============================
-
-X.25 on top of isdn might be useful with two different scenarios:
-
-- You might want to access a public X.25 data network from your Linux box.
- You can use i4l if you were physically connected to the X.25 switch
- by an ISDN B-channel (leased line as well as dial up connection should
- work).
-
- This corresponds to ITU-T recommendation X.31 Case A (circuit-mode
- access to PSPDN [packet switched public data network]).
-
- NOTE: X.31 also covers a Case B (access to PSPDN via virtual
- circuit / packet mode service). The latter mode (which in theory
- also allows using the D-channel) is not supported by isdn4linux.
- It should however be possible to establish such packet mode connections
- with certain active isdn cards provided that the firmware supports X.31
- and the driver exports this functionality to the user. Currently,
- the AVM B1 driver is the only driver which does so. (It should be
- possible to access D-channel X.31 with active AVM cards using the
- CAPI interface of the AVM-B1 driver).
-
-- Or you might want to operate certain ISDN teleservices on your linux
- box. A lot of those teleservices run on top of the ISO-8208
- (DTE-DTE mode) network layer protocol. ISO-8208 is essentially the
- same as ITU-T X.25.
-
- Popular candidates of such teleservices are EUROfile transfer or any
- teleservice applying ITU-T recommendation T.90.
-
-To use the X.25 protocol on top of isdn, just create an isdn network
-interface as usual, configure your own and/or peer's ISDN numbers,
-and choose x25iface encapsulation by
-
- isdnctrl encap <iface-name> x25iface.
-
-Once encap is set like this, the device can be used by the X.25 packet layer.
-
-All the stuff needed for X.25 is implemented inside the isdn link
-level (mainly isdn_net.c and some new source files). Thus, it should
-work with every existing HL driver. I was able to successfully open X.25
-connections on top of the isdnloop driver and the hisax driver.
-"x25iface"-encapsulation bypasses demand dialing. Dialing will be
-initiated when the upper (X.25 packet) layer requests the lapb datalink to
-be established. But hangup timeout is still active. Whenever a hangup
-occurs, all existing X.25 connections on that link will be cleared
-It is recommended to use sufficiently large hangup-timeouts for the
-isdn interfaces.
-
-
-In order to set up a conforming protocol stack you also need to
-specify the proper l2_prot parameter:
-
-To operate in ISO-8208 X.25 DTE-DTE mode, use
-
- isdnctrl l2_prot <iface-name> x75i
-
-To access an X.25 network switch via isdn (your linux box is the DTE), use
-
- isdnctrl l2_prot <iface-name> x25dte
-
-To mimic an X.25 network switch (DCE side of the connection), use
-
- isdnctrl l2_prot <iface-name> x25dce
-
-However, x25dte or x25dce is currently not supported by any real HL
-level driver. The main difference between x75i and x25dte/dce is that
-x25d[tc]e uses fixed lap_b addresses. With x75i, the side which
-initiates the isdn connection uses the DTE's lap_b address while the
-called side used the DCE's lap_b address. Thus, l2_prot x75i might
-probably work if you access a public X.25 network as long as the
-corresponding isdn connection is set up by you. At least one test
-was successful to connect via isdn4linux to an X.25 switch using this
-trick. At the switch side, a terminal adapter X.21 was used to connect
-it to the isdn.
-
-
-How to set up a test installation?
-==================================
-
-To test X.25 on top of isdn, you need to get
-
-- a recent version of the "isdnctrl" program that supports setting the new
- X.25 specific parameters.
-
-- the x25-utils-2.X package from
- ftp://ftp.hes.iki.fi/pub/ham/linux/ax25/x25utils-*
- (don't confuse the x25-utils with the ax25-utils)
-
-- an application program that uses linux PF_X25 sockets (some are
- contained in the x25-util package).
-
-Before compiling the user level utilities make sure that the compiler/
-preprocessor will fetch the proper kernel header files of this kernel
-source tree. Either make /usr/include/linux a symbolic link pointing to
-this kernel's include/linux directory or set the appropriate compiler flags.
-
-When all drivers and interfaces are loaded and configured you need to
-ifconfig the network interfaces up and add X.25-routes to them. Use
-the usual ifconfig tool.
-
-ifconfig <iface-name> up
-
-But a special x25route tool (distributed with the x25-util package)
-is needed to set up X.25 routes. I.e.
-
-x25route add 01 <iface-name>
-
-will cause all x.25 connections to the destination X.25-address
-"01" to be routed to your created isdn network interface.
-
-There are currently no real X.25 applications available. However, for
-tests, the x25-utils package contains a modified version of telnet
-and telnetd that uses X.25 sockets instead of tcp/ip sockets. You can
-use those for your first tests. Furthermore, you might check
-ftp://ftp.hamburg.pop.de/pub/LOCAL/linux/i4l-eft/ which contains some
-alpha-test implementation ("eftp4linux") of the EUROfile transfer
-protocol.
-
-The scripts distributed with the eftp4linux test releases might also
-provide useful examples for setting up X.25 on top of isdn.
-
-The x25-utility package also contains an x25trace tool that can be
-used to monitor X.25 packets received by the network interfaces.
-The /proc/net/x25* files also contain useful information.
-
-- Henner
diff --git a/Documentation/isdn/syncPPP.FAQ b/Documentation/isdn/syncPPP.FAQ
deleted file mode 100644
index 3257a4bc0786..000000000000
--- a/Documentation/isdn/syncPPP.FAQ
+++ /dev/null
@@ -1,224 +0,0 @@
-simple isdn4linux PPP FAQ .. to be continued .. not 'debugged'
--------------------------------------------------------------------
-
-Q01: what's pppd, ipppd, syncPPP, asyncPPP ??
-Q02: error message "this system lacks PPP support"
-Q03: strange information using 'ifconfig'
-Q04: MPPP?? What's that and how can I use it ...
-Q05: I tried MPPP but it doesn't work
-Q06: can I use asynchronous PPP encapsulation with network devices
-Q07: A SunISDN machine can't connect to my i4l system
-Q08: I wanna talk to several machines, which need different configs
-Q09: Starting the ipppd, I get only error messages from i4l
-Q10: I wanna use dynamic IP address assignment
-Q11: I can't connect. How can I check where the problem is.
-Q12: How can I reduce login delay?
-
--------------------------------------------------------------------
-
-Q01: pppd, ipppd, syncPPP, asyncPPP .. what is that ?
- what should I use?
-A: The pppd is for asynchronous PPP .. asynchronous means
- here, the framing is character based. (e.g when
- using ttyI* or tty* devices)
-
- The ipppd handles PPP packets coming in HDLC
- frames (bit based protocol) ... The PPP driver
- in isdn4linux pushes all IP packets direct
- to the network layer and all PPP protocol
- frames to the /dev/ippp* device.
- So, the ipppd is a simple external network
- protocol handler.
-
- If you login into a remote machine using the
- /dev/ttyI* devices and then enable PPP on the
- remote terminal server -> use the 'old' pppd
-
- If your remote side immediately starts to send
- frames ... you probably connect to a
- syncPPP machine .. use the network device part
- of isdn4linux with the 'syncppp' encapsulation
- and make sure, that the ipppd is running and
- connected to at least one /dev/ippp*. Check the
- isdn4linux manual on how to configure a network device.
-
---
-
-Q02: when I start the ipppd .. I only get the
- error message "this system lacks PPP support"
-A: check that at least the device 'ippp0' exists.
- (you can check this e.g with the program 'ifconfig')
- The ipppd NEEDS this device under THIS name ..
- If this device doesn't exists, use:
- isdnctrl addif ippp0
- isdnctrl encap ippp0 syncppp
- ... (see isdn4linux doc for more) ...
-A: Maybe you have compiled the ipppd with another
- kernel source tree than the kernel you currently
- run ...
-
---
-
-Q03: when I list the netdevices with ifconfig I see, that
- my ISDN interface has a HWaddr and IRQ=0 and Base
- address = 0
-A: The device is a fake ethernet device .. ignore IRQ and baseaddr
- You need the HWaddr only for ethernet encapsulation.
-
---
-
-Q04: MPPP?? What's that and how can I use it ...
-
-A: MPPP or MP or MPP (Warning: MP is also an
- acronym for 'Multi Processor') stands for
- Multi Point to Point and means bundling
- of several channels to one logical stream.
- To enable MPPP negotiation you must call the
- ipppd with the '+mp' option.
- You must also configure a slave device for
- every additional channel. (see the i4l manual
- for more)
- To use channel bundling you must first activate
- the 'master' or initial call. Now you can add
- the slave channels with the command:
- isdnctrl addlink <device>
- e.g:
- isdnctrl addlink ippp0
- This is different from other encapsulations of
- isdn4linux! With syncPPP, there is no automatic
- activation of slave devices.
-
---
-
-Q05: I tried MPPP but it doesn't work .. the ipppd
- writes in the debug log something like:
- .. rcvd [0][proto=0x3d] c0 00 00 00 80 fd 01 01 00 0a ...
- .. sent [0][LCP ProtRej id=0x2 00 3d c0 00 00 00 80 fd 01 ...
-
-A: you forgot to compile MPPP/RFC1717 support into the
- ISDN Subsystem. Recompile with this option enabled.
-
---
-
-Q06: can I use asynchronous PPP encapsulation
- over the network interface of isdn4linux ..
-
-A: No .. that's not possible .. Use the standard
- PPP package over the /dev/ttyI* devices. You
- must not use the ipppd for this.
-
---
-
-Q07: A SunISDN machine tries to connect my i4l system,
- which doesn't work.
- Checking the debug log I just saw garbage like:
-!![ ... fill in the line ... ]!!
-
-A: The Sun tries to talk asynchronous PPP ... i4l
- can't understand this ... try to use the ttyI*
- devices with the standard PPP/pppd package
-
-A: (from Alexanter Strauss: )
-!![ ... fill in mail ]!!
-
---
-
-Q08: I wanna talk to remote machines, which need
- a different configuration. The only way
- I found to do this is to kill the ipppd and
- start a new one with another config to connect
- to the second machine.
-
-A: you must bind a network interface explicitly to
- an ippp device, where you can connect a (for this
- interface) individually configured ipppd.
-
---
-
-Q09: When I start the ipppd I only get error messages
- from the i4l driver ..
-
-A: When starting, the ipppd calls functions which may
- trigger a network packet. (e.g gethostbyname()).
- Without the ipppd (at this moment, it is not
- fully started) we can't handle this network request.
- Try to configure hostnames necessary for the ipppd
- in your local /etc/hosts file or in a way, that
- your system can resolve it without using an
- isdn/ippp network-interface.
-
---
-
-Q10: I wanna use dynamic IP address assignment ... How
- must I configure the network device.
-
-A: At least you must have a route which forwards
- a packet to the ippp network-interface to trigger
- the dial-on-demand.
- A default route to the ippp-interface will work.
- Now you must choose a dummy IP address for your
- interface.
- If for some reason you can't set the default
- route to the ippp interface, you may take any
- address of the subnet from which you expect your
- dynamic IP number and set a 'network route' for
- this subnet to the ippp interface.
- To allow overriding of the dummy address you
- must call the ipppd with the 'ipcp-accept-local' option.
-
-A: You must know, how the ipppd gets the addresses it wanna
- configure. If you don't give any option, the ipppd
- tries to negotiate the local host address!
- With the option 'noipdefault' it requests an address
- from the remote machine. With 'useifip' it gets the
- addresses from the net interface. Or you set the address
- on the option line with the <a.b.c.d:e.f.g.h> option.
- Note: the IP address of the remote machine must be configured
- locally or the remote machine must send it in an IPCP request.
- If your side doesn't know the IP address after negotiation, it
- closes the connection!
- You must allow overriding of address with the 'ipcp-accept-*'
- options, if you have set your own or the remote address
- explicitly.
-
-A: Maybe you try these options .. e.g:
-
- /sbin/ipppd :$REMOTE noipdefault /dev/ippp0
-
- where REMOTE must be the address of the remote machine (the
- machine, which gives you your address)
-
---
-
-Q11: I can't connect. How can I check where the problem is.
-
-A: A good help log is the debug output from the ipppd...
- Check whether you can find there:
- - only a few LCP-conf-req SENT messages (less then 10)
- and then a Term-REQ:
- -> check whether your ISDN card is well configured
- it seems, that your machine doesn't dial
- (IRQ,IO,Proto, etc problems)
- Configure your ISDN card to print debug messages and
- check the /dev/isdnctrl output next time. There
- you can see, whether there is activity on the card/line.
- - there are at least a few RECV messages in the log:
- -> fine: your card is dialing and your remote machine
- tries to talk with you. Maybe only a missing
- authentication. Check your ipppd configuration again.
- - the ipppd exits for some reason:
- -> not good ... check /var/adm/syslog and /var/adm/daemon.
- Could be a bug in the ipppd.
-
---
-
-Q12: How can I reduce login delay?
-
-A: Log a login session ('debug' log) and check which options
- your remote side rejects. Next time configure your ipppd
- to not negotiate these options. Another 'side effect' is, that
- this increases redundancy. (e.g your remote side is buggy and
- rejects options in a wrong way).
-
-
-
diff --git a/Documentation/kbuild/headers_install.txt b/Documentation/kbuild/headers_install.rst
index f0153adb95e2..1ab7294e41ac 100644
--- a/Documentation/kbuild/headers_install.txt
+++ b/Documentation/kbuild/headers_install.rst
@@ -1,3 +1,4 @@
+=============================================
Exporting kernel headers for use by userspace
=============================================
@@ -22,14 +23,14 @@ older kernel.
The "make headers_install" command can be run in the top level directory of the
kernel source code (or using a standard out-of-tree build). It takes two
-optional arguments:
+optional arguments::
make headers_install ARCH=i386 INSTALL_HDR_PATH=/usr
ARCH indicates which architecture to produce headers for, and defaults to the
current architecture. The linux/asm directory of the exported kernel headers
is platform-specific, to see a complete list of supported architectures use
-the command:
+the command::
ls -d include/asm-* | sed 's/.*-//'
diff --git a/Documentation/kbuild/index.rst b/Documentation/kbuild/index.rst
new file mode 100644
index 000000000000..42d4cbe4460c
--- /dev/null
+++ b/Documentation/kbuild/index.rst
@@ -0,0 +1,27 @@
+:orphan:
+
+===================
+Kernel Build System
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ kconfig-language
+ kconfig-macro-language
+
+ kbuild
+ kconfig
+ makefiles
+ modules
+
+ headers_install
+
+ issues
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/kbuild/issues.rst b/Documentation/kbuild/issues.rst
new file mode 100644
index 000000000000..9fdded4b681c
--- /dev/null
+++ b/Documentation/kbuild/issues.rst
@@ -0,0 +1,11 @@
+Recursion issue #1
+------------------
+
+ .. include:: Kconfig.recursion-issue-01
+ :literal:
+
+Recursion issue #2
+------------------
+
+ .. include:: Kconfig.recursion-issue-02
+ :literal:
diff --git a/Documentation/kbuild/kbuild.txt b/Documentation/kbuild/kbuild.rst
index 9c230ea71963..e774e760522d 100644
--- a/Documentation/kbuild/kbuild.txt
+++ b/Documentation/kbuild/kbuild.rst
@@ -1,13 +1,19 @@
+======
+Kbuild
+======
+
+
Output files
+============
modules.order
---------------------------------------------------
+-------------
This file records the order in which modules appear in Makefiles. This
is used by modprobe to deterministically resolve aliases that match
multiple modules.
modules.builtin
---------------------------------------------------
+---------------
This file lists all modules that are built into the kernel. This is used
by modprobe to not fail when trying to load something builtin.
@@ -18,84 +24,90 @@ Unlike modinfo of a separate module, all fields are prefixed with module name.
Environment variables
+=====================
KCPPFLAGS
---------------------------------------------------
+---------
Additional options to pass when preprocessing. The preprocessing options
will be used in all cases where kbuild does preprocessing including
building C files and assembler files.
KAFLAGS
---------------------------------------------------
+-------
Additional options to the assembler (for built-in and modules).
AFLAGS_MODULE
---------------------------------------------------
+-------------
Additional module specific options to use for $(AS).
AFLAGS_KERNEL
---------------------------------------------------
+-------------
Additional options for $(AS) when used for assembler
code for code that is compiled as built-in.
KCFLAGS
---------------------------------------------------
+-------
Additional options to the C compiler (for built-in and modules).
CFLAGS_KERNEL
---------------------------------------------------
+-------------
Additional options for $(CC) when used to compile
code that is compiled as built-in.
CFLAGS_MODULE
---------------------------------------------------
+-------------
Additional module specific options to use for $(CC).
LDFLAGS_MODULE
---------------------------------------------------
+--------------
Additional options used for $(LD) when linking modules.
HOSTCFLAGS
---------------------------------------------------
+----------
Additional flags to be passed to $(HOSTCC) when building host programs.
HOSTCXXFLAGS
---------------------------------------------------
+------------
Additional flags to be passed to $(HOSTCXX) when building host programs.
HOSTLDFLAGS
---------------------------------------------------
+-----------
Additional flags to be passed when linking host programs.
HOSTLDLIBS
---------------------------------------------------
+----------
Additional libraries to link against when building host programs.
KBUILD_KCONFIG
---------------------------------------------------
+--------------
Set the top-level Kconfig file to the value of this environment
variable. The default name is "Kconfig".
KBUILD_VERBOSE
---------------------------------------------------
+--------------
Set the kbuild verbosity. Can be assigned same values as "V=...".
+
See make help for the full list.
+
Setting "V=..." takes precedence over KBUILD_VERBOSE.
KBUILD_EXTMOD
---------------------------------------------------
+-------------
Set the directory to look for the kernel source when building external
modules.
+
Setting "M=..." takes precedence over KBUILD_EXTMOD.
KBUILD_OUTPUT
---------------------------------------------------
+-------------
Specify the output directory when building the kernel.
+
The output directory can also be specified using "O=...".
+
Setting "O=..." takes precedence over KBUILD_OUTPUT.
KBUILD_DEBARCH
---------------------------------------------------
+--------------
For the deb-pkg target, allows overriding the normal heuristics deployed by
deb-pkg. Normally deb-pkg attempts to guess the right architecture based on
the UTS_MACHINE variable, and on some architectures also the kernel config.
@@ -103,44 +115,48 @@ The value of KBUILD_DEBARCH is assumed (not checked) to be a valid Debian
architecture.
ARCH
---------------------------------------------------
+----
Set ARCH to the architecture to be built.
+
In most cases the name of the architecture is the same as the
directory name found in the arch/ directory.
+
But some architectures such as x86 and sparc have aliases.
-x86: i386 for 32 bit, x86_64 for 64 bit
-sh: sh for 32 bit, sh64 for 64 bit
-sparc: sparc32 for 32 bit, sparc64 for 64 bit
+
+- x86: i386 for 32 bit, x86_64 for 64 bit
+- sh: sh for 32 bit, sh64 for 64 bit
+- sparc: sparc32 for 32 bit, sparc64 for 64 bit
CROSS_COMPILE
---------------------------------------------------
+-------------
Specify an optional fixed part of the binutils filename.
CROSS_COMPILE can be a part of the filename or the full path.
CROSS_COMPILE is also used for ccache in some setups.
CF
---------------------------------------------------
+--
Additional options for sparse.
-CF is often used on the command-line like this:
+
+CF is often used on the command-line like this::
make CF=-Wbitwise C=2
INSTALL_PATH
---------------------------------------------------
+------------
INSTALL_PATH specifies where to place the updated kernel and system map
images. Default is /boot, but you can set it to other values.
INSTALLKERNEL
---------------------------------------------------
+-------------
Install script called when using "make install".
The default name is "installkernel".
The script will be called with the following arguments:
- $1 - kernel version
- $2 - kernel image file
- $3 - kernel map file
- $4 - default install path (use root directory if blank)
+ - $1 - kernel version
+ - $2 - kernel image file
+ - $3 - kernel map file
+ - $4 - default install path (use root directory if blank)
The implementation of "make install" is architecture specific
and it may differ from the above.
@@ -149,32 +165,33 @@ INSTALLKERNEL is provided to enable the possibility to
specify a custom installer when cross compiling a kernel.
MODLIB
---------------------------------------------------
+------
Specify where to install modules.
-The default value is:
+The default value is::
$(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE)
The value can be overridden in which case the default value is ignored.
INSTALL_MOD_PATH
---------------------------------------------------
+----------------
INSTALL_MOD_PATH specifies a prefix to MODLIB for module directory
relocations required by build roots. This is not defined in the
makefile but the argument can be passed to make if needed.
INSTALL_MOD_STRIP
---------------------------------------------------
+-----------------
INSTALL_MOD_STRIP, if defined, will cause modules to be
stripped after they are installed. If INSTALL_MOD_STRIP is '1', then
the default option --strip-debug will be used. Otherwise,
INSTALL_MOD_STRIP value will be used as the options to the strip command.
INSTALL_HDR_PATH
---------------------------------------------------
+----------------
INSTALL_HDR_PATH specifies where to install user space headers when
executing "make headers_*".
-The default value is:
+
+The default value is::
$(objtree)/usr
@@ -184,65 +201,65 @@ The output directory is often set using "O=..." on the commandline.
The value can be overridden in which case the default value is ignored.
KBUILD_SIGN_PIN
---------------------------------------------------
+---------------
This variable allows a passphrase or PIN to be passed to the sign-file
utility when signing kernel modules, if the private key requires such.
KBUILD_MODPOST_WARN
---------------------------------------------------
+-------------------
KBUILD_MODPOST_WARN can be set to avoid errors in case of undefined
symbols in the final module linking stage. It changes such errors
into warnings.
KBUILD_MODPOST_NOFINAL
---------------------------------------------------
+----------------------
KBUILD_MODPOST_NOFINAL can be set to skip the final link of modules.
This is solely useful to speed up test compiles.
KBUILD_EXTRA_SYMBOLS
---------------------------------------------------
+--------------------
For modules that use symbols from other modules.
See more details in modules.txt.
ALLSOURCE_ARCHS
---------------------------------------------------
+---------------
For tags/TAGS/cscope targets, you can specify more than one arch
-to be included in the databases, separated by blank space. E.g.:
+to be included in the databases, separated by blank space. E.g.::
$ make ALLSOURCE_ARCHS="x86 mips arm" tags
-To get all available archs you can also specify all. E.g.:
+To get all available archs you can also specify all. E.g.::
$ make ALLSOURCE_ARCHS=all tags
KBUILD_ENABLE_EXTRA_GCC_CHECKS
---------------------------------------------------
+------------------------------
If enabled over the make command line with "W=1", it turns on additional
gcc -W... options for more extensive build-time checking.
KBUILD_BUILD_TIMESTAMP
---------------------------------------------------
+----------------------
Setting this to a date string overrides the timestamp used in the
UTS_VERSION definition (uname -v in the running kernel). The value has to
be a string that can be passed to date -d. The default value
is the output of the date command at one point during build.
KBUILD_BUILD_USER, KBUILD_BUILD_HOST
---------------------------------------------------
+------------------------------------
These two variables allow to override the user@host string displayed during
boot and in /proc/version. The default value is the output of the commands
whoami and host, respectively.
KBUILD_LDS
---------------------------------------------------
+----------
The linker script with full path. Assigned by the top-level Makefile.
KBUILD_VMLINUX_OBJS
---------------------------------------------------
+-------------------
All object files for vmlinux. They are linked to vmlinux in the same
order as listed in KBUILD_VMLINUX_OBJS.
KBUILD_VMLINUX_LIBS
---------------------------------------------------
+-------------------
All .a "lib" files for vmlinux. KBUILD_VMLINUX_OBJS and KBUILD_VMLINUX_LIBS
together specify all the object files used to link vmlinux.
diff --git a/Documentation/kbuild/kconfig-language.txt b/Documentation/kbuild/kconfig-language.rst
index 864e740811da..2bc8a7803365 100644
--- a/Documentation/kbuild/kconfig-language.txt
+++ b/Documentation/kbuild/kconfig-language.rst
@@ -1,8 +1,12 @@
+================
+Kconfig Language
+================
+
Introduction
------------
The configuration database is a collection of configuration options
-organized in a tree structure:
+organized in a tree structure::
+- Code maturity level options
| +- Prompt for development and/or incomplete code/drivers
@@ -25,9 +29,9 @@ Menu entries
------------
Most entries define a config option; all other entries help to organize
-them. A single configuration option is defined like this:
+them. A single configuration option is defined like this::
-config MODVERSIONS
+ config MODVERSIONS
bool "Set version information on all module symbols"
depends on MODULES
help
@@ -52,10 +56,12 @@ applicable everywhere (see syntax).
Every config option must have a type. There are only two basic types:
tristate and string; the other types are based on these two. The type
definition optionally accepts an input prompt, so these two examples
- are equivalent:
+ are equivalent::
bool "Networking support"
- and
+
+ and::
+
bool
prompt "Networking support"
@@ -98,8 +104,10 @@ applicable everywhere (see syntax).
d) Hardware or infrastructure that everybody expects, such as CONFIG_NET
or CONFIG_BLOCK. These are rare exceptions.
-- type definition + default value:
+- type definition + default value::
+
"def_bool"/"def_tristate" <expr> ["if" <expr>]
+
This is a shorthand notation for a type definition plus a value.
Optionally dependencies for this default value can be added with "if".
@@ -107,11 +115,13 @@ applicable everywhere (see syntax).
This defines a dependency for this menu entry. If multiple
dependencies are defined, they are connected with '&&'. Dependencies
are applied to all other options within this menu entry (which also
- accept an "if" expression), so these two examples are equivalent:
+ accept an "if" expression), so these two examples are equivalent::
bool "foo" if BAR
default y if BAR
- and
+
+ and::
+
depends on BAR
bool "foo"
default y
@@ -124,6 +134,7 @@ applicable everywhere (see syntax).
times, the limit is set to the largest selection.
Reverse dependencies can only be used with boolean or tristate
symbols.
+
Note:
select should be used with care. select will force
a symbol to a value without visiting the dependencies.
@@ -139,24 +150,26 @@ applicable everywhere (see syntax).
symbol except that the "implied" symbol's value may still be set to n
from a direct dependency or with a visible prompt.
- Given the following example:
+ Given the following example::
- config FOO
+ config FOO
tristate
imply BAZ
- config BAZ
+ config BAZ
tristate
depends on BAR
The following values are possible:
+ === === ============= ==============
FOO BAR BAZ's default choice for BAZ
- --- --- ------------- --------------
+ === === ============= ==============
n y n N/m/y
m y m M/y/n
y y y Y/n
y n * N
+ === === ============= ==============
This is useful e.g. with multiple drivers that want to indicate their
ability to hook into a secondary subsystem while allowing the user to
@@ -208,9 +221,9 @@ Menu dependencies
Dependencies define the visibility of a menu entry and can also reduce
the input range of tristate symbols. The tristate logic used in the
expressions uses one more state than normal boolean logic to express the
-module state. Dependency expressions have the following syntax:
+module state. Dependency expressions have the following syntax::
-<expr> ::= <symbol> (1)
+ <expr> ::= <symbol> (1)
<symbol> '=' <symbol> (2)
<symbol> '!=' <symbol> (3)
<symbol1> '<' <symbol2> (4)
@@ -222,7 +235,7 @@ module state. Dependency expressions have the following syntax:
<expr> '&&' <expr> (7)
<expr> '||' <expr> (8)
-Expressions are listed in decreasing order of precedence.
+Expressions are listed in decreasing order of precedence.
(1) Convert the symbol into an expression. Boolean and tristate symbols
are simply converted into the respective expression values. All
@@ -255,15 +268,15 @@ Menu structure
--------------
The position of a menu entry in the tree is determined in two ways. First
-it can be specified explicitly:
+it can be specified explicitly::
-menu "Network device support"
+ menu "Network device support"
depends on NET
-config NETDEVICES
+ config NETDEVICES
...
-endmenu
+ endmenu
All entries within the "menu" ... "endmenu" block become a submenu of
"Network device support". All subentries inherit the dependencies from
@@ -275,17 +288,18 @@ dependencies. If a menu entry somehow depends on the previous entry, it
can be made a submenu of it. First, the previous (parent) symbol must
be part of the dependency list and then one of these two conditions
must be true:
+
- the child entry must become invisible, if the parent is set to 'n'
-- the child entry must only be visible, if the parent is visible
+- the child entry must only be visible, if the parent is visible::
-config MODULES
+ config MODULES
bool "Enable loadable module support"
-config MODVERSIONS
+ config MODVERSIONS
bool "Set version information on all module symbols"
depends on MODULES
-comment "module support disabled"
+ comment "module support disabled"
depends on !MODULES
MODVERSIONS directly depends on MODULES, this means it's only visible if
@@ -299,6 +313,7 @@ Kconfig syntax
The configuration file describes a series of menu entries, where every
line starts with a keyword (except help texts). The following keywords
end a menu entry:
+
- config
- menuconfig
- choice/endchoice
@@ -306,17 +321,17 @@ end a menu entry:
- menu/endmenu
- if/endif
- source
-The first five also start the definition of a menu entry.
-config:
+The first five also start the definition of a menu entry.
+config::
"config" <symbol>
<config options>
This defines a config symbol <symbol> and accepts any of above
attributes as options.
-menuconfig:
+menuconfig::
"menuconfig" <symbol>
<config options>
@@ -325,43 +340,43 @@ hint to front ends, that all suboptions should be displayed as a
separate list of options. To make sure all the suboptions will really
show up under the menuconfig entry and not outside of it, every item
from the <config options> list must depend on the menuconfig symbol.
-In practice, this is achieved by using one of the next two constructs:
-
-(1):
-menuconfig M
-if M
- config C1
- config C2
-endif
-
-(2):
-menuconfig M
-config C1
- depends on M
-config C2
- depends on M
+In practice, this is achieved by using one of the next two constructs::
+
+ (1):
+ menuconfig M
+ if M
+ config C1
+ config C2
+ endif
+
+ (2):
+ menuconfig M
+ config C1
+ depends on M
+ config C2
+ depends on M
In the following examples (3) and (4), C1 and C2 still have the M
dependency, but will not appear under menuconfig M anymore, because
-of C0, which doesn't depend on M:
-
-(3):
-menuconfig M
- config C0
-if M
- config C1
- config C2
-endif
-
-(4):
-menuconfig M
-config C0
-config C1
- depends on M
-config C2
- depends on M
-
-choices:
+of C0, which doesn't depend on M::
+
+ (3):
+ menuconfig M
+ config C0
+ if M
+ config C1
+ config C2
+ endif
+
+ (4):
+ menuconfig M
+ config C0
+ config C1
+ depends on M
+ config C2
+ depends on M
+
+choices::
"choice" [symbol]
<choice options>
@@ -387,7 +402,7 @@ definitions of that choice. If a [symbol] is associated to the choice,
then you may define the same choice (i.e. with the same entries) in another
place.
-comment:
+comment::
"comment" <prompt>
<comment options>
@@ -396,7 +411,7 @@ This defines a comment which is displayed to the user during the
configuration process and is also echoed to the output files. The only
possible options are dependencies.
-menu:
+menu::
"menu" <prompt>
<menu options>
@@ -407,7 +422,7 @@ This defines a menu block, see "Menu structure" above for more
information. The only possible options are dependencies and "visible"
attributes.
-if:
+if::
"if" <expr>
<if block>
@@ -416,13 +431,13 @@ if:
This defines an if block. The dependency expression <expr> is appended
to all enclosed menu entries.
-source:
+source::
"source" <prompt>
This reads the specified configuration file. This file is always parsed.
-mainmenu:
+mainmenu::
"mainmenu" <prompt>
@@ -452,20 +467,21 @@ that is defined in a common Kconfig file and selected by the relevant
architectures.
An example is the generic IOMAP functionality.
-We would in lib/Kconfig see:
+We would in lib/Kconfig see::
-# Generic IOMAP is used to ...
-config HAVE_GENERIC_IOMAP
+ # Generic IOMAP is used to ...
+ config HAVE_GENERIC_IOMAP
-config GENERIC_IOMAP
+ config GENERIC_IOMAP
depends on HAVE_GENERIC_IOMAP && FOO
-And in lib/Makefile we would see:
-obj-$(CONFIG_GENERIC_IOMAP) += iomap.o
+And in lib/Makefile we would see::
-For each architecture using the generic IOMAP functionality we would see:
+ obj-$(CONFIG_GENERIC_IOMAP) += iomap.o
-config X86
+For each architecture using the generic IOMAP functionality we would see::
+
+ config X86
select ...
select HAVE_GENERIC_IOMAP
select ...
@@ -484,25 +500,25 @@ Adding features that need compiler support
There are several features that need compiler support. The recommended way
to describe the dependency on the compiler feature is to use "depends on"
-followed by a test macro.
+followed by a test macro::
-config STACKPROTECTOR
+ config STACKPROTECTOR
bool "Stack Protector buffer overflow detection"
depends on $(cc-option,-fstack-protector)
...
If you need to expose a compiler capability to makefiles and/or C source files,
-CC_HAS_ is the recommended prefix for the config option.
+`CC_HAS_` is the recommended prefix for the config option::
-config CC_HAS_STACKPROTECTOR_NONE
+ config CC_HAS_STACKPROTECTOR_NONE
def_bool $(cc-option,-fno-stack-protector)
Build as module only
~~~~~~~~~~~~~~~~~~~~
To restrict a component build to module-only, qualify its config symbol
-with "depends on m". E.g.:
+with "depends on m". E.g.::
-config FOO
+ config FOO
depends on BAR && m
limits FOO to module (=m) or disabled (=n).
@@ -529,18 +545,18 @@ Simple Kconfig recursive issue
Read: Documentation/kbuild/Kconfig.recursion-issue-01
-Test with:
+Test with::
-make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-01 allnoconfig
+ make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-01 allnoconfig
Cumulative Kconfig recursive issue
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Read: Documentation/kbuild/Kconfig.recursion-issue-02
-Test with:
+Test with::
-make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-02 allnoconfig
+ make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-02 allnoconfig
Practical solutions to kconfig recursive issue
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -551,7 +567,9 @@ historical issues resolved through these different solutions.
a) Remove any superfluous "select FOO" or "depends on FOO"
b) Match dependency semantics:
+
b1) Swap all "select FOO" to "depends on FOO" or,
+
b2) Swap all "depends on FOO" to "select FOO"
The resolution to a) can be tested with the sample Kconfig file
@@ -566,8 +584,9 @@ Documentation/kbuild/Kconfig.recursion-issue-02.
Below is a list of examples of prior fixes for these types of recursive issues;
all errors appear to involve one or more select's and one or more "depends on".
+============ ===================================
commit fix
-====== ===
+============ ===================================
06b718c01208 select A -> depends on A
c22eacfe82f9 depends on A -> depends on B
6a91e854442c select A -> depends on A
@@ -590,6 +609,7 @@ d9f9ab51e55e select A -> depends on A
0c51a4d8abd6 depends on A -> select A (3)
e98062ed6dc4 select A -> depends on A (3)
91e5d284a7f1 select A -> (null)
+============ ===================================
(1) Partial (or no) quote of error.
(2) That seems to be the gist of that fix.
@@ -616,11 +636,11 @@ Semantics of Kconfig
~~~~~~~~~~~~~~~~~~~~
The use of Kconfig is broad, Linux is now only one of Kconfig's users:
-one study has completed a broad analysis of Kconfig use in 12 projects [0].
+one study has completed a broad analysis of Kconfig use in 12 projects [0]_.
Despite its widespread use, and although this document does a reasonable job
in documenting basic Kconfig syntax a more precise definition of Kconfig
semantics is welcomed. One project deduced Kconfig semantics through
-the use of the xconfig configurator [1]. Work should be done to confirm if
+the use of the xconfig configurator [1]_. Work should be done to confirm if
the deduced semantics matches our intended Kconfig design goals.
Having well defined semantics can be useful for tools for practical
@@ -628,42 +648,42 @@ evaluation of depenencies, for instance one such use known case was work to
express in boolean abstraction of the inferred semantics of Kconfig to
translate Kconfig logic into boolean formulas and run a SAT solver on this to
find dead code / features (always inactive), 114 dead features were found in
-Linux using this methodology [1] (Section 8: Threats to validity).
+Linux using this methodology [1]_ (Section 8: Threats to validity).
Confirming this could prove useful as Kconfig stands as one of the the leading
-industrial variability modeling languages [1] [2]. Its study would help
+industrial variability modeling languages [1]_ [2]_. Its study would help
evaluate practical uses of such languages, their use was only theoretical
and real world requirements were not well understood. As it stands though
only reverse engineering techniques have been used to deduce semantics from
-variability modeling languages such as Kconfig [3].
+variability modeling languages such as Kconfig [3]_.
-[0] http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
-[1] http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
-[2] http://gsd.uwaterloo.ca/sites/default/files/ase241-berger_0.pdf
-[3] http://gsd.uwaterloo.ca/sites/default/files/icse2011.pdf
+.. [0] http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
+.. [1] http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
+.. [2] http://gsd.uwaterloo.ca/sites/default/files/ase241-berger_0.pdf
+.. [3] http://gsd.uwaterloo.ca/sites/default/files/icse2011.pdf
Full SAT solver for Kconfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Although SAT solvers [0] haven't yet been used by Kconfig directly, as noted in
-the previous subsection, work has been done however to express in boolean
+Although SAT solvers [4]_ haven't yet been used by Kconfig directly, as noted
+in the previous subsection, work has been done however to express in boolean
abstraction the inferred semantics of Kconfig to translate Kconfig logic into
-boolean formulas and run a SAT solver on it [1]. Another known related project
-is CADOS [2] (former VAMOS [3]) and the tools, mainly undertaker [4], which has
-been introduced first with [5]. The basic concept of undertaker is to exract
-variability models from Kconfig, and put them together with a propositional
-formula extracted from CPP #ifdefs and build-rules into a SAT solver in order
-to find dead code, dead files, and dead symbols. If using a SAT solver is
-desirable on Kconfig one approach would be to evaluate repurposing such efforts
-somehow on Kconfig. There is enough interest from mentors of existing projects
-to not only help advise how to integrate this work upstream but also help
-maintain it long term. Interested developers should visit:
+boolean formulas and run a SAT solver on it [5]_. Another known related project
+is CADOS [6]_ (former VAMOS [7]_) and the tools, mainly undertaker [8]_, which
+has been introduced first with [9]_. The basic concept of undertaker is to
+exract variability models from Kconfig, and put them together with a
+propositional formula extracted from CPP #ifdefs and build-rules into a SAT
+solver in order to find dead code, dead files, and dead symbols. If using a SAT
+solver is desirable on Kconfig one approach would be to evaluate repurposing
+such efforts somehow on Kconfig. There is enough interest from mentors of
+existing projects to not only help advise how to integrate this work upstream
+but also help maintain it long term. Interested developers should visit:
http://kernelnewbies.org/KernelProjects/kconfig-sat
-[0] http://www.cs.cornell.edu/~sabhar/chapters/SATSolvers-KR-Handbook.pdf
-[1] http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
-[2] https://cados.cs.fau.de
-[3] https://vamos.cs.fau.de
-[4] https://undertaker.cs.fau.de
-[5] https://www4.cs.fau.de/Publications/2011/tartler_11_eurosys.pdf
+.. [4] http://www.cs.cornell.edu/~sabhar/chapters/SATSolvers-KR-Handbook.pdf
+.. [5] http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
+.. [6] https://cados.cs.fau.de
+.. [7] https://vamos.cs.fau.de
+.. [8] https://undertaker.cs.fau.de
+.. [9] https://www4.cs.fau.de/Publications/2011/tartler_11_eurosys.pdf
diff --git a/Documentation/kbuild/kconfig-macro-language.txt b/Documentation/kbuild/kconfig-macro-language.rst
index 07da2ea68dce..35b3263b7e40 100644
--- a/Documentation/kbuild/kconfig-macro-language.txt
+++ b/Documentation/kbuild/kconfig-macro-language.rst
@@ -1,3 +1,7 @@
+======================
+Kconfig macro language
+======================
+
Concept
-------
@@ -7,7 +11,7 @@ targets and prerequisites. The other is a macro language for performing textual
substitution.
There is clear distinction between the two language stages. For example, you
-can write a makefile like follows:
+can write a makefile like follows::
APP := foo
SRC := foo.c
@@ -17,7 +21,7 @@ can write a makefile like follows:
$(CC) -o $(APP) $(SRC)
The macro language replaces the variable references with their expanded form,
-and handles as if the source file were input like follows:
+and handles as if the source file were input like follows::
foo: foo.c
gcc -o foo foo.c
@@ -26,7 +30,7 @@ Then, Make analyzes the dependency graph and determines the targets to be
updated.
The idea is quite similar in Kconfig - it is possible to describe a Kconfig
-file like this:
+file like this::
CC := gcc
@@ -34,7 +38,7 @@ file like this:
def_bool $(shell, $(srctree)/scripts/gcc-check-foo.sh $(CC))
The macro language in Kconfig processes the source file into the following
-intermediate:
+intermediate::
config CC_HAS_FOO
def_bool y
@@ -69,7 +73,7 @@ variable. The righthand side of += is expanded immediately if the lefthand
side was originally defined as a simple variable. Otherwise, its evaluation is
deferred.
-The variable reference can take parameters, in the following form:
+The variable reference can take parameters, in the following form::
$(name,arg1,arg2,arg3)
@@ -141,7 +145,7 @@ Make vs Kconfig
Kconfig adopts Make-like macro language, but the function call syntax is
slightly different.
-A function call in Make looks like this:
+A function call in Make looks like this::
$(func-name arg1,arg2,arg3)
@@ -149,14 +153,14 @@ The function name and the first argument are separated by at least one
whitespace. Then, leading whitespaces are trimmed from the first argument,
while whitespaces in the other arguments are kept. You need to use a kind of
trick to start the first parameter with spaces. For example, if you want
-to make "info" function print " hello", you can write like follows:
+to make "info" function print " hello", you can write like follows::
empty :=
space := $(empty) $(empty)
$(info $(space)$(space)hello)
Kconfig uses only commas for delimiters, and keeps all whitespaces in the
-function call. Some people prefer putting a space after each comma delimiter:
+function call. Some people prefer putting a space after each comma delimiter::
$(func-name, arg1, arg2, arg3)
@@ -166,7 +170,7 @@ Make - for example, $(subst .c, .o, $(sources)) is a typical mistake; it
replaces ".c" with " .o".
In Make, a user-defined function is referenced by using a built-in function,
-'call', like this:
+'call', like this::
$(call my-func,arg1,arg2,arg3)
@@ -179,12 +183,12 @@ Likewise, $(info hello, world) prints "hello, world" to stdout. You could say
this is _useful_ inconsistency.
In Kconfig, for simpler implementation and grammatical consistency, commas that
-appear in the $( ) context are always delimiters. It means
+appear in the $( ) context are always delimiters. It means::
$(shell, echo hello, world)
is an error because it is passing two parameters where the 'shell' function
-accepts only one. To pass commas in arguments, you can use the following trick:
+accepts only one. To pass commas in arguments, you can use the following trick::
comma := ,
$(shell, echo hello$(comma) world)
@@ -195,7 +199,7 @@ Caveats
A variable (or function) cannot be expanded across tokens. So, you cannot use
a variable as a shorthand for an expression that consists of multiple tokens.
-The following works:
+The following works::
RANGE_MIN := 1
RANGE_MAX := 3
@@ -204,7 +208,7 @@ The following works:
int "foo"
range $(RANGE_MIN) $(RANGE_MAX)
-But, the following does not work:
+But, the following does not work::
RANGES := 1 3
@@ -213,7 +217,7 @@ But, the following does not work:
range $(RANGES)
A variable cannot be expanded to any keyword in Kconfig. The following does
-not work:
+not work::
MY_TYPE := tristate
@@ -223,7 +227,8 @@ not work:
Obviously from the design, $(shell command) is expanded in the textual
substitution phase. You cannot pass symbols to the 'shell' function.
-The following does not work as expected.
+
+The following does not work as expected::
config ENDIAN_FLAG
string
@@ -234,7 +239,7 @@ The following does not work as expected.
def_bool $(shell $(srctree)/scripts/gcc-check-flag ENDIAN_FLAG)
Instead, you can do like follows so that any function call is statically
-expanded.
+expanded::
config CC_HAS_ENDIAN_FLAG
bool
diff --git a/Documentation/kbuild/kconfig.txt b/Documentation/kbuild/kconfig.rst
index 68c82914c0f3..88129af7e539 100644
--- a/Documentation/kbuild/kconfig.txt
+++ b/Documentation/kbuild/kconfig.rst
@@ -1,4 +1,8 @@
-This file contains some assistance for using "make *config".
+===================
+Kconfig make config
+===================
+
+This file contains some assistance for using `make *config`.
Use "make help" to list all of the possible configuration targets.
@@ -6,9 +10,8 @@ The xconfig ('qconf'), menuconfig ('mconf'), and nconfig ('nconf')
programs also have embedded help text. Be sure to check that for
navigation, search, and other general help text.
-======================================================================
General
---------------------------------------------------
+-------
New kernel releases often introduce new config symbols. Often more
important, new kernel releases may rename config symbols. When
@@ -17,51 +20,55 @@ this happens, using a previously working .config file and running
for you, so you may find that you need to see what NEW kernel
symbols have been introduced.
-To see a list of new config symbols, use
+To see a list of new config symbols, use::
cp user/some/old.config .config
make listnewconfig
and the config program will list any new symbols, one per line.
-Alternatively, you can use the brute force method:
+Alternatively, you can use the brute force method::
make oldconfig
scripts/diffconfig .config.old .config | less
-______________________________________________________________________
-Environment variables for '*config'
+----------------------------------------------------------------------
+
+Environment variables for `*config`
KCONFIG_CONFIG
---------------------------------------------------
+--------------
This environment variable can be used to specify a default kernel config
file name to override the default name of ".config".
KCONFIG_OVERWRITECONFIG
---------------------------------------------------
+-----------------------
If you set KCONFIG_OVERWRITECONFIG in the environment, Kconfig will not
break symlinks when .config is a symlink to somewhere else.
-CONFIG_
---------------------------------------------------
-If you set CONFIG_ in the environment, Kconfig will prefix all symbols
+`CONFIG_`
+---------
+If you set `CONFIG_` in the environment, Kconfig will prefix all symbols
with its value when saving the configuration, instead of using the default,
-"CONFIG_".
+`CONFIG_`.
+
+----------------------------------------------------------------------
-______________________________________________________________________
Environment variables for '{allyes/allmod/allno/rand}config'
KCONFIG_ALLCONFIG
---------------------------------------------------
+-----------------
(partially based on lkml email from/by Rob Landley, re: miniconfig)
+
--------------------------------------------------
+
The allyesconfig/allmodconfig/allnoconfig/randconfig variants can also
use the environment variable KCONFIG_ALLCONFIG as a flag or a filename
that contains config symbols that the user requires to be set to a
specific value. If KCONFIG_ALLCONFIG is used without a filename where
-KCONFIG_ALLCONFIG == "" or KCONFIG_ALLCONFIG == "1", "make *config"
+KCONFIG_ALLCONFIG == "" or KCONFIG_ALLCONFIG == "1", `make *config`
checks for a file named "all{yes/mod/no/def/random}.config"
-(corresponding to the *config command that was used) for symbol values
+(corresponding to the `*config` command that was used) for symbol values
that are to be forced. If this file is not found, it checks for a
file named "all.config" to contain forced values.
@@ -74,43 +81,55 @@ This 'KCONFIG_ALLCONFIG' file is a config file which contains
(usually a subset of all) preset config symbols. These variable
settings are still subject to normal dependency checks.
-Examples:
+Examples::
+
KCONFIG_ALLCONFIG=custom-notebook.config make allnoconfig
-or
+
+or::
+
KCONFIG_ALLCONFIG=mini.config make allnoconfig
-or
+
+or::
+
make KCONFIG_ALLCONFIG=mini.config allnoconfig
These examples will disable most options (allnoconfig) but enable or
disable the options that are explicitly listed in the specified
mini-config files.
-______________________________________________________________________
+----------------------------------------------------------------------
+
Environment variables for 'randconfig'
KCONFIG_SEED
---------------------------------------------------
+------------
You can set this to the integer value used to seed the RNG, if you want
to somehow debug the behaviour of the kconfig parser/frontends.
If not set, the current time will be used.
KCONFIG_PROBABILITY
---------------------------------------------------
+-------------------
This variable can be used to skew the probabilities. This variable can
be unset or empty, or set to three different formats:
+
+ ======================= ================== =====================
KCONFIG_PROBABILITY y:n split y:m:n split
- -----------------------------------------------------------------
+ ======================= ================== =====================
unset or empty 50 : 50 33 : 33 : 34
N N : 100-N N/2 : N/2 : 100-N
[1] N:M N+M : 100-(N+M) N : M : 100-(N+M)
[2] N:M:L N : 100-N M : L : 100-(M+L)
+ ======================= ================== =====================
where N, M and L are integers (in base 10) in the range [0,100], and so
that:
+
[1] N+M is in the range [0,100]
+
[2] M+L is in the range [0,100]
-Examples:
+Examples::
+
KCONFIG_PROBABILITY=10
10% of booleans will be set to 'y', 90% to 'n'
5% of tristates will be set to 'y', 5% to 'm', 90% to 'n'
@@ -121,34 +140,36 @@ Examples:
10% of booleans will be set to 'y', 90% to 'n'
15% of tristates will be set to 'y', 15% to 'm', 70% to 'n'
-______________________________________________________________________
+----------------------------------------------------------------------
+
Environment variables for 'syncconfig'
KCONFIG_NOSILENTUPDATE
---------------------------------------------------
+----------------------
If this variable has a non-blank value, it prevents silent kernel
config updates (requires explicit updates).
KCONFIG_AUTOCONFIG
---------------------------------------------------
+------------------
This environment variable can be set to specify the path & name of the
"auto.conf" file. Its default value is "include/config/auto.conf".
KCONFIG_TRISTATE
---------------------------------------------------
+----------------
This environment variable can be set to specify the path & name of the
"tristate.conf" file. Its default value is "include/config/tristate.conf".
KCONFIG_AUTOHEADER
---------------------------------------------------
+------------------
This environment variable can be set to specify the path & name of the
"autoconf.h" (header) file.
Its default value is "include/generated/autoconf.h".
-======================================================================
+----------------------------------------------------------------------
+
menuconfig
---------------------------------------------------
+----------
SEARCHING for CONFIG symbols
@@ -158,7 +179,8 @@ Searching in menuconfig:
names, so you have to know something close to what you are
looking for.
- Example:
+ Example::
+
/hotplug
This lists all config symbols that contain "hotplug",
e.g., HOTPLUG_CPU, MEMORY_HOTPLUG.
@@ -166,48 +188,55 @@ Searching in menuconfig:
For search help, enter / followed by TAB-TAB (to highlight
<Help>) and Enter. This will tell you that you can also use
regular expressions (regexes) in the search string, so if you
- are not interested in MEMORY_HOTPLUG, you could try
+ are not interested in MEMORY_HOTPLUG, you could try::
/^hotplug
When searching, symbols are sorted thus:
+
- first, exact matches, sorted alphabetically (an exact match
is when the search matches the complete symbol name);
- then, other matches, sorted alphabetically.
+
For example: ^ATH.K matches:
+
ATH5K ATH9K ATH5K_AHB ATH5K_DEBUG [...] ATH6KL ATH6KL_DEBUG
[...] ATH9K_AHB ATH9K_BTCOEX_SUPPORT ATH9K_COMMON [...]
+
of which only ATH5K and ATH9K match exactly and so are sorted
first (and in alphabetical order), then come all other symbols,
sorted in alphabetical order.
-______________________________________________________________________
+----------------------------------------------------------------------
+
User interface options for 'menuconfig'
MENUCONFIG_COLOR
---------------------------------------------------
+----------------
It is possible to select different color themes using the variable
-MENUCONFIG_COLOR. To select a theme use:
+MENUCONFIG_COLOR. To select a theme use::
make MENUCONFIG_COLOR=<theme> menuconfig
-Available themes are:
- mono => selects colors suitable for monochrome displays
- blackbg => selects a color scheme with black background
- classic => theme with blue background. The classic look
- bluetitle => a LCD friendly version of classic. (default)
+Available themes are::
+
+ - mono => selects colors suitable for monochrome displays
+ - blackbg => selects a color scheme with black background
+ - classic => theme with blue background. The classic look
+ - bluetitle => a LCD friendly version of classic. (default)
MENUCONFIG_MODE
---------------------------------------------------
+---------------
This mode shows all sub-menus in one large tree.
-Example:
+Example::
+
make MENUCONFIG_MODE=single_menu menuconfig
+----------------------------------------------------------------------
-======================================================================
nconfig
---------------------------------------------------
+-------
nconfig is an alternate text-based configurator. It lists function
keys across the bottom of the terminal (window) that execute commands.
@@ -231,16 +260,16 @@ Searching in nconfig:
given string or regular expression (regex).
NCONFIG_MODE
---------------------------------------------------
+------------
This mode shows all sub-menus in one large tree.
-Example:
+Example::
make NCONFIG_MODE=single_menu nconfig
+----------------------------------------------------------------------
-======================================================================
xconfig
---------------------------------------------------
+-------
Searching in xconfig:
@@ -260,13 +289,12 @@ Searching in xconfig:
to return to the main menu.
-======================================================================
+----------------------------------------------------------------------
+
gconfig
---------------------------------------------------
+-------
Searching in gconfig:
There is no search command in gconfig. However, gconfig does
have several different viewing choices, modes, and options.
-
-###
diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.rst
index d65ad5746f94..9274cdcc9bd2 100644
--- a/Documentation/kbuild/makefiles.txt
+++ b/Documentation/kbuild/makefiles.rst
@@ -1,8 +1,10 @@
+======================
Linux Kernel Makefiles
+======================
This document describes the Linux kernel Makefiles.
-=== Table of Contents
+.. Table of Contents
=== 1 Overview
=== 2 Who does what
@@ -54,9 +56,10 @@ This document describes the Linux kernel Makefiles.
=== 10 Credits
=== 11 TODO
-=== 1 Overview
+1 Overview
+==========
-The Makefiles have five parts:
+The Makefiles have five parts::
Makefile the top Makefile.
.config the kernel configuration file.
@@ -85,7 +88,8 @@ scripts/Makefile.* contains all the definitions/rules etc. that
are used to build the kernel based on the kbuild makefiles.
-=== 2 Who does what
+2 Who does what
+===============
People have four different relationships with the kernel Makefiles.
@@ -110,7 +114,8 @@ These people need to know about all aspects of the kernel Makefiles.
This document is aimed towards normal developers and arch developers.
-=== 3 The kbuild files
+3 The kbuild files
+==================
Most Makefiles within the kernel are kbuild Makefiles that use the
kbuild infrastructure. This chapter introduces the syntax used in the
@@ -122,7 +127,8 @@ file will be used.
Section 3.1 "Goal definitions" is a quick intro, further chapters provide
more details, with real examples.
---- 3.1 Goal definitions
+3.1 Goal definitions
+--------------------
Goal definitions are the main part (heart) of the kbuild Makefile.
These lines define the files to be built, any special compilation
@@ -130,7 +136,8 @@ more details, with real examples.
The most simple kbuild makefile contains one line:
- Example:
+ Example::
+
obj-y += foo.o
This tells kbuild that there is one object in that directory, named
@@ -139,14 +146,16 @@ more details, with real examples.
If foo.o shall be built as a module, the variable obj-m is used.
Therefore the following pattern is often used:
- Example:
+ Example::
+
obj-$(CONFIG_FOO) += foo.o
$(CONFIG_FOO) evaluates to either y (for built-in) or m (for module).
If CONFIG_FOO is neither y nor m, then the file will not be compiled
nor linked.
---- 3.2 Built-in object goals - obj-y
+3.2 Built-in object goals - obj-y
+---------------------------------
The kbuild Makefile specifies object files for vmlinux
in the $(obj-y) lists. These lists depend on the kernel
@@ -167,14 +176,16 @@ more details, with real examples.
order may e.g. change the order in which your SCSI
controllers are detected, and thus your disks are renumbered.
- Example:
+ Example::
+
#drivers/isdn/i4l/Makefile
# Makefile for the kernel ISDN subsystem and device drivers.
# Each configuration option enables a list of files.
obj-$(CONFIG_ISDN_I4L) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o
---- 3.3 Loadable module goals - obj-m
+3.3 Loadable module goals - obj-m
+---------------------------------
$(obj-m) specifies object files which are built as loadable
kernel modules.
@@ -183,7 +194,8 @@ more details, with real examples.
files. In the case of one source file, the kbuild makefile
simply adds the file to $(obj-m).
- Example:
+ Example::
+
#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o
@@ -195,7 +207,8 @@ more details, with real examples.
module from, so you have to tell it by setting a $(<module_name>-y)
variable.
- Example:
+ Example::
+
#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN_I4L) += isdn.o
isdn-y := isdn_net_lib.o isdn_v110.o isdn_common.o
@@ -205,10 +218,11 @@ more details, with real examples.
"$(LD) -r" on the list of these files to generate isdn.o.
Due to kbuild recognizing $(<module_name>-y) for composite objects,
- you can use the value of a CONFIG_ symbol to optionally include an
+ you can use the value of a `CONFIG_` symbol to optionally include an
object file as part of a composite object.
- Example:
+ Example::
+
#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
ext2-y := balloc.o dir.o file.o ialloc.o inode.o ioctl.o \
@@ -225,12 +239,14 @@ more details, with real examples.
kbuild will build an ext2.o file for you out of the individual
parts and then link this into built-in.a, as you would expect.
---- 3.4 Objects which export symbols
+3.4 Objects which export symbols
+--------------------------------
No special notation is required in the makefiles for
modules exporting symbols.
---- 3.5 Library file goals - lib-y
+3.5 Library file goals - lib-y
+------------------------------
Objects listed with obj-* are used for modules, or
combined in a built-in.a for that specific directory.
@@ -247,18 +263,21 @@ more details, with real examples.
and to be part of a library. Therefore the same directory
may contain both a built-in.a and a lib.a file.
- Example:
+ Example::
+
#arch/x86/lib/Makefile
lib-y := delay.o
This will create a library lib.a based on delay.o. For kbuild to
actually recognize that there is a lib.a being built, the directory
shall be listed in libs-y.
+
See also "6.4 List directories to visit when descending".
- Use of lib-y is normally restricted to lib/ and arch/*/lib.
+ Use of lib-y is normally restricted to `lib/` and `arch/*/lib`.
---- 3.6 Descending down in directories
+3.6 Descending down in directories
+----------------------------------
A Makefile is only responsible for building objects in its own
directory. Files in subdirectories should be taken care of by
@@ -270,7 +289,8 @@ more details, with real examples.
ext2 lives in a separate directory, and the Makefile present in fs/
tells kbuild to descend down using the following assignment.
- Example:
+ Example::
+
#fs/Makefile
obj-$(CONFIG_EXT2_FS) += ext2/
@@ -281,11 +301,12 @@ more details, with real examples.
the directory, it is the Makefile in the subdirectory that
specifies what is modular and what is built-in.
- It is good practice to use a CONFIG_ variable when assigning directory
+ It is good practice to use a `CONFIG_` variable when assigning directory
names. This allows kbuild to totally skip the directory if the
- corresponding CONFIG_ option is neither 'y' nor 'm'.
+ corresponding `CONFIG_` option is neither 'y' nor 'm'.
---- 3.7 Compilation flags
+3.7 Compilation flags
+---------------------
ccflags-y, asflags-y and ldflags-y
These three flags apply only to the kbuild makefile in which they
@@ -297,7 +318,8 @@ more details, with real examples.
ccflags-y specifies options for compiling with $(CC).
- Example:
+ Example::
+
# drivers/acpi/acpica/Makefile
ccflags-y := -Os -D_LINUX -DBUILDING_ACPICA
ccflags-$(CONFIG_ACPI_DEBUG) += -DACPI_DEBUG_OUTPUT
@@ -308,13 +330,15 @@ more details, with real examples.
asflags-y specifies options for assembling with $(AS).
- Example:
+ Example::
+
#arch/sparc/kernel/Makefile
asflags-y := -ansi
ldflags-y specifies options for linking with $(LD).
- Example:
+ Example::
+
#arch/cris/boot/compressed/Makefile
ldflags-y += -T $(srctree)/$(src)/decompress_$(arch-y).lds
@@ -325,18 +349,19 @@ more details, with real examples.
Options specified using subdir-* are added to the commandline before
the options specified using the non-subdir variants.
- Example:
+ Example::
+
subdir-ccflags-y := -Werror
CFLAGS_$@, AFLAGS_$@
-
CFLAGS_$@ and AFLAGS_$@ only apply to commands in current
kbuild makefile.
$(CFLAGS_$@) specifies per-file options for $(CC). The $@
part has a literal value which specifies the file that it is for.
- Example:
+ Example::
+
# drivers/scsi/Makefile
CFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONF
CFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \
@@ -347,24 +372,27 @@ more details, with real examples.
$(AFLAGS_$@) is a similar feature for source files in assembly
languages.
- Example:
+ Example::
+
# arch/arm/kernel/Makefile
AFLAGS_head.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
AFLAGS_crunch-bits.o := -Wa,-mcpu=ep9312
AFLAGS_iwmmxt.o := -Wa,-mcpu=iwmmxt
---- 3.9 Dependency tracking
+3.9 Dependency tracking
+-----------------------
Kbuild tracks dependencies on the following:
- 1) All prerequisite files (both *.c and *.h)
- 2) CONFIG_ options used in all prerequisite files
+ 1) All prerequisite files (both `*.c` and `*.h`)
+ 2) `CONFIG_` options used in all prerequisite files
3) Command-line used to compile target
Thus, if you change an option to $(CC) all affected files will
be re-compiled.
---- 3.10 Special Rules
+3.10 Special Rules
+------------------
Special rules are used when the kbuild infrastructure does
not provide the required support. A typical example is
@@ -379,43 +407,47 @@ more details, with real examples.
Two variables are used when defining special rules:
- $(src)
- $(src) is a relative path which points to the directory
- where the Makefile is located. Always use $(src) when
- referring to files located in the src tree.
+ $(src)
+ $(src) is a relative path which points to the directory
+ where the Makefile is located. Always use $(src) when
+ referring to files located in the src tree.
+
+ $(obj)
+ $(obj) is a relative path which points to the directory
+ where the target is saved. Always use $(obj) when
+ referring to generated files.
- $(obj)
- $(obj) is a relative path which points to the directory
- where the target is saved. Always use $(obj) when
- referring to generated files.
+ Example::
- Example:
#drivers/scsi/Makefile
$(obj)/53c8xx_d.h: $(src)/53c7,8xx.scr $(src)/script_asm.pl
$(CPP) -DCHIP=810 - < $< | ... $(src)/script_asm.pl
- This is a special rule, following the normal syntax
- required by make.
- The target file depends on two prerequisite files. References
- to the target file are prefixed with $(obj), references
- to prerequisites are referenced with $(src) (because they are not
- generated files).
-
- $(kecho)
- echoing information to user in a rule is often a good practice
- but when execution "make -s" one does not expect to see any output
- except for warnings/errors.
- To support this kbuild defines $(kecho) which will echo out the
- text following $(kecho) to stdout except if "make -s" is used.
-
- Example:
+ This is a special rule, following the normal syntax
+ required by make.
+
+ The target file depends on two prerequisite files. References
+ to the target file are prefixed with $(obj), references
+ to prerequisites are referenced with $(src) (because they are not
+ generated files).
+
+ $(kecho)
+ echoing information to user in a rule is often a good practice
+ but when execution "make -s" one does not expect to see any output
+ except for warnings/errors.
+ To support this kbuild defines $(kecho) which will echo out the
+ text following $(kecho) to stdout except if "make -s" is used.
+
+ Example::
+
#arch/blackfin/boot/Makefile
$(obj)/vmImage: $(obj)/vmlinux.gz
$(call if_changed,uimage)
@$(kecho) 'Kernel: $@ is ready'
---- 3.11 $(CC) support functions
+3.11 $(CC) support functions
+----------------------------
The kernel may be built with several different versions of
$(CC), each supporting a unique set of features and options.
@@ -425,10 +457,11 @@ more details, with real examples.
as-option
as-option is used to check if $(CC) -- when used to compile
- assembler (*.S) files -- supports the given option. An optional
+ assembler (`*.S`) files -- supports the given option. An optional
second option may be specified if the first option is not supported.
- Example:
+ Example::
+
#arch/sh/Makefile
cflags-y += $(call as-option,-Wa$(comma)-isa=$(isa-y),)
@@ -437,6 +470,21 @@ more details, with real examples.
The second argument is optional, and if supplied will be used
if first argument is not supported.
+ cc-ldoption
+ cc-ldoption is used to check if $(CC) when used to link object files
+ supports the given option. An optional second option may be
+ specified if first option are not supported.
+
+ Example::
+
+ #arch/x86/kernel/Makefile
+ vsyscall-flags += $(call cc-ldoption, -Wl$(comma)--hash-style=sysv)
+
+ In the above example, vsyscall-flags will be assigned the option
+ -Wl$(comma)--hash-style=sysv if it is supported by $(CC).
+ The second argument is optional, and if supplied will be used
+ if first argument is not supported.
+
as-instr
as-instr checks if the assembler reports a specific instruction
and then outputs either option1 or option2
@@ -447,7 +495,8 @@ more details, with real examples.
cc-option is used to check if $(CC) supports a given option, and if
not supported to use an optional second option.
- Example:
+ Example::
+
#arch/x86/Makefile
cflags-y += $(call cc-option,-march=pentium-mmx,-march=i586)
@@ -461,7 +510,8 @@ more details, with real examples.
cc-option-yn is used to check if gcc supports a given option
and return 'y' if supported, otherwise 'n'.
- Example:
+ Example::
+
#arch/ppc/Makefile
biarch := $(call cc-option-yn, -m32)
aflags-$(biarch) += -a32
@@ -479,7 +529,8 @@ more details, with real examples.
because gcc 4.4 and later accept any unknown -Wno-* option and only
warn about it if there is another warning in the source file.
- Example:
+ Example::
+
KBUILD_CFLAGS += $(call cc-disable-warning, unused-but-set-variable)
In the above example, -Wno-unused-but-set-variable will be added to
@@ -490,7 +541,8 @@ more details, with real examples.
if version expression is true, or the fifth (if given) if the version
expression is false.
- Example:
+ Example::
+
#fs/reiserfs/Makefile
ccflags-y := $(call cc-ifversion, -lt, 0402, -O1)
@@ -515,7 +567,8 @@ more details, with real examples.
build (host arch is different from target arch). And if CROSS_COMPILE
is already set then leave it with the old value.
- Example:
+ Example::
+
#arch/m68k/Makefile
ifneq ($(SUBARCH),$(ARCH))
ifeq ($(CROSS_COMPILE),)
@@ -523,7 +576,8 @@ more details, with real examples.
endif
endif
---- 3.12 $(LD) support functions
+3.12 $(LD) support functions
+----------------------------
ld-option
ld-option is used to check if $(LD) supports the supplied option.
@@ -531,12 +585,14 @@ more details, with real examples.
The second argument is an optional option that can be used if the
first option is not supported by $(LD).
- Example:
+ Example::
+
#Makefile
LDFLAGS_vmlinux += $(call ld-option, -X)
-=== 4 Host Program support
+4 Host Program support
+======================
Kbuild supports building executables on the host for use during the
compilation stage.
@@ -550,21 +606,24 @@ This can be done in two ways. Either add the dependency in a rule,
or utilise the variable $(always).
Both possibilities are described in the following.
---- 4.1 Simple Host Program
+4.1 Simple Host Program
+-----------------------
In some cases there is a need to compile and run a program on the
computer where the build is running.
The following line tells kbuild that the program bin2hex shall be
built on the build host.
- Example:
+ Example::
+
hostprogs-y := bin2hex
Kbuild assumes in the above example that bin2hex is made from a single
c-source file named bin2hex.c located in the same directory as
the Makefile.
---- 4.2 Composite Host Programs
+4.2 Composite Host Programs
+---------------------------
Host programs can be made up based on composite objects.
The syntax used to define composite objects for host programs is
@@ -572,7 +631,8 @@ Both possibilities are described in the following.
$(<executable>-objs) lists all objects used to link the final
executable.
- Example:
+ Example::
+
#scripts/lxdialog/Makefile
hostprogs-y := lxdialog
lxdialog-objs := checklist.o lxdialog.o
@@ -580,16 +640,19 @@ Both possibilities are described in the following.
Objects with extension .o are compiled from the corresponding .c
files. In the above example, checklist.c is compiled to checklist.o
and lxdialog.c is compiled to lxdialog.o.
+
Finally, the two .o files are linked to the executable, lxdialog.
Note: The syntax <executable>-y is not permitted for host-programs.
---- 4.3 Using C++ for host programs
+4.3 Using C++ for host programs
+-------------------------------
kbuild offers support for host programs written in C++. This was
introduced solely to support kconfig, and is not recommended
for general use.
- Example:
+ Example::
+
#scripts/kconfig/Makefile
hostprogs-y := qconf
qconf-cxxobjs := qconf.o
@@ -600,13 +663,15 @@ Both possibilities are described in the following.
If qconf is composed of a mixture of .c and .cc files, then an
additional line can be used to identify this.
- Example:
+ Example::
+
#scripts/kconfig/Makefile
hostprogs-y := qconf
qconf-cxxobjs := qconf.o
qconf-objs := check.o
---- 4.4 Controlling compiler options for host programs
+4.4 Controlling compiler options for host programs
+--------------------------------------------------
When compiling host programs, it is possible to set specific flags.
The programs will always be compiled utilising $(HOSTCC) passed
@@ -614,27 +679,31 @@ Both possibilities are described in the following.
To set flags that will take effect for all host programs created
in that Makefile, use the variable HOST_EXTRACFLAGS.
- Example:
+ Example::
+
#scripts/lxdialog/Makefile
HOST_EXTRACFLAGS += -I/usr/include/ncurses
To set specific flags for a single file the following construction
is used:
- Example:
+ Example::
+
#arch/ppc64/boot/Makefile
HOSTCFLAGS_piggyback.o := -DKERNELBASE=$(KERNELBASE)
It is also possible to specify additional options to the linker.
- Example:
+ Example::
+
#scripts/kconfig/Makefile
HOSTLDLIBS_qconf := -L$(QTDIR)/lib
When linking qconf, it will be passed the extra option
"-L$(QTDIR)/lib".
---- 4.5 When host programs are actually built
+4.5 When host programs are actually built
+-----------------------------------------
Kbuild will only build host-programs when they are referenced
as a prerequisite.
@@ -642,7 +711,8 @@ Both possibilities are described in the following.
(1) List the prerequisite explicitly in a special rule.
- Example:
+ Example::
+
#drivers/pci/Makefile
hostprogs-y := gen-devlist
$(obj)/devlist.h: $(src)/pci.ids $(obj)/gen-devlist
@@ -653,11 +723,13 @@ Both possibilities are described in the following.
the host programs in special rules must be prefixed with $(obj).
(2) Use $(always)
+
When there is no suitable special rule, and the host program
shall be built when a makefile is entered, the $(always)
variable shall be used.
- Example:
+ Example::
+
#scripts/lxdialog/Makefile
hostprogs-y := lxdialog
always := $(hostprogs-y)
@@ -665,11 +737,13 @@ Both possibilities are described in the following.
This will tell kbuild to build lxdialog even if not referenced in
any rule.
---- 4.6 Using hostprogs-$(CONFIG_FOO)
+4.6 Using hostprogs-$(CONFIG_FOO)
+---------------------------------
A typical pattern in a Kbuild file looks like this:
- Example:
+ Example::
+
#scripts/Makefile
hostprogs-$(CONFIG_KALLSYMS) += kallsyms
@@ -679,7 +753,8 @@ Both possibilities are described in the following.
like hostprogs-y. But only hostprogs-y is recommended to be used
when no CONFIG symbols are involved.
-=== 5 Kbuild clean infrastructure
+5 Kbuild clean infrastructure
+=============================
"make clean" deletes most generated files in the obj tree where the kernel
is compiled. This includes generated files such as host programs.
@@ -691,7 +766,8 @@ generated by kbuild are deleted all over the kernel src tree when
Additional files can be specified in kbuild makefiles by use of $(clean-files).
- Example:
+ Example::
+
#lib/Makefile
clean-files := crc32table.h
@@ -701,7 +777,8 @@ Makefile, except if prefixed with $(objtree).
To delete a directory hierarchy use:
- Example:
+ Example::
+
#scripts/package/Makefile
clean-dirs := $(objtree)/debian/
@@ -711,7 +788,8 @@ subdirectories.
To exclude certain files from make clean, use the $(no-clean-files) variable.
This is only a special case used in the top level Kbuild file:
- Example:
+ Example::
+
#Kbuild
no-clean-files := $(bounds-file) $(offsets-file)
@@ -719,7 +797,8 @@ Usually kbuild descends down in subdirectories due to "obj-* := dir/",
but in the architecture makefiles where the kbuild infrastructure
is not sufficient this sometimes needs to be explicit.
- Example:
+ Example::
+
#arch/x86/boot/Makefile
subdir- := compressed/
@@ -729,7 +808,8 @@ directory compressed/ when "make clean" is executed.
To support the clean infrastructure in the Makefiles that build the
final bootimage there is an optional target named archclean:
- Example:
+ Example::
+
#arch/x86/Makefile
archclean:
$(Q)$(MAKE) $(clean)=arch/x86/boot
@@ -745,7 +825,8 @@ is not operational at that point.
Note 2: All directories listed in core-y, libs-y, drivers-y and net-y will
be visited during "make clean".
-=== 6 Architecture Makefiles
+6 Architecture Makefiles
+========================
The top level Makefile sets up the environment and does the preparation,
before starting to descend down in the individual directories.
@@ -756,6 +837,7 @@ To do so, arch/$(ARCH)/Makefile sets up a number of variables and defines
a few targets.
When kbuild executes, the following steps are followed (roughly):
+
1) Configuration of the kernel => produce .config
2) Store kernel version in include/linux/version.h
3) Updating all other prerequisites to the target prepare:
@@ -773,37 +855,45 @@ When kbuild executes, the following steps are followed (roughly):
- Preparing initrd images and the like
---- 6.1 Set variables to tweak the build to the architecture
+6.1 Set variables to tweak the build to the architecture
+--------------------------------------------------------
- LDFLAGS Generic $(LD) options
+ LDFLAGS
+ Generic $(LD) options
Flags used for all invocations of the linker.
Often specifying the emulation is sufficient.
- Example:
+ Example::
+
#arch/s390/Makefile
LDFLAGS := -m elf_s390
+
Note: ldflags-y can be used to further customise
the flags used. See chapter 3.7.
- LDFLAGS_vmlinux Options for $(LD) when linking vmlinux
+ LDFLAGS_vmlinux
+ Options for $(LD) when linking vmlinux
LDFLAGS_vmlinux is used to specify additional flags to pass to
the linker when linking the final vmlinux image.
LDFLAGS_vmlinux uses the LDFLAGS_$@ support.
- Example:
+ Example::
+
#arch/x86/Makefile
LDFLAGS_vmlinux := -e stext
- OBJCOPYFLAGS objcopy flags
+ OBJCOPYFLAGS
+ objcopy flags
When $(call if_changed,objcopy) is used to translate a .o file,
the flags specified in OBJCOPYFLAGS will be used.
$(call if_changed,objcopy) is often used to generate raw binaries on
vmlinux.
- Example:
+ Example::
+
#arch/s390/Makefile
OBJCOPYFLAGS := -O binary
@@ -814,30 +904,34 @@ When kbuild executes, the following steps are followed (roughly):
In this example, the binary $(obj)/image is a binary version of
vmlinux. The usage of $(call if_changed,xxx) will be described later.
- KBUILD_AFLAGS $(AS) assembler flags
+ KBUILD_AFLAGS
+ $(AS) assembler flags
Default value - see top level Makefile
Append or modify as required per architecture.
- Example:
+ Example::
+
#arch/sparc64/Makefile
KBUILD_AFLAGS += -m64 -mcpu=ultrasparc
- KBUILD_CFLAGS $(CC) compiler flags
+ KBUILD_CFLAGS
+ $(CC) compiler flags
Default value - see top level Makefile
Append or modify as required per architecture.
Often, the KBUILD_CFLAGS variable depends on the configuration.
- Example:
+ Example::
+
#arch/x86/boot/compressed/Makefile
cflags-$(CONFIG_X86_32) := -march=i386
cflags-$(CONFIG_X86_64) := -mcmodel=small
KBUILD_CFLAGS += $(cflags-y)
Many arch Makefiles dynamically run the target C compiler to
- probe supported options:
+ probe supported options::
#arch/x86/Makefile
@@ -853,32 +947,39 @@ When kbuild executes, the following steps are followed (roughly):
The first example utilises the trick that a config option expands
to 'y' when selected.
- KBUILD_AFLAGS_KERNEL $(AS) options specific for built-in
+ KBUILD_AFLAGS_KERNEL
+ $(AS) options specific for built-in
$(KBUILD_AFLAGS_KERNEL) contains extra C compiler flags used to compile
resident kernel code.
- KBUILD_AFLAGS_MODULE Options for $(AS) when building modules
+ KBUILD_AFLAGS_MODULE
+ Options for $(AS) when building modules
$(KBUILD_AFLAGS_MODULE) is used to add arch-specific options that
are used for $(AS).
+
From commandline AFLAGS_MODULE shall be used (see kbuild.txt).
- KBUILD_CFLAGS_KERNEL $(CC) options specific for built-in
+ KBUILD_CFLAGS_KERNEL
+ $(CC) options specific for built-in
$(KBUILD_CFLAGS_KERNEL) contains extra C compiler flags used to compile
resident kernel code.
- KBUILD_CFLAGS_MODULE Options for $(CC) when building modules
+ KBUILD_CFLAGS_MODULE
+ Options for $(CC) when building modules
$(KBUILD_CFLAGS_MODULE) is used to add arch-specific options that
are used for $(CC).
From commandline CFLAGS_MODULE shall be used (see kbuild.txt).
- KBUILD_LDFLAGS_MODULE Options for $(LD) when linking modules
+ KBUILD_LDFLAGS_MODULE
+ Options for $(LD) when linking modules
$(KBUILD_LDFLAGS_MODULE) is used to add arch-specific options
used when linking modules. This is often a linker script.
+
From commandline LDFLAGS_MODULE shall be used (see kbuild.txt).
KBUILD_ARFLAGS Options for $(AR) when creating archives
@@ -894,7 +995,8 @@ When kbuild executes, the following steps are followed (roughly):
means for an architecture to override the defaults.
---- 6.2 Add prerequisites to archheaders:
+6.2 Add prerequisites to archheaders
+------------------------------------
The archheaders: rule is used to generate header files that
may be installed into user space by "make header_install" or
@@ -907,13 +1009,15 @@ When kbuild executes, the following steps are followed (roughly):
architecture itself.
---- 6.3 Add prerequisites to archprepare:
+6.3 Add prerequisites to archprepare
+------------------------------------
The archprepare: rule is used to list prerequisites that need to be
built before starting to descend down in the subdirectories.
This is usually used for header files containing assembler constants.
- Example:
+ Example::
+
#arch/arm/Makefile
archprepare: maketools
@@ -923,7 +1027,8 @@ When kbuild executes, the following steps are followed (roughly):
generating offset header files.
---- 6.4 List directories to visit when descending
+6.4 List directories to visit when descending
+---------------------------------------------
An arch Makefile cooperates with the top Makefile to define variables
which specify how to build the vmlinux file. Note that there is no
@@ -931,28 +1036,34 @@ When kbuild executes, the following steps are followed (roughly):
machinery is all architecture-independent.
- head-y, init-y, core-y, libs-y, drivers-y, net-y
+ head-y, init-y, core-y, libs-y, drivers-y, net-y
+ $(head-y) lists objects to be linked first in vmlinux.
+
+ $(libs-y) lists directories where a lib.a archive can be located.
+
+ The rest list directories where a built-in.a object file can be
+ located.
- $(head-y) lists objects to be linked first in vmlinux.
- $(libs-y) lists directories where a lib.a archive can be located.
- The rest list directories where a built-in.a object file can be
- located.
+ $(init-y) objects will be located after $(head-y).
- $(init-y) objects will be located after $(head-y).
- Then the rest follows in this order:
- $(core-y), $(libs-y), $(drivers-y) and $(net-y).
+ Then the rest follows in this order:
- The top level Makefile defines values for all generic directories,
- and arch/$(ARCH)/Makefile only adds architecture-specific directories.
+ $(core-y), $(libs-y), $(drivers-y) and $(net-y).
+
+ The top level Makefile defines values for all generic directories,
+ and arch/$(ARCH)/Makefile only adds architecture-specific
+ directories.
+
+ Example::
- Example:
#arch/sparc64/Makefile
core-y += arch/sparc64/kernel/
libs-y += arch/sparc64/prom/ arch/sparc64/lib/
drivers-$(CONFIG_OPROFILE) += arch/sparc64/oprofile/
---- 6.5 Architecture-specific boot images
+6.5 Architecture-specific boot images
+-------------------------------------
An arch Makefile specifies goals that take the vmlinux file, compress
it, wrap it in bootstrapping code, and copy the resulting files
@@ -970,7 +1081,8 @@ When kbuild executes, the following steps are followed (roughly):
arch/$(ARCH)/Makefile, and use the full path when calling down
into the arch/$(ARCH)/boot/Makefile.
- Example:
+ Example::
+
#arch/x86/Makefile
boot := arch/x86/boot
bzImage: vmlinux
@@ -983,7 +1095,8 @@ When kbuild executes, the following steps are followed (roughly):
but executing "make help" will list all relevant targets.
To support this, $(archhelp) must be defined.
- Example:
+ Example::
+
#arch/x86/Makefile
define archhelp
echo '* bzImage - Image (arch/$(ARCH)/boot/bzImage)'
@@ -997,25 +1110,30 @@ When kbuild executes, the following steps are followed (roughly):
Add a new prerequisite to all: to select a default goal different
from vmlinux.
- Example:
+ Example::
+
#arch/x86/Makefile
all: bzImage
When "make" is executed without arguments, bzImage will be built.
---- 6.6 Building non-kbuild targets
+6.6 Building non-kbuild targets
+-------------------------------
extra-y
-
extra-y specifies additional targets created in the current
- directory, in addition to any targets specified by obj-*.
+ directory, in addition to any targets specified by `obj-*`.
Listing all targets in extra-y is required for two purposes:
+
1) Enable kbuild to check changes in command lines
+
- When $(call if_changed,xxx) is used
+
2) kbuild knows what files to delete during "make clean"
- Example:
+ Example::
+
#arch/x86/kernel/Makefile
extra-y := head.o init_task.o
@@ -1023,16 +1141,17 @@ When kbuild executes, the following steps are followed (roughly):
shall be built, but shall not be linked as part of built-in.a.
---- 6.7 Commands useful for building a boot image
+6.7 Commands useful for building a boot image
+---------------------------------------------
- Kbuild provides a few macros that are useful when building a
- boot image.
+ Kbuild provides a few macros that are useful when building a
+ boot image.
if_changed
-
if_changed is the infrastructure used for the following commands.
- Usage:
+ Usage::
+
target: source(s) FORCE
$(call if_changed,ld/objcopy/gzip/...)
@@ -1050,12 +1169,16 @@ When kbuild executes, the following steps are followed (roughly):
Note: It is a typical mistake to forget the FORCE prerequisite.
Another common pitfall is that whitespace is sometimes
significant; for instance, the below will fail (note the extra space
- after the comma):
+ after the comma)::
+
target: source(s) FORCE
- #WRONG!# $(call if_changed, ld/objcopy/gzip/...)
- Note: if_changed should not be used more than once per target.
+ **WRONG!** $(call if_changed, ld/objcopy/gzip/...)
+
+ Note:
+ if_changed should not be used more than once per target.
It stores the executed command in a corresponding .cmd
+
file and multiple calls would result in overwrites and
unwanted results when the target is up to date and only the
tests on changed commands trigger execution of commands.
@@ -1063,7 +1186,8 @@ When kbuild executes, the following steps are followed (roughly):
ld
Link target. Often, LDFLAGS_$@ is used to set specific options to ld.
- Example:
+ Example::
+
#arch/x86/boot/Makefile
LDFLAGS_bootsect := -Ttext 0x0 -s --oformat binary
LDFLAGS_setup := -Ttext 0x0 -s --oformat binary -e begtext
@@ -1077,12 +1201,15 @@ When kbuild executes, the following steps are followed (roughly):
LDFLAGS_$@ syntax - one for each potential target.
$(targets) are assigned all potential targets, by which kbuild knows
the targets and will:
+
1) check for commandline changes
2) delete target during make clean
The ": %: %.o" part of the prerequisite is a shorthand that
frees us from listing the setup.o and bootsect.o files.
- Note: It is a common mistake to forget the "targets :=" assignment,
+
+ Note:
+ It is a common mistake to forget the "targets :=" assignment,
resulting in the target file being recompiled for no
obvious reason.
@@ -1094,7 +1221,8 @@ When kbuild executes, the following steps are followed (roughly):
gzip
Compress target. Use maximum compression to compress target.
- Example:
+ Example::
+
#arch/x86/boot/compressed/Makefile
$(obj)/vmlinux.bin.gz: $(vmlinux.bin.all-y) FORCE
$(call if_changed,gzip)
@@ -1105,26 +1233,30 @@ When kbuild executes, the following steps are followed (roughly):
in an init section in the image. Platform code *must* copy the
blob to non-init memory prior to calling unflatten_device_tree().
- To use this command, simply add *.dtb into obj-y or targets, or make
- some other target depend on %.dtb
+ To use this command, simply add `*.dtb` into obj-y or targets, or make
+ some other target depend on `%.dtb`
- A central rule exists to create $(obj)/%.dtb from $(src)/%.dts;
+ A central rule exists to create `$(obj)/%.dtb` from `$(src)/%.dts`;
architecture Makefiles do no need to explicitly write out that rule.
- Example:
+ Example::
+
targets += $(dtb-y)
DTC_FLAGS ?= -p 1024
---- 6.8 Custom kbuild commands
+6.8 Custom kbuild commands
+--------------------------
When kbuild is executing with KBUILD_VERBOSE=0, then only a shorthand
of a command is normally displayed.
To enable this behaviour for custom commands kbuild requires
- two variables to be set:
- quiet_cmd_<command> - what shall be echoed
- cmd_<command> - the command to execute
+ two variables to be set::
+
+ quiet_cmd_<command> - what shall be echoed
+ cmd_<command> - the command to execute
+
+ Example::
- Example:
#
quiet_cmd_image = BUILD $@
cmd_image = $(obj)/tools/build $(BUILDFLAGS) \
@@ -1135,9 +1267,9 @@ When kbuild executes, the following steps are followed (roughly):
$(call if_changed,image)
@echo 'Kernel: $@ is ready'
- When updating the $(obj)/bzImage target, the line
+ When updating the $(obj)/bzImage target, the line:
- BUILD arch/x86/boot/bzImage
+ BUILD arch/x86/boot/bzImage
will be displayed with "make KBUILD_VERBOSE=0".
@@ -1148,9 +1280,10 @@ When kbuild executes, the following steps are followed (roughly):
arch/$(ARCH)/kernel/vmlinux.lds is used.
The script is a preprocessed variant of the file vmlinux.lds.S
located in the same directory.
- kbuild knows .lds files and includes a rule *lds.S -> *lds.
+ kbuild knows .lds files and includes a rule `*lds.S` -> `*lds`.
+
+ Example::
- Example:
#arch/x86/kernel/Makefile
always := vmlinux.lds
@@ -1162,17 +1295,19 @@ When kbuild executes, the following steps are followed (roughly):
The assignment to $(CPPFLAGS_vmlinux.lds) tells kbuild to use the
specified options when building the target vmlinux.lds.
- When building the *.lds target, kbuild uses the variables:
- KBUILD_CPPFLAGS : Set in top-level Makefile
- cppflags-y : May be set in the kbuild makefile
- CPPFLAGS_$(@F) : Target-specific flags.
- Note that the full filename is used in this
- assignment.
+ When building the `*.lds` target, kbuild uses the variables::
+
+ KBUILD_CPPFLAGS : Set in top-level Makefile
+ cppflags-y : May be set in the kbuild makefile
+ CPPFLAGS_$(@F) : Target-specific flags.
+ Note that the full filename is used in this
+ assignment.
- The kbuild infrastructure for *lds files is used in several
+ The kbuild infrastructure for `*lds` files is used in several
architecture-specific files.
---- 6.10 Generic header files
+6.10 Generic header files
+-------------------------
The directory include/asm-generic contains the header files
that may be shared between individual architectures.
@@ -1180,7 +1315,8 @@ When kbuild executes, the following steps are followed (roughly):
to list the file in the Kbuild file.
See "7.2 generic-y" for further info on syntax etc.
---- 6.11 Post-link pass
+6.11 Post-link pass
+-------------------
If the file arch/xxx/Makefile.postlink exists, this makefile
will be invoked for post-link objects (vmlinux and modules.ko)
@@ -1195,15 +1331,17 @@ When kbuild executes, the following steps are followed (roughly):
For example, powerpc uses this to check relocation sanity of
the linked vmlinux file.
-=== 7 Kbuild syntax for exported headers
+7 Kbuild syntax for exported headers
+------------------------------------
The kernel includes a set of headers that is exported to userspace.
Many headers can be exported as-is but other headers require a
minimal pre-processing before they are ready for user-space.
The pre-processing does:
+
- drop kernel-specific annotations
- drop include of compiler.h
-- drop all sections that are kernel internal (guarded by ifdef __KERNEL__)
+- drop all sections that are kernel internal (guarded by `ifdef __KERNEL__`)
All headers under include/uapi/, include/generated/uapi/,
arch/<arch>/include/uapi/ and arch/<arch>/include/generated/uapi/
@@ -1213,40 +1351,45 @@ A Kbuild file may be defined under arch/<arch>/include/uapi/asm/ and
arch/<arch>/include/asm/ to list asm files coming from asm-generic.
See subsequent chapter for the syntax of the Kbuild file.
---- 7.1 no-export-headers
+7.1 no-export-headers
+---------------------
no-export-headers is essentially used by include/uapi/linux/Kbuild to
avoid exporting specific headers (e.g. kvm.h) on architectures that do
not support it. It should be avoided as much as possible.
---- 7.2 generic-y
+7.2 generic-y
+-------------
If an architecture uses a verbatim copy of a header from
include/asm-generic then this is listed in the file
arch/$(ARCH)/include/asm/Kbuild like this:
- Example:
+ Example::
+
#arch/x86/include/asm/Kbuild
generic-y += termios.h
generic-y += rtc.h
During the prepare phase of the build a wrapper include
- file is generated in the directory:
+ file is generated in the directory::
arch/$(ARCH)/include/generated/asm
When a header is exported where the architecture uses
the generic header a similar wrapper is generated as part
- of the set of exported headers in the directory:
+ of the set of exported headers in the directory::
usr/include/asm
The generated wrapper will in both cases look like the following:
- Example: termios.h
+ Example: termios.h::
+
#include <asm-generic/termios.h>
---- 7.3 generated-y
+7.3 generated-y
+---------------
If an architecture generates other header files alongside generic-y
wrappers, generated-y specifies them.
@@ -1254,11 +1397,13 @@ See subsequent chapter for the syntax of the Kbuild file.
This prevents them being treated as stale asm-generic wrappers and
removed.
- Example:
+ Example::
+
#arch/x86/include/asm/Kbuild
generated-y += syscalls_32.h
---- 7.4 mandatory-y
+7.4 mandatory-y
+---------------
mandatory-y is essentially used by include/(uapi/)asm-generic/Kbuild
to define the minimum set of ASM headers that all architectures must have.
@@ -1270,12 +1415,12 @@ See subsequent chapter for the syntax of the Kbuild file.
The convention is to list one subdir per line and
preferably in alphabetic order.
-=== 8 Kbuild Variables
+8 Kbuild Variables
+==================
The top Makefile exports the following variables:
VERSION, PATCHLEVEL, SUBLEVEL, EXTRAVERSION
-
These variables define the current kernel version. A few arch
Makefiles actually use these values directly; they should use
$(KERNELRELEASE) instead.
@@ -1289,32 +1434,28 @@ The top Makefile exports the following variables:
such as "-pre4", and is often blank.
KERNELRELEASE
-
$(KERNELRELEASE) is a single string such as "2.4.0-pre4", suitable
for constructing installation directory names or showing in
version strings. Some arch Makefiles use it for this purpose.
ARCH
-
This variable defines the target architecture, such as "i386",
"arm", or "sparc". Some kbuild Makefiles test $(ARCH) to
determine which files to compile.
By default, the top Makefile sets $(ARCH) to be the same as the
host system architecture. For a cross build, a user may
- override the value of $(ARCH) on the command line:
+ override the value of $(ARCH) on the command line::
make ARCH=m68k ...
INSTALL_PATH
-
This variable defines a place for the arch Makefiles to install
the resident kernel image and System.map file.
Use this for architecture-specific install targets.
INSTALL_MOD_PATH, MODLIB
-
$(INSTALL_MOD_PATH) specifies a prefix to $(MODLIB) for module
installation. This variable is not defined in the Makefile but
may be passed in by the user if desired.
@@ -1325,7 +1466,6 @@ The top Makefile exports the following variables:
override this value on the command line if desired.
INSTALL_MOD_STRIP
-
If this variable is specified, it will cause modules to be stripped
after they are installed. If INSTALL_MOD_STRIP is '1', then the
default option --strip-debug will be used. Otherwise, the
@@ -1333,7 +1473,8 @@ The top Makefile exports the following variables:
command.
-=== 9 Makefile language
+9 Makefile language
+===================
The kernel Makefiles are designed to be run with GNU Make. The Makefiles
use only the documented features of GNU Make, but they do use many
@@ -1352,18 +1493,17 @@ time the left-hand side is used.
There are some cases where "=" is appropriate. Usually, though, ":="
is the right choice.
-=== 10 Credits
+10 Credits
+==========
-Original version made by Michael Elizabeth Chastain, <mailto:mec@shout.net>
-Updates by Kai Germaschewski <kai@tp1.ruhr-uni-bochum.de>
-Updates by Sam Ravnborg <sam@ravnborg.org>
-Language QA by Jan Engelhardt <jengelh@gmx.de>
+- Original version made by Michael Elizabeth Chastain, <mailto:mec@shout.net>
+- Updates by Kai Germaschewski <kai@tp1.ruhr-uni-bochum.de>
+- Updates by Sam Ravnborg <sam@ravnborg.org>
+- Language QA by Jan Engelhardt <jengelh@gmx.de>
-=== 11 TODO
+11 TODO
+=======
- Describe how kbuild supports shipped files with _shipped.
- Generating offset header files.
- Add more variables to section 7?
-
-
-
diff --git a/Documentation/kbuild/modules.txt b/Documentation/kbuild/modules.rst
index 80295c613e37..24e763482650 100644
--- a/Documentation/kbuild/modules.txt
+++ b/Documentation/kbuild/modules.rst
@@ -1,8 +1,10 @@
+=========================
Building External Modules
+=========================
This document describes how to build an out-of-tree kernel module.
-=== Table of Contents
+.. Table of Contents
=== 1 Introduction
=== 2 How to Build External Modules
@@ -31,7 +33,8 @@ This document describes how to build an out-of-tree kernel module.
-=== 1. Introduction
+1. Introduction
+===============
"kbuild" is the build system used by the Linux kernel. Modules must use
kbuild to stay compatible with changes in the build infrastructure and
@@ -48,7 +51,8 @@ easily accomplished, and a complete example will be presented in
section 3.
-=== 2. How to Build External Modules
+2. How to Build External Modules
+================================
To build external modules, you must have a prebuilt kernel available
that contains the configuration and header files used in the build.
@@ -65,25 +69,27 @@ NOTE: "modules_prepare" will not build Module.symvers even if
CONFIG_MODVERSIONS is set; therefore, a full kernel build needs to be
executed to make module versioning work.
---- 2.1 Command Syntax
+2.1 Command Syntax
+==================
- The command to build an external module is:
+ The command to build an external module is::
$ make -C <path_to_kernel_src> M=$PWD
The kbuild system knows that an external module is being built
due to the "M=<dir>" option given in the command.
- To build against the running kernel use:
+ To build against the running kernel use::
$ make -C /lib/modules/`uname -r`/build M=$PWD
Then to install the module(s) just built, add the target
- "modules_install" to the command:
+ "modules_install" to the command::
$ make -C /lib/modules/`uname -r`/build M=$PWD modules_install
---- 2.2 Options
+2.2 Options
+===========
($KDIR refers to the path of the kernel source directory.)
@@ -100,7 +106,8 @@ executed to make module versioning work.
directory where the external module (kbuild file) is
located.
---- 2.3 Targets
+2.3 Targets
+===========
When building an external module, only a subset of the "make"
targets are available.
@@ -130,26 +137,29 @@ executed to make module versioning work.
help
List the available targets for external modules.
---- 2.4 Building Separate Files
+2.4 Building Separate Files
+===========================
It is possible to build single files that are part of a module.
This works equally well for the kernel, a module, and even for
external modules.
- Example (The module foo.ko, consist of bar.o and baz.o):
+ Example (The module foo.ko, consist of bar.o and baz.o)::
+
make -C $KDIR M=$PWD bar.lst
make -C $KDIR M=$PWD baz.o
make -C $KDIR M=$PWD foo.ko
make -C $KDIR M=$PWD ./
-=== 3. Creating a Kbuild File for an External Module
+3. Creating a Kbuild File for an External Module
+================================================
In the last section we saw the command to build a module for the
running kernel. The module is not actually built, however, because a
build file is required. Contained in this file will be the name of
the module(s) being built, along with the list of requisite source
-files. The file may be as simple as a single line:
+files. The file may be as simple as a single line::
obj-m := <module_name>.o
@@ -157,15 +167,15 @@ The kbuild system will build <module_name>.o from <module_name>.c,
and, after linking, will result in the kernel module <module_name>.ko.
The above line can be put in either a "Kbuild" file or a "Makefile."
When the module is built from multiple sources, an additional line is
-needed listing the files:
+needed listing the files::
<module_name>-y := <src1>.o <src2>.o ...
NOTE: Further documentation describing the syntax used by kbuild is
-located in Documentation/kbuild/makefiles.txt.
+located in Documentation/kbuild/makefiles.rst.
The examples below demonstrate how to create a build file for the
-module 8123.ko, which is built from the following files:
+module 8123.ko, which is built from the following files::
8123_if.c
8123_if.h
@@ -181,7 +191,8 @@ module 8123.ko, which is built from the following files:
but should be filtered out from kbuild due to possible name
clashes.
- Example 1:
+ Example 1::
+
--> filename: Makefile
ifneq ($(KERNELRELEASE),)
# kbuild part of makefile
@@ -209,14 +220,16 @@ module 8123.ko, which is built from the following files:
line; the second pass is by the kbuild system, which is
initiated by the parameterized "make" in the default target.
---- 3.2 Separate Kbuild File and Makefile
+3.2 Separate Kbuild File and Makefile
+-------------------------------------
In newer versions of the kernel, kbuild will first look for a
file named "Kbuild," and only if that is not found, will it
then look for a makefile. Utilizing a "Kbuild" file allows us
to split up the makefile from example 1 into two files:
- Example 2:
+ Example 2::
+
--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
@@ -238,7 +251,8 @@ module 8123.ko, which is built from the following files:
The next example shows a backward compatible version.
- Example 3:
+ Example 3::
+
--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
@@ -266,7 +280,8 @@ module 8123.ko, which is built from the following files:
makefiles, to be used when the "make" and kbuild parts are
split into separate files.
---- 3.3 Binary Blobs
+3.3 Binary Blobs
+----------------
Some external modules need to include an object file as a blob.
kbuild has support for this, but requires the blob file to be
@@ -277,7 +292,7 @@ module 8123.ko, which is built from the following files:
Throughout this section, 8123_bin.o_shipped has been used to
build the kernel module 8123.ko; it has been included as
- 8123_bin.o.
+ 8123_bin.o::
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
@@ -285,11 +300,12 @@ module 8123.ko, which is built from the following files:
files and the binary file, kbuild will pick up different rules
when creating the object file for the module.
---- 3.4 Building Multiple Modules
+3.4 Building Multiple Modules
+=============================
kbuild supports building multiple modules with a single build
file. For example, if you wanted to build two modules, foo.ko
- and bar.ko, the kbuild lines would be:
+ and bar.ko, the kbuild lines would be::
obj-m := foo.o bar.o
foo-y := <foo_srcs>
@@ -298,7 +314,8 @@ module 8123.ko, which is built from the following files:
It is that simple!
-=== 4. Include Files
+4. Include Files
+================
Within the kernel, header files are kept in standard locations
according to the following rule:
@@ -310,22 +327,25 @@ according to the following rule:
of the kernel that are located in different directories, then
the file is placed in include/linux/.
- NOTE: There are two notable exceptions to this rule: larger
- subsystems have their own directory under include/, such as
- include/scsi; and architecture specific headers are located
- under arch/$(ARCH)/include/.
+ NOTE:
+ There are two notable exceptions to this rule: larger
+ subsystems have their own directory under include/, such as
+ include/scsi; and architecture specific headers are located
+ under arch/$(ARCH)/include/.
---- 4.1 Kernel Includes
+4.1 Kernel Includes
+-------------------
To include a header file located under include/linux/, simply
- use:
+ use::
#include <linux/module.h>
kbuild will add options to "gcc" so the relevant directories
are searched.
---- 4.2 Single Subdirectory
+4.2 Single Subdirectory
+-----------------------
External modules tend to place header files in a separate
include/ directory where their source is located, although this
@@ -334,7 +354,7 @@ according to the following rule:
Using the example from section 3, if we moved 8123_if.h to a
subdirectory named include, the resulting kbuild file would
- look like:
+ look like::
--> filename: Kbuild
obj-m := 8123.o
@@ -346,23 +366,24 @@ according to the following rule:
the path. This is a limitation of kbuild: there must be no
space present.
---- 4.3 Several Subdirectories
+4.3 Several Subdirectories
+--------------------------
kbuild can handle files that are spread over several directories.
- Consider the following example:
-
- .
- |__ src
- | |__ complex_main.c
- | |__ hal
- | |__ hardwareif.c
- | |__ include
- | |__ hardwareif.h
- |__ include
- |__ complex.h
+ Consider the following example::
+
+ .
+ |__ src
+ | |__ complex_main.c
+ | |__ hal
+ | |__ hardwareif.c
+ | |__ include
+ | |__ hardwareif.h
+ |__ include
+ |__ complex.h
To build the module complex.ko, we then need the following
- kbuild file:
+ kbuild file::
--> filename: Kbuild
obj-m := complex.o
@@ -385,7 +406,8 @@ according to the following rule:
file is located.
-=== 5. Module Installation
+5. Module Installation
+======================
Modules which are included in the kernel are installed in the
directory:
@@ -396,11 +418,12 @@ And external modules are installed in:
/lib/modules/$(KERNELRELEASE)/extra/
---- 5.1 INSTALL_MOD_PATH
+5.1 INSTALL_MOD_PATH
+--------------------
Above are the default directories but as always some level of
customization is possible. A prefix can be added to the
- installation path using the variable INSTALL_MOD_PATH:
+ installation path using the variable INSTALL_MOD_PATH::
$ make INSTALL_MOD_PATH=/frodo modules_install
=> Install dir: /frodo/lib/modules/$(KERNELRELEASE)/kernel/
@@ -410,20 +433,22 @@ And external modules are installed in:
calling "make." This has effect when installing both in-tree
and out-of-tree modules.
---- 5.2 INSTALL_MOD_DIR
+5.2 INSTALL_MOD_DIR
+-------------------
External modules are by default installed to a directory under
/lib/modules/$(KERNELRELEASE)/extra/, but you may wish to
locate modules for a specific functionality in a separate
directory. For this purpose, use INSTALL_MOD_DIR to specify an
- alternative name to "extra."
+ alternative name to "extra."::
$ make INSTALL_MOD_DIR=gandalf -C $KDIR \
M=$PWD modules_install
=> Install dir: /lib/modules/$(KERNELRELEASE)/gandalf/
-=== 6. Module Versioning
+6. Module Versioning
+====================
Module versioning is enabled by the CONFIG_MODVERSIONS tag, and is used
as a simple ABI consistency check. A CRC value of the full prototype
@@ -435,14 +460,16 @@ module.
Module.symvers contains a list of all exported symbols from a kernel
build.
---- 6.1 Symbols From the Kernel (vmlinux + modules)
+6.1 Symbols From the Kernel (vmlinux + modules)
+-----------------------------------------------
During a kernel build, a file named Module.symvers will be
generated. Module.symvers contains all exported symbols from
the kernel and compiled modules. For each symbol, the
corresponding CRC value is also stored.
- The syntax of the Module.symvers file is:
+ The syntax of the Module.symvers file is::
+
<CRC> <Symbol> <module>
0x2d036834 scsi_remove_host drivers/scsi/scsi_mod
@@ -451,10 +478,12 @@ build.
would read 0x00000000.
Module.symvers serves two purposes:
+
1) It lists all exported symbols from vmlinux and all modules.
2) It lists the CRC if CONFIG_MODVERSIONS is enabled.
---- 6.2 Symbols and External Modules
+6.2 Symbols and External Modules
+--------------------------------
When building an external module, the build system needs access
to the symbols from the kernel to check if all external symbols
@@ -481,17 +510,17 @@ build.
foo.ko needs symbols from bar.ko, you can use a
common top-level kbuild file so both modules are
compiled in the same build. Consider the following
- directory layout:
+ directory layout::
- ./foo/ <= contains foo.ko
- ./bar/ <= contains bar.ko
+ ./foo/ <= contains foo.ko
+ ./bar/ <= contains bar.ko
- The top-level kbuild file would then look like:
+ The top-level kbuild file would then look like::
- #./Kbuild (or ./Makefile):
- obj-y := foo/ bar/
+ #./Kbuild (or ./Makefile):
+ obj-y := foo/ bar/
- And executing
+ And executing::
$ make -C $KDIR M=$PWD
@@ -518,14 +547,16 @@ build.
initialization of its symbol tables.
-=== 7. Tips & Tricks
+7. Tips & Tricks
+================
---- 7.1 Testing for CONFIG_FOO_BAR
+7.1 Testing for CONFIG_FOO_BAR
+------------------------------
- Modules often need to check for certain CONFIG_ options to
+ Modules often need to check for certain `CONFIG_` options to
decide if a specific feature is included in the module. In
- kbuild this is done by referencing the CONFIG_ variable
- directly.
+ kbuild this is done by referencing the `CONFIG_` variable
+ directly::
#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
@@ -534,8 +565,7 @@ build.
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o
External modules have traditionally used "grep" to check for
- specific CONFIG_ settings directly in .config. This usage is
+ specific `CONFIG_` settings directly in .config. This usage is
broken. As introduced before, external modules should use
kbuild for building and can therefore use the same methods as
- in-tree modules when testing for CONFIG_ definitions.
-
+ in-tree modules when testing for `CONFIG_` definitions.
diff --git a/Documentation/kdump/index.rst b/Documentation/kdump/index.rst
new file mode 100644
index 000000000000..2b17fcf6867a
--- /dev/null
+++ b/Documentation/kdump/index.rst
@@ -0,0 +1,21 @@
+:orphan:
+
+================================================================
+Documentation for Kdump - The kexec-based Crash Dumping Solution
+================================================================
+
+This document includes overview, setup and installation, and analysis
+information.
+
+.. toctree::
+ :maxdepth: 1
+
+ kdump
+ vmcoreinfo
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/kdump/kdump.txt b/Documentation/kdump/kdump.rst
index 3162eeb8c262..ac7e131d2935 100644
--- a/Documentation/kdump/kdump.txt
+++ b/Documentation/kdump/kdump.rst
@@ -71,9 +71,8 @@ This is a symlink to the latest version.
The latest kexec-tools git tree is available at:
-git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
-and
-http://www.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
+- git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
+- http://www.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
There is also a gitweb interface available at
http://www.kernel.org/git/?p=utils/kernel/kexec/kexec-tools.git
@@ -81,25 +80,25 @@ http://www.kernel.org/git/?p=utils/kernel/kexec/kexec-tools.git
More information about kexec-tools can be found at
http://horms.net/projects/kexec/
-3) Unpack the tarball with the tar command, as follows:
+3) Unpack the tarball with the tar command, as follows::
- tar xvpzf kexec-tools.tar.gz
+ tar xvpzf kexec-tools.tar.gz
-4) Change to the kexec-tools directory, as follows:
+4) Change to the kexec-tools directory, as follows::
- cd kexec-tools-VERSION
+ cd kexec-tools-VERSION
-5) Configure the package, as follows:
+5) Configure the package, as follows::
- ./configure
+ ./configure
-6) Compile the package, as follows:
+6) Compile the package, as follows::
- make
+ make
-7) Install the package, as follows:
+7) Install the package, as follows::
- make install
+ make install
Build the system and dump-capture kernels
@@ -126,25 +125,25 @@ dump-capture kernels for enabling kdump support.
System kernel config options
----------------------------
-1) Enable "kexec system call" in "Processor type and features."
+1) Enable "kexec system call" in "Processor type and features."::
- CONFIG_KEXEC=y
+ CONFIG_KEXEC=y
2) Enable "sysfs file system support" in "Filesystem" -> "Pseudo
- filesystems." This is usually enabled by default.
+ filesystems." This is usually enabled by default::
- CONFIG_SYSFS=y
+ CONFIG_SYSFS=y
Note that "sysfs file system support" might not appear in the "Pseudo
filesystems" menu if "Configure standard kernel features (for small
systems)" is not enabled in "General Setup." In this case, check the
- .config file itself to ensure that sysfs is turned on, as follows:
+ .config file itself to ensure that sysfs is turned on, as follows::
- grep 'CONFIG_SYSFS' .config
+ grep 'CONFIG_SYSFS' .config
-3) Enable "Compile the kernel with debug info" in "Kernel hacking."
+3) Enable "Compile the kernel with debug info" in "Kernel hacking."::
- CONFIG_DEBUG_INFO=Y
+ CONFIG_DEBUG_INFO=Y
This causes the kernel to be built with debug symbols. The dump
analysis tools require a vmlinux with debug symbols in order to read
@@ -154,29 +153,32 @@ Dump-capture kernel config options (Arch Independent)
-----------------------------------------------------
1) Enable "kernel crash dumps" support under "Processor type and
- features":
+ features"::
- CONFIG_CRASH_DUMP=y
+ CONFIG_CRASH_DUMP=y
-2) Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems".
+2) Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems"::
+
+ CONFIG_PROC_VMCORE=y
- CONFIG_PROC_VMCORE=y
(CONFIG_PROC_VMCORE is set by default when CONFIG_CRASH_DUMP is selected.)
Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
--------------------------------------------------------------------
1) On i386, enable high memory support under "Processor type and
- features":
+ features"::
+
+ CONFIG_HIGHMEM64G=y
+
+ or::
- CONFIG_HIGHMEM64G=y
- or
- CONFIG_HIGHMEM4G
+ CONFIG_HIGHMEM4G
2) On i386 and x86_64, disable symmetric multi-processing support
- under "Processor type and features":
+ under "Processor type and features"::
- CONFIG_SMP=n
+ CONFIG_SMP=n
(If CONFIG_SMP=y, then specify maxcpus=1 on the kernel command line
when loading the dump-capture kernel, see section "Load the Dump-capture
@@ -184,9 +186,9 @@ Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
3) If one wants to build and use a relocatable kernel,
Enable "Build a relocatable kernel" support under "Processor type and
- features"
+ features"::
- CONFIG_RELOCATABLE=y
+ CONFIG_RELOCATABLE=y
4) Use a suitable value for "Physical address where the kernel is
loaded" (under "Processor type and features"). This only appears when
@@ -211,13 +213,13 @@ Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
Dump-capture kernel config options (Arch Dependent, ppc64)
----------------------------------------------------------
-1) Enable "Build a kdump crash kernel" support under "Kernel" options:
+1) Enable "Build a kdump crash kernel" support under "Kernel" options::
- CONFIG_CRASH_DUMP=y
+ CONFIG_CRASH_DUMP=y
-2) Enable "Build a relocatable kernel" support
+2) Enable "Build a relocatable kernel" support::
- CONFIG_RELOCATABLE=y
+ CONFIG_RELOCATABLE=y
Make and install the kernel and its modules.
@@ -231,11 +233,13 @@ Dump-capture kernel config options (Arch Dependent, ia64)
The crashkernel region can be automatically placed by the system
kernel at run time. This is done by specifying the base address as 0,
- or omitting it all together.
+ or omitting it all together::
- crashkernel=256M@0
- or
- crashkernel=256M
+ crashkernel=256M@0
+
+ or::
+
+ crashkernel=256M
If the start address is specified, note that the start address of the
kernel will be aligned to 64Mb, so if the start address is not then
@@ -245,9 +249,9 @@ Dump-capture kernel config options (Arch Dependent, arm)
----------------------------------------------------------
- To use a relocatable kernel,
- Enable "AUTO_ZRELADDR" support under "Boot" options:
+ Enable "AUTO_ZRELADDR" support under "Boot" options::
- AUTO_ZRELADDR=y
+ AUTO_ZRELADDR=y
Dump-capture kernel config options (Arch Dependent, arm64)
----------------------------------------------------------
@@ -265,12 +269,12 @@ on the value of System RAM -- that's mostly for distributors that pre-setup
the kernel command line to avoid a unbootable system after some memory has
been removed from the machine.
-The syntax is:
+The syntax is::
crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset]
range=start-[end]
-For example:
+For example::
crashkernel=512M-2G:64M,2G-:128M
@@ -326,35 +330,46 @@ can choose to load the uncompressed vmlinux or compressed bzImage/vmlinuz
of dump-capture kernel. Following is the summary.
For i386 and x86_64:
+
- Use vmlinux if kernel is not relocatable.
- Use bzImage/vmlinuz if kernel is relocatable.
+
For ppc64:
+
- Use vmlinux
+
For ia64:
+
- Use vmlinux or vmlinuz.gz
+
For s390x:
+
- Use image or bzImage
+
For arm:
+
- Use zImage
+
For arm64:
+
- Use vmlinux or Image
If you are using an uncompressed vmlinux image then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-vmlinux-image> \
--initrd=<initrd-for-dump-capture-kernel> --args-linux \
--append="root=<root-dev> <arch-specific-options>"
If you are using a compressed bzImage/vmlinuz, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-bzImage> \
--initrd=<initrd-for-dump-capture-kernel> \
--append="root=<root-dev> <arch-specific-options>"
If you are using a compressed zImage, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec --type zImage -p <dump-capture-kernel-bzImage> \
--initrd=<initrd-for-dump-capture-kernel> \
@@ -362,7 +377,7 @@ to load dump-capture kernel.
--append="root=<root-dev> <arch-specific-options>"
If you are using an uncompressed Image, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-Image> \
--initrd=<initrd-for-dump-capture-kernel> \
@@ -376,18 +391,23 @@ Following are the arch specific command line options to be used while
loading dump-capture kernel.
For i386, x86_64 and ia64:
+
"1 irqpoll maxcpus=1 reset_devices"
For ppc64:
+
"1 maxcpus=1 noirqdistrib reset_devices"
For s390x:
+
"1 maxcpus=1 cgroup_disable=memory"
For arm:
+
"1 maxcpus=1 reset_devices"
For arm64:
+
"1 maxcpus=1 reset_devices"
Notes on loading the dump-capture kernel:
@@ -464,7 +484,7 @@ Write Out the Dump File
=======================
After the dump-capture kernel is booted, write out the dump file with
-the following command:
+the following command::
cp /proc/vmcore <dump-file>
@@ -476,7 +496,7 @@ Before analyzing the dump image, you should reboot into a stable kernel.
You can do limited analysis using GDB on the dump file copied out of
/proc/vmcore. Use the debug vmlinux built with -g and run the following
-command:
+command::
gdb vmlinux <dump-file>
@@ -504,6 +524,11 @@ to achieve the same behaviour.
Contact
=======
-Vivek Goyal (vgoyal@redhat.com)
-Maneesh Soni (maneesh@in.ibm.com)
+- Vivek Goyal (vgoyal@redhat.com)
+- Maneesh Soni (maneesh@in.ibm.com)
+
+GDB macros
+==========
+.. include:: gdbmacros.txt
+ :literal:
diff --git a/Documentation/kdump/vmcoreinfo.txt b/Documentation/kdump/vmcoreinfo.rst
index bb94a4bd597a..007a6b86e0ee 100644
--- a/Documentation/kdump/vmcoreinfo.txt
+++ b/Documentation/kdump/vmcoreinfo.rst
@@ -1,8 +1,7 @@
-================================================================
- VMCOREINFO
-================================================================
+==========
+VMCOREINFO
+==========
-===========
What is it?
===========
@@ -12,7 +11,6 @@ values, field offsets, etc. These data are packed into an ELF note
section and used by user-space tools like crash and makedumpfile to
analyze a kernel's memory layout.
-================
Common variables
================
@@ -49,7 +47,7 @@ in a system, one bit position per node number. Used to keep track of
which nodes are in the system and online.
swapper_pg_dir
--------------
+--------------
The global page directory pointer of the kernel. Used to translate
virtual to physical addresses.
@@ -132,16 +130,14 @@ nodemask_t
The size of a nodemask_t type. Used to compute the number of online
nodes.
-(page, flags|_refcount|mapping|lru|_mapcount|private|compound_dtor|
- compound_order|compound_head)
--------------------------------------------------------------------
+(page, flags|_refcount|mapping|lru|_mapcount|private|compound_dtor|compound_order|compound_head)
+-------------------------------------------------------------------------------------------------
User-space tools compute their values based on the offset of these
variables. The variables are used when excluding unnecessary pages.
-(pglist_data, node_zones|nr_zones|node_mem_map|node_start_pfn|node_
- spanned_pages|node_id)
--------------------------------------------------------------------
+(pglist_data, node_zones|nr_zones|node_mem_map|node_start_pfn|node_spanned_pages|node_id)
+-----------------------------------------------------------------------------------------
On NUMA machines, each NUMA node has a pg_data_t to describe its memory
layout. On UMA machines there is a single pglist_data which describes the
@@ -245,21 +241,25 @@ NR_FREE_PAGES
On linux-2.6.21 or later, the number of free pages is in
vm_stat[NR_FREE_PAGES]. Used to get the number of free pages.
-PG_lru|PG_private|PG_swapcache|PG_swapbacked|PG_slab|PG_hwpoision
-|PG_head_mask|PAGE_BUDDY_MAPCOUNT_VALUE(~PG_buddy)
-|PAGE_OFFLINE_MAPCOUNT_VALUE(~PG_offline)
------------------------------------------------------------------
+PG_lru|PG_private|PG_swapcache|PG_swapbacked|PG_slab|PG_hwpoision|PG_head_mask
+------------------------------------------------------------------------------
Page attributes. These flags are used to filter various unnecessary for
dumping pages.
+PAGE_BUDDY_MAPCOUNT_VALUE(~PG_buddy)|PAGE_OFFLINE_MAPCOUNT_VALUE(~PG_offline)
+-----------------------------------------------------------------------------
+
+More page attributes. These flags are used to filter various unnecessary for
+dumping pages.
+
+
HUGETLB_PAGE_DTOR
-----------------
The HUGETLB_PAGE_DTOR flag denotes hugetlbfs pages. Makedumpfile
excludes these pages.
-======
x86_64
======
@@ -318,12 +318,12 @@ address.
Currently, sme_mask stores the value of the C-bit position. If needed,
additional SME-relevant info can be placed in that variable.
-For example:
-[ misc ][ enc bit ][ other misc SME info ]
-0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_..._0000
-63 59 55 51 47 43 39 35 31 27 ... 3
+For example::
+
+ [ misc ][ enc bit ][ other misc SME info ]
+ 0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_..._0000
+ 63 59 55 51 47 43 39 35 31 27 ... 3
-======
x86_32
======
@@ -335,7 +335,6 @@ of a higher page table lookup overhead, and also consumes more page
table space per process. Used to check whether PAE was enabled in the
crash kernel when converting virtual addresses to physical addresses.
-====
ia64
====
@@ -366,7 +365,6 @@ PGTABLE_3|PGTABLE_4
User-space tools need to know whether the crash kernel was in 3-level or
4-level paging mode. Used to distinguish the page table.
-=====
ARM64
=====
@@ -395,9 +393,8 @@ KERNELOFFSET
The kernel randomization offset. Used to compute the page offset. If
KASLR is disabled, this value is zero.
-====
arm
-====
+===
ARM_LPAE
--------
@@ -405,12 +402,11 @@ ARM_LPAE
It indicates whether the crash kernel supports large physical address
extensions. Used to translate virtual to physical addresses.
-====
s390
====
lowcore_ptr
-----------
+-----------
An array with a pointer to the lowcore of every CPU. Used to print the
psw and all registers information.
@@ -425,7 +421,6 @@ Used to get the vmalloc_start address from the high_memory symbol.
The maximum number of CPUs.
-=======
powerpc
=======
@@ -460,9 +455,8 @@ Page size definitions, i.e. 4k, 64k, or 16M.
Used to make vtop translations.
-vmemmap_backing|(vmemmap_backing, list)|(vmemmap_backing, phys)|
-(vmemmap_backing, virt_addr)
-----------------------------------------------------------------
+vmemmap_backing|(vmemmap_backing, list)|(vmemmap_backing, phys)|(vmemmap_backing, virt_addr)
+--------------------------------------------------------------------------------------------
The vmemmap virtual address space management does not have a traditional
page table to track which virtual struct pages are backed by a physical
@@ -480,7 +474,6 @@ member.
Used in vtop translations.
-==
sh
==
diff --git a/Documentation/kernel-hacking/hacking.rst b/Documentation/kernel-hacking/hacking.rst
index d824e4feaff3..5891a701a159 100644
--- a/Documentation/kernel-hacking/hacking.rst
+++ b/Documentation/kernel-hacking/hacking.rst
@@ -718,7 +718,7 @@ make a neat patch, there's administrative work to be done:
- Usually you want a configuration option for your kernel hack. Edit
``Kconfig`` in the appropriate directory. The Config language is
simple to use by cut and paste, and there's complete documentation in
- ``Documentation/kbuild/kconfig-language.txt``.
+ ``Documentation/kbuild/kconfig-language.rst``.
In your description of the option, make sure you address both the
expert user and the user who knows nothing about your feature.
@@ -728,7 +728,7 @@ make a neat patch, there's administrative work to be done:
- Edit the ``Makefile``: the CONFIG variables are exported here so you
can usually just add a "obj-$(CONFIG_xxx) += xxx.o" line. The syntax
- is documented in ``Documentation/kbuild/makefiles.txt``.
+ is documented in ``Documentation/kbuild/makefiles.rst``.
- Put yourself in ``CREDITS`` if you've done something noteworthy,
usually beyond a single file (your name should be at the top of the
diff --git a/Documentation/kernel-hacking/locking.rst b/Documentation/kernel-hacking/locking.rst
index 519673df0e82..dc698ea456e0 100644
--- a/Documentation/kernel-hacking/locking.rst
+++ b/Documentation/kernel-hacking/locking.rst
@@ -451,7 +451,7 @@ to protect the cache and all the objects within it. Here's the code::
if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
return -ENOMEM;
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
@@ -660,7 +660,7 @@ Here is the code::
}
@@ -63,6 +94,7 @@
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
+ obj->refcnt = 1; /* The cache holds a reference */
@@ -774,7 +774,7 @@ the lock is no longer used to protect the reference count itself.
}
@@ -94,7 +76,7 @@
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
- obj->refcnt = 1; /* The cache holds a reference */
diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/kernel-per-CPU-kthreads.txt
index 23b0c8b20cd1..5623b9916411 100644
--- a/Documentation/kernel-per-CPU-kthreads.txt
+++ b/Documentation/kernel-per-CPU-kthreads.txt
@@ -348,7 +348,7 @@ To reduce its OS jitter, do at least one of the following:
2. Boot with "nosoftlockup=0", which will also prevent these kthreads
from being created. Other related watchdog and softlockup boot
parameters may be found in Documentation/admin-guide/kernel-parameters.rst
- and Documentation/watchdog/watchdog-parameters.txt.
+ and Documentation/watchdog/watchdog-parameters.rst.
3. Echo a zero to /proc/sys/kernel/watchdog to disable the
watchdog timer.
4. Echo a large number of /proc/sys/kernel/watchdog_thresh in
diff --git a/Documentation/laptops/lg-laptop.rst b/Documentation/laptops/lg-laptop.rst
index aa503ee9b3bc..f2c2ffe31101 100644
--- a/Documentation/laptops/lg-laptop.rst
+++ b/Documentation/laptops/lg-laptop.rst
@@ -1,5 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
+:orphan:
+
LG Gram laptop extra features
=============================
diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.txt
index 6cced88de6da..75ef063622d2 100644
--- a/Documentation/laptops/thinkpad-acpi.txt
+++ b/Documentation/laptops/thinkpad-acpi.txt
@@ -679,7 +679,7 @@ status as "unknown". The available commands are:
sysfs notes:
The ThinkLight sysfs interface is documented by the LED class
-documentation, in Documentation/leds/leds-class.txt. The ThinkLight LED name
+documentation, in Documentation/leds/leds-class.rst. The ThinkLight LED name
is "tpacpi::thinklight".
Due to limitations in the sysfs LED class, if the status of the ThinkLight
@@ -779,7 +779,7 @@ All of the above can be turned on and off and can be made to blink.
sysfs notes:
The ThinkPad LED sysfs interface is described in detail by the LED class
-documentation, in Documentation/leds/leds-class.txt.
+documentation, in Documentation/leds/leds-class.rst.
The LEDs are named (in LED ID order, from 0 to 12):
"tpacpi::power", "tpacpi:orange:batt", "tpacpi:green:batt",
diff --git a/Documentation/leds/index.rst b/Documentation/leds/index.rst
new file mode 100644
index 000000000000..9885f7c1b75d
--- /dev/null
+++ b/Documentation/leds/index.rst
@@ -0,0 +1,25 @@
+:orphan:
+
+====
+LEDs
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ leds-class
+ leds-class-flash
+ ledtrig-oneshot
+ ledtrig-transient
+ ledtrig-usbport
+
+ uleds
+
+ leds-blinkm
+ leds-lm3556
+ leds-lp3944
+ leds-lp5521
+ leds-lp5523
+ leds-lp5562
+ leds-lp55xx
+ leds-mlxcpld
diff --git a/Documentation/leds/leds-blinkm.txt b/Documentation/leds/leds-blinkm.rst
index 9dd92f4cf4e1..c74b5bc877b1 100644
--- a/Documentation/leds/leds-blinkm.txt
+++ b/Documentation/leds/leds-blinkm.rst
@@ -1,3 +1,7 @@
+==================
+Leds BlinkM driver
+==================
+
The leds-blinkm driver supports the devices of the BlinkM family.
They are RGB-LED modules driven by a (AT)tiny microcontroller and
@@ -14,35 +18,36 @@ The interface this driver provides is 2-fold:
a) LED class interface for use with triggers
############################################
-The registration follows the scheme:
-blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>
+The registration follows the scheme::
+
+ blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>
-$ ls -h /sys/class/leds/blinkm-6-*
-/sys/class/leds/blinkm-6-9-blue:
-brightness device max_brightness power subsystem trigger uevent
+ $ ls -h /sys/class/leds/blinkm-6-*
+ /sys/class/leds/blinkm-6-9-blue:
+ brightness device max_brightness power subsystem trigger uevent
-/sys/class/leds/blinkm-6-9-green:
-brightness device max_brightness power subsystem trigger uevent
+ /sys/class/leds/blinkm-6-9-green:
+ brightness device max_brightness power subsystem trigger uevent
-/sys/class/leds/blinkm-6-9-red:
-brightness device max_brightness power subsystem trigger uevent
+ /sys/class/leds/blinkm-6-9-red:
+ brightness device max_brightness power subsystem trigger uevent
(same is /sys/bus/i2c/devices/6-0009/leds)
We can control the colors separated into red, green and blue and
assign triggers on each color.
-E.g.:
+E.g.::
-$ cat blinkm-6-9-blue/brightness
-05
+ $ cat blinkm-6-9-blue/brightness
+ 05
-$ echo 200 > blinkm-6-9-blue/brightness
-$
+ $ echo 200 > blinkm-6-9-blue/brightness
+ $
-$ modprobe ledtrig-heartbeat
-$ echo heartbeat > blinkm-6-9-green/trigger
-$
+ $ modprobe ledtrig-heartbeat
+ $ echo heartbeat > blinkm-6-9-green/trigger
+ $
b) Sysfs group to control rgb, fade, hsb, scripts ...
@@ -52,29 +57,28 @@ This extended interface is available as folder blinkm
in the sysfs folder of the I2C device.
E.g. below /sys/bus/i2c/devices/6-0009/blinkm
-$ ls -h /sys/bus/i2c/devices/6-0009/blinkm/
-blue green red test
+ $ ls -h /sys/bus/i2c/devices/6-0009/blinkm/
+ blue green red test
Currently supported is just setting red, green, blue
and a test sequence.
-E.g.:
+E.g.::
-$ cat *
-00
-00
-00
-#Write into test to start test sequence!#
+ $ cat *
+ 00
+ 00
+ 00
+ #Write into test to start test sequence!#
-$ echo 1 > test
-$
+ $ echo 1 > test
+ $
-$ echo 255 > red
-$
+ $ echo 255 > red
+ $
as of 6/2012
dl9pf <at> gmx <dot> de
-
diff --git a/Documentation/leds/leds-class-flash.txt b/Documentation/leds/leds-class-flash.rst
index 8da3c6f4b60b..6ec12c5a1a0e 100644
--- a/Documentation/leds/leds-class-flash.txt
+++ b/Documentation/leds/leds-class-flash.rst
@@ -1,9 +1,9 @@
-
+==============================
Flash LED handling under Linux
==============================
Some LED devices provide two modes - torch and flash. In the LED subsystem
-those modes are supported by LED class (see Documentation/leds/leds-class.txt)
+those modes are supported by LED class (see Documentation/leds/leds-class.rst)
and LED Flash class respectively. The torch mode related features are enabled
by default and the flash ones only if a driver declares it by setting
LED_DEV_CAP_FLASH flag.
@@ -14,6 +14,7 @@ registered in the LED subsystem with led_classdev_flash_register function.
Following sysfs attributes are exposed for controlling flash LED devices:
(see Documentation/ABI/testing/sysfs-class-led-flash)
+
- flash_brightness
- max_flash_brightness
- flash_timeout
@@ -31,30 +32,46 @@ be defined in the kernel config.
The driver must call the v4l2_flash_init function to get registered in the
V4L2 subsystem. The function takes six arguments:
-- dev : flash device, e.g. an I2C device
-- of_node : of_node of the LED, may be NULL if the same as device's
-- fled_cdev : LED flash class device to wrap
-- iled_cdev : LED flash class device representing indicator LED associated with
- fled_cdev, may be NULL
-- ops : V4L2 specific ops
- * external_strobe_set - defines the source of the flash LED strobe -
+
+- dev:
+ flash device, e.g. an I2C device
+- of_node:
+ of_node of the LED, may be NULL if the same as device's
+- fled_cdev:
+ LED flash class device to wrap
+- iled_cdev:
+ LED flash class device representing indicator LED associated with
+ fled_cdev, may be NULL
+- ops:
+ V4L2 specific ops
+
+ * external_strobe_set
+ defines the source of the flash LED strobe -
V4L2_CID_FLASH_STROBE control or external source, typically
a sensor, which makes it possible to synchronise the flash
strobe start with exposure start,
- * intensity_to_led_brightness and led_brightness_to_intensity - perform
+ * intensity_to_led_brightness and led_brightness_to_intensity
+ perform
enum led_brightness <-> V4L2 intensity conversion in a device
specific manner - they can be used for devices with non-linear
LED current scale.
-- config : configuration for V4L2 Flash sub-device
- * dev_name - the name of the media entity, unique in the system,
- * flash_faults - bitmask of flash faults that the LED flash class
+- config:
+ configuration for V4L2 Flash sub-device
+
+ * dev_name
+ the name of the media entity, unique in the system,
+ * flash_faults
+ bitmask of flash faults that the LED flash class
device can report; corresponding LED_FAULT* bit definitions are
available in <linux/led-class-flash.h>,
- * torch_intensity - constraints for the LED in TORCH mode
+ * torch_intensity
+ constraints for the LED in TORCH mode
in microamperes,
- * indicator_intensity - constraints for the indicator LED
+ * indicator_intensity
+ constraints for the indicator LED
in microamperes,
- * has_external_strobe - determines whether the flash strobe source
+ * has_external_strobe
+ determines whether the flash strobe source
can be switched to external,
On remove the v4l2_flash_release function has to be called, which takes one
diff --git a/Documentation/leds/leds-class.txt b/Documentation/leds/leds-class.rst
index 8b39cc6b03ee..df0120a1ee3c 100644
--- a/Documentation/leds/leds-class.txt
+++ b/Documentation/leds/leds-class.rst
@@ -1,4 +1,4 @@
-
+========================
LED handling under Linux
========================
@@ -43,7 +43,7 @@ LED Device Naming
Is currently of the form:
-"devicename:colour:function"
+ "devicename:colour:function"
There have been calls for LED properties such as colour to be exported as
individual led class attributes. As a solution which doesn't incur as much
@@ -57,9 +57,12 @@ Brightness setting API
LED subsystem core exposes following API for setting brightness:
- - led_set_brightness : it is guaranteed not to sleep, passing LED_OFF stops
+ - led_set_brightness:
+ it is guaranteed not to sleep, passing LED_OFF stops
blinking,
- - led_set_brightness_sync : for use cases when immediate effect is desired -
+
+ - led_set_brightness_sync:
+ for use cases when immediate effect is desired -
it can block the caller for the time required for accessing
device registers and can sleep, passing LED_OFF stops hardware
blinking, returns -EBUSY if software blink fallback is enabled.
@@ -70,7 +73,7 @@ LED registration API
A driver wanting to register a LED classdev for use by other drivers /
userspace needs to allocate and fill a led_classdev struct and then call
-[devm_]led_classdev_register. If the non devm version is used the driver
+`[devm_]led_classdev_register`. If the non devm version is used the driver
must call led_classdev_unregister from its remove function before
free-ing the led_classdev struct.
@@ -94,7 +97,7 @@ with brightness value LED_OFF, which should stop any software
timers that may have been required for blinking.
The blink_set() function should choose a user friendly blinking value
-if it is called with *delay_on==0 && *delay_off==0 parameters. In this
+if it is called with `*delay_on==0` && `*delay_off==0` parameters. In this
case the driver should give back the chosen value through delay_on and
delay_off parameters to the leds subsystem.
diff --git a/Documentation/leds/leds-lm3556.txt b/Documentation/leds/leds-lm3556.rst
index 62278e871b50..1ef17d7d800e 100644
--- a/Documentation/leds/leds-lm3556.txt
+++ b/Documentation/leds/leds-lm3556.rst
@@ -1,68 +1,118 @@
+========================
Kernel driver for lm3556
========================
-*Texas Instrument:
- 1.5 A Synchronous Boost LED Flash Driver w/ High-Side Current Source
+* Texas Instrument:
+ 1.5 A Synchronous Boost LED Flash Driver w/ High-Side Current Source
* Datasheet: http://www.national.com/ds/LM/LM3556.pdf
Authors:
- Daniel Jeong
+ - Daniel Jeong
+
Contact:Daniel Jeong(daniel.jeong-at-ti.com, gshark.jeong-at-gmail.com)
Description
-----------
There are 3 functions in LM3556, Flash, Torch and Indicator.
-FLASH MODE
+Flash Mode
+^^^^^^^^^^
+
In Flash Mode, the LED current source(LED) provides 16 target current levels
from 93.75 mA to 1500 mA.The Flash currents are adjusted via the CURRENT
CONTROL REGISTER(0x09).Flash mode is activated by the ENABLE REGISTER(0x0A),
or by pulling the STROBE pin HIGH.
+
LM3556 Flash can be controlled through sys/class/leds/flash/brightness file
+
* if STROBE pin is enabled, below example control brightness only, and
-ON / OFF will be controlled by STROBE pin.
+ ON / OFF will be controlled by STROBE pin.
Flash Example:
-OFF : #echo 0 > sys/class/leds/flash/brightness
-93.75 mA: #echo 1 > sys/class/leds/flash/brightness
-... .....
-1500 mA: #echo 16 > sys/class/leds/flash/brightness
-TORCH MODE
+OFF::
+
+ #echo 0 > sys/class/leds/flash/brightness
+
+93.75 mA::
+
+ #echo 1 > sys/class/leds/flash/brightness
+
+...
+
+1500 mA::
+
+ #echo 16 > sys/class/leds/flash/brightness
+
+Torch Mode
+^^^^^^^^^^
+
In Torch Mode, the current source(LED) is programmed via the CURRENT CONTROL
REGISTER(0x09).Torch Mode is activated by the ENABLE REGISTER(0x0A) or by the
hardware TORCH input.
+
LM3556 torch can be controlled through sys/class/leds/torch/brightness file.
* if TORCH pin is enabled, below example control brightness only,
and ON / OFF will be controlled by TORCH pin.
Torch Example:
-OFF : #echo 0 > sys/class/leds/torch/brightness
-46.88 mA: #echo 1 > sys/class/leds/torch/brightness
-... .....
-375 mA : #echo 8 > sys/class/leds/torch/brightness
-INDICATOR MODE
+OFF::
+
+ #echo 0 > sys/class/leds/torch/brightness
+
+46.88 mA::
+
+ #echo 1 > sys/class/leds/torch/brightness
+
+...
+
+375 mA::
+
+ #echo 8 > sys/class/leds/torch/brightness
+
+Indicator Mode
+^^^^^^^^^^^^^^
+
Indicator pattern can be set through sys/class/leds/indicator/pattern file,
and 4 patterns are pre-defined in indicator_pattern array.
+
According to N-lank, Pulse time and N Period values, different pattern wiill
be generated.If you want new patterns for your own device, change
indicator_pattern array with your own values and INDIC_PATTERN_SIZE.
+
Please refer datasheet for more detail about N-Blank, Pulse time and N Period.
Indicator pattern example:
-pattern 0: #echo 0 > sys/class/leds/indicator/pattern
-....
-pattern 3: #echo 3 > sys/class/leds/indicator/pattern
+
+pattern 0::
+
+ #echo 0 > sys/class/leds/indicator/pattern
+
+...
+
+pattern 3::
+
+ #echo 3 > sys/class/leds/indicator/pattern
Indicator brightness can be controlled through
sys/class/leds/indicator/brightness file.
Example:
-OFF : #echo 0 > sys/class/leds/indicator/brightness
-5.86 mA : #echo 1 > sys/class/leds/indicator/brightness
-........
-46.875mA : #echo 8 > sys/class/leds/indicator/brightness
+
+OFF::
+
+ #echo 0 > sys/class/leds/indicator/brightness
+
+5.86 mA::
+
+ #echo 1 > sys/class/leds/indicator/brightness
+
+...
+
+46.875mA::
+
+ #echo 8 > sys/class/leds/indicator/brightness
Notes
-----
@@ -70,7 +120,8 @@ Driver expects it is registered using the i2c_board_info mechanism.
To register the chip at address 0x63 on specific adapter, set the platform data
according to include/linux/platform_data/leds-lm3556.h, set the i2c board info
-Example:
+Example::
+
static struct i2c_board_info board_i2c_ch4[] __initdata = {
{
I2C_BOARD_INFO(LM3556_NAME, 0x63),
@@ -80,6 +131,7 @@ Example:
and register it in the platform init function
-Example:
+Example::
+
board_register_i2c_bus(4, 400,
board_i2c_ch4, ARRAY_SIZE(board_i2c_ch4));
diff --git a/Documentation/leds/leds-lp3944.txt b/Documentation/leds/leds-lp3944.rst
index e88ac3b60c08..c2f87dc1a3a9 100644
--- a/Documentation/leds/leds-lp3944.txt
+++ b/Documentation/leds/leds-lp3944.rst
@@ -1,14 +1,20 @@
+====================
Kernel driver lp3944
====================
* National Semiconductor LP3944 Fun-light Chip
+
Prefix: 'lp3944'
+
Addresses scanned: None (see the Notes section below)
- Datasheet: Publicly available at the National Semiconductor website
- http://www.national.com/pf/LP/LP3944.html
+
+ Datasheet:
+
+ Publicly available at the National Semiconductor website
+ http://www.national.com/pf/LP/LP3944.html
Authors:
- Antonio Ospite <ospite@studenti.unina.it>
+ Antonio Ospite <ospite@studenti.unina.it>
Description
@@ -19,8 +25,11 @@ is used as a led controller.
The DIM modes are used to set _blink_ patterns for leds, the pattern is
specified supplying two parameters:
- - period: from 0s to 1.6s
- - duty cycle: percentage of the period the led is on, from 0 to 100
+
+ - period:
+ from 0s to 1.6s
+ - duty cycle:
+ percentage of the period the led is on, from 0 to 100
Setting a led in DIM0 or DIM1 mode makes it blink according to the pattern.
See the datasheet for details.
@@ -35,7 +44,7 @@ The chip is used mainly in embedded contexts, so this driver expects it is
registered using the i2c_board_info mechanism.
To register the chip at address 0x60 on adapter 0, set the platform data
-according to include/linux/leds-lp3944.h, set the i2c board info:
+according to include/linux/leds-lp3944.h, set the i2c board info::
static struct i2c_board_info a910_i2c_board_info[] __initdata = {
{
@@ -44,7 +53,7 @@ according to include/linux/leds-lp3944.h, set the i2c board info:
},
};
-and register it in the platform init function
+and register it in the platform init function::
i2c_register_board_info(0, a910_i2c_board_info,
ARRAY_SIZE(a910_i2c_board_info));
diff --git a/Documentation/leds/leds-lp5521.rst b/Documentation/leds/leds-lp5521.rst
new file mode 100644
index 000000000000..0432615b083d
--- /dev/null
+++ b/Documentation/leds/leds-lp5521.rst
@@ -0,0 +1,115 @@
+========================
+Kernel driver for lp5521
+========================
+
+* National Semiconductor LP5521 led driver chip
+* Datasheet: http://www.national.com/pf/LP/LP5521.html
+
+Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
+
+Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
+
+Description
+-----------
+
+LP5521 can drive up to 3 channels. Leds can be controlled directly via
+the led class control interface. Channels have generic names:
+lp5521:channelx, where x is 0 .. 2
+
+All three channels can be also controlled using the engine micro programs.
+More details of the instructions can be found from the public data sheet.
+
+LP5521 has the internal program memory for running various LED patterns.
+There are two ways to run LED patterns.
+
+1) Legacy interface - enginex_mode and enginex_load
+ Control interface for the engines:
+
+ x is 1 .. 3
+
+ enginex_mode:
+ disabled, load, run
+ enginex_load:
+ store program (visible only in engine load mode)
+
+ Example (start to blink the channel 2 led)::
+
+ cd /sys/class/leds/lp5521:channel2/device
+ echo "load" > engine3_mode
+ echo "037f4d0003ff6000" > engine3_load
+ echo "run" > engine3_mode
+
+ To stop the engine::
+
+ echo "disabled" > engine3_mode
+
+2) Firmware interface - LP55xx common interface
+
+For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+sysfs contains a selftest entry.
+
+The test communicates with the chip and checks that
+the clock mode is automatically set to the requested one.
+
+Each channel has its own led current settings.
+
+- /sys/class/leds/lp5521:channel0/led_current - RW
+- /sys/class/leds/lp5521:channel0/max_current - RO
+
+Format: 10x mA i.e 10 means 1.0 mA
+
+example platform data::
+
+ static struct lp55xx_led_config lp5521_led_config[] = {
+ {
+ .name = "red",
+ .chan_nr = 0,
+ .led_current = 50,
+ .max_current = 130,
+ }, {
+ .name = "green",
+ .chan_nr = 1,
+ .led_current = 0,
+ .max_current = 130,
+ }, {
+ .name = "blue",
+ .chan_nr = 2,
+ .led_current = 0,
+ .max_current = 130,
+ }
+ };
+
+ static int lp5521_setup(void)
+ {
+ /* setup HW resources */
+ }
+
+ static void lp5521_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5521_enable(bool state)
+ {
+ /* Control of chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5521_platform_data = {
+ .led_config = lp5521_led_config,
+ .num_channels = ARRAY_SIZE(lp5521_led_config),
+ .clock_mode = LP55XX_CLOCK_EXT,
+ .setup_resources = lp5521_setup,
+ .release_resources = lp5521_release,
+ .enable = lp5521_enable,
+ };
+
+Note:
+ chan_nr can have values between 0 and 2.
+ The name of each channel can be configurable.
+ If the name field is not defined, the default name will be set to 'xxxx:channelN'
+ (XXXX : pdata->label or i2c client name, N : channel number)
+
+
+If the current is set to 0 in the platform data, that channel is
+disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5521.txt b/Documentation/leds/leds-lp5521.txt
deleted file mode 100644
index d08d8c179f85..000000000000
--- a/Documentation/leds/leds-lp5521.txt
+++ /dev/null
@@ -1,101 +0,0 @@
-Kernel driver for lp5521
-========================
-
-* National Semiconductor LP5521 led driver chip
-* Datasheet: http://www.national.com/pf/LP/LP5521.html
-
-Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
-Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
-
-Description
------------
-
-LP5521 can drive up to 3 channels. Leds can be controlled directly via
-the led class control interface. Channels have generic names:
-lp5521:channelx, where x is 0 .. 2
-
-All three channels can be also controlled using the engine micro programs.
-More details of the instructions can be found from the public data sheet.
-
-LP5521 has the internal program memory for running various LED patterns.
-There are two ways to run LED patterns.
-
-1) Legacy interface - enginex_mode and enginex_load
- Control interface for the engines:
- x is 1 .. 3
- enginex_mode : disabled, load, run
- enginex_load : store program (visible only in engine load mode)
-
- Example (start to blink the channel 2 led):
- cd /sys/class/leds/lp5521:channel2/device
- echo "load" > engine3_mode
- echo "037f4d0003ff6000" > engine3_load
- echo "run" > engine3_mode
-
- To stop the engine:
- echo "disabled" > engine3_mode
-
-2) Firmware interface - LP55xx common interface
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-sysfs contains a selftest entry.
-The test communicates with the chip and checks that
-the clock mode is automatically set to the requested one.
-
-Each channel has its own led current settings.
-/sys/class/leds/lp5521:channel0/led_current - RW
-/sys/class/leds/lp5521:channel0/max_current - RO
-Format: 10x mA i.e 10 means 1.0 mA
-
-example platform data:
-
-Note: chan_nr can have values between 0 and 2.
-The name of each channel can be configurable.
-If the name field is not defined, the default name will be set to 'xxxx:channelN'
-(XXXX : pdata->label or i2c client name, N : channel number)
-
-static struct lp55xx_led_config lp5521_led_config[] = {
- {
- .name = "red",
- .chan_nr = 0,
- .led_current = 50,
- .max_current = 130,
- }, {
- .name = "green",
- .chan_nr = 1,
- .led_current = 0,
- .max_current = 130,
- }, {
- .name = "blue",
- .chan_nr = 2,
- .led_current = 0,
- .max_current = 130,
- }
-};
-
-static int lp5521_setup(void)
-{
- /* setup HW resources */
-}
-
-static void lp5521_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5521_enable(bool state)
-{
- /* Control of chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5521_platform_data = {
- .led_config = lp5521_led_config,
- .num_channels = ARRAY_SIZE(lp5521_led_config),
- .clock_mode = LP55XX_CLOCK_EXT,
- .setup_resources = lp5521_setup,
- .release_resources = lp5521_release,
- .enable = lp5521_enable,
-};
-
-If the current is set to 0 in the platform data, that channel is
-disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5523.rst b/Documentation/leds/leds-lp5523.rst
new file mode 100644
index 000000000000..7d7362a1dd57
--- /dev/null
+++ b/Documentation/leds/leds-lp5523.rst
@@ -0,0 +1,147 @@
+========================
+Kernel driver for lp5523
+========================
+
+* National Semiconductor LP5523 led driver chip
+* Datasheet: http://www.national.com/pf/LP/LP5523.html
+
+Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
+Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
+
+Description
+-----------
+LP5523 can drive up to 9 channels. Leds can be controlled directly via
+the led class control interface.
+The name of each channel is configurable in the platform data - name and label.
+There are three options to make the channel name.
+
+a) Define the 'name' in the platform data
+
+To make specific channel name, then use 'name' platform data.
+
+- /sys/class/leds/R1 (name: 'R1')
+- /sys/class/leds/B1 (name: 'B1')
+
+b) Use the 'label' with no 'name' field
+
+For one device name with channel number, then use 'label'.
+- /sys/class/leds/RGB:channelN (label: 'RGB', N: 0 ~ 8)
+
+c) Default
+
+If both fields are NULL, 'lp5523' is used by default.
+- /sys/class/leds/lp5523:channelN (N: 0 ~ 8)
+
+LP5523 has the internal program memory for running various LED patterns.
+There are two ways to run LED patterns.
+
+1) Legacy interface - enginex_mode, enginex_load and enginex_leds
+
+ Control interface for the engines:
+
+ x is 1 .. 3
+
+ enginex_mode:
+ disabled, load, run
+ enginex_load:
+ microcode load
+ enginex_leds:
+ led mux control
+
+ ::
+
+ cd /sys/class/leds/lp5523:channel2/device
+ echo "load" > engine3_mode
+ echo "9d80400004ff05ff437f0000" > engine3_load
+ echo "111111111" > engine3_leds
+ echo "run" > engine3_mode
+
+ To stop the engine::
+
+ echo "disabled" > engine3_mode
+
+2) Firmware interface - LP55xx common interface
+
+For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+LP5523 has three master faders. If a channel is mapped to one of
+the master faders, its output is dimmed based on the value of the master
+fader.
+
+For example::
+
+ echo "123000123" > master_fader_leds
+
+creates the following channel-fader mappings::
+
+ channel 0,6 to master_fader1
+ channel 1,7 to master_fader2
+ channel 2,8 to master_fader3
+
+Then, to have 25% of the original output on channel 0,6::
+
+ echo 64 > master_fader1
+
+To have 0% of the original output (i.e. no output) channel 1,7::
+
+ echo 0 > master_fader2
+
+To have 100% of the original output (i.e. no dimming) on channel 2,8::
+
+ echo 255 > master_fader3
+
+To clear all master fader controls::
+
+ echo "000000000" > master_fader_leds
+
+Selftest uses always the current from the platform data.
+
+Each channel contains led current settings.
+- /sys/class/leds/lp5523:channel2/led_current - RW
+- /sys/class/leds/lp5523:channel2/max_current - RO
+
+Format: 10x mA i.e 10 means 1.0 mA
+
+Example platform data::
+
+ static struct lp55xx_led_config lp5523_led_config[] = {
+ {
+ .name = "D1",
+ .chan_nr = 0,
+ .led_current = 50,
+ .max_current = 130,
+ },
+ ...
+ {
+ .chan_nr = 8,
+ .led_current = 50,
+ .max_current = 130,
+ }
+ };
+
+ static int lp5523_setup(void)
+ {
+ /* Setup HW resources */
+ }
+
+ static void lp5523_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5523_enable(bool state)
+ {
+ /* Control chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5523_platform_data = {
+ .led_config = lp5523_led_config,
+ .num_channels = ARRAY_SIZE(lp5523_led_config),
+ .clock_mode = LP55XX_CLOCK_EXT,
+ .setup_resources = lp5523_setup,
+ .release_resources = lp5523_release,
+ .enable = lp5523_enable,
+ };
+
+Note
+ chan_nr can have values between 0 and 8.
diff --git a/Documentation/leds/leds-lp5523.txt b/Documentation/leds/leds-lp5523.txt
deleted file mode 100644
index 0961a060fc4d..000000000000
--- a/Documentation/leds/leds-lp5523.txt
+++ /dev/null
@@ -1,130 +0,0 @@
-Kernel driver for lp5523
-========================
-
-* National Semiconductor LP5523 led driver chip
-* Datasheet: http://www.national.com/pf/LP/LP5523.html
-
-Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
-Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
-
-Description
------------
-LP5523 can drive up to 9 channels. Leds can be controlled directly via
-the led class control interface.
-The name of each channel is configurable in the platform data - name and label.
-There are three options to make the channel name.
-
-a) Define the 'name' in the platform data
-To make specific channel name, then use 'name' platform data.
-/sys/class/leds/R1 (name: 'R1')
-/sys/class/leds/B1 (name: 'B1')
-
-b) Use the 'label' with no 'name' field
-For one device name with channel number, then use 'label'.
-/sys/class/leds/RGB:channelN (label: 'RGB', N: 0 ~ 8)
-
-c) Default
-If both fields are NULL, 'lp5523' is used by default.
-/sys/class/leds/lp5523:channelN (N: 0 ~ 8)
-
-LP5523 has the internal program memory for running various LED patterns.
-There are two ways to run LED patterns.
-
-1) Legacy interface - enginex_mode, enginex_load and enginex_leds
- Control interface for the engines:
- x is 1 .. 3
- enginex_mode : disabled, load, run
- enginex_load : microcode load
- enginex_leds : led mux control
-
- cd /sys/class/leds/lp5523:channel2/device
- echo "load" > engine3_mode
- echo "9d80400004ff05ff437f0000" > engine3_load
- echo "111111111" > engine3_leds
- echo "run" > engine3_mode
-
- To stop the engine:
- echo "disabled" > engine3_mode
-
-2) Firmware interface - LP55xx common interface
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-LP5523 has three master faders. If a channel is mapped to one of
-the master faders, its output is dimmed based on the value of the master
-fader.
-
-For example,
-
- echo "123000123" > master_fader_leds
-
-creates the following channel-fader mappings:
-
- channel 0,6 to master_fader1
- channel 1,7 to master_fader2
- channel 2,8 to master_fader3
-
-Then, to have 25% of the original output on channel 0,6:
-
- echo 64 > master_fader1
-
-To have 0% of the original output (i.e. no output) channel 1,7:
-
- echo 0 > master_fader2
-
-To have 100% of the original output (i.e. no dimming) on channel 2,8:
-
- echo 255 > master_fader3
-
-To clear all master fader controls:
-
- echo "000000000" > master_fader_leds
-
-Selftest uses always the current from the platform data.
-
-Each channel contains led current settings.
-/sys/class/leds/lp5523:channel2/led_current - RW
-/sys/class/leds/lp5523:channel2/max_current - RO
-Format: 10x mA i.e 10 means 1.0 mA
-
-Example platform data:
-
-Note - chan_nr can have values between 0 and 8.
-
-static struct lp55xx_led_config lp5523_led_config[] = {
- {
- .name = "D1",
- .chan_nr = 0,
- .led_current = 50,
- .max_current = 130,
- },
-...
- {
- .chan_nr = 8,
- .led_current = 50,
- .max_current = 130,
- }
-};
-
-static int lp5523_setup(void)
-{
- /* Setup HW resources */
-}
-
-static void lp5523_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5523_enable(bool state)
-{
- /* Control chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5523_platform_data = {
- .led_config = lp5523_led_config,
- .num_channels = ARRAY_SIZE(lp5523_led_config),
- .clock_mode = LP55XX_CLOCK_EXT,
- .setup_resources = lp5523_setup,
- .release_resources = lp5523_release,
- .enable = lp5523_enable,
-};
diff --git a/Documentation/leds/leds-lp5562.rst b/Documentation/leds/leds-lp5562.rst
new file mode 100644
index 000000000000..79bbb2487ff6
--- /dev/null
+++ b/Documentation/leds/leds-lp5562.rst
@@ -0,0 +1,137 @@
+========================
+Kernel driver for lp5562
+========================
+
+* TI LP5562 LED Driver
+
+Author: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+===========
+
+ LP5562 can drive up to 4 channels. R/G/B and White.
+ LEDs can be controlled directly via the led class control interface.
+
+ All four channels can be also controlled using the engine micro programs.
+ LP5562 has the internal program memory for running various LED patterns.
+ For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+Device attribute
+================
+
+engine_mux
+ 3 Engines are allocated in LP5562, but the number of channel is 4.
+ Therefore each channel should be mapped to the engine number.
+
+ Value: RGB or W
+
+ This attribute is used for programming LED data with the firmware interface.
+ Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine mux,
+ so additional sysfs is required
+
+ LED Map
+
+ ===== === ===============================
+ Red ... Engine 1 (fixed)
+ Green ... Engine 2 (fixed)
+ Blue ... Engine 3 (fixed)
+ White ... Engine 1 or 2 or 3 (selective)
+ ===== === ===============================
+
+How to load the program data using engine_mux
+=============================================
+
+ Before loading the LP5562 program data, engine_mux should be written between
+ the engine selection and loading the firmware.
+ Engine mux has two different mode, RGB and W.
+ RGB is used for loading RGB program data, W is used for W program data.
+
+ For example, run blinking green channel pattern::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for green channel
+ echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux for RGB
+ echo 1 > /sys/class/firmware/lp5562/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
+ echo 0 > /sys/class/firmware/lp5562/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+ To run a blinking white pattern::
+
+ echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
+ echo 1 > /sys/class/firmware/lp5562/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
+ echo 0 > /sys/class/firmware/lp5562/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+How to load the predefined patterns
+===================================
+
+ Please refer to 'leds-lp55xx.txt"
+
+Setting Current of Each Channel
+===============================
+
+ Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
+ The 'led_current' and 'max_current' are used.
+
+Example of Platform data
+========================
+
+::
+
+ static struct lp55xx_led_config lp5562_led_config[] = {
+ {
+ .name = "R",
+ .chan_nr = 0,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "G",
+ .chan_nr = 1,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "B",
+ .chan_nr = 2,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "W",
+ .chan_nr = 3,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ };
+
+ static int lp5562_setup(void)
+ {
+ /* setup HW resources */
+ }
+
+ static void lp5562_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5562_enable(bool state)
+ {
+ /* Control of chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5562_platform_data = {
+ .led_config = lp5562_led_config,
+ .num_channels = ARRAY_SIZE(lp5562_led_config),
+ .setup_resources = lp5562_setup,
+ .release_resources = lp5562_release,
+ .enable = lp5562_enable,
+ };
+
+To configure the platform specific data, lp55xx_platform_data structure is used
+
+
+If the current is set to 0 in the platform data, that channel is
+disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5562.txt b/Documentation/leds/leds-lp5562.txt
deleted file mode 100644
index 5a823ff6b393..000000000000
--- a/Documentation/leds/leds-lp5562.txt
+++ /dev/null
@@ -1,120 +0,0 @@
-Kernel driver for LP5562
-========================
-
-* TI LP5562 LED Driver
-
-Author: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
-
- LP5562 can drive up to 4 channels. R/G/B and White.
- LEDs can be controlled directly via the led class control interface.
-
- All four channels can be also controlled using the engine micro programs.
- LP5562 has the internal program memory for running various LED patterns.
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-Device attribute: engine_mux
-
- 3 Engines are allocated in LP5562, but the number of channel is 4.
- Therefore each channel should be mapped to the engine number.
- Value : RGB or W
-
- This attribute is used for programming LED data with the firmware interface.
- Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine mux,
- so additional sysfs is required.
-
- LED Map
- Red ... Engine 1 (fixed)
- Green ... Engine 2 (fixed)
- Blue ... Engine 3 (fixed)
- White ... Engine 1 or 2 or 3 (selective)
-
-How to load the program data using engine_mux
-
- Before loading the LP5562 program data, engine_mux should be written between
- the engine selection and loading the firmware.
- Engine mux has two different mode, RGB and W.
- RGB is used for loading RGB program data, W is used for W program data.
-
- For example, run blinking green channel pattern,
- echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for green channel
- echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux for RGB
- echo 1 > /sys/class/firmware/lp5562/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
- echo 0 > /sys/class/firmware/lp5562/loading
- echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
- To run a blinking white pattern,
- echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
- echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
- echo 1 > /sys/class/firmware/lp5562/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
- echo 0 > /sys/class/firmware/lp5562/loading
- echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-How to load the predefined patterns
-
- Please refer to 'leds-lp55xx.txt"
-
-Setting Current of Each Channel
-
- Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
- The 'led_current' and 'max_current' are used.
-
-(Example of Platform data)
-
-To configure the platform specific data, lp55xx_platform_data structure is used.
-
-static struct lp55xx_led_config lp5562_led_config[] = {
- {
- .name = "R",
- .chan_nr = 0,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "G",
- .chan_nr = 1,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "B",
- .chan_nr = 2,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "W",
- .chan_nr = 3,
- .led_current = 20,
- .max_current = 40,
- },
-};
-
-static int lp5562_setup(void)
-{
- /* setup HW resources */
-}
-
-static void lp5562_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5562_enable(bool state)
-{
- /* Control of chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5562_platform_data = {
- .led_config = lp5562_led_config,
- .num_channels = ARRAY_SIZE(lp5562_led_config),
- .setup_resources = lp5562_setup,
- .release_resources = lp5562_release,
- .enable = lp5562_enable,
-};
-
-If the current is set to 0 in the platform data, that channel is
-disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp55xx.rst b/Documentation/leds/leds-lp55xx.rst
new file mode 100644
index 000000000000..632e41cec0b5
--- /dev/null
+++ b/Documentation/leds/leds-lp55xx.rst
@@ -0,0 +1,224 @@
+=================================================
+LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver
+=================================================
+
+Authors: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+-----------
+LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.
+
+ Register access via the I2C
+ Device initialization/deinitialization
+ Create LED class devices for multiple output channels
+ Device attributes for user-space interface
+ Program memory for running LED patterns
+
+The LP55xx common driver provides these features using exported functions.
+
+ lp55xx_init_device() / lp55xx_deinit_device()
+ lp55xx_register_leds() / lp55xx_unregister_leds()
+ lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs()
+
+( Driver Structure Data )
+
+In lp55xx common driver, two different data structure is used.
+
+* lp55xx_led
+ control multi output LED channels such as led current, channel index.
+* lp55xx_chip
+ general chip control such like the I2C and platform data.
+
+For example, LP5521 has maximum 3 LED channels.
+LP5523/55231 has 9 output channels::
+
+ lp55xx_chip for LP5521 ... lp55xx_led #1
+ lp55xx_led #2
+ lp55xx_led #3
+
+ lp55xx_chip for LP5523 ... lp55xx_led #1
+ lp55xx_led #2
+ .
+ .
+ lp55xx_led #9
+
+( Chip Dependent Code )
+
+To support device specific configurations, special structure
+'lpxx_device_config' is used.
+
+ - Maximum number of channels
+ - Reset command, chip enable command
+ - Chip specific initialization
+ - Brightness control register access
+ - Setting LED output current
+ - Program memory address access for running patterns
+ - Additional device specific attributes
+
+( Firmware Interface )
+
+LP55xx family devices have the internal program memory for running
+various LED patterns.
+
+This pattern data is saved as a file in the user-land or
+hex byte string is written into the memory through the I2C.
+
+LP55xx common driver supports the firmware interface.
+
+LP55xx chips have three program engines.
+
+To load and run the pattern, the programming sequence is following.
+
+ (1) Select an engine number (1/2/3)
+ (2) Mode change to load
+ (3) Write pattern data into selected area
+ (4) Mode change to run
+
+The LP55xx common driver provides simple interfaces as below.
+
+select_engine:
+ Select which engine is used for running program
+run_engine:
+ Start program which is loaded via the firmware interface
+firmware:
+ Load program data
+
+In case of LP5523, one more command is required, 'enginex_leds'.
+It is used for selecting LED output(s) at each engine number.
+In more details, please refer to 'leds-lp5523.txt'.
+
+For example, run blinking pattern in engine #1 of LP5521::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp5521/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
+ echo 0 > /sys/class/firmware/lp5521/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+For example, run blinking pattern in engine #3 of LP55231
+
+Two LEDs are configured as pattern output channels::
+
+ echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp55231/loading
+ echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
+ echo 0 > /sys/class/firmware/lp55231/loading
+ echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+To start blinking patterns in engine #2 and #3 simultaneously::
+
+ for idx in 2 3
+ do
+ echo $idx > /sys/class/leds/red/device/select_engine
+ sleep 0.1
+ echo 1 > /sys/class/firmware/lp5521/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
+ echo 0 > /sys/class/firmware/lp5521/loading
+ done
+ echo 1 > /sys/class/leds/red/device/run_engine
+
+Here is another example for LP5523.
+
+Full LED strings are selected by 'engine2_leds'::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp5523/loading
+ echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
+ echo 0 > /sys/class/firmware/lp5523/loading
+ echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+As soon as 'loading' is set to 0, registered callback is called.
+Inside the callback, the selected engine is loaded and memory is updated.
+To run programmed pattern, 'run_engine' attribute should be enabled.
+
+The pattern sequence of LP8501 is similar to LP5523.
+
+However pattern data is specific.
+
+Ex 1) Engine 1 is used::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+Ex 2) Engine 2 and 3 are used at the same time::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
+ sleep 1
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ sleep 1
+ echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ sleep 1
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ sleep 1
+ echo 1 > /sys/class/leds/d1/device/run_engine
+
+( 'run_engine' and 'firmware_cb' )
+
+The sequence of running the program data is common.
+
+But each device has own specific register addresses for commands.
+
+To support this, 'run_engine' and 'firmware_cb' are configurable in each driver.
+
+run_engine:
+ Control the selected engine
+firmware_cb:
+ The callback function after loading the firmware is done.
+
+ Chip specific commands for loading and updating program memory.
+
+( Predefined pattern data )
+
+Without the firmware interface, LP55xx driver provides another method for
+loading a LED pattern. That is 'predefined' pattern.
+
+A predefined pattern is defined in the platform data and load it(or them)
+via the sysfs if needed.
+
+To use the predefined pattern concept, 'patterns' and 'num_patterns' should be
+configured.
+
+Example of predefined pattern data::
+
+ /* mode_1: blinking data */
+ static const u8 mode_1[] = {
+ 0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
+ };
+
+ /* mode_2: always on */
+ static const u8 mode_2[] = { 0x40, 0xFF, };
+
+ struct lp55xx_predef_pattern board_led_patterns[] = {
+ {
+ .r = mode_1,
+ .size_r = ARRAY_SIZE(mode_1),
+ },
+ {
+ .b = mode_2,
+ .size_b = ARRAY_SIZE(mode_2),
+ },
+ }
+
+ struct lp55xx_platform_data lp5562_pdata = {
+ ...
+ .patterns = board_led_patterns,
+ .num_patterns = ARRAY_SIZE(board_led_patterns),
+ };
+
+Then, mode_1 and mode_2 can be run via through the sysfs::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED pattern
+ echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on
+
+To stop running pattern::
+
+ echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern
diff --git a/Documentation/leds/leds-lp55xx.txt b/Documentation/leds/leds-lp55xx.txt
deleted file mode 100644
index e23fa91ea722..000000000000
--- a/Documentation/leds/leds-lp55xx.txt
+++ /dev/null
@@ -1,194 +0,0 @@
-LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver
-=================================================
-
-Authors: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
------------
-LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.
-
- Register access via the I2C
- Device initialization/deinitialization
- Create LED class devices for multiple output channels
- Device attributes for user-space interface
- Program memory for running LED patterns
-
-The LP55xx common driver provides these features using exported functions.
- lp55xx_init_device() / lp55xx_deinit_device()
- lp55xx_register_leds() / lp55xx_unregister_leds()
- lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs()
-
-( Driver Structure Data )
-
-In lp55xx common driver, two different data structure is used.
-
-o lp55xx_led
- control multi output LED channels such as led current, channel index.
-o lp55xx_chip
- general chip control such like the I2C and platform data.
-
-For example, LP5521 has maximum 3 LED channels.
-LP5523/55231 has 9 output channels.
-
-lp55xx_chip for LP5521 ... lp55xx_led #1
- lp55xx_led #2
- lp55xx_led #3
-
-lp55xx_chip for LP5523 ... lp55xx_led #1
- lp55xx_led #2
- .
- .
- lp55xx_led #9
-
-( Chip Dependent Code )
-
-To support device specific configurations, special structure
-'lpxx_device_config' is used.
-
- Maximum number of channels
- Reset command, chip enable command
- Chip specific initialization
- Brightness control register access
- Setting LED output current
- Program memory address access for running patterns
- Additional device specific attributes
-
-( Firmware Interface )
-
-LP55xx family devices have the internal program memory for running
-various LED patterns.
-This pattern data is saved as a file in the user-land or
-hex byte string is written into the memory through the I2C.
-LP55xx common driver supports the firmware interface.
-
-LP55xx chips have three program engines.
-To load and run the pattern, the programming sequence is following.
- (1) Select an engine number (1/2/3)
- (2) Mode change to load
- (3) Write pattern data into selected area
- (4) Mode change to run
-
-The LP55xx common driver provides simple interfaces as below.
-select_engine : Select which engine is used for running program
-run_engine : Start program which is loaded via the firmware interface
-firmware : Load program data
-
-In case of LP5523, one more command is required, 'enginex_leds'.
-It is used for selecting LED output(s) at each engine number.
-In more details, please refer to 'leds-lp5523.txt'.
-
-For example, run blinking pattern in engine #1 of LP5521
-echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp5521/loading
-echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
-echo 0 > /sys/class/firmware/lp5521/loading
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-For example, run blinking pattern in engine #3 of LP55231
-Two LEDs are configured as pattern output channels.
-echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp55231/loading
-echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
-echo 0 > /sys/class/firmware/lp55231/loading
-echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-To start blinking patterns in engine #2 and #3 simultaneously,
-for idx in 2 3
-do
- echo $idx > /sys/class/leds/red/device/select_engine
- sleep 0.1
- echo 1 > /sys/class/firmware/lp5521/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
- echo 0 > /sys/class/firmware/lp5521/loading
-done
-echo 1 > /sys/class/leds/red/device/run_engine
-
-Here is another example for LP5523.
-Full LED strings are selected by 'engine2_leds'.
-echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp5523/loading
-echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
-echo 0 > /sys/class/firmware/lp5523/loading
-echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-As soon as 'loading' is set to 0, registered callback is called.
-Inside the callback, the selected engine is loaded and memory is updated.
-To run programmed pattern, 'run_engine' attribute should be enabled.
-
-The pattern sequence of LP8501 is similar to LP5523.
-However pattern data is specific.
-Ex 1) Engine 1 is used
-echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-Ex 2) Engine 2 and 3 are used at the same time
-echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
-sleep 1
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-sleep 1
-echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
-sleep 1
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-sleep 1
-echo 1 > /sys/class/leds/d1/device/run_engine
-
-( 'run_engine' and 'firmware_cb' )
-The sequence of running the program data is common.
-But each device has own specific register addresses for commands.
-To support this, 'run_engine' and 'firmware_cb' are configurable in each driver.
-run_engine : Control the selected engine
-firmware_cb : The callback function after loading the firmware is done.
- Chip specific commands for loading and updating program memory.
-
-( Predefined pattern data )
-
-Without the firmware interface, LP55xx driver provides another method for
-loading a LED pattern. That is 'predefined' pattern.
-A predefined pattern is defined in the platform data and load it(or them)
-via the sysfs if needed.
-To use the predefined pattern concept, 'patterns' and 'num_patterns' should be
-configured.
-
- Example of predefined pattern data:
-
- /* mode_1: blinking data */
- static const u8 mode_1[] = {
- 0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
- };
-
- /* mode_2: always on */
- static const u8 mode_2[] = { 0x40, 0xFF, };
-
- struct lp55xx_predef_pattern board_led_patterns[] = {
- {
- .r = mode_1,
- .size_r = ARRAY_SIZE(mode_1),
- },
- {
- .b = mode_2,
- .size_b = ARRAY_SIZE(mode_2),
- },
- }
-
- struct lp55xx_platform_data lp5562_pdata = {
- ...
- .patterns = board_led_patterns,
- .num_patterns = ARRAY_SIZE(board_led_patterns),
- };
-
-Then, mode_1 and mode_2 can be run via through the sysfs.
-
- echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED pattern
- echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on
-
-To stop running pattern,
- echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern
diff --git a/Documentation/leds/leds-mlxcpld.rst b/Documentation/leds/leds-mlxcpld.rst
new file mode 100644
index 000000000000..528582429e0b
--- /dev/null
+++ b/Documentation/leds/leds-mlxcpld.rst
@@ -0,0 +1,118 @@
+=======================================
+Kernel driver for Mellanox systems LEDs
+=======================================
+
+Provide system LED support for the nex Mellanox systems:
+"msx6710", "msx6720", "msb7700", "msn2700", "msx1410",
+"msn2410", "msb7800", "msn2740", "msn2100".
+
+Description
+-----------
+Driver provides the following LEDs for the systems "msx6710", "msx6720",
+"msb7700", "msn2700", "msx1410", "msn2410", "msb7800", "msn2740":
+
+ - mlxcpld:fan1:green
+ - mlxcpld:fan1:red
+ - mlxcpld:fan2:green
+ - mlxcpld:fan2:red
+ - mlxcpld:fan3:green
+ - mlxcpld:fan3:red
+ - mlxcpld:fan4:green
+ - mlxcpld:fan4:red
+ - mlxcpld:psu:green
+ - mlxcpld:psu:red
+ - mlxcpld:status:green
+ - mlxcpld:status:red
+
+ "status"
+ - CPLD reg offset: 0x20
+ - Bits [3:0]
+
+ "psu"
+ - CPLD reg offset: 0x20
+ - Bits [7:4]
+
+ "fan1"
+ - CPLD reg offset: 0x21
+ - Bits [3:0]
+
+ "fan2"
+ - CPLD reg offset: 0x21
+ - Bits [7:4]
+
+ "fan3"
+ - CPLD reg offset: 0x22
+ - Bits [3:0]
+
+ "fan4"
+ - CPLD reg offset: 0x22
+ - Bits [7:4]
+
+ Color mask for all the above LEDs:
+
+ [bit3,bit2,bit1,bit0] or
+ [bit7,bit6,bit5,bit4]:
+
+ - [0,0,0,0] = LED OFF
+ - [0,1,0,1] = Red static ON
+ - [1,1,0,1] = Green static ON
+ - [0,1,1,0] = Red blink 3Hz
+ - [1,1,1,0] = Green blink 3Hz
+ - [0,1,1,1] = Red blink 6Hz
+ - [1,1,1,1] = Green blink 6Hz
+
+Driver provides the following LEDs for the system "msn2100":
+
+ - mlxcpld:fan:green
+ - mlxcpld:fan:red
+ - mlxcpld:psu1:green
+ - mlxcpld:psu1:red
+ - mlxcpld:psu2:green
+ - mlxcpld:psu2:red
+ - mlxcpld:status:green
+ - mlxcpld:status:red
+ - mlxcpld:uid:blue
+
+ "status"
+ - CPLD reg offset: 0x20
+ - Bits [3:0]
+
+ "fan"
+ - CPLD reg offset: 0x21
+ - Bits [3:0]
+
+ "psu1"
+ - CPLD reg offset: 0x23
+ - Bits [3:0]
+
+ "psu2"
+ - CPLD reg offset: 0x23
+ - Bits [7:4]
+
+ "uid"
+ - CPLD reg offset: 0x24
+ - Bits [3:0]
+
+ Color mask for all the above LEDs, excepted uid:
+
+ [bit3,bit2,bit1,bit0] or
+ [bit7,bit6,bit5,bit4]:
+
+ - [0,0,0,0] = LED OFF
+ - [0,1,0,1] = Red static ON
+ - [1,1,0,1] = Green static ON
+ - [0,1,1,0] = Red blink 3Hz
+ - [1,1,1,0] = Green blink 3Hz
+ - [0,1,1,1] = Red blink 6Hz
+ - [1,1,1,1] = Green blink 6Hz
+
+ Color mask for uid LED:
+ [bit3,bit2,bit1,bit0]:
+
+ - [0,0,0,0] = LED OFF
+ - [1,1,0,1] = Blue static ON
+ - [1,1,1,0] = Blue blink 3Hz
+ - [1,1,1,1] = Blue blink 6Hz
+
+Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle).
+For 3Hz duty cylce is about 167 msec, for 6Hz is about 83 msec.
diff --git a/Documentation/leds/leds-mlxcpld.txt b/Documentation/leds/leds-mlxcpld.txt
deleted file mode 100644
index a0e8fd457117..000000000000
--- a/Documentation/leds/leds-mlxcpld.txt
+++ /dev/null
@@ -1,110 +0,0 @@
-Kernel driver for Mellanox systems LEDs
-=======================================
-
-Provide system LED support for the nex Mellanox systems:
-"msx6710", "msx6720", "msb7700", "msn2700", "msx1410",
-"msn2410", "msb7800", "msn2740", "msn2100".
-
-Description
------------
-Driver provides the following LEDs for the systems "msx6710", "msx6720",
-"msb7700", "msn2700", "msx1410", "msn2410", "msb7800", "msn2740":
- mlxcpld:fan1:green
- mlxcpld:fan1:red
- mlxcpld:fan2:green
- mlxcpld:fan2:red
- mlxcpld:fan3:green
- mlxcpld:fan3:red
- mlxcpld:fan4:green
- mlxcpld:fan4:red
- mlxcpld:psu:green
- mlxcpld:psu:red
- mlxcpld:status:green
- mlxcpld:status:red
-
- "status"
- CPLD reg offset: 0x20
- Bits [3:0]
-
- "psu"
- CPLD reg offset: 0x20
- Bits [7:4]
-
- "fan1"
- CPLD reg offset: 0x21
- Bits [3:0]
-
- "fan2"
- CPLD reg offset: 0x21
- Bits [7:4]
-
- "fan3"
- CPLD reg offset: 0x22
- Bits [3:0]
-
- "fan4"
- CPLD reg offset: 0x22
- Bits [7:4]
-
- Color mask for all the above LEDs:
- [bit3,bit2,bit1,bit0] or
- [bit7,bit6,bit5,bit4]:
- [0,0,0,0] = LED OFF
- [0,1,0,1] = Red static ON
- [1,1,0,1] = Green static ON
- [0,1,1,0] = Red blink 3Hz
- [1,1,1,0] = Green blink 3Hz
- [0,1,1,1] = Red blink 6Hz
- [1,1,1,1] = Green blink 6Hz
-
-Driver provides the following LEDs for the system "msn2100":
- mlxcpld:fan:green
- mlxcpld:fan:red
- mlxcpld:psu1:green
- mlxcpld:psu1:red
- mlxcpld:psu2:green
- mlxcpld:psu2:red
- mlxcpld:status:green
- mlxcpld:status:red
- mlxcpld:uid:blue
-
- "status"
- CPLD reg offset: 0x20
- Bits [3:0]
-
- "fan"
- CPLD reg offset: 0x21
- Bits [3:0]
-
- "psu1"
- CPLD reg offset: 0x23
- Bits [3:0]
-
- "psu2"
- CPLD reg offset: 0x23
- Bits [7:4]
-
- "uid"
- CPLD reg offset: 0x24
- Bits [3:0]
-
- Color mask for all the above LEDs, excepted uid:
- [bit3,bit2,bit1,bit0] or
- [bit7,bit6,bit5,bit4]:
- [0,0,0,0] = LED OFF
- [0,1,0,1] = Red static ON
- [1,1,0,1] = Green static ON
- [0,1,1,0] = Red blink 3Hz
- [1,1,1,0] = Green blink 3Hz
- [0,1,1,1] = Red blink 6Hz
- [1,1,1,1] = Green blink 6Hz
-
- Color mask for uid LED:
- [bit3,bit2,bit1,bit0]:
- [0,0,0,0] = LED OFF
- [1,1,0,1] = Blue static ON
- [1,1,1,0] = Blue blink 3Hz
- [1,1,1,1] = Blue blink 6Hz
-
-Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle).
-For 3Hz duty cylce is about 167 msec, for 6Hz is about 83 msec.
diff --git a/Documentation/leds/ledtrig-oneshot.txt b/Documentation/leds/ledtrig-oneshot.rst
index fe57474a12e2..69fa3ea1d554 100644
--- a/Documentation/leds/ledtrig-oneshot.txt
+++ b/Documentation/leds/ledtrig-oneshot.rst
@@ -1,3 +1,4 @@
+====================
One-shot LED Trigger
====================
@@ -17,27 +18,27 @@ additional "invert" property specifies if the LED has to stay off (normal) or
on (inverted) when not rearmed.
The trigger can be activated from user space on led class devices as shown
-below:
+below::
echo oneshot > trigger
This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-oneshot
-Example use-case: network devices, initialization:
+Example use-case: network devices, initialization::
echo oneshot > trigger # set trigger for this led
echo 33 > delay_on # blink at 1 / (33 + 33) Hz on continuous traffic
echo 33 > delay_off
-interface goes up:
+interface goes up::
echo 1 > invert # set led as normally-on, turn the led on
-packet received/transmitted:
+packet received/transmitted::
echo 1 > shot # led starts blinking, ignored if already blinking
-interface goes down
+interface goes down::
echo 0 > invert # set led as normally-off, turn the led off
diff --git a/Documentation/leds/ledtrig-transient.txt b/Documentation/leds/ledtrig-transient.rst
index 3bd38b487df1..d921dc830cd0 100644
--- a/Documentation/leds/ledtrig-transient.txt
+++ b/Documentation/leds/ledtrig-transient.rst
@@ -1,3 +1,4 @@
+=====================
LED Transient Trigger
=====================
@@ -62,12 +63,13 @@ non-transient state. When driver gets suspended, irrespective of the transient
state, the LED state changes to LED_OFF.
Transient trigger can be enabled and disabled from user space on led class
-devices, that support this trigger as shown below:
+devices, that support this trigger as shown below::
-echo transient > trigger
-echo none > trigger
+ echo transient > trigger
+ echo none > trigger
-NOTE: Add a new property trigger state to control the state.
+NOTE:
+ Add a new property trigger state to control the state.
This trigger exports three properties, activate, state, and duration. When
transient trigger is activated these properties are set to default values.
@@ -79,7 +81,8 @@ transient trigger is activated these properties are set to default values.
- state allows user to specify a transient state to be held for the specified
duration.
- activate - one shot timer activate mechanism.
+ activate
+ - one shot timer activate mechanism.
1 when activated, 0 when deactivated.
default value is zero when transient trigger is enabled,
to allow duration to be set.
@@ -89,12 +92,14 @@ transient trigger is activated these properties are set to default values.
deactivated state indicates that there is no active timer
running.
- duration - one shot timer value. When activate is set, duration value
+ duration
+ - one shot timer value. When activate is set, duration value
is used to start a timer that runs once. This value doesn't
get changed by the trigger unless user does a set via
echo new_value > duration
- state - transient state to be held. It has two values 0 or 1. 0 maps
+ state
+ - transient state to be held. It has two values 0 or 1. 0 maps
to LED_OFF and 1 maps to LED_FULL. The specified state is
held for the duration of the one shot timer and then the
state gets changed to the non-transient state which is the
@@ -114,39 +119,49 @@ When timer expires activate goes back to deactivated state, duration is left
at the set value to be used when activate is set at a future time. This will
allow user app to set the time once and activate it to run it once for the
specified value as needed. When timer expires, state is restored to the
-non-transient state which is the inverse of the transient state.
-
- echo 1 > activate - starts timer = duration when duration is not 0.
- echo 0 > activate - cancels currently running timer.
- echo n > duration - stores timer value to be used upon next
- activate. Currently active timer if
- any, continues to run for the specified time.
- echo 0 > duration - stores timer value to be used upon next
- activate. Currently active timer if any,
- continues to run for the specified time.
- echo 1 > state - stores desired transient state LED_FULL to be
+non-transient state which is the inverse of the transient state:
+
+ ================= ===============================================
+ echo 1 > activate starts timer = duration when duration is not 0.
+ echo 0 > activate cancels currently running timer.
+ echo n > duration stores timer value to be used upon next
+ activate. Currently active timer if
+ any, continues to run for the specified time.
+ echo 0 > duration stores timer value to be used upon next
+ activate. Currently active timer if any,
+ continues to run for the specified time.
+ echo 1 > state stores desired transient state LED_FULL to be
held for the specified duration.
- echo 0 > state - stores desired transient state LED_OFF to be
+ echo 0 > state stores desired transient state LED_OFF to be
held for the specified duration.
+ ================= ===============================================
+
+What is not supported
+=====================
-What is not supported:
-======================
- Timer activation is one shot and extending and/or shortening the timer
is not supported.
-Example use-case 1:
+Examples
+========
+
+use-case 1::
+
echo transient > trigger
echo n > duration
echo 1 > state
-repeat the following step as needed:
+
+repeat the following step as needed::
+
echo 1 > activate - start timer = duration to run once
echo 1 > activate - start timer = duration to run once
echo none > trigger
This trigger is intended to be used for for the following example use cases:
+
- Control of vibrate (phones, tablets etc.) hardware by user space app.
- Use of LED by user space app as activity indicator.
- Use of LED by user space app as a kind of watchdog indicator -- as
- long as the app is alive, it can keep the LED illuminated, if it dies
- the LED will be extinguished automatically.
+ long as the app is alive, it can keep the LED illuminated, if it dies
+ the LED will be extinguished automatically.
- Use by any user space app that needs a transient GPIO output.
diff --git a/Documentation/leds/ledtrig-usbport.txt b/Documentation/leds/ledtrig-usbport.rst
index 69f54bfb4789..37c2505bfd57 100644
--- a/Documentation/leds/ledtrig-usbport.txt
+++ b/Documentation/leds/ledtrig-usbport.rst
@@ -1,3 +1,4 @@
+====================
USB port LED trigger
====================
@@ -10,14 +11,18 @@ listed as separated entries in a "ports" subdirectory. Selecting is handled by
echoing "1" to a chosen port.
Please note that this trigger allows selecting multiple USB ports for a single
-LED. This can be useful in two cases:
+LED.
+
+This can be useful in two cases:
1) Device with single USB LED and few physical ports
+====================================================
In such a case LED will be turned on as long as there is at least one connected
USB device.
2) Device with a physical port handled by few controllers
+=========================================================
Some devices may have one controller per PHY standard. E.g. USB 3.0 physical
port may be handled by ohci-platform, ehci-platform and xhci-hcd. If there is
@@ -25,14 +30,14 @@ only one LED user will most likely want to assign ports from all 3 hubs.
This trigger can be activated from user space on led class devices as shown
-below:
+below::
echo usbport > trigger
This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-usbport
-Example use-case:
+Example use-case::
echo usbport > trigger
echo 1 > ports/usb1-port1
diff --git a/Documentation/leds/uleds.txt b/Documentation/leds/uleds.rst
index 13e375a580f9..83221098009c 100644
--- a/Documentation/leds/uleds.txt
+++ b/Documentation/leds/uleds.rst
@@ -1,3 +1,4 @@
+==============
Userspace LEDs
==============
@@ -10,12 +11,12 @@ Usage
When the driver is loaded, a character device is created at /dev/uleds. To
create a new LED class device, open /dev/uleds and write a uleds_user_dev
-structure to it (found in kernel public header file linux/uleds.h).
+structure to it (found in kernel public header file linux/uleds.h)::
#define LED_MAX_NAME_SIZE 64
struct uleds_user_dev {
- char name[LED_MAX_NAME_SIZE];
+ char name[LED_MAX_NAME_SIZE];
};
A new LED class device will be created with the name given. The name can be
diff --git a/Documentation/locking/lockdep-design.txt b/Documentation/locking/lockdep-design.txt
index 39fae143c9cb..f189d130e543 100644
--- a/Documentation/locking/lockdep-design.txt
+++ b/Documentation/locking/lockdep-design.txt
@@ -15,34 +15,48 @@ tens of thousands of) instantiations. For example a lock in the inode
struct is one class, while each inode has its own instantiation of that
lock class.
-The validator tracks the 'state' of lock-classes, and it tracks
-dependencies between different lock-classes. The validator maintains a
-rolling proof that the state and the dependencies are correct.
-
-Unlike an lock instantiation, the lock-class itself never goes away: when
-a lock-class is used for the first time after bootup it gets registered,
-and all subsequent uses of that lock-class will be attached to this
-lock-class.
+The validator tracks the 'usage state' of lock-classes, and it tracks
+the dependencies between different lock-classes. Lock usage indicates
+how a lock is used with regard to its IRQ contexts, while lock
+dependency can be understood as lock order, where L1 -> L2 suggests that
+a task is attempting to acquire L2 while holding L1. From lockdep's
+perspective, the two locks (L1 and L2) are not necessarily related; that
+dependency just means the order ever happened. The validator maintains a
+continuing effort to prove lock usages and dependencies are correct or
+the validator will shoot a splat if incorrect.
+
+A lock-class's behavior is constructed by its instances collectively:
+when the first instance of a lock-class is used after bootup the class
+gets registered, then all (subsequent) instances will be mapped to the
+class and hence their usages and dependecies will contribute to those of
+the class. A lock-class does not go away when a lock instance does, but
+it can be removed if the memory space of the lock class (static or
+dynamic) is reclaimed, this happens for example when a module is
+unloaded or a workqueue is destroyed.
State
-----
-The validator tracks lock-class usage history into 4 * nSTATEs + 1 separate
-state bits:
+The validator tracks lock-class usage history and divides the usage into
+(4 usages * n STATEs + 1) categories:
+where the 4 usages can be:
- 'ever held in STATE context'
- 'ever held as readlock in STATE context'
- 'ever held with STATE enabled'
- 'ever held as readlock with STATE enabled'
-Where STATE can be either one of (kernel/locking/lockdep_states.h)
- - hardirq
- - softirq
+where the n STATEs are coded in kernel/locking/lockdep_states.h and as of
+now they include:
+- hardirq
+- softirq
+where the last 1 category is:
- 'ever used' [ == !unused ]
-When locking rules are violated, these state bits are presented in the
-locking error messages, inside curlies. A contrived example:
+When locking rules are violated, these usage bits are presented in the
+locking error messages, inside curlies, with a total of 2 * n STATEs bits.
+A contrived example:
modprobe/2287 is trying to acquire lock:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
@@ -51,28 +65,67 @@ locking error messages, inside curlies. A contrived example:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
-The bit position indicates STATE, STATE-read, for each of the states listed
-above, and the character displayed in each indicates:
+For a given lock, the bit positions from left to right indicate the usage
+of the lock and readlock (if exists), for each of the n STATEs listed
+above respectively, and the character displayed at each bit position
+indicates:
'.' acquired while irqs disabled and not in irq context
'-' acquired in irq context
'+' acquired with irqs enabled
'?' acquired in irq context with irqs enabled.
-Unused mutexes cannot be part of the cause of an error.
+The bits are illustrated with an example:
+
+ (&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
+ ||||
+ ||| \-> softirq disabled and not in softirq context
+ || \--> acquired in softirq context
+ | \---> hardirq disabled and not in hardirq context
+ \----> acquired in hardirq context
+
+
+For a given STATE, whether the lock is ever acquired in that STATE
+context and whether that STATE is enabled yields four possible cases as
+shown in the table below. The bit character is able to indicate which
+exact case is for the lock as of the reporting time.
+
+ -------------------------------------------
+ | | irq enabled | irq disabled |
+ |-------------------------------------------|
+ | ever in irq | ? | - |
+ |-------------------------------------------|
+ | never in irq | + | . |
+ -------------------------------------------
+
+The character '-' suggests irq is disabled because if otherwise the
+charactor '?' would have been shown instead. Similar deduction can be
+applied for '+' too.
+
+Unused locks (e.g., mutexes) cannot be part of the cause of an error.
Single-lock state rules:
------------------------
+A lock is irq-safe means it was ever used in an irq context, while a lock
+is irq-unsafe means it was ever acquired with irq enabled.
+
A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The
-following states are exclusive, and only one of them is allowed to be
-set for any lock-class:
+following states must be exclusive: only one of them is allowed to be set
+for any lock-class based on its usage:
+
+ <hardirq-safe> or <hardirq-unsafe>
+ <softirq-safe> or <softirq-unsafe>
- <hardirq-safe> and <hardirq-unsafe>
- <softirq-safe> and <softirq-unsafe>
+This is because if a lock can be used in irq context (irq-safe) then it
+cannot be ever acquired with irq enabled (irq-unsafe). Otherwise, a
+deadlock may happen. For example, in the scenario that after this lock
+was acquired but before released, if the context is interrupted this
+lock will be attempted to acquire twice, which creates a deadlock,
+referred to as lock recursion deadlock.
-The validator detects and reports lock usage that violate these
+The validator detects and reports lock usage that violates these
single-lock state rules.
Multi-lock dependency rules:
@@ -81,15 +134,18 @@ Multi-lock dependency rules:
The same lock-class must not be acquired twice, because this could lead
to lock recursion deadlocks.
-Furthermore, two locks may not be taken in different order:
+Furthermore, two locks can not be taken in inverse order:
<L1> -> <L2>
<L2> -> <L1>
-because this could lead to lock inversion deadlocks. (The validator
-finds such dependencies in arbitrary complexity, i.e. there can be any
-other locking sequence between the acquire-lock operations, the
-validator will still track all dependencies between locks.)
+because this could lead to a deadlock - referred to as lock inversion
+deadlock - as attempts to acquire the two locks form a circle which
+could lead to the two contexts waiting for each other permanently. The
+validator will find such dependency circle in arbitrary complexity,
+i.e., there can be any other locking sequence between the acquire-lock
+operations; the validator will still find whether these locks can be
+acquired in a circular fashion.
Furthermore, the following usage based lock dependencies are not allowed
between any two lock-classes:
diff --git a/Documentation/maintainer/index.rst b/Documentation/maintainer/index.rst
index 2a14916930cb..56e2c09dfa39 100644
--- a/Documentation/maintainer/index.rst
+++ b/Documentation/maintainer/index.rst
@@ -10,5 +10,6 @@ additions to this manual.
:maxdepth: 2
configure-git
+ rebasing-and-merging
pull-requests
diff --git a/Documentation/maintainer/rebasing-and-merging.rst b/Documentation/maintainer/rebasing-and-merging.rst
new file mode 100644
index 000000000000..09f988e7fa71
--- /dev/null
+++ b/Documentation/maintainer/rebasing-and-merging.rst
@@ -0,0 +1,226 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====================
+Rebasing and merging
+====================
+
+Maintaining a subsystem, as a general rule, requires a familiarity with the
+Git source-code management system. Git is a powerful tool with a lot of
+features; as is often the case with such tools, there are right and wrong
+ways to use those features. This document looks in particular at the use
+of rebasing and merging. Maintainers often get in trouble when they use
+those tools incorrectly, but avoiding problems is not actually all that
+hard.
+
+One thing to be aware of in general is that, unlike many other projects,
+the kernel community is not scared by seeing merge commits in its
+development history. Indeed, given the scale of the project, avoiding
+merges would be nearly impossible. Some problems encountered by
+maintainers result from a desire to avoid merges, while others come from
+merging a little too often.
+
+Rebasing
+========
+
+"Rebasing" is the process of changing the history of a series of commits
+within a repository. There are two different types of operations that are
+referred to as rebasing since both are done with the ``git rebase``
+command, but there are significant differences between them:
+
+ - Changing the parent (starting) commit upon which a series of patches is
+ built. For example, a rebase operation could take a patch set built on
+ the previous kernel release and base it, instead, on the current
+ release. We'll call this operation "reparenting" in the discussion
+ below.
+
+ - Changing the history of a set of patches by fixing (or deleting) broken
+ commits, adding patches, adding tags to commit changelogs, or changing
+ the order in which commits are applied. In the following text, this
+ type of operation will be referred to as "history modification"
+
+The term "rebasing" will be used to refer to both of the above operations.
+Used properly, rebasing can yield a cleaner and clearer development
+history; used improperly, it can obscure that history and introduce bugs.
+
+There are a few rules of thumb that can help developers to avoid the worst
+perils of rebasing:
+
+ - History that has been exposed to the world beyond your private system
+ should usually not be changed. Others may have pulled a copy of your
+ tree and built on it; modifying your tree will create pain for them. If
+ work is in need of rebasing, that is usually a sign that it is not yet
+ ready to be committed to a public repository.
+
+ That said, there are always exceptions. Some trees (linux-next being
+ a significant example) are frequently rebased by their nature, and
+ developers know not to base work on them. Developers will sometimes
+ expose an unstable branch for others to test with or for automated
+ testing services. If you do expose a branch that may be unstable in
+ this way, be sure that prospective users know not to base work on it.
+
+ - Do not rebase a branch that contains history created by others. If you
+ have pulled changes from another developer's repository, you are now a
+ custodian of their history. You should not change it. With few
+ exceptions, for example, a broken commit in a tree like this should be
+ explicitly reverted rather than disappeared via history modification.
+
+ - Do not reparent a tree without a good reason to do so. Just being on a
+ newer base or avoiding a merge with an upstream repository is not
+ generally a good reason.
+
+ - If you must reparent a repository, do not pick some random kernel commit
+ as the new base. The kernel is often in a relatively unstable state
+ between release points; basing development on one of those points
+ increases the chances of running into surprising bugs. When a patch
+ series must move to a new base, pick a stable point (such as one of
+ the -rc releases) to move to.
+
+ - Realize that reparenting a patch series (or making significant history
+ modifications) changes the environment in which it was developed and,
+ likely, invalidates much of the testing that was done. A reparented
+ patch series should, as a general rule, be treated like new code and
+ retested from the beginning.
+
+A frequent cause of merge-window trouble is when Linus is presented with a
+patch series that has clearly been reparented, often to a random commit,
+shortly before the pull request was sent. The chances of such a series
+having been adequately tested are relatively low - as are the chances of
+the pull request being acted upon.
+
+If, instead, rebasing is limited to private trees, commits are based on a
+well-known starting point, and they are well tested, the potential for
+trouble is low.
+
+Merging
+=======
+
+Merging is a common operation in the kernel development process; the 5.1
+development cycle included 1,126 merge commits - nearly 9% of the total.
+Kernel work is accumulated in over 100 different subsystem trees, each of
+which may contain multiple topic branches; each branch is usually developed
+independently of the others. So naturally, at least one merge will be
+required before any given branch finds its way into an upstream repository.
+
+Many projects require that branches in pull requests be based on the
+current trunk so that no merge commits appear in the history. The kernel
+is not such a project; any rebasing of branches to avoid merges will, most
+likely, lead to trouble.
+
+Subsystem maintainers find themselves having to do two types of merges:
+from lower-level subsystem trees and from others, either sibling trees or
+the mainline. The best practices to follow differ in those two situations.
+
+Merging from lower-level trees
+------------------------------
+
+Larger subsystems tend to have multiple levels of maintainers, with the
+lower-level maintainers sending pull requests to the higher levels. Acting
+on such a pull request will almost certainly generate a merge commit; that
+is as it should be. In fact, subsystem maintainers may want to use
+the --no-ff flag to force the addition of a merge commit in the rare cases
+where one would not normally be created so that the reasons for the merge
+can be recorded. The changelog for the merge should, for any kind of
+merge, say *why* the merge is being done. For a lower-level tree, "why" is
+usually a summary of the changes that will come with that pull.
+
+Maintainers at all levels should be using signed tags on their pull
+requests, and upstream maintainers should verify the tags when pulling
+branches. Failure to do so threatens the security of the development
+process as a whole.
+
+As per the rules outlined above, once you have merged somebody else's
+history into your tree, you cannot rebase that branch, even if you
+otherwise would be able to.
+
+Merging from sibling or upstream trees
+--------------------------------------
+
+While merges from downstream are common and unremarkable, merges from other
+trees tend to be a red flag when it comes time to push a branch upstream.
+Such merges need to be carefully thought about and well justified, or
+there's a good chance that a subsequent pull request will be rejected.
+
+It is natural to want to merge the master branch into a repository; this
+type of merge is often called a "back merge". Back merges can help to make
+sure that there are no conflicts with parallel development and generally
+gives a warm, fuzzy feeling of being up-to-date. But this temptation
+should be avoided almost all of the time.
+
+Why is that? Back merges will muddy the development history of your own
+branch. They will significantly increase your chances of encountering bugs
+from elsewhere in the community and make it hard to ensure that the work
+you are managing is stable and ready for upstream. Frequent merges can
+also obscure problems with the development process in your tree; they can
+hide interactions with other trees that should not be happening (often) in
+a well-managed branch.
+
+That said, back merges are occasionally required; when that happens, be
+sure to document *why* it was required in the commit message. As always,
+merge to a well-known stable point, rather than to some random commit.
+Even then, you should not back merge a tree above your immediate upstream
+tree; if a higher-level back merge is really required, the upstream tree
+should do it first.
+
+One of the most frequent causes of merge-related trouble is when a
+maintainer merges with the upstream in order to resolve merge conflicts
+before sending a pull request. Again, this temptation is easy enough to
+understand, but it should absolutely be avoided. This is especially true
+for the final pull request: Linus is adamant that he would much rather see
+merge conflicts than unnecessary back merges. Seeing the conflicts lets
+him know where potential problem areas are. He does a lot of merges (382
+in the 5.1 development cycle) and has gotten quite good at conflict
+resolution - often better than the developers involved.
+
+So what should a maintainer do when there is a conflict between their
+subsystem branch and the mainline? The most important step is to warn
+Linus in the pull request that the conflict will happen; if nothing else,
+that demonstrates an awareness of how your branch fits into the whole. For
+especially difficult conflicts, create and push a *separate* branch to show
+how you would resolve things. Mention that branch in your pull request,
+but the pull request itself should be for the unmerged branch.
+
+Even in the absence of known conflicts, doing a test merge before sending a
+pull request is a good idea. It may alert you to problems that you somehow
+didn't see from linux-next and helps to understand exactly what you are
+asking upstream to do.
+
+Another reason for doing merges of upstream or another subsystem tree is to
+resolve dependencies. These dependency issues do happen at times, and
+sometimes a cross-merge with another tree is the best way to resolve them;
+as always, in such situations, the merge commit should explain why the
+merge has been done. Take a moment to do it right; people will read those
+changelogs.
+
+Often, though, dependency issues indicate that a change of approach is
+needed. Merging another subsystem tree to resolve a dependency risks
+bringing in other bugs and should almost never be done. If that subsystem
+tree fails to be pulled upstream, whatever problems it had will block the
+merging of your tree as well. Preferable alternatives include agreeing
+with the maintainer to carry both sets of changes in one of the trees or
+creating a topic branch dedicated to the prerequisite commits that can be
+merged into both trees. If the dependency is related to major
+infrastructural changes, the right solution might be to hold the dependent
+commits for one development cycle so that those changes have time to
+stabilize in the mainline.
+
+Finally
+=======
+
+It is relatively common to merge with the mainline toward the beginning of
+the development cycle in order to pick up changes and fixes done elsewhere
+in the tree. As always, such a merge should pick a well-known release
+point rather than some random spot. If your upstream-bound branch has
+emptied entirely into the mainline during the merge window, you can pull it
+forward with a command like::
+
+ git merge v5.2-rc1^0
+
+The "^0" will cause Git to do a fast-forward merge (which should be
+possible in this situation), thus avoiding the addition of a spurious merge
+commit.
+
+The guidelines laid out above are just that: guidelines. There will always
+be situations that call out for a different solution, and these guidelines
+should not prevent developers from doing the right thing when the need
+arises. But one should always think about whether the need has truly
+arisen and be prepared to explain why something abnormal needs to be done.
diff --git a/Documentation/media/kapi/dtv-core.rst b/Documentation/media/kapi/dtv-core.rst
index ac005b46f23e..82c5b85ed9b1 100644
--- a/Documentation/media/kapi/dtv-core.rst
+++ b/Documentation/media/kapi/dtv-core.rst
@@ -11,12 +11,12 @@ Digital TV devices are implemented by several different drivers:
- Frontend drivers that are usually implemented as two separate drivers:
- - A tuner driver that implements the logic with commands the part of the
- hardware with is responsible to tune into a digital TV transponder or
+ - A tuner driver that implements the logic which commands the part of
+ the hardware responsible for tuning into a digital TV transponder or
physical channel. The output of a tuner is usually a baseband or
Intermediate Frequency (IF) signal;
- - A demodulator driver (a.k.a "demod") that implements the logic with
+ - A demodulator driver (a.k.a "demod") that implements the logic which
commands the digital TV decoding hardware. The output of a demod is
a digital stream, with multiple audio, video and data channels typically
multiplexed using MPEG Transport Stream [#f1]_.
diff --git a/Documentation/media/kapi/v4l2-controls.rst b/Documentation/media/kapi/v4l2-controls.rst
index 64ab99abf0b6..ebe2a55908be 100644
--- a/Documentation/media/kapi/v4l2-controls.rst
+++ b/Documentation/media/kapi/v4l2-controls.rst
@@ -26,8 +26,9 @@ The control framework was created in order to implement all the rules of the
V4L2 specification with respect to controls in a central place. And to make
life as easy as possible for the driver developer.
-Note that the control framework relies on the presence of a struct v4l2_device
-for V4L2 drivers and struct v4l2_subdev for sub-device drivers.
+Note that the control framework relies on the presence of a struct
+:c:type:`v4l2_device` for V4L2 drivers and struct :c:type:`v4l2_subdev` for
+sub-device drivers.
Objects in the framework
@@ -35,12 +36,13 @@ Objects in the framework
There are two main objects:
-The v4l2_ctrl object describes the control properties and keeps track of the
-control's value (both the current value and the proposed new value).
+The :c:type:`v4l2_ctrl` object describes the control properties and keeps
+track of the control's value (both the current value and the proposed new
+value).
-v4l2_ctrl_handler is the object that keeps track of controls. It maintains a
-list of v4l2_ctrl objects that it owns and another list of references to
-controls, possibly to controls owned by other handlers.
+:c:type:`v4l2_ctrl_handler` is the object that keeps track of controls. It
+maintains a list of v4l2_ctrl objects that it owns and another list of
+references to controls, possibly to controls owned by other handlers.
Basic usage for V4L2 and sub-device drivers
@@ -48,21 +50,39 @@ Basic usage for V4L2 and sub-device drivers
1) Prepare the driver:
+.. code-block:: c
+
+ #include <media/v4l2-ctrls.h>
+
1.1) Add the handler to your driver's top-level struct:
-.. code-block:: none
+For V4L2 drivers:
+
+.. code-block:: c
struct foo_dev {
...
+ struct v4l2_device v4l2_dev;
+ ...
struct v4l2_ctrl_handler ctrl_handler;
...
};
- struct foo_dev *foo;
+For sub-device drivers:
+
+.. code-block:: c
+
+ struct foo_dev {
+ ...
+ struct v4l2_subdev sd;
+ ...
+ struct v4l2_ctrl_handler ctrl_handler;
+ ...
+ };
1.2) Initialize the handler:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
@@ -72,72 +92,48 @@ information. It is a hint only.
1.3) Hook the control handler into the driver:
-1.3.1) For V4L2 drivers do this:
+For V4L2 drivers:
-.. code-block:: none
-
- struct foo_dev {
- ...
- struct v4l2_device v4l2_dev;
- ...
- struct v4l2_ctrl_handler ctrl_handler;
- ...
- };
+.. code-block:: c
foo->v4l2_dev.ctrl_handler = &foo->ctrl_handler;
-Where foo->v4l2_dev is of type struct v4l2_device.
-
-Finally, remove all control functions from your v4l2_ioctl_ops (if any):
-vidioc_queryctrl, vidioc_query_ext_ctrl, vidioc_querymenu, vidioc_g_ctrl,
-vidioc_s_ctrl, vidioc_g_ext_ctrls, vidioc_try_ext_ctrls and vidioc_s_ext_ctrls.
-Those are now no longer needed.
-
-1.3.2) For sub-device drivers do this:
-
-.. code-block:: none
+For sub-device drivers:
- struct foo_dev {
- ...
- struct v4l2_subdev sd;
- ...
- struct v4l2_ctrl_handler ctrl_handler;
- ...
- };
+.. code-block:: c
foo->sd.ctrl_handler = &foo->ctrl_handler;
-Where foo->sd is of type struct v4l2_subdev.
-
1.4) Clean up the handler at the end:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_handler_free(&foo->ctrl_handler);
2) Add controls:
-You add non-menu controls by calling v4l2_ctrl_new_std:
+You add non-menu controls by calling :c:func:`v4l2_ctrl_new_std`:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 min, s32 max, u32 step, s32 def);
-Menu and integer menu controls are added by calling v4l2_ctrl_new_std_menu:
+Menu and integer menu controls are added by calling
+:c:func:`v4l2_ctrl_new_std_menu`:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 skip_mask, s32 def);
Menu controls with a driver specific menu are added by calling
-v4l2_ctrl_new_std_menu_items:
+:c:func:`v4l2_ctrl_new_std_menu_items`:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *v4l2_ctrl_new_std_menu_items(
struct v4l2_ctrl_handler *hdl,
@@ -145,17 +141,18 @@ v4l2_ctrl_new_std_menu_items:
s32 skip_mask, s32 def, const char * const *qmenu);
Integer menu controls with a driver specific menu can be added by calling
-v4l2_ctrl_new_int_menu:
+:c:func:`v4l2_ctrl_new_int_menu`:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 def, const s64 *qmenu_int);
-These functions are typically called right after the v4l2_ctrl_handler_init:
+These functions are typically called right after the
+:c:func:`v4l2_ctrl_handler_init`:
-.. code-block:: none
+.. code-block:: c
static const s64 exp_bias_qmenu[] = {
-2, -1, 0, 1, 2
@@ -192,33 +189,34 @@ These functions are typically called right after the v4l2_ctrl_handler_init:
return err;
}
-The v4l2_ctrl_new_std function returns the v4l2_ctrl pointer to the new
-control, but if you do not need to access the pointer outside the control ops,
-then there is no need to store it.
-
-The v4l2_ctrl_new_std function will fill in most fields based on the control
-ID except for the min, max, step and default values. These are passed in the
-last four arguments. These values are driver specific while control attributes
-like type, name, flags are all global. The control's current value will be set
-to the default value.
-
-The v4l2_ctrl_new_std_menu function is very similar but it is used for menu
-controls. There is no min argument since that is always 0 for menu controls,
-and instead of a step there is a skip_mask argument: if bit X is 1, then menu
-item X is skipped.
-
-The v4l2_ctrl_new_int_menu function creates a new standard integer menu
-control with driver-specific items in the menu. It differs from
-v4l2_ctrl_new_std_menu in that it doesn't have the mask argument and takes
-as the last argument an array of signed 64-bit integers that form an exact
-menu item list.
-
-The v4l2_ctrl_new_std_menu_items function is very similar to
-v4l2_ctrl_new_std_menu but takes an extra parameter qmenu, which is the driver
-specific menu for an otherwise standard menu control. A good example for this
-control is the test pattern control for capture/display/sensors devices that
-have the capability to generate test patterns. These test patterns are hardware
-specific, so the contents of the menu will vary from device to device.
+The :c:func:`v4l2_ctrl_new_std` function returns the v4l2_ctrl pointer to
+the new control, but if you do not need to access the pointer outside the
+control ops, then there is no need to store it.
+
+The :c:func:`v4l2_ctrl_new_std` function will fill in most fields based on
+the control ID except for the min, max, step and default values. These are
+passed in the last four arguments. These values are driver specific while
+control attributes like type, name, flags are all global. The control's
+current value will be set to the default value.
+
+The :c:func:`v4l2_ctrl_new_std_menu` function is very similar but it is
+used for menu controls. There is no min argument since that is always 0 for
+menu controls, and instead of a step there is a skip_mask argument: if bit
+X is 1, then menu item X is skipped.
+
+The :c:func:`v4l2_ctrl_new_int_menu` function creates a new standard
+integer menu control with driver-specific items in the menu. It differs
+from v4l2_ctrl_new_std_menu in that it doesn't have the mask argument and
+takes as the last argument an array of signed 64-bit integers that form an
+exact menu item list.
+
+The :c:func:`v4l2_ctrl_new_std_menu_items` function is very similar to
+v4l2_ctrl_new_std_menu but takes an extra parameter qmenu, which is the
+driver specific menu for an otherwise standard menu control. A good example
+for this control is the test pattern control for capture/display/sensors
+devices that have the capability to generate test patterns. These test
+patterns are hardware specific, so the contents of the menu will vary from
+device to device.
Note that if something fails, the function will return NULL or an error and
set ctrl_handler->error to the error code. If ctrl_handler->error was already
@@ -233,7 +231,7 @@ a bit faster that way.
3) Optionally force initial control setup:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_handler_setup(&foo->ctrl_handler);
@@ -242,9 +240,9 @@ initializes the hardware to the default control values. It is recommended
that you do this as this ensures that both the internal data structures and
the hardware are in sync.
-4) Finally: implement the v4l2_ctrl_ops
+4) Finally: implement the :c:type:`v4l2_ctrl_ops`
-.. code-block:: none
+.. code-block:: c
static const struct v4l2_ctrl_ops foo_ctrl_ops = {
.s_ctrl = foo_s_ctrl,
@@ -252,7 +250,7 @@ the hardware are in sync.
Usually all you need is s_ctrl:
-.. code-block:: none
+.. code-block:: c
static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{
@@ -305,7 +303,7 @@ Accessing Control Values
The following union is used inside the control framework to access control
values:
-.. code-block:: none
+.. code-block:: c
union v4l2_ctrl_ptr {
s32 *p_s32;
@@ -317,7 +315,7 @@ values:
The v4l2_ctrl struct contains these fields that can be used to access both
current and new values:
-.. code-block:: none
+.. code-block:: c
s32 val;
struct {
@@ -330,7 +328,7 @@ current and new values:
If the control has a simple s32 type type, then:
-.. code-block:: none
+.. code-block:: c
&ctrl->val == ctrl->p_new.p_s32
&ctrl->cur.val == ctrl->p_cur.p_s32
@@ -354,7 +352,7 @@ exception is for controls that return a volatile register such as a signal
strength read-out that changes continuously. In that case you will need to
implement g_volatile_ctrl like this:
-.. code-block:: none
+.. code-block:: c
static int foo_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
@@ -372,7 +370,7 @@ changes.
To mark a control as volatile you have to set V4L2_CTRL_FLAG_VOLATILE:
-.. code-block:: none
+.. code-block:: c
ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
if (ctrl)
@@ -393,7 +391,7 @@ not to introduce deadlocks.
Outside of the control ops you have to go through to helper functions to get
or set a single control value safely in your driver:
-.. code-block:: none
+.. code-block:: c
s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl);
int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val);
@@ -404,7 +402,7 @@ will result in a deadlock since these helpers lock the handler as well.
You can also take the handler lock yourself:
-.. code-block:: none
+.. code-block:: c
mutex_lock(&state->ctrl_handler.lock);
pr_info("String value is '%s'\n", ctrl1->p_cur.p_char);
@@ -417,7 +415,7 @@ Menu Controls
The v4l2_ctrl struct contains this union:
-.. code-block:: none
+.. code-block:: c
union {
u32 step;
@@ -445,7 +443,7 @@ Custom Controls
Driver specific controls can be created using v4l2_ctrl_new_custom():
-.. code-block:: none
+.. code-block:: c
static const struct v4l2_ctrl_config ctrl_filter = {
.ops = &ctrl_custom_ops,
@@ -499,7 +497,7 @@ By default all controls are independent from the others. But in more
complex scenarios you can get dependencies from one control to another.
In that case you need to 'cluster' them:
-.. code-block:: none
+.. code-block:: c
struct foo {
struct v4l2_ctrl_handler ctrl_handler;
@@ -523,7 +521,7 @@ composite control. Similar to how a 'struct' works in C.
So when s_ctrl is called with V4L2_CID_AUDIO_VOLUME as argument, you should set
all two controls belonging to the audio_cluster:
-.. code-block:: none
+.. code-block:: c
static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{
@@ -545,7 +543,7 @@ all two controls belonging to the audio_cluster:
In the example above the following are equivalent for the VOLUME case:
-.. code-block:: none
+.. code-block:: c
ctrl == ctrl->cluster[AUDIO_CL_VOLUME] == state->audio_cluster[AUDIO_CL_VOLUME]
ctrl->cluster[AUDIO_CL_MUTE] == state->audio_cluster[AUDIO_CL_MUTE]
@@ -553,7 +551,7 @@ In the example above the following are equivalent for the VOLUME case:
In practice using cluster arrays like this becomes very tiresome. So instead
the following equivalent method is used:
-.. code-block:: none
+.. code-block:: c
struct {
/* audio cluster */
@@ -565,7 +563,7 @@ The anonymous struct is used to clearly 'cluster' these two control pointers,
but it serves no other purpose. The effect is the same as creating an
array with two control pointers. So you can just do:
-.. code-block:: none
+.. code-block:: c
state->volume = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
state->mute = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
@@ -621,7 +619,7 @@ changing that control affects the control flags of the manual controls.
In order to simplify this a special variation of v4l2_ctrl_cluster was
introduced:
-.. code-block:: none
+.. code-block:: c
void v4l2_ctrl_auto_cluster(unsigned ncontrols, struct v4l2_ctrl **controls,
u8 manual_val, bool set_volatile);
@@ -676,7 +674,7 @@ of another handler (e.g. for a video device node), then you should first add
the controls to the first handler, add the other controls to the second
handler and finally add the first handler to the second. For example:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_VOLUME, ...);
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
@@ -690,7 +688,7 @@ all controls.
Or you can add specific controls to a handler:
-.. code-block:: none
+.. code-block:: c
volume = v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_AUDIO_VOLUME, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_BRIGHTNESS, ...);
@@ -699,7 +697,7 @@ Or you can add specific controls to a handler:
What you should not do is make two identical controls for two handlers.
For example:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_AUDIO_MUTE, ...);
@@ -720,7 +718,7 @@ not own. For example, if you have to find a volume control from a subdev.
You can do that by calling v4l2_ctrl_find:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *volume;
@@ -729,7 +727,7 @@ You can do that by calling v4l2_ctrl_find:
Since v4l2_ctrl_find will lock the handler you have to be careful where you
use it. For example, this is not a good idea:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl_handler ctrl_handler;
@@ -738,7 +736,7 @@ use it. For example, this is not a good idea:
...and in video_ops.s_ctrl:
-.. code-block:: none
+.. code-block:: c
case V4L2_CID_BRIGHTNESS:
contrast = v4l2_find_ctrl(&ctrl_handler, V4L2_CID_CONTRAST);
@@ -760,7 +758,7 @@ not when it is used in consumer-level hardware. In that case you want to keep
those low-level controls local to the subdev. You can do this by simply
setting the 'is_private' flag of the control to 1:
-.. code-block:: none
+.. code-block:: c
static const struct v4l2_ctrl_config ctrl_private = {
.ops = &ctrl_custom_ops,
@@ -797,7 +795,7 @@ Sometimes the platform or bridge driver needs to be notified when a control
from a sub-device driver changes. You can set a notify callback by calling
this function:
-.. code-block:: none
+.. code-block:: c
void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl,
void (*notify)(struct v4l2_ctrl *ctrl, void *priv), void *priv);
diff --git a/Documentation/media/uapi/cec/cec-api.rst b/Documentation/media/uapi/cec/cec-api.rst
index b614bf81aa20..0780ba07995a 100644
--- a/Documentation/media/uapi/cec/cec-api.rst
+++ b/Documentation/media/uapi/cec/cec-api.rst
@@ -39,7 +39,7 @@ Revision and Copyright
**********************
Authors:
-- Verkuil, Hans <hans.verkuil@cisco.com>
+- Verkuil, Hans <hverkuil-cisco@xs4all.nl>
- Initial version.
diff --git a/Documentation/media/uapi/cec/cec-ioc-g-mode.rst b/Documentation/media/uapi/cec/cec-ioc-g-mode.rst
index c53bb5f73f0d..d0902f356d65 100644
--- a/Documentation/media/uapi/cec/cec-ioc-g-mode.rst
+++ b/Documentation/media/uapi/cec/cec-ioc-g-mode.rst
@@ -294,7 +294,8 @@ EINVAL
The requested mode is invalid.
EPERM
- Monitor mode is requested without having root permissions
+ Monitor mode is requested, but the process does have the ``CAP_NET_ADMIN``
+ capability.
EBUSY
Someone else is already an exclusive follower or initiator.
diff --git a/Documentation/media/uapi/cec/cec-ioc-receive.rst b/Documentation/media/uapi/cec/cec-ioc-receive.rst
index c3a685ff05cb..4137903d672e 100644
--- a/Documentation/media/uapi/cec/cec-ioc-receive.rst
+++ b/Documentation/media/uapi/cec/cec-ioc-receive.rst
@@ -223,6 +223,18 @@ View On' messages from initiator 0xf ('Unregistered') to destination 0 ('TV').
result of the :ref:`ioctl CEC_TRANSMIT <CEC_TRANSMIT>`, and once via
:ref:`ioctl CEC_RECEIVE <CEC_RECEIVE>`.
+ * .. _`CEC-MSG-FL-RAW`:
+
+ - ``CEC_MSG_FL_RAW``
+ - 2
+ - Normally CEC messages are validated before transmitting them. If this
+ flag is set when :ref:`ioctl CEC_TRANSMIT <CEC_TRANSMIT>` is called,
+ then no validation takes place and the message is transmitted as-is.
+ This is useful when debugging CEC issues.
+ This flag is only allowed if the process has the ``CAP_SYS_RAWIO``
+ capability. If that is not set, then the ``EPERM`` error code is
+ returned.
+
.. tabularcolumns:: |p{5.6cm}|p{0.9cm}|p{11.0cm}|
@@ -358,7 +370,8 @@ ENOTTY
EPERM
The CEC adapter is not configured, i.e. :ref:`ioctl CEC_ADAP_S_LOG_ADDRS <CEC_ADAP_S_LOG_ADDRS>`
- has never been called.
+ has never been called, or ``CEC_MSG_FL_RAW`` was used from a process that
+ did not have the ``CAP_SYS_RAWIO`` capability.
ENONET
The CEC adapter is not configured, i.e. :ref:`ioctl CEC_ADAP_S_LOG_ADDRS <CEC_ADAP_S_LOG_ADDRS>`
diff --git a/Documentation/media/uapi/mediactl/media-ioc-enum-links.rst b/Documentation/media/uapi/mediactl/media-ioc-enum-links.rst
index a982f16e55a4..b827ebc398f8 100644
--- a/Documentation/media/uapi/mediactl/media-ioc-enum-links.rst
+++ b/Documentation/media/uapi/mediactl/media-ioc-enum-links.rst
@@ -84,6 +84,11 @@ returned during the enumeration process.
- Pointer to a links array allocated by the application. Ignored if
NULL.
+ * - __u32
+ - ``reserved[4]``
+ - Reserved for future extensions. Drivers and applications must set
+ the array to zero.
+
.. c:type:: media_pad_desc
@@ -135,7 +140,7 @@ returned during the enumeration process.
- Link flags, see :ref:`media-link-flag` for more details.
* - __u32
- - ``reserved[4]``
+ - ``reserved[2]``
- Reserved for future extensions. Drivers and applications must set
the array to zero.
diff --git a/Documentation/media/uapi/rc/rc-tables.rst b/Documentation/media/uapi/rc/rc-tables.rst
index 177ac44fa0fa..20d7c686922b 100644
--- a/Documentation/media/uapi/rc/rc-tables.rst
+++ b/Documentation/media/uapi/rc/rc-tables.rst
@@ -54,7 +54,7 @@ the remote via /dev/input/event devices.
- .. row 3
- - ``KEY_0``
+ - ``KEY_NUMERIC_0``
- Keyboard digit 0
@@ -62,7 +62,7 @@ the remote via /dev/input/event devices.
- .. row 4
- - ``KEY_1``
+ - ``KEY_NUMERIC_1``
- Keyboard digit 1
@@ -70,7 +70,7 @@ the remote via /dev/input/event devices.
- .. row 5
- - ``KEY_2``
+ - ``KEY_NUMERIC_2``
- Keyboard digit 2
@@ -78,7 +78,7 @@ the remote via /dev/input/event devices.
- .. row 6
- - ``KEY_3``
+ - ``KEY_NUMERIC_3``
- Keyboard digit 3
@@ -86,7 +86,7 @@ the remote via /dev/input/event devices.
- .. row 7
- - ``KEY_4``
+ - ``KEY_NUMERIC_4``
- Keyboard digit 4
@@ -94,7 +94,7 @@ the remote via /dev/input/event devices.
- .. row 8
- - ``KEY_5``
+ - ``KEY_NUMERIC_5``
- Keyboard digit 5
@@ -102,7 +102,7 @@ the remote via /dev/input/event devices.
- .. row 9
- - ``KEY_6``
+ - ``KEY_NUMERIC_6``
- Keyboard digit 6
@@ -110,7 +110,7 @@ the remote via /dev/input/event devices.
- .. row 10
- - ``KEY_7``
+ - ``KEY_NUMERIC_7``
- Keyboard digit 7
@@ -118,7 +118,7 @@ the remote via /dev/input/event devices.
- .. row 11
- - ``KEY_8``
+ - ``KEY_NUMERIC_8``
- Keyboard digit 8
@@ -126,7 +126,7 @@ the remote via /dev/input/event devices.
- .. row 12
- - ``KEY_9``
+ - ``KEY_NUMERIC_9``
- Keyboard digit 9
@@ -196,7 +196,7 @@ the remote via /dev/input/event devices.
- ``KEY_PAUSE``
- - Pause sroweam
+ - Pause stream
- PAUSE / FREEZE
@@ -220,7 +220,7 @@ the remote via /dev/input/event devices.
- ``KEY_STOP``
- - Stop sroweam
+ - Stop stream
- STOP
@@ -228,7 +228,7 @@ the remote via /dev/input/event devices.
- ``KEY_RECORD``
- - Start/stop recording sroweam
+ - Start/stop recording stream
- CAPTURE / REC / RECORD/PAUSE
@@ -577,7 +577,7 @@ the remote via /dev/input/event devices.
- ``KEY_CLEAR``
- - Stop sroweam and return to default input video/audio
+ - Stop stream and return to default input video/audio
- CLEAR / RESET / BOSS KEY
@@ -593,7 +593,7 @@ the remote via /dev/input/event devices.
- ``KEY_FAVORITES``
- - Open the favorites sroweam window
+ - Open the favorites stream window
- TV WALL / Favorites
diff --git a/Documentation/media/uapi/v4l/biblio.rst b/Documentation/media/uapi/v4l/biblio.rst
index ec33768c055e..8f4eb8823d82 100644
--- a/Documentation/media/uapi/v4l/biblio.rst
+++ b/Documentation/media/uapi/v4l/biblio.rst
@@ -122,6 +122,15 @@ ITU BT.1119
:author: International Telecommunication Union (http://www.itu.ch)
+.. _h264:
+
+ITU-T Rec. H.264 Specification (04/2017 Edition)
+================================================
+
+:title: ITU-T Recommendation H.264 "Advanced Video Coding for Generic Audiovisual Services"
+
+:author: International Telecommunication Union (http://www.itu.ch)
+
.. _jfif:
JFIF
diff --git a/Documentation/media/uapi/v4l/ext-ctrls-codec.rst b/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
index 4a8446203085..d6ea2ffd65c5 100644
--- a/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
+++ b/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
@@ -759,6 +759,32 @@ enum v4l2_mpeg_video_h264_level -
+.. _v4l2-mpeg-video-mpeg2-level:
+
+``V4L2_CID_MPEG_VIDEO_MPEG2_LEVEL``
+ (enum)
+
+enum v4l2_mpeg_video_mpeg2_level -
+ The level information for the MPEG2 elementary stream. Applicable to
+ MPEG2 codecs. Possible values are:
+
+
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+
+ * - ``V4L2_MPEG_VIDEO_MPEG2_LEVEL_LOW``
+ - Low Level (LL)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_LEVEL_MAIN``
+ - Main Level (ML)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH_1440``
+ - High-1440 Level (H-14)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH``
+ - High Level (HL)
+
+
+
.. _v4l2-mpeg-video-mpeg4-level:
``V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL``
@@ -845,6 +871,36 @@ enum v4l2_mpeg_video_h264_profile -
+.. _v4l2-mpeg-video-mpeg2-profile:
+
+``V4L2_CID_MPEG_VIDEO_MPEG2_PROFILE``
+ (enum)
+
+enum v4l2_mpeg_video_mpeg2_profile -
+ The profile information for MPEG2. Applicable to MPEG2 codecs.
+ Possible values are:
+
+
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_SIMPLE``
+ - Simple profile (SP)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_MAIN``
+ - Main profile (MP)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_SNR_SCALABLE``
+ - SNR Scalable profile (SNR)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_SPATIALLY_SCALABLE``
+ - Spatially Scalable profile (Spt)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_HIGH``
+ - High profile (HP)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_MULTIVIEW``
+ - Multi-view profile (MVP)
+
+
+
.. _v4l2-mpeg-video-mpeg4-profile:
``V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE``
@@ -1395,6 +1451,575 @@ enum v4l2_mpeg_video_h264_hierarchical_coding_type -
- Layer number
+.. _v4l2-mpeg-h264:
+
+``V4L2_CID_MPEG_VIDEO_H264_SPS (struct)``
+ Specifies the sequence parameter set (as extracted from the
+ bitstream) for the associated H264 slice data. This includes the
+ necessary parameters for configuring a stateless hardware decoding
+ pipeline for H264. The bitstream parameters are defined according
+ to :ref:`h264`, section 7.4.2.1.1 "Sequence Parameter Set Data
+ Semantics". For further documentation, refer to the above
+ specification, unless there is an explicit comment stating
+ otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_h264_sps
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_sps
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``profile_idc``
+ -
+ * - __u8
+ - ``constraint_set_flags``
+ - See :ref:`Sequence Parameter Set Constraints Set Flags <h264_sps_constraints_set_flags>`
+ * - __u8
+ - ``level_idc``
+ -
+ * - __u8
+ - ``seq_parameter_set_id``
+ -
+ * - __u8
+ - ``chroma_format_idc``
+ -
+ * - __u8
+ - ``bit_depth_luma_minus8``
+ -
+ * - __u8
+ - ``bit_depth_chroma_minus8``
+ -
+ * - __u8
+ - ``log2_max_frame_num_minus4``
+ -
+ * - __u8
+ - ``pic_order_cnt_type``
+ -
+ * - __u8
+ - ``log2_max_pic_order_cnt_lsb_minus4``
+ -
+ * - __u8
+ - ``max_num_ref_frames``
+ -
+ * - __u8
+ - ``num_ref_frames_in_pic_order_cnt_cycle``
+ -
+ * - __s32
+ - ``offset_for_ref_frame[255]``
+ -
+ * - __s32
+ - ``offset_for_non_ref_pic``
+ -
+ * - __s32
+ - ``offset_for_top_to_bottom_field``
+ -
+ * - __u16
+ - ``pic_width_in_mbs_minus1``
+ -
+ * - __u16
+ - ``pic_height_in_map_units_minus1``
+ -
+ * - __u32
+ - ``flags``
+ - See :ref:`Sequence Parameter Set Flags <h264_sps_flags>`
+
+.. _h264_sps_constraints_set_flags:
+
+``Sequence Parameter Set Constraints Set Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET0_FLAG``
+ - 0x00000001
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET1_FLAG``
+ - 0x00000002
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET2_FLAG``
+ - 0x00000004
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET3_FLAG``
+ - 0x00000008
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET4_FLAG``
+ - 0x00000010
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET5_FLAG``
+ - 0x00000020
+ -
+
+.. _h264_sps_flags:
+
+``Sequence Parameter Set Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE``
+ - 0x00000001
+ -
+ * - ``V4L2_H264_SPS_FLAG_QPPRIME_Y_ZERO_TRANSFORM_BYPASS``
+ - 0x00000002
+ -
+ * - ``V4L2_H264_SPS_FLAG_DELTA_PIC_ORDER_ALWAYS_ZERO``
+ - 0x00000004
+ -
+ * - ``V4L2_H264_SPS_FLAG_GAPS_IN_FRAME_NUM_VALUE_ALLOWED``
+ - 0x00000008
+ -
+ * - ``V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY``
+ - 0x00000010
+ -
+ * - ``V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD``
+ - 0x00000020
+ -
+ * - ``V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE``
+ - 0x00000040
+ -
+
+``V4L2_CID_MPEG_VIDEO_H264_PPS (struct)``
+ Specifies the picture parameter set (as extracted from the
+ bitstream) for the associated H264 slice data. This includes the
+ necessary parameters for configuring a stateless hardware decoding
+ pipeline for H264. The bitstream parameters are defined according
+ to :ref:`h264`, section 7.4.2.2 "Picture Parameter Set RBSP
+ Semantics". For further documentation, refer to the above
+ specification, unless there is an explicit comment stating
+ otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_h264_pps
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_pps
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``pic_parameter_set_id``
+ -
+ * - __u8
+ - ``seq_parameter_set_id``
+ -
+ * - __u8
+ - ``num_slice_groups_minus1``
+ -
+ * - __u8
+ - ``num_ref_idx_l0_default_active_minus1``
+ -
+ * - __u8
+ - ``num_ref_idx_l1_default_active_minus1``
+ -
+ * - __u8
+ - ``weighted_bipred_idc``
+ -
+ * - __s8
+ - ``pic_init_qp_minus26``
+ -
+ * - __s8
+ - ``pic_init_qs_minus26``
+ -
+ * - __s8
+ - ``chroma_qp_index_offset``
+ -
+ * - __s8
+ - ``second_chroma_qp_index_offset``
+ -
+ * - __u16
+ - ``flags``
+ - See :ref:`Picture Parameter Set Flags <h264_pps_flags>`
+
+.. _h264_pps_flags:
+
+``Picture Parameter Set Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE``
+ - 0x00000001
+ -
+ * - ``V4L2_H264_PPS_FLAG_BOTTOM_FIELD_PIC_ORDER_IN_FRAME_PRESENT``
+ - 0x00000002
+ -
+ * - ``V4L2_H264_PPS_FLAG_WEIGHTED_PRED``
+ - 0x00000004
+ -
+ * - ``V4L2_H264_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT``
+ - 0x00000008
+ -
+ * - ``V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED``
+ - 0x00000010
+ -
+ * - ``V4L2_H264_PPS_FLAG_REDUNDANT_PIC_CNT_PRESENT``
+ - 0x00000020
+ -
+ * - ``V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE``
+ - 0x00000040
+ -
+ * - ``V4L2_H264_PPS_FLAG_PIC_SCALING_MATRIX_PRESENT``
+ - 0x00000080
+ -
+
+``V4L2_CID_MPEG_VIDEO_H264_SCALING_MATRIX (struct)``
+ Specifies the scaling matrix (as extracted from the bitstream) for
+ the associated H264 slice data. The bitstream parameters are
+ defined according to :ref:`h264`, section 7.4.2.1.1.1 "Scaling
+ List Semantics". For further documentation, refer to the above
+ specification, unless there is an explicit comment stating
+ otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_h264_scaling_matrix
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_scaling_matrix
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``scaling_list_4x4[6][16]``
+ -
+ * - __u8
+ - ``scaling_list_8x8[6][64]``
+ -
+
+``V4L2_CID_MPEG_VIDEO_H264_SLICE_PARAMS (struct)``
+ Specifies the slice parameters (as extracted from the bitstream)
+ for the associated H264 slice data. This includes the necessary
+ parameters for configuring a stateless hardware decoding pipeline
+ for H264. The bitstream parameters are defined according to
+ :ref:`h264`, section 7.4.3 "Slice Header Semantics". For further
+ documentation, refer to the above specification, unless there is
+ an explicit comment stating otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API
+ and it is expected to change.
+
+ This structure is expected to be passed as an array, with one
+ entry for each slice included in the bitstream buffer.
+
+.. c:type:: v4l2_ctrl_h264_slice_params
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_slice_params
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u32
+ - ``size``
+ -
+ * - __u32
+ - ``header_bit_size``
+ -
+ * - __u16
+ - ``first_mb_in_slice``
+ -
+ * - __u8
+ - ``slice_type``
+ -
+ * - __u8
+ - ``pic_parameter_set_id``
+ -
+ * - __u8
+ - ``colour_plane_id``
+ -
+ * - __u8
+ - ``redundant_pic_cnt``
+ -
+ * - __u16
+ - ``frame_num``
+ -
+ * - __u16
+ - ``idr_pic_id``
+ -
+ * - __u16
+ - ``pic_order_cnt_lsb``
+ -
+ * - __s32
+ - ``delta_pic_order_cnt_bottom``
+ -
+ * - __s32
+ - ``delta_pic_order_cnt0``
+ -
+ * - __s32
+ - ``delta_pic_order_cnt1``
+ -
+ * - struct :c:type:`v4l2_h264_pred_weight_table`
+ - ``pred_weight_table``
+ -
+ * - __u32
+ - ``dec_ref_pic_marking_bit_size``
+ -
+ * - __u32
+ - ``pic_order_cnt_bit_size``
+ -
+ * - __u8
+ - ``cabac_init_idc``
+ -
+ * - __s8
+ - ``slice_qp_delta``
+ -
+ * - __s8
+ - ``slice_qs_delta``
+ -
+ * - __u8
+ - ``disable_deblocking_filter_idc``
+ -
+ * - __s8
+ - ``slice_alpha_c0_offset_div2``
+ -
+ * - __s8
+ - ``slice_beta_offset_div2``
+ -
+ * - __u8
+ - ``num_ref_idx_l0_active_minus1``
+ -
+ * - __u8
+ - ``num_ref_idx_l1_active_minus1``
+ -
+ * - __u32
+ - ``slice_group_change_cycle``
+ -
+ * - __u8
+ - ``ref_pic_list0[32]``
+ - Reference picture list after applying the per-slice modifications
+ * - __u8
+ - ``ref_pic_list1[32]``
+ - Reference picture list after applying the per-slice modifications
+ * - __u32
+ - ``flags``
+ - See :ref:`Slice Parameter Flags <h264_slice_flags>`
+
+.. _h264_slice_flags:
+
+``Slice Parameter Set Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_SLICE_FLAG_FIELD_PIC``
+ - 0x00000001
+ -
+ * - ``V4L2_H264_SLICE_FLAG_BOTTOM_FIELD``
+ - 0x00000002
+ -
+ * - ``V4L2_H264_SLICE_FLAG_DIRECT_SPATIAL_MV_PRED``
+ - 0x00000004
+ -
+ * - ``V4L2_H264_SLICE_FLAG_SP_FOR_SWITCH``
+ - 0x00000008
+ -
+
+``Prediction Weight Table``
+
+ The bitstream parameters are defined according to :ref:`h264`,
+ section 7.4.3.2 "Prediction Weight Table Semantics". For further
+ documentation, refer to the above specification, unless there is
+ an explicit comment stating otherwise.
+
+.. c:type:: v4l2_h264_pred_weight_table
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_h264_pred_weight_table
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u16
+ - ``luma_log2_weight_denom``
+ -
+ * - __u16
+ - ``chroma_log2_weight_denom``
+ -
+ * - struct :c:type:`v4l2_h264_weight_factors`
+ - ``weight_factors[2]``
+ - The weight factors at index 0 are the weight factors for the reference
+ list 0, the one at index 1 for the reference list 1.
+
+.. c:type:: v4l2_h264_weight_factors
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_h264_weight_factors
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __s16
+ - ``luma_weight[32]``
+ -
+ * - __s16
+ - ``luma_offset[32]``
+ -
+ * - __s16
+ - ``chroma_weight[32][2]``
+ -
+ * - __s16
+ - ``chroma_offset[32][2]``
+ -
+
+``V4L2_CID_MPEG_VIDEO_H264_DECODE_PARAMS (struct)``
+ Specifies the decode parameters (as extracted from the bitstream)
+ for the associated H264 slice data. This includes the necessary
+ parameters for configuring a stateless hardware decoding pipeline
+ for H264. The bitstream parameters are defined according to
+ :ref:`h264`. For further documentation, refer to the above
+ specification, unless there is an explicit comment stating
+ otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_h264_decode_params
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_decode_params
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - struct :c:type:`v4l2_h264_dpb_entry`
+ - ``dpb[16]``
+ -
+ * - __u16
+ - ``num_slices``
+ - Number of slices needed to decode the current frame
+ * - __u16
+ - ``nal_ref_idc``
+ - NAL reference ID value coming from the NAL Unit header
+ * - __u8
+ - ``ref_pic_list_p0[32]``
+ - Backward reference list used by P-frames in the original bitstream order
+ * - __u8
+ - ``ref_pic_list_b0[32]``
+ - Backward reference list used by B-frames in the original bitstream order
+ * - __u8
+ - ``ref_pic_list_b1[32]``
+ - Forward reference list used by B-frames in the original bitstream order
+ * - __s32
+ - ``top_field_order_cnt``
+ - Picture Order Count for the coded top field
+ * - __s32
+ - ``bottom_field_order_cnt``
+ - Picture Order Count for the coded bottom field
+ * - __u32
+ - ``flags``
+ - See :ref:`Decode Parameters Flags <h264_decode_params_flags>`
+
+.. _h264_decode_params_flags:
+
+``Decode Parameters Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_DECODE_PARAM_FLAG_IDR_PIC``
+ - 0x00000001
+ - That picture is an IDR picture
+
+.. c:type:: v4l2_h264_dpb_entry
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_h264_dpb_entry
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u64
+ - ``reference_ts``
+ - Timestamp of the V4L2 capture buffer to use as reference, used
+ with B-coded and P-coded frames. The timestamp refers to the
+ ``timestamp`` field in struct :c:type:`v4l2_buffer`. Use the
+ :c:func:`v4l2_timeval_to_ns()` function to convert the struct
+ :c:type:`timeval` in struct :c:type:`v4l2_buffer` to a __u64.
+ * - __u16
+ - ``frame_num``
+ -
+ * - __u16
+ - ``pic_num``
+ -
+ * - __s32
+ - ``top_field_order_cnt``
+ -
+ * - __s32
+ - ``bottom_field_order_cnt``
+ -
+ * - __u32
+ - ``flags``
+ - See :ref:`DPB Entry Flags <h264_dpb_flags>`
+
+.. _h264_dpb_flags:
+
+``DPB Entries Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_DPB_ENTRY_FLAG_VALID``
+ - 0x00000001
+ - The DPB entry is valid and should be considered
+ * - ``V4L2_H264_DPB_ENTRY_FLAG_ACTIVE``
+ - 0x00000002
+ - The DPB entry is currently being used as a reference frame
+ * - ``V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM``
+ - 0x00000004
+ - The DPB entry is a long term reference frame
.. _v4l2-mpeg-mpeg2:
diff --git a/Documentation/media/uapi/v4l/extended-controls.rst b/Documentation/media/uapi/v4l/extended-controls.rst
index 24274b398e63..655362483730 100644
--- a/Documentation/media/uapi/v4l/extended-controls.rst
+++ b/Documentation/media/uapi/v4l/extended-controls.rst
@@ -85,20 +85,17 @@ be able to see such compound controls. In other words, these controls
with compound types should only be used programmatically.
Since such compound controls need to expose more information about
-themselves than is possible with
-:ref:`VIDIOC_QUERYCTRL` the
-:ref:`VIDIOC_QUERY_EXT_CTRL <VIDIOC_QUERYCTRL>` ioctl was added. In
-particular, this ioctl gives the dimensions of the N-dimensional array
-if this control consists of more than one element.
+themselves than is possible with :ref:`VIDIOC_QUERYCTRL <VIDIOC_QUERYCTRL>`
+the :ref:`VIDIOC_QUERY_EXT_CTRL <VIDIOC_QUERYCTRL>` ioctl was added. In
+particular, this ioctl gives the dimensions of the N-dimensional array if
+this control consists of more than one element.
.. note::
#. It is important to realize that due to the flexibility of controls it is
necessary to check whether the control you want to set actually is
supported in the driver and what the valid range of values is. So use
- the :ref:`VIDIOC_QUERYCTRL` (or :ref:`VIDIOC_QUERY_EXT_CTRL
- <VIDIOC_QUERYCTRL>`) and :ref:`VIDIOC_QUERYMENU <VIDIOC_QUERYCTRL>`
- ioctls to check this.
+ :ref:`VIDIOC_QUERYCTRL` to check this.
#. It is possible that some of the menu indices in a control of
type ``V4L2_CTRL_TYPE_MENU`` may not be supported (``VIDIOC_QUERYMENU``
@@ -144,7 +141,7 @@ control class is found:
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &qctrl)) {
if (V4L2_CTRL_ID2CLASS(qctrl.id) != V4L2_CTRL_CLASS_MPEG)
break;
- /* ... */
+ /* ... */
qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}
diff --git a/Documentation/media/uapi/v4l/field-order.rst b/Documentation/media/uapi/v4l/field-order.rst
index d640e922a974..c422bebe4314 100644
--- a/Documentation/media/uapi/v4l/field-order.rst
+++ b/Documentation/media/uapi/v4l/field-order.rst
@@ -51,6 +51,11 @@ determined by the video standard. Hence the distinction between temporal
and spatial order of fields. The diagrams below should make this
clearer.
+In V4L it is assumed that all video cameras transmit fields on the media
+bus in the same order they were captured, so if the top field was
+captured first (is the older field), the top field is also transmitted
+first on the bus.
+
All video capture and output devices must report the current field
order. Some drivers may permit the selection of a different order, to
this end applications initialize the ``field`` field of struct
@@ -101,10 +106,10 @@ enum v4l2_field
* - ``V4L2_FIELD_INTERLACED``
- 4
- Images contain both fields, interleaved line by line. The temporal
- order of the fields (whether the top or bottom field is first
- transmitted) depends on the current video standard. M/NTSC
- transmits the bottom field first, all other standards the top
- field first.
+ order of the fields (whether the top or bottom field is older)
+ depends on the current video standard. In M/NTSC the bottom
+ field is the older field. In all other standards the top field
+ is the older field.
* - ``V4L2_FIELD_SEQ_TB``
- 5
- Images contain both fields, the top field lines are stored first
@@ -135,11 +140,11 @@ enum v4l2_field
* - ``V4L2_FIELD_INTERLACED_TB``
- 8
- Images contain both fields, interleaved line by line, top field
- first. The top field is transmitted first.
+ first. The top field is the older field.
* - ``V4L2_FIELD_INTERLACED_BT``
- 9
- Images contain both fields, interleaved line by line, top field
- first. The bottom field is transmitted first.
+ first. The bottom field is the older field.
diff --git a/Documentation/media/uapi/v4l/pixfmt-compressed.rst b/Documentation/media/uapi/v4l/pixfmt-compressed.rst
index 6c961cfb74da..4b701fc7653e 100644
--- a/Documentation/media/uapi/v4l/pixfmt-compressed.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-compressed.rst
@@ -52,6 +52,31 @@ Compressed Formats
- ``V4L2_PIX_FMT_H264_MVC``
- 'M264'
- H264 MVC video elementary stream.
+ * .. _V4L2-PIX-FMT-H264-SLICE-RAW:
+
+ - ``V4L2_PIX_FMT_H264_SLICE_RAW``
+ - 'S264'
+ - H264 parsed slice data, without the start code and as
+ extracted from the H264 bitstream. This format is adapted for
+ stateless video decoders that implement an H264 pipeline
+ (using the :ref:`mem2mem` and :ref:`media-request-api`).
+ Metadata associated with the frame to decode are required to
+ be passed through the ``V4L2_CID_MPEG_VIDEO_H264_SPS``,
+ ``V4L2_CID_MPEG_VIDEO_H264_PPS``,
+ ``V4L2_CID_MPEG_VIDEO_H264_SCALING_MATRIX``,
+ ``V4L2_CID_MPEG_VIDEO_H264_SLICE_PARAMS`` and
+ ``V4L2_CID_MPEG_VIDEO_H264_DECODE_PARAMS`` controls. See the
+ :ref:`associated Codec Control IDs <v4l2-mpeg-h264>`. Exactly
+ one output and one capture buffer must be provided for use
+ with this pixel format. The output buffer must contain the
+ appropriate number of macroblocks to decode a full
+ corresponding frame to the matching capture buffer.
+
+ .. note::
+
+ This format is not yet part of the public kernel API and it
+ is expected to change.
+
* .. _V4L2-PIX-FMT-H263:
- ``V4L2_PIX_FMT_H263``
diff --git a/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst b/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
index 5688c816e334..db43dda5aafb 100644
--- a/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
@@ -31,7 +31,20 @@ describing all planes of that format.
* - __u32
- ``sizeimage``
- - Maximum size in bytes required for image data in this plane.
+ - Maximum size in bytes required for image data in this plane,
+ set by the driver. When the image consists of variable length
+ compressed data this is the number of bytes required by the
+ codec to support the worst-case compression scenario.
+
+ The driver will set the value for uncompressed images.
+
+ Clients are allowed to set the sizeimage field for variable length
+ compressed data flagged with ``V4L2_FMT_FLAG_COMPRESSED`` at
+ :ref:`VIDIOC_ENUM_FMT`, but the driver may ignore it and set the
+ value itself, or it may modify the provided value based on
+ alignment requirements or minimum/maximum size requirements.
+ If the client wants to leave this to the driver, then it should
+ set sizeimage to 0.
* - __u32
- ``bytesperline``
- Distance in bytes between the leftmost pixels in two adjacent
diff --git a/Documentation/media/uapi/v4l/pixfmt-v4l2.rst b/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
index 71eebfc6d853..da6da2ef139a 100644
--- a/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
@@ -89,7 +89,18 @@ Single-planar format structure
- Size in bytes of the buffer to hold a complete image, set by the
driver. Usually this is ``bytesperline`` times ``height``. When
the image consists of variable length compressed data this is the
- maximum number of bytes required to hold an image.
+ number of bytes required by the codec to support the worst-case
+ compression scenario.
+
+ The driver will set the value for uncompressed images.
+
+ Clients are allowed to set the sizeimage field for variable length
+ compressed data flagged with ``V4L2_FMT_FLAG_COMPRESSED`` at
+ :ref:`VIDIOC_ENUM_FMT`, but the driver may ignore it and set the
+ value itself, or it may modify the provided value based on
+ alignment requirements or minimum/maximum size requirements.
+ If the client wants to leave this to the driver, then it should
+ set sizeimage to 0.
* - __u32
- ``colorspace``
- Image colorspace, from enum :c:type:`v4l2_colorspace`.
diff --git a/Documentation/media/uapi/v4l/vidioc-qbuf.rst b/Documentation/media/uapi/v4l/vidioc-qbuf.rst
index dbf7b445a27b..407302d80684 100644
--- a/Documentation/media/uapi/v4l/vidioc-qbuf.rst
+++ b/Documentation/media/uapi/v4l/vidioc-qbuf.rst
@@ -139,6 +139,14 @@ may continue as normal, but should be aware that data in the dequeued
buffer might be corrupted. When using the multi-planar API, the planes
array must be passed in as well.
+If the application sets the ``memory`` field to ``V4L2_MEMORY_DMABUF`` to
+dequeue a :ref:`DMABUF <dmabuf>` buffer, the driver fills the ``m.fd`` field
+with a file descriptor numerically the same as the one given to ``VIDIOC_QBUF``
+when the buffer was enqueued. No new file descriptor is created at dequeue time
+and the value is only for the application convenience. When the multi-planar
+API is used the ``m.fd`` fields of the passed array of struct
+:c:type:`v4l2_plane` are filled instead.
+
By default ``VIDIOC_DQBUF`` blocks when no buffer is in the outgoing
queue. When the ``O_NONBLOCK`` flag was given to the
:ref:`open() <func-open>` function, ``VIDIOC_DQBUF`` returns
diff --git a/Documentation/media/uapi/v4l/vidioc-queryctrl.rst b/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
index f824162d0ea9..dc500632095d 100644
--- a/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
+++ b/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
@@ -443,6 +443,36 @@ See also the examples in :ref:`control`.
- n/a
- A struct :c:type:`v4l2_ctrl_mpeg2_quantization`, containing MPEG-2
quantization matrices for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_SPS``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_sps`, containing H264
+ sequence parameters for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_PPS``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_pps`, containing H264
+ picture parameters for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_SCALING_MATRIX``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_scaling_matrix`, containing H264
+ scaling matrices for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_SLICE_PARAMS``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_slice_params`, containing H264
+ slice parameters for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_DECODE_PARAMS``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_decode_params`, containing H264
+ decode parameters for stateless video decoders.
.. tabularcolumns:: |p{6.6cm}|p{2.2cm}|p{8.7cm}|
diff --git a/Documentation/media/v4l-drivers/index.rst b/Documentation/media/v4l-drivers/index.rst
index 33a055907258..c4c78a28654c 100644
--- a/Documentation/media/v4l-drivers/index.rst
+++ b/Documentation/media/v4l-drivers/index.rst
@@ -64,5 +64,6 @@ For more details see the file COPYING in the source distribution of Linux.
si476x
soc-camera
uvcvideo
+ vimc
vivid
zr364xx
diff --git a/Documentation/media/v4l-drivers/vimc.dot b/Documentation/media/v4l-drivers/vimc.dot
new file mode 100644
index 000000000000..57863a13fa39
--- /dev/null
+++ b/Documentation/media/v4l-drivers/vimc.dot
@@ -0,0 +1,22 @@
+# SPDX-License-Identifier: GPL-2.0
+
+digraph board {
+ rankdir=TB
+ n00000001 [label="{{} | Sensor A\n/dev/v4l-subdev0 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000001:port0 -> n00000005:port0 [style=bold]
+ n00000001:port0 -> n0000000b [style=bold]
+ n00000003 [label="{{} | Sensor B\n/dev/v4l-subdev1 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000003:port0 -> n00000008:port0 [style=bold]
+ n00000003:port0 -> n0000000f [style=bold]
+ n00000005 [label="{{<port0> 0} | Debayer A\n/dev/v4l-subdev2 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000005:port1 -> n00000017:port0
+ n00000008 [label="{{<port0> 0} | Debayer B\n/dev/v4l-subdev3 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000008:port1 -> n00000017:port0 [style=dashed]
+ n0000000b [label="Raw Capture 0\n/dev/video0", shape=box, style=filled, fillcolor=yellow]
+ n0000000f [label="Raw Capture 1\n/dev/video1", shape=box, style=filled, fillcolor=yellow]
+ n00000013 [label="RGB/YUV Input\n/dev/video2", shape=box, style=filled, fillcolor=yellow]
+ n00000013 -> n00000017:port0 [style=dashed]
+ n00000017 [label="{{<port0> 0} | Scaler\n/dev/v4l-subdev4 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000017:port1 -> n0000001a [style=bold]
+ n0000001a [label="RGB/YUV Capture\n/dev/video3", shape=box, style=filled, fillcolor=yellow]
+}
diff --git a/Documentation/media/v4l-drivers/vimc.rst b/Documentation/media/v4l-drivers/vimc.rst
new file mode 100644
index 000000000000..4628b12d417f
--- /dev/null
+++ b/Documentation/media/v4l-drivers/vimc.rst
@@ -0,0 +1,98 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The Virtual Media Controller Driver (vimc)
+==========================================
+
+The vimc driver emulates complex video hardware using the V4L2 API and the Media
+API. It has a capture device and three subdevices: sensor, debayer and scaler.
+
+Topology
+--------
+
+The topology is hardcoded, although you could modify it in vimc-core and
+recompile the driver to achieve your own topology. This is the default topology:
+
+.. _vimc_topology_graph:
+
+.. kernel-figure:: vimc.dot
+ :alt: vimc.dot
+ :align: center
+
+ Media pipeline graph on vimc
+
+Configuring the topology
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Each subdevice will come with its default configuration (pixelformat, height,
+width, ...). One needs to configure the topology in order to match the
+configuration on each linked subdevice to stream frames through the pipeline.
+If the configuration doesn't match, the stream will fail. The ``v4l-utils``
+package is a bundle of user-space applications, that comes with ``media-ctl`` and
+``v4l2-ctl`` that can be used to configure the vimc configuration. This sequence
+of commands fits for the default topology:
+
+.. code-block:: bash
+
+ media-ctl -d platform:vimc -V '"Sensor A":0[fmt:SBGGR8_1X8/640x480]'
+ media-ctl -d platform:vimc -V '"Debayer A":0[fmt:SBGGR8_1X8/640x480]'
+ media-ctl -d platform:vimc -V '"Sensor B":0[fmt:SBGGR8_1X8/640x480]'
+ media-ctl -d platform:vimc -V '"Debayer B":0[fmt:SBGGR8_1X8/640x480]'
+ v4l2-ctl -z platform:vimc -d "RGB/YUV Capture" -v width=1920,height=1440
+ v4l2-ctl -z platform:vimc -d "Raw Capture 0" -v pixelformat=BA81
+ v4l2-ctl -z platform:vimc -d "Raw Capture 1" -v pixelformat=BA81
+
+Subdevices
+----------
+
+Subdevices define the behavior of an entity in the topology. Depending on the
+subdevice, the entity can have multiple pads of type source or sink.
+
+vimc-sensor:
+ Generates images in several formats using video test pattern generator.
+ Exposes:
+
+ * 1 Pad source
+
+vimc-debayer:
+ Transforms images in bayer format into a non-bayer format.
+ Exposes:
+
+ * 1 Pad sink
+ * 1 Pad source
+
+vimc-scaler:
+ Scale up the image by a factor of 3. E.g.: a 640x480 image becomes a
+ 1920x1440 image. (this value can be configured, see at
+ `Module options`_).
+ Exposes:
+
+ * 1 Pad sink
+ * 1 Pad source
+
+vimc-capture:
+ Exposes node /dev/videoX to allow userspace to capture the stream.
+ Exposes:
+
+ * 1 Pad sink
+ * 1 Pad source
+
+Module options
+---------------
+
+Vimc has a few module parameters to configure the driver. You should pass
+those arguments to each subdevice, not to the vimc module. For example::
+
+ vimc_subdevice.param=value
+
+* ``vimc_scaler.sca_mult=<unsigned int>``
+
+ Image size multiplier factor to be used to multiply both width and
+ height, so the image size will be ``sca_mult^2`` bigger than the
+ original one. Currently, only supports scaling up (the default value
+ is 3).
+
+* ``vimc_debayer.deb_mean_win_size=<unsigned int>``
+
+ Window size to calculate the mean. Note: the window size needs to be an
+ odd number, as the main pixel stays in the center of the window,
+ otherwise the next odd number is considered (the default value is 3).
diff --git a/Documentation/media/v4l-drivers/vivid.rst b/Documentation/media/v4l-drivers/vivid.rst
index edb6f33e029c..7082fec4075d 100644
--- a/Documentation/media/v4l-drivers/vivid.rst
+++ b/Documentation/media/v4l-drivers/vivid.rst
@@ -941,6 +941,11 @@ Digital Video Controls
affects the reported colorspace since DVI_D outputs will always use
sRGB.
+- Display Present:
+
+ sets the presence of a "display" on the HDMI output. This affects
+ the tx_edid_present, tx_hotplug and tx_rxsense controls.
+
FM Radio Receiver Controls
~~~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/Documentation/media/videodev2.h.rst.exceptions b/Documentation/media/videodev2.h.rst.exceptions
index 64d348e67df9..55cbe324b9fc 100644
--- a/Documentation/media/videodev2.h.rst.exceptions
+++ b/Documentation/media/videodev2.h.rst.exceptions
@@ -136,6 +136,11 @@ replace symbol V4L2_CTRL_TYPE_U32 :c:type:`v4l2_ctrl_type`
replace symbol V4L2_CTRL_TYPE_U8 :c:type:`v4l2_ctrl_type`
replace symbol V4L2_CTRL_TYPE_MPEG2_SLICE_PARAMS :c:type:`v4l2_ctrl_type`
replace symbol V4L2_CTRL_TYPE_MPEG2_QUANTIZATION :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_SPS :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_PPS :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_SCALING_MATRIX :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_SLICE_PARAMS :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_DECODE_PARAMS :c:type:`v4l2_ctrl_type`
# V4L2 capability defines
replace define V4L2_CAP_VIDEO_CAPTURE device-capabilities
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index f70ebcdfe592..045bb8148fe9 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -3,7 +3,7 @@
============================
By: David Howells <dhowells@redhat.com>
- Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+ Paul E. McKenney <paulmck@linux.ibm.com>
Will Deacon <will.deacon@arm.com>
Peter Zijlstra <peterz@infradead.org>
@@ -548,7 +548,7 @@ There are certain things that the Linux kernel memory barriers do not guarantee:
[*] For information on bus mastering DMA and coherency please read:
- Documentation/PCI/pci.txt
+ Documentation/PCI/pci.rst
Documentation/DMA-API-HOWTO.txt
Documentation/DMA-API.txt
diff --git a/Documentation/mic/index.rst b/Documentation/mic/index.rst
new file mode 100644
index 000000000000..082fa8f6a260
--- /dev/null
+++ b/Documentation/mic/index.rst
@@ -0,0 +1,18 @@
+:orphan:
+
+=============================================
+Intel Many Integrated Core (MIC) architecture
+=============================================
+
+.. toctree::
+ :maxdepth: 1
+
+ mic_overview
+ scif_overview
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/mic/mic_overview.txt b/Documentation/mic/mic_overview.rst
index 074adbdf83a4..17d956bdaf7c 100644
--- a/Documentation/mic/mic_overview.txt
+++ b/Documentation/mic/mic_overview.rst
@@ -1,3 +1,7 @@
+======================================================
+Intel Many Integrated Core (MIC) architecture overview
+======================================================
+
An Intel MIC X100 device is a PCIe form factor add-in coprocessor
card based on the Intel Many Integrated Core (MIC) architecture
that runs a Linux OS. It is a PCIe endpoint in a platform and therefore
@@ -45,7 +49,7 @@ Here is a block diagram of the various components described above. The
virtio backends are situated on the host rather than the card given better
single threaded performance for the host compared to MIC, the ability of
the host to initiate DMA's to/from the card using the MIC DMA engine and
-the fact that the virtio block storage backend can only be on the host.
+the fact that the virtio block storage backend can only be on the host::
+----------+ | +----------+
| Card OS | | | Host OS |
diff --git a/Documentation/mic/scif_overview.txt b/Documentation/mic/scif_overview.rst
index 0a280d986731..4c8ad9e43706 100644
--- a/Documentation/mic/scif_overview.txt
+++ b/Documentation/mic/scif_overview.rst
@@ -1,3 +1,7 @@
+========================================
+Symmetric Communication Interface (SCIF)
+========================================
+
The Symmetric Communication Interface (SCIF (pronounced as skiff)) is a low
level communications API across PCIe currently implemented for MIC. Currently
SCIF provides inter-node communication within a single host platform, where a
@@ -8,8 +12,11 @@ is to deliver the maximum possible performance given the communication
abilities of the hardware. SCIF has been used to implement an offload compiler
runtime and OFED support for MPI implementations for MIC coprocessors.
-==== SCIF API Components ====
+SCIF API Components
+===================
+
The SCIF API has the following parts:
+
1. Connection establishment using a client server model
2. Byte stream messaging intended for short messages
3. Node enumeration to determine online nodes
@@ -28,9 +35,12 @@ can also register local memory which is followed by data transfer using either
DMA, CPU copies or remote memory mapping via mmap. SCIF supports both user and
kernel mode clients which are functionally equivalent.
-==== SCIF Performance for MIC ====
+SCIF Performance for MIC
+========================
+
DMA bandwidth comparison between the TCP (over ethernet over PCIe) stack versus
-SCIF shows the performance advantages of SCIF for HPC applications and runtimes.
+SCIF shows the performance advantages of SCIF for HPC applications and
+runtimes::
Comparison of TCP and SCIF based BW
@@ -66,33 +76,33 @@ space API similar to the kernel API in scif.h. The SCIF user space library
is distributed @ https://software.intel.com/en-us/mic-developer
Here is some pseudo code for an example of how two applications on two PCIe
-nodes would typically use the SCIF API:
+nodes would typically use the SCIF API::
-Process A (on node A) Process B (on node B)
+ Process A (on node A) Process B (on node B)
-/* get online node information */
-scif_get_node_ids(..) scif_get_node_ids(..)
-scif_open(..) scif_open(..)
-scif_bind(..) scif_bind(..)
-scif_listen(..)
-scif_accept(..) scif_connect(..)
-/* SCIF connection established */
+ /* get online node information */
+ scif_get_node_ids(..) scif_get_node_ids(..)
+ scif_open(..) scif_open(..)
+ scif_bind(..) scif_bind(..)
+ scif_listen(..)
+ scif_accept(..) scif_connect(..)
+ /* SCIF connection established */
-/* Send and receive short messages */
-scif_send(..)/scif_recv(..) scif_send(..)/scif_recv(..)
+ /* Send and receive short messages */
+ scif_send(..)/scif_recv(..) scif_send(..)/scif_recv(..)
-/* Register memory */
-scif_register(..) scif_register(..)
+ /* Register memory */
+ scif_register(..) scif_register(..)
-/* RDMA */
-scif_readfrom(..)/scif_writeto(..) scif_readfrom(..)/scif_writeto(..)
+ /* RDMA */
+ scif_readfrom(..)/scif_writeto(..) scif_readfrom(..)/scif_writeto(..)
-/* Fence DMAs */
-scif_fence_signal(..) scif_fence_signal(..)
+ /* Fence DMAs */
+ scif_fence_signal(..) scif_fence_signal(..)
-mmap(..) mmap(..)
+ mmap(..) mmap(..)
-/* Access remote registered memory */
+ /* Access remote registered memory */
-/* Close the endpoints */
-scif_close(..) scif_close(..)
+ /* Close the endpoints */
+ scif_close(..) scif_close(..)
diff --git a/Documentation/misc-devices/eeprom b/Documentation/misc-devices/eeprom.rst
index ba692011f221..008249675ccc 100644
--- a/Documentation/misc-devices/eeprom
+++ b/Documentation/misc-devices/eeprom.rst
@@ -1,11 +1,17 @@
+====================
Kernel driver eeprom
====================
Supported chips:
+
* Any EEPROM chip in the designated address range
+
Prefix: 'eeprom'
+
Addresses scanned: I2C 0x50 - 0x57
+
Datasheets: Publicly available from:
+
Atmel (www.atmel.com),
Catalyst (www.catsemi.com),
Fairchild (www.fairchildsemi.com),
@@ -16,7 +22,9 @@ Supported chips:
Xicor (www.xicor.com),
and others.
- Chip Size (bits) Address
+ ========= ============= ============================================
+ Chip Size (bits) Address
+ ========= ============= ============================================
24C01 1K 0x50 (shadows at 0x51 - 0x57)
24C01A 1K 0x50 - 0x57 (Typical device on DIMMs)
24C02 2K 0x50 - 0x57
@@ -24,7 +32,7 @@ Supported chips:
(additional data at 0x51, 0x53, 0x55, 0x57)
24C08 8K 0x50, 0x54 (additional data at 0x51, 0x52,
0x53, 0x55, 0x56, 0x57)
- 24C16 16K 0x50 (additional data at 0x51 - 0x57)
+ 24C16 16K 0x50 (additional data at 0x51 - 0x57)
Sony 2K 0x57
Atmel 34C02B 2K 0x50 - 0x57, SW write protect at 0x30-37
@@ -33,14 +41,15 @@ Supported chips:
Fairchild 34W02 2K 0x50 - 0x57, SW write protect at 0x30-37
Microchip 24AA52 2K 0x50 - 0x57, SW write protect at 0x30-37
ST M34C02 2K 0x50 - 0x57, SW write protect at 0x30-37
+ ========= ============= ============================================
Authors:
- Frodo Looijaard <frodol@dds.nl>,
- Philip Edelbrock <phil@netroedge.com>,
- Jean Delvare <jdelvare@suse.de>,
- Greg Kroah-Hartman <greg@kroah.com>,
- IBM Corp.
+ - Frodo Looijaard <frodol@dds.nl>,
+ - Philip Edelbrock <phil@netroedge.com>,
+ - Jean Delvare <jdelvare@suse.de>,
+ - Greg Kroah-Hartman <greg@kroah.com>,
+ - IBM Corp.
Description
-----------
@@ -74,23 +83,25 @@ this address will write protect the memory array permanently, and the
device will no longer respond at the 0x30-37 address. The eeprom driver
does not support this register.
-Lacking functionality:
+Lacking functionality
+---------------------
* Full support for larger devices (24C04, 24C08, 24C16). These are not
-typically found on a PC. These devices will appear as separate devices at
-multiple addresses.
+ typically found on a PC. These devices will appear as separate devices at
+ multiple addresses.
* Support for really large devices (24C32, 24C64, 24C128, 24C256, 24C512).
-These devices require two-byte address fields and are not supported.
+ These devices require two-byte address fields and are not supported.
* Enable Writing. Again, no technical reason why not, but making it easy
-to change the contents of the EEPROMs (on DIMMs anyway) also makes it easy
-to disable the DIMMs (potentially preventing the computer from booting)
-until the values are restored somehow.
+ to change the contents of the EEPROMs (on DIMMs anyway) also makes it easy
+ to disable the DIMMs (potentially preventing the computer from booting)
+ until the values are restored somehow.
-Use:
+Use
+---
After inserting the module (and any other required SMBus/i2c modules), you
-should have some EEPROM directories in /sys/bus/i2c/devices/* of names such
+should have some EEPROM directories in ``/sys/bus/i2c/devices/*`` of names such
as "0-0050". Inside each of these is a series of files, the eeprom file
contains the binary data from EEPROM.
diff --git a/Documentation/misc-devices/ics932s401 b/Documentation/misc-devices/ics932s401.rst
index bdac67ff6e3f..613ee54a9c21 100644
--- a/Documentation/misc-devices/ics932s401
+++ b/Documentation/misc-devices/ics932s401.rst
@@ -1,10 +1,15 @@
+========================
Kernel driver ics932s401
-======================
+========================
Supported chips:
+
* IDT ICS932S401
+
Prefix: 'ics932s401'
+
Addresses scanned: I2C 0x69
+
Datasheet: Publicly available at the IDT website
Author: Darrick J. Wong
diff --git a/Documentation/misc-devices/index.rst b/Documentation/misc-devices/index.rst
index dfd1f45a3127..a57f92dfe49a 100644
--- a/Documentation/misc-devices/index.rst
+++ b/Documentation/misc-devices/index.rst
@@ -14,4 +14,9 @@ fit into other categories.
.. toctree::
:maxdepth: 2
+ eeprom
ibmvmc
+ ics932s401
+ isl29003
+ lis3lv02d
+ max6875
diff --git a/Documentation/misc-devices/isl29003 b/Documentation/misc-devices/isl29003.rst
index 80b952fd32ff..0cc38aed6c00 100644
--- a/Documentation/misc-devices/isl29003
+++ b/Documentation/misc-devices/isl29003.rst
@@ -1,10 +1,15 @@
+======================
Kernel driver isl29003
-=====================
+======================
Supported chips:
+
* Intersil ISL29003
+
Prefix: 'isl29003'
+
Addresses scanned: none
+
Datasheet:
http://www.intersil.com/data/fn/fn7464.pdf
@@ -37,25 +42,33 @@ Sysfs entries
-------------
range:
+ == ===========================
0: 0 lux to 1000 lux (default)
1: 0 lux to 4000 lux
2: 0 lux to 16,000 lux
3: 0 lux to 64,000 lux
+ == ===========================
resolution:
+ == =====================
0: 2^16 cycles (default)
1: 2^12 cycles
2: 2^8 cycles
3: 2^4 cycles
+ == =====================
mode:
+ == =================================================
0: diode1's current (unsigned 16bit) (default)
1: diode1's current (unsigned 16bit)
2: difference between diodes (l1 - l2, signed 15bit)
+ == =================================================
power_state:
+ == =================================================
0: device is disabled (default)
1: device is enabled
+ == =================================================
lux (read only):
returns the value from the last sensor reading
diff --git a/Documentation/misc-devices/lis3lv02d b/Documentation/misc-devices/lis3lv02d.rst
index f89960a0ff95..959bd2b822cf 100644
--- a/Documentation/misc-devices/lis3lv02d
+++ b/Documentation/misc-devices/lis3lv02d.rst
@@ -1,3 +1,4 @@
+=======================
Kernel driver lis3lv02d
=======================
@@ -8,8 +9,8 @@ Supported chips:
LIS331DLH (16 bits)
Authors:
- Yan Burman <burman.yan@gmail.com>
- Eric Piel <eric.piel@tremplin-utc.net>
+ - Yan Burman <burman.yan@gmail.com>
+ - Eric Piel <eric.piel@tremplin-utc.net>
Description
@@ -25,11 +26,15 @@ neverball). The accelerometer data is readable via
to mg values (1/1000th of earth gravity).
Sysfs attributes under /sys/devices/platform/lis3lv02d/:
-position - 3D position that the accelerometer reports. Format: "(x,y,z)"
-rate - read reports the sampling rate of the accelerometer device in HZ.
+
+position
+ - 3D position that the accelerometer reports. Format: "(x,y,z)"
+rate
+ - read reports the sampling rate of the accelerometer device in HZ.
write changes sampling rate of the accelerometer device.
Only values which are supported by HW are accepted.
-selftest - performs selftest for the chip as specified by chip manufacturer.
+selftest
+ - performs selftest for the chip as specified by chip manufacturer.
This driver also provides an absolute input class device, allowing
the laptop to act as a pinball machine-esque joystick. Joystick device can be
@@ -69,11 +74,12 @@ Axes orientation
For better compatibility between the various laptops. The values reported by
the accelerometer are converted into a "standard" organisation of the axes
(aka "can play neverball out of the box"):
+
* When the laptop is horizontal the position reported is about 0 for X and Y
- and a positive value for Z
+ and a positive value for Z
* If the left side is elevated, X increases (becomes positive)
* If the front side (where the touchpad is) is elevated, Y decreases
- (becomes negative)
+ (becomes negative)
* If the laptop is put upside-down, Z becomes negative
If your laptop model is not recognized (cf "dmesg"), you can send an
diff --git a/Documentation/misc-devices/max6875 b/Documentation/misc-devices/max6875.rst
index 2f2bd0b17b5d..ad419ac22a5b 100644
--- a/Documentation/misc-devices/max6875
+++ b/Documentation/misc-devices/max6875.rst
@@ -1,12 +1,16 @@
+=====================
Kernel driver max6875
=====================
Supported chips:
+
* Maxim MAX6874, MAX6875
+
Prefix: 'max6875'
+
Addresses scanned: None (see below)
- Datasheet:
- http://pdfserv.maxim-ic.com/en/ds/MAX6874-MAX6875.pdf
+
+ Datasheet: http://pdfserv.maxim-ic.com/en/ds/MAX6874-MAX6875.pdf
Author: Ben Gardner <bgardner@wabtec.com>
@@ -24,9 +28,13 @@ registers.
The Maxim MAX6874 is a similar, mostly compatible device, with more inputs
and outputs:
- vin gpi vout
+
+=========== === === ====
+- vin gpi vout
+=========== === === ====
MAX6874 6 4 8
MAX6875 4 3 5
+=========== === === ====
See the datasheet for more information.
@@ -41,13 +49,16 @@ General Remarks
---------------
Valid addresses for the MAX6875 are 0x50 and 0x52.
+
Valid addresses for the MAX6874 are 0x50, 0x52, 0x54 and 0x56.
+
The driver does not probe any address, so you explicitly instantiate the
devices.
-Example:
-$ modprobe max6875
-$ echo max6875 0x50 > /sys/bus/i2c/devices/i2c-0/new_device
+Example::
+
+ $ modprobe max6875
+ $ echo max6875 0x50 > /sys/bus/i2c/devices/i2c-0/new_device
The MAX6874/MAX6875 ignores address bit 0, so this driver attaches to multiple
addresses. For example, for address 0x50, it also reserves 0x51.
@@ -58,52 +69,67 @@ Programming the chip using i2c-dev
----------------------------------
Use the i2c-dev interface to access and program the chips.
+
Reads and writes are performed differently depending on the address range.
The configuration registers are at addresses 0x00 - 0x45.
+
Use i2c_smbus_write_byte_data() to write a register and
i2c_smbus_read_byte_data() to read a register.
+
The command is the register number.
Examples:
-To write a 1 to register 0x45:
+
+To write a 1 to register 0x45::
+
i2c_smbus_write_byte_data(fd, 0x45, 1);
-To read register 0x45:
+To read register 0x45::
+
value = i2c_smbus_read_byte_data(fd, 0x45);
The configuration EEPROM is at addresses 0x8000 - 0x8045.
+
The user EEPROM is at addresses 0x8100 - 0x82ff.
Use i2c_smbus_write_word_data() to write a byte to EEPROM.
The command is the upper byte of the address: 0x80, 0x81, or 0x82.
-The data word is the lower part of the address or'd with data << 8.
+The data word is the lower part of the address or'd with data << 8::
+
cmd = address >> 8;
val = (address & 0xff) | (data << 8);
Example:
-To write 0x5a to address 0x8003:
+
+To write 0x5a to address 0x8003::
+
i2c_smbus_write_word_data(fd, 0x80, 0x5a03);
Reading data from the EEPROM is a little more complicated.
+
Use i2c_smbus_write_byte_data() to set the read address and then
i2c_smbus_read_byte() or i2c_smbus_read_i2c_block_data() to read the data.
Example:
-To read data starting at offset 0x8100, first set the address:
+
+To read data starting at offset 0x8100, first set the address::
+
i2c_smbus_write_byte_data(fd, 0x81, 0x00);
-And then read the data
+And then read the data::
+
value = i2c_smbus_read_byte(fd);
- or
+or::
count = i2c_smbus_read_i2c_block_data(fd, 0x84, 16, buffer);
The block read should read 16 bytes.
+
0x84 is the block read command.
See the datasheet for more details.
diff --git a/Documentation/misc-devices/mei/mei-client-bus.txt b/Documentation/misc-devices/mei/mei-client-bus.txt
deleted file mode 100644
index 743be4ec8989..000000000000
--- a/Documentation/misc-devices/mei/mei-client-bus.txt
+++ /dev/null
@@ -1,141 +0,0 @@
-Intel(R) Management Engine (ME) Client bus API
-==============================================
-
-
-Rationale
-=========
-
-MEI misc character device is useful for dedicated applications to send and receive
-data to the many FW appliance found in Intel's ME from the user space.
-However for some of the ME functionalities it make sense to leverage existing software
-stack and expose them through existing kernel subsystems.
-
-In order to plug seamlessly into the kernel device driver model we add kernel virtual
-bus abstraction on top of the MEI driver. This allows implementing linux kernel drivers
-for the various MEI features as a stand alone entities found in their respective subsystem.
-Existing device drivers can even potentially be re-used by adding an MEI CL bus layer to
-the existing code.
-
-
-MEI CL bus API
-==============
-
-A driver implementation for an MEI Client is very similar to existing bus
-based device drivers. The driver registers itself as an MEI CL bus driver through
-the mei_cl_driver structure:
-
-struct mei_cl_driver {
- struct device_driver driver;
- const char *name;
-
- const struct mei_cl_device_id *id_table;
-
- int (*probe)(struct mei_cl_device *dev, const struct mei_cl_id *id);
- int (*remove)(struct mei_cl_device *dev);
-};
-
-struct mei_cl_id {
- char name[MEI_NAME_SIZE];
- kernel_ulong_t driver_info;
-};
-
-The mei_cl_id structure allows the driver to bind itself against a device name.
-
-To actually register a driver on the ME Client bus one must call the mei_cl_add_driver()
-API. This is typically called at module init time.
-
-Once registered on the ME Client bus, a driver will typically try to do some I/O on
-this bus and this should be done through the mei_cl_send() and mei_cl_recv()
-routines. The latter is synchronous (blocks and sleeps until data shows up).
-In order for drivers to be notified of pending events waiting for them (e.g.
-an Rx event) they can register an event handler through the
-mei_cl_register_event_cb() routine. Currently only the MEI_EVENT_RX event
-will trigger an event handler call and the driver implementation is supposed
-to call mei_recv() from the event handler in order to fetch the pending
-received buffers.
-
-
-Example
-=======
-
-As a theoretical example let's pretend the ME comes with a "contact" NFC IP.
-The driver init and exit routines for this device would look like:
-
-#define CONTACT_DRIVER_NAME "contact"
-
-static struct mei_cl_device_id contact_mei_cl_tbl[] = {
- { CONTACT_DRIVER_NAME, },
-
- /* required last entry */
- { }
-};
-MODULE_DEVICE_TABLE(mei_cl, contact_mei_cl_tbl);
-
-static struct mei_cl_driver contact_driver = {
- .id_table = contact_mei_tbl,
- .name = CONTACT_DRIVER_NAME,
-
- .probe = contact_probe,
- .remove = contact_remove,
-};
-
-static int contact_init(void)
-{
- int r;
-
- r = mei_cl_driver_register(&contact_driver);
- if (r) {
- pr_err(CONTACT_DRIVER_NAME ": driver registration failed\n");
- return r;
- }
-
- return 0;
-}
-
-static void __exit contact_exit(void)
-{
- mei_cl_driver_unregister(&contact_driver);
-}
-
-module_init(contact_init);
-module_exit(contact_exit);
-
-And the driver's simplified probe routine would look like that:
-
-int contact_probe(struct mei_cl_device *dev, struct mei_cl_device_id *id)
-{
- struct contact_driver *contact;
-
- [...]
- mei_cl_enable_device(dev);
-
- mei_cl_register_event_cb(dev, contact_event_cb, contact);
-
- return 0;
-}
-
-In the probe routine the driver first enable the MEI device and then registers
-an ME bus event handler which is as close as it can get to registering a
-threaded IRQ handler.
-The handler implementation will typically call some I/O routine depending on
-the pending events:
-
-#define MAX_NFC_PAYLOAD 128
-
-static void contact_event_cb(struct mei_cl_device *dev, u32 events,
- void *context)
-{
- struct contact_driver *contact = context;
-
- if (events & BIT(MEI_EVENT_RX)) {
- u8 payload[MAX_NFC_PAYLOAD];
- int payload_size;
-
- payload_size = mei_recv(dev, payload, MAX_NFC_PAYLOAD);
- if (payload_size <= 0)
- return;
-
- /* Hook to the NFC subsystem */
- nfc_hci_recv_frame(contact->hdev, payload, payload_size);
- }
-}
diff --git a/Documentation/misc-devices/mei/mei.txt b/Documentation/misc-devices/mei/mei.txt
deleted file mode 100644
index 2b80a0cd621f..000000000000
--- a/Documentation/misc-devices/mei/mei.txt
+++ /dev/null
@@ -1,266 +0,0 @@
-Intel(R) Management Engine Interface (Intel(R) MEI)
-===================================================
-
-Introduction
-============
-
-The Intel Management Engine (Intel ME) is an isolated and protected computing
-resource (Co-processor) residing inside certain Intel chipsets. The Intel ME
-provides support for computer/IT management features. The feature set
-depends on the Intel chipset SKU.
-
-The Intel Management Engine Interface (Intel MEI, previously known as HECI)
-is the interface between the Host and Intel ME. This interface is exposed
-to the host as a PCI device. The Intel MEI Driver is in charge of the
-communication channel between a host application and the Intel ME feature.
-
-Each Intel ME feature (Intel ME Client) is addressed by a GUID/UUID and
-each client has its own protocol. The protocol is message-based with a
-header and payload up to 512 bytes.
-
-Prominent usage of the Intel ME Interface is to communicate with Intel(R)
-Active Management Technology (Intel AMT) implemented in firmware running on
-the Intel ME.
-
-Intel AMT provides the ability to manage a host remotely out-of-band (OOB)
-even when the operating system running on the host processor has crashed or
-is in a sleep state.
-
-Some examples of Intel AMT usage are:
- - Monitoring hardware state and platform components
- - Remote power off/on (useful for green computing or overnight IT
- maintenance)
- - OS updates
- - Storage of useful platform information such as software assets
- - Built-in hardware KVM
- - Selective network isolation of Ethernet and IP protocol flows based
- on policies set by a remote management console
- - IDE device redirection from remote management console
-
-Intel AMT (OOB) communication is based on SOAP (deprecated
-starting with Release 6.0) over HTTP/S or WS-Management protocol over
-HTTP/S that are received from a remote management console application.
-
-For more information about Intel AMT:
-http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide
-
-
-Intel MEI Driver
-================
-
-The driver exposes a misc device called /dev/mei.
-
-An application maintains communication with an Intel ME feature while
-/dev/mei is open. The binding to a specific feature is performed by calling
-MEI_CONNECT_CLIENT_IOCTL, which passes the desired UUID.
-The number of instances of an Intel ME feature that can be opened
-at the same time depends on the Intel ME feature, but most of the
-features allow only a single instance.
-
-The Intel AMT Host Interface (Intel AMTHI) feature supports multiple
-simultaneous user connected applications. The Intel MEI driver
-handles this internally by maintaining request queues for the applications.
-
-The driver is transparent to data that are passed between firmware feature
-and host application.
-
-Because some of the Intel ME features can change the system
-configuration, the driver by default allows only a privileged
-user to access it.
-
-A code snippet for an application communicating with Intel AMTHI client:
-
- struct mei_connect_client_data data;
- fd = open(MEI_DEVICE);
-
- data.d.in_client_uuid = AMTHI_UUID;
-
- ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &data);
-
- printf("Ver=%d, MaxLen=%ld\n",
- data.d.in_client_uuid.protocol_version,
- data.d.in_client_uuid.max_msg_length);
-
- [...]
-
- write(fd, amthi_req_data, amthi_req_data_len);
-
- [...]
-
- read(fd, &amthi_res_data, amthi_res_data_len);
-
- [...]
- close(fd);
-
-
-IOCTL
-=====
-
-The Intel MEI Driver supports the following IOCTL commands:
- IOCTL_MEI_CONNECT_CLIENT Connect to firmware Feature (client).
-
- usage:
- struct mei_connect_client_data clientData;
- ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &clientData);
-
- inputs:
- mei_connect_client_data struct contain the following
- input field:
-
- in_client_uuid - UUID of the FW Feature that needs
- to connect to.
- outputs:
- out_client_properties - Client Properties: MTU and Protocol Version.
-
- error returns:
- EINVAL Wrong IOCTL Number
- ENODEV Device or Connection is not initialized or ready.
- (e.g. Wrong UUID)
- ENOMEM Unable to allocate memory to client internal data.
- EFAULT Fatal Error (e.g. Unable to access user input data)
- EBUSY Connection Already Open
-
- Notes:
- max_msg_length (MTU) in client properties describes the maximum
- data that can be sent or received. (e.g. if MTU=2K, can send
- requests up to bytes 2k and received responses up to 2k bytes).
-
- IOCTL_MEI_NOTIFY_SET: enable or disable event notifications
-
- Usage:
- uint32_t enable;
- ioctl(fd, IOCTL_MEI_NOTIFY_SET, &enable);
-
- Inputs:
- uint32_t enable = 1;
- or
- uint32_t enable[disable] = 0;
-
- Error returns:
- EINVAL Wrong IOCTL Number
- ENODEV Device is not initialized or the client not connected
- ENOMEM Unable to allocate memory to client internal data.
- EFAULT Fatal Error (e.g. Unable to access user input data)
- EOPNOTSUPP if the device doesn't support the feature
-
- Notes:
- The client must be connected in order to enable notification events
-
-
- IOCTL_MEI_NOTIFY_GET : retrieve event
-
- Usage:
- uint32_t event;
- ioctl(fd, IOCTL_MEI_NOTIFY_GET, &event);
-
- Outputs:
- 1 - if an event is pending
- 0 - if there is no even pending
-
- Error returns:
- EINVAL Wrong IOCTL Number
- ENODEV Device is not initialized or the client not connected
- ENOMEM Unable to allocate memory to client internal data.
- EFAULT Fatal Error (e.g. Unable to access user input data)
- EOPNOTSUPP if the device doesn't support the feature
-
- Notes:
- The client must be connected and event notification has to be enabled
- in order to receive an event
-
-
-Intel ME Applications
-=====================
-
- 1) Intel Local Management Service (Intel LMS)
-
- Applications running locally on the platform communicate with Intel AMT Release
- 2.0 and later releases in the same way that network applications do via SOAP
- over HTTP (deprecated starting with Release 6.0) or with WS-Management over
- SOAP over HTTP. This means that some Intel AMT features can be accessed from a
- local application using the same network interface as a remote application
- communicating with Intel AMT over the network.
-
- When a local application sends a message addressed to the local Intel AMT host
- name, the Intel LMS, which listens for traffic directed to the host name,
- intercepts the message and routes it to the Intel MEI.
- For more information:
- http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide
- Under "About Intel AMT" => "Local Access"
-
- For downloading Intel LMS:
- http://software.intel.com/en-us/articles/download-the-latest-intel-amt-open-source-drivers/
-
- The Intel LMS opens a connection using the Intel MEI driver to the Intel LMS
- firmware feature using a defined UUID and then communicates with the feature
- using a protocol called Intel AMT Port Forwarding Protocol (Intel APF protocol).
- The protocol is used to maintain multiple sessions with Intel AMT from a
- single application.
-
- See the protocol specification in the Intel AMT Software Development Kit (SDK)
- http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide
- Under "SDK Resources" => "Intel(R) vPro(TM) Gateway (MPS)"
- => "Information for Intel(R) vPro(TM) Gateway Developers"
- => "Description of the Intel AMT Port Forwarding (APF) Protocol"
-
- 2) Intel AMT Remote configuration using a Local Agent
-
- A Local Agent enables IT personnel to configure Intel AMT out-of-the-box
- without requiring installing additional data to enable setup. The remote
- configuration process may involve an ISV-developed remote configuration
- agent that runs on the host.
- For more information:
- http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide
- Under "Setup and Configuration of Intel AMT" =>
- "SDK Tools Supporting Setup and Configuration" =>
- "Using the Local Agent Sample"
-
- An open source Intel AMT configuration utility, implementing a local agent
- that accesses the Intel MEI driver, can be found here:
- http://software.intel.com/en-us/articles/download-the-latest-intel-amt-open-source-drivers/
-
-
-Intel AMT OS Health Watchdog
-============================
-
-The Intel AMT Watchdog is an OS Health (Hang/Crash) watchdog.
-Whenever the OS hangs or crashes, Intel AMT will send an event
-to any subscriber to this event. This mechanism means that
-IT knows when a platform crashes even when there is a hard failure on the host.
-
-The Intel AMT Watchdog is composed of two parts:
- 1) Firmware feature - receives the heartbeats
- and sends an event when the heartbeats stop.
- 2) Intel MEI iAMT watchdog driver - connects to the watchdog feature,
- configures the watchdog and sends the heartbeats.
-
-The Intel iAMT watchdog MEI driver uses the kernel watchdog API to configure
-the Intel AMT Watchdog and to send heartbeats to it. The default timeout of the
-watchdog is 120 seconds.
-
-If the Intel AMT is not enabled in the firmware then the watchdog client won't enumerate
-on the me client bus and watchdog devices won't be exposed.
-
-
-Supported Chipsets
-==================
-
-7 Series Chipset Family
-6 Series Chipset Family
-5 Series Chipset Family
-4 Series Chipset Family
-Mobile 4 Series Chipset Family
-ICH9
-82946GZ/GL
-82G35 Express
-82Q963/Q965
-82P965/G965
-Mobile PM965/GM965
-Mobile GME965/GLE960
-82Q35 Express
-82G33/G31/P35/P31 Express
-82Q33 Express
-82X38/X48 Express
-
----
-linux-mei@linux.intel.com
diff --git a/Documentation/netlabel/cipso_ipv4.txt b/Documentation/netlabel/cipso_ipv4.rst
index a6075481fd60..cbd3f3231221 100644
--- a/Documentation/netlabel/cipso_ipv4.txt
+++ b/Documentation/netlabel/cipso_ipv4.rst
@@ -1,10 +1,13 @@
+===================================
NetLabel CIPSO/IPv4 Protocol Engine
-==============================================================================
+===================================
+
Paul Moore, paul.moore@hp.com
May 17, 2006
- * Overview
+Overview
+========
The NetLabel CIPSO/IPv4 protocol engine is based on the IETF Commercial
IP Security Option (CIPSO) draft from July 16, 1992. A copy of this
@@ -13,7 +16,8 @@ draft can be found in this directory
it to an RFC standard it has become a de-facto standard for labeled
networking and is used in many trusted operating systems.
- * Outbound Packet Processing
+Outbound Packet Processing
+==========================
The CIPSO/IPv4 protocol engine applies the CIPSO IP option to packets by
adding the CIPSO label to the socket. This causes all packets leaving the
@@ -24,7 +28,8 @@ label by using the NetLabel security module API; if the NetLabel "domain" is
configured to use CIPSO for packet labeling then a CIPSO IP option will be
generated and attached to the socket.
- * Inbound Packet Processing
+Inbound Packet Processing
+=========================
The CIPSO/IPv4 protocol engine validates every CIPSO IP option it finds at the
IP layer without any special handling required by the LSM. However, in order
@@ -33,7 +38,8 @@ NetLabel security module API to extract the security attributes of the packet.
This is typically done at the socket layer using the 'socket_sock_rcv_skb()'
LSM hook.
- * Label Translation
+Label Translation
+=================
The CIPSO/IPv4 protocol engine contains a mechanism to translate CIPSO security
attributes such as sensitivity level and category to values which are
@@ -42,7 +48,8 @@ Domain Of Interpretation (DOI) definition and are configured through the
NetLabel user space communication layer. Each DOI definition can have a
different security attribute mapping table.
- * Label Translation Cache
+Label Translation Cache
+=======================
The NetLabel system provides a framework for caching security attribute
mappings from the network labels to the corresponding LSM identifiers. The
diff --git a/Documentation/netlabel/draft_ietf.rst b/Documentation/netlabel/draft_ietf.rst
new file mode 100644
index 000000000000..5ed39ab8234b
--- /dev/null
+++ b/Documentation/netlabel/draft_ietf.rst
@@ -0,0 +1,5 @@
+Draft IETF CIPSO IP Security
+----------------------------
+
+ .. include:: draft-ietf-cipso-ipsecurity-01.txt
+ :literal:
diff --git a/Documentation/netlabel/index.rst b/Documentation/netlabel/index.rst
new file mode 100644
index 000000000000..47f1e0e5acd1
--- /dev/null
+++ b/Documentation/netlabel/index.rst
@@ -0,0 +1,21 @@
+:orphan:
+
+========
+NetLabel
+========
+
+.. toctree::
+ :maxdepth: 1
+
+ introduction
+ cipso_ipv4
+ lsm_interface
+
+ draft_ietf
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/netlabel/introduction.txt b/Documentation/netlabel/introduction.rst
index 3caf77bcff0f..9333bbb0adc1 100644
--- a/Documentation/netlabel/introduction.txt
+++ b/Documentation/netlabel/introduction.rst
@@ -1,10 +1,13 @@
+=====================
NetLabel Introduction
-==============================================================================
+=====================
+
Paul Moore, paul.moore@hp.com
August 2, 2006
- * Overview
+Overview
+========
NetLabel is a mechanism which can be used by kernel security modules to attach
security attributes to outgoing network packets generated from user space
@@ -12,7 +15,8 @@ applications and read security attributes from incoming network packets. It
is composed of three main components, the protocol engines, the communication
layer, and the kernel security module API.
- * Protocol Engines
+Protocol Engines
+================
The protocol engines are responsible for both applying and retrieving the
network packet's security attributes. If any translation between the network
@@ -24,7 +28,8 @@ the NetLabel kernel security module API described below.
Detailed information about each NetLabel protocol engine can be found in this
directory.
- * Communication Layer
+Communication Layer
+===================
The communication layer exists to allow NetLabel configuration and monitoring
from user space. The NetLabel communication layer uses a message based
@@ -33,7 +38,8 @@ formatting of these NetLabel messages as well as the Generic NETLINK family
names can be found in the 'net/netlabel/' directory as comments in the
header files as well as in 'include/net/netlabel.h'.
- * Security Module API
+Security Module API
+===================
The purpose of the NetLabel security module API is to provide a protocol
independent interface to the underlying NetLabel protocol engines. In addition
diff --git a/Documentation/netlabel/lsm_interface.txt b/Documentation/netlabel/lsm_interface.rst
index 638c74f7de7f..026fc267f798 100644
--- a/Documentation/netlabel/lsm_interface.txt
+++ b/Documentation/netlabel/lsm_interface.rst
@@ -1,10 +1,13 @@
+========================================
NetLabel Linux Security Module Interface
-==============================================================================
+========================================
+
Paul Moore, paul.moore@hp.com
May 17, 2006
- * Overview
+Overview
+========
NetLabel is a mechanism which can set and retrieve security attributes from
network packets. It is intended to be used by LSM developers who want to make
@@ -12,7 +15,8 @@ use of a common code base for several different packet labeling protocols.
The NetLabel security module API is defined in 'include/net/netlabel.h' but a
brief overview is given below.
- * NetLabel Security Attributes
+NetLabel Security Attributes
+============================
Since NetLabel supports multiple different packet labeling protocols and LSMs
it uses the concept of security attributes to refer to the packet's security
@@ -24,7 +28,8 @@ configuration. It is up to the LSM developer to translate the NetLabel
security attributes into whatever security identifiers are in use for their
particular LSM.
- * NetLabel LSM Protocol Operations
+NetLabel LSM Protocol Operations
+================================
These are the functions which allow the LSM developer to manipulate the labels
on outgoing packets as well as read the labels on incoming packets. Functions
@@ -32,7 +37,8 @@ exist to operate both on sockets as well as the sk_buffs directly. These high
level functions are translated into low level protocol operations based on how
the administrator has configured the NetLabel subsystem.
- * NetLabel Label Mapping Cache Operations
+NetLabel Label Mapping Cache Operations
+=======================================
Depending on the exact configuration, translation between the network packet
label and the internal LSM security identifier can be time consuming. The
diff --git a/Documentation/networking/af_xdp.rst b/Documentation/networking/af_xdp.rst
index e14d7d40fc75..eeedc2e826aa 100644
--- a/Documentation/networking/af_xdp.rst
+++ b/Documentation/networking/af_xdp.rst
@@ -220,7 +220,21 @@ Usage
In order to use AF_XDP sockets there are two parts needed. The
user-space application and the XDP program. For a complete setup and
usage example, please refer to the sample application. The user-space
-side is xdpsock_user.c and the XDP side xdpsock_kern.c.
+side is xdpsock_user.c and the XDP side is part of libbpf.
+
+The XDP code sample included in tools/lib/bpf/xsk.c is the following::
+
+ SEC("xdp_sock") int xdp_sock_prog(struct xdp_md *ctx)
+ {
+ int index = ctx->rx_queue_index;
+
+ // A set entry here means that the correspnding queue_id
+ // has an active AF_XDP socket bound to it.
+ if (bpf_map_lookup_elem(&xsks_map, &index))
+ return bpf_redirect_map(&xsks_map, index, 0);
+
+ return XDP_PASS;
+ }
Naive ring dequeue and enqueue could look like this::
@@ -316,16 +330,16 @@ A: When a netdev of a physical NIC is initialized, Linux usually
all the traffic, you can force the netdev to only have 1 queue, queue
id 0, and then bind to queue 0. You can use ethtool to do this::
- sudo ethtool -L <interface> combined 1
+ sudo ethtool -L <interface> combined 1
If you want to only see part of the traffic, you can program the
NIC through ethtool to filter out your traffic to a single queue id
that you can bind your XDP socket to. Here is one example in which
UDP traffic to and from port 4242 are sent to queue 2::
- sudo ethtool -N <interface> rx-flow-hash udp4 fn
- sudo ethtool -N <interface> flow-type udp4 src-port 4242 dst-port \
- 4242 action 2
+ sudo ethtool -N <interface> rx-flow-hash udp4 fn
+ sudo ethtool -N <interface> flow-type udp4 src-port 4242 dst-port \
+ 4242 action 2
A number of other ways are possible all up to the capabilitites of
the NIC you have.
diff --git a/Documentation/networking/device_drivers/amazon/ena.txt b/Documentation/networking/device_drivers/amazon/ena.txt
index 2b4b6f57e549..1bb55c7b604c 100644
--- a/Documentation/networking/device_drivers/amazon/ena.txt
+++ b/Documentation/networking/device_drivers/amazon/ena.txt
@@ -73,7 +73,7 @@ operation.
AQ is used for submitting management commands, and the
results/responses are reported asynchronously through ACQ.
-ENA introduces a very small set of management commands with room for
+ENA introduces a small set of management commands with room for
vendor-specific extensions. Most of the management operations are
framed in a generic Get/Set feature command.
@@ -202,11 +202,14 @@ delay value to each level.
The user can enable/disable adaptive moderation, modify the interrupt
delay table and restore its default values through sysfs.
+RX copybreak:
+=============
The rx_copybreak is initialized by default to ENA_DEFAULT_RX_COPYBREAK
and can be configured by the ETHTOOL_STUNABLE command of the
SIOCETHTOOL ioctl.
SKB:
+====
The driver-allocated SKB for frames received from Rx handling using
NAPI context. The allocation method depends on the size of the packet.
If the frame length is larger than rx_copybreak, napi_get_frags()
diff --git a/Documentation/networking/device_drivers/aquantia/atlantic.txt b/Documentation/networking/device_drivers/aquantia/atlantic.txt
new file mode 100644
index 000000000000..d235cbaeccc6
--- /dev/null
+++ b/Documentation/networking/device_drivers/aquantia/atlantic.txt
@@ -0,0 +1,439 @@
+aQuantia AQtion Driver for the aQuantia Multi-Gigabit PCI Express Family of
+Ethernet Adapters
+=============================================================================
+
+Contents
+========
+
+- Identifying Your Adapter
+- Configuration
+- Supported ethtool options
+- Command Line Parameters
+- Config file parameters
+- Support
+- License
+
+Identifying Your Adapter
+========================
+
+The driver in this release is compatible with AQC-100, AQC-107, AQC-108 based ethernet adapters.
+
+
+SFP+ Devices (for AQC-100 based adapters)
+----------------------------------
+
+This release tested with passive Direct Attach Cables (DAC) and SFP+/LC Optical Transceiver.
+
+Configuration
+=========================
+ Viewing Link Messages
+ ---------------------
+ Link messages will not be displayed to the console if the distribution is
+ restricting system messages. In order to see network driver link messages on
+ your console, set dmesg to eight by entering the following:
+
+ dmesg -n 8
+
+ NOTE: This setting is not saved across reboots.
+
+ Jumbo Frames
+ ------------
+ The driver supports Jumbo Frames for all adapters. Jumbo Frames support is
+ enabled by changing the MTU to a value larger than the default of 1500.
+ The maximum value for the MTU is 16000. Use the `ip` command to
+ increase the MTU size. For example:
+
+ ip link set mtu 16000 dev enp1s0
+
+ ethtool
+ -------
+ The driver utilizes the ethtool interface for driver configuration and
+ diagnostics, as well as displaying statistical information. The latest
+ ethtool version is required for this functionality.
+
+ NAPI
+ ----
+ NAPI (Rx polling mode) is supported in the atlantic driver.
+
+Supported ethtool options
+============================
+ Viewing adapter settings
+ ---------------------
+ ethtool <ethX>
+
+ Output example:
+
+ Settings for enp1s0:
+ Supported ports: [ TP ]
+ Supported link modes: 100baseT/Full
+ 1000baseT/Full
+ 10000baseT/Full
+ 2500baseT/Full
+ 5000baseT/Full
+ Supported pause frame use: Symmetric
+ Supports auto-negotiation: Yes
+ Supported FEC modes: Not reported
+ Advertised link modes: 100baseT/Full
+ 1000baseT/Full
+ 10000baseT/Full
+ 2500baseT/Full
+ 5000baseT/Full
+ Advertised pause frame use: Symmetric
+ Advertised auto-negotiation: Yes
+ Advertised FEC modes: Not reported
+ Speed: 10000Mb/s
+ Duplex: Full
+ Port: Twisted Pair
+ PHYAD: 0
+ Transceiver: internal
+ Auto-negotiation: on
+ MDI-X: Unknown
+ Supports Wake-on: g
+ Wake-on: d
+ Link detected: yes
+
+ ---
+ Note: AQrate speeds (2.5/5 Gb/s) will be displayed only with linux kernels > 4.10.
+ But you can still use these speeds:
+ ethtool -s eth0 autoneg off speed 2500
+
+ Viewing adapter information
+ ---------------------
+ ethtool -i <ethX>
+
+ Output example:
+
+ driver: atlantic
+ version: 5.2.0-050200rc5-generic-kern
+ firmware-version: 3.1.78
+ expansion-rom-version:
+ bus-info: 0000:01:00.0
+ supports-statistics: yes
+ supports-test: no
+ supports-eeprom-access: no
+ supports-register-dump: yes
+ supports-priv-flags: no
+
+
+ Viewing Ethernet adapter statistics:
+ ---------------------
+ ethtool -S <ethX>
+
+ Output example:
+ NIC statistics:
+ InPackets: 13238607
+ InUCast: 13293852
+ InMCast: 52
+ InBCast: 3
+ InErrors: 0
+ OutPackets: 23703019
+ OutUCast: 23704941
+ OutMCast: 67
+ OutBCast: 11
+ InUCastOctects: 213182760
+ OutUCastOctects: 22698443
+ InMCastOctects: 6600
+ OutMCastOctects: 8776
+ InBCastOctects: 192
+ OutBCastOctects: 704
+ InOctects: 2131839552
+ OutOctects: 226938073
+ InPacketsDma: 95532300
+ OutPacketsDma: 59503397
+ InOctetsDma: 1137102462
+ OutOctetsDma: 2394339518
+ InDroppedDma: 0
+ Queue[0] InPackets: 23567131
+ Queue[0] OutPackets: 20070028
+ Queue[0] InJumboPackets: 0
+ Queue[0] InLroPackets: 0
+ Queue[0] InErrors: 0
+ Queue[1] InPackets: 45428967
+ Queue[1] OutPackets: 11306178
+ Queue[1] InJumboPackets: 0
+ Queue[1] InLroPackets: 0
+ Queue[1] InErrors: 0
+ Queue[2] InPackets: 3187011
+ Queue[2] OutPackets: 13080381
+ Queue[2] InJumboPackets: 0
+ Queue[2] InLroPackets: 0
+ Queue[2] InErrors: 0
+ Queue[3] InPackets: 23349136
+ Queue[3] OutPackets: 15046810
+ Queue[3] InJumboPackets: 0
+ Queue[3] InLroPackets: 0
+ Queue[3] InErrors: 0
+
+ Interrupt coalescing support
+ ---------------------------------
+ ITR mode, TX/RX coalescing timings could be viewed with:
+
+ ethtool -c <ethX>
+
+ and changed with:
+
+ ethtool -C <ethX> tx-usecs <usecs> rx-usecs <usecs>
+
+ To disable coalescing:
+
+ ethtool -C <ethX> tx-usecs 0 rx-usecs 0 tx-max-frames 1 tx-max-frames 1
+
+ Wake on LAN support
+ ---------------------------------
+
+ WOL support by magic packet:
+
+ ethtool -s <ethX> wol g
+
+ To disable WOL:
+
+ ethtool -s <ethX> wol d
+
+ Set and check the driver message level
+ ---------------------------------
+
+ Set message level
+
+ ethtool -s <ethX> msglvl <level>
+
+ Level values:
+
+ 0x0001 - general driver status.
+ 0x0002 - hardware probing.
+ 0x0004 - link state.
+ 0x0008 - periodic status check.
+ 0x0010 - interface being brought down.
+ 0x0020 - interface being brought up.
+ 0x0040 - receive error.
+ 0x0080 - transmit error.
+ 0x0200 - interrupt handling.
+ 0x0400 - transmit completion.
+ 0x0800 - receive completion.
+ 0x1000 - packet contents.
+ 0x2000 - hardware status.
+ 0x4000 - Wake-on-LAN status.
+
+ By default, the level of debugging messages is set 0x0001(general driver status).
+
+ Check message level
+
+ ethtool <ethX> | grep "Current message level"
+
+ If you want to disable the output of messages
+
+ ethtool -s <ethX> msglvl 0
+
+ RX flow rules (ntuple filters)
+ ---------------------------------
+ There are separate rules supported, that applies in that order:
+ 1. 16 VLAN ID rules
+ 2. 16 L2 EtherType rules
+ 3. 8 L3/L4 5-Tuple rules
+
+
+ The driver utilizes the ethtool interface for configuring ntuple filters,
+ via "ethtool -N <device> <filter>".
+
+ To enable or disable the RX flow rules:
+
+ ethtool -K ethX ntuple <on|off>
+
+ When disabling ntuple filters, all the user programed filters are
+ flushed from the driver cache and hardware. All needed filters must
+ be re-added when ntuple is re-enabled.
+
+ Because of the fixed order of the rules, the location of filters is also fixed:
+ - Locations 0 - 15 for VLAN ID filters
+ - Locations 16 - 31 for L2 EtherType filters
+ - Locations 32 - 39 for L3/L4 5-tuple filters (locations 32, 36 for IPv6)
+
+ The L3/L4 5-tuple (protocol, source and destination IP address, source and
+ destination TCP/UDP/SCTP port) is compared against 8 filters. For IPv4, up to
+ 8 source and destination addresses can be matched. For IPv6, up to 2 pairs of
+ addresses can be supported. Source and destination ports are only compared for
+ TCP/UDP/SCTP packets.
+
+ To add a filter that directs packet to queue 5, use <-N|-U|--config-nfc|--config-ntuple> switch:
+
+ ethtool -N <ethX> flow-type udp4 src-ip 10.0.0.1 dst-ip 10.0.0.2 src-port 2000 dst-port 2001 action 5 <loc 32>
+
+ - action is the queue number.
+ - loc is the rule number.
+
+ For "flow-type ip4|udp4|tcp4|sctp4|ip6|udp6|tcp6|sctp6" you must set the loc
+ number within 32 - 39.
+ For "flow-type ip4|udp4|tcp4|sctp4|ip6|udp6|tcp6|sctp6" you can set 8 rules
+ for traffic IPv4 or you can set 2 rules for traffic IPv6. Loc number traffic
+ IPv6 is 32 and 36.
+ At the moment you can not use IPv4 and IPv6 filters at the same time.
+
+ Example filter for IPv6 filter traffic:
+
+ sudo ethtool -N <ethX> flow-type tcp6 src-ip 2001:db8:0:f101::1 dst-ip 2001:db8:0:f101::2 action 1 loc 32
+ sudo ethtool -N <ethX> flow-type ip6 src-ip 2001:db8:0:f101::2 dst-ip 2001:db8:0:f101::5 action -1 loc 36
+
+ Example filter for IPv4 filter traffic:
+
+ sudo ethtool -N <ethX> flow-type udp4 src-ip 10.0.0.4 dst-ip 10.0.0.7 src-port 2000 dst-port 2001 loc 32
+ sudo ethtool -N <ethX> flow-type tcp4 src-ip 10.0.0.3 dst-ip 10.0.0.9 src-port 2000 dst-port 2001 loc 33
+ sudo ethtool -N <ethX> flow-type ip4 src-ip 10.0.0.6 dst-ip 10.0.0.4 loc 34
+
+ If you set action -1, then all traffic corresponding to the filter will be discarded.
+ The maximum value action is 31.
+
+
+ The VLAN filter (VLAN id) is compared against 16 filters.
+ VLAN id must be accompanied by mask 0xF000. That is to distinguish VLAN filter
+ from L2 Ethertype filter with UserPriority since both User Priority and VLAN ID
+ are passed in the same 'vlan' parameter.
+
+ To add a filter that directs packets from VLAN 2001 to queue 5:
+ ethtool -N <ethX> flow-type ip4 vlan 2001 m 0xF000 action 1 loc 0
+
+
+ L2 EtherType filters allows filter packet by EtherType field or both EtherType
+ and User Priority (PCP) field of 802.1Q.
+ UserPriority (vlan) parameter must be accompanied by mask 0x1FFF. That is to
+ distinguish VLAN filter from L2 Ethertype filter with UserPriority since both
+ User Priority and VLAN ID are passed in the same 'vlan' parameter.
+
+ To add a filter that directs IP4 packess of priority 3 to queue 3:
+ ethtool -N <ethX> flow-type ether proto 0x800 vlan 0x600 m 0x1FFF action 3 loc 16
+
+
+ To see the list of filters currently present:
+
+ ethtool <-u|-n|--show-nfc|--show-ntuple> <ethX>
+
+ Rules may be deleted from the table itself. This is done using:
+
+ sudo ethtool <-N|-U|--config-nfc|--config-ntuple> <ethX> delete <loc>
+
+ - loc is the rule number to be deleted.
+
+ Rx filters is an interface to load the filter table that funnels all flow
+ into queue 0 unless an alternative queue is specified using "action". In that
+ case, any flow that matches the filter criteria will be directed to the
+ appropriate queue. RX filters is supported on all kernels 2.6.30 and later.
+
+ RSS for UDP
+ ---------------------------------
+ Currently, NIC does not support RSS for fragmented IP packets, which leads to
+ incorrect working of RSS for fragmented UDP traffic. To disable RSS for UDP the
+ RX Flow L3/L4 rule may be used.
+
+ Example:
+ ethtool -N eth0 flow-type udp4 action 0 loc 32
+
+Command Line Parameters
+=======================
+The following command line parameters are available on atlantic driver:
+
+aq_itr -Interrupt throttling mode
+----------------------------------------
+Accepted values: 0, 1, 0xFFFF
+Default value: 0xFFFF
+0 - Disable interrupt throttling.
+1 - Enable interrupt throttling and use specified tx and rx rates.
+0xFFFF - Auto throttling mode. Driver will choose the best RX and TX
+ interrupt throtting settings based on link speed.
+
+aq_itr_tx - TX interrupt throttle rate
+----------------------------------------
+Accepted values: 0 - 0x1FF
+Default value: 0
+TX side throttling in microseconds. Adapter will setup maximum interrupt delay
+to this value. Minimum interrupt delay will be a half of this value
+
+aq_itr_rx - RX interrupt throttle rate
+----------------------------------------
+Accepted values: 0 - 0x1FF
+Default value: 0
+RX side throttling in microseconds. Adapter will setup maximum interrupt delay
+to this value. Minimum interrupt delay will be a half of this value
+
+Note: ITR settings could be changed in runtime by ethtool -c means (see below)
+
+Config file parameters
+=======================
+For some fine tuning and performance optimizations,
+some parameters can be changed in the {source_dir}/aq_cfg.h file.
+
+AQ_CFG_RX_PAGEORDER
+----------------------------------------
+Default value: 0
+RX page order override. Thats a power of 2 number of RX pages allocated for
+each descriptor. Received descriptor size is still limited by AQ_CFG_RX_FRAME_MAX.
+Increasing pageorder makes page reuse better (actual on iommu enabled systems).
+
+AQ_CFG_RX_REFILL_THRES
+----------------------------------------
+Default value: 32
+RX refill threshold. RX path will not refill freed descriptors until the
+specified number of free descriptors is observed. Larger values may help
+better page reuse but may lead to packet drops as well.
+
+AQ_CFG_VECS_DEF
+------------------------------------------------------------
+Number of queues
+Valid Range: 0 - 8 (up to AQ_CFG_VECS_MAX)
+Default value: 8
+Notice this value will be capped by the number of cores available on the system.
+
+AQ_CFG_IS_RSS_DEF
+------------------------------------------------------------
+Enable/disable Receive Side Scaling
+
+This feature allows the adapter to distribute receive processing
+across multiple CPU-cores and to prevent from overloading a single CPU core.
+
+Valid values
+0 - disabled
+1 - enabled
+
+Default value: 1
+
+AQ_CFG_NUM_RSS_QUEUES_DEF
+------------------------------------------------------------
+Number of queues for Receive Side Scaling
+Valid Range: 0 - 8 (up to AQ_CFG_VECS_DEF)
+
+Default value: AQ_CFG_VECS_DEF
+
+AQ_CFG_IS_LRO_DEF
+------------------------------------------------------------
+Enable/disable Large Receive Offload
+
+This offload enables the adapter to coalesce multiple TCP segments and indicate
+them as a single coalesced unit to the OS networking subsystem.
+The system consumes less energy but it also introduces more latency in packets processing.
+
+Valid values
+0 - disabled
+1 - enabled
+
+Default value: 1
+
+AQ_CFG_TX_CLEAN_BUDGET
+----------------------------------------
+Maximum descriptors to cleanup on TX at once.
+Default value: 256
+
+After the aq_cfg.h file changed the driver must be rebuilt to take effect.
+
+Support
+=======
+
+If an issue is identified with the released source code on the supported
+kernel with a supported adapter, email the specific information related
+to the issue to support@aquantia.com
+
+License
+=======
+
+aQuantia Corporation Network Driver
+Copyright(c) 2014 - 2019 aQuantia Corporation.
+
+This program is free software; you can redistribute it and/or modify it
+under the terms and conditions of the GNU General Public License,
+version 2, as published by the Free Software Foundation.
diff --git a/Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst b/Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst
index 5045df990a4c..17dbee1ac53e 100644
--- a/Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst
+++ b/Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst
@@ -39,8 +39,7 @@ The Linux DPIO driver consists of 3 primary components--
DPIO service-- provides APIs to other Linux drivers for services
- QBman portal interface-- sends portal commands, gets responses
-::
+ QBman portal interface-- sends portal commands, gets responses::
fsl-mc other
bus drivers
@@ -60,6 +59,7 @@ The Linux DPIO driver consists of 3 primary components--
The diagram below shows how the DPIO driver components fit with the other
DPAA2 Linux driver components::
+
+------------+
| OS Network |
| Stack |
diff --git a/Documentation/networking/device_drivers/google/gve.rst b/Documentation/networking/device_drivers/google/gve.rst
new file mode 100644
index 000000000000..793693cef6e3
--- /dev/null
+++ b/Documentation/networking/device_drivers/google/gve.rst
@@ -0,0 +1,123 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+==============================================================
+Linux kernel driver for Compute Engine Virtual Ethernet (gve):
+==============================================================
+
+Supported Hardware
+===================
+The GVE driver binds to a single PCI device id used by the virtual
+Ethernet device found in some Compute Engine VMs.
+
++--------------+----------+---------+
+|Field | Value | Comments|
++==============+==========+=========+
+|Vendor ID | `0x1AE0` | Google |
++--------------+----------+---------+
+|Device ID | `0x0042` | |
++--------------+----------+---------+
+|Sub-vendor ID | `0x1AE0` | Google |
++--------------+----------+---------+
+|Sub-device ID | `0x0058` | |
++--------------+----------+---------+
+|Revision ID | `0x0` | |
++--------------+----------+---------+
+|Device Class | `0x200` | Ethernet|
++--------------+----------+---------+
+
+PCI Bars
+========
+The gVNIC PCI device exposes three 32-bit memory BARS:
+- Bar0 - Device configuration and status registers.
+- Bar1 - MSI-X vector table
+- Bar2 - IRQ, RX and TX doorbells
+
+Device Interactions
+===================
+The driver interacts with the device in the following ways:
+ - Registers
+ - A block of MMIO registers
+ - See gve_register.h for more detail
+ - Admin Queue
+ - See description below
+ - Reset
+ - At any time the device can be reset
+ - Interrupts
+ - See supported interrupts below
+ - Transmit and Receive Queues
+ - See description below
+
+Registers
+---------
+All registers are MMIO and big endian.
+
+The registers are used for initializing and configuring the device as well as
+querying device status in response to management interrupts.
+
+Admin Queue (AQ)
+----------------
+The Admin Queue is a PAGE_SIZE memory block, treated as an array of AQ
+commands, used by the driver to issue commands to the device and set up
+resources.The driver and the device maintain a count of how many commands
+have been submitted and executed. To issue AQ commands, the driver must do
+the following (with proper locking):
+
+1) Copy new commands into next available slots in the AQ array
+2) Increment its counter by he number of new commands
+3) Write the counter into the GVE_ADMIN_QUEUE_DOORBELL register
+4) Poll the ADMIN_QUEUE_EVENT_COUNTER register until it equals
+ the value written to the doorbell, or until a timeout.
+
+The device will update the status field in each AQ command reported as
+executed through the ADMIN_QUEUE_EVENT_COUNTER register.
+
+Device Resets
+-------------
+A device reset is triggered by writing 0x0 to the AQ PFN register.
+This causes the device to release all resources allocated by the
+driver, including the AQ itself.
+
+Interrupts
+----------
+The following interrupts are supported by the driver:
+
+Management Interrupt
+~~~~~~~~~~~~~~~~~~~~
+The management interrupt is used by the device to tell the driver to
+look at the GVE_DEVICE_STATUS register.
+
+The handler for the management irq simply queues the service task in
+the workqueue to check the register and acks the irq.
+
+Notification Block Interrupts
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The notification block interrupts are used to tell the driver to poll
+the queues associated with that interrupt.
+
+The handler for these irqs schedule the napi for that block to run
+and poll the queues.
+
+Traffic Queues
+--------------
+gVNIC's queues are composed of a descriptor ring and a buffer and are
+assigned to a notification block.
+
+The descriptor rings are power-of-two-sized ring buffers consisting of
+fixed-size descriptors. They advance their head pointer using a __be32
+doorbell located in Bar2. The tail pointers are advanced by consuming
+descriptors in-order and updating a __be32 counter. Both the doorbell
+and the counter overflow to zero.
+
+Each queue's buffers must be registered in advance with the device as a
+queue page list, and packet data can only be put in those pages.
+
+Transmit
+~~~~~~~~
+gve maps the buffers for transmit rings into a FIFO and copies the packets
+into the FIFO before sending them to the NIC.
+
+Receive
+~~~~~~~
+The buffers for receive rings are put into a data ring that is the same
+length as the descriptor ring and the head and tail pointers advance over
+the rings together.
diff --git a/Documentation/networking/device_drivers/index.rst b/Documentation/networking/device_drivers/index.rst
index 75fa537763a4..2b7fefe72351 100644
--- a/Documentation/networking/device_drivers/index.rst
+++ b/Documentation/networking/device_drivers/index.rst
@@ -21,6 +21,8 @@ Contents:
intel/i40e
intel/iavf
intel/ice
+ google/gve
+ mellanox/mlx5
.. only:: subproject
diff --git a/Documentation/networking/device_drivers/mellanox/mlx5.rst b/Documentation/networking/device_drivers/mellanox/mlx5.rst
new file mode 100644
index 000000000000..214325897732
--- /dev/null
+++ b/Documentation/networking/device_drivers/mellanox/mlx5.rst
@@ -0,0 +1,192 @@
+.. SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
+
+=================================================
+Mellanox ConnectX(R) mlx5 core VPI Network Driver
+=================================================
+
+Copyright (c) 2019, Mellanox Technologies LTD.
+
+Contents
+========
+
+- `Enabling the driver and kconfig options`_
+- `Devlink info`_
+- `Devlink health reporters`_
+
+Enabling the driver and kconfig options
+================================================
+
+| mlx5 core is modular and most of the major mlx5 core driver features can be selected (compiled in/out)
+| at build time via kernel Kconfig flags.
+| Basic features, ethernet net device rx/tx offloads and XDP, are available with the most basic flags
+| CONFIG_MLX5_CORE=y/m and CONFIG_MLX5_CORE_EN=y.
+| For the list of advanced features please see below.
+
+**CONFIG_MLX5_CORE=(y/m/n)** (module mlx5_core.ko)
+
+| The driver can be enabled by choosing CONFIG_MLX5_CORE=y/m in kernel config.
+| This will provide mlx5 core driver for mlx5 ulps to interface with (mlx5e, mlx5_ib).
+
+
+**CONFIG_MLX5_CORE_EN=(y/n)**
+
+| Choosing this option will allow basic ethernet netdevice support with all of the standard rx/tx offloads.
+| mlx5e is the mlx5 ulp driver which provides netdevice kernel interface, when chosen, mlx5e will be
+| built-in into mlx5_core.ko.
+
+
+**CONFIG_MLX5_EN_ARFS=(y/n)**
+
+| Enables Hardware-accelerated receive flow steering (arfs) support, and ntuple filtering.
+| https://community.mellanox.com/s/article/howto-configure-arfs-on-connectx-4
+
+
+**CONFIG_MLX5_EN_RXNFC=(y/n)**
+
+| Enables ethtool receive network flow classification, which allows user defined
+| flow rules to direct traffic into arbitrary rx queue via ethtool set/get_rxnfc API.
+
+
+**CONFIG_MLX5_CORE_EN_DCB=(y/n)**:
+
+| Enables `Data Center Bridging (DCB) Support <https://community.mellanox.com/s/article/howto-auto-config-pfc-and-ets-on-connectx-4-via-lldp-dcbx>`_.
+
+
+**CONFIG_MLX5_MPFS=(y/n)**
+
+| Ethernet Multi-Physical Function Switch (MPFS) support in ConnectX NIC.
+| MPFs is required for when `Multi-Host <http://www.mellanox.com/page/multihost>`_ configuration is enabled to allow passing
+| user configured unicast MAC addresses to the requesting PF.
+
+
+**CONFIG_MLX5_ESWITCH=(y/n)**
+
+| Ethernet SRIOV E-Switch support in ConnectX NIC. E-Switch provides internal SRIOV packet steering
+| and switching for the enabled VFs and PF in two available modes:
+| 1) `Legacy SRIOV mode (L2 mac vlan steering based) <https://community.mellanox.com/s/article/howto-configure-sr-iov-for-connectx-4-connectx-5-with-kvm--ethernet-x>`_.
+| 2) `Switchdev mode (eswitch offloads) <https://www.mellanox.com/related-docs/prod_software/ASAP2_Hardware_Offloading_for_vSwitches_User_Manual_v4.4.pdf>`_.
+
+
+**CONFIG_MLX5_CORE_IPOIB=(y/n)**
+
+| IPoIB offloads & acceleration support.
+| Requires CONFIG_MLX5_CORE_EN to provide an accelerated interface for the rdma
+| IPoIB ulp netdevice.
+
+
+**CONFIG_MLX5_FPGA=(y/n)**
+
+| Build support for the Innova family of network cards by Mellanox Technologies.
+| Innova network cards are comprised of a ConnectX chip and an FPGA chip on one board.
+| If you select this option, the mlx5_core driver will include the Innova FPGA core and allow
+| building sandbox-specific client drivers.
+
+
+**CONFIG_MLX5_EN_IPSEC=(y/n)**
+
+| Enables `IPSec XFRM cryptography-offload accelaration <http://www.mellanox.com/related-docs/prod_software/Mellanox_Innova_IPsec_Ethernet_Adapter_Card_User_Manual.pdf>`_.
+
+**CONFIG_MLX5_EN_TLS=(y/n)**
+
+| TLS cryptography-offload accelaration.
+
+
+**CONFIG_MLX5_INFINIBAND=(y/n/m)** (module mlx5_ib.ko)
+
+| Provides low-level InfiniBand/RDMA and `RoCE <https://community.mellanox.com/s/article/recommended-network-configuration-examples-for-roce-deployment>`_ support.
+
+
+**External options** ( Choose if the corresponding mlx5 feature is required )
+
+- CONFIG_PTP_1588_CLOCK: When chosen, mlx5 ptp support will be enabled
+- CONFIG_VXLAN: When chosen, mlx5 vxaln support will be enabled.
+- CONFIG_MLXFW: When chosen, mlx5 firmware flashing support will be enabled (via devlink and ethtool).
+
+Devlink info
+============
+
+The devlink info reports the running and stored firmware versions on device.
+It also prints the device PSID which represents the HCA board type ID.
+
+User command example::
+
+ $ devlink dev info pci/0000:00:06.0
+ pci/0000:00:06.0:
+ driver mlx5_core
+ versions:
+ fixed:
+ fw.psid MT_0000000009
+ running:
+ fw.version 16.26.0100
+ stored:
+ fw.version 16.26.0100
+
+Devlink health reporters
+========================
+
+tx reporter
+-----------
+The tx reporter is responsible of two error scenarios:
+
+- TX timeout
+ Report on kernel tx timeout detection.
+ Recover by searching lost interrupts.
+- TX error completion
+ Report on error tx completion.
+ Recover by flushing the TX queue and reset it.
+
+TX reporter also support Diagnose callback, on which it provides
+real time information of its send queues status.
+
+User commands examples:
+
+- Diagnose send queues status::
+
+ $ devlink health diagnose pci/0000:82:00.0 reporter tx
+
+- Show number of tx errors indicated, number of recover flows ended successfully,
+ is autorecover enabled and graceful period from last recover::
+
+ $ devlink health show pci/0000:82:00.0 reporter tx
+
+fw reporter
+-----------
+The fw reporter implements diagnose and dump callbacks.
+It follows symptoms of fw error such as fw syndrome by triggering
+fw core dump and storing it into the dump buffer.
+The fw reporter diagnose command can be triggered any time by the user to check
+current fw status.
+
+User commands examples:
+
+- Check fw heath status::
+
+ $ devlink health diagnose pci/0000:82:00.0 reporter fw
+
+- Read FW core dump if already stored or trigger new one::
+
+ $ devlink health dump show pci/0000:82:00.0 reporter fw
+
+NOTE: This command can run only on the PF which has fw tracer ownership,
+running it on other PF or any VF will return "Operation not permitted".
+
+fw fatal reporter
+-----------------
+The fw fatal reporter implements dump and recover callbacks.
+It follows fatal errors indications by CR-space dump and recover flow.
+The CR-space dump uses vsc interface which is valid even if the FW command
+interface is not functional, which is the case in most FW fatal errors.
+The recover function runs recover flow which reloads the driver and triggers fw
+reset if needed.
+
+User commands examples:
+
+- Run fw recover flow manually::
+
+ $ devlink health recover pci/0000:82:00.0 reporter fw_fatal
+
+- Read FW CR-space dump if already strored or trigger new one::
+
+ $ devlink health dump show pci/0000:82:00.1 reporter fw_fatal
+
+NOTE: This command can run only on PF.
diff --git a/Documentation/networking/dsa/b53.rst b/Documentation/networking/dsa/b53.rst
new file mode 100644
index 000000000000..b41637cdb82b
--- /dev/null
+++ b/Documentation/networking/dsa/b53.rst
@@ -0,0 +1,183 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================================
+Broadcom RoboSwitch Ethernet switch driver
+==========================================
+
+The Broadcom RoboSwitch Ethernet switch family is used in quite a range of
+xDSL router, cable modems and other multimedia devices.
+
+The actual implementation supports the devices BCM5325E, BCM5365, BCM539x,
+BCM53115 and BCM53125 as well as BCM63XX.
+
+Implementation details
+======================
+
+The driver is located in ``drivers/net/dsa/b53/`` and is implemented as a
+DSA driver; see ``Documentation/networking/dsa/dsa.rst`` for details on the
+subsystem and what it provides.
+
+The switch is, if possible, configured to enable a Broadcom specific 4-bytes
+switch tag which gets inserted by the switch for every packet forwarded to the
+CPU interface, conversely, the CPU network interface should insert a similar
+tag for packets entering the CPU port. The tag format is described in
+``net/dsa/tag_brcm.c``.
+
+The configuration of the device depends on whether or not tagging is
+supported.
+
+The interface names and example network configuration are used according the
+configuration described in the :ref:`dsa-config-showcases`.
+
+Configuration with tagging support
+----------------------------------
+
+The tagging based configuration is desired. It is not specific to the b53
+DSA driver and will work like all DSA drivers which supports tagging.
+
+See :ref:`dsa-tagged-configuration`.
+
+Configuration without tagging support
+-------------------------------------
+
+Older models (5325, 5365) support a different tag format that is not supported
+yet. 539x and 531x5 require managed mode and some special handling, which is
+also not yet supported. The tagging support is disabled in these cases and the
+switch need a different configuration.
+
+The configuration slightly differ from the :ref:`dsa-vlan-configuration`.
+
+The b53 tags the CPU port in all VLANs, since otherwise any PVID untagged
+VLAN programming would basically change the CPU port's default PVID and make
+it untagged, undesirable.
+
+In difference to the configuration described in :ref:`dsa-vlan-configuration`
+the default VLAN 1 has to be removed from the slave interface configuration in
+single port and gateway configuration, while there is no need to add an extra
+VLAN configuration in the bridge showcase.
+
+single port
+~~~~~~~~~~~
+The configuration can only be set up via VLAN tagging and bridge setup.
+By default packages are tagged with vid 1:
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+ ip link add link eth0 name eth0.3 type vlan id 3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+ ip link set eth0.3 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 2 pvid untagged
+ bridge vlan del dev lan1 vid 1
+ bridge vlan add dev lan2 vid 3 pvid untagged
+ bridge vlan del dev lan2 vid 1
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.1
+ ip addr add 192.0.2.5/30 dev eth0.2
+ ip addr add 192.0.2.9/30 dev eth0.3
+
+ # bring up the bridge devices
+ ip link set br0 up
+
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridge
+ ip link set dev wan master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set eth0.1 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set eth0.1 master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev wan vid 2 pvid untagged
+ bridge vlan del dev wan vid 1
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.2
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge devices
+ ip link set br0 up
diff --git a/Documentation/networking/dsa/configuration.rst b/Documentation/networking/dsa/configuration.rst
new file mode 100644
index 000000000000..af029b3ca2ab
--- /dev/null
+++ b/Documentation/networking/dsa/configuration.rst
@@ -0,0 +1,292 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================
+DSA switch configuration from userspace
+=======================================
+
+The DSA switch configuration is not integrated into the main userspace
+network configuration suites by now and has to be performed manualy.
+
+.. _dsa-config-showcases:
+
+Configuration showcases
+-----------------------
+
+To configure a DSA switch a couple of commands need to be executed. In this
+documentation some common configuration scenarios are handled as showcases:
+
+*single port*
+ Every switch port acts as a different configurable Ethernet port
+
+*bridge*
+ Every switch port is part of one configurable Ethernet bridge
+
+*gateway*
+ Every switch port except one upstream port is part of a configurable
+ Ethernet bridge.
+ The upstream port acts as different configurable Ethernet port.
+
+All configurations are performed with tools from iproute2, which is available
+at https://www.kernel.org/pub/linux/utils/net/iproute2/
+
+Through DSA every port of a switch is handled like a normal linux Ethernet
+interface. The CPU port is the switch port connected to an Ethernet MAC chip.
+The corresponding linux Ethernet interface is called the master interface.
+All other corresponding linux interfaces are called slave interfaces.
+
+The slave interfaces depend on the master interface. They can only brought up,
+when the master interface is up.
+
+In this documentation the following Ethernet interfaces are used:
+
+*eth0*
+ the master interface
+
+*lan1*
+ a slave interface
+
+*lan2*
+ another slave interface
+
+*lan3*
+ a third slave interface
+
+*wan*
+ A slave interface dedicated for upstream traffic
+
+Further Ethernet interfaces can be configured similar.
+The configured IPs and networks are:
+
+*single port*
+ * lan1: 192.0.2.1/30 (192.0.2.0 - 192.0.2.3)
+ * lan2: 192.0.2.5/30 (192.0.2.4 - 192.0.2.7)
+ * lan3: 192.0.2.9/30 (192.0.2.8 - 192.0.2.11)
+
+*bridge*
+ * br0: 192.0.2.129/25 (192.0.2.128 - 192.0.2.255)
+
+*gateway*
+ * br0: 192.0.2.129/25 (192.0.2.128 - 192.0.2.255)
+ * wan: 192.0.2.1/30 (192.0.2.0 - 192.0.2.3)
+
+.. _dsa-tagged-configuration:
+
+Configuration with tagging support
+----------------------------------
+
+The tagging based configuration is desired and supported by the majority of
+DSA switches. These switches are capable to tag incoming and outgoing traffic
+without using a VLAN based configuration.
+
+single port
+~~~~~~~~~~~
+
+.. code-block:: sh
+
+ # configure each interface
+ ip addr add 192.0.2.1/30 dev lan1
+ ip addr add 192.0.2.5/30 dev lan2
+ ip addr add 192.0.2.9/30 dev lan3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # configure the upstream port
+ ip addr add 192.0.2.1/30 dev wan
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+.. _dsa-vlan-configuration:
+
+Configuration without tagging support
+-------------------------------------
+
+A minority of switches are not capable to use a taging protocol
+(DSA_TAG_PROTO_NONE). These switches can be configured by a VLAN based
+configuration.
+
+single port
+~~~~~~~~~~~
+The configuration can only be set up via VLAN tagging and bridge setup.
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+ ip link add link eth0 name eth0.3 type vlan id 3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+ ip link set eth0.3 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan1 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 2 pvid untagged
+ bridge vlan add dev lan3 vid 3 pvid untagged
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.1
+ ip addr add 192.0.2.5/30 dev eth0.2
+ ip addr add 192.0.2.9/30 dev eth0.3
+
+ # bring up the bridge devices
+ ip link set br0 up
+
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+ ip link set eth0.1 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 1 pvid untagged
+ bridge vlan add dev lan3 vid 1 pvid untagged
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set eth0.1 master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 1 pvid untagged
+ bridge vlan add dev wan vid 2 pvid untagged
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.2
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge devices
+ ip link set br0 up
diff --git a/Documentation/networking/dsa/dsa.rst b/Documentation/networking/dsa/dsa.rst
index ca87068b9ab9..563d56c6a25c 100644
--- a/Documentation/networking/dsa/dsa.rst
+++ b/Documentation/networking/dsa/dsa.rst
@@ -531,7 +531,7 @@ Bridge VLAN filtering
a software implementation.
.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
- of DSA, would be the its port-based VLAN, used by the associated bridge device.
+ of DSA, would be its port-based VLAN, used by the associated bridge device.
- ``port_fdb_del``: bridge layer function invoked when the bridge wants to remove a
Forwarding Database entry, the switch hardware should be programmed to delete
@@ -554,7 +554,7 @@ Bridge VLAN filtering
associated with this VLAN ID.
.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
- of DSA, would be the its port-based VLAN, used by the associated bridge device.
+ of DSA, would be its port-based VLAN, used by the associated bridge device.
- ``port_mdb_del``: bridge layer function invoked when the bridge wants to remove a
multicast database entry, the switch hardware should be programmed to delete
diff --git a/Documentation/networking/dsa/index.rst b/Documentation/networking/dsa/index.rst
index 0e5b7a9be406..ee631e2d646f 100644
--- a/Documentation/networking/dsa/index.rst
+++ b/Documentation/networking/dsa/index.rst
@@ -6,6 +6,8 @@ Distributed Switch Architecture
:maxdepth: 1
dsa
+ b53
bcm_sf2
lan9303
sja1105
+ configuration
diff --git a/Documentation/networking/dsa/sja1105.rst b/Documentation/networking/dsa/sja1105.rst
index ea7bac438cfd..cb2858dece93 100644
--- a/Documentation/networking/dsa/sja1105.rst
+++ b/Documentation/networking/dsa/sja1105.rst
@@ -86,13 +86,13 @@ functionality.
The following traffic modes are supported over the switch netdevices:
+--------------------+------------+------------------+------------------+
-| | Standalone | Bridged with | Bridged with |
-| | ports | vlan_filtering 0 | vlan_filtering 1 |
+| | Standalone | Bridged with | Bridged with |
+| | ports | vlan_filtering 0 | vlan_filtering 1 |
+====================+============+==================+==================+
| Regular traffic | Yes | Yes | No (use master) |
+--------------------+------------+------------------+------------------+
| Management traffic | Yes | Yes | Yes |
-| (BPDU, PTP) | | | |
+| (BPDU, PTP) | | | |
+--------------------+------------+------------------+------------------+
Switching features
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index 14fe93049d28..48c79e78817b 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -80,6 +80,7 @@ fib_multipath_hash_policy - INTEGER
Possible values:
0 - Layer 3
1 - Layer 4
+ 2 - Layer 3 or inner Layer 3 if present
fib_sync_mem - UNSIGNED INTEGER
Amount of dirty memory from fib entries that can be backlogged before
@@ -255,6 +256,14 @@ tcp_base_mss - INTEGER
Path MTU discovery (MTU probing). If MTU probing is enabled,
this is the initial MSS used by the connection.
+tcp_min_snd_mss - INTEGER
+ TCP SYN and SYNACK messages usually advertise an ADVMSS option,
+ as described in RFC 1122 and RFC 6691.
+ If this ADVMSS option is smaller than tcp_min_snd_mss,
+ it is silently capped to tcp_min_snd_mss.
+
+ Default : 48 (at least 8 bytes of payload per segment)
+
tcp_congestion_control - STRING
Set the congestion control algorithm to be used for new
connections. The algorithm "reno" is always available, but
@@ -648,6 +657,26 @@ tcp_fastopen_blackhole_timeout_sec - INTEGER
0 to disable the blackhole detection.
By default, it is set to 1hr.
+tcp_fastopen_key - list of comma separated 32-digit hexadecimal INTEGERs
+ The list consists of a primary key and an optional backup key. The
+ primary key is used for both creating and validating cookies, while the
+ optional backup key is only used for validating cookies. The purpose of
+ the backup key is to maximize TFO validation when keys are rotated.
+
+ A randomly chosen primary key may be configured by the kernel if
+ the tcp_fastopen sysctl is set to 0x400 (see above), or if the
+ TCP_FASTOPEN setsockopt() optname is set and a key has not been
+ previously configured via sysctl. If keys are configured via
+ setsockopt() by using the TCP_FASTOPEN_KEY optname, then those
+ per-socket keys will be used instead of any keys that are specified via
+ sysctl.
+
+ A key is specified as 4 8-digit hexadecimal integers which are separated
+ by a '-' as: xxxxxxxx-xxxxxxxx-xxxxxxxx-xxxxxxxx. Leading zeros may be
+ omitted. A primary and a backup key may be specified by separating them
+ by a comma. If only one key is specified, it becomes the primary key and
+ any previously configured backup keys are removed.
+
tcp_syn_retries - INTEGER
Number of times initial SYNs for an active TCP connection attempt
will be retransmitted. Should not be higher than 127. Default value
@@ -772,6 +801,14 @@ tcp_challenge_ack_limit - INTEGER
in RFC 5961 (Improving TCP's Robustness to Blind In-Window Attacks)
Default: 100
+tcp_rx_skb_cache - BOOLEAN
+ Controls a per TCP socket cache of one skb, that might help
+ performance of some workloads. This might be dangerous
+ on systems with a lot of TCP sockets, since it increases
+ memory usage.
+
+ Default: 0 (disabled)
+
UDP variables:
udp_l3mdev_accept - BOOLEAN
@@ -1409,14 +1446,26 @@ flowlabel_state_ranges - BOOLEAN
FALSE: disabled
Default: true
-flowlabel_reflect - BOOLEAN
- Automatically reflect the flow label. Needed for Path MTU
+flowlabel_reflect - INTEGER
+ Control flow label reflection. Needed for Path MTU
Discovery to work with Equal Cost Multipath Routing in anycast
environments. See RFC 7690 and:
https://tools.ietf.org/html/draft-wang-6man-flow-label-reflection-01
- TRUE: enabled
- FALSE: disabled
- Default: FALSE
+
+ This is a bitmask.
+ 1: enabled for established flows
+
+ Note that this prevents automatic flowlabel changes, as done
+ in "tcp: change IPv6 flow-label upon receiving spurious retransmission"
+ and "tcp: Change txhash on every SYN and RTO retransmit"
+
+ 2: enabled for TCP RESET packets (no active listener)
+ If set, a RST packet sent in response to a SYN packet on a closed
+ port will reflect the incoming flow label.
+
+ 4: enabled for ICMPv6 echo reply messages.
+
+ Default: 0
fib_multipath_hash_policy - INTEGER
Controls which hash policy to use for multipath routes.
@@ -1424,6 +1473,7 @@ fib_multipath_hash_policy - INTEGER
Possible values:
0 - Layer 3 (source and destination addresses plus flow label)
1 - Layer 4 (standard 5-tuple)
+ 2 - Layer 3 or inner Layer 3 if present
anycast_src_echo_reply - BOOLEAN
Controls the use of anycast addresses as source addresses for ICMPv6
diff --git a/Documentation/networking/mpls-sysctl.txt b/Documentation/networking/mpls-sysctl.txt
index 2f24a1912a48..025cc9b96992 100644
--- a/Documentation/networking/mpls-sysctl.txt
+++ b/Documentation/networking/mpls-sysctl.txt
@@ -30,7 +30,7 @@ ip_ttl_propagate - BOOL
0 - disabled / RFC 3443 [Short] Pipe Model
1 - enabled / RFC 3443 Uniform Model (default)
-default_ttl - BOOL
+default_ttl - INTEGER
Default TTL value to use for MPLS packets where it cannot be
propagated from an IP header, either because one isn't present
or ip_ttl_propagate has been disabled.
diff --git a/Documentation/networking/phy.rst b/Documentation/networking/phy.rst
index 0dd90d7df5ec..a689966bc4be 100644
--- a/Documentation/networking/phy.rst
+++ b/Documentation/networking/phy.rst
@@ -202,7 +202,8 @@ the PHY/controller, of which the PHY needs to be aware.
*interface* is a u32 which specifies the connection type used
between the controller and the PHY. Examples are GMII, MII,
-RGMII, and SGMII. For a full list, see include/linux/phy.h
+RGMII, and SGMII. See "PHY interface mode" below. For a full
+list, see include/linux/phy.h
Now just make sure that phydev->supported and phydev->advertising have any
values pruned from them which don't make sense for your controller (a 10/100
@@ -225,6 +226,48 @@ When you want to disconnect from the network (even if just briefly), you call
phy_stop(phydev). This function also stops the phylib state machine and
disables PHY interrupts.
+PHY interface modes
+===================
+
+The PHY interface mode supplied in the phy_connect() family of functions
+defines the initial operating mode of the PHY interface. This is not
+guaranteed to remain constant; there are PHYs which dynamically change
+their interface mode without software interaction depending on the
+negotiation results.
+
+Some of the interface modes are described below:
+
+``PHY_INTERFACE_MODE_1000BASEX``
+ This defines the 1000BASE-X single-lane serdes link as defined by the
+ 802.3 standard section 36. The link operates at a fixed bit rate of
+ 1.25Gbaud using a 10B/8B encoding scheme, resulting in an underlying
+ data rate of 1Gbps. Embedded in the data stream is a 16-bit control
+ word which is used to negotiate the duplex and pause modes with the
+ remote end. This does not include "up-clocked" variants such as 2.5Gbps
+ speeds (see below.)
+
+``PHY_INTERFACE_MODE_2500BASEX``
+ This defines a variant of 1000BASE-X which is clocked 2.5 times faster,
+ than the 802.3 standard giving a fixed bit rate of 3.125Gbaud.
+
+``PHY_INTERFACE_MODE_SGMII``
+ This is used for Cisco SGMII, which is a modification of 1000BASE-X
+ as defined by the 802.3 standard. The SGMII link consists of a single
+ serdes lane running at a fixed bit rate of 1.25Gbaud with 10B/8B
+ encoding. The underlying data rate is 1Gbps, with the slower speeds of
+ 100Mbps and 10Mbps being achieved through replication of each data symbol.
+ The 802.3 control word is re-purposed to send the negotiated speed and
+ duplex information from to the MAC, and for the MAC to acknowledge
+ receipt. This does not include "up-clocked" variants such as 2.5Gbps
+ speeds.
+
+ Note: mismatched SGMII vs 1000BASE-X configuration on a link can
+ successfully pass data in some circumstances, but the 16-bit control
+ word will not be correctly interpreted, which may cause mismatches in
+ duplex, pause or other settings. This is dependent on the MAC and/or
+ PHY behaviour.
+
+
Pause frames / flow control
===========================
diff --git a/Documentation/networking/rds.txt b/Documentation/networking/rds.txt
index 0235ae69af2a..f2a0147c933d 100644
--- a/Documentation/networking/rds.txt
+++ b/Documentation/networking/rds.txt
@@ -389,7 +389,7 @@ Multipath RDS (mprds)
a common (to all paths) part, and a per-path struct rds_conn_path. All
I/O workqs and reconnect threads are driven from the rds_conn_path.
Transports such as TCP that are multipath capable may then set up a
- TPC socket per rds_conn_path, and this is managed by the transport via
+ TCP socket per rds_conn_path, and this is managed by the transport via
the transport privatee cp_transport_data pointer.
Transports announce themselves as multipath capable by setting the
diff --git a/Documentation/networking/sfp-phylink.rst b/Documentation/networking/sfp-phylink.rst
index 5bd26cb07244..91446b431b70 100644
--- a/Documentation/networking/sfp-phylink.rst
+++ b/Documentation/networking/sfp-phylink.rst
@@ -98,6 +98,7 @@ this documentation.
4. Add::
struct phylink *phylink;
+ struct phylink_config phylink_config;
to the driver's private data structure. We shall refer to the
driver's private data pointer as ``priv`` below, and the driver's
@@ -223,8 +224,10 @@ this documentation.
.. code-block:: c
struct phylink *phylink;
+ priv->phylink_config.dev = &dev.dev;
+ priv->phylink_config.type = PHYLINK_NETDEV;
- phylink = phylink_create(dev, node, phy_mode, &phylink_ops);
+ phylink = phylink_create(&priv->phylink_config, node, phy_mode, &phylink_ops);
if (IS_ERR(phylink)) {
err = PTR_ERR(phylink);
fail probe;
diff --git a/Documentation/networking/timestamping.txt b/Documentation/networking/timestamping.txt
index bbdaf8990031..8dd6333c3270 100644
--- a/Documentation/networking/timestamping.txt
+++ b/Documentation/networking/timestamping.txt
@@ -368,7 +368,7 @@ ts[1] used to hold hardware timestamps converted to system time.
Instead, expose the hardware clock device on the NIC directly as
a HW PTP clock source, to allow time conversion in userspace and
optionally synchronize system time with a userspace PTP stack such
-as linuxptp. For the PTP clock API, see Documentation/ptp/ptp.txt.
+as linuxptp. For the PTP clock API, see Documentation/driver-api/ptp.rst.
Note that if the SO_TIMESTAMP or SO_TIMESTAMPNS option is enabled
together with SO_TIMESTAMPING using SOF_TIMESTAMPING_SOFTWARE, a false
diff --git a/Documentation/networking/tls-offload.rst b/Documentation/networking/tls-offload.rst
index cb85af559dff..048e5ca44824 100644
--- a/Documentation/networking/tls-offload.rst
+++ b/Documentation/networking/tls-offload.rst
@@ -206,7 +206,11 @@ TX
Segments transmitted from an offloaded socket can get out of sync
in similar ways to the receive side-retransmissions - local drops
-are possible, though network reorders are not.
+are possible, though network reorders are not. There are currently
+two mechanisms for dealing with out of order segments.
+
+Crypto state rebuilding
+~~~~~~~~~~~~~~~~~~~~~~~
Whenever an out of order segment is transmitted the driver provides
the device with enough information to perform cryptographic operations.
@@ -225,6 +229,35 @@ was just a retransmission. The former is simpler, and does not require
retransmission detection therefore it is the recommended method until
such time it is proven inefficient.
+Next record sync
+~~~~~~~~~~~~~~~~
+
+Whenever an out of order segment is detected the driver requests
+that the ``ktls`` software fallback code encrypt it. If the segment's
+sequence number is lower than expected the driver assumes retransmission
+and doesn't change device state. If the segment is in the future, it
+may imply a local drop, the driver asks the stack to sync the device
+to the next record state and falls back to software.
+
+Resync request is indicated with:
+
+.. code-block:: c
+
+ void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
+
+Until resync is complete driver should not access its expected TCP
+sequence number (as it will be updated from a different context).
+Following helper should be used to test if resync is complete:
+
+.. code-block:: c
+
+ bool tls_offload_tx_resync_pending(struct sock *sk)
+
+Next time ``ktls`` pushes a record it will first send its TCP sequence number
+and TLS record number to the driver. Stack will also make sure that
+the new record will start on a segment boundary (like it does when
+the connection is initially added).
+
RX
--
@@ -268,6 +301,9 @@ Device can only detect that segment 4 also contains a TLS header
if it knows the length of the previous record from segment 2. In this case
the device will lose synchronization with the stream.
+Stream scan resynchronization
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
When the device gets out of sync and the stream reaches TCP sequence
numbers more than a max size record past the expected TCP sequence number,
the device starts scanning for a known header pattern. For example
@@ -298,6 +334,22 @@ Special care has to be taken if the confirmation request is passed
asynchronously to the packet stream and record may get processed
by the kernel before the confirmation request.
+Stack-driven resynchronization
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The driver may also request the stack to perform resynchronization
+whenever it sees the records are no longer getting decrypted.
+If the connection is configured in this mode the stack automatically
+schedules resynchronization after it has received two completely encrypted
+records.
+
+The stack waits for the socket to drain and informs the device about
+the next expected record number and its TCP sequence number. If the
+records continue to be received fully encrypted stack retries the
+synchronization with an exponential back off (first after 2 encrypted
+records, then after 4 records, after 8, after 16... up until every
+128 records).
+
Error handling
==============
@@ -379,7 +431,6 @@ by the driver:
but did not arrive in the expected order
* ``tx_tls_drop_no_sync_data`` - number of TX packets dropped because
they arrived out of order and associated record could not be found
- (see also :ref:`pre_tls_data`)
Notable corner cases, exceptions and additional requirements
============================================================
@@ -462,21 +513,3 @@ Redirects leak clear text
In the RX direction, if segment has already been decrypted by the device
and it gets redirected or mirrored - clear text will be transmitted out.
-
-.. _pre_tls_data:
-
-Transmission of pre-TLS data
-----------------------------
-
-User can enqueue some already encrypted and framed records before enabling
-``ktls`` on the socket. Those records have to get sent as they are. This is
-perfectly easy to handle in the software case - such data will be waiting
-in the TCP layer, TLS ULP won't see it. In the offloaded case when pre-queued
-segment reaches transmission point it appears to be out of order (before the
-expected TCP sequence number) and the stack does not have a record information
-associated.
-
-All segments without record information cannot, however, be assumed to be
-pre-queued data, because a race condition exists between TCP stack queuing
-a retransmission, the driver seeing the retransmission and TCP ACK arriving
-for the retransmitted data.
diff --git a/Documentation/nvdimm/nvdimm.txt b/Documentation/nvdimm/nvdimm.txt
index e894de69915a..1669f626b037 100644
--- a/Documentation/nvdimm/nvdimm.txt
+++ b/Documentation/nvdimm/nvdimm.txt
@@ -284,8 +284,8 @@ A bus has a 1:1 relationship with an NFIT. The current expectation for
ACPI based systems is that there is only ever one platform-global NFIT.
That said, it is trivial to register multiple NFITs, the specification
does not preclude it. The infrastructure supports multiple busses and
-we we use this capability to test multiple NFIT configurations in the
-unit test.
+we use this capability to test multiple NFIT configurations in the unit
+test.
LIBNVDIMM: control class device in /sys/class
diff --git a/Documentation/pcmcia/devicetable.txt b/Documentation/pcmcia/devicetable.rst
index 5f3e00ab54c4..fd1d60d12ca1 100644
--- a/Documentation/pcmcia/devicetable.txt
+++ b/Documentation/pcmcia/devicetable.rst
@@ -1,3 +1,7 @@
+============
+Device table
+============
+
Matching of PCMCIA devices to drivers is done using one or more of the
following criteria:
diff --git a/Documentation/pcmcia/driver-changes.txt b/Documentation/pcmcia/driver-changes.rst
index 78355c4c268a..33fe9ebec049 100644
--- a/Documentation/pcmcia/driver-changes.txt
+++ b/Documentation/pcmcia/driver-changes.rst
@@ -1,15 +1,21 @@
+==============
+Driver changes
+==============
+
This file details changes in 2.6 which affect PCMCIA card driver authors:
+
* pcmcia_loop_config() and autoconfiguration (as of 2.6.36)
- If struct pcmcia_device *p_dev->config_flags is set accordingly,
+ If `struct pcmcia_device *p_dev->config_flags` is set accordingly,
pcmcia_loop_config() now sets up certain configuration values
automatically, though the driver may still override the settings
in the callback function. The following autoconfiguration options
are provided at the moment:
- CONF_AUTO_CHECK_VCC : check for matching Vcc
- CONF_AUTO_SET_VPP : set Vpp
- CONF_AUTO_AUDIO : auto-enable audio line, if required
- CONF_AUTO_SET_IO : set ioport resources (->resource[0,1])
- CONF_AUTO_SET_IOMEM : set first iomem resource (->resource[2])
+
+ - CONF_AUTO_CHECK_VCC : check for matching Vcc
+ - CONF_AUTO_SET_VPP : set Vpp
+ - CONF_AUTO_AUDIO : auto-enable audio line, if required
+ - CONF_AUTO_SET_IO : set ioport resources (->resource[0,1])
+ - CONF_AUTO_SET_IOMEM : set first iomem resource (->resource[2])
* pcmcia_request_configuration -> pcmcia_enable_device (as of 2.6.36)
pcmcia_request_configuration() got renamed to pcmcia_enable_device(),
@@ -19,14 +25,14 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* pcmcia_request_window changes (as of 2.6.36)
Instead of win_req_t, drivers are now requested to fill out
- struct pcmcia_device *p_dev->resource[2,3,4,5] for up to four ioport
+ `struct pcmcia_device *p_dev->resource[2,3,4,5]` for up to four ioport
ranges. After a call to pcmcia_request_window(), the regions found there
are reserved and may be used immediately -- until pcmcia_release_window()
is called.
* pcmcia_request_io changes (as of 2.6.36)
Instead of io_req_t, drivers are now requested to fill out
- struct pcmcia_device *p_dev->resource[0,1] for up to two ioport
+ `struct pcmcia_device *p_dev->resource[0,1]` for up to two ioport
ranges. After a call to pcmcia_request_io(), the ports found there
are reserved, after calling pcmcia_request_configuration(), they may
be used.
@@ -42,7 +48,8 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* New IRQ request rules (as of 2.6.35)
Instead of the old pcmcia_request_irq() interface, drivers may now
choose between:
- - calling request_irq/free_irq directly. Use the IRQ from *p_dev->irq.
+
+ - calling request_irq/free_irq directly. Use the IRQ from `*p_dev->irq`.
- use pcmcia_request_irq(p_dev, handler_t); the PCMCIA core will
clean up automatically on calls to pcmcia_disable_device() or
device ejection.
@@ -72,13 +79,16 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
exports for them were removed.
* Unify detach and REMOVAL event code, as well as attach and INSERTION
- code (as of 2.6.16)
+ code (as of 2.6.16)::
+
void (*remove) (struct pcmcia_device *dev);
int (*probe) (struct pcmcia_device *dev);
-* Move suspend, resume and reset out of event handler (as of 2.6.16)
+* Move suspend, resume and reset out of event handler (as of 2.6.16)::
+
int (*suspend) (struct pcmcia_device *dev);
int (*resume) (struct pcmcia_device *dev);
+
should be initialized in struct pcmcia_driver, and handle
(SUSPEND == RESET_PHYSICAL) and (RESUME == CARD_RESET) events
@@ -117,7 +127,8 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* core functions no longer available (as of 2.6.11)
The following functions have been removed from the kernel source
because they are unused by all in-kernel drivers, and no external
- driver was reported to rely on them:
+ driver was reported to rely on them::
+
pcmcia_get_first_region()
pcmcia_get_next_region()
pcmcia_modify_window()
diff --git a/Documentation/pcmcia/driver.txt b/Documentation/pcmcia/driver.rst
index 0ac167920778..5c4fe84d51c1 100644
--- a/Documentation/pcmcia/driver.txt
+++ b/Documentation/pcmcia/driver.rst
@@ -1,16 +1,16 @@
+=============
PCMCIA Driver
--------------
-
+=============
sysfs
-----
New PCMCIA IDs may be added to a device driver pcmcia_device_id table at
-runtime as shown below:
+runtime as shown below::
-echo "match_flags manf_id card_id func_id function device_no \
-prod_id_hash[0] prod_id_hash[1] prod_id_hash[2] prod_id_hash[3]" > \
-/sys/bus/pcmcia/drivers/{driver}/new_id
+ echo "match_flags manf_id card_id func_id function device_no \
+ prod_id_hash[0] prod_id_hash[1] prod_id_hash[2] prod_id_hash[3]" > \
+ /sys/bus/pcmcia/drivers/{driver}/new_id
All fields are passed in as hexadecimal values (no leading 0x).
The meaning is described in the PCMCIA specification, the match_flags is
@@ -22,9 +22,9 @@ PCMCIA device listed in its (newly updated) pcmcia_device_id list.
A common use-case is to add a new device according to the manufacturer ID
and the card ID (form the manf_id and card_id file in the device tree).
-For this, just use:
+For this, just use::
-echo "0x3 manf_id card_id 0 0 0 0 0 0 0" > \
- /sys/bus/pcmcia/drivers/{driver}/new_id
+ echo "0x3 manf_id card_id 0 0 0 0 0 0 0" > \
+ /sys/bus/pcmcia/drivers/{driver}/new_id
after loading the driver.
diff --git a/Documentation/pcmcia/index.rst b/Documentation/pcmcia/index.rst
new file mode 100644
index 000000000000..779c8527109e
--- /dev/null
+++ b/Documentation/pcmcia/index.rst
@@ -0,0 +1,20 @@
+:orphan:
+
+======
+pcmcia
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ driver
+ devicetable
+ locking
+ driver-changes
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/pcmcia/locking.txt b/Documentation/pcmcia/locking.rst
index b2c9b478906b..e35257139c89 100644
--- a/Documentation/pcmcia/locking.txt
+++ b/Documentation/pcmcia/locking.rst
@@ -1,3 +1,7 @@
+=======
+Locking
+=======
+
This file explains the locking and exclusion scheme used in the PCCARD
and PCMCIA subsystems.
@@ -5,16 +9,21 @@ and PCMCIA subsystems.
A) Overview, Locking Hierarchy:
===============================
-pcmcia_socket_list_rwsem - protects only the list of sockets
-- skt_mutex - serializes card insert / ejection
- - ops_mutex - serializes socket operation
+pcmcia_socket_list_rwsem
+ - protects only the list of sockets
+
+- skt_mutex
+ - serializes card insert / ejection
+
+ - ops_mutex
+ - serializes socket operation
B) Exclusion
============
The following functions and callbacks to struct pcmcia_socket must
-be called with "skt_mutex" held:
+be called with "skt_mutex" held::
socket_detect_change()
send_event()
@@ -31,7 +40,7 @@ be called with "skt_mutex" held:
struct pcmcia_callback *callback
The following functions and callbacks to struct pcmcia_socket must
-be called with "ops_mutex" held:
+be called with "ops_mutex" held::
socket_reset()
socket_setup()
@@ -39,7 +48,7 @@ be called with "ops_mutex" held:
struct pccard_operations *ops
struct pccard_resource_ops *resource_ops;
-Note that send_event() and struct pcmcia_callback *callback must not be
+Note that send_event() and `struct pcmcia_callback *callback` must not be
called with "ops_mutex" held.
@@ -60,19 +69,23 @@ The resource_ops and their data are protected by ops_mutex.
The "main" struct pcmcia_socket is protected as follows (read-only fields
or single-use fields not mentioned):
-- by pcmcia_socket_list_rwsem:
+- by pcmcia_socket_list_rwsem::
+
struct list_head socket_list;
-- by thread_lock:
+- by thread_lock::
+
unsigned int thread_events;
-- by skt_mutex:
+- by skt_mutex::
+
u_int suspended_state;
void (*tune_bridge);
struct pcmcia_callback *callback;
int resume_status;
-- by ops_mutex:
+- by ops_mutex::
+
socket_state_t socket;
u_int state;
u_short lock_count;
@@ -100,7 +113,8 @@ The "main" struct pcmcia_device is protected as follows (read-only fields
or single-use fields not mentioned):
-- by pcmcia_socket->ops_mutex:
+- by pcmcia_socket->ops_mutex::
+
struct list_head socket_device_list;
struct config_t *function_config;
u16 _irq:1;
@@ -111,7 +125,8 @@ or single-use fields not mentioned):
u16 suspended:1;
u16 _removed:1;
-- by the PCMCIA driver:
+- by the PCMCIA driver::
+
io_req_t io;
irq_req_t irq;
config_req_t conf;
diff --git a/Documentation/platform/x86-laptop-drivers.txt b/Documentation/platform/x86-laptop-drivers.txt
deleted file mode 100644
index 01facd2590bb..000000000000
--- a/Documentation/platform/x86-laptop-drivers.txt
+++ /dev/null
@@ -1,18 +0,0 @@
-compal-laptop
-=============
-List of supported hardware:
-
-by Compal:
- Compal FL90/IFL90
- Compal FL91/IFL91
- Compal FL92/JFL92
- Compal FT00/IFT00
-
-by Dell:
- Dell Vostro 1200
- Dell Mini 9 (Inspiron 910)
- Dell Mini 10 (Inspiron 1010)
- Dell Mini 10v (Inspiron 1011)
- Dell Mini 1012 (Inspiron 1012)
- Dell Inspiron 11z (Inspiron 1110)
- Dell Mini 12 (Inspiron 1210)
diff --git a/Documentation/powerpc/firmware-assisted-dump.txt b/Documentation/powerpc/firmware-assisted-dump.txt
index 18c5feef2577..0c41d6d463f3 100644
--- a/Documentation/powerpc/firmware-assisted-dump.txt
+++ b/Documentation/powerpc/firmware-assisted-dump.txt
@@ -59,7 +59,7 @@ as follows:
the default calculated size. Use this option if default
boot memory size is not sufficient for second kernel to
boot successfully. For syntax of crashkernel= parameter,
- refer to Documentation/kdump/kdump.txt. If any offset is
+ refer to Documentation/kdump/kdump.rst. If any offset is
provided in crashkernel= parameter, it will be ignored
as fadump uses a predefined offset to reserve memory
for boot memory dump preservation in case of a crash.
diff --git a/Documentation/powerpc/isa-versions.rst b/Documentation/powerpc/isa-versions.rst
index 812e20cc898c..66c24140ebf1 100644
--- a/Documentation/powerpc/isa-versions.rst
+++ b/Documentation/powerpc/isa-versions.rst
@@ -1,3 +1,5 @@
+:orphan:
+
CPU to ISA Version Mapping
==========================
diff --git a/Documentation/process/4.Coding.rst b/Documentation/process/4.Coding.rst
index 4b7a5ab3cec1..13dd893c9f88 100644
--- a/Documentation/process/4.Coding.rst
+++ b/Documentation/process/4.Coding.rst
@@ -298,7 +298,7 @@ enabled, a configurable percentage of memory allocations will be made to
fail; these failures can be restricted to a specific range of code.
Running with fault injection enabled allows the programmer to see how the
code responds when things go badly. See
-Documentation/fault-injection/fault-injection.txt for more information on
+Documentation/fault-injection/fault-injection.rst for more information on
how to use this facility.
Other kinds of errors can be found with the "sparse" static analysis tool.
diff --git a/Documentation/process/changes.rst b/Documentation/process/changes.rst
index 18735dc460a0..2284f2221f02 100644
--- a/Documentation/process/changes.rst
+++ b/Documentation/process/changes.rst
@@ -23,15 +23,15 @@ running, the suggested command should tell you.
Again, keep in mind that this list assumes you are already functionally
running a Linux kernel. Also, not all tools are necessary on all
-systems; obviously, if you don't have any ISDN hardware, for example,
-you probably needn't concern yourself with isdn4k-utils.
+systems; obviously, if you don't have any PC Card hardware, for example,
+you probably needn't concern yourself with pcmciautils.
====================== =============== ========================================
Program Minimal version Command to check the version
====================== =============== ========================================
GNU C 4.6 gcc --version
GNU make 3.81 make --version
-binutils 2.20 ld -v
+binutils 2.21 ld -v
flex 2.5.35 flex --version
bison 2.0 bison --version
util-linux 2.10o fdformat --version
@@ -45,7 +45,6 @@ btrfs-progs 0.18 btrfsck
pcmciautils 004 pccardctl -V
quota-tools 3.09 quota -V
PPP 2.4.0 pppd --version
-isdn4k-utils 3.1pre1 isdnctrl 2>&1|grep version
nfs-utils 1.0.5 showmount --version
procps 3.2.0 ps --version
oprofile 0.9 oprofiled --version
@@ -77,9 +76,7 @@ You will need GNU make 3.81 or later to build the kernel.
Binutils
--------
-The build system has, as of 4.13, switched to using thin archives (`ar T`)
-rather than incremental linking (`ld -r`) for built-in.a intermediate steps.
-This requires binutils 2.20 or newer.
+Binutils 2.21 or newer is needed to build the kernel.
pkg-config
----------
@@ -279,12 +276,6 @@ which can be made by::
as root.
-Isdn4k-utils
-------------
-
-Due to changes in the length of the phone number field, isdn4k-utils
-needs to be recompiled or (preferably) upgraded.
-
NFS-utils
---------
@@ -448,11 +439,6 @@ PPP
- <ftp://ftp.samba.org/pub/ppp/>
-Isdn4k-utils
-------------
-
-- <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/>
-
NFS-utils
---------
diff --git a/Documentation/process/coding-style.rst b/Documentation/process/coding-style.rst
index fa864a51e6ea..f4a2198187f9 100644
--- a/Documentation/process/coding-style.rst
+++ b/Documentation/process/coding-style.rst
@@ -686,7 +686,7 @@ filesystems) should advertise this prominently in their prompt string::
...
For full documentation on the configuration files, see the file
-Documentation/kbuild/kconfig-language.txt.
+Documentation/kbuild/kconfig-language.rst.
11) Data structures
diff --git a/Documentation/process/maintainer-pgp-guide.rst b/Documentation/process/maintainer-pgp-guide.rst
index 4bab7464ff8c..17db11b7ed48 100644
--- a/Documentation/process/maintainer-pgp-guide.rst
+++ b/Documentation/process/maintainer-pgp-guide.rst
@@ -238,7 +238,10 @@ your new subkey::
work.
If for some reason you prefer to stay with RSA subkeys, just replace
- "ed25519" with "rsa2048" in the above command.
+ "ed25519" with "rsa2048" in the above command. Additionally, if you
+ plan to use a hardware device that does not support ED25519 ECC
+ keys, like Nitrokey Pro or a Yubikey, then you should use
+ "nistp256" instead or "ed25519."
Back up your master key for disaster recovery
@@ -432,23 +435,23 @@ Available smartcard devices
Unless all your laptops and workstations have smartcard readers, the
easiest is to get a specialized USB device that implements smartcard
-functionality. There are several options available:
+functionality. There are several options available:
- `Nitrokey Start`_: Open hardware and Free Software, based on FSI
- Japan's `Gnuk`_. Offers support for ECC keys, but fewest security
- features (such as resistance to tampering or some side-channel
- attacks).
-- `Nitrokey Pro`_: Similar to the Nitrokey Start, but more
- tamper-resistant and offers more security features, but no ECC
- support.
-- `Yubikey 4`_: proprietary hardware and software, but cheaper than
+ Japan's `Gnuk`_. One of the few available commercial devices that
+ support ED25519 ECC keys, but offer fewest security features (such as
+ resistance to tampering or some side-channel attacks).
+- `Nitrokey Pro 2`_: Similar to the Nitrokey Start, but more
+ tamper-resistant and offers more security features. Pro 2 supports ECC
+ cryptography (NISTP).
+- `Yubikey 5`_: proprietary hardware and software, but cheaper than
Nitrokey Pro and comes available in the USB-C form that is more useful
with newer laptops. Offers additional security features such as FIDO
- U2F, but no ECC.
+ U2F, among others, and now finally supports ECC keys (NISTP).
`LWN has a good review`_ of some of the above models, as well as several
-others. If you want to use ECC keys, your best bet among commercially
-available devices is the Nitrokey Start.
+others. Your choice will depend on cost, shipping availability in your
+geographical region, and open/proprietary hardware considerations.
.. note::
@@ -457,8 +460,8 @@ available devices is the Nitrokey Start.
Foundation.
.. _`Nitrokey Start`: https://shop.nitrokey.com/shop/product/nitrokey-start-6
-.. _`Nitrokey Pro`: https://shop.nitrokey.com/shop/product/nitrokey-pro-3
-.. _`Yubikey 4`: https://www.yubico.com/product/yubikey-4-series/
+.. _`Nitrokey Pro 2`: https://shop.nitrokey.com/shop/product/nitrokey-pro-2-3
+.. _`Yubikey 5`: https://www.yubico.com/products/yubikey-5-overview/
.. _Gnuk: http://www.fsij.org/doc-gnuk/
.. _`LWN has a good review`: https://lwn.net/Articles/736231/
.. _`qualify for a free Nitrokey Start`: https://www.kernel.org/nitrokey-digital-tokens-for-kernel-developers.html
diff --git a/Documentation/process/submit-checklist.rst b/Documentation/process/submit-checklist.rst
index c88867b173d9..365efc9e4aa8 100644
--- a/Documentation/process/submit-checklist.rst
+++ b/Documentation/process/submit-checklist.rst
@@ -39,7 +39,7 @@ and elsewhere regarding submitting Linux kernel patches.
6) Any new or modified ``CONFIG`` options do not muck up the config menu and
default to off unless they meet the exception criteria documented in
- ``Documentation/kbuild/kconfig-language.txt`` Menu attributes: default value.
+ ``Documentation/kbuild/kconfig-language.rst`` Menu attributes: default value.
7) All new ``Kconfig`` options have help text.
diff --git a/Documentation/pwm.txt b/Documentation/pwm.txt
index 8fbf0aa3ba2d..ab62f1bb0366 100644
--- a/Documentation/pwm.txt
+++ b/Documentation/pwm.txt
@@ -65,6 +65,10 @@ period). struct pwm_args contains 2 fields (period and polarity) and should
be used to set the initial PWM config (usually done in the probe function
of the PWM user). PWM arguments are retrieved with pwm_get_args().
+All consumers should really be reconfiguring the PWM upon resume as
+appropriate. This is the only way to ensure that everything is resumed in
+the proper order.
+
Using PWMs with the sysfs interface
-----------------------------------
@@ -141,6 +145,9 @@ The implementation of ->get_state() (a method used to retrieve initial PWM
state) is also encouraged for the same reason: letting the PWM user know
about the current PWM state would allow him to avoid glitches.
+Drivers should not implement any power management. In other words,
+consumers should implement it as described in the "Using PWMs" section.
+
Locking
-------
diff --git a/Documentation/riscv/index.rst b/Documentation/riscv/index.rst
new file mode 100644
index 000000000000..c4b906d9b5a7
--- /dev/null
+++ b/Documentation/riscv/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+===================
+RISC-V architecture
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ pmu
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/riscv/pmu.txt b/Documentation/riscv/pmu.rst
index b29f03a6d82f..acb216b99c26 100644
--- a/Documentation/riscv/pmu.txt
+++ b/Documentation/riscv/pmu.rst
@@ -1,5 +1,7 @@
+===================================
Supporting PMUs on RISC-V platforms
-==========================================
+===================================
+
Alan Kao <alankao@andestech.com>, Mar 2018
Introduction
@@ -77,13 +79,13 @@ Note that some features can be done in this stage as well:
(2) privilege level setting (user space only, kernel space only, both);
(3) destructor setting. Normally it is sufficient to apply *riscv_destroy_event*;
(4) tweaks for non-sampling events, which will be utilized by functions such as
-*perf_adjust_period*, usually something like the follows:
+ *perf_adjust_period*, usually something like the follows::
-if (!is_sampling_event(event)) {
- hwc->sample_period = x86_pmu.max_period;
- hwc->last_period = hwc->sample_period;
- local64_set(&hwc->period_left, hwc->sample_period);
-}
+ if (!is_sampling_event(event)) {
+ hwc->sample_period = x86_pmu.max_period;
+ hwc->last_period = hwc->sample_period;
+ local64_set(&hwc->period_left, hwc->sample_period);
+ }
In the case of *riscv_base_pmu*, only (3) is provided for now.
@@ -94,10 +96,10 @@ In the case of *riscv_base_pmu*, only (3) is provided for now.
3.1. Interrupt Initialization
This often occurs at the beginning of the *event_init* method. In common
-practice, this should be a code segment like
+practice, this should be a code segment like::
-int x86_reserve_hardware(void)
-{
+ int x86_reserve_hardware(void)
+ {
int err = 0;
if (!atomic_inc_not_zero(&pmc_refcount)) {
@@ -114,7 +116,7 @@ int x86_reserve_hardware(void)
}
return err;
-}
+ }
And the magic is in *reserve_pmc_hardware*, which usually does atomic
operations to make implemented IRQ accessible from some global function pointer.
@@ -128,28 +130,28 @@ which will be introduced in the next section.)
3.2. IRQ Structure
-Basically, a IRQ runs the following pseudo code:
+Basically, a IRQ runs the following pseudo code::
-for each hardware counter that triggered this overflow
+ for each hardware counter that triggered this overflow
- get the event of this counter
+ get the event of this counter
- // following two steps are defined as *read()*,
- // check the section Reading/Writing Counters for details.
- count the delta value since previous interrupt
- update the event->count (# event occurs) by adding delta, and
- event->hw.period_left by subtracting delta
+ // following two steps are defined as *read()*,
+ // check the section Reading/Writing Counters for details.
+ count the delta value since previous interrupt
+ update the event->count (# event occurs) by adding delta, and
+ event->hw.period_left by subtracting delta
- if the event overflows
- sample data
- set the counter appropriately for the next overflow
+ if the event overflows
+ sample data
+ set the counter appropriately for the next overflow
- if the event overflows again
- too frequently, throttle this event
- fi
- fi
+ if the event overflows again
+ too frequently, throttle this event
+ fi
+ fi
-end for
+ end for
However as of this writing, none of the RISC-V implementations have designed an
interrupt for perf, so the details are to be completed in the future.
@@ -195,23 +197,26 @@ A normal flow of these state transitions are as follows:
At this stage, a general event is bound to a physical counter, if any.
The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, because it is now
stopped, and the (software) event count does not need updating.
-** *start* is then called, and the counter is enabled.
- With flag PERF_EF_RELOAD, it writes an appropriate value to the counter (check
- previous section for detail).
- Nothing is written if the flag does not contain PERF_EF_RELOAD.
- The state now is reset to none, because it is neither stopped nor updated
- (the counting already started)
+
+ - *start* is then called, and the counter is enabled.
+ With flag PERF_EF_RELOAD, it writes an appropriate value to the counter (check
+ previous section for detail).
+ Nothing is written if the flag does not contain PERF_EF_RELOAD.
+ The state now is reset to none, because it is neither stopped nor updated
+ (the counting already started)
+
* When being context-switched out, *del* is called. It then checks out all the
events in the PMU and calls *stop* to update their counts.
-** *stop* is called by *del*
- and the perf core with flag PERF_EF_UPDATE, and it often shares the same
- subroutine as *read* with the same logic.
- The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, again.
-** Life cycle of these two pairs: *add* and *del* are called repeatedly as
- tasks switch in-and-out; *start* and *stop* is also called when the perf core
- needs a quick stop-and-start, for instance, when the interrupt period is being
- adjusted.
+ - *stop* is called by *del*
+ and the perf core with flag PERF_EF_UPDATE, and it often shares the same
+ subroutine as *read* with the same logic.
+ The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, again.
+
+ - Life cycle of these two pairs: *add* and *del* are called repeatedly as
+ tasks switch in-and-out; *start* and *stop* is also called when the perf core
+ needs a quick stop-and-start, for instance, when the interrupt period is being
+ adjusted.
Current implementation is sufficient for now and can be easily extended to
features in the future.
@@ -225,25 +230,26 @@ A. Related Structures
Both structures are designed to be read-only.
*struct pmu* defines some function pointer interfaces, and most of them take
-*struct perf_event* as a main argument, dealing with perf events according to
-perf's internal state machine (check kernel/events/core.c for details).
+ *struct perf_event* as a main argument, dealing with perf events according to
+ perf's internal state machine (check kernel/events/core.c for details).
*struct riscv_pmu* defines PMU-specific parameters. The naming follows the
-convention of all other architectures.
+ convention of all other architectures.
* struct perf_event: include/linux/perf_event.h
* struct hw_perf_event
The generic structure that represents perf events, and the hardware-related
-details.
+ details.
* struct riscv_hw_events: arch/riscv/include/asm/perf_event.h
The structure that holds the status of events, has two fixed members:
-the number of events and the array of the events.
+ the number of events and the array of the events.
References
----------
[1] https://github.com/riscv/riscv-linux/pull/124
+
[2] https://groups.google.com/a/groups.riscv.org/forum/#!topic/sw-dev/f19TmCNP6yA
diff --git a/Documentation/s390/3270.txt b/Documentation/s390/3270.rst
index 7c715de99774..e09e77954238 100644
--- a/Documentation/s390/3270.txt
+++ b/Documentation/s390/3270.rst
@@ -1,13 +1,17 @@
+===============================
IBM 3270 Display System support
+===============================
This file describes the driver that supports local channel attachment
of IBM 3270 devices. It consists of three sections:
+
* Introduction
* Installation
* Operation
-INTRODUCTION.
+Introduction
+============
This paper describes installing and operating 3270 devices under
Linux/390. A 3270 device is a block-mode rows-and-columns terminal of
@@ -17,12 +21,12 @@ twenty and thirty years ago.
You may have 3270s in-house and not know it. If you're using the
VM-ESA operating system, define a 3270 to your virtual machine by using
the command "DEF GRAF <hex-address>" This paper presumes you will be
-defining four 3270s with the CP/CMS commands
+defining four 3270s with the CP/CMS commands:
- DEF GRAF 620
- DEF GRAF 621
- DEF GRAF 622
- DEF GRAF 623
+ - DEF GRAF 620
+ - DEF GRAF 621
+ - DEF GRAF 622
+ - DEF GRAF 623
Your network connection from VM-ESA allows you to use x3270, tn3270, or
another 3270 emulator, started from an xterm window on your PC or
@@ -34,7 +38,8 @@ This paper covers installation of the driver and operation of a
dialed-in x3270.
-INSTALLATION.
+Installation
+============
You install the driver by installing a patch, doing a kernel build, and
running the configuration script (config3270.sh, in this directory).
@@ -59,13 +64,15 @@ Use #CP TERM CONMODE 3270 to change it to 3270. If you generate only
at boot time to a 3270 if it is a 3215.
In brief, these are the steps:
+
1. Install the tub3270 patch
- 2. (If a module) add a line to a file in /etc/modprobe.d/*.conf
+ 2. (If a module) add a line to a file in `/etc/modprobe.d/*.conf`
3. (If VM) define devices with DEF GRAF
4. Reboot
5. Configure
To test that everything works, assuming VM and x3270,
+
1. Bring up an x3270 window.
2. Use the DIAL command in that window.
3. You should immediately see a Linux login screen.
@@ -74,7 +81,8 @@ Here are the installation steps in detail:
1. The 3270 driver is a part of the official Linux kernel
source. Build a tree with the kernel source and any necessary
- patches. Then do
+ patches. Then do::
+
make oldconfig
(If you wish to disable 3215 console support, edit
.config; change CONFIG_TN3215's value to "n";
@@ -84,20 +92,22 @@ Here are the installation steps in detail:
make modules_install
2. (Perform this step only if you have configured tub3270 as a
- module.) Add a line to a file /etc/modprobe.d/*.conf to automatically
+ module.) Add a line to a file `/etc/modprobe.d/*.conf` to automatically
load the driver when it's needed. With this line added, you will see
login prompts appear on your 3270s as soon as boot is complete (or
with emulated 3270s, as soon as you dial into your vm guest using the
command "DIAL <vmguestname>"). Since the line-mode major number is
- 227, the line to add should be:
+ 227, the line to add should be::
+
alias char-major-227 tub3270
3. Define graphic devices to your vm guest machine, if you
haven't already. Define them before you reboot (reipl):
- DEFINE GRAF 620
- DEFINE GRAF 621
- DEFINE GRAF 622
- DEFINE GRAF 623
+
+ - DEFINE GRAF 620
+ - DEFINE GRAF 621
+ - DEFINE GRAF 622
+ - DEFINE GRAF 623
4. Reboot. The reboot process scans hardware devices, including
3270s, and this enables the tub3270 driver once loaded to respond
@@ -107,21 +117,23 @@ Here are the installation steps in detail:
5. Run the 3270 configuration script config3270. It is
distributed in this same directory, Documentation/s390, as
- config3270.sh. Inspect the output script it produces,
+ config3270.sh. Inspect the output script it produces,
/tmp/mkdev3270, and then run that script. This will create the
necessary character special device files and make the necessary
changes to /etc/inittab.
Then notify /sbin/init that /etc/inittab has changed, by issuing
- the telinit command with the q operand:
+ the telinit command with the q operand::
+
cd Documentation/s390
sh config3270.sh
sh /tmp/mkdev3270
telinit q
- This should be sufficient for your first time. If your 3270
+ This should be sufficient for your first time. If your 3270
configuration has changed and you're reusing config3270, you
- should follow these steps:
+ should follow these steps::
+
Change 3270 configuration
Reboot
Run config3270 and /tmp/mkdev3270
@@ -132,8 +144,10 @@ Here are the testing steps in detail:
1. Bring up an x3270 window, or use an actual hardware 3278 or
3279, or use the 3270 emulator of your choice. You would be
running the emulator on your PC or workstation. You would use
- the command, for example,
+ the command, for example::
+
x3270 vm-esa-domain-name &
+
if you wanted a 3278 Model 4 with 43 rows of 80 columns, the
default model number. The driver does not take advantage of
extended attributes.
@@ -144,7 +158,8 @@ Here are the testing steps in detail:
2. Use the DIAL command instead of the LOGIN command to connect
to one of the virtual 3270s you defined with the DEF GRAF
- commands:
+ commands::
+
dial my-vm-guest-name
3. You should immediately see a login prompt from your
@@ -171,14 +186,17 @@ Here are the testing steps in detail:
Wrong major number? Wrong minor number? There's your
problem!
- D. Do you get the message
+ D. Do you get the message::
+
"HCPDIA047E my-vm-guest-name 0620 does not exist"?
+
If so, you must issue the command "DEF GRAF 620" from your VM
3215 console and then reboot the system.
OPERATION.
+==========
The driver defines three areas on the 3270 screen: the log area, the
input area, and the status area.
@@ -203,8 +221,10 @@ which indicates no scrolling will occur. (If you hit ENTER with "Linux
Running" and nothing typed, the application receives a newline.)
You may change the scrolling timeout value. For example, the following
-command line:
+command line::
+
echo scrolltime=60 > /proc/tty/driver/tty3270
+
changes the scrolling timeout value to 60 sec. Set scrolltime to 0 if
you wish to prevent scrolling entirely.
@@ -228,7 +248,8 @@ cause an EOF also by typing "^D" and hitting ENTER.
No PF key is preassigned to cause a job suspension, but you may cause a
job suspension by typing "^Z" and hitting ENTER. You may wish to
assign this function to a PF key. To make PF7 cause job suspension,
-execute the command:
+execute the command::
+
echo pf7=^z > /proc/tty/driver/tty3270
If the input you type does not end with the two characters "^n", the
@@ -243,8 +264,10 @@ command is entered into the stack only when the input area is not made
invisible (such as for password entry) and it is not identical to the
current top entry. PF10 rotates backward through the command stack;
PF11 rotates forward. You may assign the backward function to any PF
-key (or PA key, for that matter), say, PA3, with the command:
+key (or PA key, for that matter), say, PA3, with the command::
+
echo -e pa3=\\033k > /proc/tty/driver/tty3270
+
This assigns the string ESC-k to PA3. Similarly, the string ESC-j
performs the forward function. (Rationale: In bash with vi-mode line
editing, ESC-k and ESC-j retrieve backward and forward history.
@@ -252,15 +275,19 @@ Suggestions welcome.)
Is a stack size of twenty commands not to your liking? Change it on
the fly. To change to saving the last 100 commands, execute the
-command:
+command::
+
echo recallsize=100 > /proc/tty/driver/tty3270
Have a command you issue frequently? Assign it to a PF or PA key! Use
-the command
- echo pf24="mkdir foobar; cd foobar" > /proc/tty/driver/tty3270
+the command::
+
+ echo pf24="mkdir foobar; cd foobar" > /proc/tty/driver/tty3270
+
to execute the commands mkdir foobar and cd foobar immediately when you
hit PF24. Want to see the command line first, before you execute it?
-Use the -n option of the echo command:
+Use the -n option of the echo command::
+
echo -n pf24="mkdir foo; cd foo" > /proc/tty/driver/tty3270
diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/Debugging390.txt
deleted file mode 100644
index 5ae7f868a007..000000000000
--- a/Documentation/s390/Debugging390.txt
+++ /dev/null
@@ -1,2142 +0,0 @@
-
- Debugging on Linux for s/390 & z/Architecture
- by
- Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
- Copyright (C) 2000-2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
- Best viewed with fixed width fonts
-
-Overview of Document:
-=====================
-This document is intended to give a good overview of how to debug Linux for
-s/390 and z/Architecture. It is not intended as a complete reference and not a
-tutorial on the fundamentals of C & assembly. It doesn't go into
-390 IO in any detail. It is intended to complement the documents in the
-reference section below & any other worthwhile references you get.
-
-It is intended like the Enterprise Systems Architecture/390 Reference Summary
-to be printed out & used as a quick cheat sheet self help style reference when
-problems occur.
-
-Contents
-========
-Register Set
-Address Spaces on Intel Linux
-Address Spaces on Linux for s/390 & z/Architecture
-The Linux for s/390 & z/Architecture Kernel Task Structure
-Register Usage & Stackframes on Linux for s/390 & z/Architecture
-A sample program with comments
-Compiling programs for debugging on Linux for s/390 & z/Architecture
-Debugging under VM
-s/390 & z/Architecture IO Overview
-Debugging IO on s/390 & z/Architecture under VM
-GDB on s/390 & z/Architecture
-Stack chaining in gdb by hand
-Examining core dumps
-ldd
-Debugging modules
-The proc file system
-SysRq
-References
-Special Thanks
-
-Register Set
-============
-The current architectures have the following registers.
-
-16 General propose registers, 32 bit on s/390 and 64 bit on z/Architecture,
-r0-r15 (or gpr0-gpr15), used for arithmetic and addressing.
-
-16 Control registers, 32 bit on s/390 and 64 bit on z/Architecture, cr0-cr15,
-kernel usage only, used for memory management, interrupt control, debugging
-control etc.
-
-16 Access registers (ar0-ar15), 32 bit on both s/390 and z/Architecture,
-normally not used by normal programs but potentially could be used as
-temporary storage. These registers have a 1:1 association with general
-purpose registers and are designed to be used in the so-called access
-register mode to select different address spaces.
-Access register 0 (and access register 1 on z/Architecture, which needs a
-64 bit pointer) is currently used by the pthread library as a pointer to
-the current running threads private area.
-
-16 64 bit floating point registers (fp0-fp15 ) IEEE & HFP floating
-point format compliant on G5 upwards & a Floating point control reg (FPC)
-4 64 bit registers (fp0,fp2,fp4 & fp6) HFP only on older machines.
-Note:
-Linux (currently) always uses IEEE & emulates G5 IEEE format on older machines,
-( provided the kernel is configured for this ).
-
-
-The PSW is the most important register on the machine it
-is 64 bit on s/390 & 128 bit on z/Architecture & serves the roles of
-a program counter (pc), condition code register,memory space designator.
-In IBM standard notation I am counting bit 0 as the MSB.
-It has several advantages over a normal program counter
-in that you can change address translation & program counter
-in a single instruction. To change address translation,
-e.g. switching address translation off requires that you
-have a logical=physical mapping for the address you are
-currently running at.
-
- Bit Value
-s/390 z/Architecture
-0 0 Reserved ( must be 0 ) otherwise specification exception occurs.
-
-1 1 Program Event Recording 1 PER enabled,
- PER is used to facilitate debugging e.g. single stepping.
-
-2-4 2-4 Reserved ( must be 0 ).
-
-5 5 Dynamic address translation 1=DAT on.
-
-6 6 Input/Output interrupt Mask
-
-7 7 External interrupt Mask used primarily for interprocessor
- signalling and clock interrupts.
-
-8-11 8-11 PSW Key used for complex memory protection mechanism
- (not used under linux)
-
-12 12 1 on s/390 0 on z/Architecture
-
-13 13 Machine Check Mask 1=enable machine check interrupts
-
-14 14 Wait State. Set this to 1 to stop the processor except for
- interrupts and give time to other LPARS. Used in CPU idle in
- the kernel to increase overall usage of processor resources.
-
-15 15 Problem state ( if set to 1 certain instructions are disabled )
- all linux user programs run with this bit 1
- ( useful info for debugging under VM ).
-
-16-17 16-17 Address Space Control
-
- 00 Primary Space Mode:
- The register CR1 contains the primary address-space control ele-
- ment (PASCE), which points to the primary space region/segment
- table origin.
-
- 01 Access register mode
-
- 10 Secondary Space Mode:
- The register CR7 contains the secondary address-space control
- element (SASCE), which points to the secondary space region or
- segment table origin.
-
- 11 Home Space Mode:
- The register CR13 contains the home space address-space control
- element (HASCE), which points to the home space region/segment
- table origin.
-
- See "Address Spaces on Linux for s/390 & z/Architecture" below
- for more information about address space usage in Linux.
-
-18-19 18-19 Condition codes (CC)
-
-20 20 Fixed point overflow mask if 1=FPU exceptions for this event
- occur ( normally 0 )
-
-21 21 Decimal overflow mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-22 22 Exponent underflow mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-23 23 Significance Mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-24-31 24-30 Reserved Must be 0.
-
- 31 Extended Addressing Mode
- 32 Basic Addressing Mode
- Used to set addressing mode
- PSW 31 PSW 32
- 0 0 24 bit
- 0 1 31 bit
- 1 1 64 bit
-
-32 1=31 bit addressing mode 0=24 bit addressing mode (for backward
- compatibility), linux always runs with this bit set to 1
-
-33-64 Instruction address.
- 33-63 Reserved must be 0
- 64-127 Address
- In 24 bits mode bits 64-103=0 bits 104-127 Address
- In 31 bits mode bits 64-96=0 bits 97-127 Address
- Note: unlike 31 bit mode on s/390 bit 96 must be zero
- when loading the address with LPSWE otherwise a
- specification exception occurs, LPSW is fully backward
- compatible.
-
-
-Prefix Page(s)
---------------
-This per cpu memory area is too intimately tied to the processor not to mention.
-It exists between the real addresses 0-4096 on s/390 and between 0-8192 on
-z/Architecture and is exchanged with one page on s/390 or two pages on
-z/Architecture in absolute storage by the set prefix instruction during Linux
-startup.
-This page is mapped to a different prefix for each processor in an SMP
-configuration (assuming the OS designer is sane of course).
-Bytes 0-512 (200 hex) on s/390 and 0-512, 4096-4544, 4604-5119 currently on
-z/Architecture are used by the processor itself for holding such information
-as exception indications and entry points for exceptions.
-Bytes after 0xc00 hex are used by linux for per processor globals on s/390 and
-z/Architecture (there is a gap on z/Architecture currently between 0xc00 and
-0x1000, too, which is used by Linux).
-The closest thing to this on traditional architectures is the interrupt
-vector table. This is a good thing & does simplify some of the kernel coding
-however it means that we now cannot catch stray NULL pointers in the
-kernel without hard coded checks.
-
-
-
-Address Spaces on Intel Linux
-=============================
-
-The traditional Intel Linux is approximately mapped as follows forgive
-the ascii art.
-0xFFFFFFFF 4GB Himem *****************
- * *
- * Kernel Space *
- * *
- ***************** ****************
-User Space Himem * User Stack * * *
-(typically 0xC0000000 3GB ) ***************** * *
- * Shared Libs * * Next Process *
- ***************** * to *
- * * <== * Run * <==
- * User Program * * *
- * Data BSS * * *
- * Text * * *
- * Sections * * *
-0x00000000 ***************** ****************
-
-Now it is easy to see that on Intel it is quite easy to recognise a kernel
-address as being one greater than user space himem (in this case 0xC0000000),
-and addresses of less than this are the ones in the current running program on
-this processor (if an smp box).
-If using the virtual machine ( VM ) as a debugger it is quite difficult to
-know which user process is running as the address space you are looking at
-could be from any process in the run queue.
-
-The limitation of Intels addressing technique is that the linux
-kernel uses a very simple real address to virtual addressing technique
-of Real Address=Virtual Address-User Space Himem.
-This means that on Intel the kernel linux can typically only address
-Himem=0xFFFFFFFF-0xC0000000=1GB & this is all the RAM these machines
-can typically use.
-They can lower User Himem to 2GB or lower & thus be
-able to use 2GB of RAM however this shrinks the maximum size
-of User Space from 3GB to 2GB they have a no win limit of 4GB unless
-they go to 64 Bit.
-
-
-On 390 our limitations & strengths make us slightly different.
-For backward compatibility we are only allowed use 31 bits (2GB)
-of our 32 bit addresses, however, we use entirely separate address
-spaces for the user & kernel.
-
-This means we can support 2GB of non Extended RAM on s/390, & more
-with the Extended memory management swap device &
-currently 4TB of physical memory currently on z/Architecture.
-
-
-Address Spaces on Linux for s/390 & z/Architecture
-==================================================
-
-Our addressing scheme is basically as follows:
-
- Primary Space Home Space
-Himem 0x7fffffff 2GB on s/390 ***************** ****************
-currently 0x3ffffffffff (2^42)-1 * User Stack * * *
-on z/Architecture. ***************** * *
- * Shared Libs * * *
- ***************** * *
- * * * Kernel *
- * User Program * * *
- * Data BSS * * *
- * Text * * *
- * Sections * * *
-0x00000000 ***************** ****************
-
-This also means that we need to look at the PSW problem state bit and the
-addressing mode to decide whether we are looking at user or kernel space.
-
-User space runs in primary address mode (or access register mode within
-the vdso code).
-
-The kernel usually also runs in home space mode, however when accessing
-user space the kernel switches to primary or secondary address mode if
-the mvcos instruction is not available or if a compare-and-swap (futex)
-instruction on a user space address is performed.
-
-When also looking at the ASCE control registers, this means:
-
-User space:
-- runs in primary or access register mode
-- cr1 contains the user asce
-- cr7 contains the user asce
-- cr13 contains the kernel asce
-
-Kernel space:
-- runs in home space mode
-- cr1 contains the user or kernel asce
- -> the kernel asce is loaded when a uaccess requires primary or
- secondary address mode
-- cr7 contains the user or kernel asce, (changed with set_fs())
-- cr13 contains the kernel asce
-
-In case of uaccess the kernel changes to:
-- primary space mode in case of a uaccess (copy_to_user) and uses
- e.g. the mvcp instruction to access user space. However the kernel
- will stay in home space mode if the mvcos instruction is available
-- secondary space mode in case of futex atomic operations, so that the
- instructions come from primary address space and data from secondary
- space
-
-In case of KVM, the kernel runs in home space mode, but cr1 gets switched
-to contain the gmap asce before the SIE instruction gets executed. When
-the SIE instruction is finished, cr1 will be switched back to contain the
-user asce.
-
-
-Virtual Addresses on s/390 & z/Architecture
-===========================================
-
-A virtual address on s/390 is made up of 3 parts
-The SX (segment index, roughly corresponding to the PGD & PMD in Linux
-terminology) being bits 1-11.
-The PX (page index, corresponding to the page table entry (pte) in Linux
-terminology) being bits 12-19.
-The remaining bits BX (the byte index are the offset in the page )
-i.e. bits 20 to 31.
-
-On z/Architecture in linux we currently make up an address from 4 parts.
-The region index bits (RX) 0-32 we currently use bits 22-32
-The segment index (SX) being bits 33-43
-The page index (PX) being bits 44-51
-The byte index (BX) being bits 52-63
-
-Notes:
-1) s/390 has no PMD so the PMD is really the PGD also.
-A lot of this stuff is defined in pgtable.h.
-
-2) Also seeing as s/390's page indexes are only 1k in size
-(bits 12-19 x 4 bytes per pte ) we use 1 ( page 4k )
-to make the best use of memory by updating 4 segment indices
-entries each time we mess with a PMD & use offsets
-0,1024,2048 & 3072 in this page as for our segment indexes.
-On z/Architecture our page indexes are now 2k in size
-( bits 12-19 x 8 bytes per pte ) we do a similar trick
-but only mess with 2 segment indices each time we mess with
-a PMD.
-
-3) As z/Architecture supports up to a massive 5-level page table lookup we
-can only use 3 currently on Linux ( as this is all the generic kernel
-currently supports ) however this may change in future
-this allows us to access ( according to my sums )
-4TB of virtual storage per process i.e.
-4096*512(PTES)*1024(PMDS)*2048(PGD) = 4398046511104 bytes,
-enough for another 2 or 3 of years I think :-).
-to do this we use a region-third-table designation type in
-our address space control registers.
-
-
-The Linux for s/390 & z/Architecture Kernel Task Structure
-==========================================================
-Each process/thread under Linux for S390 has its own kernel task_struct
-defined in linux/include/linux/sched.h
-The S390 on initialisation & resuming of a process on a cpu sets
-the __LC_KERNEL_STACK variable in the spare prefix area for this cpu
-(which we use for per-processor globals).
-
-The kernel stack pointer is intimately tied with the task structure for
-each processor as follows.
-
- s/390
- ************************
- * 1 page kernel stack *
- * ( 4K ) *
- ************************
- * 1 page task_struct *
- * ( 4K ) *
-8K aligned ************************
-
- z/Architecture
- ************************
- * 2 page kernel stack *
- * ( 8K ) *
- ************************
- * 2 page task_struct *
- * ( 8K ) *
-16K aligned ************************
-
-What this means is that we don't need to dedicate any register or global
-variable to point to the current running process & can retrieve it with the
-following very simple construct for s/390 & one very similar for z/Architecture.
-
-static inline struct task_struct * get_current(void)
-{
- struct task_struct *current;
- __asm__("lhi %0,-8192\n\t"
- "nr %0,15"
- : "=r" (current) );
- return current;
-}
-
-i.e. just anding the current kernel stack pointer with the mask -8192.
-Thankfully because Linux doesn't have support for nested IO interrupts
-& our devices have large buffers can survive interrupts being shut for
-short amounts of time we don't need a separate stack for interrupts.
-
-
-
-
-Register Usage & Stackframes on Linux for s/390 & z/Architecture
-=================================================================
-Overview:
----------
-This is the code that gcc produces at the top & the bottom of
-each function. It usually is fairly consistent & similar from
-function to function & if you know its layout you can probably
-make some headway in finding the ultimate cause of a problem
-after a crash without a source level debugger.
-
-Note: To follow stackframes requires a knowledge of C or Pascal &
-limited knowledge of one assembly language.
-
-It should be noted that there are some differences between the
-s/390 and z/Architecture stack layouts as the z/Architecture stack layout
-didn't have to maintain compatibility with older linkage formats.
-
-Glossary:
----------
-alloca:
-This is a built in compiler function for runtime allocation
-of extra space on the callers stack which is obviously freed
-up on function exit ( e.g. the caller may choose to allocate nothing
-of a buffer of 4k if required for temporary purposes ), it generates
-very efficient code ( a few cycles ) when compared to alternatives
-like malloc.
-
-automatics: These are local variables on the stack,
-i.e they aren't in registers & they aren't static.
-
-back-chain:
-This is a pointer to the stack pointer before entering a
-framed functions ( see frameless function ) prologue got by
-dereferencing the address of the current stack pointer,
- i.e. got by accessing the 32 bit value at the stack pointers
-current location.
-
-base-pointer:
-This is a pointer to the back of the literal pool which
-is an area just behind each procedure used to store constants
-in each function.
-
-call-clobbered: The caller probably needs to save these registers if there
-is something of value in them, on the stack or elsewhere before making a
-call to another procedure so that it can restore it later.
-
-epilogue:
-The code generated by the compiler to return to the caller.
-
-frameless-function
-A frameless function in Linux for s390 & z/Architecture is one which doesn't
-need more than the register save area (96 bytes on s/390, 160 on z/Architecture)
-given to it by the caller.
-A frameless function never:
-1) Sets up a back chain.
-2) Calls alloca.
-3) Calls other normal functions
-4) Has automatics.
-
-GOT-pointer:
-This is a pointer to the global-offset-table in ELF
-( Executable Linkable Format, Linux'es most common executable format ),
-all globals & shared library objects are found using this pointer.
-
-lazy-binding
-ELF shared libraries are typically only loaded when routines in the shared
-library are actually first called at runtime. This is lazy binding.
-
-procedure-linkage-table
-This is a table found from the GOT which contains pointers to routines
-in other shared libraries which can't be called to by easier means.
-
-prologue:
-The code generated by the compiler to set up the stack frame.
-
-outgoing-args:
-This is extra area allocated on the stack of the calling function if the
-parameters for the callee's cannot all be put in registers, the same
-area can be reused by each function the caller calls.
-
-routine-descriptor:
-A COFF executable format based concept of a procedure reference
-actually being 8 bytes or more as opposed to a simple pointer to the routine.
-This is typically defined as follows
-Routine Descriptor offset 0=Pointer to Function
-Routine Descriptor offset 4=Pointer to Table of Contents
-The table of contents/TOC is roughly equivalent to a GOT pointer.
-& it means that shared libraries etc. can be shared between several
-environments each with their own TOC.
-
-
-static-chain: This is used in nested functions a concept adopted from pascal
-by gcc not used in ansi C or C++ ( although quite useful ), basically it
-is a pointer used to reference local variables of enclosing functions.
-You might come across this stuff once or twice in your lifetime.
-
-e.g.
-The function below should return 11 though gcc may get upset & toss warnings
-about unused variables.
-int FunctionA(int a)
-{
- int b;
- FunctionC(int c)
- {
- b=c+1;
- }
- FunctionC(10);
- return(b);
-}
-
-
-s/390 & z/Architecture Register usage
-=====================================
-r0 used by syscalls/assembly call-clobbered
-r1 used by syscalls/assembly call-clobbered
-r2 argument 0 / return value 0 call-clobbered
-r3 argument 1 / return value 1 (if long long) call-clobbered
-r4 argument 2 call-clobbered
-r5 argument 3 call-clobbered
-r6 argument 4 saved
-r7 pointer-to arguments 5 to ... saved
-r8 this & that saved
-r9 this & that saved
-r10 static-chain ( if nested function ) saved
-r11 frame-pointer ( if function used alloca ) saved
-r12 got-pointer saved
-r13 base-pointer saved
-r14 return-address saved
-r15 stack-pointer saved
-
-f0 argument 0 / return value ( float/double ) call-clobbered
-f2 argument 1 call-clobbered
-f4 z/Architecture argument 2 saved
-f6 z/Architecture argument 3 saved
-The remaining floating points
-f1,f3,f5 f7-f15 are call-clobbered.
-
-Notes:
-------
-1) The only requirement is that registers which are used
-by the callee are saved, e.g. the compiler is perfectly
-capable of using r11 for purposes other than a frame a
-frame pointer if a frame pointer is not needed.
-2) In functions with variable arguments e.g. printf the calling procedure
-is identical to one without variable arguments & the same number of
-parameters. However, the prologue of this function is somewhat more
-hairy owing to it having to move these parameters to the stack to
-get va_start, va_arg & va_end to work.
-3) Access registers are currently unused by gcc but are used in
-the kernel. Possibilities exist to use them at the moment for
-temporary storage but it isn't recommended.
-4) Only 4 of the floating point registers are used for
-parameter passing as older machines such as G3 only have only 4
-& it keeps the stack frame compatible with other compilers.
-However with IEEE floating point emulation under linux on the
-older machines you are free to use the other 12.
-5) A long long or double parameter cannot be have the
-first 4 bytes in a register & the second four bytes in the
-outgoing args area. It must be purely in the outgoing args
-area if crossing this boundary.
-6) Floating point parameters are mixed with outgoing args
-on the outgoing args area in the order the are passed in as parameters.
-7) Floating point arguments 2 & 3 are saved in the outgoing args area for
-z/Architecture
-
-
-Stack Frame Layout
-------------------
-s/390 z/Architecture
-0 0 back chain ( a 0 here signifies end of back chain )
-4 8 eos ( end of stack, not used on Linux for S390 used in other linkage formats )
-8 16 glue used in other s/390 linkage formats for saved routine descriptors etc.
-12 24 glue used in other s/390 linkage formats for saved routine descriptors etc.
-16 32 scratch area
-20 40 scratch area
-24 48 saved r6 of caller function
-28 56 saved r7 of caller function
-32 64 saved r8 of caller function
-36 72 saved r9 of caller function
-40 80 saved r10 of caller function
-44 88 saved r11 of caller function
-48 96 saved r12 of caller function
-52 104 saved r13 of caller function
-56 112 saved r14 of caller function
-60 120 saved r15 of caller function
-64 128 saved f4 of caller function
-72 132 saved f6 of caller function
-80 undefined
-96 160 outgoing args passed from caller to callee
-96+x 160+x possible stack alignment ( 8 bytes desirable )
-96+x+y 160+x+y alloca space of caller ( if used )
-96+x+y+z 160+x+y+z automatics of caller ( if used )
-0 back-chain
-
-A sample program with comments.
-===============================
-
-Comments on the function test
------------------------------
-1) It didn't need to set up a pointer to the constant pool gpr13 as it is not
-used ( :-( ).
-2) This is a frameless function & no stack is bought.
-3) The compiler was clever enough to recognise that it could return the
-value in r2 as well as use it for the passed in parameter ( :-) ).
-4) The basr ( branch relative & save ) trick works as follows the instruction
-has a special case with r0,r0 with some instruction operands is understood as
-the literal value 0, some risc architectures also do this ). So now
-we are branching to the next address & the address new program counter is
-in r13,so now we subtract the size of the function prologue we have executed
-+ the size of the literal pool to get to the top of the literal pool
-0040037c int test(int b)
-{ # Function prologue below
- 40037c: 90 de f0 34 stm %r13,%r14,52(%r15) # Save registers r13 & r14
- 400380: 0d d0 basr %r13,%r0 # Set up pointer to constant pool using
- 400382: a7 da ff fa ahi %r13,-6 # basr trick
- return(5+b);
- # Huge main program
- 400386: a7 2a 00 05 ahi %r2,5 # add 5 to r2
-
- # Function epilogue below
- 40038a: 98 de f0 34 lm %r13,%r14,52(%r15) # restore registers r13 & 14
- 40038e: 07 fe br %r14 # return
-}
-
-Comments on the function main
------------------------------
-1) The compiler did this function optimally ( 8-) )
-
-Literal pool for main.
-400390: ff ff ff ec .long 0xffffffec
-main(int argc,char *argv[])
-{ # Function prologue below
- 400394: 90 bf f0 2c stm %r11,%r15,44(%r15) # Save necessary registers
- 400398: 18 0f lr %r0,%r15 # copy stack pointer to r0
- 40039a: a7 fa ff a0 ahi %r15,-96 # Make area for callee saving
- 40039e: 0d d0 basr %r13,%r0 # Set up r13 to point to
- 4003a0: a7 da ff f0 ahi %r13,-16 # literal pool
- 4003a4: 50 00 f0 00 st %r0,0(%r15) # Save backchain
-
- return(test(5)); # Main Program Below
- 4003a8: 58 e0 d0 00 l %r14,0(%r13) # load relative address of test from
- # literal pool
- 4003ac: a7 28 00 05 lhi %r2,5 # Set first parameter to 5
- 4003b0: 4d ee d0 00 bas %r14,0(%r14,%r13) # jump to test setting r14 as return
- # address using branch & save instruction.
-
- # Function Epilogue below
- 4003b4: 98 bf f0 8c lm %r11,%r15,140(%r15)# Restore necessary registers.
- 4003b8: 07 fe br %r14 # return to do program exit
-}
-
-
-Compiler updates
-----------------
-
-main(int argc,char *argv[])
-{
- 4004fc: 90 7f f0 1c stm %r7,%r15,28(%r15)
- 400500: a7 d5 00 04 bras %r13,400508 <main+0xc>
- 400504: 00 40 04 f4 .long 0x004004f4
- # compiler now puts constant pool in code to so it saves an instruction
- 400508: 18 0f lr %r0,%r15
- 40050a: a7 fa ff a0 ahi %r15,-96
- 40050e: 50 00 f0 00 st %r0,0(%r15)
- return(test(5));
- 400512: 58 10 d0 00 l %r1,0(%r13)
- 400516: a7 28 00 05 lhi %r2,5
- 40051a: 0d e1 basr %r14,%r1
- # compiler adds 1 extra instruction to epilogue this is done to
- # avoid processor pipeline stalls owing to data dependencies on g5 &
- # above as register 14 in the old code was needed directly after being loaded
- # by the lm %r11,%r15,140(%r15) for the br %14.
- 40051c: 58 40 f0 98 l %r4,152(%r15)
- 400520: 98 7f f0 7c lm %r7,%r15,124(%r15)
- 400524: 07 f4 br %r4
-}
-
-
-Hartmut ( our compiler developer ) also has been threatening to take out the
-stack backchain in optimised code as this also causes pipeline stalls, you
-have been warned.
-
-64 bit z/Architecture code disassembly
---------------------------------------
-
-If you understand the stuff above you'll understand the stuff
-below too so I'll avoid repeating myself & just say that
-some of the instructions have g's on the end of them to indicate
-they are 64 bit & the stack offsets are a bigger,
-the only other difference you'll find between 32 & 64 bit is that
-we now use f4 & f6 for floating point arguments on 64 bit.
-00000000800005b0 <test>:
-int test(int b)
-{
- return(5+b);
- 800005b0: a7 2a 00 05 ahi %r2,5
- 800005b4: b9 14 00 22 lgfr %r2,%r2 # downcast to integer
- 800005b8: 07 fe br %r14
- 800005ba: 07 07 bcr 0,%r7
-
-
-}
-
-00000000800005bc <main>:
-main(int argc,char *argv[])
-{
- 800005bc: eb bf f0 58 00 24 stmg %r11,%r15,88(%r15)
- 800005c2: b9 04 00 1f lgr %r1,%r15
- 800005c6: a7 fb ff 60 aghi %r15,-160
- 800005ca: e3 10 f0 00 00 24 stg %r1,0(%r15)
- return(test(5));
- 800005d0: a7 29 00 05 lghi %r2,5
- # brasl allows jumps > 64k & is overkill here bras would do fune
- 800005d4: c0 e5 ff ff ff ee brasl %r14,800005b0 <test>
- 800005da: e3 40 f1 10 00 04 lg %r4,272(%r15)
- 800005e0: eb bf f0 f8 00 04 lmg %r11,%r15,248(%r15)
- 800005e6: 07 f4 br %r4
-}
-
-
-
-Compiling programs for debugging on Linux for s/390 & z/Architecture
-====================================================================
--gdwarf-2 now works it should be considered the default debugging
-format for s/390 & z/Architecture as it is more reliable for debugging
-shared libraries, normal -g debugging works much better now
-Thanks to the IBM java compiler developers bug reports.
-
-This is typically done adding/appending the flags -g or -gdwarf-2 to the
-CFLAGS & LDFLAGS variables Makefile of the program concerned.
-
-If using gdb & you would like accurate displays of registers &
- stack traces compile without optimisation i.e make sure
-that there is no -O2 or similar on the CFLAGS line of the Makefile &
-the emitted gcc commands, obviously this will produce worse code
-( not advisable for shipment ) but it is an aid to the debugging process.
-
-This aids debugging because the compiler will copy parameters passed in
-in registers onto the stack so backtracing & looking at passed in
-parameters will work, however some larger programs which use inline functions
-will not compile without optimisation.
-
-Debugging with optimisation has since much improved after fixing
-some bugs, please make sure you are using gdb-5.0 or later developed
-after Nov'2000.
-
-
-
-Debugging under VM
-==================
-
-Notes
------
-Addresses & values in the VM debugger are always hex never decimal
-Address ranges are of the format <HexValue1>-<HexValue2> or
-<HexValue1>.<HexValue2>
-For example, the address range 0x2000 to 0x3000 can be described as 2000-3000
-or 2000.1000
-
-The VM Debugger is case insensitive.
-
-VM's strengths are usually other debuggers weaknesses you can get at any
-resource no matter how sensitive e.g. memory management resources, change
-address translation in the PSW. For kernel hacking you will reap dividends if
-you get good at it.
-
-The VM Debugger displays operators but not operands, and also the debugger
-displays useful information on the same line as the author of the code probably
-felt that it was a good idea not to go over the 80 columns on the screen.
-This isn't as unintuitive as it may seem as the s/390 instructions are easy to
-decode mentally and you can make a good guess at a lot of them as all the
-operands are nibble (half byte aligned).
-So if you have an objdump listing by hand, it is quite easy to follow, and if
-you don't have an objdump listing keep a copy of the s/390 Reference Summary
-or alternatively the s/390 principles of operation next to you.
-e.g. even I can guess that
-0001AFF8' LR 180F CC 0
-is a ( load register ) lr r0,r15
-
-Also it is very easy to tell the length of a 390 instruction from the 2 most
-significant bits in the instruction (not that this info is really useful except
-if you are trying to make sense of a hexdump of code).
-Here is a table
-Bits Instruction Length
-------------------------------------------
-00 2 Bytes
-01 4 Bytes
-10 4 Bytes
-11 6 Bytes
-
-The debugger also displays other useful info on the same line such as the
-addresses being operated on destination addresses of branches & condition codes.
-e.g.
-00019736' AHI A7DAFF0E CC 1
-000198BA' BRC A7840004 -> 000198C2' CC 0
-000198CE' STM 900EF068 >> 0FA95E78 CC 2
-
-
-
-Useful VM debugger commands
----------------------------
-
-I suppose I'd better mention this before I start
-to list the current active traces do
-Q TR
-there can be a maximum of 255 of these per set
-( more about trace sets later ).
-To stop traces issue a
-TR END.
-To delete a particular breakpoint issue
-TR DEL <breakpoint number>
-
-The PA1 key drops to CP mode so you can issue debugger commands,
-Doing alt c (on my 3270 console at least ) clears the screen.
-hitting b <enter> comes back to the running operating system
-from cp mode ( in our case linux ).
-It is typically useful to add shortcuts to your profile.exec file
-if you have one ( this is roughly equivalent to autoexec.bat in DOS ).
-file here are a few from mine.
-/* this gives me command history on issuing f12 */
-set pf12 retrieve
-/* this continues */
-set pf8 imm b
-/* goes to trace set a */
-set pf1 imm tr goto a
-/* goes to trace set b */
-set pf2 imm tr goto b
-/* goes to trace set c */
-set pf3 imm tr goto c
-
-
-
-Instruction Tracing
--------------------
-Setting a simple breakpoint
-TR I PSWA <address>
-To debug a particular function try
-TR I R <function address range>
-TR I on its own will single step.
-TR I DATA <MNEMONIC> <OPTIONAL RANGE> will trace for particular mnemonics
-e.g.
-TR I DATA 4D R 0197BC.4000
-will trace for BAS'es ( opcode 4D ) in the range 0197BC.4000
-if you were inclined you could add traces for all branch instructions &
-suffix them with the run prefix so you would have a backtrace on screen
-when a program crashes.
-TR BR <INTO OR FROM> will trace branches into or out of an address.
-e.g.
-TR BR INTO 0 is often quite useful if a program is getting awkward & deciding
-to branch to 0 & crashing as this will stop at the address before in jumps to 0.
-TR I R <address range> RUN cmd d g
-single steps a range of addresses but stays running &
-displays the gprs on each step.
-
-
-
-Displaying & modifying Registers
---------------------------------
-D G will display all the gprs
-Adding a extra G to all the commands is necessary to access the full 64 bit
-content in VM on z/Architecture. Obviously this isn't required for access
-registers as these are still 32 bit.
-e.g. DGG instead of DG
-D X will display all the control registers
-D AR will display all the access registers
-D AR4-7 will display access registers 4 to 7
-CPU ALL D G will display the GRPS of all CPUS in the configuration
-D PSW will display the current PSW
-st PSW 2000 will put the value 2000 into the PSW &
-cause crash your machine.
-D PREFIX displays the prefix offset
-
-
-Displaying Memory
------------------
-To display memory mapped using the current PSW's mapping try
-D <range>
-To make VM display a message each time it hits a particular address and
-continue try
-D I<range> will disassemble/display a range of instructions.
-ST addr 32 bit word will store a 32 bit aligned address
-D T<range> will display the EBCDIC in an address (if you are that way inclined)
-D R<range> will display real addresses ( without DAT ) but with prefixing.
-There are other complex options to display if you need to get at say home space
-but are in primary space the easiest thing to do is to temporarily
-modify the PSW to the other addressing mode, display the stuff & then
-restore it.
-
-
-
-Hints
------
-If you want to issue a debugger command without halting your virtual machine
-with the PA1 key try prefixing the command with #CP e.g.
-#cp tr i pswa 2000
-also suffixing most debugger commands with RUN will cause them not
-to stop just display the mnemonic at the current instruction on the console.
-If you have several breakpoints you want to put into your program &
-you get fed up of cross referencing with System.map
-you can do the following trick for several symbols.
-grep do_signal System.map
-which emits the following among other things
-0001f4e0 T do_signal
-now you can do
-
-TR I PSWA 0001f4e0 cmd msg * do_signal
-This sends a message to your own console each time do_signal is entered.
-( As an aside I wrote a perl script once which automatically generated a REXX
-script with breakpoints on every kernel procedure, this isn't a good idea
-because there are thousands of these routines & VM can only set 255 breakpoints
-at a time so you nearly had to spend as long pruning the file down as you would
-entering the msgs by hand), however, the trick might be useful for a single
-object file. In the 3270 terminal emulator x3270 there is a very useful option
-in the file menu called "Save Screen In File" - this is very good for keeping a
-copy of traces.
-
-From CMS help <command name> will give you online help on a particular command.
-e.g.
-HELP DISPLAY
-
-Also CP has a file called profile.exec which automatically gets called
-on startup of CMS ( like autoexec.bat ), keeping on a DOS analogy session
-CP has a feature similar to doskey, it may be useful for you to
-use profile.exec to define some keystrokes.
-e.g.
-SET PF9 IMM B
-This does a single step in VM on pressing F8.
-SET PF10 ^
-This sets up the ^ key.
-which can be used for ^c (ctrl-c),^z (ctrl-z) which can't be typed directly
-into some 3270 consoles.
-SET PF11 ^-
-This types the starting keystrokes for a sysrq see SysRq below.
-SET PF12 RETRIEVE
-This retrieves command history on pressing F12.
-
-
-Sometimes in VM the display is set up to scroll automatically this
-can be very annoying if there are messages you wish to look at
-to stop this do
-TERM MORE 255 255
-This will nearly stop automatic screen updates, however it will
-cause a denial of service if lots of messages go to the 3270 console,
-so it would be foolish to use this as the default on a production machine.
-
-
-Tracing particular processes
-----------------------------
-The kernel's text segment is intentionally at an address in memory that it will
-very seldom collide with text segments of user programs ( thanks Martin ),
-this simplifies debugging the kernel.
-However it is quite common for user processes to have addresses which collide
-this can make debugging a particular process under VM painful under normal
-circumstances as the process may change when doing a
-TR I R <address range>.
-Thankfully after reading VM's online help I figured out how to debug
-I particular process.
-
-Your first problem is to find the STD ( segment table designation )
-of the program you wish to debug.
-There are several ways you can do this here are a few
-1) objdump --syms <program to be debugged> | grep main
-To get the address of main in the program.
-tr i pswa <address of main>
-Start the program, if VM drops to CP on what looks like the entry
-point of the main function this is most likely the process you wish to debug.
-Now do a D X13 or D XG13 on z/Architecture.
-On 31 bit the STD is bits 1-19 ( the STO segment table origin )
-& 25-31 ( the STL segment table length ) of CR13.
-now type
-TR I R STD <CR13's value> 0.7fffffff
-e.g.
-TR I R STD 8F32E1FF 0.7fffffff
-Another very useful variation is
-TR STORE INTO STD <CR13's value> <address range>
-for finding out when a particular variable changes.
-
-An alternative way of finding the STD of a currently running process
-is to do the following, ( this method is more complex but
-could be quite convenient if you aren't updating the kernel much &
-so your kernel structures will stay constant for a reasonable period of
-time ).
-
-grep task /proc/<pid>/status
-from this you should see something like
-task: 0f160000 ksp: 0f161de8 pt_regs: 0f161f68
-This now gives you a pointer to the task structure.
-Now make CC:="s390-gcc -g" kernel/sched.s
-To get the task_struct stabinfo.
-( task_struct is defined in include/linux/sched.h ).
-Now we want to look at
-task->active_mm->pgd
-on my machine the active_mm in the task structure stab is
-active_mm:(4,12),672,32
-its offset is 672/8=84=0x54
-the pgd member in the mm_struct stab is
-pgd:(4,6)=*(29,5),96,32
-so its offset is 96/8=12=0xc
-
-so we'll
-hexdump -s 0xf160054 /dev/mem | more
-i.e. task_struct+active_mm offset
-to look at the active_mm member
-f160054 0fee cc60 0019 e334 0000 0000 0000 0011
-hexdump -s 0x0feecc6c /dev/mem | more
-i.e. active_mm+pgd offset
-feecc6c 0f2c 0000 0000 0001 0000 0001 0000 0010
-we get something like
-now do
-TR I R STD <pgd|0x7f> 0.7fffffff
-i.e. the 0x7f is added because the pgd only
-gives the page table origin & we need to set the low bits
-to the maximum possible segment table length.
-TR I R STD 0f2c007f 0.7fffffff
-on z/Architecture you'll probably need to do
-TR I R STD <pgd|0x7> 0.ffffffffffffffff
-to set the TableType to 0x1 & the Table length to 3.
-
-
-
-Tracing Program Exceptions
---------------------------
-If you get a crash which says something like
-illegal operation or specification exception followed by a register dump
-You can restart linux & trace these using the tr prog <range or value> trace
-option.
-
-
-The most common ones you will normally be tracing for is
-1=operation exception
-2=privileged operation exception
-4=protection exception
-5=addressing exception
-6=specification exception
-10=segment translation exception
-11=page translation exception
-
-The full list of these is on page 22 of the current s/390 Reference Summary.
-e.g.
-tr prog 10 will trace segment translation exceptions.
-tr prog on its own will trace all program interruption codes.
-
-Trace Sets
-----------
-On starting VM you are initially in the INITIAL trace set.
-You can do a Q TR to verify this.
-If you have a complex tracing situation where you wish to wait for instance
-till a driver is open before you start tracing IO, but know in your
-heart that you are going to have to make several runs through the code till you
-have a clue whats going on.
-
-What you can do is
-TR I PSWA <Driver open address>
-hit b to continue till breakpoint
-reach the breakpoint
-now do your
-TR GOTO B
-TR IO 7c08-7c09 inst int run
-or whatever the IO channels you wish to trace are & hit b
-
-To got back to the initial trace set do
-TR GOTO INITIAL
-& the TR I PSWA <Driver open address> will be the only active breakpoint again.
-
-
-Tracing linux syscalls under VM
--------------------------------
-Syscalls are implemented on Linux for S390 by the Supervisor call instruction
-(SVC). There 256 possibilities of these as the instruction is made up of a 0xA
-opcode and the second byte being the syscall number. They are traced using the
-simple command:
-TR SVC <Optional value or range>
-the syscalls are defined in linux/arch/s390/include/asm/unistd.h
-e.g. to trace all file opens just do
-TR SVC 5 ( as this is the syscall number of open )
-
-
-SMP Specific commands
----------------------
-To find out how many cpus you have
-Q CPUS displays all the CPU's available to your virtual machine
-To find the cpu that the current cpu VM debugger commands are being directed at
-do Q CPU to change the current cpu VM debugger commands are being directed at do
-CPU <desired cpu no>
-
-On a SMP guest issue a command to all CPUs try prefixing the command with cpu
-all. To issue a command to a particular cpu try cpu <cpu number> e.g.
-CPU 01 TR I R 2000.3000
-If you are running on a guest with several cpus & you have a IO related problem
-& cannot follow the flow of code but you know it isn't smp related.
-from the bash prompt issue
-shutdown -h now or halt.
-do a Q CPUS to find out how many cpus you have
-detach each one of them from cp except cpu 0
-by issuing a
-DETACH CPU 01-(number of cpus in configuration)
-& boot linux again.
-TR SIGP will trace inter processor signal processor instructions.
-DEFINE CPU 01-(number in configuration)
-will get your guests cpus back.
-
-
-Help for displaying ascii textstrings
--------------------------------------
-On the very latest VM Nucleus'es VM can now display ascii
-( thanks Neale for the hint ) by doing
-D TX<lowaddr>.<len>
-e.g.
-D TX0.100
-
-Alternatively
-=============
-Under older VM debuggers (I love EBDIC too) you can use following little
-program which converts a command line of hex digits to ascii text. It can be
-compiled under linux and you can copy the hex digits from your x3270 terminal
-to your xterm if you are debugging from a linuxbox.
-
-This is quite useful when looking at a parameter passed in as a text string
-under VM ( unless you are good at decoding ASCII in your head ).
-
-e.g. consider tracing an open syscall
-TR SVC 5
-We have stopped at a breakpoint
-000151B0' SVC 0A05 -> 0001909A' CC 0
-
-D 20.8 to check the SVC old psw in the prefix area and see was it from userspace
-(for the layout of the prefix area consult the "Fixed Storage Locations"
-chapter of the s/390 Reference Summary if you have it available).
-V00000020 070C2000 800151B2
-The problem state bit wasn't set & it's also too early in the boot sequence
-for it to be a userspace SVC if it was we would have to temporarily switch the
-psw to user space addressing so we could get at the first parameter of the open
-in gpr2.
-Next do a
-D G2
-GPR 2 = 00014CB4
-Now display what gpr2 is pointing to
-D 00014CB4.20
-V00014CB4 2F646576 2F636F6E 736F6C65 00001BF5
-V00014CC4 FC00014C B4001001 E0001000 B8070707
-Now copy the text till the first 00 hex ( which is the end of the string
-to an xterm & do hex2ascii on it.
-hex2ascii 2F646576 2F636F6E 736F6C65 00
-outputs
-Decoded Hex:=/ d e v / c o n s o l e 0x00
-We were opening the console device,
-
-You can compile the code below yourself for practice :-),
-/*
- * hex2ascii.c
- * a useful little tool for converting a hexadecimal command line to ascii
- *
- * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
- * (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation.
- */
-#include <stdio.h>
-
-int main(int argc,char *argv[])
-{
- int cnt1,cnt2,len,toggle=0;
- int startcnt=1;
- unsigned char c,hex;
-
- if(argc>1&&(strcmp(argv[1],"-a")==0))
- startcnt=2;
- printf("Decoded Hex:=");
- for(cnt1=startcnt;cnt1<argc;cnt1++)
- {
- len=strlen(argv[cnt1]);
- for(cnt2=0;cnt2<len;cnt2++)
- {
- c=argv[cnt1][cnt2];
- if(c>='0'&&c<='9')
- c=c-'0';
- if(c>='A'&&c<='F')
- c=c-'A'+10;
- if(c>='a'&&c<='f')
- c=c-'a'+10;
- switch(toggle)
- {
- case 0:
- hex=c<<4;
- toggle=1;
- break;
- case 1:
- hex+=c;
- if(hex<32||hex>127)
- {
- if(startcnt==1)
- printf("0x%02X ",(int)hex);
- else
- printf(".");
- }
- else
- {
- printf("%c",hex);
- if(startcnt==1)
- printf(" ");
- }
- toggle=0;
- break;
- }
- }
- }
- printf("\n");
-}
-
-
-
-
-Stack tracing under VM
-----------------------
-A basic backtrace
------------------
-
-Here are the tricks I use 9 out of 10 times it works pretty well,
-
-When your backchain reaches a dead end
---------------------------------------
-This can happen when an exception happens in the kernel and the kernel is
-entered twice. If you reach the NULL pointer at the end of the back chain you
-should be able to sniff further back if you follow the following tricks.
-1) A kernel address should be easy to recognise since it is in
-primary space & the problem state bit isn't set & also
-The Hi bit of the address is set.
-2) Another backchain should also be easy to recognise since it is an
-address pointing to another address approximately 100 bytes or 0x70 hex
-behind the current stackpointer.
-
-
-Here is some practice.
-boot the kernel & hit PA1 at some random time
-d g to display the gprs, this should display something like
-GPR 0 = 00000001 00156018 0014359C 00000000
-GPR 4 = 00000001 001B8888 000003E0 00000000
-GPR 8 = 00100080 00100084 00000000 000FE000
-GPR 12 = 00010400 8001B2DC 8001B36A 000FFED8
-Note that GPR14 is a return address but as we are real men we are going to
-trace the stack.
-display 0x40 bytes after the stack pointer.
-
-V000FFED8 000FFF38 8001B838 80014C8E 000FFF38
-V000FFEE8 00000000 00000000 000003E0 00000000
-V000FFEF8 00100080 00100084 00000000 000FE000
-V000FFF08 00010400 8001B2DC 8001B36A 000FFED8
-
-
-Ah now look at whats in sp+56 (sp+0x38) this is 8001B36A our saved r14 if
-you look above at our stackframe & also agrees with GPR14.
-
-now backchain
-d 000FFF38.40
-we now are taking the contents of SP to get our first backchain.
-
-V000FFF38 000FFFA0 00000000 00014995 00147094
-V000FFF48 00147090 001470A0 000003E0 00000000
-V000FFF58 00100080 00100084 00000000 001BF1D0
-V000FFF68 00010400 800149BA 80014CA6 000FFF38
-
-This displays a 2nd return address of 80014CA6
-
-now do d 000FFFA0.40 for our 3rd backchain
-
-V000FFFA0 04B52002 0001107F 00000000 00000000
-V000FFFB0 00000000 00000000 FF000000 0001107F
-V000FFFC0 00000000 00000000 00000000 00000000
-V000FFFD0 00010400 80010802 8001085A 000FFFA0
-
-
-our 3rd return address is 8001085A
-
-as the 04B52002 looks suspiciously like rubbish it is fair to assume that the
-kernel entry routines for the sake of optimisation don't set up a backchain.
-
-now look at System.map to see if the addresses make any sense.
-
-grep -i 0001b3 System.map
-outputs among other things
-0001b304 T cpu_idle
-so 8001B36A
-is cpu_idle+0x66 ( quiet the cpu is asleep, don't wake it )
-
-
-grep -i 00014 System.map
-produces among other things
-00014a78 T start_kernel
-so 0014CA6 is start_kernel+some hex number I can't add in my head.
-
-grep -i 00108 System.map
-this produces
-00010800 T _stext
-so 8001085A is _stext+0x5a
-
-Congrats you've done your first backchain.
-
-
-
-s/390 & z/Architecture IO Overview
-==================================
-
-I am not going to give a course in 390 IO architecture as this would take me
-quite a while and I'm no expert. Instead I'll give a 390 IO architecture
-summary for Dummies. If you have the s/390 principles of operation available
-read this instead. If nothing else you may find a few useful keywords in here
-and be able to use them on a web search engine to find more useful information.
-
-Unlike other bus architectures modern 390 systems do their IO using mostly
-fibre optics and devices such as tapes and disks can be shared between several
-mainframes. Also S390 can support up to 65536 devices while a high end PC based
-system might be choking with around 64.
-
-Here is some of the common IO terminology:
-
-Subchannel:
-This is the logical number most IO commands use to talk to an IO device. There
-can be up to 0x10000 (65536) of these in a configuration, typically there are a
-few hundred. Under VM for simplicity they are allocated contiguously, however
-on the native hardware they are not. They typically stay consistent between
-boots provided no new hardware is inserted or removed.
-Under Linux for s390 we use these as IRQ's and also when issuing an IO command
-(CLEAR SUBCHANNEL, HALT SUBCHANNEL, MODIFY SUBCHANNEL, RESUME SUBCHANNEL,
-START SUBCHANNEL, STORE SUBCHANNEL and TEST SUBCHANNEL). We use this as the ID
-of the device we wish to talk to. The most important of these instructions are
-START SUBCHANNEL (to start IO), TEST SUBCHANNEL (to check whether the IO
-completed successfully) and HALT SUBCHANNEL (to kill IO). A subchannel can have
-up to 8 channel paths to a device, this offers redundancy if one is not
-available.
-
-Device Number:
-This number remains static and is closely tied to the hardware. There are 65536
-of these, made up of a CHPID (Channel Path ID, the most significant 8 bits) and
-another lsb 8 bits. These remain static even if more devices are inserted or
-removed from the hardware. There is a 1 to 1 mapping between subchannels and
-device numbers, provided devices aren't inserted or removed.
-
-Channel Control Words:
-CCWs are linked lists of instructions initially pointed to by an operation
-request block (ORB), which is initially given to Start Subchannel (SSCH)
-command along with the subchannel number for the IO subsystem to process
-while the CPU continues executing normal code.
-CCWs come in two flavours, Format 0 (24 bit for backward compatibility) and
-Format 1 (31 bit). These are typically used to issue read and write (and many
-other) instructions. They consist of a length field and an absolute address
-field.
-Each IO typically gets 1 or 2 interrupts, one for channel end (primary status)
-when the channel is idle, and the second for device end (secondary status).
-Sometimes you get both concurrently. You check how the IO went on by issuing a
-TEST SUBCHANNEL at each interrupt, from which you receive an Interruption
-response block (IRB). If you get channel and device end status in the IRB
-without channel checks etc. your IO probably went okay. If you didn't you
-probably need to examine the IRB, extended status word etc.
-If an error occurs, more sophisticated control units have a facility known as
-concurrent sense. This means that if an error occurs Extended sense information
-will be presented in the Extended status word in the IRB. If not you have to
-issue a subsequent SENSE CCW command after the test subchannel.
-
-
-TPI (Test pending interrupt) can also be used for polled IO, but in
-multitasking multiprocessor systems it isn't recommended except for
-checking special cases (i.e. non looping checks for pending IO etc.).
-
-Store Subchannel and Modify Subchannel can be used to examine and modify
-operating characteristics of a subchannel (e.g. channel paths).
-
-Other IO related Terms:
-Sysplex: S390's Clustering Technology
-QDIO: S390's new high speed IO architecture to support devices such as gigabit
-ethernet, this architecture is also designed to be forward compatible with
-upcoming 64 bit machines.
-
-
-General Concepts
-
-Input Output Processors (IOP's) are responsible for communicating between
-the mainframe CPU's & the channel & relieve the mainframe CPU's from the
-burden of communicating with IO devices directly, this allows the CPU's to
-concentrate on data processing.
-
-IOP's can use one or more links ( known as channel paths ) to talk to each
-IO device. It first checks for path availability & chooses an available one,
-then starts ( & sometimes terminates IO ).
-There are two types of channel path: ESCON & the Parallel IO interface.
-
-IO devices are attached to control units, control units provide the
-logic to interface the channel paths & channel path IO protocols to
-the IO devices, they can be integrated with the devices or housed separately
-& often talk to several similar devices ( typical examples would be raid
-controllers or a control unit which connects to 1000 3270 terminals ).
-
-
- +---------------------------------------------------------------+
- | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
- | | CPU | | CPU | | CPU | | CPU | | Main | | Expanded | |
- | | | | | | | | | | Memory | | Storage | |
- | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
- |---------------------------------------------------------------+
- | IOP | IOP | IOP |
- |---------------------------------------------------------------
- | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C |
- ----------------------------------------------------------------
- || ||
- || Bus & Tag Channel Path || ESCON
- || ====================== || Channel
- || || || || Path
- +----------+ +----------+ +----------+
- | | | | | |
- | CU | | CU | | CU |
- | | | | | |
- +----------+ +----------+ +----------+
- | | | | |
-+----------+ +----------+ +----------+ +----------+ +----------+
-|I/O Device| |I/O Device| |I/O Device| |I/O Device| |I/O Device|
-+----------+ +----------+ +----------+ +----------+ +----------+
- CPU = Central Processing Unit
- C = Channel
- IOP = IP Processor
- CU = Control Unit
-
-The 390 IO systems come in 2 flavours the current 390 machines support both
-
-The Older 360 & 370 Interface,sometimes called the Parallel I/O interface,
-sometimes called Bus-and Tag & sometimes Original Equipment Manufacturers
-Interface (OEMI).
-
-This byte wide Parallel channel path/bus has parity & data on the "Bus" cable
-and control lines on the "Tag" cable. These can operate in byte multiplex mode
-for sharing between several slow devices or burst mode and monopolize the
-channel for the whole burst. Up to 256 devices can be addressed on one of these
-cables. These cables are about one inch in diameter. The maximum unextended
-length supported by these cables is 125 Meters but this can be extended up to
-2km with a fibre optic channel extended such as a 3044. The maximum burst speed
-supported is 4.5 megabytes per second. However, some really old processors
-support only transfer rates of 3.0, 2.0 & 1.0 MB/sec.
-One of these paths can be daisy chained to up to 8 control units.
-
-
-ESCON if fibre optic it is also called FICON
-Was introduced by IBM in 1990. Has 2 fibre optic cables and uses either leds or
-lasers for communication at a signaling rate of up to 200 megabits/sec. As
-10bits are transferred for every 8 bits info this drops to 160 megabits/sec
-and to 18.6 Megabytes/sec once control info and CRC are added. ESCON only
-operates in burst mode.
-
-ESCONs typical max cable length is 3km for the led version and 20km for the
-laser version known as XDF (extended distance facility). This can be further
-extended by using an ESCON director which triples the above mentioned ranges.
-Unlike Bus & Tag as ESCON is serial it uses a packet switching architecture,
-the standard Bus & Tag control protocol is however present within the packets.
-Up to 256 devices can be attached to each control unit that uses one of these
-interfaces.
-
-Common 390 Devices include:
-Network adapters typically OSA2,3172's,2116's & OSA-E gigabit ethernet adapters,
-Consoles 3270 & 3215 (a teletype emulated under linux for a line mode console).
-DASD's direct access storage devices ( otherwise known as hard disks ).
-Tape Drives.
-CTC ( Channel to Channel Adapters ),
-ESCON or Parallel Cables used as a very high speed serial link
-between 2 machines.
-
-
-Debugging IO on s/390 & z/Architecture under VM
-===============================================
-
-Now we are ready to go on with IO tracing commands under VM
-
-A few self explanatory queries:
-Q OSA
-Q CTC
-Q DISK ( This command is CMS specific )
-Q DASD
-
-
-
-
-
-
-Q OSA on my machine returns
-OSA 7C08 ON OSA 7C08 SUBCHANNEL = 0000
-OSA 7C09 ON OSA 7C09 SUBCHANNEL = 0001
-OSA 7C14 ON OSA 7C14 SUBCHANNEL = 0002
-OSA 7C15 ON OSA 7C15 SUBCHANNEL = 0003
-
-If you have a guest with certain privileges you may be able to see devices
-which don't belong to you. To avoid this, add the option V.
-e.g.
-Q V OSA
-
-Now using the device numbers returned by this command we will
-Trace the io starting up on the first device 7c08 & 7c09
-In our simplest case we can trace the
-start subchannels
-like TR SSCH 7C08-7C09
-or the halt subchannels
-or TR HSCH 7C08-7C09
-MSCH's ,STSCH's I think you can guess the rest
-
-A good trick is tracing all the IO's and CCWS and spooling them into the reader
-of another VM guest so he can ftp the logfile back to his own machine. I'll do
-a small bit of this and give you a look at the output.
-
-1) Spool stdout to VM reader
-SP PRT TO (another vm guest ) or * for the local vm guest
-2) Fill the reader with the trace
-TR IO 7c08-7c09 INST INT CCW PRT RUN
-3) Start up linux
-i 00c
-4) Finish the trace
-TR END
-5) close the reader
-C PRT
-6) list reader contents
-RDRLIST
-7) copy it to linux4's minidisk
-RECEIVE / LOG TXT A1 ( replace
-8)
-filel & press F11 to look at it
-You should see something like:
-
-00020942' SSCH B2334000 0048813C CC 0 SCH 0000 DEV 7C08
- CPA 000FFDF0 PARM 00E2C9C4 KEY 0 FPI C0 LPM 80
- CCW 000FFDF0 E4200100 00487FE8 0000 E4240100 ........
- IDAL 43D8AFE8
- IDAL 0FB76000
-00020B0A' I/O DEV 7C08 -> 000197BC' SCH 0000 PARM 00E2C9C4
-00021628' TSCH B2354000 >> 00488164 CC 0 SCH 0000 DEV 7C08
- CCWA 000FFDF8 DEV STS 0C SCH STS 00 CNT 00EC
- KEY 0 FPI C0 CC 0 CTLS 4007
-00022238' STSCH B2344000 >> 00488108 CC 0 SCH 0000 DEV 7C08
-
-If you don't like messing up your readed ( because you possibly booted from it )
-you can alternatively spool it to another readers guest.
-
-
-Other common VM device related commands
----------------------------------------------
-These commands are listed only because they have
-been of use to me in the past & may be of use to
-you too. For more complete info on each of the commands
-use type HELP <command> from CMS.
-detaching devices
-DET <devno range>
-ATT <devno range> <guest>
-attach a device to guest * for your own guest
-READY <devno> cause VM to issue a fake interrupt.
-
-The VARY command is normally only available to VM administrators.
-VARY ON PATH <path> TO <devno range>
-VARY OFF PATH <PATH> FROM <devno range>
-This is used to switch on or off channel paths to devices.
-
-Q CHPID <channel path ID>
-This displays state of devices using this channel path
-D SCHIB <subchannel>
-This displays the subchannel information SCHIB block for the device.
-this I believe is also only available to administrators.
-DEFINE CTC <devno>
-defines a virtual CTC channel to channel connection
-2 need to be defined on each guest for the CTC driver to use.
-COUPLE devno userid remote devno
-Joins a local virtual device to a remote virtual device
-( commonly used for the CTC driver ).
-
-Building a VM ramdisk under CMS which linux can use
-def vfb-<blocksize> <subchannel> <number blocks>
-blocksize is commonly 4096 for linux.
-Formatting it
-format <subchannel> <driver letter e.g. x> (blksize <blocksize>
-
-Sharing a disk between multiple guests
-LINK userid devno1 devno2 mode password
-
-
-
-GDB on S390
-===========
-N.B. if compiling for debugging gdb works better without optimisation
-( see Compiling programs for debugging )
-
-invocation
-----------
-gdb <victim program> <optional corefile>
-
-Online help
------------
-help: gives help on commands
-e.g.
-help
-help display
-Note gdb's online help is very good use it.
-
-
-Assembly
---------
-info registers: displays registers other than floating point.
-info all-registers: displays floating points as well.
-disassemble: disassembles
-e.g.
-disassemble without parameters will disassemble the current function
-disassemble $pc $pc+10
-
-Viewing & modifying variables
------------------------------
-print or p: displays variable or register
-e.g. p/x $sp will display the stack pointer
-
-display: prints variable or register each time program stops
-e.g.
-display/x $pc will display the program counter
-display argc
-
-undisplay : undo's display's
-
-info breakpoints: shows all current breakpoints
-
-info stack: shows stack back trace (if this doesn't work too well, I'll show
-you the stacktrace by hand below).
-
-info locals: displays local variables.
-
-info args: display current procedure arguments.
-
-set args: will set argc & argv each time the victim program is invoked.
-
-set <variable>=value
-set argc=100
-set $pc=0
-
-
-
-Modifying execution
--------------------
-step: steps n lines of sourcecode
-step steps 1 line.
-step 100 steps 100 lines of code.
-
-next: like step except this will not step into subroutines
-
-stepi: steps a single machine code instruction.
-e.g. stepi 100
-
-nexti: steps a single machine code instruction but will not step into
-subroutines.
-
-finish: will run until exit of the current routine
-
-run: (re)starts a program
-
-cont: continues a program
-
-quit: exits gdb.
-
-
-breakpoints
-------------
-
-break
-sets a breakpoint
-e.g.
-
-break main
-
-break *$pc
-
-break *0x400618
-
-Here's a really useful one for large programs
-rbr
-Set a breakpoint for all functions matching REGEXP
-e.g.
-rbr 390
-will set a breakpoint with all functions with 390 in their name.
-
-info breakpoints
-lists all breakpoints
-
-delete: delete breakpoint by number or delete them all
-e.g.
-delete 1 will delete the first breakpoint
-delete will delete them all
-
-watch: This will set a watchpoint ( usually hardware assisted ),
-This will watch a variable till it changes
-e.g.
-watch cnt, will watch the variable cnt till it changes.
-As an aside unfortunately gdb's, architecture independent watchpoint code
-is inconsistent & not very good, watchpoints usually work but not always.
-
-info watchpoints: Display currently active watchpoints
-
-condition: ( another useful one )
-Specify breakpoint number N to break only if COND is true.
-Usage is `condition N COND', where N is an integer and COND is an
-expression to be evaluated whenever breakpoint N is reached.
-
-
-
-User defined functions/macros
------------------------------
-define: ( Note this is very very useful,simple & powerful )
-usage define <name> <list of commands> end
-
-examples which you should consider putting into .gdbinit in your home directory
-define d
-stepi
-disassemble $pc $pc+10
-end
-
-define e
-nexti
-disassemble $pc $pc+10
-end
-
-
-Other hard to classify stuff
-----------------------------
-signal n:
-sends the victim program a signal.
-e.g. signal 3 will send a SIGQUIT.
-
-info signals:
-what gdb does when the victim receives certain signals.
-
-list:
-e.g.
-list lists current function source
-list 1,10 list first 10 lines of current file.
-list test.c:1,10
-
-
-directory:
-Adds directories to be searched for source if gdb cannot find the source.
-(note it is a bit sensitive about slashes)
-e.g. To add the root of the filesystem to the searchpath do
-directory //
-
-
-call <function>
-This calls a function in the victim program, this is pretty powerful
-e.g.
-(gdb) call printf("hello world")
-outputs:
-$1 = 11
-
-You might now be thinking that the line above didn't work, something extra had
-to be done.
-(gdb) call fflush(stdout)
-hello world$2 = 0
-As an aside the debugger also calls malloc & free under the hood
-to make space for the "hello world" string.
-
-
-
-hints
------
-1) command completion works just like bash
-( if you are a bad typist like me this really helps )
-e.g. hit br <TAB> & cursor up & down :-).
-
-2) if you have a debugging problem that takes a few steps to recreate
-put the steps into a file called .gdbinit in your current working directory
-if you have defined a few extra useful user defined commands put these in
-your home directory & they will be read each time gdb is launched.
-
-A typical .gdbinit file might be.
-break main
-run
-break runtime_exception
-cont
-
-
-stack chaining in gdb by hand
------------------------------
-This is done using a the same trick described for VM
-p/x (*($sp+56))&0x7fffffff get the first backchain.
-
-For z/Architecture
-Replace 56 with 112 & ignore the &0x7fffffff
-in the macros below & do nasty casts to longs like the following
-as gdb unfortunately deals with printed arguments as ints which
-messes up everything.
-i.e. here is a 3rd backchain dereference
-p/x *(long *)(***(long ***)$sp+112)
-
-
-this outputs
-$5 = 0x528f18
-on my machine.
-Now you can use
-info symbol (*($sp+56))&0x7fffffff
-you might see something like.
-rl_getc + 36 in section .text telling you what is located at address 0x528f18
-Now do.
-p/x (*(*$sp+56))&0x7fffffff
-This outputs
-$6 = 0x528ed0
-Now do.
-info symbol (*(*$sp+56))&0x7fffffff
-rl_read_key + 180 in section .text
-now do
-p/x (*(**$sp+56))&0x7fffffff
-& so on.
-
-Disassembling instructions without debug info
----------------------------------------------
-gdb typically complains if there is a lack of debugging
-symbols in the disassemble command with
-"No function contains specified address." To get around
-this do
-x/<number lines to disassemble>xi <address>
-e.g.
-x/20xi 0x400730
-
-
-
-Note: Remember gdb has history just like bash you don't need to retype the
-whole line just use the up & down arrows.
-
-
-
-For more info
--------------
-From your linuxbox do
-man gdb or info gdb.
-
-core dumps
-----------
-What a core dump ?,
-A core dump is a file generated by the kernel (if allowed) which contains the
-registers and all active pages of the program which has crashed.
-From this file gdb will allow you to look at the registers, stack trace and
-memory of the program as if it just crashed on your system. It is usually
-called core and created in the current working directory.
-This is very useful in that a customer can mail a core dump to a technical
-support department and the technical support department can reconstruct what
-happened. Provided they have an identical copy of this program with debugging
-symbols compiled in and the source base of this build is available.
-In short it is far more useful than something like a crash log could ever hope
-to be.
-
-Why have I never seen one ?.
-Probably because you haven't used the command
-ulimit -c unlimited in bash
-to allow core dumps, now do
-ulimit -a
-to verify that the limit was accepted.
-
-A sample core dump
-To create this I'm going to do
-ulimit -c unlimited
-gdb
-to launch gdb (my victim app. ) now be bad & do the following from another
-telnet/xterm session to the same machine
-ps -aux | grep gdb
-kill -SIGSEGV <gdb's pid>
-or alternatively use killall -SIGSEGV gdb if you have the killall command.
-Now look at the core dump.
-./gdb core
-Displays the following
-GNU gdb 4.18
-Copyright 1998 Free Software Foundation, Inc.
-GDB is free software, covered by the GNU General Public License, and you are
-welcome to change it and/or distribute copies of it under certain conditions.
-Type "show copying" to see the conditions.
-There is absolutely no warranty for GDB. Type "show warranty" for details.
-This GDB was configured as "s390-ibm-linux"...
-Core was generated by `./gdb'.
-Program terminated with signal 11, Segmentation fault.
-Reading symbols from /usr/lib/libncurses.so.4...done.
-Reading symbols from /lib/libm.so.6...done.
-Reading symbols from /lib/libc.so.6...done.
-Reading symbols from /lib/ld-linux.so.2...done.
-#0 0x40126d1a in read () from /lib/libc.so.6
-Setting up the environment for debugging gdb.
-Breakpoint 1 at 0x4dc6f8: file utils.c, line 471.
-Breakpoint 2 at 0x4d87a4: file top.c, line 2609.
-(top-gdb) info stack
-#0 0x40126d1a in read () from /lib/libc.so.6
-#1 0x528f26 in rl_getc (stream=0x7ffffde8) at input.c:402
-#2 0x528ed0 in rl_read_key () at input.c:381
-#3 0x5167e6 in readline_internal_char () at readline.c:454
-#4 0x5168ee in readline_internal_charloop () at readline.c:507
-#5 0x51692c in readline_internal () at readline.c:521
-#6 0x5164fe in readline (prompt=0x7ffff810)
- at readline.c:349
-#7 0x4d7a8a in command_line_input (prompt=0x564420 "(gdb) ", repeat=1,
- annotation_suffix=0x4d6b44 "prompt") at top.c:2091
-#8 0x4d6cf0 in command_loop () at top.c:1345
-#9 0x4e25bc in main (argc=1, argv=0x7ffffdf4) at main.c:635
-
-
-LDD
-===
-This is a program which lists the shared libraries which a library needs,
-Note you also get the relocations of the shared library text segments which
-help when using objdump --source.
-e.g.
- ldd ./gdb
-outputs
-libncurses.so.4 => /usr/lib/libncurses.so.4 (0x40018000)
-libm.so.6 => /lib/libm.so.6 (0x4005e000)
-libc.so.6 => /lib/libc.so.6 (0x40084000)
-/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
-
-
-Debugging shared libraries
-==========================
-Most programs use shared libraries, however it can be very painful
-when you single step instruction into a function like printf for the
-first time & you end up in functions like _dl_runtime_resolve this is
-the ld.so doing lazy binding, lazy binding is a concept in ELF where
-shared library functions are not loaded into memory unless they are
-actually used, great for saving memory but a pain to debug.
-To get around this either relink the program -static or exit gdb type
-export LD_BIND_NOW=true this will stop lazy binding & restart the gdb'ing
-the program in question.
-
-
-
-Debugging modules
-=================
-As modules are dynamically loaded into the kernel their address can be
-anywhere to get around this use the -m option with insmod to emit a load
-map which can be piped into a file if required.
-
-The proc file system
-====================
-What is it ?.
-It is a filesystem created by the kernel with files which are created on demand
-by the kernel if read, or can be used to modify kernel parameters,
-it is a powerful concept.
-
-e.g.
-
-cat /proc/sys/net/ipv4/ip_forward
-On my machine outputs
-0
-telling me ip_forwarding is not on to switch it on I can do
-echo 1 > /proc/sys/net/ipv4/ip_forward
-cat it again
-cat /proc/sys/net/ipv4/ip_forward
-On my machine now outputs
-1
-IP forwarding is on.
-There is a lot of useful info in here best found by going in and having a look
-around, so I'll take you through some entries I consider important.
-
-All the processes running on the machine have their own entry defined by
-/proc/<pid>
-So lets have a look at the init process
-cd /proc/1
-
-cat cmdline
-emits
-init [2]
-
-cd /proc/1/fd
-This contains numerical entries of all the open files,
-some of these you can cat e.g. stdout (2)
-
-cat /proc/29/maps
-on my machine emits
-
-00400000-00478000 r-xp 00000000 5f:00 4103 /bin/bash
-00478000-0047e000 rw-p 00077000 5f:00 4103 /bin/bash
-0047e000-00492000 rwxp 00000000 00:00 0
-40000000-40015000 r-xp 00000000 5f:00 14382 /lib/ld-2.1.2.so
-40015000-40016000 rw-p 00014000 5f:00 14382 /lib/ld-2.1.2.so
-40016000-40017000 rwxp 00000000 00:00 0
-40017000-40018000 rw-p 00000000 00:00 0
-40018000-4001b000 r-xp 00000000 5f:00 14435 /lib/libtermcap.so.2.0.8
-4001b000-4001c000 rw-p 00002000 5f:00 14435 /lib/libtermcap.so.2.0.8
-4001c000-4010d000 r-xp 00000000 5f:00 14387 /lib/libc-2.1.2.so
-4010d000-40111000 rw-p 000f0000 5f:00 14387 /lib/libc-2.1.2.so
-40111000-40114000 rw-p 00000000 00:00 0
-40114000-4011e000 r-xp 00000000 5f:00 14408 /lib/libnss_files-2.1.2.so
-4011e000-4011f000 rw-p 00009000 5f:00 14408 /lib/libnss_files-2.1.2.so
-7fffd000-80000000 rwxp ffffe000 00:00 0
-
-
-Showing us the shared libraries init uses where they are in memory
-& memory access permissions for each virtual memory area.
-
-/proc/1/cwd is a softlink to the current working directory.
-/proc/1/root is the root of the filesystem for this process.
-
-/proc/1/mem is the current running processes memory which you
-can read & write to like a file.
-strace uses this sometimes as it is a bit faster than the
-rather inefficient ptrace interface for peeking at DATA.
-
-
-cat status
-
-Name: init
-State: S (sleeping)
-Pid: 1
-PPid: 0
-Uid: 0 0 0 0
-Gid: 0 0 0 0
-Groups:
-VmSize: 408 kB
-VmLck: 0 kB
-VmRSS: 208 kB
-VmData: 24 kB
-VmStk: 8 kB
-VmExe: 368 kB
-VmLib: 0 kB
-SigPnd: 0000000000000000
-SigBlk: 0000000000000000
-SigIgn: 7fffffffd7f0d8fc
-SigCgt: 00000000280b2603
-CapInh: 00000000fffffeff
-CapPrm: 00000000ffffffff
-CapEff: 00000000fffffeff
-
-User PSW: 070de000 80414146
-task: 004b6000 tss: 004b62d8 ksp: 004b7ca8 pt_regs: 004b7f68
-User GPRS:
-00000400 00000000 0000000b 7ffffa90
-00000000 00000000 00000000 0045d9f4
-0045cafc 7ffffa90 7fffff18 0045cb08
-00010400 804039e8 80403af8 7ffff8b0
-User ACRS:
-00000000 00000000 00000000 00000000
-00000001 00000000 00000000 00000000
-00000000 00000000 00000000 00000000
-00000000 00000000 00000000 00000000
-Kernel BackChain CallChain BackChain CallChain
- 004b7ca8 8002bd0c 004b7d18 8002b92c
- 004b7db8 8005cd50 004b7e38 8005d12a
- 004b7f08 80019114
-Showing among other things memory usage & status of some signals &
-the processes'es registers from the kernel task_structure
-as well as a backchain which may be useful if a process crashes
-in the kernel for some unknown reason.
-
-Some driver debugging techniques
-================================
-debug feature
--------------
-Some of our drivers now support a "debug feature" in
-/proc/s390dbf see s390dbf.txt in the linux/Documentation directory
-for more info.
-e.g.
-to switch on the lcs "debug feature"
-echo 5 > /proc/s390dbf/lcs/level
-& then after the error occurred.
-cat /proc/s390dbf/lcs/sprintf >/logfile
-the logfile now contains some information which may help
-tech support resolve a problem in the field.
-
-
-
-high level debugging network drivers
-------------------------------------
-ifconfig is a quite useful command
-it gives the current state of network drivers.
-
-If you suspect your network device driver is dead
-one way to check is type
-ifconfig <network device>
-e.g. tr0
-You should see something like
-tr0 Link encap:16/4 Mbps Token Ring (New) HWaddr 00:04:AC:20:8E:48
- inet addr:9.164.185.132 Bcast:9.164.191.255 Mask:255.255.224.0
- UP BROADCAST RUNNING MULTICAST MTU:2000 Metric:1
- RX packets:246134 errors:0 dropped:0 overruns:0 frame:0
- TX packets:5 errors:0 dropped:0 overruns:0 carrier:0
- collisions:0 txqueuelen:100
-
-if the device doesn't say up
-try
-/etc/rc.d/init.d/network start
-( this starts the network stack & hopefully calls ifconfig tr0 up ).
-ifconfig looks at the output of /proc/net/dev and presents it in a more
-presentable form.
-Now ping the device from a machine in the same subnet.
-if the RX packets count & TX packets counts don't increment you probably
-have problems.
-next
-cat /proc/net/arp
-Do you see any hardware addresses in the cache if not you may have problems.
-Next try
-ping -c 5 <broadcast_addr> i.e. the Bcast field above in the output of
-ifconfig. Do you see any replies from machines other than the local machine
-if not you may have problems. also if the TX packets count in ifconfig
-hasn't incremented either you have serious problems in your driver
-(e.g. the txbusy field of the network device being stuck on )
-or you may have multiple network devices connected.
-
-
-chandev
--------
-There is a new device layer for channel devices, some
-drivers e.g. lcs are registered with this layer.
-If the device uses the channel device layer you'll be
-able to find what interrupts it uses & the current state
-of the device.
-See the manpage chandev.8 &type cat /proc/chandev for more info.
-
-
-SysRq
-=====
-This is now supported by linux for s/390 & z/Architecture.
-To enable it do compile the kernel with
-Kernel Hacking -> Magic SysRq Key Enabled
-echo "1" > /proc/sys/kernel/sysrq
-also type
-echo "8" >/proc/sys/kernel/printk
-To make printk output go to console.
-On 390 all commands are prefixed with
-^-
-e.g.
-^-t will show tasks.
-^-? or some unknown command will display help.
-The sysrq key reading is very picky ( I have to type the keys in an
- xterm session & paste them into the x3270 console )
-& it may be wise to predefine the keys as described in the VM hints above
-
-This is particularly useful for syncing disks unmounting & rebooting
-if the machine gets partially hung.
-
-Read Documentation/admin-guide/sysrq.rst for more info
-
-References:
-===========
-Enterprise Systems Architecture Reference Summary
-Enterprise Systems Architecture Principles of Operation
-Hartmut Penners s390 stack frame sheet.
-IBM Mainframe Channel Attachment a technology brief from a CISCO webpage
-Various bits of man & info pages of Linux.
-Linux & GDB source.
-Various info & man pages.
-CMS Help on tracing commands.
-Linux for s/390 Elf Application Binary Interface
-Linux for z/Series Elf Application Binary Interface ( Both Highly Recommended )
-z/Architecture Principles of Operation SA22-7832-00
-Enterprise Systems Architecture/390 Reference Summary SA22-7209-01 & the
-Enterprise Systems Architecture/390 Principles of Operation SA22-7201-05
-
-Special Thanks
-==============
-Special thanks to Neale Ferguson who maintains a much
-prettier HTML version of this page at
-http://linuxvm.org/penguinvm/
-Bob Grainger Stefan Bader & others for reporting bugs
diff --git a/Documentation/s390/cds.txt b/Documentation/s390/cds.rst
index 480a78ef5a1e..7006d8209d2e 100644
--- a/Documentation/s390/cds.txt
+++ b/Documentation/s390/cds.rst
@@ -1,14 +1,18 @@
+===========================
Linux for S/390 and zSeries
+===========================
Common Device Support (CDS)
Device Driver I/O Support Routines
-Authors : Ingo Adlung
- Cornelia Huck
+Authors:
+ - Ingo Adlung
+ - Cornelia Huck
Copyright, IBM Corp. 1999-2002
Introduction
+============
This document describes the common device support routines for Linux/390.
Different than other hardware architectures, ESA/390 has defined a unified
@@ -27,18 +31,20 @@ Operation manual (IBM Form. No. SA22-7201).
In order to build common device support for ESA/390 I/O interfaces, a
functional layer was introduced that provides generic I/O access methods to
-the hardware.
+the hardware.
-The common device support layer comprises the I/O support routines defined
-below. Some of them implement common Linux device driver interfaces, while
+The common device support layer comprises the I/O support routines defined
+below. Some of them implement common Linux device driver interfaces, while
some of them are ESA/390 platform specific.
Note:
-In order to write a driver for S/390, you also need to look into the interface
-described in Documentation/s390/driver-model.txt.
+ In order to write a driver for S/390, you also need to look into the interface
+ described in Documentation/s390/driver-model.rst.
Note for porting drivers from 2.4:
+
The major changes are:
+
* The functions use a ccw_device instead of an irq (subchannel).
* All drivers must define a ccw_driver (see driver-model.txt) and the associated
functions.
@@ -57,19 +63,16 @@ The major changes are:
ccw_device_get_ciw()
get commands from extended sense data.
-ccw_device_start()
-ccw_device_start_timeout()
-ccw_device_start_key()
-ccw_device_start_key_timeout()
+ccw_device_start(), ccw_device_start_timeout(), ccw_device_start_key(), ccw_device_start_key_timeout()
initiate an I/O request.
ccw_device_resume()
resume channel program execution.
-ccw_device_halt()
+ccw_device_halt()
terminate the current I/O request processed on the device.
-do_IRQ()
+do_IRQ()
generic interrupt routine. This function is called by the interrupt entry
routine whenever an I/O interrupt is presented to the system. The do_IRQ()
routine determines the interrupt status and calls the device specific
@@ -82,12 +85,15 @@ first level interrupt handler only and does not comprise a device driver
callable interface. Instead, the functional description of do_IO() also
describes the input to the device specific interrupt handler.
-Note: All explanations apply also to the 64 bit architecture s390x.
+Note:
+ All explanations apply also to the 64 bit architecture s390x.
Common Device Support (CDS) for Linux/390 Device Drivers
+========================================================
General Information
+-------------------
The following chapters describe the I/O related interface routines the
Linux/390 common device support (CDS) provides to allow for device specific
@@ -101,6 +107,7 @@ can be found in the architecture specific C header file
linux/arch/s390/include/asm/irq.h.
Overview of CDS interface concepts
+----------------------------------
Different to other hardware platforms, the ESA/390 architecture doesn't define
interrupt lines managed by a specific interrupt controller and bus systems
@@ -126,7 +133,7 @@ has to call every single device driver registered on this IRQ in order to
determine the device driver owning the device that raised the interrupt.
Up to kernel 2.4, Linux/390 used to provide interfaces via the IRQ (subchannel).
-For internal use of the common I/O layer, these are still there. However,
+For internal use of the common I/O layer, these are still there. However,
device drivers should use the new calling interface via the ccw_device only.
During its startup the Linux/390 system checks for peripheral devices. Each
@@ -134,7 +141,7 @@ of those devices is uniquely defined by a so called subchannel by the ESA/390
channel subsystem. While the subchannel numbers are system generated, each
subchannel also takes a user defined attribute, the so called device number.
Both subchannel number and device number cannot exceed 65535. During sysfs
-initialisation, the information about control unit type and device types that
+initialisation, the information about control unit type and device types that
imply specific I/O commands (channel command words - CCWs) in order to operate
the device are gathered. Device drivers can retrieve this set of hardware
information during their initialization step to recognize the devices they
@@ -164,18 +171,26 @@ get_ciw() - get command information word
This call enables a device driver to get information about supported commands
from the extended SenseID data.
-struct ciw *
-ccw_device_get_ciw(struct ccw_device *cdev, __u32 cmd);
+::
-cdev - The ccw_device for which the command is to be retrieved.
-cmd - The command type to be retrieved.
+ struct ciw *
+ ccw_device_get_ciw(struct ccw_device *cdev, __u32 cmd);
+
+==== ========================================================
+cdev The ccw_device for which the command is to be retrieved.
+cmd The command type to be retrieved.
+==== ========================================================
ccw_device_get_ciw() returns:
-NULL - No extended data available, invalid device or command not found.
-!NULL - The command requested.
+===== ================================================================
+ NULL No extended data available, invalid device or command not found.
+!NULL The command requested.
+===== ================================================================
+
+::
-ccw_device_start() - Initiate I/O Request
+ ccw_device_start() - Initiate I/O Request
The ccw_device_start() routines is the I/O request front-end processor. All
device driver I/O requests must be issued using this routine. A device driver
@@ -186,93 +201,105 @@ This description also covers the status information passed to the device
driver's interrupt handler as this is related to the rules (flags) defined
with the associated I/O request when calling ccw_device_start().
-int ccw_device_start(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- unsigned long flags);
-int ccw_device_start_timeout(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- unsigned long flags,
- int expires);
-int ccw_device_start_key(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- __u8 key,
- unsigned long flags);
-int ccw_device_start_key_timeout(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- __u8 key,
- unsigned long flags,
- int expires);
-
-cdev : ccw_device the I/O is destined for
-cpa : logical start address of channel program
-user_intparm : user specific interrupt information; will be presented
- back to the device driver's interrupt handler. Allows a
- device driver to associate the interrupt with a
- particular I/O request.
-lpm : defines the channel path to be used for a specific I/O
- request. A value of 0 will make cio use the opm.
-key : the storage key to use for the I/O (useful for operating on a
- storage with a storage key != default key)
-flag : defines the action to be performed for I/O processing
-expires : timeout value in jiffies. The common I/O layer will terminate
- the running program after this and call the interrupt handler
- with ERR_PTR(-ETIMEDOUT) as irb.
-
-Possible flag values are :
-
-DOIO_ALLOW_SUSPEND - channel program may become suspended
-DOIO_DENY_PREFETCH - don't allow for CCW prefetch; usually
- this implies the channel program might
- become modified
-DOIO_SUPPRESS_INTER - don't call the handler on intermediate status
-
-The cpa parameter points to the first format 1 CCW of a channel program :
-
-struct ccw1 {
- __u8 cmd_code;/* command code */
- __u8 flags; /* flags, like IDA addressing, etc. */
- __u16 count; /* byte count */
- __u32 cda; /* data address */
-} __attribute__ ((packed,aligned(8)));
-
-with the following CCW flags values defined :
-
-CCW_FLAG_DC - data chaining
-CCW_FLAG_CC - command chaining
-CCW_FLAG_SLI - suppress incorrect length
-CCW_FLAG_SKIP - skip
-CCW_FLAG_PCI - PCI
-CCW_FLAG_IDA - indirect addressing
-CCW_FLAG_SUSPEND - suspend
+::
+
+ int ccw_device_start(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ unsigned long flags);
+ int ccw_device_start_timeout(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ unsigned long flags,
+ int expires);
+ int ccw_device_start_key(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ __u8 key,
+ unsigned long flags);
+ int ccw_device_start_key_timeout(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ __u8 key,
+ unsigned long flags,
+ int expires);
+
+============= =============================================================
+cdev ccw_device the I/O is destined for
+cpa logical start address of channel program
+user_intparm user specific interrupt information; will be presented
+ back to the device driver's interrupt handler. Allows a
+ device driver to associate the interrupt with a
+ particular I/O request.
+lpm defines the channel path to be used for a specific I/O
+ request. A value of 0 will make cio use the opm.
+key the storage key to use for the I/O (useful for operating on a
+ storage with a storage key != default key)
+flag defines the action to be performed for I/O processing
+expires timeout value in jiffies. The common I/O layer will terminate
+ the running program after this and call the interrupt handler
+ with ERR_PTR(-ETIMEDOUT) as irb.
+============= =============================================================
+
+Possible flag values are:
+
+========================= =============================================
+DOIO_ALLOW_SUSPEND channel program may become suspended
+DOIO_DENY_PREFETCH don't allow for CCW prefetch; usually
+ this implies the channel program might
+ become modified
+DOIO_SUPPRESS_INTER don't call the handler on intermediate status
+========================= =============================================
+
+The cpa parameter points to the first format 1 CCW of a channel program::
+
+ struct ccw1 {
+ __u8 cmd_code;/* command code */
+ __u8 flags; /* flags, like IDA addressing, etc. */
+ __u16 count; /* byte count */
+ __u32 cda; /* data address */
+ } __attribute__ ((packed,aligned(8)));
+
+with the following CCW flags values defined:
+
+=================== =========================
+CCW_FLAG_DC data chaining
+CCW_FLAG_CC command chaining
+CCW_FLAG_SLI suppress incorrect length
+CCW_FLAG_SKIP skip
+CCW_FLAG_PCI PCI
+CCW_FLAG_IDA indirect addressing
+CCW_FLAG_SUSPEND suspend
+=================== =========================
Via ccw_device_set_options(), the device driver may specify the following
options for the device:
-DOIO_EARLY_NOTIFICATION - allow for early interrupt notification
-DOIO_REPORT_ALL - report all interrupt conditions
+========================= ======================================
+DOIO_EARLY_NOTIFICATION allow for early interrupt notification
+DOIO_REPORT_ALL report all interrupt conditions
+========================= ======================================
-The ccw_device_start() function returns :
+The ccw_device_start() function returns:
- 0 - successful completion or request successfully initiated
--EBUSY - The device is currently processing a previous I/O request, or there is
- a status pending at the device.
--ENODEV - cdev is invalid, the device is not operational or the ccw_device is
- not online.
+======== ======================================================================
+ 0 successful completion or request successfully initiated
+ -EBUSY The device is currently processing a previous I/O request, or there is
+ a status pending at the device.
+-ENODEV cdev is invalid, the device is not operational or the ccw_device is
+ not online.
+======== ======================================================================
When the I/O request completes, the CDS first level interrupt handler will
accumulate the status in a struct irb and then call the device interrupt handler.
-The intparm field will contain the value the device driver has associated with a
-particular I/O request. If a pending device status was recognized,
+The intparm field will contain the value the device driver has associated with a
+particular I/O request. If a pending device status was recognized,
intparm will be set to 0 (zero). This may happen during I/O initiation or delayed
by an alert status notification. In any case this status is not related to the
current (last) I/O request. In case of a delayed status notification no special
@@ -282,9 +309,11 @@ never started, even though ccw_device_start() returned with successful completio
The irb may contain an error value, and the device driver should check for this
first:
--ETIMEDOUT: the common I/O layer terminated the request after the specified
- timeout value
--EIO: the common I/O layer terminated the request due to an error state
+========== =================================================================
+-ETIMEDOUT the common I/O layer terminated the request after the specified
+ timeout value
+-EIO the common I/O layer terminated the request due to an error state
+========== =================================================================
If the concurrent sense flag in the extended status word (esw) in the irb is
set, the field erw.scnt in the esw describes the number of device specific
@@ -294,6 +323,7 @@ sensing by the device driver itself is required.
The device interrupt handler can use the following definitions to investigate
the primary unit check source coded in sense byte 0 :
+======================= ====
SNS0_CMD_REJECT 0x80
SNS0_INTERVENTION_REQ 0x40
SNS0_BUS_OUT_CHECK 0x20
@@ -301,36 +331,41 @@ SNS0_EQUIPMENT_CHECK 0x10
SNS0_DATA_CHECK 0x08
SNS0_OVERRUN 0x04
SNS0_INCOMPL_DOMAIN 0x01
+======================= ====
Depending on the device status, multiple of those values may be set together.
Please refer to the device specific documentation for details.
The irb->scsw.cstat field provides the (accumulated) subchannel status :
-SCHN_STAT_PCI - program controlled interrupt
-SCHN_STAT_INCORR_LEN - incorrect length
-SCHN_STAT_PROG_CHECK - program check
-SCHN_STAT_PROT_CHECK - protection check
-SCHN_STAT_CHN_DATA_CHK - channel data check
-SCHN_STAT_CHN_CTRL_CHK - channel control check
-SCHN_STAT_INTF_CTRL_CHK - interface control check
-SCHN_STAT_CHAIN_CHECK - chaining check
+========================= ============================
+SCHN_STAT_PCI program controlled interrupt
+SCHN_STAT_INCORR_LEN incorrect length
+SCHN_STAT_PROG_CHECK program check
+SCHN_STAT_PROT_CHECK protection check
+SCHN_STAT_CHN_DATA_CHK channel data check
+SCHN_STAT_CHN_CTRL_CHK channel control check
+SCHN_STAT_INTF_CTRL_CHK interface control check
+SCHN_STAT_CHAIN_CHECK chaining check
+========================= ============================
The irb->scsw.dstat field provides the (accumulated) device status :
-DEV_STAT_ATTENTION - attention
-DEV_STAT_STAT_MOD - status modifier
-DEV_STAT_CU_END - control unit end
-DEV_STAT_BUSY - busy
-DEV_STAT_CHN_END - channel end
-DEV_STAT_DEV_END - device end
-DEV_STAT_UNIT_CHECK - unit check
-DEV_STAT_UNIT_EXCEP - unit exception
+===================== =================
+DEV_STAT_ATTENTION attention
+DEV_STAT_STAT_MOD status modifier
+DEV_STAT_CU_END control unit end
+DEV_STAT_BUSY busy
+DEV_STAT_CHN_END channel end
+DEV_STAT_DEV_END device end
+DEV_STAT_UNIT_CHECK unit check
+DEV_STAT_UNIT_EXCEP unit exception
+===================== =================
Please see the ESA/390 Principles of Operation manual for details on the
individual flag meanings.
-Usage Notes :
+Usage Notes:
ccw_device_start() must be called disabled and with the ccw device lock held.
@@ -374,32 +409,39 @@ secondary status without error (alert status) is presented, this indicates
successful completion for all overlapping ccw_device_start() requests that have
been issued since the last secondary (final) status.
-Channel programs that intend to set the suspend flag on a channel command word
-(CCW) must start the I/O operation with the DOIO_ALLOW_SUSPEND option or the
-suspend flag will cause a channel program check. At the time the channel program
-becomes suspended an intermediate interrupt will be generated by the channel
+Channel programs that intend to set the suspend flag on a channel command word
+(CCW) must start the I/O operation with the DOIO_ALLOW_SUSPEND option or the
+suspend flag will cause a channel program check. At the time the channel program
+becomes suspended an intermediate interrupt will be generated by the channel
subsystem.
-ccw_device_resume() - Resume Channel Program Execution
+ccw_device_resume() - Resume Channel Program Execution
-If a device driver chooses to suspend the current channel program execution by
-setting the CCW suspend flag on a particular CCW, the channel program execution
-is suspended. In order to resume channel program execution the CIO layer
-provides the ccw_device_resume() routine.
+If a device driver chooses to suspend the current channel program execution by
+setting the CCW suspend flag on a particular CCW, the channel program execution
+is suspended. In order to resume channel program execution the CIO layer
+provides the ccw_device_resume() routine.
-int ccw_device_resume(struct ccw_device *cdev);
+::
-cdev - ccw_device the resume operation is requested for
+ int ccw_device_resume(struct ccw_device *cdev);
+
+==== ================================================
+cdev ccw_device the resume operation is requested for
+==== ================================================
The ccw_device_resume() function returns:
- 0 - suspended channel program is resumed
--EBUSY - status pending
--ENODEV - cdev invalid or not-operational subchannel
--EINVAL - resume function not applicable
--ENOTCONN - there is no I/O request pending for completion
+========= ==============================================
+ 0 suspended channel program is resumed
+ -EBUSY status pending
+ -ENODEV cdev invalid or not-operational subchannel
+ -EINVAL resume function not applicable
+-ENOTCONN there is no I/O request pending for completion
+========= ==============================================
Usage Notes:
+
Please have a look at the ccw_device_start() usage notes for more details on
suspended channel programs.
@@ -412,22 +454,28 @@ command is provided.
ccw_device_halt() must be called disabled and with the ccw device lock held.
-int ccw_device_halt(struct ccw_device *cdev,
- unsigned long intparm);
+::
+
+ int ccw_device_halt(struct ccw_device *cdev,
+ unsigned long intparm);
-cdev : ccw_device the halt operation is requested for
-intparm : interruption parameter; value is only used if no I/O
- is outstanding, otherwise the intparm associated with
- the I/O request is returned
+======= =====================================================
+cdev ccw_device the halt operation is requested for
+intparm interruption parameter; value is only used if no I/O
+ is outstanding, otherwise the intparm associated with
+ the I/O request is returned
+======= =====================================================
-The ccw_device_halt() function returns :
+The ccw_device_halt() function returns:
- 0 - request successfully initiated
--EBUSY - the device is currently busy, or status pending.
--ENODEV - cdev invalid.
--EINVAL - The device is not operational or the ccw device is not online.
+======= ==============================================================
+ 0 request successfully initiated
+-EBUSY the device is currently busy, or status pending.
+-ENODEV cdev invalid.
+-EINVAL The device is not operational or the ccw device is not online.
+======= ==============================================================
-Usage Notes :
+Usage Notes:
A device driver may write a never-ending channel program by writing a channel
program that at its end loops back to its beginning by means of a transfer in
@@ -438,25 +486,34 @@ can then perform an appropriate action. Prior to interrupt of an outstanding
read to a network device (with or without PCI flag) a ccw_device_halt()
is required to end the pending operation.
-ccw_device_clear() - Terminage I/O Request Processing
+::
+
+ ccw_device_clear() - Terminage I/O Request Processing
In order to terminate all I/O processing at the subchannel, the clear subchannel
(CSCH) command is used. It can be issued via ccw_device_clear().
ccw_device_clear() must be called disabled and with the ccw device lock held.
-int ccw_device_clear(struct ccw_device *cdev, unsigned long intparm);
+::
+
+ int ccw_device_clear(struct ccw_device *cdev, unsigned long intparm);
-cdev: ccw_device the clear operation is requested for
-intparm: interruption parameter (see ccw_device_halt())
+======= ===============================================
+cdev ccw_device the clear operation is requested for
+intparm interruption parameter (see ccw_device_halt())
+======= ===============================================
The ccw_device_clear() function returns:
- 0 - request successfully initiated
--ENODEV - cdev invalid
--EINVAL - The device is not operational or the ccw device is not online.
+======= ==============================================================
+ 0 request successfully initiated
+-ENODEV cdev invalid
+-EINVAL The device is not operational or the ccw device is not online.
+======= ==============================================================
Miscellaneous Support Routines
+------------------------------
This chapter describes various routines to be used in a Linux/390 device
driver programming environment.
@@ -466,7 +523,8 @@ get_ccwdev_lock()
Get the address of the device specific lock. This is then used in
spin_lock() / spin_unlock() calls.
+::
-__u8 ccw_device_get_path_mask(struct ccw_device *cdev);
+ __u8 ccw_device_get_path_mask(struct ccw_device *cdev);
Get the mask of the path currently available for cdev.
diff --git a/Documentation/s390/CommonIO b/Documentation/s390/common_io.rst
index 6e0f63f343b4..846485681ce7 100644
--- a/Documentation/s390/CommonIO
+++ b/Documentation/s390/common_io.rst
@@ -1,5 +1,9 @@
-S/390 common I/O-Layer - command line parameters, procfs and debugfs entries
-============================================================================
+======================
+S/390 common I/O-Layer
+======================
+
+command line parameters, procfs and debugfs entries
+===================================================
Command line parameters
-----------------------
@@ -13,7 +17,7 @@ Command line parameters
device := {all | [!]ipldev | [!]condev | [!]<devno> | [!]<devno>-<devno>}
The given devices will be ignored by the common I/O-layer; no detection
- and device sensing will be done on any of those devices. The subchannel to
+ and device sensing will be done on any of those devices. The subchannel to
which the device in question is attached will be treated as if no device was
attached.
@@ -28,14 +32,20 @@ Command line parameters
keywords can be used to refer to the CCW based boot device and CCW console
device respectively (these are probably useful only when combined with the '!'
operator). The '!' operator will cause the I/O-layer to _not_ ignore a device.
- The command line is parsed from left to right.
+ The command line
+ is parsed from left to right.
+
+ For example::
- For example,
cio_ignore=0.0.0023-0.0.0042,0.0.4711
+
will ignore all devices ranging from 0.0.0023 to 0.0.0042 and the device
0.0.4711, if detected.
- As another example,
+
+ As another example::
+
cio_ignore=all,!0.0.4711,!0.0.fd00-0.0.fd02
+
will ignore all devices but 0.0.4711, 0.0.fd00, 0.0.fd01, 0.0.fd02.
By default, no devices are ignored.
@@ -48,40 +58,45 @@ Command line parameters
Lists the ranges of devices (by bus id) which are ignored by common I/O.
- You can un-ignore certain or all devices by piping to /proc/cio_ignore.
- "free all" will un-ignore all ignored devices,
+ You can un-ignore certain or all devices by piping to /proc/cio_ignore.
+ "free all" will un-ignore all ignored devices,
"free <device range>, <device range>, ..." will un-ignore the specified
devices.
For example, if devices 0.0.0023 to 0.0.0042 and 0.0.4711 are ignored,
+
- echo free 0.0.0030-0.0.0032 > /proc/cio_ignore
will un-ignore devices 0.0.0030 to 0.0.0032 and will leave devices 0.0.0023
to 0.0.002f, 0.0.0033 to 0.0.0042 and 0.0.4711 ignored;
- echo free 0.0.0041 > /proc/cio_ignore will furthermore un-ignore device
0.0.0041;
- - echo free all > /proc/cio_ignore will un-ignore all remaining ignored
+ - echo free all > /proc/cio_ignore will un-ignore all remaining ignored
devices.
- When a device is un-ignored, device recognition and sensing is performed and
+ When a device is un-ignored, device recognition and sensing is performed and
the device driver will be notified if possible, so the device will become
available to the system. Note that un-ignoring is performed asynchronously.
- You can also add ranges of devices to be ignored by piping to
+ You can also add ranges of devices to be ignored by piping to
/proc/cio_ignore; "add <device range>, <device range>, ..." will ignore the
specified devices.
Note: While already known devices can be added to the list of devices to be
- ignored, there will be no effect on then. However, if such a device
+ ignored, there will be no effect on then. However, if such a device
disappears and then reappears, it will then be ignored. To make
known devices go away, you need the "purge" command (see below).
- For example,
+ For example::
+
"echo add 0.0.a000-0.0.accc, 0.0.af00-0.0.afff > /proc/cio_ignore"
+
will add 0.0.a000-0.0.accc and 0.0.af00-0.0.afff to the list of ignored
devices.
- You can remove already known but now ignored devices via
+ You can remove already known but now ignored devices via::
+
"echo purge > /proc/cio_ignore"
+
All devices ignored but still registered and not online (= not in use)
will be deregistered and thus removed from the system.
@@ -115,11 +130,11 @@ debugfs entries
Various debug messages from the common I/O-layer.
- /sys/kernel/debug/s390dbf/cio_trace/hex_ascii
- Logs the calling of functions in the common I/O-layer and, if applicable,
+ Logs the calling of functions in the common I/O-layer and, if applicable,
which subchannel they were called for, as well as dumps of some data
structures (like irb in an error case).
- The level of logging can be changed to be more or less verbose by piping to
+ The level of logging can be changed to be more or less verbose by piping to
/sys/kernel/debug/s390dbf/cio_*/level a number between 0 and 6; see the
- documentation on the S/390 debug feature (Documentation/s390/s390dbf.txt)
+ documentation on the S/390 debug feature (Documentation/s390/s390dbf.rst)
for details.
diff --git a/Documentation/s390/DASD b/Documentation/s390/dasd.rst
index 9963f1e9c98a..9e22247285c8 100644
--- a/Documentation/s390/DASD
+++ b/Documentation/s390/dasd.rst
@@ -1,4 +1,6 @@
+==================
DASD device driver
+==================
S/390's disk devices (DASDs) are managed by Linux via the DASD device
driver. It is valid for all types of DASDs and represents them to
@@ -14,14 +16,14 @@ parameters are to be given in hexadecimal notation without a leading
If you supply kernel parameters the different instances are processed
in order of appearance and a minor number is reserved for any device
covered by the supplied range up to 64 volumes. Additional DASDs are
-ignored. If you do not supply the 'dasd=' kernel parameter at all, the
+ignored. If you do not supply the 'dasd=' kernel parameter at all, the
DASD driver registers all supported DASDs of your system to a minor
number in ascending order of the subchannel number.
The driver currently supports ECKD-devices and there are stubs for
support of the FBA and CKD architectures. For the FBA architecture
only some smart data structures are missing to make the support
-complete.
+complete.
We performed our testing on 3380 and 3390 type disks of different
sizes, under VM and on the bare hardware (LPAR), using internal disks
of the multiprise as well as a RAMAC virtual array. Disks exported by
@@ -34,19 +36,22 @@ accessibility of the DASD from other OSs. In a later stage we will
provide support of partitions, maybe VTOC oriented or using a kind of
partition table in the label record.
-USAGE
+Usage
+=====
-Low-level format (?CKD only)
For using an ECKD-DASD as a Linux harddisk you have to low-level
format the tracks by issuing the BLKDASDFORMAT-ioctl on that
device. This will erase any data on that volume including IBM volume
-labels, VTOCs etc. The ioctl may take a 'struct format_data *' or
-'NULL' as an argument.
-typedef struct {
+labels, VTOCs etc. The ioctl may take a `struct format_data *` or
+'NULL' as an argument::
+
+ typedef struct {
int start_unit;
int stop_unit;
int blksize;
-} format_data_t;
+ } format_data_t;
+
When a NULL argument is passed to the BLKDASDFORMAT ioctl the whole
disk is formatted to a blocksize of 1024 bytes. Otherwise start_unit
and stop_unit are the first and last track to be formatted. If
@@ -56,17 +61,23 @@ up to the last track. blksize can be any power of two between 512 and
1kB blocks anyway and you gain approx. 50% of capacity increasing your
blksize from 512 byte to 1kB.
--Make a filesystem
+Make a filesystem
+=================
+
Then you can mk??fs the filesystem of your choice on that volume or
partition. For reasons of sanity you should build your filesystem on
-the partition /dev/dd?1 instead of the whole volume. You only lose 3kB
+the partition /dev/dd?1 instead of the whole volume. You only lose 3kB
but may be sure that you can reuse your data after introduction of a
real partition table.
-BUGS:
+Bugs
+====
+
- Performance sometimes is rather low because we don't fully exploit clustering
-TODO-List:
+TODO-List
+=========
+
- Add IBM'S Disk layout to genhd
- Enhance driver to use more than one major number
- Enable usage as a module
diff --git a/Documentation/s390/debugging390.rst b/Documentation/s390/debugging390.rst
new file mode 100644
index 000000000000..d49305fd5e1a
--- /dev/null
+++ b/Documentation/s390/debugging390.rst
@@ -0,0 +1,2613 @@
+=============================================
+Debugging on Linux for s/390 & z/Architecture
+=============================================
+
+Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
+
+Copyright (C) 2000-2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
+
+.. Best viewed with fixed width fonts
+
+Overview of Document:
+=====================
+This document is intended to give a good overview of how to debug Linux for
+s/390 and z/Architecture. It is not intended as a complete reference and not a
+tutorial on the fundamentals of C & assembly. It doesn't go into
+390 IO in any detail. It is intended to complement the documents in the
+reference section below & any other worthwhile references you get.
+
+It is intended like the Enterprise Systems Architecture/390 Reference Summary
+to be printed out & used as a quick cheat sheet self help style reference when
+problems occur.
+
+.. Contents
+ ========
+ Register Set
+ Address Spaces on Intel Linux
+ Address Spaces on Linux for s/390 & z/Architecture
+ The Linux for s/390 & z/Architecture Kernel Task Structure
+ Register Usage & Stackframes on Linux for s/390 & z/Architecture
+ A sample program with comments
+ Compiling programs for debugging on Linux for s/390 & z/Architecture
+ Debugging under VM
+ s/390 & z/Architecture IO Overview
+ Debugging IO on s/390 & z/Architecture under VM
+ GDB on s/390 & z/Architecture
+ Stack chaining in gdb by hand
+ Examining core dumps
+ ldd
+ Debugging modules
+ The proc file system
+ SysRq
+ References
+ Special Thanks
+
+Register Set
+============
+The current architectures have the following registers.
+
+16 General propose registers, 32 bit on s/390 and 64 bit on z/Architecture,
+r0-r15 (or gpr0-gpr15), used for arithmetic and addressing.
+
+16 Control registers, 32 bit on s/390 and 64 bit on z/Architecture, cr0-cr15,
+kernel usage only, used for memory management, interrupt control, debugging
+control etc.
+
+16 Access registers (ar0-ar15), 32 bit on both s/390 and z/Architecture,
+normally not used by normal programs but potentially could be used as
+temporary storage. These registers have a 1:1 association with general
+purpose registers and are designed to be used in the so-called access
+register mode to select different address spaces.
+Access register 0 (and access register 1 on z/Architecture, which needs a
+64 bit pointer) is currently used by the pthread library as a pointer to
+the current running threads private area.
+
+16 64-bit floating point registers (fp0-fp15 ) IEEE & HFP floating
+point format compliant on G5 upwards & a Floating point control reg (FPC)
+
+4 64-bit registers (fp0,fp2,fp4 & fp6) HFP only on older machines.
+
+Note:
+ Linux (currently) always uses IEEE & emulates G5 IEEE format on older
+ machines, ( provided the kernel is configured for this ).
+
+
+The PSW is the most important register on the machine it
+is 64 bit on s/390 & 128 bit on z/Architecture & serves the roles of
+a program counter (pc), condition code register,memory space designator.
+In IBM standard notation I am counting bit 0 as the MSB.
+It has several advantages over a normal program counter
+in that you can change address translation & program counter
+in a single instruction. To change address translation,
+e.g. switching address translation off requires that you
+have a logical=physical mapping for the address you are
+currently running at.
+
++-------------------------+-------------------------------------------------+
+| Bit | |
++--------+----------------+ Value |
+| s/390 | z/Architecture | |
++========+================+=================================================+
+| 0 | 0 | Reserved (must be 0) otherwise specification |
+| | | exception occurs. |
++--------+----------------+-------------------------------------------------+
+| 1 | 1 | Program Event Recording 1 PER enabled, |
+| | | PER is used to facilitate debugging e.g. |
+| | | single stepping. |
++--------+----------------+-------------------------------------------------+
+| 2-4 | 2-4 | Reserved (must be 0). |
++--------+----------------+-------------------------------------------------+
+| 5 | 5 | Dynamic address translation 1=DAT on. |
++--------+----------------+-------------------------------------------------+
+| 6 | 6 | Input/Output interrupt Mask |
++--------+----------------+-------------------------------------------------+
+| 7 | 7 | External interrupt Mask used primarily for |
+| | | interprocessor signalling and clock interrupts. |
++--------+----------------+-------------------------------------------------+
+| 8-11 | 8-11 | PSW Key used for complex memory protection |
+| | | mechanism (not used under linux) |
++--------+----------------+-------------------------------------------------+
+| 12 | 12 | 1 on s/390 0 on z/Architecture |
++--------+----------------+-------------------------------------------------+
+| 13 | 13 | Machine Check Mask 1=enable machine check |
+| | | interrupts |
++--------+----------------+-------------------------------------------------+
+| 14 | 14 | Wait State. Set this to 1 to stop the processor |
+| | | except for interrupts and give time to other |
+| | | LPARS. Used in CPU idle in the kernel to |
+| | | increase overall usage of processor resources. |
++--------+----------------+-------------------------------------------------+
+| 15 | 15 | Problem state (if set to 1 certain instructions |
+| | | are disabled). All linux user programs run with |
+| | | this bit 1 (useful info for debugging under VM).|
++--------+----------------+-------------------------------------------------+
+| 16-17 | 16-17 | Address Space Control |
+| | | |
+| | | 00 Primary Space Mode: |
+| | | |
+| | | The register CR1 contains the primary |
+| | | address-space control element (PASCE), which |
+| | | points to the primary space region/segment |
+| | | table origin. |
+| | | |
+| | | 01 Access register mode |
+| | | |
+| | | 10 Secondary Space Mode: |
+| | | |
+| | | The register CR7 contains the secondary |
+| | | address-space control element (SASCE), which |
+| | | points to the secondary space region or |
+| | | segment table origin. |
+| | | |
+| | | 11 Home Space Mode: |
+| | | |
+| | | The register CR13 contains the home space |
+| | | address-space control element (HASCE), which |
+| | | points to the home space region/segment |
+| | | table origin. |
+| | | |
+| | | See "Address Spaces on Linux for s/390 & |
+| | | z/Architecture" below for more information |
+| | | about address space usage in Linux. |
++--------+----------------+-------------------------------------------------+
+| 18-19 | 18-19 | Condition codes (CC) |
++--------+----------------+-------------------------------------------------+
+| 20 | 20 | Fixed point overflow mask if 1=FPU exceptions |
+| | | for this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 21 | 21 | Decimal overflow mask if 1=FPU exceptions for |
+| | | this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 22 | 22 | Exponent underflow mask if 1=FPU exceptions |
+| | | for this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 23 | 23 | Significance Mask if 1=FPU exceptions for this |
+| | | event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 24-31 | 24-30 | Reserved Must be 0. |
+| +----------------+-------------------------------------------------+
+| | 31 | Extended Addressing Mode |
+| +----------------+-------------------------------------------------+
+| | 32 | Basic Addressing Mode |
+| | | |
+| | | Used to set addressing mode |
+| | | |
+| | | +---------+----------+----------+ |
+| | | | PSW 31 | PSW 32 | | |
+| | | +---------+----------+----------+ |
+| | | | 0 | 0 | 24 bit | |
+| | | +---------+----------+----------+ |
+| | | | 0 | 1 | 31 bit | |
+| | | +---------+----------+----------+ |
+| | | | 1 | 1 | 64 bit | |
+| | | +---------+----------+----------+ |
++--------+----------------+-------------------------------------------------+
+| 32 | | 1=31 bit addressing mode 0=24 bit addressing |
+| | | mode (for backward compatibility), linux |
+| | | always runs with this bit set to 1 |
++--------+----------------+-------------------------------------------------+
+| 33-64 | | Instruction address. |
+| +----------------+-------------------------------------------------+
+| | 33-63 | Reserved must be 0 |
+| +----------------+-------------------------------------------------+
+| | 64-127 | Address |
+| | | |
+| | | - In 24 bits mode bits 64-103=0 bits 104-127 |
+| | | Address |
+| | | - In 31 bits mode bits 64-96=0 bits 97-127 |
+| | | Address |
+| | | |
+| | | Note: |
+| | | unlike 31 bit mode on s/390 bit 96 must be |
+| | | zero when loading the address with LPSWE |
+| | | otherwise a specification exception occurs, |
+| | | LPSW is fully backward compatible. |
++--------+----------------+-------------------------------------------------+
+
+Prefix Page(s)
+--------------
+This per cpu memory area is too intimately tied to the processor not to mention.
+It exists between the real addresses 0-4096 on s/390 and between 0-8192 on
+z/Architecture and is exchanged with one page on s/390 or two pages on
+z/Architecture in absolute storage by the set prefix instruction during Linux
+startup.
+
+This page is mapped to a different prefix for each processor in an SMP
+configuration (assuming the OS designer is sane of course).
+
+Bytes 0-512 (200 hex) on s/390 and 0-512, 4096-4544, 4604-5119 currently on
+z/Architecture are used by the processor itself for holding such information
+as exception indications and entry points for exceptions.
+
+Bytes after 0xc00 hex are used by linux for per processor globals on s/390 and
+z/Architecture (there is a gap on z/Architecture currently between 0xc00 and
+0x1000, too, which is used by Linux).
+
+The closest thing to this on traditional architectures is the interrupt
+vector table. This is a good thing & does simplify some of the kernel coding
+however it means that we now cannot catch stray NULL pointers in the
+kernel without hard coded checks.
+
+
+
+Address Spaces on Intel Linux
+=============================
+
+The traditional Intel Linux is approximately mapped as follows forgive
+the ascii art::
+
+ 0xFFFFFFFF 4GB Himem *****************
+ * *
+ * Kernel Space *
+ * *
+ ***************** ****************
+ User Space Himem * User Stack * * *
+ (typically 0xC0000000 3GB ) ***************** * *
+ * Shared Libs * * Next Process *
+ ***************** * to *
+ * * <== * Run * <==
+ * User Program * * *
+ * Data BSS * * *
+ * Text * * *
+ * Sections * * *
+ 0x00000000 ***************** ****************
+
+Now it is easy to see that on Intel it is quite easy to recognise a kernel
+address as being one greater than user space himem (in this case 0xC0000000),
+and addresses of less than this are the ones in the current running program on
+this processor (if an smp box).
+
+If using the virtual machine ( VM ) as a debugger it is quite difficult to
+know which user process is running as the address space you are looking at
+could be from any process in the run queue.
+
+The limitation of Intels addressing technique is that the linux
+kernel uses a very simple real address to virtual addressing technique
+of Real Address=Virtual Address-User Space Himem.
+This means that on Intel the kernel linux can typically only address
+Himem=0xFFFFFFFF-0xC0000000=1GB & this is all the RAM these machines
+can typically use.
+
+They can lower User Himem to 2GB or lower & thus be
+able to use 2GB of RAM however this shrinks the maximum size
+of User Space from 3GB to 2GB they have a no win limit of 4GB unless
+they go to 64 Bit.
+
+
+On 390 our limitations & strengths make us slightly different.
+For backward compatibility we are only allowed use 31 bits (2GB)
+of our 32 bit addresses, however, we use entirely separate address
+spaces for the user & kernel.
+
+This means we can support 2GB of non Extended RAM on s/390, & more
+with the Extended memory management swap device &
+currently 4TB of physical memory currently on z/Architecture.
+
+
+Address Spaces on Linux for s/390 & z/Architecture
+==================================================
+
+Our addressing scheme is basically as follows::
+
+ Primary Space Home Space
+ Himem 0x7fffffff 2GB on s/390 ***************** ****************
+ currently 0x3ffffffffff (2^42)-1 * User Stack * * *
+ on z/Architecture. ***************** * *
+ * Shared Libs * * *
+ ***************** * *
+ * * * Kernel *
+ * User Program * * *
+ * Data BSS * * *
+ * Text * * *
+ * Sections * * *
+ 0x00000000 ***************** ****************
+
+This also means that we need to look at the PSW problem state bit and the
+addressing mode to decide whether we are looking at user or kernel space.
+
+User space runs in primary address mode (or access register mode within
+the vdso code).
+
+The kernel usually also runs in home space mode, however when accessing
+user space the kernel switches to primary or secondary address mode if
+the mvcos instruction is not available or if a compare-and-swap (futex)
+instruction on a user space address is performed.
+
+When also looking at the ASCE control registers, this means:
+
+User space:
+
+- runs in primary or access register mode
+- cr1 contains the user asce
+- cr7 contains the user asce
+- cr13 contains the kernel asce
+
+Kernel space:
+
+- runs in home space mode
+- cr1 contains the user or kernel asce
+
+ - the kernel asce is loaded when a uaccess requires primary or
+ secondary address mode
+
+- cr7 contains the user or kernel asce, (changed with set_fs())
+- cr13 contains the kernel asce
+
+In case of uaccess the kernel changes to:
+
+- primary space mode in case of a uaccess (copy_to_user) and uses
+ e.g. the mvcp instruction to access user space. However the kernel
+ will stay in home space mode if the mvcos instruction is available
+- secondary space mode in case of futex atomic operations, so that the
+ instructions come from primary address space and data from secondary
+ space
+
+In case of KVM, the kernel runs in home space mode, but cr1 gets switched
+to contain the gmap asce before the SIE instruction gets executed. When
+the SIE instruction is finished, cr1 will be switched back to contain the
+user asce.
+
+
+Virtual Addresses on s/390 & z/Architecture
+===========================================
+
+A virtual address on s/390 is made up of 3 parts
+The SX (segment index, roughly corresponding to the PGD & PMD in Linux
+terminology) being bits 1-11.
+
+The PX (page index, corresponding to the page table entry (pte) in Linux
+terminology) being bits 12-19.
+
+The remaining bits BX (the byte index are the offset in the page )
+i.e. bits 20 to 31.
+
+On z/Architecture in linux we currently make up an address from 4 parts.
+
+- The region index bits (RX) 0-32 we currently use bits 22-32
+- The segment index (SX) being bits 33-43
+- The page index (PX) being bits 44-51
+- The byte index (BX) being bits 52-63
+
+Notes:
+ 1) s/390 has no PMD so the PMD is really the PGD also.
+ A lot of this stuff is defined in pgtable.h.
+
+ 2) Also seeing as s/390's page indexes are only 1k in size
+ (bits 12-19 x 4 bytes per pte ) we use 1 ( page 4k )
+ to make the best use of memory by updating 4 segment indices
+ entries each time we mess with a PMD & use offsets
+ 0,1024,2048 & 3072 in this page as for our segment indexes.
+ On z/Architecture our page indexes are now 2k in size
+ ( bits 12-19 x 8 bytes per pte ) we do a similar trick
+ but only mess with 2 segment indices each time we mess with
+ a PMD.
+
+ 3) As z/Architecture supports up to a massive 5-level page table lookup we
+ can only use 3 currently on Linux ( as this is all the generic kernel
+ currently supports ) however this may change in future
+ this allows us to access ( according to my sums )
+ 4TB of virtual storage per process i.e.
+ 4096*512(PTES)*1024(PMDS)*2048(PGD) = 4398046511104 bytes,
+ enough for another 2 or 3 of years I think :-).
+ to do this we use a region-third-table designation type in
+ our address space control registers.
+
+
+The Linux for s/390 & z/Architecture Kernel Task Structure
+==========================================================
+Each process/thread under Linux for S390 has its own kernel task_struct
+defined in linux/include/linux/sched.h
+The S390 on initialisation & resuming of a process on a cpu sets
+the __LC_KERNEL_STACK variable in the spare prefix area for this cpu
+(which we use for per-processor globals).
+
+The kernel stack pointer is intimately tied with the task structure for
+each processor as follows::
+
+ s/390
+ ************************
+ * 1 page kernel stack *
+ * ( 4K ) *
+ ************************
+ * 1 page task_struct *
+ * ( 4K ) *
+ 8K aligned ************************
+
+ z/Architecture
+ ************************
+ * 2 page kernel stack *
+ * ( 8K ) *
+ ************************
+ * 2 page task_struct *
+ * ( 8K ) *
+ 16K aligned ************************
+
+What this means is that we don't need to dedicate any register or global
+variable to point to the current running process & can retrieve it with the
+following very simple construct for s/390 & one very similar for
+z/Architecture::
+
+ static inline struct task_struct * get_current(void)
+ {
+ struct task_struct *current;
+ __asm__("lhi %0,-8192\n\t"
+ "nr %0,15"
+ : "=r" (current) );
+ return current;
+ }
+
+i.e. just anding the current kernel stack pointer with the mask -8192.
+Thankfully because Linux doesn't have support for nested IO interrupts
+& our devices have large buffers can survive interrupts being shut for
+short amounts of time we don't need a separate stack for interrupts.
+
+
+
+
+Register Usage & Stackframes on Linux for s/390 & z/Architecture
+=================================================================
+Overview:
+---------
+This is the code that gcc produces at the top & the bottom of
+each function. It usually is fairly consistent & similar from
+function to function & if you know its layout you can probably
+make some headway in finding the ultimate cause of a problem
+after a crash without a source level debugger.
+
+Note: To follow stackframes requires a knowledge of C or Pascal &
+limited knowledge of one assembly language.
+
+It should be noted that there are some differences between the
+s/390 and z/Architecture stack layouts as the z/Architecture stack layout
+didn't have to maintain compatibility with older linkage formats.
+
+Glossary:
+---------
+alloca:
+ This is a built in compiler function for runtime allocation
+ of extra space on the callers stack which is obviously freed
+ up on function exit ( e.g. the caller may choose to allocate nothing
+ of a buffer of 4k if required for temporary purposes ), it generates
+ very efficient code ( a few cycles ) when compared to alternatives
+ like malloc.
+
+automatics:
+ These are local variables on the stack, i.e they aren't in registers &
+ they aren't static.
+
+back-chain:
+ This is a pointer to the stack pointer before entering a
+ framed functions ( see frameless function ) prologue got by
+ dereferencing the address of the current stack pointer,
+ i.e. got by accessing the 32 bit value at the stack pointers
+ current location.
+
+base-pointer:
+ This is a pointer to the back of the literal pool which
+ is an area just behind each procedure used to store constants
+ in each function.
+
+call-clobbered:
+ The caller probably needs to save these registers if there
+ is something of value in them, on the stack or elsewhere before making a
+ call to another procedure so that it can restore it later.
+
+epilogue:
+ The code generated by the compiler to return to the caller.
+
+frameless-function:
+ A frameless function in Linux for s390 & z/Architecture is one which doesn't
+ need more than the register save area (96 bytes on s/390, 160 on z/Architecture)
+ given to it by the caller.
+
+ A frameless function never:
+
+ 1) Sets up a back chain.
+ 2) Calls alloca.
+ 3) Calls other normal functions
+ 4) Has automatics.
+
+GOT-pointer:
+ This is a pointer to the global-offset-table in ELF
+ ( Executable Linkable Format, Linux'es most common executable format ),
+ all globals & shared library objects are found using this pointer.
+
+lazy-binding
+ ELF shared libraries are typically only loaded when routines in the shared
+ library are actually first called at runtime. This is lazy binding.
+
+procedure-linkage-table
+ This is a table found from the GOT which contains pointers to routines
+ in other shared libraries which can't be called to by easier means.
+
+prologue:
+ The code generated by the compiler to set up the stack frame.
+
+outgoing-args:
+ This is extra area allocated on the stack of the calling function if the
+ parameters for the callee's cannot all be put in registers, the same
+ area can be reused by each function the caller calls.
+
+routine-descriptor:
+ A COFF executable format based concept of a procedure reference
+ actually being 8 bytes or more as opposed to a simple pointer to the routine.
+ This is typically defined as follows:
+
+ - Routine Descriptor offset 0=Pointer to Function
+ - Routine Descriptor offset 4=Pointer to Table of Contents
+
+ The table of contents/TOC is roughly equivalent to a GOT pointer.
+ & it means that shared libraries etc. can be shared between several
+ environments each with their own TOC.
+
+static-chain:
+ This is used in nested functions a concept adopted from pascal
+ by gcc not used in ansi C or C++ ( although quite useful ), basically it
+ is a pointer used to reference local variables of enclosing functions.
+ You might come across this stuff once or twice in your lifetime.
+
+ e.g.
+
+ The function below should return 11 though gcc may get upset & toss warnings
+ about unused variables::
+
+ int FunctionA(int a)
+ {
+ int b;
+ FunctionC(int c)
+ {
+ b=c+1;
+ }
+ FunctionC(10);
+ return(b);
+ }
+
+
+s/390 & z/Architecture Register usage
+=====================================
+
+======== ========================================== ===============
+r0 used by syscalls/assembly call-clobbered
+r1 used by syscalls/assembly call-clobbered
+r2 argument 0 / return value 0 call-clobbered
+r3 argument 1 / return value 1 (if long long) call-clobbered
+r4 argument 2 call-clobbered
+r5 argument 3 call-clobbered
+r6 argument 4 saved
+r7 pointer-to arguments 5 to ... saved
+r8 this & that saved
+r9 this & that saved
+r10 static-chain ( if nested function ) saved
+r11 frame-pointer ( if function used alloca ) saved
+r12 got-pointer saved
+r13 base-pointer saved
+r14 return-address saved
+r15 stack-pointer saved
+
+f0 argument 0 / return value ( float/double ) call-clobbered
+f2 argument 1 call-clobbered
+f4 z/Architecture argument 2 saved
+f6 z/Architecture argument 3 saved
+======== ========================================== ===============
+
+The remaining floating points
+f1,f3,f5 f7-f15 are call-clobbered.
+
+Notes:
+------
+1) The only requirement is that registers which are used
+ by the callee are saved, e.g. the compiler is perfectly
+ capable of using r11 for purposes other than a frame a
+ frame pointer if a frame pointer is not needed.
+2) In functions with variable arguments e.g. printf the calling procedure
+ is identical to one without variable arguments & the same number of
+ parameters. However, the prologue of this function is somewhat more
+ hairy owing to it having to move these parameters to the stack to
+ get va_start, va_arg & va_end to work.
+3) Access registers are currently unused by gcc but are used in
+ the kernel. Possibilities exist to use them at the moment for
+ temporary storage but it isn't recommended.
+4) Only 4 of the floating point registers are used for
+ parameter passing as older machines such as G3 only have only 4
+ & it keeps the stack frame compatible with other compilers.
+ However with IEEE floating point emulation under linux on the
+ older machines you are free to use the other 12.
+5) A long long or double parameter cannot be have the
+ first 4 bytes in a register & the second four bytes in the
+ outgoing args area. It must be purely in the outgoing args
+ area if crossing this boundary.
+6) Floating point parameters are mixed with outgoing args
+ on the outgoing args area in the order the are passed in as parameters.
+7) Floating point arguments 2 & 3 are saved in the outgoing args area for
+ z/Architecture
+
+
+Stack Frame Layout
+------------------
+
+========= ============== ======================================================
+s/390 z/Architecture
+========= ============== ======================================================
+0 0 back chain ( a 0 here signifies end of back chain )
+4 8 eos ( end of stack, not used on Linux for S390 used
+ in other linkage formats )
+8 16 glue used in other s/390 linkage formats for saved
+ routine descriptors etc.
+12 24 glue used in other s/390 linkage formats for saved
+ routine descriptors etc.
+16 32 scratch area
+20 40 scratch area
+24 48 saved r6 of caller function
+28 56 saved r7 of caller function
+32 64 saved r8 of caller function
+36 72 saved r9 of caller function
+40 80 saved r10 of caller function
+44 88 saved r11 of caller function
+48 96 saved r12 of caller function
+52 104 saved r13 of caller function
+56 112 saved r14 of caller function
+60 120 saved r15 of caller function
+64 128 saved f4 of caller function
+72 132 saved f6 of caller function
+80 undefined
+96 160 outgoing args passed from caller to callee
+96+x 160+x possible stack alignment ( 8 bytes desirable )
+96+x+y 160+x+y alloca space of caller ( if used )
+96+x+y+z 160+x+y+z automatics of caller ( if used )
+0 back-chain
+========= ============== ======================================================
+
+A sample program with comments.
+===============================
+
+Comments on the function test
+-----------------------------
+1) It didn't need to set up a pointer to the constant pool gpr13 as it is not
+ used ( :-( ).
+2) This is a frameless function & no stack is bought.
+3) The compiler was clever enough to recognise that it could return the
+ value in r2 as well as use it for the passed in parameter ( :-) ).
+4) The basr ( branch relative & save ) trick works as follows the instruction
+ has a special case with r0,r0 with some instruction operands is understood as
+ the literal value 0, some risc architectures also do this ). So now
+ we are branching to the next address & the address new program counter is
+ in r13,so now we subtract the size of the function prologue we have executed
+ the size of the literal pool to get to the top of the literal pool::
+
+
+ 0040037c int test(int b)
+ { # Function prologue below
+ 40037c: 90 de f0 34 stm %r13,%r14,52(%r15) # Save registers r13 & r14
+ 400380: 0d d0 basr %r13,%r0 # Set up pointer to constant pool using
+ 400382: a7 da ff fa ahi %r13,-6 # basr trick
+ return(5+b);
+ # Huge main program
+ 400386: a7 2a 00 05 ahi %r2,5 # add 5 to r2
+
+ # Function epilogue below
+ 40038a: 98 de f0 34 lm %r13,%r14,52(%r15) # restore registers r13 & 14
+ 40038e: 07 fe br %r14 # return
+ }
+
+Comments on the function main
+-----------------------------
+1) The compiler did this function optimally ( 8-) )::
+
+ Literal pool for main.
+ 400390: ff ff ff ec .long 0xffffffec
+ main(int argc,char *argv[])
+ { # Function prologue below
+ 400394: 90 bf f0 2c stm %r11,%r15,44(%r15) # Save necessary registers
+ 400398: 18 0f lr %r0,%r15 # copy stack pointer to r0
+ 40039a: a7 fa ff a0 ahi %r15,-96 # Make area for callee saving
+ 40039e: 0d d0 basr %r13,%r0 # Set up r13 to point to
+ 4003a0: a7 da ff f0 ahi %r13,-16 # literal pool
+ 4003a4: 50 00 f0 00 st %r0,0(%r15) # Save backchain
+
+ return(test(5)); # Main Program Below
+ 4003a8: 58 e0 d0 00 l %r14,0(%r13) # load relative address of test from
+ # literal pool
+ 4003ac: a7 28 00 05 lhi %r2,5 # Set first parameter to 5
+ 4003b0: 4d ee d0 00 bas %r14,0(%r14,%r13) # jump to test setting r14 as return
+ # address using branch & save instruction.
+
+ # Function Epilogue below
+ 4003b4: 98 bf f0 8c lm %r11,%r15,140(%r15)# Restore necessary registers.
+ 4003b8: 07 fe br %r14 # return to do program exit
+ }
+
+
+Compiler updates
+----------------
+
+::
+
+ main(int argc,char *argv[])
+ {
+ 4004fc: 90 7f f0 1c stm %r7,%r15,28(%r15)
+ 400500: a7 d5 00 04 bras %r13,400508 <main+0xc>
+ 400504: 00 40 04 f4 .long 0x004004f4
+ # compiler now puts constant pool in code to so it saves an instruction
+ 400508: 18 0f lr %r0,%r15
+ 40050a: a7 fa ff a0 ahi %r15,-96
+ 40050e: 50 00 f0 00 st %r0,0(%r15)
+ return(test(5));
+ 400512: 58 10 d0 00 l %r1,0(%r13)
+ 400516: a7 28 00 05 lhi %r2,5
+ 40051a: 0d e1 basr %r14,%r1
+ # compiler adds 1 extra instruction to epilogue this is done to
+ # avoid processor pipeline stalls owing to data dependencies on g5 &
+ # above as register 14 in the old code was needed directly after being loaded
+ # by the lm %r11,%r15,140(%r15) for the br %14.
+ 40051c: 58 40 f0 98 l %r4,152(%r15)
+ 400520: 98 7f f0 7c lm %r7,%r15,124(%r15)
+ 400524: 07 f4 br %r4
+ }
+
+
+Hartmut ( our compiler developer ) also has been threatening to take out the
+stack backchain in optimised code as this also causes pipeline stalls, you
+have been warned.
+
+64 bit z/Architecture code disassembly
+--------------------------------------
+
+If you understand the stuff above you'll understand the stuff
+below too so I'll avoid repeating myself & just say that
+some of the instructions have g's on the end of them to indicate
+they are 64 bit & the stack offsets are a bigger,
+the only other difference you'll find between 32 & 64 bit is that
+we now use f4 & f6 for floating point arguments on 64 bit::
+
+ 00000000800005b0 <test>:
+ int test(int b)
+ {
+ return(5+b);
+ 800005b0: a7 2a 00 05 ahi %r2,5
+ 800005b4: b9 14 00 22 lgfr %r2,%r2 # downcast to integer
+ 800005b8: 07 fe br %r14
+ 800005ba: 07 07 bcr 0,%r7
+
+
+ }
+
+ 00000000800005bc <main>:
+ main(int argc,char *argv[])
+ {
+ 800005bc: eb bf f0 58 00 24 stmg %r11,%r15,88(%r15)
+ 800005c2: b9 04 00 1f lgr %r1,%r15
+ 800005c6: a7 fb ff 60 aghi %r15,-160
+ 800005ca: e3 10 f0 00 00 24 stg %r1,0(%r15)
+ return(test(5));
+ 800005d0: a7 29 00 05 lghi %r2,5
+ # brasl allows jumps > 64k & is overkill here bras would do fune
+ 800005d4: c0 e5 ff ff ff ee brasl %r14,800005b0 <test>
+ 800005da: e3 40 f1 10 00 04 lg %r4,272(%r15)
+ 800005e0: eb bf f0 f8 00 04 lmg %r11,%r15,248(%r15)
+ 800005e6: 07 f4 br %r4
+ }
+
+
+
+Compiling programs for debugging on Linux for s/390 & z/Architecture
+====================================================================
+-gdwarf-2 now works it should be considered the default debugging
+format for s/390 & z/Architecture as it is more reliable for debugging
+shared libraries, normal -g debugging works much better now
+Thanks to the IBM java compiler developers bug reports.
+
+This is typically done adding/appending the flags -g or -gdwarf-2 to the
+CFLAGS & LDFLAGS variables Makefile of the program concerned.
+
+If using gdb & you would like accurate displays of registers &
+stack traces compile without optimisation i.e make sure
+that there is no -O2 or similar on the CFLAGS line of the Makefile &
+the emitted gcc commands, obviously this will produce worse code
+( not advisable for shipment ) but it is an aid to the debugging process.
+
+This aids debugging because the compiler will copy parameters passed in
+in registers onto the stack so backtracing & looking at passed in
+parameters will work, however some larger programs which use inline functions
+will not compile without optimisation.
+
+Debugging with optimisation has since much improved after fixing
+some bugs, please make sure you are using gdb-5.0 or later developed
+after Nov'2000.
+
+
+
+Debugging under VM
+==================
+
+Notes
+-----
+Addresses & values in the VM debugger are always hex never decimal
+Address ranges are of the format <HexValue1>-<HexValue2> or
+<HexValue1>.<HexValue2>
+For example, the address range 0x2000 to 0x3000 can be described as 2000-3000
+or 2000.1000
+
+The VM Debugger is case insensitive.
+
+VM's strengths are usually other debuggers weaknesses you can get at any
+resource no matter how sensitive e.g. memory management resources, change
+address translation in the PSW. For kernel hacking you will reap dividends if
+you get good at it.
+
+The VM Debugger displays operators but not operands, and also the debugger
+displays useful information on the same line as the author of the code probably
+felt that it was a good idea not to go over the 80 columns on the screen.
+This isn't as unintuitive as it may seem as the s/390 instructions are easy to
+decode mentally and you can make a good guess at a lot of them as all the
+operands are nibble (half byte aligned).
+So if you have an objdump listing by hand, it is quite easy to follow, and if
+you don't have an objdump listing keep a copy of the s/390 Reference Summary
+or alternatively the s/390 principles of operation next to you.
+e.g. even I can guess that
+0001AFF8' LR 180F CC 0
+is a ( load register ) lr r0,r15
+
+Also it is very easy to tell the length of a 390 instruction from the 2 most
+significant bits in the instruction (not that this info is really useful except
+if you are trying to make sense of a hexdump of code).
+Here is a table
+
+======================= ==================
+Bits Instruction Length
+======================= ==================
+00 2 Bytes
+01 4 Bytes
+10 4 Bytes
+11 6 Bytes
+======================= ==================
+
+The debugger also displays other useful info on the same line such as the
+addresses being operated on destination addresses of branches & condition codes.
+e.g.::
+
+ 00019736' AHI A7DAFF0E CC 1
+ 000198BA' BRC A7840004 -> 000198C2' CC 0
+ 000198CE' STM 900EF068 >> 0FA95E78 CC 2
+
+
+
+Useful VM debugger commands
+---------------------------
+
+I suppose I'd better mention this before I start
+to list the current active traces do::
+
+ Q TR
+
+there can be a maximum of 255 of these per set
+( more about trace sets later ).
+
+To stop traces issue a::
+
+ TR END.
+
+To delete a particular breakpoint issue::
+
+ TR DEL <breakpoint number>
+
+The PA1 key drops to CP mode so you can issue debugger commands,
+Doing alt c (on my 3270 console at least ) clears the screen.
+
+hitting b <enter> comes back to the running operating system
+from cp mode ( in our case linux ).
+
+It is typically useful to add shortcuts to your profile.exec file
+if you have one ( this is roughly equivalent to autoexec.bat in DOS ).
+file here are a few from mine::
+
+ /* this gives me command history on issuing f12 */
+ set pf12 retrieve
+ /* this continues */
+ set pf8 imm b
+ /* goes to trace set a */
+ set pf1 imm tr goto a
+ /* goes to trace set b */
+ set pf2 imm tr goto b
+ /* goes to trace set c */
+ set pf3 imm tr goto c
+
+
+
+Instruction Tracing
+-------------------
+Setting a simple breakpoint::
+
+ TR I PSWA <address>
+
+To debug a particular function try::
+
+ TR I R <function address range>
+ TR I on its own will single step.
+ TR I DATA <MNEMONIC> <OPTIONAL RANGE> will trace for particular mnemonics
+
+e.g.::
+
+ TR I DATA 4D R 0197BC.4000
+
+will trace for BAS'es ( opcode 4D ) in the range 0197BC.4000
+
+if you were inclined you could add traces for all branch instructions &
+suffix them with the run prefix so you would have a backtrace on screen
+when a program crashes::
+
+ TR BR <INTO OR FROM> will trace branches into or out of an address.
+
+e.g.::
+
+ TR BR INTO 0
+
+is often quite useful if a program is getting awkward & deciding
+to branch to 0 & crashing as this will stop at the address before in jumps to 0.
+
+::
+
+ TR I R <address range> RUN cmd d g
+
+single steps a range of addresses but stays running &
+displays the gprs on each step.
+
+
+
+Displaying & modifying Registers
+--------------------------------
+D G
+ will display all the gprs
+
+Adding a extra G to all the commands is necessary to access the full 64 bit
+content in VM on z/Architecture. Obviously this isn't required for access
+registers as these are still 32 bit.
+
+e.g.
+
+DGG
+ instead of DG
+
+D X
+ will display all the control registers
+D AR
+ will display all the access registers
+D AR4-7
+ will display access registers 4 to 7
+CPU ALL D G
+ will display the GRPS of all CPUS in the configuration
+D PSW
+ will display the current PSW
+st PSW 2000
+ will put the value 2000 into the PSW & cause crash your machine.
+D PREFIX
+ displays the prefix offset
+
+
+Displaying Memory
+-----------------
+To display memory mapped using the current PSW's mapping try::
+
+ D <range>
+
+To make VM display a message each time it hits a particular address and
+continue try:
+
+D I<range>
+ will disassemble/display a range of instructions.
+
+ST addr 32 bit word
+ will store a 32 bit aligned address
+D T<range>
+ will display the EBCDIC in an address (if you are that way inclined)
+D R<range>
+ will display real addresses ( without DAT ) but with prefixing.
+
+There are other complex options to display if you need to get at say home space
+but are in primary space the easiest thing to do is to temporarily
+modify the PSW to the other addressing mode, display the stuff & then
+restore it.
+
+
+
+Hints
+-----
+If you want to issue a debugger command without halting your virtual machine
+with the PA1 key try prefixing the command with #CP e.g.::
+
+ #cp tr i pswa 2000
+
+also suffixing most debugger commands with RUN will cause them not
+to stop just display the mnemonic at the current instruction on the console.
+
+If you have several breakpoints you want to put into your program &
+you get fed up of cross referencing with System.map
+you can do the following trick for several symbols.
+
+::
+
+ grep do_signal System.map
+
+which emits the following among other things::
+
+ 0001f4e0 T do_signal
+
+now you can do::
+
+ TR I PSWA 0001f4e0 cmd msg * do_signal
+
+This sends a message to your own console each time do_signal is entered.
+( As an aside I wrote a perl script once which automatically generated a REXX
+script with breakpoints on every kernel procedure, this isn't a good idea
+because there are thousands of these routines & VM can only set 255 breakpoints
+at a time so you nearly had to spend as long pruning the file down as you would
+entering the msgs by hand), however, the trick might be useful for a single
+object file. In the 3270 terminal emulator x3270 there is a very useful option
+in the file menu called "Save Screen In File" - this is very good for keeping a
+copy of traces.
+
+From CMS help <command name> will give you online help on a particular command.
+e.g.::
+
+ HELP DISPLAY
+
+Also CP has a file called profile.exec which automatically gets called
+on startup of CMS ( like autoexec.bat ), keeping on a DOS analogy session
+CP has a feature similar to doskey, it may be useful for you to
+use profile.exec to define some keystrokes.
+
+SET PF9 IMM B
+ This does a single step in VM on pressing F8.
+
+SET PF10 ^
+ This sets up the ^ key.
+ which can be used for ^c (ctrl-c),^z (ctrl-z) which can't be typed
+ directly into some 3270 consoles.
+
+SET PF11 ^-
+ This types the starting keystrokes for a sysrq see SysRq below.
+SET PF12 RETRIEVE
+ This retrieves command history on pressing F12.
+
+
+Sometimes in VM the display is set up to scroll automatically this
+can be very annoying if there are messages you wish to look at
+to stop this do
+
+TERM MORE 255 255
+ This will nearly stop automatic screen updates, however it will
+ cause a denial of service if lots of messages go to the 3270 console,
+ so it would be foolish to use this as the default on a production machine.
+
+
+Tracing particular processes
+----------------------------
+The kernel's text segment is intentionally at an address in memory that it will
+very seldom collide with text segments of user programs ( thanks Martin ),
+this simplifies debugging the kernel.
+However it is quite common for user processes to have addresses which collide
+this can make debugging a particular process under VM painful under normal
+circumstances as the process may change when doing a::
+
+ TR I R <address range>.
+
+Thankfully after reading VM's online help I figured out how to debug
+I particular process.
+
+Your first problem is to find the STD ( segment table designation )
+of the program you wish to debug.
+There are several ways you can do this here are a few
+
+Run::
+
+ objdump --syms <program to be debugged> | grep main
+
+To get the address of main in the program. Then::
+
+ tr i pswa <address of main>
+
+Start the program, if VM drops to CP on what looks like the entry
+point of the main function this is most likely the process you wish to debug.
+Now do a D X13 or D XG13 on z/Architecture.
+
+On 31 bit the STD is bits 1-19 ( the STO segment table origin )
+& 25-31 ( the STL segment table length ) of CR13.
+
+now type::
+
+ TR I R STD <CR13's value> 0.7fffffff
+
+e.g.::
+
+ TR I R STD 8F32E1FF 0.7fffffff
+
+Another very useful variation is::
+
+ TR STORE INTO STD <CR13's value> <address range>
+
+for finding out when a particular variable changes.
+
+An alternative way of finding the STD of a currently running process
+is to do the following, ( this method is more complex but
+could be quite convenient if you aren't updating the kernel much &
+so your kernel structures will stay constant for a reasonable period of
+time ).
+
+::
+
+ grep task /proc/<pid>/status
+
+from this you should see something like::
+
+ task: 0f160000 ksp: 0f161de8 pt_regs: 0f161f68
+
+This now gives you a pointer to the task structure.
+
+Now make::
+
+ CC:="s390-gcc -g" kernel/sched.s
+
+To get the task_struct stabinfo.
+
+( task_struct is defined in include/linux/sched.h ).
+
+Now we want to look at
+task->active_mm->pgd
+
+on my machine the active_mm in the task structure stab is
+active_mm:(4,12),672,32
+
+its offset is 672/8=84=0x54
+
+the pgd member in the mm_struct stab is
+pgd:(4,6)=*(29,5),96,32
+so its offset is 96/8=12=0xc
+
+so we'll::
+
+ hexdump -s 0xf160054 /dev/mem | more
+
+i.e. task_struct+active_mm offset
+to look at the active_mm member::
+
+ f160054 0fee cc60 0019 e334 0000 0000 0000 0011
+
+::
+
+ hexdump -s 0x0feecc6c /dev/mem | more
+
+i.e. active_mm+pgd offset::
+
+ feecc6c 0f2c 0000 0000 0001 0000 0001 0000 0010
+
+we get something like
+now do::
+
+ TR I R STD <pgd|0x7f> 0.7fffffff
+
+i.e. the 0x7f is added because the pgd only
+gives the page table origin & we need to set the low bits
+to the maximum possible segment table length.
+
+::
+
+ TR I R STD 0f2c007f 0.7fffffff
+
+on z/Architecture you'll probably need to do::
+
+ TR I R STD <pgd|0x7> 0.ffffffffffffffff
+
+to set the TableType to 0x1 & the Table length to 3.
+
+
+
+Tracing Program Exceptions
+--------------------------
+If you get a crash which says something like
+illegal operation or specification exception followed by a register dump
+You can restart linux & trace these using the tr prog <range or value> trace
+option.
+
+
+The most common ones you will normally be tracing for is:
+
+- 1=operation exception
+- 2=privileged operation exception
+- 4=protection exception
+- 5=addressing exception
+- 6=specification exception
+- 10=segment translation exception
+- 11=page translation exception
+
+The full list of these is on page 22 of the current s/390 Reference Summary.
+e.g.
+
+tr prog 10 will trace segment translation exceptions.
+
+tr prog on its own will trace all program interruption codes.
+
+Trace Sets
+----------
+On starting VM you are initially in the INITIAL trace set.
+You can do a Q TR to verify this.
+If you have a complex tracing situation where you wish to wait for instance
+till a driver is open before you start tracing IO, but know in your
+heart that you are going to have to make several runs through the code till you
+have a clue whats going on.
+
+What you can do is::
+
+ TR I PSWA <Driver open address>
+
+hit b to continue till breakpoint
+
+reach the breakpoint
+
+now do your::
+
+ TR GOTO B
+ TR IO 7c08-7c09 inst int run
+
+or whatever the IO channels you wish to trace are & hit b
+
+To got back to the initial trace set do::
+
+ TR GOTO INITIAL
+
+& the TR I PSWA <Driver open address> will be the only active breakpoint again.
+
+
+Tracing linux syscalls under VM
+-------------------------------
+Syscalls are implemented on Linux for S390 by the Supervisor call instruction
+(SVC). There 256 possibilities of these as the instruction is made up of a 0xA
+opcode and the second byte being the syscall number. They are traced using the
+simple command::
+
+ TR SVC <Optional value or range>
+
+the syscalls are defined in linux/arch/s390/include/asm/unistd.h
+e.g. to trace all file opens just do::
+
+ TR SVC 5 ( as this is the syscall number of open )
+
+
+SMP Specific commands
+---------------------
+To find out how many cpus you have
+Q CPUS displays all the CPU's available to your virtual machine
+To find the cpu that the current cpu VM debugger commands are being directed at
+do Q CPU to change the current cpu VM debugger commands are being directed at
+do::
+
+ CPU <desired cpu no>
+
+On a SMP guest issue a command to all CPUs try prefixing the command with cpu
+all. To issue a command to a particular cpu try cpu <cpu number> e.g.::
+
+ CPU 01 TR I R 2000.3000
+
+If you are running on a guest with several cpus & you have a IO related problem
+& cannot follow the flow of code but you know it isn't smp related.
+
+from the bash prompt issue::
+
+ shutdown -h now or halt.
+
+do a::
+
+ Q CPUS
+
+to find out how many cpus you have detach each one of them from cp except
+cpu 0 by issuing a::
+
+ DETACH CPU 01-(number of cpus in configuration)
+
+& boot linux again.
+
+TR SIGP
+ will trace inter processor signal processor instructions.
+
+DEFINE CPU 01-(number in configuration)
+ will get your guests cpus back.
+
+
+Help for displaying ascii textstrings
+-------------------------------------
+On the very latest VM Nucleus'es VM can now display ascii
+( thanks Neale for the hint ) by doing::
+
+ D TX<lowaddr>.<len>
+
+e.g.::
+
+ D TX0.100
+
+Alternatively
+=============
+Under older VM debuggers (I love EBDIC too) you can use following little
+program which converts a command line of hex digits to ascii text. It can be
+compiled under linux and you can copy the hex digits from your x3270 terminal
+to your xterm if you are debugging from a linuxbox.
+
+This is quite useful when looking at a parameter passed in as a text string
+under VM ( unless you are good at decoding ASCII in your head ).
+
+e.g. consider tracing an open syscall::
+
+ TR SVC 5
+
+We have stopped at a breakpoint::
+
+ 000151B0' SVC 0A05 -> 0001909A' CC 0
+
+D 20.8 to check the SVC old psw in the prefix area and see was it from userspace
+(for the layout of the prefix area consult the "Fixed Storage Locations"
+chapter of the s/390 Reference Summary if you have it available).
+
+::
+
+ V00000020 070C2000 800151B2
+
+The problem state bit wasn't set & it's also too early in the boot sequence
+for it to be a userspace SVC if it was we would have to temporarily switch the
+psw to user space addressing so we could get at the first parameter of the open
+in gpr2.
+
+Next do a::
+
+ D G2
+ GPR 2 = 00014CB4
+
+Now display what gpr2 is pointing to::
+
+ D 00014CB4.20
+ V00014CB4 2F646576 2F636F6E 736F6C65 00001BF5
+ V00014CC4 FC00014C B4001001 E0001000 B8070707
+
+Now copy the text till the first 00 hex ( which is the end of the string
+to an xterm & do hex2ascii on it::
+
+ hex2ascii 2F646576 2F636F6E 736F6C65 00
+
+outputs::
+
+ Decoded Hex:=/ d e v / c o n s o l e 0x00
+
+We were opening the console device,
+
+You can compile the code below yourself for practice :-),
+
+::
+
+ /*
+ * hex2ascii.c
+ * a useful little tool for converting a hexadecimal command line to ascii
+ *
+ * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
+ * (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation.
+ */
+ #include <stdio.h>
+
+ int main(int argc,char *argv[])
+ {
+ int cnt1,cnt2,len,toggle=0;
+ int startcnt=1;
+ unsigned char c,hex;
+
+ if(argc>1&&(strcmp(argv[1],"-a")==0))
+ startcnt=2;
+ printf("Decoded Hex:=");
+ for(cnt1=startcnt;cnt1<argc;cnt1++)
+ {
+ len=strlen(argv[cnt1]);
+ for(cnt2=0;cnt2<len;cnt2++)
+ {
+ c=argv[cnt1][cnt2];
+ if(c>='0'&&c<='9')
+ c=c-'0';
+ if(c>='A'&&c<='F')
+ c=c-'A'+10;
+ if(c>='a'&&c<='f')
+ c=c-'a'+10;
+ switch(toggle)
+ {
+ case 0:
+ hex=c<<4;
+ toggle=1;
+ break;
+ case 1:
+ hex+=c;
+ if(hex<32||hex>127)
+ {
+ if(startcnt==1)
+ printf("0x%02X ",(int)hex);
+ else
+ printf(".");
+ }
+ else
+ {
+ printf("%c",hex);
+ if(startcnt==1)
+ printf(" ");
+ }
+ toggle=0;
+ break;
+ }
+ }
+ }
+ printf("\n");
+ }
+
+
+
+
+Stack tracing under VM
+----------------------
+A basic backtrace
+-----------------
+
+Here are the tricks I use 9 out of 10 times it works pretty well,
+
+When your backchain reaches a dead end
+--------------------------------------
+This can happen when an exception happens in the kernel and the kernel is
+entered twice. If you reach the NULL pointer at the end of the back chain you
+should be able to sniff further back if you follow the following tricks.
+1) A kernel address should be easy to recognise since it is in
+primary space & the problem state bit isn't set & also
+The Hi bit of the address is set.
+2) Another backchain should also be easy to recognise since it is an
+address pointing to another address approximately 100 bytes or 0x70 hex
+behind the current stackpointer.
+
+
+Here is some practice.
+
+boot the kernel & hit PA1 at some random time
+
+d g to display the gprs, this should display something like::
+
+ GPR 0 = 00000001 00156018 0014359C 00000000
+ GPR 4 = 00000001 001B8888 000003E0 00000000
+ GPR 8 = 00100080 00100084 00000000 000FE000
+ GPR 12 = 00010400 8001B2DC 8001B36A 000FFED8
+
+Note that GPR14 is a return address but as we are real men we are going to
+trace the stack.
+display 0x40 bytes after the stack pointer::
+
+ V000FFED8 000FFF38 8001B838 80014C8E 000FFF38
+ V000FFEE8 00000000 00000000 000003E0 00000000
+ V000FFEF8 00100080 00100084 00000000 000FE000
+ V000FFF08 00010400 8001B2DC 8001B36A 000FFED8
+
+
+Ah now look at whats in sp+56 (sp+0x38) this is 8001B36A our saved r14 if
+you look above at our stackframe & also agrees with GPR14.
+
+now backchain::
+
+ d 000FFF38.40
+
+we now are taking the contents of SP to get our first backchain::
+
+ V000FFF38 000FFFA0 00000000 00014995 00147094
+ V000FFF48 00147090 001470A0 000003E0 00000000
+ V000FFF58 00100080 00100084 00000000 001BF1D0
+ V000FFF68 00010400 800149BA 80014CA6 000FFF38
+
+This displays a 2nd return address of 80014CA6
+
+now do::
+
+ d 000FFFA0.40
+
+for our 3rd backchain::
+
+ V000FFFA0 04B52002 0001107F 00000000 00000000
+ V000FFFB0 00000000 00000000 FF000000 0001107F
+ V000FFFC0 00000000 00000000 00000000 00000000
+ V000FFFD0 00010400 80010802 8001085A 000FFFA0
+
+
+our 3rd return address is 8001085A
+
+as the 04B52002 looks suspiciously like rubbish it is fair to assume that the
+kernel entry routines for the sake of optimisation don't set up a backchain.
+
+now look at System.map to see if the addresses make any sense::
+
+ grep -i 0001b3 System.map
+
+outputs among other things::
+
+ 0001b304 T cpu_idle
+
+so 8001B36A
+is cpu_idle+0x66 ( quiet the cpu is asleep, don't wake it )
+
+::
+
+ grep -i 00014 System.map
+
+produces among other things::
+
+ 00014a78 T start_kernel
+
+so 0014CA6 is start_kernel+some hex number I can't add in my head.
+
+::
+
+ grep -i 00108 System.map
+
+this produces::
+
+ 00010800 T _stext
+
+so 8001085A is _stext+0x5a
+
+Congrats you've done your first backchain.
+
+
+
+s/390 & z/Architecture IO Overview
+==================================
+
+I am not going to give a course in 390 IO architecture as this would take me
+quite a while and I'm no expert. Instead I'll give a 390 IO architecture
+summary for Dummies. If you have the s/390 principles of operation available
+read this instead. If nothing else you may find a few useful keywords in here
+and be able to use them on a web search engine to find more useful information.
+
+Unlike other bus architectures modern 390 systems do their IO using mostly
+fibre optics and devices such as tapes and disks can be shared between several
+mainframes. Also S390 can support up to 65536 devices while a high end PC based
+system might be choking with around 64.
+
+Here is some of the common IO terminology:
+
+Subchannel:
+ This is the logical number most IO commands use to talk to an IO device. There
+ can be up to 0x10000 (65536) of these in a configuration, typically there are a
+ few hundred. Under VM for simplicity they are allocated contiguously, however
+ on the native hardware they are not. They typically stay consistent between
+ boots provided no new hardware is inserted or removed.
+
+ Under Linux for s390 we use these as IRQ's and also when issuing an IO command
+ (CLEAR SUBCHANNEL, HALT SUBCHANNEL, MODIFY SUBCHANNEL, RESUME SUBCHANNEL,
+ START SUBCHANNEL, STORE SUBCHANNEL and TEST SUBCHANNEL). We use this as the ID
+ of the device we wish to talk to. The most important of these instructions are
+ START SUBCHANNEL (to start IO), TEST SUBCHANNEL (to check whether the IO
+ completed successfully) and HALT SUBCHANNEL (to kill IO). A subchannel can have
+ up to 8 channel paths to a device, this offers redundancy if one is not
+ available.
+
+Device Number:
+ This number remains static and is closely tied to the hardware. There are 65536
+ of these, made up of a CHPID (Channel Path ID, the most significant 8 bits) and
+ another lsb 8 bits. These remain static even if more devices are inserted or
+ removed from the hardware. There is a 1 to 1 mapping between subchannels and
+ device numbers, provided devices aren't inserted or removed.
+
+Channel Control Words:
+ CCWs are linked lists of instructions initially pointed to by an operation
+ request block (ORB), which is initially given to Start Subchannel (SSCH)
+ command along with the subchannel number for the IO subsystem to process
+ while the CPU continues executing normal code.
+ CCWs come in two flavours, Format 0 (24 bit for backward compatibility) and
+ Format 1 (31 bit). These are typically used to issue read and write (and many
+ other) instructions. They consist of a length field and an absolute address
+ field.
+
+ Each IO typically gets 1 or 2 interrupts, one for channel end (primary status)
+ when the channel is idle, and the second for device end (secondary status).
+ Sometimes you get both concurrently. You check how the IO went on by issuing a
+ TEST SUBCHANNEL at each interrupt, from which you receive an Interruption
+ response block (IRB). If you get channel and device end status in the IRB
+ without channel checks etc. your IO probably went okay. If you didn't you
+ probably need to examine the IRB, extended status word etc.
+ If an error occurs, more sophisticated control units have a facility known as
+ concurrent sense. This means that if an error occurs Extended sense information
+ will be presented in the Extended status word in the IRB. If not you have to
+ issue a subsequent SENSE CCW command after the test subchannel.
+
+
+TPI (Test pending interrupt) can also be used for polled IO, but in
+multitasking multiprocessor systems it isn't recommended except for
+checking special cases (i.e. non looping checks for pending IO etc.).
+
+Store Subchannel and Modify Subchannel can be used to examine and modify
+operating characteristics of a subchannel (e.g. channel paths).
+
+Other IO related Terms:
+
+Sysplex:
+ S390's Clustering Technology
+QDIO:
+ S390's new high speed IO architecture to support devices such as gigabit
+ ethernet, this architecture is also designed to be forward compatible with
+ upcoming 64 bit machines.
+
+
+General Concepts
+----------------
+
+Input Output Processors (IOP's) are responsible for communicating between
+the mainframe CPU's & the channel & relieve the mainframe CPU's from the
+burden of communicating with IO devices directly, this allows the CPU's to
+concentrate on data processing.
+
+IOP's can use one or more links ( known as channel paths ) to talk to each
+IO device. It first checks for path availability & chooses an available one,
+then starts ( & sometimes terminates IO ).
+There are two types of channel path: ESCON & the Parallel IO interface.
+
+IO devices are attached to control units, control units provide the
+logic to interface the channel paths & channel path IO protocols to
+the IO devices, they can be integrated with the devices or housed separately
+& often talk to several similar devices ( typical examples would be raid
+controllers or a control unit which connects to 1000 3270 terminals )::
+
+
+ +---------------------------------------------------------------+
+ | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
+ | | CPU | | CPU | | CPU | | CPU | | Main | | Expanded | |
+ | | | | | | | | | | Memory | | Storage | |
+ | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
+ |---------------------------------------------------------------+
+ | IOP | IOP | IOP |
+ |---------------------------------------------------------------
+ | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C |
+ ----------------------------------------------------------------
+ || ||
+ || Bus & Tag Channel Path || ESCON
+ || ====================== || Channel
+ || || || || Path
+ +----------+ +----------+ +----------+
+ | | | | | |
+ | CU | | CU | | CU |
+ | | | | | |
+ +----------+ +----------+ +----------+
+ | | | | |
+ +----------+ +----------+ +----------+ +----------+ +----------+
+ |I/O Device| |I/O Device| |I/O Device| |I/O Device| |I/O Device|
+ +----------+ +----------+ +----------+ +----------+ +----------+
+ CPU = Central Processing Unit
+ C = Channel
+ IOP = IP Processor
+ CU = Control Unit
+
+The 390 IO systems come in 2 flavours the current 390 machines support both
+
+The Older 360 & 370 Interface,sometimes called the Parallel I/O interface,
+sometimes called Bus-and Tag & sometimes Original Equipment Manufacturers
+Interface (OEMI).
+
+This byte wide Parallel channel path/bus has parity & data on the "Bus" cable
+and control lines on the "Tag" cable. These can operate in byte multiplex mode
+for sharing between several slow devices or burst mode and monopolize the
+channel for the whole burst. Up to 256 devices can be addressed on one of these
+cables. These cables are about one inch in diameter. The maximum unextended
+length supported by these cables is 125 Meters but this can be extended up to
+2km with a fibre optic channel extended such as a 3044. The maximum burst speed
+supported is 4.5 megabytes per second. However, some really old processors
+support only transfer rates of 3.0, 2.0 & 1.0 MB/sec.
+One of these paths can be daisy chained to up to 8 control units.
+
+
+ESCON if fibre optic it is also called FICON
+Was introduced by IBM in 1990. Has 2 fibre optic cables and uses either leds or
+lasers for communication at a signaling rate of up to 200 megabits/sec. As
+10bits are transferred for every 8 bits info this drops to 160 megabits/sec
+and to 18.6 Megabytes/sec once control info and CRC are added. ESCON only
+operates in burst mode.
+
+ESCONs typical max cable length is 3km for the led version and 20km for the
+laser version known as XDF (extended distance facility). This can be further
+extended by using an ESCON director which triples the above mentioned ranges.
+Unlike Bus & Tag as ESCON is serial it uses a packet switching architecture,
+the standard Bus & Tag control protocol is however present within the packets.
+Up to 256 devices can be attached to each control unit that uses one of these
+interfaces.
+
+Common 390 Devices include:
+Network adapters typically OSA2,3172's,2116's & OSA-E gigabit ethernet adapters,
+Consoles 3270 & 3215 (a teletype emulated under linux for a line mode console).
+DASD's direct access storage devices ( otherwise known as hard disks ).
+Tape Drives.
+CTC ( Channel to Channel Adapters ),
+ESCON or Parallel Cables used as a very high speed serial link
+between 2 machines.
+
+
+Debugging IO on s/390 & z/Architecture under VM
+===============================================
+
+Now we are ready to go on with IO tracing commands under VM
+
+A few self explanatory queries::
+
+ Q OSA
+ Q CTC
+ Q DISK ( This command is CMS specific )
+ Q DASD
+
+Q OSA on my machine returns::
+
+ OSA 7C08 ON OSA 7C08 SUBCHANNEL = 0000
+ OSA 7C09 ON OSA 7C09 SUBCHANNEL = 0001
+ OSA 7C14 ON OSA 7C14 SUBCHANNEL = 0002
+ OSA 7C15 ON OSA 7C15 SUBCHANNEL = 0003
+
+If you have a guest with certain privileges you may be able to see devices
+which don't belong to you. To avoid this, add the option V.
+e.g.::
+
+ Q V OSA
+
+Now using the device numbers returned by this command we will
+Trace the io starting up on the first device 7c08 & 7c09
+In our simplest case we can trace the
+start subchannels
+like TR SSCH 7C08-7C09
+or the halt subchannels
+or TR HSCH 7C08-7C09
+MSCH's ,STSCH's I think you can guess the rest
+
+A good trick is tracing all the IO's and CCWS and spooling them into the reader
+of another VM guest so he can ftp the logfile back to his own machine. I'll do
+a small bit of this and give you a look at the output.
+
+1) Spool stdout to VM reader::
+
+ SP PRT TO (another vm guest ) or * for the local vm guest
+
+2) Fill the reader with the trace::
+
+ TR IO 7c08-7c09 INST INT CCW PRT RUN
+
+3) Start up linux::
+
+ i 00c
+4) Finish the trace::
+
+ TR END
+
+5) close the reader::
+
+ C PRT
+
+6) list reader contents::
+
+ RDRLIST
+
+7) copy it to linux4's minidisk::
+
+ RECEIVE / LOG TXT A1 ( replace
+
+8)
+filel & press F11 to look at it
+You should see something like::
+
+ 00020942' SSCH B2334000 0048813C CC 0 SCH 0000 DEV 7C08
+ CPA 000FFDF0 PARM 00E2C9C4 KEY 0 FPI C0 LPM 80
+ CCW 000FFDF0 E4200100 00487FE8 0000 E4240100 ........
+ IDAL 43D8AFE8
+ IDAL 0FB76000
+ 00020B0A' I/O DEV 7C08 -> 000197BC' SCH 0000 PARM 00E2C9C4
+ 00021628' TSCH B2354000 >> 00488164 CC 0 SCH 0000 DEV 7C08
+ CCWA 000FFDF8 DEV STS 0C SCH STS 00 CNT 00EC
+ KEY 0 FPI C0 CC 0 CTLS 4007
+ 00022238' STSCH B2344000 >> 00488108 CC 0 SCH 0000 DEV 7C08
+
+If you don't like messing up your readed ( because you possibly booted from it )
+you can alternatively spool it to another readers guest.
+
+
+Other common VM device related commands
+---------------------------------------------
+These commands are listed only because they have
+been of use to me in the past & may be of use to
+you too. For more complete info on each of the commands
+use type HELP <command> from CMS.
+
+detaching devices::
+
+ DET <devno range>
+ ATT <devno range> <guest>
+
+attach a device to guest * for your own guest
+
+READY <devno>
+ cause VM to issue a fake interrupt.
+
+The VARY command is normally only available to VM administrators::
+
+ VARY ON PATH <path> TO <devno range>
+ VARY OFF PATH <PATH> FROM <devno range>
+
+This is used to switch on or off channel paths to devices.
+
+Q CHPID <channel path ID>
+ This displays state of devices using this channel path
+
+D SCHIB <subchannel>
+ This displays the subchannel information SCHIB block for the device.
+ this I believe is also only available to administrators.
+
+DEFINE CTC <devno>
+ defines a virtual CTC channel to channel connection
+ 2 need to be defined on each guest for the CTC driver to use.
+
+COUPLE devno userid remote devno
+ Joins a local virtual device to a remote virtual device
+ ( commonly used for the CTC driver ).
+
+Building a VM ramdisk under CMS which linux can use::
+
+ def vfb-<blocksize> <subchannel> <number blocks>
+
+blocksize is commonly 4096 for linux.
+
+Formatting it::
+
+ format <subchannel> <driver letter e.g. x> (blksize <blocksize>
+
+Sharing a disk between multiple guests::
+
+ LINK userid devno1 devno2 mode password
+
+
+
+GDB on S390
+===========
+N.B. if compiling for debugging gdb works better without optimisation
+( see Compiling programs for debugging )
+
+invocation
+----------
+gdb <victim program> <optional corefile>
+
+Online help
+-----------
+help: gives help on commands
+
+e.g.::
+
+ help
+ help display
+
+Note gdb's online help is very good use it.
+
+
+Assembly
+--------
+info registers:
+ displays registers other than floating point.
+
+info all-registers:
+ displays floating points as well.
+
+disassemble:
+ disassembles
+
+e.g.::
+
+ disassemble without parameters will disassemble the current function
+ disassemble $pc $pc+10
+
+Viewing & modifying variables
+-----------------------------
+print or p:
+ displays variable or register
+
+e.g. p/x $sp will display the stack pointer
+
+display:
+ prints variable or register each time program stops
+
+e.g.::
+
+ display/x $pc will display the program counter
+ display argc
+
+undisplay:
+ undo's display's
+
+info breakpoints:
+ shows all current breakpoints
+
+info stack:
+ shows stack back trace (if this doesn't work too well, I'll show
+ you the stacktrace by hand below).
+
+info locals:
+ displays local variables.
+
+info args:
+ display current procedure arguments.
+
+set args:
+ will set argc & argv each time the victim program is invoked
+
+e.g.::
+
+ set <variable>=value
+ set argc=100
+ set $pc=0
+
+
+
+Modifying execution
+-------------------
+step:
+ steps n lines of sourcecode
+
+step
+ steps 1 line.
+
+step 100
+ steps 100 lines of code.
+
+next:
+ like step except this will not step into subroutines
+
+stepi:
+ steps a single machine code instruction.
+
+e.g.::
+
+ stepi 100
+
+nexti:
+ steps a single machine code instruction but will not step into
+ subroutines.
+
+finish:
+ will run until exit of the current routine
+
+run:
+ (re)starts a program
+
+cont:
+ continues a program
+
+quit:
+ exits gdb.
+
+
+breakpoints
+------------
+
+break
+ sets a breakpoint
+
+e.g.::
+
+ break main
+ break *$pc
+ break *0x400618
+
+Here's a really useful one for large programs
+
+rbr
+ Set a breakpoint for all functions matching REGEXP
+
+e.g.::
+
+ rbr 390
+
+will set a breakpoint with all functions with 390 in their name.
+
+info breakpoints
+ lists all breakpoints
+
+delete:
+ delete breakpoint by number or delete them all
+
+e.g.
+
+delete 1
+ will delete the first breakpoint
+
+
+delete
+ will delete them all
+
+watch:
+ This will set a watchpoint ( usually hardware assisted ),
+
+This will watch a variable till it changes
+
+e.g.
+
+watch cnt
+ will watch the variable cnt till it changes.
+
+As an aside unfortunately gdb's, architecture independent watchpoint code
+is inconsistent & not very good, watchpoints usually work but not always.
+
+info watchpoints:
+ Display currently active watchpoints
+
+condition: ( another useful one )
+ Specify breakpoint number N to break only if COND is true.
+
+Usage is `condition N COND`, where N is an integer and COND is an
+expression to be evaluated whenever breakpoint N is reached.
+
+
+
+User defined functions/macros
+-----------------------------
+define: ( Note this is very very useful,simple & powerful )
+
+usage define <name> <list of commands> end
+
+examples which you should consider putting into .gdbinit in your home
+directory::
+
+ define d
+ stepi
+ disassemble $pc $pc+10
+ end
+ define e
+ nexti
+ disassemble $pc $pc+10
+ end
+
+
+Other hard to classify stuff
+----------------------------
+signal n:
+ sends the victim program a signal.
+
+e.g. `signal 3` will send a SIGQUIT.
+
+info signals:
+ what gdb does when the victim receives certain signals.
+
+list:
+
+e.g.:
+
+list
+ lists current function source
+list 1,10
+ list first 10 lines of current file.
+
+list test.c:1,10
+
+
+directory:
+ Adds directories to be searched for source if gdb cannot find the source.
+ (note it is a bit sensitive about slashes)
+
+e.g. To add the root of the filesystem to the searchpath do::
+
+ directory //
+
+
+call <function>
+This calls a function in the victim program, this is pretty powerful
+e.g.
+(gdb) call printf("hello world")
+outputs:
+$1 = 11
+
+You might now be thinking that the line above didn't work, something extra had
+to be done.
+(gdb) call fflush(stdout)
+hello world$2 = 0
+As an aside the debugger also calls malloc & free under the hood
+to make space for the "hello world" string.
+
+
+
+hints
+-----
+1) command completion works just like bash
+ ( if you are a bad typist like me this really helps )
+
+e.g. hit br <TAB> & cursor up & down :-).
+
+2) if you have a debugging problem that takes a few steps to recreate
+put the steps into a file called .gdbinit in your current working directory
+if you have defined a few extra useful user defined commands put these in
+your home directory & they will be read each time gdb is launched.
+
+A typical .gdbinit file might be.::
+
+ break main
+ run
+ break runtime_exception
+ cont
+
+
+stack chaining in gdb by hand
+-----------------------------
+This is done using a the same trick described for VM::
+
+ p/x (*($sp+56))&0x7fffffff
+
+get the first backchain.
+
+For z/Architecture
+Replace 56 with 112 & ignore the &0x7fffffff
+in the macros below & do nasty casts to longs like the following
+as gdb unfortunately deals with printed arguments as ints which
+messes up everything.
+
+i.e. here is a 3rd backchain dereference::
+
+ p/x *(long *)(***(long ***)$sp+112)
+
+
+this outputs::
+
+ $5 = 0x528f18
+
+on my machine.
+
+Now you can use::
+
+ info symbol (*($sp+56))&0x7fffffff
+
+you might see something like::
+
+ rl_getc + 36 in section .text
+
+telling you what is located at address 0x528f18
+Now do::
+
+ p/x (*(*$sp+56))&0x7fffffff
+
+This outputs::
+
+ $6 = 0x528ed0
+
+Now do::
+
+ info symbol (*(*$sp+56))&0x7fffffff
+ rl_read_key + 180 in section .text
+
+now do::
+
+ p/x (*(**$sp+56))&0x7fffffff
+
+& so on.
+
+Disassembling instructions without debug info
+---------------------------------------------
+gdb typically complains if there is a lack of debugging
+symbols in the disassemble command with
+"No function contains specified address." To get around
+this do::
+
+ x/<number lines to disassemble>xi <address>
+
+e.g.::
+
+ x/20xi 0x400730
+
+
+
+Note:
+ Remember gdb has history just like bash you don't need to retype the
+ whole line just use the up & down arrows.
+
+
+
+For more info
+-------------
+From your linuxbox do::
+
+ man gdb
+
+or::
+
+ info gdb.
+
+core dumps
+----------
+
+What a core dump ?
+^^^^^^^^^^^^^^^^^^
+
+A core dump is a file generated by the kernel (if allowed) which contains the
+registers and all active pages of the program which has crashed.
+
+From this file gdb will allow you to look at the registers, stack trace and
+memory of the program as if it just crashed on your system. It is usually
+called core and created in the current working directory.
+
+This is very useful in that a customer can mail a core dump to a technical
+support department and the technical support department can reconstruct what
+happened. Provided they have an identical copy of this program with debugging
+symbols compiled in and the source base of this build is available.
+
+In short it is far more useful than something like a crash log could ever hope
+to be.
+
+Why have I never seen one ?
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Probably because you haven't used the command::
+
+ ulimit -c unlimited in bash
+
+to allow core dumps, now do::
+
+ ulimit -a
+
+to verify that the limit was accepted.
+
+A sample core dump
+ To create this I'm going to do::
+
+ ulimit -c unlimited
+ gdb
+
+to launch gdb (my victim app. ) now be bad & do the following from another
+telnet/xterm session to the same machine::
+
+ ps -aux | grep gdb
+ kill -SIGSEGV <gdb's pid>
+
+or alternatively use `killall -SIGSEGV gdb` if you have the killall command.
+
+Now look at the core dump::
+
+ ./gdb core
+
+Displays the following::
+
+ GNU gdb 4.18
+ Copyright 1998 Free Software Foundation, Inc.
+ GDB is free software, covered by the GNU General Public License, and you are
+ welcome to change it and/or distribute copies of it under certain conditions.
+ Type "show copying" to see the conditions.
+ There is absolutely no warranty for GDB. Type "show warranty" for details.
+ This GDB was configured as "s390-ibm-linux"...
+ Core was generated by `./gdb'.
+ Program terminated with signal 11, Segmentation fault.
+ Reading symbols from /usr/lib/libncurses.so.4...done.
+ Reading symbols from /lib/libm.so.6...done.
+ Reading symbols from /lib/libc.so.6...done.
+ Reading symbols from /lib/ld-linux.so.2...done.
+ #0 0x40126d1a in read () from /lib/libc.so.6
+ Setting up the environment for debugging gdb.
+ Breakpoint 1 at 0x4dc6f8: file utils.c, line 471.
+ Breakpoint 2 at 0x4d87a4: file top.c, line 2609.
+ (top-gdb) info stack
+ #0 0x40126d1a in read () from /lib/libc.so.6
+ #1 0x528f26 in rl_getc (stream=0x7ffffde8) at input.c:402
+ #2 0x528ed0 in rl_read_key () at input.c:381
+ #3 0x5167e6 in readline_internal_char () at readline.c:454
+ #4 0x5168ee in readline_internal_charloop () at readline.c:507
+ #5 0x51692c in readline_internal () at readline.c:521
+ #6 0x5164fe in readline (prompt=0x7ffff810)
+ at readline.c:349
+ #7 0x4d7a8a in command_line_input (prompt=0x564420 "(gdb) ", repeat=1,
+ annotation_suffix=0x4d6b44 "prompt") at top.c:2091
+ #8 0x4d6cf0 in command_loop () at top.c:1345
+ #9 0x4e25bc in main (argc=1, argv=0x7ffffdf4) at main.c:635
+
+
+LDD
+===
+This is a program which lists the shared libraries which a library needs,
+Note you also get the relocations of the shared library text segments which
+help when using objdump --source.
+
+e.g.::
+
+ ldd ./gdb
+
+outputs::
+
+ libncurses.so.4 => /usr/lib/libncurses.so.4 (0x40018000)
+ libm.so.6 => /lib/libm.so.6 (0x4005e000)
+ libc.so.6 => /lib/libc.so.6 (0x40084000)
+ /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
+
+
+Debugging shared libraries
+==========================
+Most programs use shared libraries, however it can be very painful
+when you single step instruction into a function like printf for the
+first time & you end up in functions like _dl_runtime_resolve this is
+the ld.so doing lazy binding, lazy binding is a concept in ELF where
+shared library functions are not loaded into memory unless they are
+actually used, great for saving memory but a pain to debug.
+
+To get around this either relink the program -static or exit gdb type
+export LD_BIND_NOW=true this will stop lazy binding & restart the gdb'ing
+the program in question.
+
+
+
+Debugging modules
+=================
+As modules are dynamically loaded into the kernel their address can be
+anywhere to get around this use the -m option with insmod to emit a load
+map which can be piped into a file if required.
+
+The proc file system
+====================
+What is it ?.
+It is a filesystem created by the kernel with files which are created on demand
+by the kernel if read, or can be used to modify kernel parameters,
+it is a powerful concept.
+
+e.g.::
+
+ cat /proc/sys/net/ipv4/ip_forward
+
+On my machine outputs::
+
+ 0
+
+telling me ip_forwarding is not on to switch it on I can do::
+
+ echo 1 > /proc/sys/net/ipv4/ip_forward
+
+cat it again::
+
+ cat /proc/sys/net/ipv4/ip_forward
+
+On my machine now outputs::
+
+ 1
+
+IP forwarding is on.
+
+There is a lot of useful info in here best found by going in and having a look
+around, so I'll take you through some entries I consider important.
+
+All the processes running on the machine have their own entry defined by
+/proc/<pid>
+
+So lets have a look at the init process::
+
+ cd /proc/1
+ cat cmdline
+
+emits::
+
+ init [2]
+
+::
+
+ cd /proc/1/fd
+
+This contains numerical entries of all the open files,
+some of these you can cat e.g. stdout (2)::
+
+ cat /proc/29/maps
+
+on my machine emits::
+
+ 00400000-00478000 r-xp 00000000 5f:00 4103 /bin/bash
+ 00478000-0047e000 rw-p 00077000 5f:00 4103 /bin/bash
+ 0047e000-00492000 rwxp 00000000 00:00 0
+ 40000000-40015000 r-xp 00000000 5f:00 14382 /lib/ld-2.1.2.so
+ 40015000-40016000 rw-p 00014000 5f:00 14382 /lib/ld-2.1.2.so
+ 40016000-40017000 rwxp 00000000 00:00 0
+ 40017000-40018000 rw-p 00000000 00:00 0
+ 40018000-4001b000 r-xp 00000000 5f:00 14435 /lib/libtermcap.so.2.0.8
+ 4001b000-4001c000 rw-p 00002000 5f:00 14435 /lib/libtermcap.so.2.0.8
+ 4001c000-4010d000 r-xp 00000000 5f:00 14387 /lib/libc-2.1.2.so
+ 4010d000-40111000 rw-p 000f0000 5f:00 14387 /lib/libc-2.1.2.so
+ 40111000-40114000 rw-p 00000000 00:00 0
+ 40114000-4011e000 r-xp 00000000 5f:00 14408 /lib/libnss_files-2.1.2.so
+ 4011e000-4011f000 rw-p 00009000 5f:00 14408 /lib/libnss_files-2.1.2.so
+ 7fffd000-80000000 rwxp ffffe000 00:00 0
+
+
+Showing us the shared libraries init uses where they are in memory
+& memory access permissions for each virtual memory area.
+
+/proc/1/cwd is a softlink to the current working directory.
+
+/proc/1/root is the root of the filesystem for this process.
+
+/proc/1/mem is the current running processes memory which you
+can read & write to like a file.
+
+strace uses this sometimes as it is a bit faster than the
+rather inefficient ptrace interface for peeking at DATA.
+
+::
+
+ cat status
+
+ Name: init
+ State: S (sleeping)
+ Pid: 1
+ PPid: 0
+ Uid: 0 0 0 0
+ Gid: 0 0 0 0
+ Groups:
+ VmSize: 408 kB
+ VmLck: 0 kB
+ VmRSS: 208 kB
+ VmData: 24 kB
+ VmStk: 8 kB
+ VmExe: 368 kB
+ VmLib: 0 kB
+ SigPnd: 0000000000000000
+ SigBlk: 0000000000000000
+ SigIgn: 7fffffffd7f0d8fc
+ SigCgt: 00000000280b2603
+ CapInh: 00000000fffffeff
+ CapPrm: 00000000ffffffff
+ CapEff: 00000000fffffeff
+
+ User PSW: 070de000 80414146
+ task: 004b6000 tss: 004b62d8 ksp: 004b7ca8 pt_regs: 004b7f68
+ User GPRS:
+ 00000400 00000000 0000000b 7ffffa90
+ 00000000 00000000 00000000 0045d9f4
+ 0045cafc 7ffffa90 7fffff18 0045cb08
+ 00010400 804039e8 80403af8 7ffff8b0
+ User ACRS:
+ 00000000 00000000 00000000 00000000
+ 00000001 00000000 00000000 00000000
+ 00000000 00000000 00000000 00000000
+ 00000000 00000000 00000000 00000000
+ Kernel BackChain CallChain BackChain CallChain
+ 004b7ca8 8002bd0c 004b7d18 8002b92c
+ 004b7db8 8005cd50 004b7e38 8005d12a
+ 004b7f08 80019114
+
+Showing among other things memory usage & status of some signals &
+the processes'es registers from the kernel task_structure
+as well as a backchain which may be useful if a process crashes
+in the kernel for some unknown reason.
+
+Some driver debugging techniques
+================================
+debug feature
+-------------
+Some of our drivers now support a "debug feature" in
+/proc/s390dbf see s390dbf.txt in the linux/Documentation directory
+for more info.
+
+e.g.
+to switch on the lcs "debug feature"::
+
+ echo 5 > /proc/s390dbf/lcs/level
+
+& then after the error occurred::
+
+ cat /proc/s390dbf/lcs/sprintf >/logfile
+
+the logfile now contains some information which may help
+tech support resolve a problem in the field.
+
+
+
+high level debugging network drivers
+------------------------------------
+ifconfig is a quite useful command
+it gives the current state of network drivers.
+
+If you suspect your network device driver is dead
+one way to check is type::
+
+ ifconfig <network device>
+
+e.g. tr0
+
+You should see something like::
+
+ ifconfig tr0
+ tr0 Link encap:16/4 Mbps Token Ring (New) HWaddr 00:04:AC:20:8E:48
+ inet addr:9.164.185.132 Bcast:9.164.191.255 Mask:255.255.224.0
+ UP BROADCAST RUNNING MULTICAST MTU:2000 Metric:1
+ RX packets:246134 errors:0 dropped:0 overruns:0 frame:0
+ TX packets:5 errors:0 dropped:0 overruns:0 carrier:0
+ collisions:0 txqueuelen:100
+
+if the device doesn't say up
+try::
+
+ /etc/rc.d/init.d/network start
+
+( this starts the network stack & hopefully calls ifconfig tr0 up ).
+ifconfig looks at the output of /proc/net/dev and presents it in a more
+presentable form.
+
+Now ping the device from a machine in the same subnet.
+
+if the RX packets count & TX packets counts don't increment you probably
+have problems.
+
+next::
+
+ cat /proc/net/arp
+
+Do you see any hardware addresses in the cache if not you may have problems.
+Next try::
+
+ ping -c 5 <broadcast_addr>
+
+i.e. the Bcast field above in the output of
+ifconfig. Do you see any replies from machines other than the local machine
+if not you may have problems. also if the TX packets count in ifconfig
+hasn't incremented either you have serious problems in your driver
+(e.g. the txbusy field of the network device being stuck on )
+or you may have multiple network devices connected.
+
+
+chandev
+-------
+There is a new device layer for channel devices, some
+drivers e.g. lcs are registered with this layer.
+
+If the device uses the channel device layer you'll be
+able to find what interrupts it uses & the current state
+of the device.
+
+See the manpage chandev.8 &type cat /proc/chandev for more info.
+
+
+SysRq
+=====
+This is now supported by linux for s/390 & z/Architecture.
+
+To enable it do compile the kernel with::
+
+ Kernel Hacking -> Magic SysRq Key Enabled
+
+Then::
+
+ echo "1" > /proc/sys/kernel/sysrq
+
+also type::
+
+ echo "8" >/proc/sys/kernel/printk
+
+To make printk output go to console.
+
+On 390 all commands are prefixed with::
+
+ ^-
+
+e.g.::
+
+ ^-t will show tasks.
+ ^-? or some unknown command will display help.
+
+The sysrq key reading is very picky ( I have to type the keys in an
+xterm session & paste them into the x3270 console )
+& it may be wise to predefine the keys as described in the VM hints above
+
+This is particularly useful for syncing disks unmounting & rebooting
+if the machine gets partially hung.
+
+Read Documentation/admin-guide/sysrq.rst for more info
+
+References:
+===========
+- Enterprise Systems Architecture Reference Summary
+- Enterprise Systems Architecture Principles of Operation
+- Hartmut Penners s390 stack frame sheet.
+- IBM Mainframe Channel Attachment a technology brief from a CISCO webpage
+- Various bits of man & info pages of Linux.
+- Linux & GDB source.
+- Various info & man pages.
+- CMS Help on tracing commands.
+- Linux for s/390 Elf Application Binary Interface
+- Linux for z/Series Elf Application Binary Interface ( Both Highly Recommended )
+- z/Architecture Principles of Operation SA22-7832-00
+- Enterprise Systems Architecture/390 Reference Summary SA22-7209-01 & the
+- Enterprise Systems Architecture/390 Principles of Operation SA22-7201-05
+
+Special Thanks
+==============
+Special thanks to Neale Ferguson who maintains a much
+prettier HTML version of this page at
+http://linuxvm.org/penguinvm/
+Bob Grainger Stefan Bader & others for reporting bugs
diff --git a/Documentation/s390/driver-model.txt b/Documentation/s390/driver-model.rst
index ed265cf54cde..ad4bc2dbea43 100644
--- a/Documentation/s390/driver-model.txt
+++ b/Documentation/s390/driver-model.rst
@@ -1,5 +1,6 @@
+=============================
S/390 driver model interfaces
------------------------------
+=============================
1. CCW devices
--------------
@@ -7,13 +8,13 @@ S/390 driver model interfaces
All devices which can be addressed by means of ccws are called 'CCW devices' -
even if they aren't actually driven by ccws.
-All ccw devices are accessed via a subchannel, this is reflected in the
-structures under devices/:
+All ccw devices are accessed via a subchannel, this is reflected in the
+structures under devices/::
-devices/
+ devices/
- system/
- css0/
- - 0.0.0000/0.0.0815/
+ - 0.0.0000/0.0.0815/
- 0.0.0001/0.0.4711/
- 0.0.0002/
- 0.1.0000/0.1.1234/
@@ -35,14 +36,18 @@ be found under bus/ccw/devices/.
All ccw devices export some data via sysfs.
-cutype: The control unit type / model.
+cutype:
+ The control unit type / model.
-devtype: The device type / model, if applicable.
+devtype:
+ The device type / model, if applicable.
-availability: Can be 'good' or 'boxed'; 'no path' or 'no device' for
+availability:
+ Can be 'good' or 'boxed'; 'no path' or 'no device' for
disconnected devices.
-online: An interface to set the device online and offline.
+online:
+ An interface to set the device online and offline.
In the special case of the device being disconnected (see the
notify function under 1.2), piping 0 to online will forcibly delete
the device.
@@ -52,9 +57,11 @@ The device drivers can add entries to export per-device data and interfaces.
There is also some data exported on a per-subchannel basis (see under
bus/css/devices/):
-chpids: Via which chpids the device is connected.
+chpids:
+ Via which chpids the device is connected.
-pimpampom: The path installed, path available and path operational masks.
+pimpampom:
+ The path installed, path available and path operational masks.
There also might be additional data, for example for block devices.
@@ -74,77 +81,93 @@ b. After a. has been performed, if necessary, the device is finally brought up
------------------------------------
The basic struct ccw_device and struct ccw_driver data structures can be found
-under include/asm/ccwdev.h.
+under include/asm/ccwdev.h::
-struct ccw_device {
- spinlock_t *ccwlock;
- struct ccw_device_private *private;
- struct ccw_device_id id;
+ struct ccw_device {
+ spinlock_t *ccwlock;
+ struct ccw_device_private *private;
+ struct ccw_device_id id;
- struct ccw_driver *drv;
- struct device dev;
+ struct ccw_driver *drv;
+ struct device dev;
int online;
void (*handler) (struct ccw_device *dev, unsigned long intparm,
- struct irb *irb);
-};
+ struct irb *irb);
+ };
-struct ccw_driver {
- struct module *owner;
- struct ccw_device_id *ids;
- int (*probe) (struct ccw_device *);
+ struct ccw_driver {
+ struct module *owner;
+ struct ccw_device_id *ids;
+ int (*probe) (struct ccw_device *);
int (*remove) (struct ccw_device *);
int (*set_online) (struct ccw_device *);
int (*set_offline) (struct ccw_device *);
int (*notify) (struct ccw_device *, int);
struct device_driver driver;
char *name;
-};
+ };
The 'private' field contains data needed for internal i/o operation only, and
is not available to the device driver.
Each driver should declare in a MODULE_DEVICE_TABLE into which CU types/models
and/or device types/models it is interested. This information can later be found
-in the struct ccw_device_id fields:
+in the struct ccw_device_id fields::
-struct ccw_device_id {
- __u16 match_flags;
+ struct ccw_device_id {
+ __u16 match_flags;
- __u16 cu_type;
- __u16 dev_type;
- __u8 cu_model;
- __u8 dev_model;
+ __u16 cu_type;
+ __u16 dev_type;
+ __u8 cu_model;
+ __u8 dev_model;
unsigned long driver_info;
-};
+ };
The functions in ccw_driver should be used in the following way:
-probe: This function is called by the device layer for each device the driver
+
+probe:
+ This function is called by the device layer for each device the driver
is interested in. The driver should only allocate private structures
to put in dev->driver_data and create attributes (if needed). Also,
the interrupt handler (see below) should be set here.
-int (*probe) (struct ccw_device *cdev);
+::
+
+ int (*probe) (struct ccw_device *cdev);
-Parameters: cdev - the device to be probed.
+Parameters:
+ cdev
+ - the device to be probed.
-remove: This function is called by the device layer upon removal of the driver,
+remove:
+ This function is called by the device layer upon removal of the driver,
the device or the module. The driver should perform cleanups here.
-int (*remove) (struct ccw_device *cdev);
+::
-Parameters: cdev - the device to be removed.
+ int (*remove) (struct ccw_device *cdev);
+Parameters:
+ cdev
+ - the device to be removed.
-set_online: This function is called by the common I/O layer when the device is
+
+set_online:
+ This function is called by the common I/O layer when the device is
activated via the 'online' attribute. The driver should finally
setup and activate the device here.
-int (*set_online) (struct ccw_device *);
+::
+
+ int (*set_online) (struct ccw_device *);
-Parameters: cdev - the device to be activated. The common layer has
+Parameters:
+ cdev
+ - the device to be activated. The common layer has
verified that the device is not already online.
@@ -152,15 +175,22 @@ set_offline: This function is called by the common I/O layer when the device is
de-activated via the 'online' attribute. The driver should shut
down the device, but not de-allocate its private data.
-int (*set_offline) (struct ccw_device *);
+::
-Parameters: cdev - the device to be deactivated. The common layer has
+ int (*set_offline) (struct ccw_device *);
+
+Parameters:
+ cdev
+ - the device to be deactivated. The common layer has
verified that the device is online.
-notify: This function is called by the common I/O layer for some state changes
+notify:
+ This function is called by the common I/O layer for some state changes
of the device.
+
Signalled to the driver are:
+
* In online state, device detached (CIO_GONE) or last path gone
(CIO_NO_PATH). The driver must return !0 to keep the device; for
return code 0, the device will be deleted as usual (also when no
@@ -173,32 +203,40 @@ notify: This function is called by the common I/O layer for some state changes
return code of the notify function the device driver signals if it
wants the device back: !0 for keeping, 0 to make the device being
removed and re-registered.
-
-int (*notify) (struct ccw_device *, int);
-Parameters: cdev - the device whose state changed.
- event - the event that happened. This can be one of CIO_GONE,
- CIO_NO_PATH or CIO_OPER.
+::
+
+ int (*notify) (struct ccw_device *, int);
+
+Parameters:
+ cdev
+ - the device whose state changed.
+
+ event
+ - the event that happened. This can be one of CIO_GONE,
+ CIO_NO_PATH or CIO_OPER.
The handler field of the struct ccw_device is meant to be set to the interrupt
-handler for the device. In order to accommodate drivers which use several
+handler for the device. In order to accommodate drivers which use several
distinct handlers (e.g. multi subchannel devices), this is a member of ccw_device
instead of ccw_driver.
The handler is registered with the common layer during set_online() processing
before the driver is called, and is deregistered during set_offline() after the
-driver has been called. Also, after registering / before deregistering, path
+driver has been called. Also, after registering / before deregistering, path
grouping resp. disbanding of the path group (if applicable) are performed.
-void (*handler) (struct ccw_device *dev, unsigned long intparm, struct irb *irb);
+::
-Parameters: dev - the device the handler is called for
+ void (*handler) (struct ccw_device *dev, unsigned long intparm, struct irb *irb);
+
+Parameters: dev - the device the handler is called for
intparm - the intparm which allows the device driver to identify
- the i/o the interrupt is associated with, or to recognize
- the interrupt as unsolicited.
- irb - interruption response block which contains the accumulated
- status.
+ the i/o the interrupt is associated with, or to recognize
+ the interrupt as unsolicited.
+ irb - interruption response block which contains the accumulated
+ status.
-The device driver is called from the common ccw_device layer and can retrieve
+The device driver is called from the common ccw_device layer and can retrieve
information about the interrupt from the irb parameter.
@@ -237,23 +275,27 @@ only the logical state and not the physical state, since we cannot track the
latter consistently due to lacking machine support (we don't need to be aware
of it anyway).
-status - Can be 'online' or 'offline'.
+status
+ - Can be 'online' or 'offline'.
Piping 'on' or 'off' sets the chpid logically online/offline.
Piping 'on' to an online chpid triggers path reprobing for all devices
the chpid connects to. This can be used to force the kernel to re-use
a channel path the user knows to be online, but the machine hasn't
created a machine check for.
-type - The physical type of the channel path.
+type
+ - The physical type of the channel path.
-shared - Whether the channel path is shared.
+shared
+ - Whether the channel path is shared.
-cmg - The channel measurement group.
+cmg
+ - The channel measurement group.
3. System devices
-----------------
-3.1 xpram
+3.1 xpram
---------
xpram shows up under devices/system/ as 'xpram'.
@@ -279,9 +321,8 @@ Netiucv connections show up under devices/iucv/ as "netiucv<ifnum>". The interfa
number is assigned sequentially to the connections defined via the 'connection'
attribute.
-user - shows the connection partner.
-
-buffer - maximum buffer size.
- Pipe to it to change buffer size.
-
+user
+ - shows the connection partner.
+buffer
+ - maximum buffer size. Pipe to it to change buffer size.
diff --git a/Documentation/s390/index.rst b/Documentation/s390/index.rst
new file mode 100644
index 000000000000..1a914da2a07b
--- /dev/null
+++ b/Documentation/s390/index.rst
@@ -0,0 +1,30 @@
+:orphan:
+
+=================
+s390 Architecture
+=================
+
+.. toctree::
+ :maxdepth: 1
+
+ cds
+ 3270
+ debugging390
+ driver-model
+ monreader
+ qeth
+ s390dbf
+ vfio-ap
+ vfio-ccw
+ zfcpdump
+ dasd
+ common_io
+
+ text_files
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/s390/monreader.txt b/Documentation/s390/monreader.rst
index d3729585fdb0..1e857575c113 100644
--- a/Documentation/s390/monreader.txt
+++ b/Documentation/s390/monreader.rst
@@ -1,24 +1,26 @@
+=================================================
+Linux API for read access to z/VM Monitor Records
+=================================================
Date : 2004-Nov-26
+
Author: Gerald Schaefer (geraldsc@de.ibm.com)
- Linux API for read access to z/VM Monitor Records
- =================================================
Description
===========
This item delivers a new Linux API in the form of a misc char device that is
usable from user space and allows read access to the z/VM Monitor Records
-collected by the *MONITOR System Service of z/VM.
+collected by the `*MONITOR` System Service of z/VM.
User Requirements
=================
The z/VM guest on which you want to access this API needs to be configured in
-order to allow IUCV connections to the *MONITOR service, i.e. it needs the
-IUCV *MONITOR statement in its user entry. If the monitor DCSS to be used is
+order to allow IUCV connections to the `*MONITOR` service, i.e. it needs the
+IUCV `*MONITOR` statement in its user entry. If the monitor DCSS to be used is
restricted (likely), you also need the NAMESAVE <DCSS NAME> statement.
This item will use the IUCV device driver to access the z/VM services, so you
need a kernel with IUCV support. You also need z/VM version 4.4 or 5.1.
@@ -50,7 +52,9 @@ Your guest virtual storage has to end below the starting address of the DCSS
and you have to specify the "mem=" kernel parameter in your parmfile with a
value greater than the ending address of the DCSS.
-Example: DEF STOR 140M
+Example::
+
+ DEF STOR 140M
This defines 140MB storage size for your guest, the parameter "mem=160M" is
added to the parmfile.
@@ -66,24 +70,27 @@ kernel, the kernel parameter "monreader.mondcss=<DCSS NAME>" can be specified
in the parmfile.
The default name for the DCSS is "MONDCSS" if none is specified. In case that
-there are other users already connected to the *MONITOR service (e.g.
+there are other users already connected to the `*MONITOR` service (e.g.
Performance Toolkit), the monitor DCSS is already defined and you have to use
the same DCSS. The CP command Q MONITOR (Class E privileged) shows the name
of the monitor DCSS, if already defined, and the users connected to the
-*MONITOR service.
+`*MONITOR` service.
Refer to the "z/VM Performance" book (SC24-6109-00) on how to create a monitor
DCSS if your z/VM doesn't have one already, you need Class E privileges to
define and save a DCSS.
Example:
--------
-modprobe monreader mondcss=MYDCSS
+
+::
+
+ modprobe monreader mondcss=MYDCSS
This loads the module and sets the DCSS name to "MYDCSS".
NOTE:
-----
-This API provides no interface to control the *MONITOR service, e.g. specify
+This API provides no interface to control the `*MONITOR` service, e.g. specify
which data should be collected. This can be done by the CP command MONITOR
(Class E privileged), see "CP Command and Utility Reference".
@@ -98,6 +105,7 @@ If your distribution does not support udev, a device node will not be created
automatically and you have to create it manually after loading the module.
Therefore you need to know the major and minor numbers of the device. These
numbers can be found in /sys/class/misc/monreader/dev.
+
Typing cat /sys/class/misc/monreader/dev will give an output of the form
<major>:<minor>. The device node can be created via the mknod command, enter
mknod <name> c <major> <minor>, where <name> is the name of the device node
@@ -105,10 +113,13 @@ to be created.
Example:
--------
-# modprobe monreader
-# cat /sys/class/misc/monreader/dev
-10:63
-# mknod /dev/monreader c 10 63
+
+::
+
+ # modprobe monreader
+ # cat /sys/class/misc/monreader/dev
+ 10:63
+ # mknod /dev/monreader c 10 63
This loads the module with the default monitor DCSS (MONDCSS) and creates a
device node.
@@ -133,20 +144,21 @@ last byte of data. The start address is needed to handle "end-of-frame" records
correctly (domain 1, record 13), i.e. it can be used to determine the record
start offset relative to a 4K page (frame) boundary.
-See "Appendix A: *MONITOR" in the "z/VM Performance" document for a description
+See "Appendix A: `*MONITOR`" in the "z/VM Performance" document for a description
of the monitor control element layout. The layout of the monitor records can
be found here (z/VM 5.1): http://www.vm.ibm.com/pubs/mon510/index.html
-The layout of the data stream provided by the monreader device is as follows:
-...
-<0 byte read>
-<first MCE> \
-<first set of records> |
-... |- data set
-<last MCE> |
-<last set of records> /
-<0 byte read>
-...
+The layout of the data stream provided by the monreader device is as follows::
+
+ ...
+ <0 byte read>
+ <first MCE> \
+ <first set of records> |
+ ... |- data set
+ <last MCE> |
+ <last set of records> /
+ <0 byte read>
+ ...
There may be more than one combination of MCE and corresponding record set
within one data set and the end of each data set is indicated by a successful
@@ -165,15 +177,19 @@ As with most char devices, error conditions are indicated by returning a
negative value for the number of bytes read. In this case, the errno variable
indicates the error condition:
-EIO: reply failed, read data is invalid and the application
+EIO:
+ reply failed, read data is invalid and the application
should discard the data read since the last successful read with 0 size.
-EFAULT: copy_to_user failed, read data is invalid and the application should
- discard the data read since the last successful read with 0 size.
-EAGAIN: occurs on a non-blocking read if there is no data available at the
- moment. There is no data missing or corrupted, just try again or rather
- use polling for non-blocking reads.
-EOVERFLOW: message limit reached, the data read since the last successful
- read with 0 size is valid but subsequent records may be missing.
+EFAULT:
+ copy_to_user failed, read data is invalid and the application should
+ discard the data read since the last successful read with 0 size.
+EAGAIN:
+ occurs on a non-blocking read if there is no data available at the
+ moment. There is no data missing or corrupted, just try again or rather
+ use polling for non-blocking reads.
+EOVERFLOW:
+ message limit reached, the data read since the last successful
+ read with 0 size is valid but subsequent records may be missing.
In the last case (EOVERFLOW) there may be missing data, in the first two cases
(EIO, EFAULT) there will be missing data. It's up to the application if it will
@@ -183,7 +199,7 @@ Open:
-----
Only one user is allowed to open the char device. If it is already in use, the
open function will fail (return a negative value) and set errno to EBUSY.
-The open function may also fail if an IUCV connection to the *MONITOR service
+The open function may also fail if an IUCV connection to the `*MONITOR` service
cannot be established. In this case errno will be set to EIO and an error
message with an IPUSER SEVER code will be printed into syslog. The IPUSER SEVER
codes are described in the "z/VM Performance" book, Appendix A.
@@ -194,4 +210,3 @@ As soon as the device is opened, incoming messages will be accepted and they
will account for the message limit, i.e. opening the device without reading
from it will provoke the "message limit reached" error (EOVERFLOW error code)
eventually.
-
diff --git a/Documentation/s390/qeth.txt b/Documentation/s390/qeth.rst
index aa06fcf5f8c2..f02fdaa68de0 100644
--- a/Documentation/s390/qeth.txt
+++ b/Documentation/s390/qeth.rst
@@ -1,8 +1,12 @@
+=============================
IBM s390 QDIO Ethernet Driver
+=============================
OSA and HiperSockets Bridge Port Support
+========================================
Uevents
+-------
To generate the events the device must be assigned a role of either
a primary or a secondary Bridge Port. For more information, see
@@ -13,12 +17,15 @@ of some configured Bridge Port device on the channel changes, a udev
event with ACTION=CHANGE is emitted on behalf of the corresponding
ccwgroup device. The event has the following attributes:
-BRIDGEPORT=statechange - indicates that the Bridge Port device changed
+BRIDGEPORT=statechange
+ indicates that the Bridge Port device changed
its state.
-ROLE={primary|secondary|none} - the role assigned to the port.
+ROLE={primary|secondary|none}
+ the role assigned to the port.
-STATE={active|standby|inactive} - the newly assumed state of the port.
+STATE={active|standby|inactive}
+ the newly assumed state of the port.
When run on HiperSockets Bridge Capable Port hardware with host address
notifications enabled, a udev event with ACTION=CHANGE is emitted.
@@ -26,25 +33,32 @@ It is emitted on behalf of the corresponding ccwgroup device when a host
or a VLAN is registered or unregistered on the network served by the device.
The event has the following attributes:
-BRIDGEDHOST={reset|register|deregister|abort} - host address
+BRIDGEDHOST={reset|register|deregister|abort}
+ host address
notifications are started afresh, a new host or VLAN is registered or
deregistered on the Bridge Port HiperSockets channel, or address
notifications are aborted.
-VLAN=numeric-vlan-id - VLAN ID on which the event occurred. Not included
+VLAN=numeric-vlan-id
+ VLAN ID on which the event occurred. Not included
if no VLAN is involved in the event.
-MAC=xx:xx:xx:xx:xx:xx - MAC address of the host that is being registered
+MAC=xx:xx:xx:xx:xx:xx
+ MAC address of the host that is being registered
or deregistered from the HiperSockets channel. Not reported if the
event reports the creation or destruction of a VLAN.
-NTOK_BUSID=x.y.zzzz - device bus ID (CSSID, SSID and device number).
+NTOK_BUSID=x.y.zzzz
+ device bus ID (CSSID, SSID and device number).
-NTOK_IID=xx - device IID.
+NTOK_IID=xx
+ device IID.
-NTOK_CHPID=xx - device CHPID.
+NTOK_CHPID=xx
+ device CHPID.
-NTOK_CHID=xxxx - device channel ID.
+NTOK_CHID=xxxx
+ device channel ID.
-Note that the NTOK_* attributes refer to devices other than the one
+Note that the `NTOK_*` attributes refer to devices other than the one
connected to the system on which the OS is running.
diff --git a/Documentation/s390/s390dbf.rst b/Documentation/s390/s390dbf.rst
new file mode 100644
index 000000000000..cdb36842b898
--- /dev/null
+++ b/Documentation/s390/s390dbf.rst
@@ -0,0 +1,487 @@
+==================
+S390 Debug Feature
+==================
+
+files:
+ - arch/s390/kernel/debug.c
+ - arch/s390/include/asm/debug.h
+
+Description:
+------------
+The goal of this feature is to provide a kernel debug logging API
+where log records can be stored efficiently in memory, where each component
+(e.g. device drivers) can have one separate debug log.
+One purpose of this is to inspect the debug logs after a production system crash
+in order to analyze the reason for the crash.
+
+If the system still runs but only a subcomponent which uses dbf fails,
+it is possible to look at the debug logs on a live system via the Linux
+debugfs filesystem.
+
+The debug feature may also very useful for kernel and driver development.
+
+Design:
+-------
+Kernel components (e.g. device drivers) can register themselves at the debug
+feature with the function call :c:func:`debug_register()`.
+This function initializes a
+debug log for the caller. For each debug log exists a number of debug areas
+where exactly one is active at one time. Each debug area consists of contiguous
+pages in memory. In the debug areas there are stored debug entries (log records)
+which are written by event- and exception-calls.
+
+An event-call writes the specified debug entry to the active debug
+area and updates the log pointer for the active area. If the end
+of the active debug area is reached, a wrap around is done (ring buffer)
+and the next debug entry will be written at the beginning of the active
+debug area.
+
+An exception-call writes the specified debug entry to the log and
+switches to the next debug area. This is done in order to be sure
+that the records which describe the origin of the exception are not
+overwritten when a wrap around for the current area occurs.
+
+The debug areas themselves are also ordered in form of a ring buffer.
+When an exception is thrown in the last debug area, the following debug
+entries are then written again in the very first area.
+
+There are four versions for the event- and exception-calls: One for
+logging raw data, one for text, one for numbers (unsigned int and long),
+and one for sprintf-like formatted strings.
+
+Each debug entry contains the following data:
+
+- Timestamp
+- Cpu-Number of calling task
+- Level of debug entry (0...6)
+- Return Address to caller
+- Flag, if entry is an exception or not
+
+The debug logs can be inspected in a live system through entries in
+the debugfs-filesystem. Under the toplevel directory "``s390dbf``" there is
+a directory for each registered component, which is named like the
+corresponding component. The debugfs normally should be mounted to
+``/sys/kernel/debug`` therefore the debug feature can be accessed under
+``/sys/kernel/debug/s390dbf``.
+
+The content of the directories are files which represent different views
+to the debug log. Each component can decide which views should be
+used through registering them with the function :c:func:`debug_register_view()`.
+Predefined views for hex/ascii, sprintf and raw binary data are provided.
+It is also possible to define other views. The content of
+a view can be inspected simply by reading the corresponding debugfs file.
+
+All debug logs have an actual debug level (range from 0 to 6).
+The default level is 3. Event and Exception functions have a :c:data:`level`
+parameter. Only debug entries with a level that is lower or equal
+than the actual level are written to the log. This means, when
+writing events, high priority log entries should have a low level
+value whereas low priority entries should have a high one.
+The actual debug level can be changed with the help of the debugfs-filesystem
+through writing a number string "x" to the ``level`` debugfs file which is
+provided for every debug log. Debugging can be switched off completely
+by using "-" on the ``level`` debugfs file.
+
+Example::
+
+ > echo "-" > /sys/kernel/debug/s390dbf/dasd/level
+
+It is also possible to deactivate the debug feature globally for every
+debug log. You can change the behavior using 2 sysctl parameters in
+``/proc/sys/s390dbf``:
+
+There are currently 2 possible triggers, which stop the debug feature
+globally. The first possibility is to use the ``debug_active`` sysctl. If
+set to 1 the debug feature is running. If ``debug_active`` is set to 0 the
+debug feature is turned off.
+
+The second trigger which stops the debug feature is a kernel oops.
+That prevents the debug feature from overwriting debug information that
+happened before the oops. After an oops you can reactivate the debug feature
+by piping 1 to ``/proc/sys/s390dbf/debug_active``. Nevertheless, it's not
+suggested to use an oopsed kernel in a production environment.
+
+If you want to disallow the deactivation of the debug feature, you can use
+the ``debug_stoppable`` sysctl. If you set ``debug_stoppable`` to 0 the debug
+feature cannot be stopped. If the debug feature is already stopped, it
+will stay deactivated.
+
+Kernel Interfaces:
+------------------
+
+.. kernel-doc:: arch/s390/kernel/debug.c
+.. kernel-doc:: arch/s390/include/asm/debug.h
+
+Predefined views:
+-----------------
+
+.. code-block:: c
+
+ extern struct debug_view debug_hex_ascii_view;
+
+ extern struct debug_view debug_raw_view;
+
+ extern struct debug_view debug_sprintf_view;
+
+Examples
+--------
+
+.. code-block:: c
+
+ /*
+ * hex_ascii- + raw-view Example
+ */
+
+ #include <linux/init.h>
+ #include <asm/debug.h>
+
+ static debug_info_t *debug_info;
+
+ static int init(void)
+ {
+ /* register 4 debug areas with one page each and 4 byte data field */
+
+ debug_info = debug_register("test", 1, 4, 4 );
+ debug_register_view(debug_info, &debug_hex_ascii_view);
+ debug_register_view(debug_info, &debug_raw_view);
+
+ debug_text_event(debug_info, 4 , "one ");
+ debug_int_exception(debug_info, 4, 4711);
+ debug_event(debug_info, 3, &debug_info, 4);
+
+ return 0;
+ }
+
+ static void cleanup(void)
+ {
+ debug_unregister(debug_info);
+ }
+
+ module_init(init);
+ module_exit(cleanup);
+
+.. code-block:: c
+
+ /*
+ * sprintf-view Example
+ */
+
+ #include <linux/init.h>
+ #include <asm/debug.h>
+
+ static debug_info_t *debug_info;
+
+ static int init(void)
+ {
+ /* register 4 debug areas with one page each and data field for */
+ /* format string pointer + 2 varargs (= 3 * sizeof(long)) */
+
+ debug_info = debug_register("test", 1, 4, sizeof(long) * 3);
+ debug_register_view(debug_info, &debug_sprintf_view);
+
+ debug_sprintf_event(debug_info, 2 , "first event in %s:%i\n",__FILE__,__LINE__);
+ debug_sprintf_exception(debug_info, 1, "pointer to debug info: %p\n",&debug_info);
+
+ return 0;
+ }
+
+ static void cleanup(void)
+ {
+ debug_unregister(debug_info);
+ }
+
+ module_init(init);
+ module_exit(cleanup);
+
+Debugfs Interface
+-----------------
+Views to the debug logs can be investigated through reading the corresponding
+debugfs-files:
+
+Example::
+
+ > ls /sys/kernel/debug/s390dbf/dasd
+ flush hex_ascii level pages raw
+ > cat /sys/kernel/debug/s390dbf/dasd/hex_ascii | sort -k2,2 -s
+ 00 00974733272:680099 2 - 02 0006ad7e 07 ea 4a 90 | ....
+ 00 00974733272:682210 2 - 02 0006ade6 46 52 45 45 | FREE
+ 00 00974733272:682213 2 - 02 0006adf6 07 ea 4a 90 | ....
+ 00 00974733272:682281 1 * 02 0006ab08 41 4c 4c 43 | EXCP
+ 01 00974733272:682284 2 - 02 0006ab16 45 43 4b 44 | ECKD
+ 01 00974733272:682287 2 - 02 0006ab28 00 00 00 04 | ....
+ 01 00974733272:682289 2 - 02 0006ab3e 00 00 00 20 | ...
+ 01 00974733272:682297 2 - 02 0006ad7e 07 ea 4a 90 | ....
+ 01 00974733272:684384 2 - 00 0006ade6 46 52 45 45 | FREE
+ 01 00974733272:684388 2 - 00 0006adf6 07 ea 4a 90 | ....
+
+See section about predefined views for explanation of the above output!
+
+Changing the debug level
+------------------------
+
+Example::
+
+
+ > cat /sys/kernel/debug/s390dbf/dasd/level
+ 3
+ > echo "5" > /sys/kernel/debug/s390dbf/dasd/level
+ > cat /sys/kernel/debug/s390dbf/dasd/level
+ 5
+
+Flushing debug areas
+--------------------
+Debug areas can be flushed with piping the number of the desired
+area (0...n) to the debugfs file "flush". When using "-" all debug areas
+are flushed.
+
+Examples:
+
+1. Flush debug area 0::
+
+ > echo "0" > /sys/kernel/debug/s390dbf/dasd/flush
+
+2. Flush all debug areas::
+
+ > echo "-" > /sys/kernel/debug/s390dbf/dasd/flush
+
+Changing the size of debug areas
+------------------------------------
+It is possible the change the size of debug areas through piping
+the number of pages to the debugfs file "pages". The resize request will
+also flush the debug areas.
+
+Example:
+
+Define 4 pages for the debug areas of debug feature "dasd"::
+
+ > echo "4" > /sys/kernel/debug/s390dbf/dasd/pages
+
+Stopping the debug feature
+--------------------------
+Example:
+
+1. Check if stopping is allowed::
+
+ > cat /proc/sys/s390dbf/debug_stoppable
+
+2. Stop debug feature::
+
+ > echo 0 > /proc/sys/s390dbf/debug_active
+
+crash Interface
+----------------
+The ``crash`` tool since v5.1.0 has a built-in command
+``s390dbf`` to display all the debug logs or export them to the file system.
+With this tool it is possible
+to investigate the debug logs on a live system and with a memory dump after
+a system crash.
+
+Investigating raw memory
+------------------------
+One last possibility to investigate the debug logs at a live
+system and after a system crash is to look at the raw memory
+under VM or at the Service Element.
+It is possible to find the anchor of the debug-logs through
+the ``debug_area_first`` symbol in the System map. Then one has
+to follow the correct pointers of the data-structures defined
+in debug.h and find the debug-areas in memory.
+Normally modules which use the debug feature will also have
+a global variable with the pointer to the debug-logs. Following
+this pointer it will also be possible to find the debug logs in
+memory.
+
+For this method it is recommended to use '16 * x + 4' byte (x = 0..n)
+for the length of the data field in :c:func:`debug_register()` in
+order to see the debug entries well formatted.
+
+
+Predefined Views
+----------------
+
+There are three predefined views: hex_ascii, raw and sprintf.
+The hex_ascii view shows the data field in hex and ascii representation
+(e.g. ``45 43 4b 44 | ECKD``).
+The raw view returns a bytestream as the debug areas are stored in memory.
+
+The sprintf view formats the debug entries in the same way as the sprintf
+function would do. The sprintf event/exception functions write to the
+debug entry a pointer to the format string (size = sizeof(long))
+and for each vararg a long value. So e.g. for a debug entry with a format
+string plus two varargs one would need to allocate a (3 * sizeof(long))
+byte data area in the debug_register() function.
+
+IMPORTANT:
+ Using "%s" in sprintf event functions is dangerous. You can only
+ use "%s" in the sprintf event functions, if the memory for the passed string
+ is available as long as the debug feature exists. The reason behind this is
+ that due to performance considerations only a pointer to the string is stored
+ in the debug feature. If you log a string that is freed afterwards, you will
+ get an OOPS when inspecting the debug feature, because then the debug feature
+ will access the already freed memory.
+
+NOTE:
+ If using the sprintf view do NOT use other event/exception functions
+ than the sprintf-event and -exception functions.
+
+The format of the hex_ascii and sprintf view is as follows:
+
+- Number of area
+- Timestamp (formatted as seconds and microseconds since 00:00:00 Coordinated
+ Universal Time (UTC), January 1, 1970)
+- level of debug entry
+- Exception flag (* = Exception)
+- Cpu-Number of calling task
+- Return Address to caller
+- data field
+
+The format of the raw view is:
+
+- Header as described in debug.h
+- datafield
+
+A typical line of the hex_ascii view will look like the following (first line
+is only for explanation and will not be displayed when 'cating' the view)::
+
+ area time level exception cpu caller data (hex + ascii)
+ --------------------------------------------------------------------------
+ 00 00964419409:440690 1 - 00 88023fe
+
+
+Defining views
+--------------
+
+Views are specified with the 'debug_view' structure. There are defined
+callback functions which are used for reading and writing the debugfs files:
+
+.. code-block:: c
+
+ struct debug_view {
+ char name[DEBUG_MAX_PROCF_LEN];
+ debug_prolog_proc_t* prolog_proc;
+ debug_header_proc_t* header_proc;
+ debug_format_proc_t* format_proc;
+ debug_input_proc_t* input_proc;
+ void* private_data;
+ };
+
+where:
+
+.. code-block:: c
+
+ typedef int (debug_header_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ int area,
+ debug_entry_t* entry,
+ char* out_buf);
+
+ typedef int (debug_format_proc_t) (debug_info_t* id,
+ struct debug_view* view, char* out_buf,
+ const char* in_buf);
+ typedef int (debug_prolog_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ char* out_buf);
+ typedef int (debug_input_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ struct file* file, const char* user_buf,
+ size_t in_buf_size, loff_t* offset);
+
+
+The "private_data" member can be used as pointer to view specific data.
+It is not used by the debug feature itself.
+
+The output when reading a debugfs file is structured like this::
+
+ "prolog_proc output"
+
+ "header_proc output 1" "format_proc output 1"
+ "header_proc output 2" "format_proc output 2"
+ "header_proc output 3" "format_proc output 3"
+ ...
+
+When a view is read from the debugfs, the Debug Feature calls the
+'prolog_proc' once for writing the prolog.
+Then 'header_proc' and 'format_proc' are called for each
+existing debug entry.
+
+The input_proc can be used to implement functionality when it is written to
+the view (e.g. like with ``echo "0" > /sys/kernel/debug/s390dbf/dasd/level``).
+
+For header_proc there can be used the default function
+:c:func:`debug_dflt_header_fn()` which is defined in debug.h.
+and which produces the same header output as the predefined views.
+E.g::
+
+ 00 00964419409:440761 2 - 00 88023ec
+
+In order to see how to use the callback functions check the implementation
+of the default views!
+
+Example:
+
+.. code-block:: c
+
+ #include <asm/debug.h>
+
+ #define UNKNOWNSTR "data: %08x"
+
+ const char* messages[] =
+ {"This error...........\n",
+ "That error...........\n",
+ "Problem..............\n",
+ "Something went wrong.\n",
+ "Everything ok........\n",
+ NULL
+ };
+
+ static int debug_test_format_fn(
+ debug_info_t *id, struct debug_view *view,
+ char *out_buf, const char *in_buf
+ )
+ {
+ int i, rc = 0;
+
+ if (id->buf_size >= 4) {
+ int msg_nr = *((int*)in_buf);
+ if (msg_nr < sizeof(messages) / sizeof(char*) - 1)
+ rc += sprintf(out_buf, "%s", messages[msg_nr]);
+ else
+ rc += sprintf(out_buf, UNKNOWNSTR, msg_nr);
+ }
+ return rc;
+ }
+
+ struct debug_view debug_test_view = {
+ "myview", /* name of view */
+ NULL, /* no prolog */
+ &debug_dflt_header_fn, /* default header for each entry */
+ &debug_test_format_fn, /* our own format function */
+ NULL, /* no input function */
+ NULL /* no private data */
+ };
+
+test:
+=====
+
+.. code-block:: c
+
+ debug_info_t *debug_info;
+ int i;
+ ...
+ debug_info = debug_register("test", 0, 4, 4);
+ debug_register_view(debug_info, &debug_test_view);
+ for (i = 0; i < 10; i ++)
+ debug_int_event(debug_info, 1, i);
+
+::
+
+ > cat /sys/kernel/debug/s390dbf/test/myview
+ 00 00964419734:611402 1 - 00 88042ca This error...........
+ 00 00964419734:611405 1 - 00 88042ca That error...........
+ 00 00964419734:611408 1 - 00 88042ca Problem..............
+ 00 00964419734:611411 1 - 00 88042ca Something went wrong.
+ 00 00964419734:611414 1 - 00 88042ca Everything ok........
+ 00 00964419734:611417 1 - 00 88042ca data: 00000005
+ 00 00964419734:611419 1 - 00 88042ca data: 00000006
+ 00 00964419734:611422 1 - 00 88042ca data: 00000007
+ 00 00964419734:611425 1 - 00 88042ca data: 00000008
+ 00 00964419734:611428 1 - 00 88042ca data: 00000009
diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt
deleted file mode 100644
index 61329fd62e89..000000000000
--- a/Documentation/s390/s390dbf.txt
+++ /dev/null
@@ -1,667 +0,0 @@
-S390 Debug Feature
-==================
-
-files: arch/s390/kernel/debug.c
- arch/s390/include/asm/debug.h
-
-Description:
-------------
-The goal of this feature is to provide a kernel debug logging API
-where log records can be stored efficiently in memory, where each component
-(e.g. device drivers) can have one separate debug log.
-One purpose of this is to inspect the debug logs after a production system crash
-in order to analyze the reason for the crash.
-If the system still runs but only a subcomponent which uses dbf fails,
-it is possible to look at the debug logs on a live system via the Linux
-debugfs filesystem.
-The debug feature may also very useful for kernel and driver development.
-
-Design:
--------
-Kernel components (e.g. device drivers) can register themselves at the debug
-feature with the function call debug_register(). This function initializes a
-debug log for the caller. For each debug log exists a number of debug areas
-where exactly one is active at one time. Each debug area consists of contiguous
-pages in memory. In the debug areas there are stored debug entries (log records)
-which are written by event- and exception-calls.
-
-An event-call writes the specified debug entry to the active debug
-area and updates the log pointer for the active area. If the end
-of the active debug area is reached, a wrap around is done (ring buffer)
-and the next debug entry will be written at the beginning of the active
-debug area.
-
-An exception-call writes the specified debug entry to the log and
-switches to the next debug area. This is done in order to be sure
-that the records which describe the origin of the exception are not
-overwritten when a wrap around for the current area occurs.
-
-The debug areas themselves are also ordered in form of a ring buffer.
-When an exception is thrown in the last debug area, the following debug
-entries are then written again in the very first area.
-
-There are three versions for the event- and exception-calls: One for
-logging raw data, one for text and one for numbers.
-
-Each debug entry contains the following data:
-
-- Timestamp
-- Cpu-Number of calling task
-- Level of debug entry (0...6)
-- Return Address to caller
-- Flag, if entry is an exception or not
-
-The debug logs can be inspected in a live system through entries in
-the debugfs-filesystem. Under the toplevel directory "s390dbf" there is
-a directory for each registered component, which is named like the
-corresponding component. The debugfs normally should be mounted to
-/sys/kernel/debug therefore the debug feature can be accessed under
-/sys/kernel/debug/s390dbf.
-
-The content of the directories are files which represent different views
-to the debug log. Each component can decide which views should be
-used through registering them with the function debug_register_view().
-Predefined views for hex/ascii, sprintf and raw binary data are provided.
-It is also possible to define other views. The content of
-a view can be inspected simply by reading the corresponding debugfs file.
-
-All debug logs have an actual debug level (range from 0 to 6).
-The default level is 3. Event and Exception functions have a 'level'
-parameter. Only debug entries with a level that is lower or equal
-than the actual level are written to the log. This means, when
-writing events, high priority log entries should have a low level
-value whereas low priority entries should have a high one.
-The actual debug level can be changed with the help of the debugfs-filesystem
-through writing a number string "x" to the 'level' debugfs file which is
-provided for every debug log. Debugging can be switched off completely
-by using "-" on the 'level' debugfs file.
-
-Example:
-
-> echo "-" > /sys/kernel/debug/s390dbf/dasd/level
-
-It is also possible to deactivate the debug feature globally for every
-debug log. You can change the behavior using 2 sysctl parameters in
-/proc/sys/s390dbf:
-There are currently 2 possible triggers, which stop the debug feature
-globally. The first possibility is to use the "debug_active" sysctl. If
-set to 1 the debug feature is running. If "debug_active" is set to 0 the
-debug feature is turned off.
-The second trigger which stops the debug feature is a kernel oops.
-That prevents the debug feature from overwriting debug information that
-happened before the oops. After an oops you can reactivate the debug feature
-by piping 1 to /proc/sys/s390dbf/debug_active. Nevertheless, its not
-suggested to use an oopsed kernel in a production environment.
-If you want to disallow the deactivation of the debug feature, you can use
-the "debug_stoppable" sysctl. If you set "debug_stoppable" to 0 the debug
-feature cannot be stopped. If the debug feature is already stopped, it
-will stay deactivated.
-
-Kernel Interfaces:
-------------------
-
-----------------------------------------------------------------------------
-debug_info_t *debug_register(char *name, int pages, int nr_areas,
- int buf_size);
-
-Parameter: name: Name of debug log (e.g. used for debugfs entry)
- pages: number of pages, which will be allocated per area
- nr_areas: number of debug areas
- buf_size: size of data area in each debug entry
-
-Return Value: Handle for generated debug area
- NULL if register failed
-
-Description: Allocates memory for a debug log
- Must not be called within an interrupt handler
-
-----------------------------------------------------------------------------
-debug_info_t *debug_register_mode(char *name, int pages, int nr_areas,
- int buf_size, mode_t mode, uid_t uid,
- gid_t gid);
-
-Parameter: name: Name of debug log (e.g. used for debugfs entry)
- pages: Number of pages, which will be allocated per area
- nr_areas: Number of debug areas
- buf_size: Size of data area in each debug entry
- mode: File mode for debugfs files. E.g. S_IRWXUGO
- uid: User ID for debugfs files. Currently only 0 is
- supported.
- gid: Group ID for debugfs files. Currently only 0 is
- supported.
-
-Return Value: Handle for generated debug area
- NULL if register failed
-
-Description: Allocates memory for a debug log
- Must not be called within an interrupt handler
-
----------------------------------------------------------------------------
-void debug_unregister (debug_info_t * id);
-
-Parameter: id: handle for debug log
-
-Return Value: none
-
-Description: frees memory for a debug log and removes all registered debug
- views.
- Must not be called within an interrupt handler
-
----------------------------------------------------------------------------
-void debug_set_level (debug_info_t * id, int new_level);
-
-Parameter: id: handle for debug log
- new_level: new debug level
-
-Return Value: none
-
-Description: Sets new actual debug level if new_level is valid.
-
----------------------------------------------------------------------------
-bool debug_level_enabled (debug_info_t * id, int level);
-
-Parameter: id: handle for debug log
- level: debug level
-
-Return Value: True if level is less or equal to the current debug level.
-
-Description: Returns true if debug events for the specified level would be
- logged. Otherwise returns false.
----------------------------------------------------------------------------
-void debug_stop_all(void);
-
-Parameter: none
-
-Return Value: none
-
-Description: stops the debug feature if stopping is allowed. Currently
- used in case of a kernel oops.
-
----------------------------------------------------------------------------
-debug_entry_t* debug_event (debug_info_t* id, int level, void* data,
- int length);
-
-Parameter: id: handle for debug log
- level: debug level
- data: pointer to data for debug entry
- length: length of data in bytes
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_int_event (debug_info_t * id, int level,
- unsigned int data);
-debug_entry_t* debug_long_event(debug_info_t * id, int level,
- unsigned long data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: integer value for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_text_event (debug_info_t * id, int level,
- const char* data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: string for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry in ascii format to active debug area
- (if level <= actual debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_sprintf_event (debug_info_t * id, int level,
- char* string,...);
-
-Parameter: id: handle for debug log
- level: debug level
- string: format string for debug entry
- ...: varargs used as in sprintf()
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry with format string and varargs (longs) to
- active debug area (if level $<=$ actual debug level).
- floats and long long datatypes cannot be used as varargs.
-
----------------------------------------------------------------------------
-
-debug_entry_t* debug_exception (debug_info_t* id, int level, void* data,
- int length);
-
-Parameter: id: handle for debug log
- level: debug level
- data: pointer to data for debug entry
- length: length of data in bytes
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level) and switches to next debug area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_int_exception (debug_info_t * id, int level,
- unsigned int data);
-debug_entry_t* debug_long_exception(debug_info_t * id, int level,
- unsigned long data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: integer value for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level) and switches to next debug area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_text_exception (debug_info_t * id, int level,
- const char* data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: string for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry in ascii format to active debug area
- (if level <= actual debug level) and switches to next debug
- area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_sprintf_exception (debug_info_t * id, int level,
- char* string,...);
-
-Parameter: id: handle for debug log
- level: debug level
- string: format string for debug entry
- ...: varargs used as in sprintf()
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry with format string and varargs (longs) to
- active debug area (if level $<=$ actual debug level) and
- switches to next debug area.
- floats and long long datatypes cannot be used as varargs.
-
----------------------------------------------------------------------------
-
-int debug_register_view (debug_info_t * id, struct debug_view *view);
-
-Parameter: id: handle for debug log
- view: pointer to debug view struct
-
-Return Value: 0 : ok
- < 0: Error
-
-Description: registers new debug view and creates debugfs dir entry
-
----------------------------------------------------------------------------
-int debug_unregister_view (debug_info_t * id, struct debug_view *view);
-
-Parameter: id: handle for debug log
- view: pointer to debug view struct
-
-Return Value: 0 : ok
- < 0: Error
-
-Description: unregisters debug view and removes debugfs dir entry
-
-
-
-Predefined views:
------------------
-
-extern struct debug_view debug_hex_ascii_view;
-extern struct debug_view debug_raw_view;
-extern struct debug_view debug_sprintf_view;
-
-Examples
---------
-
-/*
- * hex_ascii- + raw-view Example
- */
-
-#include <linux/init.h>
-#include <asm/debug.h>
-
-static debug_info_t* debug_info;
-
-static int init(void)
-{
- /* register 4 debug areas with one page each and 4 byte data field */
-
- debug_info = debug_register ("test", 1, 4, 4 );
- debug_register_view(debug_info,&debug_hex_ascii_view);
- debug_register_view(debug_info,&debug_raw_view);
-
- debug_text_event(debug_info, 4 , "one ");
- debug_int_exception(debug_info, 4, 4711);
- debug_event(debug_info, 3, &debug_info, 4);
-
- return 0;
-}
-
-static void cleanup(void)
-{
- debug_unregister (debug_info);
-}
-
-module_init(init);
-module_exit(cleanup);
-
----------------------------------------------------------------------------
-
-/*
- * sprintf-view Example
- */
-
-#include <linux/init.h>
-#include <asm/debug.h>
-
-static debug_info_t* debug_info;
-
-static int init(void)
-{
- /* register 4 debug areas with one page each and data field for */
- /* format string pointer + 2 varargs (= 3 * sizeof(long)) */
-
- debug_info = debug_register ("test", 1, 4, sizeof(long) * 3);
- debug_register_view(debug_info,&debug_sprintf_view);
-
- debug_sprintf_event(debug_info, 2 , "first event in %s:%i\n",__FILE__,__LINE__);
- debug_sprintf_exception(debug_info, 1, "pointer to debug info: %p\n",&debug_info);
-
- return 0;
-}
-
-static void cleanup(void)
-{
- debug_unregister (debug_info);
-}
-
-module_init(init);
-module_exit(cleanup);
-
-
-
-Debugfs Interface
-----------------
-Views to the debug logs can be investigated through reading the corresponding
-debugfs-files:
-
-Example:
-
-> ls /sys/kernel/debug/s390dbf/dasd
-flush hex_ascii level pages raw
-> cat /sys/kernel/debug/s390dbf/dasd/hex_ascii | sort -k2,2 -s
-00 00974733272:680099 2 - 02 0006ad7e 07 ea 4a 90 | ....
-00 00974733272:682210 2 - 02 0006ade6 46 52 45 45 | FREE
-00 00974733272:682213 2 - 02 0006adf6 07 ea 4a 90 | ....
-00 00974733272:682281 1 * 02 0006ab08 41 4c 4c 43 | EXCP
-01 00974733272:682284 2 - 02 0006ab16 45 43 4b 44 | ECKD
-01 00974733272:682287 2 - 02 0006ab28 00 00 00 04 | ....
-01 00974733272:682289 2 - 02 0006ab3e 00 00 00 20 | ...
-01 00974733272:682297 2 - 02 0006ad7e 07 ea 4a 90 | ....
-01 00974733272:684384 2 - 00 0006ade6 46 52 45 45 | FREE
-01 00974733272:684388 2 - 00 0006adf6 07 ea 4a 90 | ....
-
-See section about predefined views for explanation of the above output!
-
-Changing the debug level
-------------------------
-
-Example:
-
-
-> cat /sys/kernel/debug/s390dbf/dasd/level
-3
-> echo "5" > /sys/kernel/debug/s390dbf/dasd/level
-> cat /sys/kernel/debug/s390dbf/dasd/level
-5
-
-Flushing debug areas
---------------------
-Debug areas can be flushed with piping the number of the desired
-area (0...n) to the debugfs file "flush". When using "-" all debug areas
-are flushed.
-
-Examples:
-
-1. Flush debug area 0:
-> echo "0" > /sys/kernel/debug/s390dbf/dasd/flush
-
-2. Flush all debug areas:
-> echo "-" > /sys/kernel/debug/s390dbf/dasd/flush
-
-Changing the size of debug areas
-------------------------------------
-It is possible the change the size of debug areas through piping
-the number of pages to the debugfs file "pages". The resize request will
-also flush the debug areas.
-
-Example:
-
-Define 4 pages for the debug areas of debug feature "dasd":
-> echo "4" > /sys/kernel/debug/s390dbf/dasd/pages
-
-Stooping the debug feature
---------------------------
-Example:
-
-1. Check if stopping is allowed
-> cat /proc/sys/s390dbf/debug_stoppable
-2. Stop debug feature
-> echo 0 > /proc/sys/s390dbf/debug_active
-
-lcrash Interface
-----------------
-It is planned that the dump analysis tool lcrash gets an additional command
-'s390dbf' to display all the debug logs. With this tool it will be possible
-to investigate the debug logs on a live system and with a memory dump after
-a system crash.
-
-Investigating raw memory
-------------------------
-One last possibility to investigate the debug logs at a live
-system and after a system crash is to look at the raw memory
-under VM or at the Service Element.
-It is possible to find the anker of the debug-logs through
-the 'debug_area_first' symbol in the System map. Then one has
-to follow the correct pointers of the data-structures defined
-in debug.h and find the debug-areas in memory.
-Normally modules which use the debug feature will also have
-a global variable with the pointer to the debug-logs. Following
-this pointer it will also be possible to find the debug logs in
-memory.
-
-For this method it is recommended to use '16 * x + 4' byte (x = 0..n)
-for the length of the data field in debug_register() in
-order to see the debug entries well formatted.
-
-
-Predefined Views
-----------------
-
-There are three predefined views: hex_ascii, raw and sprintf.
-The hex_ascii view shows the data field in hex and ascii representation
-(e.g. '45 43 4b 44 | ECKD').
-The raw view returns a bytestream as the debug areas are stored in memory.
-
-The sprintf view formats the debug entries in the same way as the sprintf
-function would do. The sprintf event/exception functions write to the
-debug entry a pointer to the format string (size = sizeof(long))
-and for each vararg a long value. So e.g. for a debug entry with a format
-string plus two varargs one would need to allocate a (3 * sizeof(long))
-byte data area in the debug_register() function.
-
-IMPORTANT: Using "%s" in sprintf event functions is dangerous. You can only
-use "%s" in the sprintf event functions, if the memory for the passed string is
-available as long as the debug feature exists. The reason behind this is that
-due to performance considerations only a pointer to the string is stored in
-the debug feature. If you log a string that is freed afterwards, you will get
-an OOPS when inspecting the debug feature, because then the debug feature will
-access the already freed memory.
-
-NOTE: If using the sprintf view do NOT use other event/exception functions
-than the sprintf-event and -exception functions.
-
-The format of the hex_ascii and sprintf view is as follows:
-- Number of area
-- Timestamp (formatted as seconds and microseconds since 00:00:00 Coordinated
- Universal Time (UTC), January 1, 1970)
-- level of debug entry
-- Exception flag (* = Exception)
-- Cpu-Number of calling task
-- Return Address to caller
-- data field
-
-The format of the raw view is:
-- Header as described in debug.h
-- datafield
-
-A typical line of the hex_ascii view will look like the following (first line
-is only for explanation and will not be displayed when 'cating' the view):
-
-area time level exception cpu caller data (hex + ascii)
---------------------------------------------------------------------------
-00 00964419409:440690 1 - 00 88023fe
-
-
-Defining views
---------------
-
-Views are specified with the 'debug_view' structure. There are defined
-callback functions which are used for reading and writing the debugfs files:
-
-struct debug_view {
- char name[DEBUG_MAX_PROCF_LEN];
- debug_prolog_proc_t* prolog_proc;
- debug_header_proc_t* header_proc;
- debug_format_proc_t* format_proc;
- debug_input_proc_t* input_proc;
- void* private_data;
-};
-
-where
-
-typedef int (debug_header_proc_t) (debug_info_t* id,
- struct debug_view* view,
- int area,
- debug_entry_t* entry,
- char* out_buf);
-
-typedef int (debug_format_proc_t) (debug_info_t* id,
- struct debug_view* view, char* out_buf,
- const char* in_buf);
-typedef int (debug_prolog_proc_t) (debug_info_t* id,
- struct debug_view* view,
- char* out_buf);
-typedef int (debug_input_proc_t) (debug_info_t* id,
- struct debug_view* view,
- struct file* file, const char* user_buf,
- size_t in_buf_size, loff_t* offset);
-
-
-The "private_data" member can be used as pointer to view specific data.
-It is not used by the debug feature itself.
-
-The output when reading a debugfs file is structured like this:
-
-"prolog_proc output"
-
-"header_proc output 1" "format_proc output 1"
-"header_proc output 2" "format_proc output 2"
-"header_proc output 3" "format_proc output 3"
-...
-
-When a view is read from the debugfs, the Debug Feature calls the
-'prolog_proc' once for writing the prolog.
-Then 'header_proc' and 'format_proc' are called for each
-existing debug entry.
-
-The input_proc can be used to implement functionality when it is written to
-the view (e.g. like with 'echo "0" > /sys/kernel/debug/s390dbf/dasd/level).
-
-For header_proc there can be used the default function
-debug_dflt_header_fn() which is defined in debug.h.
-and which produces the same header output as the predefined views.
-E.g:
-00 00964419409:440761 2 - 00 88023ec
-
-In order to see how to use the callback functions check the implementation
-of the default views!
-
-Example
-
-#include <asm/debug.h>
-
-#define UNKNOWNSTR "data: %08x"
-
-const char* messages[] =
-{"This error...........\n",
- "That error...........\n",
- "Problem..............\n",
- "Something went wrong.\n",
- "Everything ok........\n",
- NULL
-};
-
-static int debug_test_format_fn(
- debug_info_t * id, struct debug_view *view,
- char *out_buf, const char *in_buf
-)
-{
- int i, rc = 0;
-
- if(id->buf_size >= 4) {
- int msg_nr = *((int*)in_buf);
- if(msg_nr < sizeof(messages)/sizeof(char*) - 1)
- rc += sprintf(out_buf, "%s", messages[msg_nr]);
- else
- rc += sprintf(out_buf, UNKNOWNSTR, msg_nr);
- }
- out:
- return rc;
-}
-
-struct debug_view debug_test_view = {
- "myview", /* name of view */
- NULL, /* no prolog */
- &debug_dflt_header_fn, /* default header for each entry */
- &debug_test_format_fn, /* our own format function */
- NULL, /* no input function */
- NULL /* no private data */
-};
-
-=====
-test:
-=====
-debug_info_t *debug_info;
-...
-debug_info = debug_register ("test", 0, 4, 4 ));
-debug_register_view(debug_info, &debug_test_view);
-for(i = 0; i < 10; i ++) debug_int_event(debug_info, 1, i);
-
-> cat /sys/kernel/debug/s390dbf/test/myview
-00 00964419734:611402 1 - 00 88042ca This error...........
-00 00964419734:611405 1 - 00 88042ca That error...........
-00 00964419734:611408 1 - 00 88042ca Problem..............
-00 00964419734:611411 1 - 00 88042ca Something went wrong.
-00 00964419734:611414 1 - 00 88042ca Everything ok........
-00 00964419734:611417 1 - 00 88042ca data: 00000005
-00 00964419734:611419 1 - 00 88042ca data: 00000006
-00 00964419734:611422 1 - 00 88042ca data: 00000007
-00 00964419734:611425 1 - 00 88042ca data: 00000008
-00 00964419734:611428 1 - 00 88042ca data: 00000009
diff --git a/Documentation/s390/text_files.rst b/Documentation/s390/text_files.rst
new file mode 100644
index 000000000000..c94d05d4fa17
--- /dev/null
+++ b/Documentation/s390/text_files.rst
@@ -0,0 +1,11 @@
+ibm 3270 changelog
+------------------
+
+.. include:: 3270.ChangeLog
+ :literal:
+
+ibm 3270 config3270.sh
+----------------------
+
+.. literalinclude:: config3270.sh
+ :language: shell
diff --git a/Documentation/s390/vfio-ap.txt b/Documentation/s390/vfio-ap.rst
index 65167cfe4485..b5c51f7c748d 100644
--- a/Documentation/s390/vfio-ap.txt
+++ b/Documentation/s390/vfio-ap.rst
@@ -1,4 +1,9 @@
-Introduction:
+===============================
+Adjunct Processor (AP) facility
+===============================
+
+
+Introduction
============
The Adjunct Processor (AP) facility is an IBM Z cryptographic facility comprised
of three AP instructions and from 1 up to 256 PCIe cryptographic adapter cards.
@@ -11,7 +16,7 @@ framework. This implementation relies considerably on the s390 virtualization
facilities which do most of the hard work of providing direct access to AP
devices.
-AP Architectural Overview:
+AP Architectural Overview
=========================
To facilitate the comprehension of the design, let's start with some
definitions:
@@ -31,13 +36,13 @@ definitions:
in the LPAR, the AP bus detects the AP adapter cards assigned to the LPAR and
creates a sysfs device for each assigned adapter. For example, if AP adapters
4 and 10 (0x0a) are assigned to the LPAR, the AP bus will create the following
- sysfs device entries:
+ sysfs device entries::
/sys/devices/ap/card04
/sys/devices/ap/card0a
Symbolic links to these devices will also be created in the AP bus devices
- sub-directory:
+ sub-directory::
/sys/bus/ap/devices/[card04]
/sys/bus/ap/devices/[card04]
@@ -84,7 +89,7 @@ definitions:
the cross product of the AP adapter and usage domain numbers detected when the
AP bus module is loaded. For example, if adapters 4 and 10 (0x0a) and usage
domains 6 and 71 (0x47) are assigned to the LPAR, the AP bus will create the
- following sysfs entries:
+ following sysfs entries::
/sys/devices/ap/card04/04.0006
/sys/devices/ap/card04/04.0047
@@ -92,7 +97,7 @@ definitions:
/sys/devices/ap/card0a/0a.0047
The following symbolic links to these devices will be created in the AP bus
- devices subdirectory:
+ devices subdirectory::
/sys/bus/ap/devices/[04.0006]
/sys/bus/ap/devices/[04.0047]
@@ -112,7 +117,7 @@ definitions:
domain that is not one of the usage domains, but the modified domain
must be one of the control domains.
-AP and SIE:
+AP and SIE
==========
Let's now take a look at how AP instructions executed on a guest are interpreted
by the hardware.
@@ -153,7 +158,7 @@ and 2 and usage domains 5 and 6 are assigned to a guest, the APQNs (1,5), (1,6),
The APQNs can provide secure key functionality - i.e., a private key is stored
on the adapter card for each of its domains - so each APQN must be assigned to
-at most one guest or to the linux host.
+at most one guest or to the linux host::
Example 1: Valid configuration:
------------------------------
@@ -181,8 +186,8 @@ at most one guest or to the linux host.
This is an invalid configuration because both guests have access to
APQN (1,6).
-The Design:
-===========
+The Design
+==========
The design introduces three new objects:
1. AP matrix device
@@ -205,43 +210,43 @@ The VFIO AP (vfio_ap) device driver serves the following purposes:
Reserve APQNs for exclusive use of KVM guests
---------------------------------------------
The following block diagram illustrates the mechanism by which APQNs are
-reserved:
-
- +------------------+
- 7 remove | |
- +--------------------> cex4queue driver |
- | | |
- | +------------------+
- |
- |
- | +------------------+ +-----------------+
- | 5 register driver | | 3 create | |
- | +----------------> Device core +----------> matrix device |
- | | | | | |
- | | +--------^---------+ +-----------------+
- | | |
- | | +-------------------+
- | | +-----------------------------------+ |
- | | | 4 register AP driver | | 2 register device
- | | | | |
-+--------+---+-v---+ +--------+-------+-+
-| | | |
-| ap_bus +--------------------- > vfio_ap driver |
-| | 8 probe | |
-+--------^---------+ +--^--^------------+
-6 edit | | |
- apmask | +-----------------------------+ | 9 mdev create
- aqmask | | 1 modprobe |
-+--------+-----+---+ +----------------+-+ +------------------+
-| | | |8 create | mediated |
-| admin | | VFIO device core |---------> matrix |
-| + | | | device |
-+------+-+---------+ +--------^---------+ +--------^---------+
- | | | |
- | | 9 create vfio_ap-passthrough | |
- | +------------------------------+ |
- +-------------------------------------------------------------+
- 10 assign adapter/domain/control domain
+reserved::
+
+ +------------------+
+ 7 remove | |
+ +--------------------> cex4queue driver |
+ | | |
+ | +------------------+
+ |
+ |
+ | +------------------+ +----------------+
+ | 5 register driver | | 3 create | |
+ | +----------------> Device core +----------> matrix device |
+ | | | | | |
+ | | +--------^---------+ +----------------+
+ | | |
+ | | +-------------------+
+ | | +-----------------------------------+ |
+ | | | 4 register AP driver | | 2 register device
+ | | | | |
+ +--------+---+-v---+ +--------+-------+-+
+ | | | |
+ | ap_bus +--------------------- > vfio_ap driver |
+ | | 8 probe | |
+ +--------^---------+ +--^--^------------+
+ 6 edit | | |
+ apmask | +-----------------------------+ | 9 mdev create
+ aqmask | | 1 modprobe |
+ +--------+-----+---+ +----------------+-+ +----------------+
+ | | | |8 create | mediated |
+ | admin | | VFIO device core |---------> matrix |
+ | + | | | device |
+ +------+-+---------+ +--------^---------+ +--------^-------+
+ | | | |
+ | | 9 create vfio_ap-passthrough | |
+ | +------------------------------+ |
+ +-------------------------------------------------------------+
+ 10 assign adapter/domain/control domain
The process for reserving an AP queue for use by a KVM guest is:
@@ -250,7 +255,7 @@ The process for reserving an AP queue for use by a KVM guest is:
device with the device core. This will serve as the parent device for
all mediated matrix devices used to configure an AP matrix for a guest.
3. The /sys/devices/vfio_ap/matrix device is created by the device core
-4 The vfio_ap device driver will register with the AP bus for AP queue devices
+4. The vfio_ap device driver will register with the AP bus for AP queue devices
of type 10 and higher (CEX4 and newer). The driver will provide the vfio_ap
driver's probe and remove callback interfaces. Devices older than CEX4 queues
are not supported to simplify the implementation by not needlessly
@@ -266,13 +271,14 @@ The process for reserving an AP queue for use by a KVM guest is:
it.
9. The administrator creates a passthrough type mediated matrix device to be
used by a guest
-10 The administrator assigns the adapters, usage domains and control domains
- to be exclusively used by a guest.
+10. The administrator assigns the adapters, usage domains and control domains
+ to be exclusively used by a guest.
Set up the VFIO mediated device interfaces
------------------------------------------
The VFIO AP device driver utilizes the common interface of the VFIO mediated
device core driver to:
+
* Register an AP mediated bus driver to add a mediated matrix device to and
remove it from a VFIO group.
* Create and destroy a mediated matrix device
@@ -280,25 +286,25 @@ device core driver to:
* Add a mediated matrix device to and remove it from an IOMMU group
The following high-level block diagram shows the main components and interfaces
-of the VFIO AP mediated matrix device driver:
-
- +-------------+
- | |
- | +---------+ | mdev_register_driver() +--------------+
- | | Mdev | +<-----------------------+ |
- | | bus | | | vfio_mdev.ko |
- | | driver | +----------------------->+ |<-> VFIO user
- | +---------+ | probe()/remove() +--------------+ APIs
- | |
- | MDEV CORE |
- | MODULE |
- | mdev.ko |
- | +---------+ | mdev_register_device() +--------------+
- | |Physical | +<-----------------------+ |
- | | device | | | vfio_ap.ko |<-> matrix
- | |interface| +----------------------->+ | device
- | +---------+ | callback +--------------+
- +-------------+
+of the VFIO AP mediated matrix device driver::
+
+ +-------------+
+ | |
+ | +---------+ | mdev_register_driver() +--------------+
+ | | Mdev | +<-----------------------+ |
+ | | bus | | | vfio_mdev.ko |
+ | | driver | +----------------------->+ |<-> VFIO user
+ | +---------+ | probe()/remove() +--------------+ APIs
+ | |
+ | MDEV CORE |
+ | MODULE |
+ | mdev.ko |
+ | +---------+ | mdev_register_device() +--------------+
+ | |Physical | +<-----------------------+ |
+ | | device | | | vfio_ap.ko |<-> matrix
+ | |interface| +----------------------->+ | device
+ | +---------+ | callback +--------------+
+ +-------------+
During initialization of the vfio_ap module, the matrix device is registered
with an 'mdev_parent_ops' structure that provides the sysfs attribute
@@ -306,7 +312,8 @@ structures, mdev functions and callback interfaces for managing the mediated
matrix device.
* sysfs attribute structures:
- * supported_type_groups
+
+ supported_type_groups
The VFIO mediated device framework supports creation of user-defined
mediated device types. These mediated device types are specified
via the 'supported_type_groups' structure when a device is registered
@@ -318,61 +325,72 @@ matrix device.
The VFIO AP device driver will register one mediated device type for
passthrough devices:
+
/sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough
+
Only the read-only attributes required by the VFIO mdev framework will
- be provided:
- ... name
- ... device_api
- ... available_instances
- ... device_api
- Where:
- * name: specifies the name of the mediated device type
- * device_api: the mediated device type's API
- * available_instances: the number of mediated matrix passthrough devices
- that can be created
- * device_api: specifies the VFIO API
- * mdev_attr_groups
+ be provided::
+
+ ... name
+ ... device_api
+ ... available_instances
+ ... device_api
+
+ Where:
+
+ * name:
+ specifies the name of the mediated device type
+ * device_api:
+ the mediated device type's API
+ * available_instances:
+ the number of mediated matrix passthrough devices
+ that can be created
+ * device_api:
+ specifies the VFIO API
+ mdev_attr_groups
This attribute group identifies the user-defined sysfs attributes of the
mediated device. When a device is registered with the VFIO mediated device
framework, the sysfs attribute files identified in the 'mdev_attr_groups'
structure will be created in the mediated matrix device's directory. The
sysfs attributes for a mediated matrix device are:
- * assign_adapter:
- * unassign_adapter:
+
+ assign_adapter / unassign_adapter:
Write-only attributes for assigning/unassigning an AP adapter to/from the
mediated matrix device. To assign/unassign an adapter, the APID of the
adapter is echoed to the respective attribute file.
- * assign_domain:
- * unassign_domain:
+ assign_domain / unassign_domain:
Write-only attributes for assigning/unassigning an AP usage domain to/from
the mediated matrix device. To assign/unassign a domain, the domain
number of the the usage domain is echoed to the respective attribute
file.
- * matrix:
+ matrix:
A read-only file for displaying the APQNs derived from the cross product
of the adapter and domain numbers assigned to the mediated matrix device.
- * assign_control_domain:
- * unassign_control_domain:
+ assign_control_domain / unassign_control_domain:
Write-only attributes for assigning/unassigning an AP control domain
to/from the mediated matrix device. To assign/unassign a control domain,
the ID of the domain to be assigned/unassigned is echoed to the respective
attribute file.
- * control_domains:
+ control_domains:
A read-only file for displaying the control domain numbers assigned to the
mediated matrix device.
* functions:
- * create:
+
+ create:
allocates the ap_matrix_mdev structure used by the vfio_ap driver to:
+
* Store the reference to the KVM structure for the guest using the mdev
* Store the AP matrix configuration for the adapters, domains, and control
domains assigned via the corresponding sysfs attributes files
- * remove:
+
+ remove:
deallocates the mediated matrix device's ap_matrix_mdev structure. This will
be allowed only if a running guest is not using the mdev.
* callback interfaces
- * open:
+
+ open:
The vfio_ap driver uses this callback to register a
VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the mdev matrix
device. The open is invoked when QEMU connects the VFIO iommu group
@@ -380,16 +398,17 @@ matrix device.
to configure the KVM guest is provided via this callback. The KVM structure,
is used to configure the guest's access to the AP matrix defined via the
mediated matrix device's sysfs attribute files.
- * release:
+ release:
unregisters the VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the
mdev matrix device and deconfigures the guest's AP matrix.
-Configure the APM, AQM and ADM in the CRYCB:
+Configure the APM, AQM and ADM in the CRYCB
-------------------------------------------
Configuring the AP matrix for a KVM guest will be performed when the
VFIO_GROUP_NOTIFY_SET_KVM notifier callback is invoked. The notifier
function is called when QEMU connects to KVM. The guest's AP matrix is
configured via it's CRYCB by:
+
* Setting the bits in the APM corresponding to the APIDs assigned to the
mediated matrix device via its 'assign_adapter' interface.
* Setting the bits in the AQM corresponding to the domains assigned to the
@@ -418,12 +437,12 @@ available to a KVM guest via the following CPU model features:
Note: If the user chooses to specify a CPU model different than the 'host'
model to QEMU, the CPU model features and facilities need to be turned on
-explicitly; for example:
+explicitly; for example::
/usr/bin/qemu-system-s390x ... -cpu z13,ap=on,apqci=on,apft=on
A guest can be precluded from using AP features/facilities by turning them off
-explicitly; for example:
+explicitly; for example::
/usr/bin/qemu-system-s390x ... -cpu host,ap=off,apqci=off,apft=off
@@ -435,7 +454,7 @@ the APFT facility is not installed on the guest, then the probe of device
drivers will fail since only type 10 and newer devices can be configured for
guest use.
-Example:
+Example
=======
Let's now provide an example to illustrate how KVM guests may be given
access to AP facilities. For this example, we will show how to configure
@@ -444,30 +463,36 @@ look like this:
Guest1
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
05 CEX5C CCA-Coproc
05.0004 CEX5C CCA-Coproc
05.00ab CEX5C CCA-Coproc
06 CEX5A Accelerator
06.0004 CEX5A Accelerator
06.00ab CEX5C CCA-Coproc
+=========== ===== ============
Guest2
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
05 CEX5A Accelerator
05.0047 CEX5A Accelerator
05.00ff CEX5A Accelerator
+=========== ===== ============
Guest2
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
06 CEX5A Accelerator
06.0047 CEX5A Accelerator
06.00ff CEX5A Accelerator
+=========== ===== ============
These are the steps:
@@ -492,25 +517,26 @@ These are the steps:
* VFIO_MDEV_DEVICE
* KVM
- If using make menuconfig select the following to build the vfio_ap module:
- -> Device Drivers
- -> IOMMU Hardware Support
- select S390 AP IOMMU Support
- -> VFIO Non-Privileged userspace driver framework
- -> Mediated device driver frramework
- -> VFIO driver for Mediated devices
- -> I/O subsystem
- -> VFIO support for AP devices
+ If using make menuconfig select the following to build the vfio_ap module::
+
+ -> Device Drivers
+ -> IOMMU Hardware Support
+ select S390 AP IOMMU Support
+ -> VFIO Non-Privileged userspace driver framework
+ -> Mediated device driver frramework
+ -> VFIO driver for Mediated devices
+ -> I/O subsystem
+ -> VFIO support for AP devices
2. Secure the AP queues to be used by the three guests so that the host can not
access them. To secure them, there are two sysfs files that specify
bitmasks marking a subset of the APQN range as 'usable by the default AP
queue device drivers' or 'not usable by the default device drivers' and thus
available for use by the vfio_ap device driver'. The location of the sysfs
- files containing the masks are:
+ files containing the masks are::
- /sys/bus/ap/apmask
- /sys/bus/ap/aqmask
+ /sys/bus/ap/apmask
+ /sys/bus/ap/aqmask
The 'apmask' is a 256-bit mask that identifies a set of AP adapter IDs
(APID). Each bit in the mask, from left to right (i.e., from most significant
@@ -526,7 +552,7 @@ These are the steps:
queue device drivers; otherwise, the APQI is usable by the vfio_ap device
driver.
- Take, for example, the following mask:
+ Take, for example, the following mask::
0x7dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
@@ -548,68 +574,70 @@ These are the steps:
respective sysfs mask file in one of two formats:
* An absolute hex string starting with 0x - like "0x12345678" - sets
- the mask. If the given string is shorter than the mask, it is padded
- with 0s on the right; for example, specifying a mask value of 0x41 is
- the same as specifying:
+ the mask. If the given string is shorter than the mask, it is padded
+ with 0s on the right; for example, specifying a mask value of 0x41 is
+ the same as specifying::
- 0x4100000000000000000000000000000000000000000000000000000000000000
+ 0x4100000000000000000000000000000000000000000000000000000000000000
- Keep in mind that the mask reads from left to right (i.e., most
- significant to least significant bit in big endian order), so the mask
- above identifies device numbers 1 and 7 (01000001).
+ Keep in mind that the mask reads from left to right (i.e., most
+ significant to least significant bit in big endian order), so the mask
+ above identifies device numbers 1 and 7 (01000001).
- If the string is longer than the mask, the operation is terminated with
- an error (EINVAL).
+ If the string is longer than the mask, the operation is terminated with
+ an error (EINVAL).
* Individual bits in the mask can be switched on and off by specifying
- each bit number to be switched in a comma separated list. Each bit
- number string must be prepended with a ('+') or minus ('-') to indicate
- the corresponding bit is to be switched on ('+') or off ('-'). Some
- valid values are:
+ each bit number to be switched in a comma separated list. Each bit
+ number string must be prepended with a ('+') or minus ('-') to indicate
+ the corresponding bit is to be switched on ('+') or off ('-'). Some
+ valid values are:
- "+0" switches bit 0 on
- "-13" switches bit 13 off
- "+0x41" switches bit 65 on
- "-0xff" switches bit 255 off
+ - "+0" switches bit 0 on
+ - "-13" switches bit 13 off
+ - "+0x41" switches bit 65 on
+ - "-0xff" switches bit 255 off
- The following example:
- +0,-6,+0x47,-0xf0
+ The following example:
- Switches bits 0 and 71 (0x47) on
- Switches bits 6 and 240 (0xf0) off
+ +0,-6,+0x47,-0xf0
- Note that the bits not specified in the list remain as they were before
- the operation.
+ Switches bits 0 and 71 (0x47) on
+
+ Switches bits 6 and 240 (0xf0) off
+
+ Note that the bits not specified in the list remain as they were before
+ the operation.
2. The masks can also be changed at boot time via parameters on the kernel
command line like this:
- ap.apmask=0xffff ap.aqmask=0x40
+ ap.apmask=0xffff ap.aqmask=0x40
- This would create the following masks:
+ This would create the following masks::
- apmask:
- 0xffff000000000000000000000000000000000000000000000000000000000000
+ apmask:
+ 0xffff000000000000000000000000000000000000000000000000000000000000
- aqmask:
- 0x4000000000000000000000000000000000000000000000000000000000000000
+ aqmask:
+ 0x4000000000000000000000000000000000000000000000000000000000000000
- Resulting in these two pools:
+ Resulting in these two pools::
- default drivers pool: adapter 0-15, domain 1
- alternate drivers pool: adapter 16-255, domains 0, 2-255
+ default drivers pool: adapter 0-15, domain 1
+ alternate drivers pool: adapter 16-255, domains 0, 2-255
- Securing the APQNs for our example:
- ----------------------------------
+Securing the APQNs for our example
+----------------------------------
To secure the AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004, 06.0047,
06.00ab, and 06.00ff for use by the vfio_ap device driver, the corresponding
- APQNs can either be removed from the default masks:
+ APQNs can either be removed from the default masks::
echo -5,-6 > /sys/bus/ap/apmask
echo -4,-0x47,-0xab,-0xff > /sys/bus/ap/aqmask
- Or the masks can be set as follows:
+ Or the masks can be set as follows::
echo 0xf9ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff \
> apmask
@@ -620,19 +648,19 @@ These are the steps:
This will result in AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004,
06.0047, 06.00ab, and 06.00ff getting bound to the vfio_ap device driver. The
sysfs directory for the vfio_ap device driver will now contain symbolic links
- to the AP queue devices bound to it:
-
- /sys/bus/ap
- ... [drivers]
- ...... [vfio_ap]
- ......... [05.0004]
- ......... [05.0047]
- ......... [05.00ab]
- ......... [05.00ff]
- ......... [06.0004]
- ......... [06.0047]
- ......... [06.00ab]
- ......... [06.00ff]
+ to the AP queue devices bound to it::
+
+ /sys/bus/ap
+ ... [drivers]
+ ...... [vfio_ap]
+ ......... [05.0004]
+ ......... [05.0047]
+ ......... [05.00ab]
+ ......... [05.00ff]
+ ......... [06.0004]
+ ......... [06.0047]
+ ......... [06.00ab]
+ ......... [06.00ff]
Keep in mind that only type 10 and newer adapters (i.e., CEX4 and later)
can be bound to the vfio_ap device driver. The reason for this is to
@@ -645,96 +673,96 @@ These are the steps:
queue device can be read from the parent card's sysfs directory. For example,
to see the hardware type of the queue 05.0004:
- cat /sys/bus/ap/devices/card05/hwtype
+ cat /sys/bus/ap/devices/card05/hwtype
The hwtype must be 10 or higher (CEX4 or newer) in order to be bound to the
vfio_ap device driver.
3. Create the mediated devices needed to configure the AP matrixes for the
three guests and to provide an interface to the vfio_ap driver for
- use by the guests:
+ use by the guests::
- /sys/devices/vfio_ap/matrix/
- --- [mdev_supported_types]
- ------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
- --------- create
- --------- [devices]
+ /sys/devices/vfio_ap/matrix/
+ --- [mdev_supported_types]
+ ------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
+ --------- create
+ --------- [devices]
- To create the mediated devices for the three guests:
+ To create the mediated devices for the three guests::
uuidgen > create
uuidgen > create
uuidgen > create
- or
+ or
- echo $uuid1 > create
- echo $uuid2 > create
- echo $uuid3 > create
+ echo $uuid1 > create
+ echo $uuid2 > create
+ echo $uuid3 > create
This will create three mediated devices in the [devices] subdirectory named
after the UUID written to the create attribute file. We call them $uuid1,
- $uuid2 and $uuid3 and this is the sysfs directory structure after creation:
-
- /sys/devices/vfio_ap/matrix/
- --- [mdev_supported_types]
- ------ [vfio_ap-passthrough]
- --------- [devices]
- ------------ [$uuid1]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- --------------- unassign_control_domain
- --------------- unassign_domain
-
- ------------ [$uuid2]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- ----------------unassign_control_domain
- ----------------unassign_domain
-
- ------------ [$uuid3]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- ----------------unassign_control_domain
- ----------------unassign_domain
+ $uuid2 and $uuid3 and this is the sysfs directory structure after creation::
+
+ /sys/devices/vfio_ap/matrix/
+ --- [mdev_supported_types]
+ ------ [vfio_ap-passthrough]
+ --------- [devices]
+ ------------ [$uuid1]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ --------------- unassign_control_domain
+ --------------- unassign_domain
+
+ ------------ [$uuid2]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ ----------------unassign_control_domain
+ ----------------unassign_domain
+
+ ------------ [$uuid3]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ ----------------unassign_control_domain
+ ----------------unassign_domain
4. The administrator now needs to configure the matrixes for the mediated
devices $uuid1 (for Guest1), $uuid2 (for Guest2) and $uuid3 (for Guest3).
- This is how the matrix is configured for Guest1:
+ This is how the matrix is configured for Guest1::
echo 5 > assign_adapter
echo 6 > assign_adapter
echo 4 > assign_domain
echo 0xab > assign_domain
- Control domains can similarly be assigned using the assign_control_domain
- sysfs file.
+ Control domains can similarly be assigned using the assign_control_domain
+ sysfs file.
- If a mistake is made configuring an adapter, domain or control domain,
- you can use the unassign_xxx files to unassign the adapter, domain or
- control domain.
+ If a mistake is made configuring an adapter, domain or control domain,
+ you can use the unassign_xxx files to unassign the adapter, domain or
+ control domain.
- To display the matrix configuration for Guest1:
+ To display the matrix configuration for Guest1::
- cat matrix
+ cat matrix
- This is how the matrix is configured for Guest2:
+ This is how the matrix is configured for Guest2::
echo 5 > assign_adapter
echo 0x47 > assign_domain
echo 0xff > assign_domain
- This is how the matrix is configured for Guest3:
+ This is how the matrix is configured for Guest3::
echo 6 > assign_adapter
echo 0x47 > assign_domain
@@ -783,24 +811,24 @@ These are the steps:
configured for the system. If a control domain number higher than the maximum
is specified, the operation will terminate with an error (ENODEV).
-5. Start Guest1:
+5. Start Guest1::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...
-7. Start Guest2:
+7. Start Guest2::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...
-7. Start Guest3:
+7. Start Guest3::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...
When the guest is shut down, the mediated matrix devices may be removed.
-Using our example again, to remove the mediated matrix device $uuid1:
+Using our example again, to remove the mediated matrix device $uuid1::
/sys/devices/vfio_ap/matrix/
--- [mdev_supported_types]
@@ -809,18 +837,19 @@ Using our example again, to remove the mediated matrix device $uuid1:
------------ [$uuid1]
--------------- remove
+::
echo 1 > remove
- This will remove all of the mdev matrix device's sysfs structures including
- the mdev device itself. To recreate and reconfigure the mdev matrix device,
- all of the steps starting with step 3 will have to be performed again. Note
- that the remove will fail if a guest using the mdev is still running.
+This will remove all of the mdev matrix device's sysfs structures including
+the mdev device itself. To recreate and reconfigure the mdev matrix device,
+all of the steps starting with step 3 will have to be performed again. Note
+that the remove will fail if a guest using the mdev is still running.
- It is not necessary to remove an mdev matrix device, but one may want to
- remove it if no guest will use it during the remaining lifetime of the linux
- host. If the mdev matrix device is removed, one may want to also reconfigure
- the pool of adapters and queues reserved for use by the default drivers.
+It is not necessary to remove an mdev matrix device, but one may want to
+remove it if no guest will use it during the remaining lifetime of the linux
+host. If the mdev matrix device is removed, one may want to also reconfigure
+the pool of adapters and queues reserved for use by the default drivers.
Limitations
===========
diff --git a/Documentation/s390/vfio-ccw.txt b/Documentation/s390/vfio-ccw.rst
index 2be11ad864ff..1f6d0b56d53e 100644
--- a/Documentation/s390/vfio-ccw.txt
+++ b/Documentation/s390/vfio-ccw.rst
@@ -1,3 +1,4 @@
+==================================
vfio-ccw: the basic infrastructure
==================================
@@ -11,9 +12,11 @@ virtual machine, while vfio is the means.
Different than other hardware architectures, s390 has defined a unified
I/O access method, which is so called Channel I/O. It has its own access
patterns:
+
- Channel programs run asynchronously on a separate (co)processor.
- The channel subsystem will access any memory designated by the caller
in the channel program directly, i.e. there is no iommu involved.
+
Thus when we introduce vfio support for these devices, we realize it
with a mediated device (mdev) implementation. The vfio mdev will be
added to an iommu group, so as to make itself able to be managed by the
@@ -24,6 +27,7 @@ to perform I/O instructions.
This document does not intend to explain the s390 I/O architecture in
every detail. More information/reference could be found here:
+
- A good start to know Channel I/O in general:
https://en.wikipedia.org/wiki/Channel_I/O
- s390 architecture:
@@ -80,6 +84,7 @@ until interrupted. The I/O completion result is received by the
interrupt handler in the form of interrupt response block (IRB).
Back to vfio-ccw, in short:
+
- ORBs and channel programs are built in guest kernel (with guest
physical addresses).
- ORBs and channel programs are passed to the host kernel.
@@ -106,6 +111,7 @@ it gets sent to hardware.
Within this implementation, we have two drivers for two types of
devices:
+
- The vfio_ccw driver for the physical subchannel device.
This is an I/O subchannel driver for the real subchannel device. It
realizes a group of callbacks and registers to the mdev framework as a
@@ -137,7 +143,7 @@ devices:
vfio_pin_pages and a vfio_unpin_pages interfaces from the vfio iommu
backend for the physical devices to pin and unpin pages by demand.
-Below is a high Level block diagram.
+Below is a high Level block diagram::
+-------------+
| |
@@ -158,6 +164,7 @@ Below is a high Level block diagram.
+-------------+
The process of how these work together.
+
1. vfio_ccw.ko drives the physical I/O subchannel, and registers the
physical device (with callbacks) to mdev framework.
When vfio_ccw probing the subchannel device, it registers device
@@ -178,17 +185,17 @@ vfio-ccw I/O region
An I/O region is used to accept channel program request from user
space and store I/O interrupt result for user space to retrieve. The
-definition of the region is:
-
-struct ccw_io_region {
-#define ORB_AREA_SIZE 12
- __u8 orb_area[ORB_AREA_SIZE];
-#define SCSW_AREA_SIZE 12
- __u8 scsw_area[SCSW_AREA_SIZE];
-#define IRB_AREA_SIZE 96
- __u8 irb_area[IRB_AREA_SIZE];
- __u32 ret_code;
-} __packed;
+definition of the region is::
+
+ struct ccw_io_region {
+ #define ORB_AREA_SIZE 12
+ __u8 orb_area[ORB_AREA_SIZE];
+ #define SCSW_AREA_SIZE 12
+ __u8 scsw_area[SCSW_AREA_SIZE];
+ #define IRB_AREA_SIZE 96
+ __u8 irb_area[IRB_AREA_SIZE];
+ __u32 ret_code;
+ } __packed;
While starting an I/O request, orb_area should be filled with the
guest ORB, and scsw_area should be filled with the SCSW of the Virtual
@@ -205,7 +212,7 @@ vfio-ccw follows what vfio-pci did on the s390 platform and uses
vfio-iommu-type1 as the vfio iommu backend.
* CCW translation APIs
- A group of APIs (start with 'cp_') to do CCW translation. The CCWs
+ A group of APIs (start with `cp_`) to do CCW translation. The CCWs
passed in by a user space program are organized with their guest
physical memory addresses. These APIs will copy the CCWs into kernel
space, and assemble a runnable kernel channel program by updating the
@@ -217,12 +224,14 @@ vfio-iommu-type1 as the vfio iommu backend.
This driver utilizes the CCW translation APIs and introduces
vfio_ccw, which is the driver for the I/O subchannel devices you want
to pass through.
- vfio_ccw implements the following vfio ioctls:
+ vfio_ccw implements the following vfio ioctls::
+
VFIO_DEVICE_GET_INFO
VFIO_DEVICE_GET_IRQ_INFO
VFIO_DEVICE_GET_REGION_INFO
VFIO_DEVICE_RESET
VFIO_DEVICE_SET_IRQS
+
This provides an I/O region, so that the user space program can pass a
channel program to the kernel, to do further CCW translation before
issuing them to a real device.
@@ -236,32 +245,49 @@ bit more detail how an I/O request triggered by the QEMU guest will be
handled (without error handling).
Explanation:
-Q1-Q7: QEMU side process.
-K1-K5: Kernel side process.
-Q1. Get I/O region info during initialization.
-Q2. Setup event notifier and handler to handle I/O completion.
+- Q1-Q7: QEMU side process.
+- K1-K5: Kernel side process.
+
+Q1.
+ Get I/O region info during initialization.
+
+Q2.
+ Setup event notifier and handler to handle I/O completion.
... ...
-Q3. Intercept a ssch instruction.
-Q4. Write the guest channel program and ORB to the I/O region.
- K1. Copy from guest to kernel.
- K2. Translate the guest channel program to a host kernel space
- channel program, which becomes runnable for a real device.
- K3. With the necessary information contained in the orb passed in
- by QEMU, issue the ccwchain to the device.
- K4. Return the ssch CC code.
-Q5. Return the CC code to the guest.
+Q3.
+ Intercept a ssch instruction.
+Q4.
+ Write the guest channel program and ORB to the I/O region.
+
+ K1.
+ Copy from guest to kernel.
+ K2.
+ Translate the guest channel program to a host kernel space
+ channel program, which becomes runnable for a real device.
+ K3.
+ With the necessary information contained in the orb passed in
+ by QEMU, issue the ccwchain to the device.
+ K4.
+ Return the ssch CC code.
+Q5.
+ Return the CC code to the guest.
... ...
- K5. Interrupt handler gets the I/O result and write the result to
- the I/O region.
- K6. Signal QEMU to retrieve the result.
-Q6. Get the signal and event handler reads out the result from the I/O
+ K5.
+ Interrupt handler gets the I/O result and write the result to
+ the I/O region.
+ K6.
+ Signal QEMU to retrieve the result.
+
+Q6.
+ Get the signal and event handler reads out the result from the I/O
region.
-Q7. Update the irb for the guest.
+Q7.
+ Update the irb for the guest.
Limitations
-----------
@@ -295,6 +321,6 @@ Reference
1. ESA/s390 Principles of Operation manual (IBM Form. No. SA22-7832)
2. ESA/390 Common I/O Device Commands manual (IBM Form. No. SA22-7204)
3. https://en.wikipedia.org/wiki/Channel_I/O
-4. Documentation/s390/cds.txt
+4. Documentation/s390/cds.rst
5. Documentation/vfio.txt
6. Documentation/vfio-mediated-device.txt
diff --git a/Documentation/s390/zfcpdump.txt b/Documentation/s390/zfcpdump.rst
index b064aa59714d..54e8e7caf7e7 100644
--- a/Documentation/s390/zfcpdump.txt
+++ b/Documentation/s390/zfcpdump.rst
@@ -1,4 +1,6 @@
+==================================
The s390 SCSI dump tool (zfcpdump)
+==================================
System z machines (z900 or higher) provide hardware support for creating system
dumps on SCSI disks. The dump process is initiated by booting a dump tool, which
diff --git a/Documentation/scheduler/completion.txt b/Documentation/scheduler/completion.rst
index e5b9df4d8078..9f039b4f4b09 100644
--- a/Documentation/scheduler/completion.txt
+++ b/Documentation/scheduler/completion.rst
@@ -1,3 +1,4 @@
+================================================
Completions - "wait for completion" barrier APIs
================================================
@@ -46,7 +47,7 @@ it has to wait for it.
To use completions you need to #include <linux/completion.h> and
create a static or dynamic variable of type 'struct completion',
-which has only two fields:
+which has only two fields::
struct completion {
unsigned int done;
@@ -57,7 +58,7 @@ This provides the ->wait waitqueue to place tasks on for waiting (if any), and
the ->done completion flag for indicating whether it's completed or not.
Completions should be named to refer to the event that is being synchronized on.
-A good example is:
+A good example is::
wait_for_completion(&early_console_added);
@@ -81,7 +82,7 @@ have taken place, even if these wait functions return prematurely due to a timeo
or a signal triggering.
Initializing of dynamically allocated completion objects is done via a call to
-init_completion():
+init_completion()::
init_completion(&dynamic_object->done);
@@ -100,7 +101,8 @@ but be aware of other races.
For static declaration and initialization, macros are available.
-For static (or global) declarations in file scope you can use DECLARE_COMPLETION():
+For static (or global) declarations in file scope you can use
+DECLARE_COMPLETION()::
static DECLARE_COMPLETION(setup_done);
DECLARE_COMPLETION(setup_done);
@@ -111,7 +113,7 @@ initialized to 'not done' and doesn't require an init_completion() call.
When a completion is declared as a local variable within a function,
then the initialization should always use DECLARE_COMPLETION_ONSTACK()
explicitly, not just to make lockdep happy, but also to make it clear
-that limited scope had been considered and is intentional:
+that limited scope had been considered and is intentional::
DECLARE_COMPLETION_ONSTACK(setup_done)
@@ -140,11 +142,11 @@ Waiting for completions:
------------------------
For a thread to wait for some concurrent activity to finish, it
-calls wait_for_completion() on the initialized completion structure:
+calls wait_for_completion() on the initialized completion structure::
void wait_for_completion(struct completion *done)
-A typical usage scenario is:
+A typical usage scenario is::
CPU#1 CPU#2
@@ -192,17 +194,17 @@ A common problem that occurs is to have unclean assignment of return types,
so take care to assign return-values to variables of the proper type.
Checking for the specific meaning of return values also has been found
-to be quite inaccurate, e.g. constructs like:
+to be quite inaccurate, e.g. constructs like::
if (!wait_for_completion_interruptible_timeout(...))
... would execute the same code path for successful completion and for the
-interrupted case - which is probably not what you want.
+interrupted case - which is probably not what you want::
int wait_for_completion_interruptible(struct completion *done)
This function marks the task TASK_INTERRUPTIBLE while it is waiting.
-If a signal was received while waiting it will return -ERESTARTSYS; 0 otherwise.
+If a signal was received while waiting it will return -ERESTARTSYS; 0 otherwise::
unsigned long wait_for_completion_timeout(struct completion *done, unsigned long timeout)
@@ -214,7 +216,7 @@ Timeouts are preferably calculated with msecs_to_jiffies() or usecs_to_jiffies()
to make the code largely HZ-invariant.
If the returned timeout value is deliberately ignored a comment should probably explain
-why (e.g. see drivers/mfd/wm8350-core.c wm8350_read_auxadc()).
+why (e.g. see drivers/mfd/wm8350-core.c wm8350_read_auxadc())::
long wait_for_completion_interruptible_timeout(struct completion *done, unsigned long timeout)
@@ -225,14 +227,14 @@ jiffies if completion occurred.
Further variants include _killable which uses TASK_KILLABLE as the
designated tasks state and will return -ERESTARTSYS if it is interrupted,
-or 0 if completion was achieved. There is a _timeout variant as well:
+or 0 if completion was achieved. There is a _timeout variant as well::
long wait_for_completion_killable(struct completion *done)
long wait_for_completion_killable_timeout(struct completion *done, unsigned long timeout)
The _io variants wait_for_completion_io() behave the same as the non-_io
variants, except for accounting waiting time as 'waiting on IO', which has
-an impact on how the task is accounted in scheduling/IO stats:
+an impact on how the task is accounted in scheduling/IO stats::
void wait_for_completion_io(struct completion *done)
unsigned long wait_for_completion_io_timeout(struct completion *done, unsigned long timeout)
@@ -243,11 +245,11 @@ Signaling completions:
A thread that wants to signal that the conditions for continuation have been
achieved calls complete() to signal exactly one of the waiters that it can
-continue:
+continue::
void complete(struct completion *done)
-... or calls complete_all() to signal all current and future waiters:
+... or calls complete_all() to signal all current and future waiters::
void complete_all(struct completion *done)
@@ -268,7 +270,7 @@ probably are a design bug.
Signaling completion from IRQ context is fine as it will appropriately
lock with spin_lock_irqsave()/spin_unlock_irqrestore() and it will never
-sleep.
+sleep.
try_wait_for_completion()/completion_done():
@@ -276,14 +278,14 @@ try_wait_for_completion()/completion_done():
The try_wait_for_completion() function will not put the thread on the wait
queue but rather returns false if it would need to enqueue (block) the thread,
-else it consumes one posted completion and returns true.
+else it consumes one posted completion and returns true::
bool try_wait_for_completion(struct completion *done)
Finally, to check the state of a completion without changing it in any way,
call completion_done(), which returns false if there are no posted
completions that were not yet consumed by waiters (implying that there are
-waiters) and true otherwise;
+waiters) and true otherwise::
bool completion_done(struct completion *done)
diff --git a/Documentation/scheduler/index.rst b/Documentation/scheduler/index.rst
new file mode 100644
index 000000000000..058be77a4c34
--- /dev/null
+++ b/Documentation/scheduler/index.rst
@@ -0,0 +1,29 @@
+:orphan:
+
+===============
+Linux Scheduler
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+
+ completion
+ sched-arch
+ sched-bwc
+ sched-deadline
+ sched-design-CFS
+ sched-domains
+ sched-energy
+ sched-nice-design
+ sched-rt-group
+ sched-stats
+
+ text_files
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/scheduler/sched-arch.txt b/Documentation/scheduler/sched-arch.rst
index a2f27bbf2cba..0eaec669790a 100644
--- a/Documentation/scheduler/sched-arch.txt
+++ b/Documentation/scheduler/sched-arch.rst
@@ -1,4 +1,6 @@
- CPU Scheduler implementation hints for architecture specific code
+=================================================================
+CPU Scheduler implementation hints for architecture specific code
+=================================================================
Nick Piggin, 2005
@@ -35,9 +37,10 @@ Your cpu_idle routines need to obey the following rules:
4. The only time interrupts need to be disabled when checking
need_resched is if we are about to sleep the processor until
the next interrupt (this doesn't provide any protection of
- need_resched, it prevents losing an interrupt).
+ need_resched, it prevents losing an interrupt):
+
+ 4a. Common problem with this type of sleep appears to be::
- 4a. Common problem with this type of sleep appears to be:
local_irq_disable();
if (!need_resched()) {
local_irq_enable();
@@ -51,10 +54,10 @@ Your cpu_idle routines need to obey the following rules:
although it may be reasonable to do some background work or enter
a low CPU priority.
- 5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter
- an interrupt sleep, it needs to be cleared then a memory
- barrier issued (followed by a test of need_resched with
- interrupts disabled, as explained in 3).
+ - 5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter
+ an interrupt sleep, it needs to be cleared then a memory
+ barrier issued (followed by a test of need_resched with
+ interrupts disabled, as explained in 3).
arch/x86/kernel/process.c has examples of both polling and
sleeping idle functions.
@@ -71,4 +74,3 @@ sh64 - Is sleeping racy vs interrupts? (See #4a)
sparc - IRQs on at this point(?), change local_irq_save to _disable.
- TODO: needs secondary CPUs to disable preempt (See #1)
-
diff --git a/Documentation/scheduler/sched-bwc.txt b/Documentation/scheduler/sched-bwc.rst
index f6b1873f68ab..3a9064219656 100644
--- a/Documentation/scheduler/sched-bwc.txt
+++ b/Documentation/scheduler/sched-bwc.rst
@@ -1,8 +1,9 @@
+=====================
CFS Bandwidth Control
=====================
[ This document only discusses CPU bandwidth control for SCHED_NORMAL.
- The SCHED_RT case is covered in Documentation/scheduler/sched-rt-group.txt ]
+ The SCHED_RT case is covered in Documentation/scheduler/sched-rt-group.rst ]
CFS bandwidth control is a CONFIG_FAIR_GROUP_SCHED extension which allows the
specification of the maximum CPU bandwidth available to a group or hierarchy.
@@ -27,7 +28,8 @@ cpu.cfs_quota_us: the total available run-time within a period (in microseconds)
cpu.cfs_period_us: the length of a period (in microseconds)
cpu.stat: exports throttling statistics [explained further below]
-The default values are:
+The default values are::
+
cpu.cfs_period_us=100ms
cpu.cfs_quota=-1
@@ -55,7 +57,8 @@ For efficiency run-time is transferred between the global pool and CPU local
on large systems. The amount transferred each time such an update is required
is described as the "slice".
-This is tunable via procfs:
+This is tunable via procfs::
+
/proc/sys/kernel/sched_cfs_bandwidth_slice_us (default=5ms)
Larger slice values will reduce transfer overheads, while smaller values allow
@@ -66,6 +69,7 @@ Statistics
A group's bandwidth statistics are exported via 3 fields in cpu.stat.
cpu.stat:
+
- nr_periods: Number of enforcement intervals that have elapsed.
- nr_throttled: Number of times the group has been throttled/limited.
- throttled_time: The total time duration (in nanoseconds) for which entities
@@ -78,12 +82,15 @@ Hierarchical considerations
The interface enforces that an individual entity's bandwidth is always
attainable, that is: max(c_i) <= C. However, over-subscription in the
aggregate case is explicitly allowed to enable work-conserving semantics
-within a hierarchy.
+within a hierarchy:
+
e.g. \Sum (c_i) may exceed C
+
[ Where C is the parent's bandwidth, and c_i its children ]
There are two ways in which a group may become throttled:
+
a. it fully consumes its own quota within a period
b. a parent's quota is fully consumed within its period
@@ -92,7 +99,7 @@ be allowed to until the parent's runtime is refreshed.
Examples
--------
-1. Limit a group to 1 CPU worth of runtime.
+1. Limit a group to 1 CPU worth of runtime::
If period is 250ms and quota is also 250ms, the group will get
1 CPU worth of runtime every 250ms.
@@ -100,10 +107,10 @@ Examples
# echo 250000 > cpu.cfs_quota_us /* quota = 250ms */
# echo 250000 > cpu.cfs_period_us /* period = 250ms */
-2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine.
+2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine
- With 500ms period and 1000ms quota, the group can get 2 CPUs worth of
- runtime every 500ms.
+ With 500ms period and 1000ms quota, the group can get 2 CPUs worth of
+ runtime every 500ms::
# echo 1000000 > cpu.cfs_quota_us /* quota = 1000ms */
# echo 500000 > cpu.cfs_period_us /* period = 500ms */
@@ -112,11 +119,10 @@ Examples
3. Limit a group to 20% of 1 CPU.
- With 50ms period, 10ms quota will be equivalent to 20% of 1 CPU.
+ With 50ms period, 10ms quota will be equivalent to 20% of 1 CPU::
# echo 10000 > cpu.cfs_quota_us /* quota = 10ms */
# echo 50000 > cpu.cfs_period_us /* period = 50ms */
- By using a small period here we are ensuring a consistent latency
- response at the expense of burst capacity.
-
+ By using a small period here we are ensuring a consistent latency
+ response at the expense of burst capacity.
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.rst
index b14e03ff3528..3391e86d810c 100644
--- a/Documentation/scheduler/sched-deadline.txt
+++ b/Documentation/scheduler/sched-deadline.rst
@@ -1,29 +1,29 @@
- Deadline Task Scheduling
- ------------------------
-
-CONTENTS
-========
-
- 0. WARNING
- 1. Overview
- 2. Scheduling algorithm
- 2.1 Main algorithm
- 2.2 Bandwidth reclaiming
- 3. Scheduling Real-Time Tasks
- 3.1 Definitions
- 3.2 Schedulability Analysis for Uniprocessor Systems
- 3.3 Schedulability Analysis for Multiprocessor Systems
- 3.4 Relationship with SCHED_DEADLINE Parameters
- 4. Bandwidth management
- 4.1 System-wide settings
- 4.2 Task interface
- 4.3 Default behavior
- 4.4 Behavior of sched_yield()
- 5. Tasks CPU affinity
- 5.1 SCHED_DEADLINE and cpusets HOWTO
- 6. Future plans
- A. Test suite
- B. Minimal main()
+========================
+Deadline Task Scheduling
+========================
+
+.. CONTENTS
+
+ 0. WARNING
+ 1. Overview
+ 2. Scheduling algorithm
+ 2.1 Main algorithm
+ 2.2 Bandwidth reclaiming
+ 3. Scheduling Real-Time Tasks
+ 3.1 Definitions
+ 3.2 Schedulability Analysis for Uniprocessor Systems
+ 3.3 Schedulability Analysis for Multiprocessor Systems
+ 3.4 Relationship with SCHED_DEADLINE Parameters
+ 4. Bandwidth management
+ 4.1 System-wide settings
+ 4.2 Task interface
+ 4.3 Default behavior
+ 4.4 Behavior of sched_yield()
+ 5. Tasks CPU affinity
+ 5.1 SCHED_DEADLINE and cpusets HOWTO
+ 6. Future plans
+ A. Test suite
+ B. Minimal main()
0. WARNING
@@ -44,7 +44,7 @@ CONTENTS
2. Scheduling algorithm
-==================
+=======================
2.1 Main algorithm
------------------
@@ -80,7 +80,7 @@ CONTENTS
a "remaining runtime". These two parameters are initially set to 0;
- When a SCHED_DEADLINE task wakes up (becomes ready for execution),
- the scheduler checks if
+ the scheduler checks if::
remaining runtime runtime
---------------------------------- > ---------
@@ -97,7 +97,7 @@ CONTENTS
left unchanged;
- When a SCHED_DEADLINE task executes for an amount of time t, its
- remaining runtime is decreased as
+ remaining runtime is decreased as::
remaining runtime = remaining runtime - t
@@ -112,7 +112,7 @@ CONTENTS
- When the current time is equal to the replenishment time of a
throttled task, the scheduling deadline and the remaining runtime are
- updated as
+ updated as::
scheduling deadline = scheduling deadline + period
remaining runtime = remaining runtime + runtime
@@ -129,7 +129,7 @@ CONTENTS
Reclamation of Unused Bandwidth) algorithm [15, 16, 17] and it is enabled
when flag SCHED_FLAG_RECLAIM is set.
- The following diagram illustrates the state names for tasks handled by GRUB:
+ The following diagram illustrates the state names for tasks handled by GRUB::
------------
(d) | Active |
@@ -168,7 +168,7 @@ CONTENTS
breaking the real-time guarantees.
The 0-lag time for a task entering the ActiveNonContending state is
- computed as
+ computed as::
(runtime * dl_period)
deadline - ---------------------
@@ -183,7 +183,7 @@ CONTENTS
the task's utilization must be removed from the previous runqueue's active
utilization and must be added to the new runqueue's active utilization.
In order to avoid races between a task waking up on a runqueue while the
- "inactive timer" is running on a different CPU, the "dl_non_contending"
+ "inactive timer" is running on a different CPU, the "dl_non_contending"
flag is used to indicate that a task is not on a runqueue but is active
(so, the flag is set when the task blocks and is cleared when the
"inactive timer" fires or when the task wakes up).
@@ -222,36 +222,36 @@ CONTENTS
Let's now see a trivial example of two deadline tasks with runtime equal
- to 4 and period equal to 8 (i.e., bandwidth equal to 0.5):
-
- A Task T1
- |
- | |
- | |
- |-------- |----
- | | V
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
-
-
- A Task T2
- |
- | |
- | |
- | ------------------------|
- | | V
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
-
-
- A running_bw
- |
- 1 ----------------- ------
- | | |
- 0.5- -----------------
- | |
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
+ to 4 and period equal to 8 (i.e., bandwidth equal to 0.5)::
+
+ A Task T1
+ |
+ | |
+ | |
+ |-------- |----
+ | | V
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
+
+
+ A Task T2
+ |
+ | |
+ | |
+ | ------------------------|
+ | | V
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
+
+
+ A running_bw
+ |
+ 1 ----------------- ------
+ | | |
+ 0.5- -----------------
+ | |
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
- Time t = 0:
@@ -284,7 +284,7 @@ CONTENTS
2.3 Energy-aware scheduling
-------------------------
+---------------------------
When cpufreq's schedutil governor is selected, SCHED_DEADLINE implements the
GRUB-PA [19] algorithm, reducing the CPU operating frequency to the minimum
@@ -299,15 +299,20 @@ CONTENTS
3. Scheduling Real-Time Tasks
=============================
- * BIG FAT WARNING ******************************************************
- *
- * This section contains a (not-thorough) summary on classical deadline
- * scheduling theory, and how it applies to SCHED_DEADLINE.
- * The reader can "safely" skip to Section 4 if only interested in seeing
- * how the scheduling policy can be used. Anyway, we strongly recommend
- * to come back here and continue reading (once the urge for testing is
- * satisfied :P) to be sure of fully understanding all technical details.
- ************************************************************************
+
+
+ .. BIG FAT WARNING ******************************************************
+
+ .. warning::
+
+ This section contains a (not-thorough) summary on classical deadline
+ scheduling theory, and how it applies to SCHED_DEADLINE.
+ The reader can "safely" skip to Section 4 if only interested in seeing
+ how the scheduling policy can be used. Anyway, we strongly recommend
+ to come back here and continue reading (once the urge for testing is
+ satisfied :P) to be sure of fully understanding all technical details.
+
+ .. ************************************************************************
There are no limitations on what kind of task can exploit this new
scheduling discipline, even if it must be said that it is particularly
@@ -329,6 +334,7 @@ CONTENTS
sporadic with minimum inter-arrival time P is r_{j+1} >= r_j + P. Finally,
d_j = r_j + D, where D is the task's relative deadline.
Summing up, a real-time task can be described as
+
Task = (WCET, D, P)
The utilization of a real-time task is defined as the ratio between its
@@ -352,13 +358,15 @@ CONTENTS
between the finishing time of a job and its absolute deadline).
More precisely, it can be proven that using a global EDF scheduler the
maximum tardiness of each task is smaller or equal than
+
((M − 1) · WCET_max − WCET_min)/(M − (M − 2) · U_max) + WCET_max
+
where WCET_max = max{WCET_i} is the maximum WCET, WCET_min=min{WCET_i}
is the minimum WCET, and U_max = max{WCET_i/P_i} is the maximum
utilization[12].
3.2 Schedulability Analysis for Uniprocessor Systems
-------------------------
+----------------------------------------------------
If M=1 (uniprocessor system), or in case of partitioned scheduling (each
real-time task is statically assigned to one and only one CPU), it is
@@ -370,7 +378,9 @@ CONTENTS
a task as WCET_i/min{D_i,P_i}, and EDF is able to respect all the deadlines
of all the tasks running on a CPU if the sum of the densities of the tasks
running on such a CPU is smaller or equal than 1:
+
sum(WCET_i / min{D_i, P_i}) <= 1
+
It is important to notice that this condition is only sufficient, and not
necessary: there are task sets that are schedulable, but do not respect the
condition. For example, consider the task set {Task_1,Task_2} composed by
@@ -379,7 +389,9 @@ CONTENTS
(Task_1 is scheduled as soon as it is released, and finishes just in time
to respect its deadline; Task_2 is scheduled immediately after Task_1, hence
its response time cannot be larger than 50ms + 10ms = 60ms) even if
+
50 / min{50,100} + 10 / min{100, 100} = 50 / 50 + 10 / 100 = 1.1
+
Of course it is possible to test the exact schedulability of tasks with
D_i != P_i (checking a condition that is both sufficient and necessary),
but this cannot be done by comparing the total utilization or density with
@@ -399,7 +411,7 @@ CONTENTS
4 Linux uses an admission test based on the tasks' utilizations.
3.3 Schedulability Analysis for Multiprocessor Systems
-------------------------
+------------------------------------------------------
On multiprocessor systems with global EDF scheduling (non partitioned
systems), a sufficient test for schedulability can not be based on the
@@ -428,7 +440,9 @@ CONTENTS
between total utilization (or density) and a fixed constant. If all tasks
have D_i = P_i, a sufficient schedulability condition can be expressed in
a simple way:
+
sum(WCET_i / P_i) <= M - (M - 1) · U_max
+
where U_max = max{WCET_i / P_i}[10]. Notice that for U_max = 1,
M - (M - 1) · U_max becomes M - M + 1 = 1 and this schedulability condition
just confirms the Dhall's effect. A more complete survey of the literature
@@ -447,7 +461,7 @@ CONTENTS
the tasks are limited.
3.4 Relationship with SCHED_DEADLINE Parameters
-------------------------
+-----------------------------------------------
Finally, it is important to understand the relationship between the
SCHED_DEADLINE scheduling parameters described in Section 2 (runtime,
@@ -473,6 +487,7 @@ CONTENTS
this task, as it is not possible to respect its temporal constraints.
References:
+
1 - C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the Association for
Computing Machinery, 20(1), 1973.
@@ -550,7 +565,7 @@ CONTENTS
The interface used to control the CPU bandwidth that can be allocated
to -deadline tasks is similar to the one already used for -rt
tasks with real-time group scheduling (a.k.a. RT-throttling - see
- Documentation/scheduler/sched-rt-group.txt), and is based on readable/
+ Documentation/scheduler/sched-rt-group.rst), and is based on readable/
writable control files located in procfs (for system wide settings).
Notice that per-group settings (controlled through cgroupfs) are still not
defined for -deadline tasks, because more discussion is needed in order to
@@ -596,11 +611,13 @@ CONTENTS
Specifying a periodic/sporadic task that executes for a given amount of
runtime at each instance, and that is scheduled according to the urgency of
its own timing constraints needs, in general, a way of declaring:
+
- a (maximum/typical) instance execution time,
- a minimum interval between consecutive instances,
- a time constraint by which each instance must be completed.
Therefore:
+
* a new struct sched_attr, containing all the necessary fields is
provided;
* the new scheduling related syscalls that manipulate it, i.e.,
@@ -652,27 +669,27 @@ CONTENTS
-deadline tasks cannot have an affinity mask smaller that the entire
root_domain they are created on. However, affinities can be specified
- through the cpuset facility (Documentation/cgroup-v1/cpusets.txt).
+ through the cpuset facility (Documentation/cgroup-v1/cpusets.rst).
5.1 SCHED_DEADLINE and cpusets HOWTO
------------------------------------
An example of a simple configuration (pin a -deadline task to CPU0)
- follows (rt-app is used to create a -deadline task).
-
- mkdir /dev/cpuset
- mount -t cgroup -o cpuset cpuset /dev/cpuset
- cd /dev/cpuset
- mkdir cpu0
- echo 0 > cpu0/cpuset.cpus
- echo 0 > cpu0/cpuset.mems
- echo 1 > cpuset.cpu_exclusive
- echo 0 > cpuset.sched_load_balance
- echo 1 > cpu0/cpuset.cpu_exclusive
- echo 1 > cpu0/cpuset.mem_exclusive
- echo $$ > cpu0/tasks
- rt-app -t 100000:10000:d:0 -D5 (it is now actually superfluous to specify
- task affinity)
+ follows (rt-app is used to create a -deadline task)::
+
+ mkdir /dev/cpuset
+ mount -t cgroup -o cpuset cpuset /dev/cpuset
+ cd /dev/cpuset
+ mkdir cpu0
+ echo 0 > cpu0/cpuset.cpus
+ echo 0 > cpu0/cpuset.mems
+ echo 1 > cpuset.cpu_exclusive
+ echo 0 > cpuset.sched_load_balance
+ echo 1 > cpu0/cpuset.cpu_exclusive
+ echo 1 > cpu0/cpuset.mem_exclusive
+ echo $$ > cpu0/tasks
+ rt-app -t 100000:10000:d:0 -D5 # it is now actually superfluous to specify
+ # task affinity
6. Future plans
===============
@@ -711,7 +728,7 @@ Appendix A. Test suite
rt-app is available at: https://github.com/scheduler-tools/rt-app.
Thread parameters can be specified from the command line, with something like
- this:
+ this::
# rt-app -t 100000:10000:d -t 150000:20000:f:10 -D5
@@ -721,27 +738,27 @@ Appendix A. Test suite
of 5 seconds.
More interestingly, configurations can be described with a json file that
- can be passed as input to rt-app with something like this:
+ can be passed as input to rt-app with something like this::
# rt-app my_config.json
The parameters that can be specified with the second method are a superset
of the command line options. Please refer to rt-app documentation for more
- details (<rt-app-sources>/doc/*.json).
+ details (`<rt-app-sources>/doc/*.json`).
The second testing application is a modification of schedtool, called
schedtool-dl, which can be used to setup SCHED_DEADLINE parameters for a
certain pid/application. schedtool-dl is available at:
https://github.com/scheduler-tools/schedtool-dl.git.
- The usage is straightforward:
+ The usage is straightforward::
# schedtool -E -t 10000000:100000000 -e ./my_cpuhog_app
With this, my_cpuhog_app is put to run inside a SCHED_DEADLINE reservation
of 10ms every 100ms (note that parameters are expressed in microseconds).
You can also use schedtool to create a reservation for an already running
- application, given that you know its pid:
+ application, given that you know its pid::
# schedtool -E -t 10000000:100000000 my_app_pid
@@ -750,43 +767,43 @@ Appendix B. Minimal main()
We provide in what follows a simple (ugly) self-contained code snippet
showing how SCHED_DEADLINE reservations can be created by a real-time
- application developer.
-
- #define _GNU_SOURCE
- #include <unistd.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <time.h>
- #include <linux/unistd.h>
- #include <linux/kernel.h>
- #include <linux/types.h>
- #include <sys/syscall.h>
- #include <pthread.h>
-
- #define gettid() syscall(__NR_gettid)
-
- #define SCHED_DEADLINE 6
-
- /* XXX use the proper syscall numbers */
- #ifdef __x86_64__
- #define __NR_sched_setattr 314
- #define __NR_sched_getattr 315
- #endif
-
- #ifdef __i386__
- #define __NR_sched_setattr 351
- #define __NR_sched_getattr 352
- #endif
-
- #ifdef __arm__
- #define __NR_sched_setattr 380
- #define __NR_sched_getattr 381
- #endif
-
- static volatile int done;
-
- struct sched_attr {
+ application developer::
+
+ #define _GNU_SOURCE
+ #include <unistd.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <string.h>
+ #include <time.h>
+ #include <linux/unistd.h>
+ #include <linux/kernel.h>
+ #include <linux/types.h>
+ #include <sys/syscall.h>
+ #include <pthread.h>
+
+ #define gettid() syscall(__NR_gettid)
+
+ #define SCHED_DEADLINE 6
+
+ /* XXX use the proper syscall numbers */
+ #ifdef __x86_64__
+ #define __NR_sched_setattr 314
+ #define __NR_sched_getattr 315
+ #endif
+
+ #ifdef __i386__
+ #define __NR_sched_setattr 351
+ #define __NR_sched_getattr 352
+ #endif
+
+ #ifdef __arm__
+ #define __NR_sched_setattr 380
+ #define __NR_sched_getattr 381
+ #endif
+
+ static volatile int done;
+
+ struct sched_attr {
__u32 size;
__u32 sched_policy;
@@ -802,25 +819,25 @@ Appendix B. Minimal main()
__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;
- };
+ };
- int sched_setattr(pid_t pid,
+ int sched_setattr(pid_t pid,
const struct sched_attr *attr,
unsigned int flags)
- {
+ {
return syscall(__NR_sched_setattr, pid, attr, flags);
- }
+ }
- int sched_getattr(pid_t pid,
+ int sched_getattr(pid_t pid,
struct sched_attr *attr,
unsigned int size,
unsigned int flags)
- {
+ {
return syscall(__NR_sched_getattr, pid, attr, size, flags);
- }
+ }
- void *run_deadline(void *data)
- {
+ void *run_deadline(void *data)
+ {
struct sched_attr attr;
int x = 0;
int ret;
@@ -851,10 +868,10 @@ Appendix B. Minimal main()
printf("deadline thread dies [%ld]\n", gettid());
return NULL;
- }
+ }
- int main (int argc, char **argv)
- {
+ int main (int argc, char **argv)
+ {
pthread_t thread;
printf("main thread [%ld]\n", gettid());
@@ -868,4 +885,4 @@ Appendix B. Minimal main()
printf("main dies [%ld]\n", gettid());
return 0;
- }
+ }
diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.rst
index edd861c94c1b..53b30d1967cf 100644
--- a/Documentation/scheduler/sched-design-CFS.txt
+++ b/Documentation/scheduler/sched-design-CFS.rst
@@ -1,9 +1,10 @@
- =============
- CFS Scheduler
- =============
+=============
+CFS Scheduler
+=============
1. OVERVIEW
+============
CFS stands for "Completely Fair Scheduler," and is the new "desktop" process
scheduler implemented by Ingo Molnar and merged in Linux 2.6.23. It is the
@@ -27,6 +28,7 @@ is its actual runtime normalized to the total number of running tasks.
2. FEW IMPLEMENTATION DETAILS
+==============================
In CFS the virtual runtime is expressed and tracked via the per-task
p->se.vruntime (nanosec-unit) value. This way, it's possible to accurately
@@ -49,6 +51,7 @@ algorithm variants to recognize sleepers.
3. THE RBTREE
+==============
CFS's design is quite radical: it does not use the old data structures for the
runqueues, but it uses a time-ordered rbtree to build a "timeline" of future
@@ -84,6 +87,7 @@ picked and the current task is preempted.
4. SOME FEATURES OF CFS
+========================
CFS uses nanosecond granularity accounting and does not rely on any jiffies or
other HZ detail. Thus the CFS scheduler has no notion of "timeslices" in the
@@ -113,6 +117,7 @@ result.
5. Scheduling policies
+======================
CFS implements three scheduling policies:
@@ -137,6 +142,7 @@ SCHED_IDLE.
6. SCHEDULING CLASSES
+======================
The new CFS scheduler has been designed in such a way to introduce "Scheduling
Classes," an extensible hierarchy of scheduler modules. These modules
@@ -197,6 +203,7 @@ This is the (partial) list of the hooks:
7. GROUP SCHEDULER EXTENSIONS TO CFS
+=====================================
Normally, the scheduler operates on individual tasks and strives to provide
fair CPU time to each task. Sometimes, it may be desirable to group tasks and
@@ -215,11 +222,11 @@ SCHED_BATCH) tasks.
These options need CONFIG_CGROUPS to be defined, and let the administrator
create arbitrary groups of tasks, using the "cgroup" pseudo filesystem. See
- Documentation/cgroup-v1/cgroups.txt for more information about this filesystem.
+ Documentation/cgroup-v1/cgroups.rst for more information about this filesystem.
When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each
group created using the pseudo filesystem. See example steps below to create
-task groups and modify their CPU share using the "cgroups" pseudo filesystem.
+task groups and modify their CPU share using the "cgroups" pseudo filesystem::
# mount -t tmpfs cgroup_root /sys/fs/cgroup
# mkdir /sys/fs/cgroup/cpu
diff --git a/Documentation/scheduler/sched-domains.txt b/Documentation/scheduler/sched-domains.rst
index 4af80b1c05aa..f7504226f445 100644
--- a/Documentation/scheduler/sched-domains.txt
+++ b/Documentation/scheduler/sched-domains.rst
@@ -1,3 +1,7 @@
+=================
+Scheduler Domains
+=================
+
Each CPU has a "base" scheduling domain (struct sched_domain). The domain
hierarchy is built from these base domains via the ->parent pointer. ->parent
MUST be NULL terminated, and domain structures should be per-CPU as they are
@@ -46,7 +50,9 @@ CPU's runqueue and the newly found busiest one and starts moving tasks from it
to our runqueue. The exact number of tasks amounts to an imbalance previously
computed while iterating over this sched domain's groups.
-*** Implementing sched domains ***
+Implementing sched domains
+==========================
+
The "base" domain will "span" the first level of the hierarchy. In the case
of SMT, you'll span all siblings of the physical CPU, with each group being
a single virtual CPU.
diff --git a/Documentation/scheduler/sched-energy.txt b/Documentation/scheduler/sched-energy.rst
index 197d81f4b836..fce5858c9082 100644
--- a/Documentation/scheduler/sched-energy.txt
+++ b/Documentation/scheduler/sched-energy.rst
@@ -1,6 +1,6 @@
- =======================
- Energy Aware Scheduling
- =======================
+=======================
+Energy Aware Scheduling
+=======================
1. Introduction
---------------
@@ -12,7 +12,7 @@ with a minimal impact on throughput. This document aims at providing an
introduction on how EAS works, what are the main design decisions behind it, and
details what is needed to get it to run.
-Before going any further, please note that at the time of writing:
+Before going any further, please note that at the time of writing::
/!\ EAS does not support platforms with symmetric CPU topologies /!\
@@ -33,13 +33,13 @@ To make it clear from the start:
- power = energy/time = [joule/second] = [watt]
The goal of EAS is to minimize energy, while still getting the job done. That
-is, we want to maximize:
+is, we want to maximize::
performance [inst/s]
--------------------
power [W]
-which is equivalent to minimizing:
+which is equivalent to minimizing::
energy [J]
-----------
@@ -97,7 +97,7 @@ domains can contain duplicate elements.
Example 1.
Let us consider a platform with 12 CPUs, split in 3 performance domains
- (pd0, pd4 and pd8), organized as follows:
+ (pd0, pd4 and pd8), organized as follows::
CPUs: 0 1 2 3 4 5 6 7 8 9 10 11
PDs: |--pd0--|--pd4--|---pd8---|
@@ -108,6 +108,7 @@ Example 1.
containing 6 CPUs. The two root domains are denoted rd1 and rd2 in the
above figure. Since pd4 intersects with both rd1 and rd2, it will be
present in the linked list '->pd' attached to each of them:
+
* rd1->pd: pd0 -> pd4
* rd2->pd: pd4 -> pd8
@@ -159,9 +160,9 @@ Example 2.
Each performance domain has three Operating Performance Points (OPPs).
The CPU capacity and power cost associated with each OPP is listed in
the Energy Model table. The util_avg of P is shown on the figures
- below as 'PP'.
+ below as 'PP'::
- CPU util.
+ CPU util.
1024 - - - - - - - Energy Model
+-----------+-------------+
| Little | Big |
@@ -188,8 +189,7 @@ Example 2.
(which is coherent with the behaviour of the schedutil CPUFreq
governor, see Section 6. for more details on this topic).
- Case 1. P is migrated to CPU1
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 1. P is migrated to CPU1**::
1024 - - - - - - -
@@ -207,8 +207,7 @@ Example 2.
CPU0 CPU1 CPU2 CPU3
- Case 2. P is migrated to CPU3
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 2. P is migrated to CPU3**::
1024 - - - - - - -
@@ -226,8 +225,7 @@ Example 2.
CPU0 CPU1 CPU2 CPU3
- Case 3. P stays on prev_cpu / CPU 0
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 3. P stays on prev_cpu / CPU 0**::
1024 - - - - - - -
@@ -324,7 +322,9 @@ hardware properties and on other features of the kernel being enabled. This
section lists these dependencies and provides hints as to how they can be met.
- 6.1 - Asymmetric CPU topology
+6.1 - Asymmetric CPU topology
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
As mentioned in the introduction, EAS is only supported on platforms with
asymmetric CPU topologies for now. This requirement is checked at run-time by
@@ -347,7 +347,8 @@ significant savings on SMP platforms have been observed yet. This restriction
could be amended in the future if proven otherwise.
- 6.2 - Energy Model presence
+6.2 - Energy Model presence
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
EAS uses the EM of a platform to estimate the impact of scheduling decisions on
energy. So, your platform must provide power cost tables to the EM framework in
@@ -358,7 +359,8 @@ Please also note that the scheduling domains need to be re-built after the
EM has been registered in order to start EAS.
- 6.3 - Energy Model complexity
+6.3 - Energy Model complexity
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The task wake-up path is very latency-sensitive. When the EM of a platform is
too complex (too many CPUs, too many performance domains, too many performance
@@ -388,7 +390,8 @@ two possible options:
hence enabling it to cope with larger EMs in reasonable time.
- 6.4 - Schedutil governor
+6.4 - Schedutil governor
+^^^^^^^^^^^^^^^^^^^^^^^^
EAS tries to predict at which OPP will the CPUs be running in the close future
in order to estimate their energy consumption. To do so, it is assumed that OPPs
@@ -405,7 +408,8 @@ frequency requests and energy predictions.
Using EAS with any other governor than schedutil is not supported.
- 6.5 Scale-invariant utilization signals
+6.5 Scale-invariant utilization signals
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In order to make accurate prediction across CPUs and for all performance
states, EAS needs frequency-invariant and CPU-invariant PELT signals. These can
@@ -416,7 +420,8 @@ Using EAS on a platform that doesn't implement these two callbacks is not
supported.
- 6.6 Multithreading (SMT)
+6.6 Multithreading (SMT)
+^^^^^^^^^^^^^^^^^^^^^^^^
EAS in its current form is SMT unaware and is not able to leverage
multithreaded hardware to save energy. EAS considers threads as independent
diff --git a/Documentation/scheduler/sched-nice-design.txt b/Documentation/scheduler/sched-nice-design.rst
index 3ac1e46d5365..0571f1b47e64 100644
--- a/Documentation/scheduler/sched-nice-design.txt
+++ b/Documentation/scheduler/sched-nice-design.rst
@@ -1,3 +1,7 @@
+=====================
+Scheduler Nice Design
+=====================
+
This document explains the thinking about the revamped and streamlined
nice-levels implementation in the new Linux scheduler.
@@ -14,7 +18,7 @@ much stronger than they were before in 2.4 (and people were happy about
that change), and we also intentionally calibrated the linear timeslice
rule so that nice +19 level would be _exactly_ 1 jiffy. To better
understand it, the timeslice graph went like this (cheesy ASCII art
-alert!):
+alert!)::
A
diff --git a/Documentation/scheduler/sched-pelt.c b/Documentation/scheduler/sched-pelt.c
index e4219139386a..7238b355919c 100644
--- a/Documentation/scheduler/sched-pelt.c
+++ b/Documentation/scheduler/sched-pelt.c
@@ -20,7 +20,8 @@ void calc_runnable_avg_yN_inv(void)
int i;
unsigned int x;
- printf("static const u32 runnable_avg_yN_inv[] = {");
+ /* To silence -Wunused-but-set-variable warnings. */
+ printf("static const u32 runnable_avg_yN_inv[] __maybe_unused = {");
for (i = 0; i < HALFLIFE; i++) {
x = ((1UL<<32)-1)*pow(y, i);
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.rst
index d8fce3e78457..d27d3f3712fd 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.rst
@@ -1,18 +1,18 @@
- Real-Time group scheduling
- --------------------------
+==========================
+Real-Time group scheduling
+==========================
-CONTENTS
-========
+.. CONTENTS
-0. WARNING
-1. Overview
- 1.1 The problem
- 1.2 The solution
-2. The interface
- 2.1 System-wide settings
- 2.2 Default behaviour
- 2.3 Basis for grouping tasks
-3. Future plans
+ 0. WARNING
+ 1. Overview
+ 1.1 The problem
+ 1.2 The solution
+ 2. The interface
+ 2.1 System-wide settings
+ 2.2 Default behaviour
+ 2.3 Basis for grouping tasks
+ 3. Future plans
0. WARNING
@@ -133,7 +133,7 @@ This uses the cgroup virtual file system and "<cgroup>/cpu.rt_runtime_us"
to control the CPU time reserved for each control group.
For more information on working with control groups, you should read
-Documentation/cgroup-v1/cgroups.txt as well.
+Documentation/cgroup-v1/cgroups.rst as well.
Group settings are checked against the following limits in order to keep the
configuration schedulable:
@@ -159,9 +159,11 @@ Consider two sibling groups A and B; both have 50% bandwidth, but A's
period is twice the length of B's.
* group A: period=100000us, runtime=50000us
+
- this runs for 0.05s once every 0.1s
* group B: period= 50000us, runtime=25000us
+
- this runs for 0.025s twice every 0.1s (or once every 0.05 sec).
This means that currently a while (1) loop in A will run for the full period of
diff --git a/Documentation/scheduler/sched-stats.txt b/Documentation/scheduler/sched-stats.rst
index 8259b34a66ae..0cb0aa714545 100644
--- a/Documentation/scheduler/sched-stats.txt
+++ b/Documentation/scheduler/sched-stats.rst
@@ -1,3 +1,7 @@
+====================
+Scheduler Statistics
+====================
+
Version 15 of schedstats dropped counters for some sched_yield:
yld_exp_empty, yld_act_empty and yld_both_empty. Otherwise, it is
identical to version 14.
@@ -35,19 +39,23 @@ CPU statistics
cpu<N> 1 2 3 4 5 6 7 8 9
First field is a sched_yield() statistic:
+
1) # of times sched_yield() was called
Next three are schedule() statistics:
+
2) This field is a legacy array expiration count field used in the O(1)
scheduler. We kept it for ABI compatibility, but it is always set to zero.
3) # of times schedule() was called
4) # of times schedule() left the processor idle
Next two are try_to_wake_up() statistics:
+
5) # of times try_to_wake_up() was called
6) # of times try_to_wake_up() was called to wake up the local cpu
Next three are statistics describing scheduling latency:
+
7) sum of all time spent running by tasks on this processor (in jiffies)
8) sum of all time spent waiting to run by tasks on this processor (in
jiffies)
@@ -67,24 +75,23 @@ The first field is a bit mask indicating what cpus this domain operates over.
The next 24 are a variety of load_balance() statistics in grouped into types
of idleness (idle, busy, and newly idle):
- 1) # of times in this domain load_balance() was called when the
+ 1) # of times in this domain load_balance() was called when the
cpu was idle
- 2) # of times in this domain load_balance() checked but found
+ 2) # of times in this domain load_balance() checked but found
the load did not require balancing when the cpu was idle
- 3) # of times in this domain load_balance() tried to move one or
+ 3) # of times in this domain load_balance() tried to move one or
more tasks and failed, when the cpu was idle
- 4) sum of imbalances discovered (if any) with each call to
+ 4) sum of imbalances discovered (if any) with each call to
load_balance() in this domain when the cpu was idle
- 5) # of times in this domain pull_task() was called when the cpu
+ 5) # of times in this domain pull_task() was called when the cpu
was idle
- 6) # of times in this domain pull_task() was called even though
+ 6) # of times in this domain pull_task() was called even though
the target task was cache-hot when idle
- 7) # of times in this domain load_balance() was called but did
+ 7) # of times in this domain load_balance() was called but did
not find a busier queue while the cpu was idle
- 8) # of times in this domain a busier queue was found while the
+ 8) # of times in this domain a busier queue was found while the
cpu was idle but no busier group was found
-
- 9) # of times in this domain load_balance() was called when the
+ 9) # of times in this domain load_balance() was called when the
cpu was busy
10) # of times in this domain load_balance() checked but found the
load did not require balancing when busy
@@ -117,21 +124,25 @@ of idleness (idle, busy, and newly idle):
was just becoming idle but no busier group was found
Next three are active_load_balance() statistics:
+
25) # of times active_load_balance() was called
26) # of times active_load_balance() tried to move a task and failed
27) # of times active_load_balance() successfully moved a task
Next three are sched_balance_exec() statistics:
+
28) sbe_cnt is not used
29) sbe_balanced is not used
30) sbe_pushed is not used
Next three are sched_balance_fork() statistics:
+
31) sbf_cnt is not used
32) sbf_balanced is not used
33) sbf_pushed is not used
Next three are try_to_wake_up() statistics:
+
34) # of times in this domain try_to_wake_up() awoke a task that
last ran on a different cpu in this domain
35) # of times in this domain try_to_wake_up() moved a task to the
@@ -139,10 +150,11 @@ of idleness (idle, busy, and newly idle):
36) # of times in this domain try_to_wake_up() started passive balancing
/proc/<pid>/schedstat
-----------------
+---------------------
schedstats also adds a new /proc/<pid>/schedstat file to include some of
the same information on a per-process level. There are three fields in
this file correlating for that process to:
+
1) time spent on the cpu
2) time spent waiting on a runqueue
3) # of timeslices run on this cpu
@@ -151,4 +163,5 @@ A program could be easily written to make use of these extra fields to
report on how well a particular process or set of processes is faring
under the scheduler's policies. A simple version of such a program is
available at
+
http://eaglet.rain.com/rick/linux/schedstat/v12/latency.c
diff --git a/Documentation/scheduler/text_files.rst b/Documentation/scheduler/text_files.rst
new file mode 100644
index 000000000000..0bc50307b241
--- /dev/null
+++ b/Documentation/scheduler/text_files.rst
@@ -0,0 +1,5 @@
+Scheduler pelt c program
+------------------------
+
+.. literalinclude:: sched-pelt.c
+ :language: c
diff --git a/Documentation/scsi/osst.txt b/Documentation/scsi/osst.txt
deleted file mode 100644
index 00c8ebb2fd18..000000000000
--- a/Documentation/scsi/osst.txt
+++ /dev/null
@@ -1,218 +0,0 @@
-README file for the osst driver
-===============================
-(w) Kurt Garloff <garloff@suse.de> 12/2000
-
-This file describes the osst driver as of version 0.8.x/0.9.x, the released
-version of the osst driver.
-It is intended to help advanced users to understand the role of osst and to
-get them started using (and maybe debugging) it.
-It won't address issues like "How do I compile a kernel?" or "How do I load
-a module?", as these are too basic.
-Once the OnStream got merged into the official kernel, the distro makers
-will provide the OnStream support for those who are not familiar with
-hacking their kernels.
-
-
-Purpose
--------
-The osst driver was developed, because the standard SCSI tape driver in
-Linux, st, does not support the OnStream SC-x0 SCSI tape. The st is not to
-blame for that, as the OnStream tape drives do not support the standard SCSI
-command set for Serial Access Storage Devices (SASDs), which basically
-corresponds to the QIC-157 spec.
-Nevertheless, the OnStream tapes are nice pieces of hardware and therefore
-the osst driver has been written to make these tape devs supported by Linux.
-The driver is free software. It's released under the GNU GPL and planned to
-be integrated into the mainstream kernel.
-
-
-Implementation
---------------
-The osst is a new high-level SCSI driver, just like st, sr, sd and sg. It
-can be compiled into the kernel or loaded as a module.
-As it represents a new device, it got assigned a new device node: /dev/osstX
-are character devices with major no 206 and minor numbers like the /dev/stX
-devices. If those are not present, you may create them by calling
-Makedevs.sh as root (see below).
-The driver started being a copy of st and as such, the osst devices'
-behavior looks very much the same as st to the userspace applications.
-
-
-History
--------
-In the first place, osst shared its identity very much with st. That meant
-that it used the same kernel structures and the same device node as st.
-So you could only have either of them being present in the kernel. This has
-been fixed by registering an own device, now.
-st and osst can coexist, each only accessing the devices it can support by
-themselves.
-
-
-Installation
-------------
-osst got integrated into the linux kernel. Select it during kernel
-configuration as module or compile statically into the kernel.
-Compile your kernel and install the modules.
-
-Now, your osst driver is inside the kernel or available as a module,
-depending on your choice during kernel config. You may still need to create
-the device nodes by calling the Makedevs.sh script (see below) manually.
-
-To load your module, you may use the command
-modprobe osst
-as root. dmesg should show you, whether your OnStream tapes have been
-recognized.
-
-If you want to have the module autoloaded on access to /dev/osst, you may
-add something like
-alias char-major-206 osst
-to a file under /etc/modprobe.d/ directory.
-
-You may find it convenient to create a symbolic link
-ln -s nosst0 /dev/tape
-to make programs assuming a default name of /dev/tape more convenient to
-use.
-
-The device nodes for osst have to be created. Use the Makedevs.sh script
-attached to this file.
-
-
-Using it
---------
-You may use the OnStream tape driver with your standard backup software,
-which may be tar, cpio, amanda, arkeia, BRU, Lone Tar, ...
-by specifying /dev/(n)osst0 as the tape device to use or using the above
-symlink trick. The IOCTLs to control tape operation are also mostly
-supported and you may try the mt (or mt_st) program to jump between
-filemarks, eject the tape, ...
-
-There's one limitation: You need to use a block size of 32kB.
-
-(This limitation is worked on and will be fixed in version 0.8.8 of
- this driver.)
-
-If you just want to get started with standard software, here is an example
-for creating and restoring a full backup:
-# Backup
-tar cvf - / --exclude /proc | buffer -s 32k -m 24M -B -t -o /dev/nosst0
-# Restore
-buffer -s 32k -m 8M -B -t -i /dev/osst0 | tar xvf - -C /
-
-The buffer command has been used to buffer the data before it goes to the
-tape (or the file system) in order to smooth out the data stream and prevent
-the tape from needing to stop and rewind. The OnStream does have an internal
-buffer and a variable speed which help this, but especially on writing, the
-buffering still proves useful in most cases. It also pads the data to
-guarantees the block size of 32k. (Otherwise you may pass the -b64 option to
-tar.)
-Expect something like 1.8MB/s for the SC-x0 drives and 0.9MB/s for the DI-30.
-The USB drive will give you about 0.7MB/s.
-On a fast machine, you may profit from software data compression (z flag for
-tar).
-
-
-USB and IDE
------------
-Via the SCSI emulation layers usb-storage and ide-scsi, you can also use the
-osst driver to drive the USB-30 and the DI-30 drives. (Unfortunately, there
-is no such layer for the parallel port, otherwise the DP-30 would work as
-well.) For the USB support, you need the latest 2.4.0-test kernels and the
-latest usb-storage driver from
-http://www.linux-usb.org/
-http://sourceforge.net/cvs/?group_id=3581
-
-Note that the ide-tape driver as of 1.16f uses a slightly outdated on-tape
-format and therefore is not completely interoperable with osst tapes.
-
-The ADR-x0 line is fully SCSI-2 compliant and is supported by st, not osst.
-The on-tape format is supposed to be compatible with the one used by osst.
-
-
-Feedback and updates
---------------------
-The driver development is coordinated through a mailing list
-<osst@linux1.onstream.nl>
-a CVS repository and some web pages.
-The tester's pages which contain recent news and updated drivers to download
-can be found on
-http://sourceforge.net/projects/osst/
-
-If you find any problems, please have a look at the tester's page in order
-to see whether the problem is already known and solved. Otherwise, please
-report it to the mailing list. Your feedback is welcome. (This holds also
-for reports of successful usage, of course.)
-In case of trouble, please do always provide the following info:
-* driver and kernel version used (see syslog)
-* driver messages (syslog)
-* SCSI config and OnStream Firmware (/proc/scsi/scsi)
-* description of error. Is it reproducible?
-* software and commands used
-
-You may subscribe to the mailing list, BTW, it's a majordomo list.
-
-
-Status
-------
-0.8.0 was the first widespread BETA release. Since then a lot of reports
-have been sent, but mostly reported success or only minor trouble.
-All the issues have been addressed.
-Check the web pages for more info about the current developments.
-0.9.x is the tree for the 2.3/2.4 kernel.
-
-
-Acknowledgments
-----------------
-The driver has been started by making a copy of Kai Makisara's st driver.
-Most of the development has been done by Willem Riede. The presence of the
-userspace program osg (onstreamsg) from Terry Hardie has been rather
-helpful. The same holds for Gadi Oxman's ide-tape support for the DI-30.
-I did add some patches to those drivers as well and coordinated things a
-little bit.
-Note that most of them did mostly spend their spare time for the creation of
-this driver.
-The people from OnStream, especially Jack Bombeeck did support this project
-and always tried to answer HW or FW related questions. Furthermore, he
-pushed the FW developers to do the right things.
-SuSE did support this project by allowing me to work on it during my working
-time for them and by integrating the driver into their distro.
-
-More people did help by sending useful comments. Sorry to those who have
-been forgotten. Thanks to all the GNU/FSF and Linux developers who made this
-platform such an interesting, nice and stable platform.
-Thanks go to those who tested the drivers and did send useful reports. Your
-help is needed!
-
-
-Makedevs.sh
------------
-#!/bin/sh
-# Script to create OnStream SC-x0 device nodes (major 206)
-# Usage: Makedevs.sh [nos [path to dev]]
-# $Id: README.osst.kernel,v 1.4 2000/12/20 14:13:15 garloff Exp $
-major=206
-nrs=4
-dir=/dev
-test -z "$1" || nrs=$1
-test -z "$2" || dir=$2
-declare -i nr
-nr=0
-test -d $dir || mkdir -p $dir
-while test $nr -lt $nrs; do
- mknod $dir/osst$nr c $major $nr
- chown 0.disk $dir/osst$nr; chmod 660 $dir/osst$nr;
- mknod $dir/nosst$nr c $major $[nr+128]
- chown 0.disk $dir/nosst$nr; chmod 660 $dir/nosst$nr;
- mknod $dir/osst${nr}l c $major $[nr+32]
- chown 0.disk $dir/osst${nr}l; chmod 660 $dir/osst${nr}l;
- mknod $dir/nosst${nr}l c $major $[nr+160]
- chown 0.disk $dir/nosst${nr}l; chmod 660 $dir/nosst${nr}l;
- mknod $dir/osst${nr}m c $major $[nr+64]
- chown 0.disk $dir/osst${nr}m; chmod 660 $dir/osst${nr}m;
- mknod $dir/nosst${nr}m c $major $[nr+192]
- chown 0.disk $dir/nosst${nr}m; chmod 660 $dir/nosst${nr}m;
- mknod $dir/osst${nr}a c $major $[nr+96]
- chown 0.disk $dir/osst${nr}a; chmod 660 $dir/osst${nr}a;
- mknod $dir/nosst${nr}a c $major $[nr+224]
- chown 0.disk $dir/nosst${nr}a; chmod 660 $dir/nosst${nr}a;
- let nr+=1
-done
diff --git a/Documentation/scsi/ufs.txt b/Documentation/scsi/ufs.txt
index 1769f71c4c20..81842ec3e116 100644
--- a/Documentation/scsi/ufs.txt
+++ b/Documentation/scsi/ufs.txt
@@ -158,6 +158,13 @@ send SG_IO with the applicable sg_io_v4:
If you wish to read or write a descriptor, use the appropriate xferp of
sg_io_v4.
+The userspace tool that interacts with the ufs-bsg endpoint and uses its
+upiu-based protocol is available at:
+
+ https://github.com/westerndigitalcorporation/ufs-tool
+
+For more detailed information about the tool and its supported
+features, please see the tool's README.
UFS Specifications can be found at,
UFS - http://www.jedec.org/sites/default/files/docs/JESD220.pdf
diff --git a/Documentation/security/IMA-templates.rst b/Documentation/security/IMA-templates.rst
index 2cd0e273cc9a..3d1cca287aa4 100644
--- a/Documentation/security/IMA-templates.rst
+++ b/Documentation/security/IMA-templates.rst
@@ -69,15 +69,16 @@ descriptors by adding their identifier to the format string
algorithm (field format: [<hash algo>:]digest, where the digest
prefix is shown only if the hash algorithm is not SHA1 or MD5);
- 'n-ng': the name of the event, without size limitations;
- - 'sig': the file signature.
+ - 'sig': the file signature;
+ - 'buf': the buffer data that was used to generate the hash without size limitations;
Below, there is the list of defined template descriptors:
- "ima": its format is ``d|n``;
- "ima-ng" (default): its format is ``d-ng|n-ng``;
- - "ima-sig": its format is ``d-ng|n-ng|sig``.
-
+ - "ima-sig": its format is ``d-ng|n-ng|sig``;
+ - "ima-buf": its format is ``d-ng|n-ng|buf``;
Use
diff --git a/Documentation/security/keys/core.rst b/Documentation/security/keys/core.rst
index 9521c4207f01..d6d8b0b756b6 100644
--- a/Documentation/security/keys/core.rst
+++ b/Documentation/security/keys/core.rst
@@ -433,6 +433,10 @@ The main syscalls are:
/sbin/request-key will be invoked in an attempt to obtain a key. The
callout_info string will be passed as an argument to the program.
+ To link a key into the destination keyring the key must grant link
+ permission on the key to the caller and the keyring must grant write
+ permission.
+
See also Documentation/security/keys/request-key.rst.
@@ -577,6 +581,27 @@ The keyctl syscall functions are:
added.
+ * Move a key from one keyring to another::
+
+ long keyctl(KEYCTL_MOVE,
+ key_serial_t id,
+ key_serial_t from_ring_id,
+ key_serial_t to_ring_id,
+ unsigned int flags);
+
+ Move the key specified by "id" from the keyring specified by
+ "from_ring_id" to the keyring specified by "to_ring_id". If the two
+ keyrings are the same, nothing is done.
+
+ "flags" can have KEYCTL_MOVE_EXCL set in it to cause the operation to fail
+ with EEXIST if a matching key exists in the destination keyring, otherwise
+ such a key will be replaced.
+
+ A process must have link permission on the key for this function to be
+ successful and write permission on both keyrings. Any errors that can
+ occur from KEYCTL_LINK also apply on the destination keyring here.
+
+
* Unlink a key or keyring from another keyring::
long keyctl(KEYCTL_UNLINK, key_serial_t keyring, key_serial_t key);
@@ -1077,49 +1102,43 @@ payload contents" for more information.
See also Documentation/security/keys/request-key.rst.
+ * To search for a key in a specific domain, call:
+
+ struct key *request_key_tag(const struct key_type *type,
+ const char *description,
+ struct key_tag *domain_tag,
+ const char *callout_info);
+
+ This is identical to request_key(), except that a domain tag may be
+ specifies that causes search algorithm to only match keys matching that
+ tag. The domain_tag may be NULL, specifying a global domain that is
+ separate from any nominated domain.
+
+
* To search for a key, passing auxiliary data to the upcaller, call::
struct key *request_key_with_auxdata(const struct key_type *type,
const char *description,
+ struct key_tag *domain_tag,
const void *callout_info,
size_t callout_len,
void *aux);
- This is identical to request_key(), except that the auxiliary data is
- passed to the key_type->request_key() op if it exists, and the callout_info
- is a blob of length callout_len, if given (the length may be 0).
-
-
- * A key can be requested asynchronously by calling one of::
-
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const void *callout_info,
- size_t callout_len);
-
- or::
+ This is identical to request_key_tag(), except that the auxiliary data is
+ passed to the key_type->request_key() op if it exists, and the
+ callout_info is a blob of length callout_len, if given (the length may be
+ 0).
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
- which are asynchronous equivalents of request_key() and
- request_key_with_auxdata() respectively.
+ * To search for a key under RCU conditions, call::
- These two functions return with the key potentially still under
- construction. To wait for construction completion, the following should be
- called::
+ struct key *request_key_rcu(const struct key_type *type,
+ const char *description,
+ struct key_tag *domain_tag);
- int wait_for_key_construction(struct key *key, bool intr);
-
- The function will wait for the key to finish being constructed and then
- invokes key_validate() to return an appropriate value to indicate the state
- of the key (0 indicates the key is usable).
-
- If intr is true, then the wait can be interrupted by a signal, in which
- case error ERESTARTSYS will be returned.
+ which is similar to request_key_tag() except that it does not check for
+ keys that are under construction and it will not call out to userspace to
+ construct a key if it can't find a match.
* When it is no longer required, the key should be released using::
@@ -1159,11 +1178,13 @@ payload contents" for more information.
key_ref_t keyring_search(key_ref_t keyring_ref,
const struct key_type *type,
- const char *description)
+ const char *description,
+ bool recurse)
- This searches the keyring tree specified for a matching key. Error ENOKEY
- is returned upon failure (use IS_ERR/PTR_ERR to determine). If successful,
- the returned key will need to be released.
+ This searches the specified keyring only (recurse == false) or keyring tree
+ (recurse == true) specified for a matching key. Error ENOKEY is returned
+ upon failure (use IS_ERR/PTR_ERR to determine). If successful, the returned
+ key will need to be released.
The possession attribute from the keyring reference is used to control
access through the permissions mask and is propagated to the returned key
@@ -1594,10 +1615,12 @@ The structure has a number of fields, some of which are mandatory:
attempted key link operation. If there is no match, -EINVAL is returned.
- * ``int (*asym_eds_op)(struct kernel_pkey_params *params,
- const void *in, void *out);``
- ``int (*asym_verify_signature)(struct kernel_pkey_params *params,
- const void *in, const void *in2);``
+ * ``asym_eds_op`` and ``asym_verify_signature``::
+
+ int (*asym_eds_op)(struct kernel_pkey_params *params,
+ const void *in, void *out);
+ int (*asym_verify_signature)(struct kernel_pkey_params *params,
+ const void *in, const void *in2);
These methods are optional. If provided the first allows a key to be
used to encrypt, decrypt or sign a blob of data, and the second allows a
@@ -1662,8 +1685,10 @@ The structure has a number of fields, some of which are mandatory:
required crypto isn't available.
- * ``int (*asym_query)(const struct kernel_pkey_params *params,
- struct kernel_pkey_query *info);``
+ * ``asym_query``::
+
+ int (*asym_query)(const struct kernel_pkey_params *params,
+ struct kernel_pkey_query *info);
This method is optional. If provided it allows information about the
public or asymmetric key held in the key to be determined.
diff --git a/Documentation/security/keys/request-key.rst b/Documentation/security/keys/request-key.rst
index 600ad67d1707..35f2296b704a 100644
--- a/Documentation/security/keys/request-key.rst
+++ b/Documentation/security/keys/request-key.rst
@@ -15,26 +15,25 @@ The process starts by either the kernel requesting a service by calling
or::
+ struct key *request_key_tag(const struct key_type *type,
+ const char *description,
+ const struct key_tag *domain_tag,
+ const char *callout_info);
+
+or::
+
struct key *request_key_with_auxdata(const struct key_type *type,
const char *description,
+ const struct key_tag *domain_tag,
const char *callout_info,
size_t callout_len,
void *aux);
or::
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len);
-
-or::
-
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
+ struct key *request_key_rcu(const struct key_type *type,
+ const char *description,
+ const struct key_tag *domain_tag);
Or by userspace invoking the request_key system call::
@@ -48,14 +47,18 @@ does not need to link the key to a keyring to prevent it from being immediately
destroyed. The kernel interface returns a pointer directly to the key, and
it's up to the caller to destroy the key.
-The request_key*_with_auxdata() calls are like the in-kernel request_key*()
-calls, except that they permit auxiliary data to be passed to the upcaller (the
-default is NULL). This is only useful for those key types that define their
-own upcall mechanism rather than using /sbin/request-key.
+The request_key_tag() call is like the in-kernel request_key(), except that it
+also takes a domain tag that allows keys to be separated by namespace and
+killed off as a group.
+
+The request_key_with_auxdata() calls is like the request_key_tag() call, except
+that they permit auxiliary data to be passed to the upcaller (the default is
+NULL). This is only useful for those key types that define their own upcall
+mechanism rather than using /sbin/request-key.
-The two async in-kernel calls may return keys that are still in the process of
-being constructed. The two non-async ones will wait for construction to
-complete first.
+The request_key_rcu() call is like the request_key_tag() call, except that it
+doesn't check for keys that are under construction and doesn't attempt to
+construct missing keys.
The userspace interface links the key to a keyring associated with the process
to prevent the key from going away, and returns the serial number of the key to
@@ -148,7 +151,7 @@ The Search Algorithm
A search of any particular keyring proceeds in the following fashion:
- 1) When the key management code searches for a key (keyring_search_aux) it
+ 1) When the key management code searches for a key (keyring_search_rcu) it
firstly calls key_permission(SEARCH) on the keyring it's starting with,
if this denies permission, it doesn't search further.
@@ -167,6 +170,9 @@ The process stops immediately a valid key is found with permission granted to
use it. Any error from a previous match attempt is discarded and the key is
returned.
+When request_key() is invoked, if CONFIG_KEYS_REQUEST_CACHE=y, a per-task
+one-key cache is first checked for a match.
+
When search_process_keyrings() is invoked, it performs the following searches
until one succeeds:
@@ -186,7 +192,9 @@ until one succeeds:
c) The calling process's session keyring is searched.
The moment one succeeds, all pending errors are discarded and the found key is
-returned.
+returned. If CONFIG_KEYS_REQUEST_CACHE=y, then that key is placed in the
+per-task cache, displacing the previous key. The cache is cleared on exit or
+just prior to resumption of userspace.
Only if all these fail does the whole thing fail with the highest priority
error. Note that several errors may have come from LSM.
diff --git a/Documentation/security/keys/trusted-encrypted.rst b/Documentation/security/keys/trusted-encrypted.rst
index 7b35fcb58933..50ac8bcd6970 100644
--- a/Documentation/security/keys/trusted-encrypted.rst
+++ b/Documentation/security/keys/trusted-encrypted.rst
@@ -107,12 +107,14 @@ Where::
Examples of trusted and encrypted key usage:
-Create and save a trusted key named "kmk" of length 32 bytes::
+Create and save a trusted key named "kmk" of length 32 bytes.
Note: When using a TPM 2.0 with a persistent key with handle 0x81000001,
append 'keyhandle=0x81000001' to statements between quotes, such as
"new 32 keyhandle=0x81000001".
+::
+
$ keyctl add trusted kmk "new 32" @u
440502848
diff --git a/Documentation/sphinx/automarkup.py b/Documentation/sphinx/automarkup.py
new file mode 100644
index 000000000000..77e89c1956d7
--- /dev/null
+++ b/Documentation/sphinx/automarkup.py
@@ -0,0 +1,101 @@
+# SPDX-License-Identifier: GPL-2.0
+# Copyright 2019 Jonathan Corbet <corbet@lwn.net>
+#
+# Apply kernel-specific tweaks after the initial document processing
+# has been done.
+#
+from docutils import nodes
+from sphinx import addnodes
+from sphinx.environment import NoUri
+import re
+
+#
+# Regex nastiness. Of course.
+# Try to identify "function()" that's not already marked up some
+# other way. Sphinx doesn't like a lot of stuff right after a
+# :c:func: block (i.e. ":c:func:`mmap()`s" flakes out), so the last
+# bit tries to restrict matches to things that won't create trouble.
+#
+RE_function = re.compile(r'([\w_][\w\d_]+\(\))')
+
+#
+# Many places in the docs refer to common system calls. It is
+# pointless to try to cross-reference them and, as has been known
+# to happen, somebody defining a function by these names can lead
+# to the creation of incorrect and confusing cross references. So
+# just don't even try with these names.
+#
+Skipfuncs = [ 'open', 'close', 'read', 'write', 'fcntl', 'mmap'
+ 'select', 'poll', 'fork', 'execve', 'clone', 'ioctl']
+
+#
+# Find all occurrences of function() and try to replace them with
+# appropriate cross references.
+#
+def markup_funcs(docname, app, node):
+ cdom = app.env.domains['c']
+ t = node.astext()
+ done = 0
+ repl = [ ]
+ for m in RE_function.finditer(t):
+ #
+ # Include any text prior to function() as a normal text node.
+ #
+ if m.start() > done:
+ repl.append(nodes.Text(t[done:m.start()]))
+ #
+ # Go through the dance of getting an xref out of the C domain
+ #
+ target = m.group(1)[:-2]
+ target_text = nodes.Text(target + '()')
+ xref = None
+ if target not in Skipfuncs:
+ lit_text = nodes.literal(classes=['xref', 'c', 'c-func'])
+ lit_text += target_text
+ pxref = addnodes.pending_xref('', refdomain = 'c',
+ reftype = 'function',
+ reftarget = target, modname = None,
+ classname = None)
+ #
+ # XXX The Latex builder will throw NoUri exceptions here,
+ # work around that by ignoring them.
+ #
+ try:
+ xref = cdom.resolve_xref(app.env, docname, app.builder,
+ 'function', target, pxref, lit_text)
+ except NoUri:
+ xref = None
+ #
+ # Toss the xref into the list if we got it; otherwise just put
+ # the function text.
+ #
+ if xref:
+ repl.append(xref)
+ else:
+ repl.append(target_text)
+ done = m.end()
+ if done < len(t):
+ repl.append(nodes.Text(t[done:]))
+ return repl
+
+def auto_markup(app, doctree, name):
+ #
+ # This loop could eventually be improved on. Someday maybe we
+ # want a proper tree traversal with a lot of awareness of which
+ # kinds of nodes to prune. But this works well for now.
+ #
+ # The nodes.literal test catches ``literal text``, its purpose is to
+ # avoid adding cross-references to functions that have been explicitly
+ # marked with cc:func:.
+ #
+ for para in doctree.traverse(nodes.paragraph):
+ for node in para.traverse(nodes.Text):
+ if not isinstance(node.parent, nodes.literal):
+ node.parent.replace(node, markup_funcs(name, app, node))
+
+def setup(app):
+ app.connect('doctree-resolved', auto_markup)
+ return {
+ 'parallel_read_safe': True,
+ 'parallel_write_safe': True,
+ }
diff --git a/Documentation/sphinx/cdomain.py b/Documentation/sphinx/cdomain.py
index cf13ff3a656c..cbac8e608dc4 100644
--- a/Documentation/sphinx/cdomain.py
+++ b/Documentation/sphinx/cdomain.py
@@ -48,7 +48,10 @@ major, minor, patch = sphinx.version_info[:3]
def setup(app):
- app.override_domain(CDomain)
+ if (major == 1 and minor < 8):
+ app.override_domain(CDomain)
+ else:
+ app.add_domain(CDomain, override=True)
return dict(
version = __version__,
diff --git a/Documentation/sphinx/requirements.txt b/Documentation/sphinx/requirements.txt
index 742be3e12619..14e29a0ae480 100644
--- a/Documentation/sphinx/requirements.txt
+++ b/Documentation/sphinx/requirements.txt
@@ -1,3 +1,3 @@
-docutils==0.12
-Sphinx==1.4.9
+docutils
+Sphinx==1.7.9
sphinx_rtd_theme
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index f0c86fbb3b48..1b2fe17cd2fa 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -23,7 +23,6 @@ show up in /proc/sys/kernel:
- auto_msgmni
- bootloader_type [ X86 only ]
- bootloader_version [ X86 only ]
-- callhome [ S390 only ]
- cap_last_cap
- core_pattern
- core_pipe_limit
@@ -155,7 +154,7 @@ is 0x15 and the full version number is 0x234, this file will contain
the value 340 = 0x154.
See the type_of_loader and ext_loader_type fields in
-Documentation/x86/boot.txt for additional information.
+Documentation/x86/boot.rst for additional information.
==============================================================
@@ -167,22 +166,7 @@ The complete bootloader version number. In the example above, this
file will contain the value 564 = 0x234.
See the type_of_loader and ext_loader_ver fields in
-Documentation/x86/boot.txt for additional information.
-
-==============================================================
-
-callhome:
-
-Controls the kernel's callhome behavior in case of a kernel panic.
-
-The s390 hardware allows an operating system to send a notification
-to a service organization (callhome) in case of an operating system panic.
-
-When the value in this file is 0 (which is the default behavior)
-nothing happens in case of a kernel panic. If this value is set to "1"
-the complete kernel oops message is send to the IBM customer service
-organization in case the mainframe the Linux operating system is running
-on has a service contract with IBM.
+Documentation/x86/boot.rst for additional information.
==============================================================
diff --git a/Documentation/target/index.rst b/Documentation/target/index.rst
new file mode 100644
index 000000000000..b68f48982392
--- /dev/null
+++ b/Documentation/target/index.rst
@@ -0,0 +1,19 @@
+:orphan:
+
+==================
+TCM Virtual Device
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ tcmu-design
+ tcm_mod_builder
+ scripts
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/target/scripts.rst b/Documentation/target/scripts.rst
new file mode 100644
index 000000000000..172d42b522e4
--- /dev/null
+++ b/Documentation/target/scripts.rst
@@ -0,0 +1,11 @@
+TCM mod builder script
+----------------------
+
+.. literalinclude:: tcm_mod_builder.py
+ :language: perl
+
+Target export device script
+---------------------------
+
+.. literalinclude:: target-export-device
+ :language: shell
diff --git a/Documentation/target/tcm_mod_builder.rst b/Documentation/target/tcm_mod_builder.rst
new file mode 100644
index 000000000000..9bfc9822e2bd
--- /dev/null
+++ b/Documentation/target/tcm_mod_builder.rst
@@ -0,0 +1,149 @@
+=========================================
+The TCM v4 fabric module script generator
+=========================================
+
+Greetings all,
+
+This document is intended to be a mini-HOWTO for using the tcm_mod_builder.py
+script to generate a brand new functional TCM v4 fabric .ko module of your very own,
+that once built can be immediately be loaded to start access the new TCM/ConfigFS
+fabric skeleton, by simply using::
+
+ modprobe $TCM_NEW_MOD
+ mkdir -p /sys/kernel/config/target/$TCM_NEW_MOD
+
+This script will create a new drivers/target/$TCM_NEW_MOD/, and will do the following
+
+ 1) Generate new API callers for drivers/target/target_core_fabric_configs.c logic
+ ->make_tpg(), ->drop_tpg(), ->make_wwn(), ->drop_wwn(). These are created
+ into $TCM_NEW_MOD/$TCM_NEW_MOD_configfs.c
+ 2) Generate basic infrastructure for loading/unloading LKMs and TCM/ConfigFS fabric module
+ using a skeleton struct target_core_fabric_ops API template.
+ 3) Based on user defined T10 Proto_Ident for the new fabric module being built,
+ the TransportID / Initiator and Target WWPN related handlers for
+ SPC-3 persistent reservation are automatically generated in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
+ using drivers/target/target_core_fabric_lib.c logic.
+ 4) NOP API calls for all other Data I/O path and fabric dependent attribute logic
+ in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
+
+tcm_mod_builder.py depends upon the mandatory '-p $PROTO_IDENT' and '-m
+$FABRIC_MOD_name' parameters, and actually running the script looks like::
+
+ target:/mnt/sdb/lio-core-2.6.git/Documentation/target# python tcm_mod_builder.py -p iSCSI -m tcm_nab5000
+ tcm_dir: /mnt/sdb/lio-core-2.6.git/Documentation/target/../../
+ Set fabric_mod_name: tcm_nab5000
+ Set fabric_mod_dir:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
+ Using proto_ident: iSCSI
+ Creating fabric_mod_dir:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_base.h
+ Using tcm_mod_scan_fabric_ops:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../include/target/target_core_fabric_ops.h
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.c
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.h
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_configfs.c
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kbuild
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kconfig
+ Would you like to add tcm_nab5000to drivers/target/Kbuild..? [yes,no]: yes
+ Would you like to add tcm_nab5000to drivers/target/Kconfig..? [yes,no]: yes
+
+At the end of tcm_mod_builder.py. the script will ask to add the following
+line to drivers/target/Kbuild::
+
+ obj-$(CONFIG_TCM_NAB5000) += tcm_nab5000/
+
+and the same for drivers/target/Kconfig::
+
+ source "drivers/target/tcm_nab5000/Kconfig"
+
+#) Run 'make menuconfig' and select the new CONFIG_TCM_NAB5000 item::
+
+ <M> TCM_NAB5000 fabric module
+
+#) Build using 'make modules', once completed you will have::
+
+ target:/mnt/sdb/lio-core-2.6.git# ls -la drivers/target/tcm_nab5000/
+ total 1348
+ drwxr-xr-x 2 root root 4096 2010-10-05 03:23 .
+ drwxr-xr-x 9 root root 4096 2010-10-05 03:22 ..
+ -rw-r--r-- 1 root root 282 2010-10-05 03:22 Kbuild
+ -rw-r--r-- 1 root root 171 2010-10-05 03:22 Kconfig
+ -rw-r--r-- 1 root root 49 2010-10-05 03:23 modules.order
+ -rw-r--r-- 1 root root 738 2010-10-05 03:22 tcm_nab5000_base.h
+ -rw-r--r-- 1 root root 9096 2010-10-05 03:22 tcm_nab5000_configfs.c
+ -rw-r--r-- 1 root root 191200 2010-10-05 03:23 tcm_nab5000_configfs.o
+ -rw-r--r-- 1 root root 40504 2010-10-05 03:23 .tcm_nab5000_configfs.o.cmd
+ -rw-r--r-- 1 root root 5414 2010-10-05 03:22 tcm_nab5000_fabric.c
+ -rw-r--r-- 1 root root 2016 2010-10-05 03:22 tcm_nab5000_fabric.h
+ -rw-r--r-- 1 root root 190932 2010-10-05 03:23 tcm_nab5000_fabric.o
+ -rw-r--r-- 1 root root 40713 2010-10-05 03:23 .tcm_nab5000_fabric.o.cmd
+ -rw-r--r-- 1 root root 401861 2010-10-05 03:23 tcm_nab5000.ko
+ -rw-r--r-- 1 root root 265 2010-10-05 03:23 .tcm_nab5000.ko.cmd
+ -rw-r--r-- 1 root root 459 2010-10-05 03:23 tcm_nab5000.mod.c
+ -rw-r--r-- 1 root root 23896 2010-10-05 03:23 tcm_nab5000.mod.o
+ -rw-r--r-- 1 root root 22655 2010-10-05 03:23 .tcm_nab5000.mod.o.cmd
+ -rw-r--r-- 1 root root 379022 2010-10-05 03:23 tcm_nab5000.o
+ -rw-r--r-- 1 root root 211 2010-10-05 03:23 .tcm_nab5000.o.cmd
+
+#) Load the new module, create a lun_0 configfs group, and add new TCM Core
+ IBLOCK backstore symlink to port::
+
+ target:/mnt/sdb/lio-core-2.6.git# insmod drivers/target/tcm_nab5000.ko
+ target:/mnt/sdb/lio-core-2.6.git# mkdir -p /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0
+ target:/mnt/sdb/lio-core-2.6.git# cd /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0/
+ target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# ln -s /sys/kernel/config/target/core/iblock_0/lvm_test0 nab5000_port
+
+ target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# cd -
+ target:/mnt/sdb/lio-core-2.6.git# tree /sys/kernel/config/target/nab5000/
+ /sys/kernel/config/target/nab5000/
+ |-- discovery_auth
+ |-- iqn.foo
+ | `-- tpgt_1
+ | |-- acls
+ | |-- attrib
+ | |-- lun
+ | | `-- lun_0
+ | | |-- alua_tg_pt_gp
+ | | |-- alua_tg_pt_offline
+ | | |-- alua_tg_pt_status
+ | | |-- alua_tg_pt_write_md
+ | | `-- nab5000_port -> ../../../../../../target/core/iblock_0/lvm_test0
+ | |-- np
+ | `-- param
+ `-- version
+
+ target:/mnt/sdb/lio-core-2.6.git# lsmod
+ Module Size Used by
+ tcm_nab5000 3935 4
+ iscsi_target_mod 193211 0
+ target_core_stgt 8090 0
+ target_core_pscsi 11122 1
+ target_core_file 9172 2
+ target_core_iblock 9280 1
+ target_core_mod 228575 31
+ tcm_nab5000,iscsi_target_mod,target_core_stgt,target_core_pscsi,target_core_file,target_core_iblock
+ libfc 73681 0
+ scsi_debug 56265 0
+ scsi_tgt 8666 1 target_core_stgt
+ configfs 20644 2 target_core_mod
+
+----------------------------------------------------------------------
+
+Future TODO items
+=================
+
+ 1) Add more T10 proto_idents
+ 2) Make tcm_mod_dump_fabric_ops() smarter and generate function pointer
+ defs directly from include/target/target_core_fabric_ops.h:struct target_core_fabric_ops
+ structure members.
+
+October 5th, 2010
+
+Nicholas A. Bellinger <nab@linux-iscsi.org>
diff --git a/Documentation/target/tcm_mod_builder.txt b/Documentation/target/tcm_mod_builder.txt
deleted file mode 100644
index ae22f7005540..000000000000
--- a/Documentation/target/tcm_mod_builder.txt
+++ /dev/null
@@ -1,145 +0,0 @@
->>>>>>>>>> The TCM v4 fabric module script generator <<<<<<<<<<
-
-Greetings all,
-
-This document is intended to be a mini-HOWTO for using the tcm_mod_builder.py
-script to generate a brand new functional TCM v4 fabric .ko module of your very own,
-that once built can be immediately be loaded to start access the new TCM/ConfigFS
-fabric skeleton, by simply using:
-
- modprobe $TCM_NEW_MOD
- mkdir -p /sys/kernel/config/target/$TCM_NEW_MOD
-
-This script will create a new drivers/target/$TCM_NEW_MOD/, and will do the following
-
- *) Generate new API callers for drivers/target/target_core_fabric_configs.c logic
- ->make_tpg(), ->drop_tpg(), ->make_wwn(), ->drop_wwn(). These are created
- into $TCM_NEW_MOD/$TCM_NEW_MOD_configfs.c
- *) Generate basic infrastructure for loading/unloading LKMs and TCM/ConfigFS fabric module
- using a skeleton struct target_core_fabric_ops API template.
- *) Based on user defined T10 Proto_Ident for the new fabric module being built,
- the TransportID / Initiator and Target WWPN related handlers for
- SPC-3 persistent reservation are automatically generated in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
- using drivers/target/target_core_fabric_lib.c logic.
- *) NOP API calls for all other Data I/O path and fabric dependent attribute logic
- in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
-
-tcm_mod_builder.py depends upon the mandatory '-p $PROTO_IDENT' and '-m
-$FABRIC_MOD_name' parameters, and actually running the script looks like:
-
-target:/mnt/sdb/lio-core-2.6.git/Documentation/target# python tcm_mod_builder.py -p iSCSI -m tcm_nab5000
-tcm_dir: /mnt/sdb/lio-core-2.6.git/Documentation/target/../../
-Set fabric_mod_name: tcm_nab5000
-Set fabric_mod_dir:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
-Using proto_ident: iSCSI
-Creating fabric_mod_dir:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_base.h
-Using tcm_mod_scan_fabric_ops:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../include/target/target_core_fabric_ops.h
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.c
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.h
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_configfs.c
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kbuild
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kconfig
-Would you like to add tcm_nab5000to drivers/target/Kbuild..? [yes,no]: yes
-Would you like to add tcm_nab5000to drivers/target/Kconfig..? [yes,no]: yes
-
-At the end of tcm_mod_builder.py. the script will ask to add the following
-line to drivers/target/Kbuild:
-
- obj-$(CONFIG_TCM_NAB5000) += tcm_nab5000/
-
-and the same for drivers/target/Kconfig:
-
- source "drivers/target/tcm_nab5000/Kconfig"
-
-*) Run 'make menuconfig' and select the new CONFIG_TCM_NAB5000 item:
-
- <M> TCM_NAB5000 fabric module
-
-*) Build using 'make modules', once completed you will have:
-
-target:/mnt/sdb/lio-core-2.6.git# ls -la drivers/target/tcm_nab5000/
-total 1348
-drwxr-xr-x 2 root root 4096 2010-10-05 03:23 .
-drwxr-xr-x 9 root root 4096 2010-10-05 03:22 ..
--rw-r--r-- 1 root root 282 2010-10-05 03:22 Kbuild
--rw-r--r-- 1 root root 171 2010-10-05 03:22 Kconfig
--rw-r--r-- 1 root root 49 2010-10-05 03:23 modules.order
--rw-r--r-- 1 root root 738 2010-10-05 03:22 tcm_nab5000_base.h
--rw-r--r-- 1 root root 9096 2010-10-05 03:22 tcm_nab5000_configfs.c
--rw-r--r-- 1 root root 191200 2010-10-05 03:23 tcm_nab5000_configfs.o
--rw-r--r-- 1 root root 40504 2010-10-05 03:23 .tcm_nab5000_configfs.o.cmd
--rw-r--r-- 1 root root 5414 2010-10-05 03:22 tcm_nab5000_fabric.c
--rw-r--r-- 1 root root 2016 2010-10-05 03:22 tcm_nab5000_fabric.h
--rw-r--r-- 1 root root 190932 2010-10-05 03:23 tcm_nab5000_fabric.o
--rw-r--r-- 1 root root 40713 2010-10-05 03:23 .tcm_nab5000_fabric.o.cmd
--rw-r--r-- 1 root root 401861 2010-10-05 03:23 tcm_nab5000.ko
--rw-r--r-- 1 root root 265 2010-10-05 03:23 .tcm_nab5000.ko.cmd
--rw-r--r-- 1 root root 459 2010-10-05 03:23 tcm_nab5000.mod.c
--rw-r--r-- 1 root root 23896 2010-10-05 03:23 tcm_nab5000.mod.o
--rw-r--r-- 1 root root 22655 2010-10-05 03:23 .tcm_nab5000.mod.o.cmd
--rw-r--r-- 1 root root 379022 2010-10-05 03:23 tcm_nab5000.o
--rw-r--r-- 1 root root 211 2010-10-05 03:23 .tcm_nab5000.o.cmd
-
-*) Load the new module, create a lun_0 configfs group, and add new TCM Core
- IBLOCK backstore symlink to port:
-
-target:/mnt/sdb/lio-core-2.6.git# insmod drivers/target/tcm_nab5000.ko
-target:/mnt/sdb/lio-core-2.6.git# mkdir -p /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0
-target:/mnt/sdb/lio-core-2.6.git# cd /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0/
-target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# ln -s /sys/kernel/config/target/core/iblock_0/lvm_test0 nab5000_port
-
-target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# cd -
-target:/mnt/sdb/lio-core-2.6.git# tree /sys/kernel/config/target/nab5000/
-/sys/kernel/config/target/nab5000/
-|-- discovery_auth
-|-- iqn.foo
-| `-- tpgt_1
-| |-- acls
-| |-- attrib
-| |-- lun
-| | `-- lun_0
-| | |-- alua_tg_pt_gp
-| | |-- alua_tg_pt_offline
-| | |-- alua_tg_pt_status
-| | |-- alua_tg_pt_write_md
-| | `-- nab5000_port -> ../../../../../../target/core/iblock_0/lvm_test0
-| |-- np
-| `-- param
-`-- version
-
-target:/mnt/sdb/lio-core-2.6.git# lsmod
-Module Size Used by
-tcm_nab5000 3935 4
-iscsi_target_mod 193211 0
-target_core_stgt 8090 0
-target_core_pscsi 11122 1
-target_core_file 9172 2
-target_core_iblock 9280 1
-target_core_mod 228575 31
-tcm_nab5000,iscsi_target_mod,target_core_stgt,target_core_pscsi,target_core_file,target_core_iblock
-libfc 73681 0
-scsi_debug 56265 0
-scsi_tgt 8666 1 target_core_stgt
-configfs 20644 2 target_core_mod
-
-----------------------------------------------------------------------
-
-Future TODO items:
-
- *) Add more T10 proto_idents
- *) Make tcm_mod_dump_fabric_ops() smarter and generate function pointer
- defs directly from include/target/target_core_fabric_ops.h:struct target_core_fabric_ops
- structure members.
-
-October 5th, 2010
-Nicholas A. Bellinger <nab@linux-iscsi.org>
diff --git a/Documentation/target/tcmu-design.txt b/Documentation/target/tcmu-design.rst
index 4cebc1ebf99a..a7b426707bf6 100644
--- a/Documentation/target/tcmu-design.txt
+++ b/Documentation/target/tcmu-design.rst
@@ -1,25 +1,30 @@
-Contents:
-
-1) TCM Userspace Design
- a) Background
- b) Benefits
- c) Design constraints
- d) Implementation overview
- i. Mailbox
- ii. Command ring
- iii. Data Area
- e) Device discovery
- f) Device events
- g) Other contingencies
-2) Writing a user pass-through handler
- a) Discovering and configuring TCMU uio devices
- b) Waiting for events on the device(s)
- c) Managing the command ring
-3) A final note
+====================
+TCM Userspace Design
+====================
+
+
+.. Contents:
+
+ 1) TCM Userspace Design
+ a) Background
+ b) Benefits
+ c) Design constraints
+ d) Implementation overview
+ i. Mailbox
+ ii. Command ring
+ iii. Data Area
+ e) Device discovery
+ f) Device events
+ g) Other contingencies
+ 2) Writing a user pass-through handler
+ a) Discovering and configuring TCMU uio devices
+ b) Waiting for events on the device(s)
+ c) Managing the command ring
+ 3) A final note
TCM Userspace Design
---------------------
+====================
TCM is another name for LIO, an in-kernel iSCSI target (server).
Existing TCM targets run in the kernel. TCMU (TCM in Userspace)
@@ -32,7 +37,8 @@ modules for file, block device, RAM or using another SCSI device as
storage. These are called "backstores" or "storage engines". These
built-in modules are implemented entirely as kernel code.
-Background:
+Background
+----------
In addition to modularizing the transport protocol used for carrying
SCSI commands ("fabrics"), the Linux kernel target, LIO, also modularizes
@@ -60,7 +66,8 @@ kernel, another approach is to create a userspace pass-through
backstore for LIO, "TCMU".
-Benefits:
+Benefits
+--------
In addition to allowing relatively easy support for RBD and GLFS, TCMU
will also allow easier development of new backstores. TCMU combines
@@ -72,21 +79,25 @@ The disadvantage is there are more distinct components to configure, and
potentially to malfunction. This is unavoidable, but hopefully not
fatal if we're careful to keep things as simple as possible.
-Design constraints:
+Design constraints
+------------------
- Good performance: high throughput, low latency
- Cleanly handle if userspace:
+
1) never attaches
2) hangs
3) dies
4) misbehaves
+
- Allow future flexibility in user & kernel implementations
- Be reasonably memory-efficient
- Simple to configure & run
- Simple to write a userspace backend
-Implementation overview:
+Implementation overview
+-----------------------
The core of the TCMU interface is a memory region that is shared
between kernel and userspace. Within this region is: a control area
@@ -108,7 +119,8 @@ the region mapped at a different virtual address.
See target_core_user.h for the struct definitions.
-The Mailbox:
+The Mailbox
+-----------
The mailbox is always at the start of the shared memory region, and
contains a version, details about the starting offset and size of the
@@ -117,19 +129,27 @@ userspace (respectively) to put commands on the ring, and indicate
when the commands are completed.
version - 1 (userspace should abort if otherwise)
+
flags:
-- TCMU_MAILBOX_FLAG_CAP_OOOC: indicates out-of-order completion is
- supported. See "The Command Ring" for details.
-cmdr_off - The offset of the start of the command ring from the start
-of the memory region, to account for the mailbox size.
-cmdr_size - The size of the command ring. This does *not* need to be a
-power of two.
-cmd_head - Modified by the kernel to indicate when a command has been
-placed on the ring.
-cmd_tail - Modified by userspace to indicate when it has completed
-processing of a command.
-
-The Command Ring:
+ - TCMU_MAILBOX_FLAG_CAP_OOOC:
+ indicates out-of-order completion is supported.
+ See "The Command Ring" for details.
+
+cmdr_off
+ The offset of the start of the command ring from the start
+ of the memory region, to account for the mailbox size.
+cmdr_size
+ The size of the command ring. This does *not* need to be a
+ power of two.
+cmd_head
+ Modified by the kernel to indicate when a command has been
+ placed on the ring.
+cmd_tail
+ Modified by userspace to indicate when it has completed
+ processing of a command.
+
+The Command Ring
+----------------
Commands are placed on the ring by the kernel incrementing
mailbox.cmd_head by the size of the command, modulo cmdr_size, and
@@ -180,29 +200,31 @@ opcode it does not handle, it must set UNKNOWN_OP bit (bit 0) in
hdr.uflags, update cmd_tail, and proceed with processing additional
commands, if any.
-The Data Area:
+The Data Area
+-------------
This is shared-memory space after the command ring. The organization
of this area is not defined in the TCMU interface, and userspace
should access only the parts referenced by pending iovs.
-Device Discovery:
+Device Discovery
+----------------
Other devices may be using UIO besides TCMU. Unrelated user processes
may also be handling different sets of TCMU devices. TCMU userspace
processes must find their devices by scanning sysfs
class/uio/uio*/name. For TCMU devices, these names will be of the
-format:
+format::
-tcm-user/<hba_num>/<device_name>/<subtype>/<path>
+ tcm-user/<hba_num>/<device_name>/<subtype>/<path>
where "tcm-user" is common for all TCMU-backed UIO devices. <hba_num>
and <device_name> allow userspace to find the device's path in the
kernel target's configfs tree. Assuming the usual mount point, it is
-found at:
+found at::
-/sys/kernel/config/target/core/user_<hba_num>/<device_name>
+ /sys/kernel/config/target/core/user_<hba_num>/<device_name>
This location contains attributes such as "hw_block_size", that
userspace needs to know for correct operation.
@@ -214,15 +236,16 @@ configure the device, if needed. The name cannot contain ':', due to
LIO limitations.
For all devices so discovered, the user handler opens /dev/uioX and
-calls mmap():
+calls mmap()::
-mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)
+ mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)
where size must be equal to the value read from
/sys/class/uio/uioX/maps/map0/size.
-Device Events:
+Device Events
+-------------
If a new device is added or removed, a notification will be broadcast
over netlink, using a generic netlink family name of "TCM-USER" and a
@@ -233,7 +256,8 @@ the LIO device, so that after determining the device is supported
(based on subtype) it can take the appropriate action.
-Other contingencies:
+Other contingencies
+-------------------
Userspace handler process never attaches:
@@ -258,7 +282,7 @@ Userspace handler process is malicious:
Writing a user pass-through handler (with example code)
--------------------------------------------------------
+=======================================================
A user process handing a TCMU device must support the following:
@@ -277,103 +301,103 @@ TCMU is designed so that multiple unrelated processes can manage TCMU
devices separately. All handlers should make sure to only open their
devices, based opon a known subtype string.
-a) Discovering and configuring TCMU UIO devices:
+a) Discovering and configuring TCMU UIO devices::
-(error checking omitted for brevity)
+ /* error checking omitted for brevity */
-int fd, dev_fd;
-char buf[256];
-unsigned long long map_len;
-void *map;
+ int fd, dev_fd;
+ char buf[256];
+ unsigned long long map_len;
+ void *map;
-fd = open("/sys/class/uio/uio0/name", O_RDONLY);
-ret = read(fd, buf, sizeof(buf));
-close(fd);
-buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
+ fd = open("/sys/class/uio/uio0/name", O_RDONLY);
+ ret = read(fd, buf, sizeof(buf));
+ close(fd);
+ buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
-/* we only want uio devices whose name is a format we expect */
-if (strncmp(buf, "tcm-user", 8))
+ /* we only want uio devices whose name is a format we expect */
+ if (strncmp(buf, "tcm-user", 8))
exit(-1);
-/* Further checking for subtype also needed here */
-
-fd = open(/sys/class/uio/%s/maps/map0/size, O_RDONLY);
-ret = read(fd, buf, sizeof(buf));
-close(fd);
-str_buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
+ /* Further checking for subtype also needed here */
-map_len = strtoull(buf, NULL, 0);
+ fd = open(/sys/class/uio/%s/maps/map0/size, O_RDONLY);
+ ret = read(fd, buf, sizeof(buf));
+ close(fd);
+ str_buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
-dev_fd = open("/dev/uio0", O_RDWR);
-map = mmap(NULL, map_len, PROT_READ|PROT_WRITE, MAP_SHARED, dev_fd, 0);
+ map_len = strtoull(buf, NULL, 0);
+ dev_fd = open("/dev/uio0", O_RDWR);
+ map = mmap(NULL, map_len, PROT_READ|PROT_WRITE, MAP_SHARED, dev_fd, 0);
-b) Waiting for events on the device(s)
-
-while (1) {
- char buf[4];
- int ret = read(dev_fd, buf, 4); /* will block */
+ b) Waiting for events on the device(s)
- handle_device_events(dev_fd, map);
-}
+ while (1) {
+ char buf[4];
+ int ret = read(dev_fd, buf, 4); /* will block */
-c) Managing the command ring
-
-#include <linux/target_core_user.h>
-
-int handle_device_events(int fd, void *map)
-{
- struct tcmu_mailbox *mb = map;
- struct tcmu_cmd_entry *ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
- int did_some_work = 0;
-
- /* Process events from cmd ring until we catch up with cmd_head */
- while (ent != (void *)mb + mb->cmdr_off + mb->cmd_head) {
-
- if (tcmu_hdr_get_op(ent->hdr.len_op) == TCMU_OP_CMD) {
- uint8_t *cdb = (void *)mb + ent->req.cdb_off;
- bool success = true;
-
- /* Handle command here. */
- printf("SCSI opcode: 0x%x\n", cdb[0]);
-
- /* Set response fields */
- if (success)
- ent->rsp.scsi_status = SCSI_NO_SENSE;
- else {
- /* Also fill in rsp->sense_buffer here */
- ent->rsp.scsi_status = SCSI_CHECK_CONDITION;
+ handle_device_events(dev_fd, map);
}
- }
- else if (tcmu_hdr_get_op(ent->hdr.len_op) != TCMU_OP_PAD) {
- /* Tell the kernel we didn't handle unknown opcodes */
- ent->hdr.uflags |= TCMU_UFLAG_UNKNOWN_OP;
- }
- else {
- /* Do nothing for PAD entries except update cmd_tail */
- }
-
- /* update cmd_tail */
- mb->cmd_tail = (mb->cmd_tail + tcmu_hdr_get_len(&ent->hdr)) % mb->cmdr_size;
- ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
- did_some_work = 1;
- }
- /* Notify the kernel that work has been finished */
- if (did_some_work) {
- uint32_t buf = 0;
- write(fd, &buf, 4);
- }
-
- return 0;
-}
+c) Managing the command ring::
+
+ #include <linux/target_core_user.h>
+
+ int handle_device_events(int fd, void *map)
+ {
+ struct tcmu_mailbox *mb = map;
+ struct tcmu_cmd_entry *ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
+ int did_some_work = 0;
+
+ /* Process events from cmd ring until we catch up with cmd_head */
+ while (ent != (void *)mb + mb->cmdr_off + mb->cmd_head) {
+
+ if (tcmu_hdr_get_op(ent->hdr.len_op) == TCMU_OP_CMD) {
+ uint8_t *cdb = (void *)mb + ent->req.cdb_off;
+ bool success = true;
+
+ /* Handle command here. */
+ printf("SCSI opcode: 0x%x\n", cdb[0]);
+
+ /* Set response fields */
+ if (success)
+ ent->rsp.scsi_status = SCSI_NO_SENSE;
+ else {
+ /* Also fill in rsp->sense_buffer here */
+ ent->rsp.scsi_status = SCSI_CHECK_CONDITION;
+ }
+ }
+ else if (tcmu_hdr_get_op(ent->hdr.len_op) != TCMU_OP_PAD) {
+ /* Tell the kernel we didn't handle unknown opcodes */
+ ent->hdr.uflags |= TCMU_UFLAG_UNKNOWN_OP;
+ }
+ else {
+ /* Do nothing for PAD entries except update cmd_tail */
+ }
+
+ /* update cmd_tail */
+ mb->cmd_tail = (mb->cmd_tail + tcmu_hdr_get_len(&ent->hdr)) % mb->cmdr_size;
+ ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
+ did_some_work = 1;
+ }
+
+ /* Notify the kernel that work has been finished */
+ if (did_some_work) {
+ uint32_t buf = 0;
+
+ write(fd, &buf, 4);
+ }
+
+ return 0;
+ }
A final note
-------------
+============
Please be careful to return codes as defined by the SCSI
specifications. These are different than some values defined in the
diff --git a/Documentation/tee.txt b/Documentation/tee.txt
index 56ea85ffebf2..afacdf2fd1de 100644
--- a/Documentation/tee.txt
+++ b/Documentation/tee.txt
@@ -32,7 +32,7 @@ User space (the client) connects to the driver by opening /dev/tee[0-9]* or
memory.
- TEE_IOC_VERSION lets user space know which TEE this driver handles and
- the its capabilities.
+ its capabilities.
- TEE_IOC_OPEN_SESSION opens a new session to a Trusted Application.
diff --git a/Documentation/timers/highres.txt b/Documentation/timers/highres.rst
index 8f9741592123..bde5eb7e5c9e 100644
--- a/Documentation/timers/highres.txt
+++ b/Documentation/timers/highres.rst
@@ -1,5 +1,6 @@
+=====================================================
High resolution timers and dynamic ticks design notes
------------------------------------------------------
+=====================================================
Further information can be found in the paper of the OLS 2006 talk "hrtimers
and beyond". The paper is part of the OLS 2006 Proceedings Volume 1, which can
@@ -30,11 +31,12 @@ hrtimer base infrastructure
---------------------------
The hrtimer base infrastructure was merged into the 2.6.16 kernel. Details of
-the base implementation are covered in Documentation/timers/hrtimers.txt. See
+the base implementation are covered in Documentation/timers/hrtimers.rst. See
also figure #2 (OLS slides p. 15)
The main differences to the timer wheel, which holds the armed timer_list type
timers are:
+
- time ordered enqueueing into a rb-tree
- independent of ticks (the processing is based on nanoseconds)
@@ -55,7 +57,8 @@ merged into the 2.6.18 kernel.
Further information about the Generic Time Of Day framework is available in the
OLS 2005 Proceedings Volume 1:
-http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf
+
+ http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf
The paper "We Are Not Getting Any Younger: A New Approach to Time and
Timers" was written by J. Stultz, D.V. Hart, & N. Aravamudan.
@@ -100,6 +103,7 @@ accounting, profiling, and high resolution timers.
The management layer assigns one or more of the following functions to a clock
event device:
+
- system global periodic tick (jiffies update)
- cpu local update_process_times
- cpu local profiling
@@ -244,6 +248,3 @@ extended to x86_64 and ARM already. Initial (work in progress) support is also
available for MIPS and PowerPC.
Thomas, Ingo
-
-
-
diff --git a/Documentation/timers/hpet.txt b/Documentation/timers/hpet.rst
index 895345ec513b..c9d05d3caaca 100644
--- a/Documentation/timers/hpet.txt
+++ b/Documentation/timers/hpet.rst
@@ -1,4 +1,6 @@
- High Precision Event Timer Driver for Linux
+===========================================
+High Precision Event Timer Driver for Linux
+===========================================
The High Precision Event Timer (HPET) hardware follows a specification
by Intel and Microsoft, revision 1.
diff --git a/Documentation/timers/hrtimers.txt b/Documentation/timers/hrtimers.rst
index 588d85724f10..c1c20a693e8f 100644
--- a/Documentation/timers/hrtimers.txt
+++ b/Documentation/timers/hrtimers.rst
@@ -1,6 +1,6 @@
-
+======================================================
hrtimers - subsystem for high-resolution kernel timers
-----------------------------------------------------
+======================================================
This patch introduces a new subsystem for high-resolution kernel timers.
@@ -146,7 +146,7 @@ the clock_getres() interface. This will return whatever real resolution
a given clock has - be it low-res, high-res, or artificially-low-res.
hrtimers - testing and verification
-----------------------------------
+-----------------------------------
We used the high-resolution clock subsystem ontop of hrtimers to verify
the hrtimer implementation details in praxis, and we also ran the posix
diff --git a/Documentation/timers/index.rst b/Documentation/timers/index.rst
new file mode 100644
index 000000000000..91f6f8263c48
--- /dev/null
+++ b/Documentation/timers/index.rst
@@ -0,0 +1,22 @@
+:orphan:
+
+======
+timers
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ highres
+ hpet
+ hrtimers
+ no_hz
+ timekeeping
+ timers-howto
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/timers/NO_HZ.txt b/Documentation/timers/no_hz.rst
index 9591092da5e0..065db217cb04 100644
--- a/Documentation/timers/NO_HZ.txt
+++ b/Documentation/timers/no_hz.rst
@@ -1,4 +1,6 @@
- NO_HZ: Reducing Scheduling-Clock Ticks
+======================================
+NO_HZ: Reducing Scheduling-Clock Ticks
+======================================
This document describes Kconfig options and boot parameters that can
@@ -28,7 +30,8 @@ by a third section on RCU-specific considerations, a fourth section
discussing testing, and a fifth and final section listing known issues.
-NEVER OMIT SCHEDULING-CLOCK TICKS
+Never Omit Scheduling-Clock Ticks
+=================================
Very old versions of Linux from the 1990s and the very early 2000s
are incapable of omitting scheduling-clock ticks. It turns out that
@@ -59,7 +62,8 @@ degrade your applications performance. If this describes your workload,
you should read the following two sections.
-OMIT SCHEDULING-CLOCK TICKS FOR IDLE CPUs
+Omit Scheduling-Clock Ticks For Idle CPUs
+=========================================
If a CPU is idle, there is little point in sending it a scheduling-clock
interrupt. After all, the primary purpose of a scheduling-clock interrupt
@@ -97,7 +101,8 @@ By default, CONFIG_NO_HZ_IDLE=y kernels boot with "nohz=on", enabling
dyntick-idle mode.
-OMIT SCHEDULING-CLOCK TICKS FOR CPUs WITH ONLY ONE RUNNABLE TASK
+Omit Scheduling-Clock Ticks For CPUs With Only One Runnable Task
+================================================================
If a CPU has only one runnable task, there is little point in sending it
a scheduling-clock interrupt because there is no other task to switch to.
@@ -174,7 +179,8 @@ However, the drawbacks listed above mean that adaptive ticks should not
(yet) be enabled by default.
-RCU IMPLICATIONS
+RCU Implications
+================
There are situations in which idle CPUs cannot be permitted to
enter either dyntick-idle mode or adaptive-tick mode, the most
@@ -199,7 +205,8 @@ scheduler will decide where to run them, which might or might not be
where you want them to run.
-TESTING
+Testing
+=======
So you enable all the OS-jitter features described in this document,
but do not see any change in your workload's behavior. Is this because
@@ -222,9 +229,10 @@ We do not currently have a good way to remove OS jitter from single-CPU
systems.
-KNOWN ISSUES
+Known Issues
+============
-o Dyntick-idle slows transitions to and from idle slightly.
+* Dyntick-idle slows transitions to and from idle slightly.
In practice, this has not been a problem except for the most
aggressive real-time workloads, which have the option of disabling
dyntick-idle mode, an option that most of them take. However,
@@ -248,13 +256,13 @@ o Dyntick-idle slows transitions to and from idle slightly.
this parameter effectively disables Turbo Mode on Intel
CPUs, which can significantly reduce maximum performance.
-o Adaptive-ticks slows user/kernel transitions slightly.
+* Adaptive-ticks slows user/kernel transitions slightly.
This is not expected to be a problem for computationally intensive
workloads, which have few such transitions. Careful benchmarking
will be required to determine whether or not other workloads
are significantly affected by this effect.
-o Adaptive-ticks does not do anything unless there is only one
+* Adaptive-ticks does not do anything unless there is only one
runnable task for a given CPU, even though there are a number
of other situations where the scheduling-clock tick is not
needed. To give but one example, consider a CPU that has one
@@ -275,7 +283,7 @@ o Adaptive-ticks does not do anything unless there is only one
Better handling of these sorts of situations is future work.
-o A reboot is required to reconfigure both adaptive idle and RCU
+* A reboot is required to reconfigure both adaptive idle and RCU
callback offloading. Runtime reconfiguration could be provided
if needed, however, due to the complexity of reconfiguring RCU at
runtime, there would need to be an earthshakingly good reason.
@@ -283,12 +291,12 @@ o A reboot is required to reconfigure both adaptive idle and RCU
simply offloading RCU callbacks from all CPUs and pinning them
where you want them whenever you want them pinned.
-o Additional configuration is required to deal with other sources
+* Additional configuration is required to deal with other sources
of OS jitter, including interrupts and system-utility tasks
and processes. This configuration normally involves binding
interrupts and tasks to particular CPUs.
-o Some sources of OS jitter can currently be eliminated only by
+* Some sources of OS jitter can currently be eliminated only by
constraining the workload. For example, the only way to eliminate
OS jitter due to global TLB shootdowns is to avoid the unmapping
operations (such as kernel module unload operations) that
@@ -299,17 +307,17 @@ o Some sources of OS jitter can currently be eliminated only by
helpful, especially when combined with the mlock() and mlockall()
system calls.
-o Unless all CPUs are idle, at least one CPU must keep the
+* Unless all CPUs are idle, at least one CPU must keep the
scheduling-clock interrupt going in order to support accurate
timekeeping.
-o If there might potentially be some adaptive-ticks CPUs, there
+* If there might potentially be some adaptive-ticks CPUs, there
will be at least one CPU keeping the scheduling-clock interrupt
going, even if all CPUs are otherwise idle.
Better handling of this situation is ongoing work.
-o Some process-handling operations still require the occasional
+* Some process-handling operations still require the occasional
scheduling-clock tick. These operations include calculating CPU
load, maintaining sched average, computing CFS entity vruntime,
computing avenrun, and carrying out load balancing. They are
diff --git a/Documentation/timers/timekeeping.txt b/Documentation/timers/timekeeping.rst
index 2d1732b0a868..f83e98852e2c 100644
--- a/Documentation/timers/timekeeping.txt
+++ b/Documentation/timers/timekeeping.rst
@@ -1,5 +1,6 @@
+===========================================================
Clock sources, Clock events, sched_clock() and delay timers
------------------------------------------------------------
+===========================================================
This document tries to briefly explain some basic kernel timekeeping
abstractions. It partly pertains to the drivers usually found in
diff --git a/Documentation/timers/timers-howto.txt b/Documentation/timers/timers-howto.rst
index 038f8c77a076..7e3167bec2b1 100644
--- a/Documentation/timers/timers-howto.txt
+++ b/Documentation/timers/timers-howto.rst
@@ -1,5 +1,6 @@
+===================================================================
delays - Information on the various kernel delay / sleep mechanisms
--------------------------------------------------------------------
+===================================================================
This document seeks to answer the common question: "What is the
RightWay (TM) to insert a delay?"
@@ -17,7 +18,7 @@ code in an atomic context?" This should be followed closely by "Does
it really need to delay in atomic context?" If so...
ATOMIC CONTEXT:
- You must use the *delay family of functions. These
+ You must use the `*delay` family of functions. These
functions use the jiffie estimation of clock speed
and will busy wait for enough loop cycles to achieve
the desired delay:
@@ -35,21 +36,26 @@ ATOMIC CONTEXT:
be refactored to allow for the use of msleep.
NON-ATOMIC CONTEXT:
- You should use the *sleep[_range] family of functions.
+ You should use the `*sleep[_range]` family of functions.
There are a few more options here, while any of them may
work correctly, using the "right" sleep function will
help the scheduler, power management, and just make your
driver better :)
-- Backed by busy-wait loop:
+
udelay(unsigned long usecs)
+
-- Backed by hrtimers:
+
usleep_range(unsigned long min, unsigned long max)
+
-- Backed by jiffies / legacy_timers
+
msleep(unsigned long msecs)
msleep_interruptible(unsigned long msecs)
- Unlike the *delay family, the underlying mechanism
+ Unlike the `*delay` family, the underlying mechanism
driving each of these calls varies, thus there are
quirks you should be aware of.
@@ -70,6 +76,7 @@ NON-ATOMIC CONTEXT:
- Why not msleep for (1ms - 20ms)?
Explained originally here:
http://lkml.org/lkml/2007/8/3/250
+
msleep(1~20) may not do what the caller intends, and
will often sleep longer (~20 ms actual sleep for any
value given in the 1~20ms range). In many cases this
diff --git a/Documentation/trace/coresight.txt b/Documentation/trace/coresight.txt
index efbc832146e7..b027d61b27a6 100644
--- a/Documentation/trace/coresight.txt
+++ b/Documentation/trace/coresight.txt
@@ -188,6 +188,49 @@ specific to that component only. "Implementation defined" customisations are
expected to be accessed and controlled using those entries.
+Device Naming scheme
+------------------------
+The devices that appear on the "coresight" bus were named the same as their
+parent devices, i.e, the real devices that appears on AMBA bus or the platform bus.
+Thus the names were based on the Linux Open Firmware layer naming convention,
+which follows the base physical address of the device followed by the device
+type. e.g:
+
+root:~# ls /sys/bus/coresight/devices/
+ 20010000.etf 20040000.funnel 20100000.stm 22040000.etm
+ 22140000.etm 230c0000.funnel 23240000.etm 20030000.tpiu
+ 20070000.etr 20120000.replicator 220c0000.funnel
+ 23040000.etm 23140000.etm 23340000.etm
+
+However, with the introduction of ACPI support, the names of the real
+devices are a bit cryptic and non-obvious. Thus, a new naming scheme was
+introduced to use more generic names based on the type of the device. The
+following rules apply:
+
+ 1) Devices that are bound to CPUs, are named based on the CPU logical
+ number.
+
+ e.g, ETM bound to CPU0 is named "etm0"
+
+ 2) All other devices follow a pattern, "<device_type_prefix>N", where :
+
+ <device_type_prefix> - A prefix specific to the type of the device
+ N - a sequential number assigned based on the order
+ of probing.
+
+ e.g, tmc_etf0, tmc_etr0, funnel0, funnel1
+
+Thus, with the new scheme the devices could appear as :
+
+root:~# ls /sys/bus/coresight/devices/
+ etm0 etm1 etm2 etm3 etm4 etm5 funnel0
+ funnel1 funnel2 replicator0 stm0 tmc_etf0 tmc_etr0 tpiu0
+
+Some of the examples below might refer to old naming scheme and some
+to the newer scheme, to give a confirmation that what you see on your
+system is not unexpected. One must use the "names" as they appear on
+the system under specified locations.
+
How to use the tracer modules
-----------------------------
@@ -326,16 +369,25 @@ amount of processor cores), the "cs_etm" PMU will be listed only once.
A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
listed along with configuration options within forward slashes '/'. Since a
Coresight system will typically have more than one sink, the name of the sink to
-work with needs to be specified as an event option. Names for sink to choose
-from are listed in sysFS under ($SYSFS)/bus/coresight/devices:
+work with needs to be specified as an event option.
+On newer kernels the available sinks are listed in sysFS under:
+($SYSFS)/bus/event_source/devices/cs_etm/sinks/
+
+ root@localhost:/sys/bus/event_source/devices/cs_etm/sinks# ls
+ tmc_etf0 tmc_etr0 tpiu0
+
+On older kernels, this may need to be found from the list of coresight devices,
+available under ($SYSFS)/bus/coresight/devices/:
+
+ root:~# ls /sys/bus/coresight/devices/
+ etm0 etm1 etm2 etm3 etm4 etm5 funnel0
+ funnel1 funnel2 replicator0 stm0 tmc_etf0 tmc_etr0 tpiu0
- root@linaro-nano:~# ls /sys/bus/coresight/devices/
- 20010000.etf 20040000.funnel 20100000.stm 22040000.etm
- 22140000.etm 230c0000.funnel 23240000.etm 20030000.tpiu
- 20070000.etr 20120000.replicator 220c0000.funnel
- 23040000.etm 23140000.etm 23340000.etm
+ root@linaro-nano:~# perf record -e cs_etm/@tmc_etr0/u --per-thread program
- root@linaro-nano:~# perf record -e cs_etm/@20070000.etr/u --per-thread program
+As mentioned above in section "Device Naming scheme", the names of the devices could
+look different from what is used in the example above. One must use the device names
+as it appears under the sysFS.
The syntax within the forward slashes '/' is important. The '@' character
tells the parser that a sink is about to be specified and that this is the sink
@@ -352,7 +404,7 @@ perf can be used to record and analyze trace of programs.
Execution can be recorded using 'perf record' with the cs_etm event,
specifying the name of the sink to record to, e.g:
- perf record -e cs_etm/@20070000.etr/u --per-thread
+ perf record -e cs_etm/@tmc_etr0/u --per-thread
The 'perf report' and 'perf script' commands can be used to analyze execution,
synthesizing instruction and branch events from the instruction trace.
@@ -381,7 +433,7 @@ sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tuto
Bubble sorting array of 30000 elements
5910 ms
- $ perf record -e cs_etm/@20070000.etr/u --per-thread taskset -c 2 ./sort
+ $ perf record -e cs_etm/@tmc_etr0/u --per-thread taskset -c 2 ./sort
Bubble sorting array of 30000 elements
12543 ms
[ perf record: Woken up 35 times to write data ]
@@ -405,7 +457,7 @@ than the program flow through the code.
As with any other CoreSight component, specifics about the STM tracer can be
found in sysfs with more information on each entry being found in [1]:
-root@genericarmv8:~# ls /sys/bus/coresight/devices/20100000.stm
+root@genericarmv8:~# ls /sys/bus/coresight/devices/stm0
enable_source hwevent_select port_enable subsystem uevent
hwevent_enable mgmt port_select traceid
root@genericarmv8:~#
@@ -413,14 +465,14 @@ root@genericarmv8:~#
Like any other source a sink needs to be identified and the STM enabled before
being used:
-root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/20010000.etf/enable_sink
-root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/20100000.stm/enable_source
+root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/tmc_etf0/enable_sink
+root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/stm0/enable_source
From there user space applications can request and use channels using the devfs
interface provided for that purpose by the generic STM API:
-root@genericarmv8:~# ls -l /dev/20100000.stm
-crw------- 1 root root 10, 61 Jan 3 18:11 /dev/20100000.stm
+root@genericarmv8:~# ls -l /dev/stm0
+crw------- 1 root root 10, 61 Jan 3 18:11 /dev/stm0
root@genericarmv8:~#
Details on how to use the generic STM API can be found here [2].
diff --git a/Documentation/trace/histogram.rst b/Documentation/trace/histogram.rst
index fb621a1c2638..8408670d0328 100644
--- a/Documentation/trace/histogram.rst
+++ b/Documentation/trace/histogram.rst
@@ -1010,7 +1010,7 @@ Extended error information
For example, suppose we wanted to take a look at the relative
weights in terms of skb length for each callpath that leads to a
- netif_receieve_skb event when downloading a decent-sized file using
+ netif_receive_skb event when downloading a decent-sized file using
wget.
First we set up an initially paused stacktrace trigger on the
@@ -1843,7 +1843,7 @@ practice, not every handler.action combination is currently supported;
if a given handler.action combination isn't supported, the hist
trigger will fail with -EINVAL;
-The default 'handler.action' if none is explicity specified is as it
+The default 'handler.action' if none is explicitly specified is as it
always has been, to simply update the set of values associated with an
entry. Some applications, however, may want to perform additional
actions at that point, such as generate another event, or compare and
@@ -2088,7 +2088,7 @@ The following commonly-used handler.action pairs are available:
and the saved values corresponding to the max are displayed
following the rest of the fields.
- If a snaphot was taken, there is also a message indicating that,
+ If a snapshot was taken, there is also a message indicating that,
along with the value and event that triggered the global maximum:
# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
@@ -2176,7 +2176,7 @@ The following commonly-used handler.action pairs are available:
hist trigger entry.
Note that in this case the changed value is a global variable
- associated withe current trace instance. The key of the specific
+ associated with current trace instance. The key of the specific
trace event that caused the value to change and the global value
itself are displayed, along with a message stating that a snapshot
has been taken and where to find it. The user can use the key
@@ -2203,7 +2203,7 @@ The following commonly-used handler.action pairs are available:
and the saved values corresponding to that value are displayed
following the rest of the fields.
- If a snaphot was taken, there is also a message indicating that,
+ If a snapshot was taken, there is also a message indicating that,
along with the value and event that triggered the snapshot::
# cat /sys/kernel/debug/tracing/events/tcp/tcp_probe/hist
diff --git a/Documentation/trace/kprobetrace.rst b/Documentation/trace/kprobetrace.rst
index 235ce2ab131a..7d2b0178d3f3 100644
--- a/Documentation/trace/kprobetrace.rst
+++ b/Documentation/trace/kprobetrace.rst
@@ -189,6 +189,13 @@ events, you need to enable it.
echo 1 > /sys/kernel/debug/tracing/events/kprobes/myprobe/enable
echo 1 > /sys/kernel/debug/tracing/events/kprobes/myretprobe/enable
+Use the following command to start tracing in an interval.
+::
+
+ # echo 1 > tracing_on
+ Open something...
+ # echo 0 > tracing_on
+
And you can see the traced information via /sys/kernel/debug/tracing/trace.
::
diff --git a/Documentation/trace/uprobetracer.rst b/Documentation/trace/uprobetracer.rst
index 4346e23e3ae7..0b21305fabdc 100644
--- a/Documentation/trace/uprobetracer.rst
+++ b/Documentation/trace/uprobetracer.rst
@@ -152,10 +152,15 @@ events, you need to enable it by::
# echo 1 > events/uprobes/enable
-Lets disable the event after sleeping for some time.
+Lets start tracing, sleep for some time and stop tracing.
::
+ # echo 1 > tracing_on
# sleep 20
+ # echo 0 > tracing_on
+
+Also, you can disable the event by::
+
# echo 0 > events/uprobes/enable
And you can see the traced information via /sys/kernel/debug/tracing/trace.
diff --git a/Documentation/translations/it_IT/admin-guide/kernel-parameters.rst b/Documentation/translations/it_IT/admin-guide/kernel-parameters.rst
new file mode 100644
index 000000000000..0e36d82a92be
--- /dev/null
+++ b/Documentation/translations/it_IT/admin-guide/kernel-parameters.rst
@@ -0,0 +1,12 @@
+.. include:: ../disclaimer-ita.rst
+
+:Original: :ref:`Documentation/admin-guide/kernel-parameters.rst <kernelparameters>`
+
+.. _it_kernelparameters:
+
+I parametri da linea di comando del kernel
+==========================================
+
+.. warning::
+
+ TODO ancora da tradurre
diff --git a/Documentation/translations/it_IT/doc-guide/sphinx.rst b/Documentation/translations/it_IT/doc-guide/sphinx.rst
index 793b5cc33403..1739cba8863e 100644
--- a/Documentation/translations/it_IT/doc-guide/sphinx.rst
+++ b/Documentation/translations/it_IT/doc-guide/sphinx.rst
@@ -35,8 +35,7 @@ Installazione Sphinx
====================
I marcatori ReST utilizzati nei file in Documentation/ sono pensati per essere
-processati da ``Sphinx`` nella versione 1.3 o superiore. Se desiderate produrre
-un documento PDF è raccomandato l'utilizzo di una versione superiore alle 1.4.6.
+processati da ``Sphinx`` nella versione 1.3 o superiore.
Esiste uno script che verifica i requisiti Sphinx. Per ulteriori dettagli
consultate :ref:`it_sphinx-pre-install`.
@@ -68,13 +67,13 @@ pacchettizzato dalla vostra distribuzione.
utilizzando LaTeX. Per una corretta interpretazione, è necessario aver
installato texlive con i pacchetti amdfonts e amsmath.
-Riassumendo, se volete installare la versione 1.4.9 di Sphinx dovete eseguire::
+Riassumendo, se volete installare la versione 1.7.9 di Sphinx dovete eseguire::
- $ virtualenv sphinx_1.4
- $ . sphinx_1.4/bin/activate
- (sphinx_1.4) $ pip install -r Documentation/sphinx/requirements.txt
+ $ virtualenv sphinx_1.7.9
+ $ . sphinx_1.7.9/bin/activate
+ (sphinx_1.7.9) $ pip install -r Documentation/sphinx/requirements.txt
-Dopo aver eseguito ``. sphinx_1.4/bin/activate``, il prompt cambierà per
+Dopo aver eseguito ``. sphinx_1.7.9/bin/activate``, il prompt cambierà per
indicare che state usando il nuovo ambiente. Se aprite un nuova sessione,
prima di generare la documentazione, dovrete rieseguire questo comando per
rientrare nell'ambiente virtuale.
@@ -120,8 +119,8 @@ l'installazione::
You should run:
sudo dnf install -y texlive-luatex85
- /usr/bin/virtualenv sphinx_1.4
- . sphinx_1.4/bin/activate
+ /usr/bin/virtualenv sphinx_1.7.9
+ . sphinx_1.7.9/bin/activate
pip install -r Documentation/sphinx/requirements.txt
Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-install line 468.
diff --git a/Documentation/translations/it_IT/kernel-hacking/hacking.rst b/Documentation/translations/it_IT/kernel-hacking/hacking.rst
index 7178e517af0a..24c592852bf1 100644
--- a/Documentation/translations/it_IT/kernel-hacking/hacking.rst
+++ b/Documentation/translations/it_IT/kernel-hacking/hacking.rst
@@ -755,7 +755,7 @@ anche per avere patch pulite, c'è del lavoro amministrativo da fare:
- Solitamente vorrete un'opzione di configurazione per la vostra modifica
al kernel. Modificate ``Kconfig`` nella cartella giusta. Il linguaggio
Config è facile con copia ed incolla, e c'è una completa documentazione
- nel file ``Documentation/kbuild/kconfig-language.txt``.
+ nel file ``Documentation/kbuild/kconfig-language.rst``.
Nella descrizione della vostra opzione, assicuratevi di parlare sia agli
utenti esperti sia agli utente che non sanno nulla del vostro lavoro.
@@ -767,7 +767,7 @@ anche per avere patch pulite, c'è del lavoro amministrativo da fare:
- Modificate il file ``Makefile``: le variabili CONFIG sono esportate qui,
quindi potete solitamente aggiungere una riga come la seguete
"obj-$(CONFIG_xxx) += xxx.o". La sintassi è documentata nel file
- ``Documentation/kbuild/makefiles.txt``.
+ ``Documentation/kbuild/makefiles.rst``.
- Aggiungete voi stessi in ``CREDITS`` se avete fatto qualcosa di notevole,
solitamente qualcosa che supera il singolo file (comunque il vostro nome
diff --git a/Documentation/translations/it_IT/kernel-hacking/locking.rst b/Documentation/translations/it_IT/kernel-hacking/locking.rst
index 0ef31666663b..5fd8a1abd2be 100644
--- a/Documentation/translations/it_IT/kernel-hacking/locking.rst
+++ b/Documentation/translations/it_IT/kernel-hacking/locking.rst
@@ -468,7 +468,7 @@ e tutti gli oggetti che contiene. Ecco il codice::
if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
return -ENOMEM;
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
@@ -678,7 +678,7 @@ Ecco il codice::
}
@@ -63,6 +94,7 @@
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
+ obj->refcnt = 1; /* The cache holds a reference */
@@ -792,7 +792,7 @@ contatore stesso.
}
@@ -94,7 +76,7 @@
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
- obj->refcnt = 1; /* The cache holds a reference */
diff --git a/Documentation/translations/it_IT/process/4.Coding.rst b/Documentation/translations/it_IT/process/4.Coding.rst
index c05b89e616dd..a5e36aa60448 100644
--- a/Documentation/translations/it_IT/process/4.Coding.rst
+++ b/Documentation/translations/it_IT/process/4.Coding.rst
@@ -314,7 +314,7 @@ di allocazione di memoria sarà destinata al fallimento; questi fallimenti
possono essere ridotti ad uno specifico pezzo di codice. Procedere con
l'inserimento dei fallimenti attivo permette al programmatore di verificare
come il codice risponde quando le cose vanno male. Consultate:
-Documentation/fault-injection/fault-injection.txt per avere maggiori
+Documentation/fault-injection/fault-injection.rst per avere maggiori
informazioni su come utilizzare questo strumento.
Altre tipologie di errori possono essere riscontrati con lo strumento di
diff --git a/Documentation/translations/it_IT/process/adding-syscalls.rst b/Documentation/translations/it_IT/process/adding-syscalls.rst
index e0a64b0688a7..c3a3439595a6 100644
--- a/Documentation/translations/it_IT/process/adding-syscalls.rst
+++ b/Documentation/translations/it_IT/process/adding-syscalls.rst
@@ -39,7 +39,7 @@ vostra interfaccia.
un qualche modo opaca.
- Se dovete esporre solo delle informazioni sul sistema, un nuovo nodo in
- sysfs (vedere ``Documentation/translations/it_IT/filesystems/sysfs.txt``) o
+ sysfs (vedere ``Documentation/filesystems/sysfs.txt``) o
in procfs potrebbe essere sufficiente. Tuttavia, l'accesso a questi
meccanismi richiede che il filesystem sia montato, il che potrebbe non
essere sempre vero (per esempio, in ambienti come namespace/sandbox/chroot).
diff --git a/Documentation/translations/it_IT/process/coding-style.rst b/Documentation/translations/it_IT/process/coding-style.rst
index 5ef534c95e69..8995d2d19f20 100644
--- a/Documentation/translations/it_IT/process/coding-style.rst
+++ b/Documentation/translations/it_IT/process/coding-style.rst
@@ -696,7 +696,7 @@ nella stringa di titolo::
...
Per la documentazione completa sui file di configurazione, consultate
-il documento Documentation/translations/it_IT/kbuild/kconfig-language.txt
+il documento Documentation/kbuild/kconfig-language.rst
11) Strutture dati
diff --git a/Documentation/translations/it_IT/process/howto.rst b/Documentation/translations/it_IT/process/howto.rst
index 9903ac7c566b..44e6077730e8 100644
--- a/Documentation/translations/it_IT/process/howto.rst
+++ b/Documentation/translations/it_IT/process/howto.rst
@@ -131,7 +131,7 @@ Di seguito una lista di file che sono presenti nei sorgente del kernel e che
"Linux kernel patch submission format"
http://linux.yyz.us/patch-format.html
- :ref:`Documentation/process/translations/it_IT/stable-api-nonsense.rst <it_stable_api_nonsense>`
+ :ref:`Documentation/translations/it_IT/process/stable-api-nonsense.rst <it_stable_api_nonsense>`
Questo file descrive la motivazioni sottostanti la conscia decisione di
non avere un API stabile all'interno del kernel, incluso cose come:
diff --git a/Documentation/translations/it_IT/process/license-rules.rst b/Documentation/translations/it_IT/process/license-rules.rst
index f058e06996dc..4cd87a3a7bf9 100644
--- a/Documentation/translations/it_IT/process/license-rules.rst
+++ b/Documentation/translations/it_IT/process/license-rules.rst
@@ -303,7 +303,7 @@ essere categorizzate in:
LICENSES/dual
I file in questa cartella contengono il testo completo della rispettiva
- licenza e i suoi `Metatags`_. I nomi dei file sono identici agli
+ licenza e i suoi `Metatag`_. I nomi dei file sono identici agli
identificatori di licenza SPDX che dovrebbero essere usati nei file
sorgenti.
@@ -326,19 +326,19 @@ essere categorizzate in:
Esempio del formato del file::
- Valid-License-Identifier: MPL-1.1
- SPDX-URL: https://spdx.org/licenses/MPL-1.1.html
- Usage-Guide:
- Do NOT use. The MPL-1.1 is not GPL2 compatible. It may only be used for
- dual-licensed files where the other license is GPL2 compatible.
- If you end up using this it MUST be used together with a GPL2 compatible
- license using "OR".
- To use the Mozilla Public License version 1.1 put the following SPDX
- tag/value pair into a comment according to the placement guidelines in
- the licensing rules documentation:
- SPDX-License-Identifier: MPL-1.1
- License-Text:
- Full license text
+ Valid-License-Identifier: MPL-1.1
+ SPDX-URL: https://spdx.org/licenses/MPL-1.1.html
+ Usage-Guide:
+ Do NOT use. The MPL-1.1 is not GPL2 compatible. It may only be used for
+ dual-licensed files where the other license is GPL2 compatible.
+ If you end up using this it MUST be used together with a GPL2 compatible
+ license using "OR".
+ To use the Mozilla Public License version 1.1 put the following SPDX
+ tag/value pair into a comment according to the placement guidelines in
+ the licensing rules documentation:
+ SPDX-License-Identifier: MPL-1.1
+ License-Text:
+ Full license text
|
diff --git a/Documentation/translations/it_IT/process/magic-number.rst b/Documentation/translations/it_IT/process/magic-number.rst
index 5281d53e57ee..ed1121d0ba84 100644
--- a/Documentation/translations/it_IT/process/magic-number.rst
+++ b/Documentation/translations/it_IT/process/magic-number.rst
@@ -1,6 +1,6 @@
.. include:: ../disclaimer-ita.rst
-:Original: :ref:`Documentation/process/magic-numbers.rst <magicnumbers>`
+:Original: :ref:`Documentation/process/magic-number.rst <magicnumbers>`
:Translator: Federico Vaga <federico.vaga@vaga.pv.it>
.. _it_magicnumbers:
diff --git a/Documentation/translations/it_IT/process/stable-kernel-rules.rst b/Documentation/translations/it_IT/process/stable-kernel-rules.rst
index 48e88e5ad2c5..4f206cee31a7 100644
--- a/Documentation/translations/it_IT/process/stable-kernel-rules.rst
+++ b/Documentation/translations/it_IT/process/stable-kernel-rules.rst
@@ -33,7 +33,7 @@ Regole sul tipo di patch che vengono o non vengono accettate nei sorgenti
- Non deve includere alcuna correzione "banale" (correzioni grammaticali,
pulizia dagli spazi bianchi, eccetera).
- Deve rispettare le regole scritte in
- :ref:`Documentation/translation/it_IT/process/submitting-patches.rst <it_submittingpatches>`
+ :ref:`Documentation/translations/it_IT/process/submitting-patches.rst <it_submittingpatches>`
- Questa patch o una equivalente deve esistere già nei sorgenti principali di
Linux
@@ -43,7 +43,7 @@ Procedura per sottomettere patch per i sorgenti -stable
- Se la patch contiene modifiche a dei file nelle cartelle net/ o drivers/net,
allora seguite le linee guida descritte in
- :ref:`Documentation/translation/it_IT/networking/netdev-FAQ.rst <it_netdev-FAQ>`;
+ :ref:`Documentation/translations/it_IT/networking/netdev-FAQ.rst <it_netdev-FAQ>`;
ma solo dopo aver verificato al seguente indirizzo che la patch non sia
già in coda:
https://patchwork.ozlabs.org/bundle/davem/stable/?series=&submitter=&state=*&q=&archive=
diff --git a/Documentation/translations/it_IT/process/submit-checklist.rst b/Documentation/translations/it_IT/process/submit-checklist.rst
index 70e65a7b3620..ea74cae958d7 100644
--- a/Documentation/translations/it_IT/process/submit-checklist.rst
+++ b/Documentation/translations/it_IT/process/submit-checklist.rst
@@ -43,7 +43,7 @@ sottomissione delle patch, in particolare
6) Le opzioni ``CONFIG``, nuove o modificate, non scombussolano il menu
di configurazione e sono preimpostate come disabilitate a meno che non
- soddisfino i criteri descritti in ``Documentation/kbuild/kconfig-language.txt``
+ soddisfino i criteri descritti in ``Documentation/kbuild/kconfig-language.rst``
alla punto "Voci di menu: valori predefiniti".
7) Tutte le nuove opzioni ``Kconfig`` hanno un messaggio di aiuto.
diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt
index db0b9d8619f1..a33c2a536542 100644
--- a/Documentation/translations/ko_KR/memory-barriers.txt
+++ b/Documentation/translations/ko_KR/memory-barriers.txt
@@ -24,7 +24,7 @@ Documentation/memory-barriers.txt
=========================
저자: David Howells <dhowells@redhat.com>
- Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+ Paul E. McKenney <paulmck@linux.ibm.com>
Will Deacon <will.deacon@arm.com>
Peter Zijlstra <peterz@infradead.org>
@@ -569,7 +569,7 @@ ACQUIRE 는 해당 오퍼레이션의 로드 부분에만 적용되고 RELEASE
[*] 버스 마스터링 DMA 와 일관성에 대해서는 다음을 참고하시기 바랍니다:
- Documentation/PCI/pci.txt
+ Documentation/PCI/pci.rst
Documentation/DMA-API-HOWTO.txt
Documentation/DMA-API.txt
diff --git a/Documentation/translations/zh_CN/arm64/booting.txt b/Documentation/translations/zh_CN/arm64/booting.txt
index c1dd968c5ee9..4e373d128d98 100644
--- a/Documentation/translations/zh_CN/arm64/booting.txt
+++ b/Documentation/translations/zh_CN/arm64/booting.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/booting.txt
+Chinese translated version of Documentation/arm64/booting.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ M: Will Deacon <will.deacon@arm.com>
zh_CN: Fu Wei <wefu@redhat.com>
C: 55f058e7574c3615dea4615573a19bdb258696c6
---------------------------------------------------------------------
-Documentation/arm64/booting.txt 的中文翻译
+Documentation/arm64/booting.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
@@ -236,7 +236,7 @@ AArch64 内核当前没有提供自解压代码,因此如果使用了压缩内
*译者注: ARM DEN 0022A 已更新到 ARM DEN 0022C。
设备树必须包含一个 ‘psci’ 节点,请参考以下文档:
- Documentation/devicetree/bindings/arm/psci.txt
+ Documentation/devicetree/bindings/arm/psci.yaml
- 辅助 CPU 通用寄存器设置
diff --git a/Documentation/translations/zh_CN/arm64/legacy_instructions.txt b/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
index 68362a1ab717..e295cf75f606 100644
--- a/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
+++ b/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/legacy_instructions.txt
+Chinese translated version of Documentation/arm64/legacy_instructions.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ Maintainer: Punit Agrawal <punit.agrawal@arm.com>
Suzuki K. Poulose <suzuki.poulose@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/legacy_instructions.txt 的中文翻译
+Documentation/arm64/legacy_instructions.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/memory.txt b/Documentation/translations/zh_CN/arm64/memory.txt
index 19b3a52d5d94..be20f8228b91 100644
--- a/Documentation/translations/zh_CN/arm64/memory.txt
+++ b/Documentation/translations/zh_CN/arm64/memory.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/memory.txt
+Chinese translated version of Documentation/arm64/memory.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Catalin Marinas <catalin.marinas@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/memory.txt 的中文翻译
+Documentation/arm64/memory.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/silicon-errata.txt b/Documentation/translations/zh_CN/arm64/silicon-errata.txt
index 39477c75c4a4..440c59ac7dce 100644
--- a/Documentation/translations/zh_CN/arm64/silicon-errata.txt
+++ b/Documentation/translations/zh_CN/arm64/silicon-errata.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/silicon-errata.txt
+Chinese translated version of Documentation/arm64/silicon-errata.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ M: Will Deacon <will.deacon@arm.com>
zh_CN: Fu Wei <wefu@redhat.com>
C: 1926e54f115725a9248d0c4c65c22acaf94de4c4
---------------------------------------------------------------------
-Documentation/arm64/silicon-errata.txt 的中文翻译
+Documentation/arm64/silicon-errata.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/tagged-pointers.txt b/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
index 2664d1bd5a1c..77ac3548a16d 100644
--- a/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
+++ b/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/tagged-pointers.txt
+Chinese translated version of Documentation/arm64/tagged-pointers.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Will Deacon <will.deacon@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/tagged-pointers.txt 的中文翻译
+Documentation/arm64/tagged-pointers.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/basic_profiling.txt b/Documentation/translations/zh_CN/basic_profiling.txt
deleted file mode 100644
index 1e6bf0bdf8f5..000000000000
--- a/Documentation/translations/zh_CN/basic_profiling.txt
+++ /dev/null
@@ -1,71 +0,0 @@
-Chinese translated version of Documentation/basic_profiling
-
-If you have any comment or update to the content, please post to LKML directly.
-However, if you have problem communicating in English you can also ask the
-Chinese maintainer for help. Contact the Chinese maintainer, if this
-translation is outdated or there is problem with translation.
-
-Chinese maintainer: Liang Xie <xieliang@xiaomi.com>
----------------------------------------------------------------------
-Documentation/basic_profiling的中文翻译
-
-如果想评论或更新本文的内容,请直接发信到LKML。如果你使用英文交流有困难的话,也可
-以向中文版维护者求助。如果本翻译更新不及时或者翻译存在问题,请联系中文版维护者。
-
-中文版维护者: 谢良 Liang Xie <xieliang007@gmail.com>
-中文版翻译者: 谢良 Liang Xie <xieliang007@gmail.com>
-中文版校译者:
-以下为正文
----------------------------------------------------------------------
-
-下面这些说明指令都是非常基础的,如果你想进一步了解请阅读相关专业文档:)
-请不要再在本文档增加新的内容,但可以修复文档中的错误:)(mbligh@aracnet.com)
-感谢John Levon,Dave Hansen等在撰写时的帮助
-
-<test> 用于表示要测量的目标
-请先确保您已经有正确的System.map / vmlinux配置!
-
-对于linux系统来说,配置vmlinuz最容易的方法可能就是使用“make install”,然后修改
-/sbin/installkernel将vmlinux拷贝到/boot目录,而System.map通常是默认安装好的
-
-Readprofile
------------
-2.6系列内核需要版本相对较新的readprofile,比如util-linux 2.12a中包含的,可以从:
-
-http://www.kernel.org/pub/linux/utils/util-linux/ 下载
-
-大部分linux发行版已经包含了.
-
-启用readprofile需要在kernel启动命令行增加”profile=2“
-
-clear readprofile -r
- <test>
-dump output readprofile -m /boot/System.map > captured_profile
-
-Oprofile
---------
-
-从http://oprofile.sourceforge.net/获取源代码(请参考Changes以获取匹配的版本)
-在kernel启动命令行增加“idle=poll”
-
-配置CONFIG_PROFILING=y和CONFIG_OPROFILE=y然后重启进入新kernel
-
-./configure --with-kernel-support
-make install
-
-想得到好的测量结果,请确保启用了本地APIC特性。如果opreport显示有0Hz CPU,
-说明APIC特性没有开启。另外注意idle=poll选项可能有损性能。
-
-One time setup:
- opcontrol --setup --vmlinux=/boot/vmlinux
-
-clear opcontrol --reset
-start opcontrol --start
- <test>
-stop opcontrol --stop
-dump output opreport > output_file
-
-如果只看kernel相关的报告结果,请运行命令 opreport -l /boot/vmlinux > output_file
-
-通过reset选项可以清理过期统计数据,相当于重启的效果。
-
diff --git a/Documentation/translations/zh_CN/oops-tracing.txt b/Documentation/translations/zh_CN/oops-tracing.txt
index 93fa061cf9e4..368ddd05b304 100644
--- a/Documentation/translations/zh_CN/oops-tracing.txt
+++ b/Documentation/translations/zh_CN/oops-tracing.txt
@@ -53,7 +53,7 @@ cat /proc/kmsg > file, 然而你必须介入中止传输, kmsg是一个“
(2)用串口终端启动(请参看Documentation/admin-guide/serial-console.rst),运行一个null
modem到另一台机器并用你喜欢的通讯工具获取输出。Minicom工作地很好。
-(3)使用Kdump(请参看Documentation/kdump/kdump.txt),
+(3)使用Kdump(请参看Documentation/kdump/kdump.rst),
使用在Documentation/kdump/gdbmacros.txt中定义的dmesg gdb宏,从旧的内存中提取内核
环形缓冲区。
diff --git a/Documentation/translations/zh_CN/process/4.Coding.rst b/Documentation/translations/zh_CN/process/4.Coding.rst
index 5301e9d55255..b82b1dde3122 100644
--- a/Documentation/translations/zh_CN/process/4.Coding.rst
+++ b/Documentation/translations/zh_CN/process/4.Coding.rst
@@ -205,7 +205,7 @@ Linus对这个问题给出了最佳答案:
启用故障注入后,内存分配的可配置百分比将失败;这些失败可以限制在特定的代码
范围内。在启用了故障注入的情况下运行,程序员可以看到当情况恶化时代码如何响
应。有关如何使用此工具的详细信息,请参阅
-Documentation/fault-injection/fault-injection.txt。
+Documentation/fault-injection/fault-injection.rst。
使用“sparse”静态分析工具可以发现其他类型的错误。对于sparse,可以警告程序员
用户空间和内核空间地址之间的混淆、big endian和small endian数量的混合、在需
@@ -241,7 +241,7 @@ scripts/coccinelle目录下已经打包了相当多的内核“语义补丁”
任何添加新用户空间界面的代码(包括新的sysfs或/proc文件)都应该包含该界面的
文档,该文档使用户空间开发人员能够知道他们在使用什么。请参阅
-Documentation/abi/readme,了解如何格式化此文档以及需要提供哪些信息。
+Documentation/ABI/README,了解如何格式化此文档以及需要提供哪些信息。
文件 :ref:`Documentation/admin-guide/kernel-parameters.rst <kernelparameters>`
描述了内核的所有引导时间参数。任何添加新参数的补丁都应该向该文件添加适当的
diff --git a/Documentation/translations/zh_CN/process/coding-style.rst b/Documentation/translations/zh_CN/process/coding-style.rst
index 5479c591c2f7..4f6237392e65 100644
--- a/Documentation/translations/zh_CN/process/coding-style.rst
+++ b/Documentation/translations/zh_CN/process/coding-style.rst
@@ -599,7 +599,7 @@ Documentation/doc-guide/ 和 scripts/kernel-doc 以获得详细信息。
depends on ADFS_FS
...
-要查看配置文件的完整文档,请看 Documentation/kbuild/kconfig-language.txt。
+要查看配置文件的完整文档,请看 Documentation/kbuild/kconfig-language.rst。
11) 数据结构
diff --git a/Documentation/translations/zh_CN/process/management-style.rst b/Documentation/translations/zh_CN/process/management-style.rst
index a181fa56d19e..c6a5bb285797 100644
--- a/Documentation/translations/zh_CN/process/management-style.rst
+++ b/Documentation/translations/zh_CN/process/management-style.rst
@@ -28,7 +28,7 @@ Linux内核管理风格
不管怎样,这里是:
-.. _decisions:
+.. _cn_decisions:
1)决策
-------
@@ -108,7 +108,7 @@ Linux内核管理风格
但是,为了做好作为内核管理者的准备,最好记住不要烧掉任何桥梁,不要轰炸任何
无辜的村民,也不要疏远太多的内核开发人员。事实证明,疏远人是相当容易的,而
亲近一个疏远的人是很难的。因此,“疏远”立即属于“不可逆”的范畴,并根据
-:ref:`decisions` 成为绝不可以做的事情。
+:ref:`cn_decisions` 成为绝不可以做的事情。
这里只有几个简单的规则:
diff --git a/Documentation/translations/zh_CN/process/programming-language.rst b/Documentation/translations/zh_CN/process/programming-language.rst
index 51fd4ef48ea1..2a47a1d2ec20 100644
--- a/Documentation/translations/zh_CN/process/programming-language.rst
+++ b/Documentation/translations/zh_CN/process/programming-language.rst
@@ -8,21 +8,21 @@
程序设计语言
============
-内核是用C语言 [c-language]_ 编写的。更准确地说,内核通常是用 ``gcc`` [gcc]_
-在 ``-std=gnu89`` [gcc-c-dialect-options]_ 下编译的:ISO C90的 GNU 方言(
+内核是用C语言 :ref:`c-language <cn_c-language>` 编写的。更准确地说,内核通常是用 :ref:`gcc <cn_gcc>`
+在 ``-std=gnu89`` :ref:`gcc-c-dialect-options <cn_gcc-c-dialect-options>` 下编译的:ISO C90的 GNU 方言(
包括一些C99特性)
-这种方言包含对语言 [gnu-extensions]_ 的许多扩展,当然,它们许多都在内核中使用。
+这种方言包含对语言 :ref:`gnu-extensions <cn_gnu-extensions>` 的许多扩展,当然,它们许多都在内核中使用。
-对于一些体系结构,有一些使用 ``clang`` [clang]_ 和 ``icc`` [icc]_ 编译内核
+对于一些体系结构,有一些使用 :ref:`clang <cn_clang>` 和 :ref:`icc <cn_icc>` 编译内核
的支持,尽管在编写此文档时还没有完成,仍需要第三方补丁。
属性
----
-在整个内核中使用的一个常见扩展是属性(attributes) [gcc-attribute-syntax]_
+在整个内核中使用的一个常见扩展是属性(attributes) :ref:`gcc-attribute-syntax <cn_gcc-attribute-syntax>`
属性允许将实现定义的语义引入语言实体(如变量、函数或类型),而无需对语言进行
-重大的语法更改(例如添加新关键字) [n2049]_
+重大的语法更改(例如添加新关键字) :ref:`n2049 <cn_n2049>`
在某些情况下,属性是可选的(即不支持这些属性的编译器仍然应该生成正确的代码,
即使其速度较慢或执行的编译时检查/诊断次数不够)
@@ -31,11 +31,42 @@
``__attribute__((__pure__))`` ),以检测可以使用哪些关键字和/或缩短代码, 具体
请参阅 ``include/linux/compiler_attributes.h``
-.. [c-language] http://www.open-std.org/jtc1/sc22/wg14/www/standards
-.. [gcc] https://gcc.gnu.org
-.. [clang] https://clang.llvm.org
-.. [icc] https://software.intel.com/en-us/c-compilers
-.. [gcc-c-dialect-options] https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
-.. [gnu-extensions] https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
-.. [gcc-attribute-syntax] https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
-.. [n2049] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
+.. _cn_c-language:
+
+c-language
+ http://www.open-std.org/jtc1/sc22/wg14/www/standards
+
+.. _cn_gcc:
+
+gcc
+ https://gcc.gnu.org
+
+.. _cn_clang:
+
+clang
+ https://clang.llvm.org
+
+.. _cn_icc:
+
+icc
+ https://software.intel.com/en-us/c-compilers
+
+.. _cn_gcc-c-dialect-options:
+
+c-dialect-options
+ https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
+
+.. _cn_gnu-extensions:
+
+gnu-extensions
+ https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
+
+.. _cn_gcc-attribute-syntax:
+
+gcc-attribute-syntax
+ https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
+
+.. _cn_n2049:
+
+n2049
+ http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
diff --git a/Documentation/translations/zh_CN/process/submit-checklist.rst b/Documentation/translations/zh_CN/process/submit-checklist.rst
index 89061aa8fdbe..f4785d2b0491 100644
--- a/Documentation/translations/zh_CN/process/submit-checklist.rst
+++ b/Documentation/translations/zh_CN/process/submit-checklist.rst
@@ -38,7 +38,7 @@ Linux内核补丁提交清单
违规行为。
6) 任何新的或修改过的 ``CONFIG`` 选项都不会弄脏配置菜单,并默认为关闭,除非
- 它们符合 ``Documentation/kbuild/kconfig-language.txt`` 中记录的异常条件,
+ 它们符合 ``Documentation/kbuild/kconfig-language.rst`` 中记录的异常条件,
菜单属性:默认值.
7) 所有新的 ``kconfig`` 选项都有帮助文本。
diff --git a/Documentation/translations/zh_CN/process/submitting-drivers.rst b/Documentation/translations/zh_CN/process/submitting-drivers.rst
index 72c6cd935821..72f4f45c98de 100644
--- a/Documentation/translations/zh_CN/process/submitting-drivers.rst
+++ b/Documentation/translations/zh_CN/process/submitting-drivers.rst
@@ -22,7 +22,7 @@
兴趣的是显卡驱动程序,你也许应该访问 XFree86 项目(http://www.xfree86.org/)
和/或 X.org 项目 (http://x.org)。
-另请参阅 Documentation/Documentation/translations/zh_CN/process/submitting-patches.rst 文档。
+另请参阅 Documentation/translations/zh_CN/process/submitting-patches.rst 文档。
分配设备号
diff --git a/Documentation/usb/acm.txt b/Documentation/usb/acm.rst
index e8bda98e9b51..e8bda98e9b51 100644
--- a/Documentation/usb/acm.txt
+++ b/Documentation/usb/acm.rst
diff --git a/Documentation/usb/authorization.txt b/Documentation/usb/authorization.rst
index 9e53909d04c2..9e53909d04c2 100644
--- a/Documentation/usb/authorization.txt
+++ b/Documentation/usb/authorization.rst
diff --git a/Documentation/usb/chipidea.txt b/Documentation/usb/chipidea.rst
index 68473abe2823..68473abe2823 100644
--- a/Documentation/usb/chipidea.txt
+++ b/Documentation/usb/chipidea.rst
diff --git a/Documentation/usb/dwc3.txt b/Documentation/usb/dwc3.rst
index f94a7ba16573..f94a7ba16573 100644
--- a/Documentation/usb/dwc3.txt
+++ b/Documentation/usb/dwc3.rst
diff --git a/Documentation/usb/ehci.txt b/Documentation/usb/ehci.rst
index 31f650e7c1b4..31f650e7c1b4 100644
--- a/Documentation/usb/ehci.txt
+++ b/Documentation/usb/ehci.rst
diff --git a/Documentation/usb/functionfs.txt b/Documentation/usb/functionfs.rst
index 7fdc6d840ac5..7fdc6d840ac5 100644
--- a/Documentation/usb/functionfs.txt
+++ b/Documentation/usb/functionfs.rst
diff --git a/Documentation/usb/gadget-testing.txt b/Documentation/usb/gadget-testing.rst
index 7d7f2340af42..2eeb3e9299e4 100644
--- a/Documentation/usb/gadget-testing.txt
+++ b/Documentation/usb/gadget-testing.rst
@@ -254,7 +254,7 @@ Device:
- connect the gadget to a host, preferably not the one used
to control the gadget
- run a program which writes to /dev/hidg<N>, e.g.
- a userspace program found in Documentation/usb/gadget_hid.txt::
+ a userspace program found in Documentation/usb/gadget_hid.rst::
$ ./hid_gadget_test /dev/hidg0 keyboard
@@ -886,7 +886,7 @@ host::
# cat /dev/usb/lp0
More advanced testing can be done with the prn_example
-described in Documentation/usb/gadget_printer.txt.
+described in Documentation/usb/gadget_printer.rst.
20. UAC1 function (virtual ALSA card, using u_audio API)
diff --git a/Documentation/usb/gadget_configfs.txt b/Documentation/usb/gadget_configfs.rst
index 54fb08baae22..54fb08baae22 100644
--- a/Documentation/usb/gadget_configfs.txt
+++ b/Documentation/usb/gadget_configfs.rst
diff --git a/Documentation/usb/gadget_hid.txt b/Documentation/usb/gadget_hid.rst
index 098d563040cc..098d563040cc 100644
--- a/Documentation/usb/gadget_hid.txt
+++ b/Documentation/usb/gadget_hid.rst
diff --git a/Documentation/usb/gadget_multi.txt b/Documentation/usb/gadget_multi.rst
index 9806b55af301..9806b55af301 100644
--- a/Documentation/usb/gadget_multi.txt
+++ b/Documentation/usb/gadget_multi.rst
diff --git a/Documentation/usb/gadget_printer.txt b/Documentation/usb/gadget_printer.rst
index 5e5516c69075..5e5516c69075 100644
--- a/Documentation/usb/gadget_printer.txt
+++ b/Documentation/usb/gadget_printer.rst
diff --git a/Documentation/usb/gadget_serial.txt b/Documentation/usb/gadget_serial.rst
index dce8bc1fb1f2..dce8bc1fb1f2 100644
--- a/Documentation/usb/gadget_serial.txt
+++ b/Documentation/usb/gadget_serial.rst
diff --git a/Documentation/usb/index.rst b/Documentation/usb/index.rst
new file mode 100644
index 000000000000..e55386a4abfb
--- /dev/null
+++ b/Documentation/usb/index.rst
@@ -0,0 +1,39 @@
+===========
+USB support
+===========
+
+.. toctree::
+ :maxdepth: 1
+
+ acm
+ authorization
+ chipidea
+ dwc3
+ ehci
+ functionfs
+ gadget_configfs
+ gadget_hid
+ gadget_multi
+ gadget_printer
+ gadget_serial
+ gadget-testing
+ iuu_phoenix
+ mass-storage
+ misc_usbsevseg
+ mtouchusb
+ ohci
+ rio
+ usbip_protocol
+ usbmon
+ usb-serial
+ wusb-design-overview
+
+ usb-help
+ text_files
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/usb/iuu_phoenix.txt b/Documentation/usb/iuu_phoenix.rst
index b76268728450..b76268728450 100644
--- a/Documentation/usb/iuu_phoenix.txt
+++ b/Documentation/usb/iuu_phoenix.rst
diff --git a/Documentation/usb/mass-storage.txt b/Documentation/usb/mass-storage.rst
index d181b47c3cb6..d181b47c3cb6 100644
--- a/Documentation/usb/mass-storage.txt
+++ b/Documentation/usb/mass-storage.rst
diff --git a/Documentation/usb/misc_usbsevseg.txt b/Documentation/usb/misc_usbsevseg.rst
index 6274aee083ed..6274aee083ed 100644
--- a/Documentation/usb/misc_usbsevseg.txt
+++ b/Documentation/usb/misc_usbsevseg.rst
diff --git a/Documentation/usb/mtouchusb.txt b/Documentation/usb/mtouchusb.rst
index d1111b74bf75..d1111b74bf75 100644
--- a/Documentation/usb/mtouchusb.txt
+++ b/Documentation/usb/mtouchusb.rst
diff --git a/Documentation/usb/ohci.txt b/Documentation/usb/ohci.rst
index bb3c49719e6b..bb3c49719e6b 100644
--- a/Documentation/usb/ohci.txt
+++ b/Documentation/usb/ohci.rst
diff --git a/Documentation/usb/rio.txt b/Documentation/usb/rio.rst
index ea73475471db..ea73475471db 100644
--- a/Documentation/usb/rio.txt
+++ b/Documentation/usb/rio.rst
diff --git a/Documentation/usb/text_files.rst b/Documentation/usb/text_files.rst
new file mode 100644
index 000000000000..6a8d3fcf64b6
--- /dev/null
+++ b/Documentation/usb/text_files.rst
@@ -0,0 +1,29 @@
+Linux CDC ACM inf
+-----------------
+
+.. include:: linux-cdc-acm.inf
+ :literal:
+
+Linux inf
+---------
+
+.. include:: linux.inf
+ :literal:
+
+USB devfs drop permissions source
+---------------------------------
+
+.. literalinclude:: usbdevfs-drop-permissions.c
+ :language: c
+
+WUSB command line script to manipulate auth credentials
+-------------------------------------------------------
+
+.. literalinclude:: wusb-cbaf
+ :language: shell
+
+Credits
+-------
+
+.. include:: CREDITS
+ :literal:
diff --git a/Documentation/usb/usb-help.txt b/Documentation/usb/usb-help.rst
index dc23ecd4d802..dc23ecd4d802 100644
--- a/Documentation/usb/usb-help.txt
+++ b/Documentation/usb/usb-help.rst
diff --git a/Documentation/usb/usb-serial.txt b/Documentation/usb/usb-serial.rst
index 8fa7dbd3da9a..8fa7dbd3da9a 100644
--- a/Documentation/usb/usb-serial.txt
+++ b/Documentation/usb/usb-serial.rst
diff --git a/Documentation/usb/usbip_protocol.txt b/Documentation/usb/usbip_protocol.rst
index 988c832166cd..988c832166cd 100644
--- a/Documentation/usb/usbip_protocol.txt
+++ b/Documentation/usb/usbip_protocol.rst
diff --git a/Documentation/usb/usbmon.txt b/Documentation/usb/usbmon.rst
index b0bd51080799..b0bd51080799 100644
--- a/Documentation/usb/usbmon.txt
+++ b/Documentation/usb/usbmon.rst
diff --git a/Documentation/usb/WUSB-Design-overview.txt b/Documentation/usb/wusb-design-overview.rst
index dc5e21609bb5..dc5e21609bb5 100644
--- a/Documentation/usb/WUSB-Design-overview.txt
+++ b/Documentation/usb/wusb-design-overview.rst
diff --git a/Documentation/userspace-api/spec_ctrl.rst b/Documentation/userspace-api/spec_ctrl.rst
index 1129c7550a48..7ddd8f667459 100644
--- a/Documentation/userspace-api/spec_ctrl.rst
+++ b/Documentation/userspace-api/spec_ctrl.rst
@@ -49,6 +49,8 @@ If PR_SPEC_PRCTL is set, then the per-task control of the mitigation is
available. If not set, prctl(PR_SET_SPECULATION_CTRL) for the speculation
misfeature will fail.
+.. _set_spec_ctrl:
+
PR_SET_SPECULATION_CTRL
-----------------------
diff --git a/Documentation/virtual/kvm/amd-memory-encryption.rst b/Documentation/virtual/kvm/amd-memory-encryption.rst
index 659bbc093b52..d18c97b4e140 100644
--- a/Documentation/virtual/kvm/amd-memory-encryption.rst
+++ b/Documentation/virtual/kvm/amd-memory-encryption.rst
@@ -241,6 +241,9 @@ Returns: 0 on success, -negative on error
References
==========
+
+See [white-paper]_, [api-spec]_, [amd-apm]_ and [kvm-forum]_ for more info.
+
.. [white-paper] http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
.. [api-spec] http://support.amd.com/TechDocs/55766_SEV-KM_API_Specification.pdf
.. [amd-apm] http://support.amd.com/TechDocs/24593.pdf (section 15.34)
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index ba6c42c576dd..383b292966fa 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -1079,7 +1079,7 @@ yet and must be cleared on entry.
4.35 KVM_SET_USER_MEMORY_REGION
-Capability: KVM_CAP_USER_MEM
+Capability: KVM_CAP_USER_MEMORY
Architectures: all
Type: vm ioctl
Parameters: struct kvm_userspace_memory_region (in)
@@ -2205,7 +2205,7 @@ max_vq. This is the maximum vector length available to the guest on
this vcpu, and determines which register slices are visible through
this ioctl interface.
-(See Documentation/arm64/sve.txt for an explanation of the "vq"
+(See Documentation/arm64/sve.rst for an explanation of the "vq"
nomenclature.)
KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT.
@@ -3857,43 +3857,59 @@ Type: vcpu ioctl
Parameters: struct kvm_nested_state (in/out)
Returns: 0 on success, -1 on error
Errors:
- E2BIG: the total state size (including the fixed-size part of struct
- kvm_nested_state) exceeds the value of 'size' specified by
+ E2BIG: the total state size exceeds the value of 'size' specified by
the user; the size required will be written into size.
struct kvm_nested_state {
__u16 flags;
__u16 format;
__u32 size;
+
union {
- struct kvm_vmx_nested_state vmx;
- struct kvm_svm_nested_state svm;
+ struct kvm_vmx_nested_state_hdr vmx;
+ struct kvm_svm_nested_state_hdr svm;
+
+ /* Pad the header to 128 bytes. */
__u8 pad[120];
- };
- __u8 data[0];
+ } hdr;
+
+ union {
+ struct kvm_vmx_nested_state_data vmx[0];
+ struct kvm_svm_nested_state_data svm[0];
+ } data;
};
#define KVM_STATE_NESTED_GUEST_MODE 0x00000001
#define KVM_STATE_NESTED_RUN_PENDING 0x00000002
+#define KVM_STATE_NESTED_EVMCS 0x00000004
-#define KVM_STATE_NESTED_SMM_GUEST_MODE 0x00000001
-#define KVM_STATE_NESTED_SMM_VMXON 0x00000002
+#define KVM_STATE_NESTED_FORMAT_VMX 0
+#define KVM_STATE_NESTED_FORMAT_SVM 1
-struct kvm_vmx_nested_state {
+#define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000
+
+#define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001
+#define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002
+
+struct kvm_vmx_nested_state_hdr {
__u64 vmxon_pa;
- __u64 vmcs_pa;
+ __u64 vmcs12_pa;
struct {
__u16 flags;
} smm;
};
+struct kvm_vmx_nested_state_data {
+ __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE];
+ __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE];
+};
+
This ioctl copies the vcpu's nested virtualization state from the kernel to
userspace.
-The maximum size of the state, including the fixed-size part of struct
-kvm_nested_state, can be retrieved by passing KVM_CAP_NESTED_STATE to
-the KVM_CHECK_EXTENSION ioctl().
+The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE
+to the KVM_CHECK_EXTENSION ioctl().
4.115 KVM_SET_NESTED_STATE
@@ -3903,8 +3919,8 @@ Type: vcpu ioctl
Parameters: struct kvm_nested_state (in)
Returns: 0 on success, -1 on error
-This copies the vcpu's kvm_nested_state struct from userspace to the kernel. For
-the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
+This copies the vcpu's kvm_nested_state struct from userspace to the kernel.
+For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
4.116 KVM_(UN)REGISTER_COALESCED_MMIO
diff --git a/Documentation/virtual/kvm/devices/arm-vgic-its.txt b/Documentation/virtual/kvm/devices/arm-vgic-its.txt
index 4f0c9fc40365..eeaa95b893a8 100644
--- a/Documentation/virtual/kvm/devices/arm-vgic-its.txt
+++ b/Documentation/virtual/kvm/devices/arm-vgic-its.txt
@@ -103,7 +103,7 @@ Groups:
The following ordering must be followed when restoring the GIC and the ITS:
a) restore all guest memory and create vcpus
b) restore all redistributors
-c) provide the its base address
+c) provide the ITS base address
(KVM_DEV_ARM_VGIC_GRP_ADDR)
d) restore the ITS in the following order:
1. Restore GITS_CBASER
diff --git a/Documentation/vm/hwpoison.rst b/Documentation/vm/hwpoison.rst
index 09bd24a92784..a5c884293dac 100644
--- a/Documentation/vm/hwpoison.rst
+++ b/Documentation/vm/hwpoison.rst
@@ -13,32 +13,32 @@ kill the processes associated with it and avoid using it in the future.
This patchkit implements the necessary infrastructure in the VM.
-To quote the overview comment:
-
- * High level machine check handler. Handles pages reported by the
- * hardware as being corrupted usually due to a 2bit ECC memory or cache
- * failure.
- *
- * This focusses on pages detected as corrupted in the background.
- * When the current CPU tries to consume corruption the currently
- * running process can just be killed directly instead. This implies
- * that if the error cannot be handled for some reason it's safe to
- * just ignore it because no corruption has been consumed yet. Instead
- * when that happens another machine check will happen.
- *
- * Handles page cache pages in various states. The tricky part
- * here is that we can access any page asynchronous to other VM
- * users, because memory failures could happen anytime and anywhere,
- * possibly violating some of their assumptions. This is why this code
- * has to be extremely careful. Generally it tries to use normal locking
- * rules, as in get the standard locks, even if that means the
- * error handling takes potentially a long time.
- *
- * Some of the operations here are somewhat inefficient and have non
- * linear algorithmic complexity, because the data structures have not
- * been optimized for this case. This is in particular the case
- * for the mapping from a vma to a process. Since this case is expected
- * to be rare we hope we can get away with this.
+To quote the overview comment::
+
+ High level machine check handler. Handles pages reported by the
+ hardware as being corrupted usually due to a 2bit ECC memory or cache
+ failure.
+
+ This focusses on pages detected as corrupted in the background.
+ When the current CPU tries to consume corruption the currently
+ running process can just be killed directly instead. This implies
+ that if the error cannot be handled for some reason it's safe to
+ just ignore it because no corruption has been consumed yet. Instead
+ when that happens another machine check will happen.
+
+ Handles page cache pages in various states. The tricky part
+ here is that we can access any page asynchronous to other VM
+ users, because memory failures could happen anytime and anywhere,
+ possibly violating some of their assumptions. This is why this code
+ has to be extremely careful. Generally it tries to use normal locking
+ rules, as in get the standard locks, even if that means the
+ error handling takes potentially a long time.
+
+ Some of the operations here are somewhat inefficient and have non
+ linear algorithmic complexity, because the data structures have not
+ been optimized for this case. This is in particular the case
+ for the mapping from a vma to a process. Since this case is expected
+ to be rare we hope we can get away with this.
The code consists of a the high level handler in mm/memory-failure.c,
a new page poison bit and various checks in the VM to handle poisoned
diff --git a/Documentation/vm/numa.rst b/Documentation/vm/numa.rst
index 5cae13e9a08b..130f3cfa1c19 100644
--- a/Documentation/vm/numa.rst
+++ b/Documentation/vm/numa.rst
@@ -67,7 +67,7 @@ nodes. Each emulated node will manage a fraction of the underlying cells'
physical memory. NUMA emluation is useful for testing NUMA kernel and
application features on non-NUMA platforms, and as a sort of memory resource
management mechanism when used together with cpusets.
-[see Documentation/cgroup-v1/cpusets.txt]
+[see Documentation/cgroup-v1/cpusets.rst]
For each node with memory, Linux constructs an independent memory management
subsystem, complete with its own free page lists, in-use page lists, usage
@@ -99,7 +99,7 @@ Local allocation will tend to keep subsequent access to the allocated memory
as long as the task on whose behalf the kernel allocated some memory does not
later migrate away from that memory. The Linux scheduler is aware of the
NUMA topology of the platform--embodied in the "scheduling domains" data
-structures [see Documentation/scheduler/sched-domains.txt]--and the scheduler
+structures [see Documentation/scheduler/sched-domains.rst]--and the scheduler
attempts to minimize task migration to distant scheduling domains. However,
the scheduler does not take a task's NUMA footprint into account directly.
Thus, under sufficient imbalance, tasks can migrate between nodes, remote
@@ -114,7 +114,7 @@ allocation behavior using Linux NUMA memory policy. [see
System administrators can restrict the CPUs and nodes' memories that a non-
privileged user can specify in the scheduling or NUMA commands and functions
-using control groups and CPUsets. [see Documentation/cgroup-v1/cpusets.txt]
+using control groups and CPUsets. [see Documentation/cgroup-v1/cpusets.rst]
On architectures that do not hide memoryless nodes, Linux will include only
zones [nodes] with memory in the zonelists. This means that for a memoryless
diff --git a/Documentation/vm/page_migration.rst b/Documentation/vm/page_migration.rst
index f68d61335abb..35bba27d5fff 100644
--- a/Documentation/vm/page_migration.rst
+++ b/Documentation/vm/page_migration.rst
@@ -41,7 +41,7 @@ locations.
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
move pages when a task is moved to another cpuset (See
-Documentation/cgroup-v1/cpusets.txt).
+Documentation/cgroup-v1/cpusets.rst).
Cpusets allows the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
diff --git a/Documentation/vm/unevictable-lru.rst b/Documentation/vm/unevictable-lru.rst
index b8e29f977f2d..c6d94118fbcc 100644
--- a/Documentation/vm/unevictable-lru.rst
+++ b/Documentation/vm/unevictable-lru.rst
@@ -98,7 +98,7 @@ Memory Control Group Interaction
--------------------------------
The unevictable LRU facility interacts with the memory control group [aka
-memory controller; see Documentation/cgroup-v1/memory.txt] by extending the
+memory controller; see Documentation/cgroup-v1/memory.rst] by extending the
lru_list enum.
The memory controller data structure automatically gets a per-zone unevictable
diff --git a/Documentation/watchdog/convert_drivers_to_kernel_api.txt b/Documentation/watchdog/convert_drivers_to_kernel_api.rst
index 9fffb2958d13..dd934cc08e40 100644
--- a/Documentation/watchdog/convert_drivers_to_kernel_api.txt
+++ b/Documentation/watchdog/convert_drivers_to_kernel_api.rst
@@ -1,7 +1,9 @@
+=========================================================
Converting old watchdog drivers to the watchdog framework
-by Wolfram Sang <w.sang@pengutronix.de>
=========================================================
+by Wolfram Sang <w.sang@pengutronix.de>
+
Before the watchdog framework came into the kernel, every driver had to
implement the API on its own. Now, as the framework factored out the common
components, those drivers can be lightened making it a user of the framework.
@@ -69,16 +71,16 @@ Here is a overview of the functions and probably needed actions:
-ENOIOCTLCMD, the IOCTLs of the framework will be tried, too. Any other error
is directly given to the user.
-Example conversion:
+Example conversion::
--static const struct file_operations s3c2410wdt_fops = {
-- .owner = THIS_MODULE,
-- .llseek = no_llseek,
-- .write = s3c2410wdt_write,
-- .unlocked_ioctl = s3c2410wdt_ioctl,
-- .open = s3c2410wdt_open,
-- .release = s3c2410wdt_release,
--};
+ -static const struct file_operations s3c2410wdt_fops = {
+ - .owner = THIS_MODULE,
+ - .llseek = no_llseek,
+ - .write = s3c2410wdt_write,
+ - .unlocked_ioctl = s3c2410wdt_ioctl,
+ - .open = s3c2410wdt_open,
+ - .release = s3c2410wdt_release,
+ -};
Check the functions for device-specific stuff and keep it for later
refactoring. The rest can go.
@@ -89,24 +91,24 @@ Remove the miscdevice
Since the file_operations are gone now, you can also remove the 'struct
miscdevice'. The framework will create it on watchdog_dev_register() called by
-watchdog_register_device().
+watchdog_register_device()::
--static struct miscdevice s3c2410wdt_miscdev = {
-- .minor = WATCHDOG_MINOR,
-- .name = "watchdog",
-- .fops = &s3c2410wdt_fops,
--};
+ -static struct miscdevice s3c2410wdt_miscdev = {
+ - .minor = WATCHDOG_MINOR,
+ - .name = "watchdog",
+ - .fops = &s3c2410wdt_fops,
+ -};
Remove obsolete includes and defines
------------------------------------
Because of the simplifications, a few defines are probably unused now. Remove
-them. Includes can be removed, too. For example:
+them. Includes can be removed, too. For example::
-- #include <linux/fs.h>
-- #include <linux/miscdevice.h> (if MODULE_ALIAS_MISCDEV is not used)
-- #include <linux/uaccess.h> (if no custom IOCTLs are used)
+ - #include <linux/fs.h>
+ - #include <linux/miscdevice.h> (if MODULE_ALIAS_MISCDEV is not used)
+ - #include <linux/uaccess.h> (if no custom IOCTLs are used)
Add the watchdog operations
@@ -121,30 +123,30 @@ change the function header. Other changes are most likely not needed, because
here simply happens the direct hardware access. If you have device-specific
code left from the above steps, it should be refactored into these callbacks.
-Here is a simple example:
+Here is a simple example::
-+static struct watchdog_ops s3c2410wdt_ops = {
-+ .owner = THIS_MODULE,
-+ .start = s3c2410wdt_start,
-+ .stop = s3c2410wdt_stop,
-+ .ping = s3c2410wdt_keepalive,
-+ .set_timeout = s3c2410wdt_set_heartbeat,
-+};
+ +static struct watchdog_ops s3c2410wdt_ops = {
+ + .owner = THIS_MODULE,
+ + .start = s3c2410wdt_start,
+ + .stop = s3c2410wdt_stop,
+ + .ping = s3c2410wdt_keepalive,
+ + .set_timeout = s3c2410wdt_set_heartbeat,
+ +};
-A typical function-header change looks like:
+A typical function-header change looks like::
--static void s3c2410wdt_keepalive(void)
-+static int s3c2410wdt_keepalive(struct watchdog_device *wdd)
- {
-...
-+
-+ return 0;
- }
+ -static void s3c2410wdt_keepalive(void)
+ +static int s3c2410wdt_keepalive(struct watchdog_device *wdd)
+ {
+ ...
+ +
+ + return 0;
+ }
-...
+ ...
-- s3c2410wdt_keepalive();
-+ s3c2410wdt_keepalive(&s3c2410_wdd);
+ - s3c2410wdt_keepalive();
+ + s3c2410wdt_keepalive(&s3c2410_wdd);
Add the watchdog device
@@ -159,12 +161,12 @@ static variables. Those have to be converted to use the members in
watchdog_device. Note that the timeout values are unsigned int. Some drivers
use signed int, so this has to be converted, too.
-Here is a simple example for a watchdog device:
+Here is a simple example for a watchdog device::
-+static struct watchdog_device s3c2410_wdd = {
-+ .info = &s3c2410_wdt_ident,
-+ .ops = &s3c2410wdt_ops,
-+};
+ +static struct watchdog_device s3c2410_wdd = {
+ + .info = &s3c2410_wdt_ident,
+ + .ops = &s3c2410wdt_ops,
+ +};
Handle the 'nowayout' feature
@@ -173,12 +175,12 @@ Handle the 'nowayout' feature
A few drivers use nowayout statically, i.e. there is no module parameter for it
and only CONFIG_WATCHDOG_NOWAYOUT determines if the feature is going to be
used. This needs to be converted by initializing the status variable of the
-watchdog_device like this:
+watchdog_device like this::
.status = WATCHDOG_NOWAYOUT_INIT_STATUS,
Most drivers, however, also allow runtime configuration of nowayout, usually
-by adding a module parameter. The conversion for this would be something like:
+by adding a module parameter. The conversion for this would be something like::
watchdog_set_nowayout(&s3c2410_wdd, nowayout);
@@ -191,15 +193,15 @@ Register the watchdog device
Replace misc_register(&miscdev) with watchdog_register_device(&watchdog_dev).
Make sure the return value gets checked and the error message, if present,
-still fits. Also convert the unregister case.
+still fits. Also convert the unregister case::
-- ret = misc_register(&s3c2410wdt_miscdev);
-+ ret = watchdog_register_device(&s3c2410_wdd);
+ - ret = misc_register(&s3c2410wdt_miscdev);
+ + ret = watchdog_register_device(&s3c2410_wdd);
-...
+ ...
-- misc_deregister(&s3c2410wdt_miscdev);
-+ watchdog_unregister_device(&s3c2410_wdd);
+ - misc_deregister(&s3c2410wdt_miscdev);
+ + watchdog_unregister_device(&s3c2410_wdd);
Update the Kconfig-entry
@@ -207,7 +209,7 @@ Update the Kconfig-entry
The entry for the driver now needs to select WATCHDOG_CORE:
-+ select WATCHDOG_CORE
+ + select WATCHDOG_CORE
Create a patch and send it to upstream
@@ -215,4 +217,3 @@ Create a patch and send it to upstream
Make sure you understood Documentation/process/submitting-patches.rst and send your patch to
linux-watchdog@vger.kernel.org. We are looking forward to it :)
-
diff --git a/Documentation/watchdog/hpwdt.txt b/Documentation/watchdog/hpwdt.rst
index 55df692c5595..94a96371113e 100644
--- a/Documentation/watchdog/hpwdt.txt
+++ b/Documentation/watchdog/hpwdt.rst
@@ -1,7 +1,12 @@
+===========================
+HPE iLO NMI Watchdog Driver
+===========================
+
+for iLO based ProLiant Servers
+==============================
+
Last reviewed: 08/20/2018
- HPE iLO NMI Watchdog Driver
- for iLO based ProLiant Servers
The HPE iLO NMI Watchdog driver is a kernel module that provides basic
watchdog functionality and handler for the iLO "Generate NMI to System"
@@ -20,23 +25,26 @@ Last reviewed: 08/20/2018
The hpwdt driver also has the following module parameters:
- soft_margin - allows the user to set the watchdog timer value.
+ ============ ================================================================
+ soft_margin allows the user to set the watchdog timer value.
Default value is 30 seconds.
- timeout - an alias of soft_margin.
- pretimeout - allows the user to set the watchdog pretimeout value.
+ timeout an alias of soft_margin.
+ pretimeout allows the user to set the watchdog pretimeout value.
This is the number of seconds before timeout when an
NMI is delivered to the system. Setting the value to
zero disables the pretimeout NMI.
Default value is 9 seconds.
- nowayout - basic watchdog parameter that does not allow the timer to
+ nowayout basic watchdog parameter that does not allow the timer to
be restarted or an impending ASR to be escaped.
Default value is set when compiling the kernel. If it is set
to "Y", then there is no way of disabling the watchdog once
it has been started.
+ ============ ================================================================
- NOTE: More information about watchdog drivers in general, including the ioctl
+ NOTE:
+ More information about watchdog drivers in general, including the ioctl
interface to /dev/watchdog can be found in
- Documentation/watchdog/watchdog-api.txt and Documentation/IPMI.txt.
+ Documentation/watchdog/watchdog-api.rst and Documentation/IPMI.txt.
Due to limitations in the iLO hardware, the NMI pretimeout if enabled,
can only be set to 9 seconds. Attempts to set pretimeout to other
@@ -51,7 +59,7 @@ Last reviewed: 08/20/2018
and loop forever. This is generally not what a watchdog user wants.
For those wishing to learn more please see:
- Documentation/kdump/kdump.txt
+ Documentation/kdump/kdump.rst
Documentation/admin-guide/kernel-parameters.txt (panic=)
Your Linux Distribution specific documentation.
@@ -63,4 +71,3 @@ Last reviewed: 08/20/2018
The HPE iLO NMI Watchdog Driver and documentation were originally developed
by Tom Mingarelli.
-
diff --git a/Documentation/watchdog/index.rst b/Documentation/watchdog/index.rst
new file mode 100644
index 000000000000..33a0de631e84
--- /dev/null
+++ b/Documentation/watchdog/index.rst
@@ -0,0 +1,25 @@
+:orphan:
+
+======================
+Linux Watchdog Support
+======================
+
+.. toctree::
+ :maxdepth: 1
+
+ hpwdt
+ mlx-wdt
+ pcwd-watchdog
+ watchdog-api
+ watchdog-kernel-api
+ watchdog-parameters
+ watchdog-pm
+ wdt
+ convert_drivers_to_kernel_api
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/watchdog/mlx-wdt.txt b/Documentation/watchdog/mlx-wdt.rst
index 66eeb78505c3..bf5bafac47f0 100644
--- a/Documentation/watchdog/mlx-wdt.txt
+++ b/Documentation/watchdog/mlx-wdt.rst
@@ -1,5 +1,9 @@
- Mellanox watchdog drivers
- for x86 based system switches
+=========================
+Mellanox watchdog drivers
+=========================
+
+for x86 based system switches
+=============================
This driver provides watchdog functionality for various Mellanox
Ethernet and Infiniband switch systems.
@@ -9,16 +13,16 @@ Mellanox watchdog device is implemented in a programmable logic device.
There are 2 types of HW watchdog implementations.
Type 1:
-Actual HW timeout can be defined as a power of 2 msec.
-e.g. timeout 20 sec will be rounded up to 32768 msec.
-The maximum timeout period is 32 sec (32768 msec.),
-Get time-left isn't supported
+ Actual HW timeout can be defined as a power of 2 msec.
+ e.g. timeout 20 sec will be rounded up to 32768 msec.
+ The maximum timeout period is 32 sec (32768 msec.),
+ Get time-left isn't supported
Type 2:
-Actual HW timeout is defined in sec. and it's the same as
-a user-defined timeout.
-Maximum timeout is 255 sec.
-Get time-left is supported.
+ Actual HW timeout is defined in sec. and it's the same as
+ a user-defined timeout.
+ Maximum timeout is 255 sec.
+ Get time-left is supported.
Type 1 HW watchdog implementation exist in old systems and
all new systems have type 2 HW watchdog.
diff --git a/Documentation/watchdog/pcwd-watchdog.txt b/Documentation/watchdog/pcwd-watchdog.rst
index b8e60a441a43..405e2a370082 100644
--- a/Documentation/watchdog/pcwd-watchdog.txt
+++ b/Documentation/watchdog/pcwd-watchdog.rst
@@ -1,8 +1,13 @@
+===================================
+Berkshire Products PC Watchdog Card
+===================================
+
Last reviewed: 10/05/2007
- Berkshire Products PC Watchdog Card
- Support for ISA Cards Revision A and C
- Documentation and Driver by Ken Hollis <kenji@bitgate.com>
+Support for ISA Cards Revision A and C
+=======================================
+
+Documentation and Driver by Ken Hollis <kenji@bitgate.com>
The PC Watchdog is a card that offers the same type of functionality that
the WDT card does, only it doesn't require an IRQ to run. Furthermore,
@@ -33,6 +38,7 @@ Last reviewed: 10/05/2007
WDIOC_GETSUPPORT
This returns the support of the card itself. This
returns in structure "PCWDS" which returns:
+
options = WDIOS_TEMPPANIC
(This card supports temperature)
firmware_version = xxxx
@@ -63,4 +69,3 @@ Last reviewed: 10/05/2007
-- Ken Hollis
(kenji@bitgate.com)
-
diff --git a/Documentation/watchdog/watchdog-api.txt b/Documentation/watchdog/watchdog-api.rst
index 0e62ba33b7fb..c6c1e9fa9f73 100644
--- a/Documentation/watchdog/watchdog-api.txt
+++ b/Documentation/watchdog/watchdog-api.rst
@@ -1,7 +1,10 @@
+=============================
+The Linux Watchdog driver API
+=============================
+
Last reviewed: 10/05/2007
-The Linux Watchdog driver API.
Copyright 2002 Christer Weingel <wingel@nano-system.com>
@@ -10,7 +13,8 @@ driver which is (c) Copyright 2000 Jakob Oestergaard <jakob@ostenfeld.dk>
This document describes the state of the Linux 2.4.18 kernel.
-Introduction:
+Introduction
+============
A Watchdog Timer (WDT) is a hardware circuit that can reset the
computer system in case of a software fault. You probably knew that
@@ -30,7 +34,8 @@ drivers implement different, and sometimes incompatible, parts of it.
This file is an attempt to document the existing usage and allow
future driver writers to use it as a reference.
-The simplest API:
+The simplest API
+================
All drivers support the basic mode of operation, where the watchdog
activates as soon as /dev/watchdog is opened and will reboot unless
@@ -54,7 +59,8 @@ after the timeout has passed. Watchdog devices also usually support
the nowayout module parameter so that this option can be controlled at
runtime.
-Magic Close feature:
+Magic Close feature
+===================
If a driver supports "Magic Close", the driver will not disable the
watchdog unless a specific magic character 'V' has been sent to
@@ -64,7 +70,8 @@ will assume that the daemon (and userspace in general) died, and will
stop pinging the watchdog without disabling it first. This will then
cause a reboot if the watchdog is not re-opened in sufficient time.
-The ioctl API:
+The ioctl API
+=============
All conforming drivers also support an ioctl API.
@@ -73,7 +80,7 @@ Pinging the watchdog using an ioctl:
All drivers that have an ioctl interface support at least one ioctl,
KEEPALIVE. This ioctl does exactly the same thing as a write to the
watchdog device, so the main loop in the above program could be
-replaced with:
+replaced with::
while (1) {
ioctl(fd, WDIOC_KEEPALIVE, 0);
@@ -82,14 +89,15 @@ replaced with:
the argument to the ioctl is ignored.
-Setting and getting the timeout:
+Setting and getting the timeout
+===============================
For some drivers it is possible to modify the watchdog timeout on the
fly with the SETTIMEOUT ioctl, those drivers have the WDIOF_SETTIMEOUT
flag set in their option field. The argument is an integer
representing the timeout in seconds. The driver returns the real
timeout used in the same variable, and this timeout might differ from
-the requested one due to limitation of the hardware.
+the requested one due to limitation of the hardware::
int timeout = 45;
ioctl(fd, WDIOC_SETTIMEOUT, &timeout);
@@ -99,18 +107,19 @@ This example might actually print "The timeout was set to 60 seconds"
if the device has a granularity of minutes for its timeout.
Starting with the Linux 2.4.18 kernel, it is possible to query the
-current timeout using the GETTIMEOUT ioctl.
+current timeout using the GETTIMEOUT ioctl::
ioctl(fd, WDIOC_GETTIMEOUT, &timeout);
printf("The timeout was is %d seconds\n", timeout);
-Pretimeouts:
+Pretimeouts
+===========
Some watchdog timers can be set to have a trigger go off before the
actual time they will reset the system. This can be done with an NMI,
interrupt, or other mechanism. This allows Linux to record useful
information (like panic information and kernel coredumps) before it
-resets.
+resets::
pretimeout = 10;
ioctl(fd, WDIOC_SETPRETIMEOUT, &pretimeout);
@@ -121,89 +130,113 @@ the pretimeout. So, for instance, if you set the timeout to 60 seconds
and the pretimeout to 10 seconds, the pretimeout will go off in 50
seconds. Setting a pretimeout to zero disables it.
-There is also a get function for getting the pretimeout:
+There is also a get function for getting the pretimeout::
ioctl(fd, WDIOC_GETPRETIMEOUT, &timeout);
printf("The pretimeout was is %d seconds\n", timeout);
Not all watchdog drivers will support a pretimeout.
-Get the number of seconds before reboot:
+Get the number of seconds before reboot
+=======================================
Some watchdog drivers have the ability to report the remaining time
before the system will reboot. The WDIOC_GETTIMELEFT is the ioctl
-that returns the number of seconds before reboot.
+that returns the number of seconds before reboot::
ioctl(fd, WDIOC_GETTIMELEFT, &timeleft);
printf("The timeout was is %d seconds\n", timeleft);
-Environmental monitoring:
+Environmental monitoring
+========================
All watchdog drivers are required return more information about the system,
some do temperature, fan and power level monitoring, some can tell you
the reason for the last reboot of the system. The GETSUPPORT ioctl is
-available to ask what the device can do:
+available to ask what the device can do::
struct watchdog_info ident;
ioctl(fd, WDIOC_GETSUPPORT, &ident);
the fields returned in the ident struct are:
+ ================ =============================================
identity a string identifying the watchdog driver
firmware_version the firmware version of the card if available
options a flags describing what the device supports
+ ================ =============================================
the options field can have the following bits set, and describes what
kind of information that the GET_STATUS and GET_BOOT_STATUS ioctls can
return. [FIXME -- Is this correct?]
+ ================ =========================
WDIOF_OVERHEAT Reset due to CPU overheat
+ ================ =========================
The machine was last rebooted by the watchdog because the thermal limit was
-exceeded
+exceeded:
+ ============== ==========
WDIOF_FANFAULT Fan failed
+ ============== ==========
A system fan monitored by the watchdog card has failed
+ ============= ================
WDIOF_EXTERN1 External relay 1
+ ============= ================
External monitoring relay/source 1 was triggered. Controllers intended for
real world applications include external monitoring pins that will trigger
a reset.
+ ============= ================
WDIOF_EXTERN2 External relay 2
+ ============= ================
External monitoring relay/source 2 was triggered
+ ================ =====================
WDIOF_POWERUNDER Power bad/power fault
+ ================ =====================
The machine is showing an undervoltage status
+ =============== =============================
WDIOF_CARDRESET Card previously reset the CPU
+ =============== =============================
The last reboot was caused by the watchdog card
+ ================ =====================
WDIOF_POWEROVER Power over voltage
+ ================ =====================
The machine is showing an overvoltage status. Note that if one level is
under and one over both bits will be set - this may seem odd but makes
sense.
+ =================== =====================
WDIOF_KEEPALIVEPING Keep alive ping reply
+ =================== =====================
The watchdog saw a keepalive ping since it was last queried.
+ ================ =======================
WDIOF_SETTIMEOUT Can set/get the timeout
+ ================ =======================
The watchdog can do pretimeouts.
+ ================ ================================
WDIOF_PRETIMEOUT Pretimeout (in seconds), get/set
+ ================ ================================
For those drivers that return any bits set in the option field, the
GETSTATUS and GETBOOTSTATUS ioctls can be used to ask for the current
-status, and the status at the last reboot, respectively.
+status, and the status at the last reboot, respectively::
int flags;
ioctl(fd, WDIOC_GETSTATUS, &flags);
@@ -216,22 +249,23 @@ Note that not all devices support these two calls, and some only
support the GETBOOTSTATUS call.
Some drivers can measure the temperature using the GETTEMP ioctl. The
-returned value is the temperature in degrees fahrenheit.
+returned value is the temperature in degrees fahrenheit::
int temperature;
ioctl(fd, WDIOC_GETTEMP, &temperature);
Finally the SETOPTIONS ioctl can be used to control some aspects of
-the cards operation.
+the cards operation::
int options = 0;
ioctl(fd, WDIOC_SETOPTIONS, &options);
The following options are available:
+ ================= ================================
WDIOS_DISABLECARD Turn off the watchdog timer
WDIOS_ENABLECARD Turn on the watchdog timer
WDIOS_TEMPPANIC Kernel panic on temperature trip
+ ================= ================================
[FIXME -- better explanations]
-
diff --git a/Documentation/watchdog/watchdog-kernel-api.txt b/Documentation/watchdog/watchdog-kernel-api.rst
index 3a91ef5af044..864edbe932c1 100644
--- a/Documentation/watchdog/watchdog-kernel-api.txt
+++ b/Documentation/watchdog/watchdog-kernel-api.rst
@@ -1,5 +1,7 @@
-The Linux WatchDog Timer Driver Core kernel API.
===============================================
+The Linux WatchDog Timer Driver Core kernel API
+===============================================
+
Last reviewed: 12-Feb-2013
Wim Van Sebroeck <wim@iguana.be>
@@ -9,7 +11,7 @@ Introduction
This document does not describe what a WatchDog Timer (WDT) Driver or Device is.
It also does not describe the API which can be used by user space to communicate
with a WatchDog Timer. If you want to know this then please read the following
-file: Documentation/watchdog/watchdog-api.txt .
+file: Documentation/watchdog/watchdog-api.rst .
So what does this document describe? It describes the API that can be used by
WatchDog Timer Drivers that want to use the WatchDog Timer Driver Core
@@ -23,10 +25,10 @@ The API
Each watchdog timer driver that wants to use the WatchDog Timer Driver Core
must #include <linux/watchdog.h> (you would have to do this anyway when
writing a watchdog device driver). This include file contains following
-register/unregister routines:
+register/unregister routines::
-extern int watchdog_register_device(struct watchdog_device *);
-extern void watchdog_unregister_device(struct watchdog_device *);
+ extern int watchdog_register_device(struct watchdog_device *);
+ extern void watchdog_unregister_device(struct watchdog_device *);
The watchdog_register_device routine registers a watchdog timer device.
The parameter of this routine is a pointer to a watchdog_device structure.
@@ -40,9 +42,9 @@ The watchdog subsystem includes an registration deferral mechanism,
which allows you to register an watchdog as early as you wish during
the boot process.
-The watchdog device structure looks like this:
+The watchdog device structure looks like this::
-struct watchdog_device {
+ struct watchdog_device {
int id;
struct device *parent;
const struct attribute_group **groups;
@@ -62,9 +64,10 @@ struct watchdog_device {
struct watchdog_core_data *wd_data;
unsigned long status;
struct list_head deferred;
-};
+ };
It contains following fields:
+
* id: set by watchdog_register_device, id 0 is special. It has both a
/dev/watchdog0 cdev (dynamic major, minor 0) as well as the old
/dev/watchdog miscdev. The id is set automatically when calling
@@ -114,9 +117,9 @@ It contains following fields:
* deferred: entry in wtd_deferred_reg_list which is used to
register early initialized watchdogs.
-The list of watchdog operations is defined as:
+The list of watchdog operations is defined as::
-struct watchdog_ops {
+ struct watchdog_ops {
struct module *owner;
/* mandatory operations */
int (*start)(struct watchdog_device *);
@@ -129,7 +132,7 @@ struct watchdog_ops {
unsigned int (*get_timeleft)(struct watchdog_device *);
int (*restart)(struct watchdog_device *);
long (*ioctl)(struct watchdog_device *, unsigned int, unsigned long);
-};
+ };
It is important that you first define the module owner of the watchdog timer
driver's operations. This module owner will be used to lock the module when
@@ -138,6 +141,7 @@ module and /dev/watchdog is still open).
Some operations are mandatory and some are optional. The mandatory operations
are:
+
* start: this is a pointer to the routine that starts the watchdog timer
device.
The routine needs a pointer to the watchdog timer device structure as a
@@ -146,51 +150,64 @@ are:
Not all watchdog timer hardware supports the same functionality. That's why
all other routines/operations are optional. They only need to be provided if
they are supported. These optional routines/operations are:
+
* stop: with this routine the watchdog timer device is being stopped.
+
The routine needs a pointer to the watchdog timer device structure as a
parameter. It returns zero on success or a negative errno code for failure.
Some watchdog timer hardware can only be started and not be stopped. A
driver supporting such hardware does not have to implement the stop routine.
+
If a driver has no stop function, the watchdog core will set WDOG_HW_RUNNING
and start calling the driver's keepalive pings function after the watchdog
device is closed.
+
If a watchdog driver does not implement the stop function, it must set
max_hw_heartbeat_ms.
* ping: this is the routine that sends a keepalive ping to the watchdog timer
hardware.
+
The routine needs a pointer to the watchdog timer device structure as a
parameter. It returns zero on success or a negative errno code for failure.
+
Most hardware that does not support this as a separate function uses the
start function to restart the watchdog timer hardware. And that's also what
the watchdog timer driver core does: to send a keepalive ping to the watchdog
timer hardware it will either use the ping operation (when available) or the
start operation (when the ping operation is not available).
+
(Note: the WDIOC_KEEPALIVE ioctl call will only be active when the
WDIOF_KEEPALIVEPING bit has been set in the option field on the watchdog's
info structure).
* status: this routine checks the status of the watchdog timer device. The
status of the device is reported with watchdog WDIOF_* status flags/bits.
+
WDIOF_MAGICCLOSE and WDIOF_KEEPALIVEPING are reported by the watchdog core;
it is not necessary to report those bits from the driver. Also, if no status
function is provided by the driver, the watchdog core reports the status bits
provided in the bootstatus variable of struct watchdog_device.
+
* set_timeout: this routine checks and changes the timeout of the watchdog
timer device. It returns 0 on success, -EINVAL for "parameter out of range"
and -EIO for "could not write value to the watchdog". On success this
routine should set the timeout value of the watchdog_device to the
achieved timeout value (which may be different from the requested one
because the watchdog does not necessarily have a 1 second resolution).
+
Drivers implementing max_hw_heartbeat_ms set the hardware watchdog heartbeat
to the minimum of timeout and max_hw_heartbeat_ms. Those drivers set the
timeout value of the watchdog_device either to the requested timeout value
(if it is larger than max_hw_heartbeat_ms), or to the achieved timeout value.
(Note: the WDIOF_SETTIMEOUT needs to be set in the options field of the
watchdog's info structure).
+
If the watchdog driver does not have to perform any action but setting the
watchdog_device.timeout, this callback can be omitted.
+
If set_timeout is not provided but, WDIOF_SETTIMEOUT is set, the watchdog
infrastructure updates the timeout value of the watchdog_device internally
to the requested value.
+
If the pretimeout feature is used (WDIOF_PRETIMEOUT), then set_timeout must
also take care of checking if pretimeout is still valid and set up the timer
accordingly. This can't be done in the core without races, so it is the
@@ -201,13 +218,16 @@ they are supported. These optional routines/operations are:
seconds before the actual timeout would happen. It returns 0 on success,
-EINVAL for "parameter out of range" and -EIO for "could not write value to
the watchdog". A value of 0 disables pretimeout notification.
+
(Note: the WDIOF_PRETIMEOUT needs to be set in the options field of the
watchdog's info structure).
+
If the watchdog driver does not have to perform any action but setting the
watchdog_device.pretimeout, this callback can be omitted. That means if
set_pretimeout is not provided but WDIOF_PRETIMEOUT is set, the watchdog
infrastructure updates the pretimeout value of the watchdog_device internally
to the requested value.
+
* get_timeleft: this routines returns the time that's left before a reset.
* restart: this routine restarts the machine. It returns 0 on success or a
negative errno code for failure.
@@ -218,6 +238,7 @@ they are supported. These optional routines/operations are:
The status bits should (preferably) be set with the set_bit and clear_bit alike
bit-operations. The status bits that are defined are:
+
* WDOG_ACTIVE: this status bit indicates whether or not a watchdog timer device
is active or not from user perspective. User space is expected to send
heartbeat requests to the driver while this flag is set.
@@ -235,22 +256,30 @@ bit-operations. The status bits that are defined are:
To set the WDOG_NO_WAY_OUT status bit (before registering your watchdog
timer device) you can either:
+
* set it statically in your watchdog_device struct with
+
.status = WATCHDOG_NOWAYOUT_INIT_STATUS,
+
(this will set the value the same as CONFIG_WATCHDOG_NOWAYOUT) or
- * use the following helper function:
- static inline void watchdog_set_nowayout(struct watchdog_device *wdd, int nowayout)
+ * use the following helper function::
+
+ static inline void watchdog_set_nowayout(struct watchdog_device *wdd,
+ int nowayout)
+
+Note:
+ The WatchDog Timer Driver Core supports the magic close feature and
+ the nowayout feature. To use the magic close feature you must set the
+ WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
-Note: The WatchDog Timer Driver Core supports the magic close feature and
-the nowayout feature. To use the magic close feature you must set the
-WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
The nowayout feature will overrule the magic close feature.
To get or set driver specific data the following two helper functions should be
-used:
+used::
-static inline void watchdog_set_drvdata(struct watchdog_device *wdd, void *data)
-static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
+ static inline void watchdog_set_drvdata(struct watchdog_device *wdd,
+ void *data)
+ static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
The watchdog_set_drvdata function allows you to add driver specific data. The
arguments of this function are the watchdog device where you want to add the
@@ -260,10 +289,11 @@ The watchdog_get_drvdata function allows you to retrieve driver specific data.
The argument of this function is the watchdog device where you want to retrieve
data from. The function returns the pointer to the driver specific data.
-To initialize the timeout field, the following function can be used:
+To initialize the timeout field, the following function can be used::
-extern int watchdog_init_timeout(struct watchdog_device *wdd,
- unsigned int timeout_parm, struct device *dev);
+ extern int watchdog_init_timeout(struct watchdog_device *wdd,
+ unsigned int timeout_parm,
+ struct device *dev);
The watchdog_init_timeout function allows you to initialize the timeout field
using the module timeout parameter or by retrieving the timeout-sec property from
@@ -272,30 +302,33 @@ to set the default timeout value as timeout value in the watchdog_device and
then use this function to set the user "preferred" timeout value.
This routine returns zero on success and a negative errno code for failure.
-To disable the watchdog on reboot, the user must call the following helper:
+To disable the watchdog on reboot, the user must call the following helper::
-static inline void watchdog_stop_on_reboot(struct watchdog_device *wdd);
+ static inline void watchdog_stop_on_reboot(struct watchdog_device *wdd);
To disable the watchdog when unregistering the watchdog, the user must call
the following helper. Note that this will only stop the watchdog if the
nowayout flag is not set.
-static inline void watchdog_stop_on_unregister(struct watchdog_device *wdd);
+::
+
+ static inline void watchdog_stop_on_unregister(struct watchdog_device *wdd);
To change the priority of the restart handler the following helper should be
-used:
+used::
-void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority);
+ void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority);
User should follow the following guidelines for setting the priority:
+
* 0: should be called in last resort, has limited restart capabilities
* 128: default restart handler, use if no other handler is expected to be
available, and/or if restart is sufficient to restart the entire system
* 255: highest priority, will preempt all other restart handlers
-To raise a pretimeout notification, the following function should be used:
+To raise a pretimeout notification, the following function should be used::
-void watchdog_notify_pretimeout(struct watchdog_device *wdd)
+ void watchdog_notify_pretimeout(struct watchdog_device *wdd)
The function can be called in the interrupt context. If watchdog pretimeout
governor framework (kbuild CONFIG_WATCHDOG_PRETIMEOUT_GOV symbol) is enabled,
diff --git a/Documentation/watchdog/watchdog-parameters.rst b/Documentation/watchdog/watchdog-parameters.rst
new file mode 100644
index 000000000000..b121caae7798
--- /dev/null
+++ b/Documentation/watchdog/watchdog-parameters.rst
@@ -0,0 +1,736 @@
+==========================
+WatchDog Module Parameters
+==========================
+
+This file provides information on the module parameters of many of
+the Linux watchdog drivers. Watchdog driver parameter specs should
+be listed here unless the driver has its own driver-specific information
+file.
+
+See Documentation/admin-guide/kernel-parameters.rst for information on
+providing kernel parameters for builtin drivers versus loadable
+modules.
+
+-------------------------------------------------
+
+acquirewdt:
+ wdt_stop:
+ Acquire WDT 'stop' io port (default 0x43)
+ wdt_start:
+ Acquire WDT 'start' io port (default 0x443)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+advantechwdt:
+ wdt_stop:
+ Advantech WDT 'stop' io port (default 0x443)
+ wdt_start:
+ Advantech WDT 'start' io port (default 0x443)
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=63, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+alim1535_wdt:
+ timeout:
+ Watchdog timeout in seconds. (0 < timeout < 18000, default=60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+alim7101_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30
+ use_gpio:
+ Use the gpio watchdog (required by old cobalt boards).
+ default=0/off/no
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ar7_wdt:
+ margin:
+ Watchdog margin in seconds (default=60)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+armada_37xx_wdt:
+ timeout:
+ Watchdog timeout in seconds. (default=120)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+at91rm9200_wdt:
+ wdt_time:
+ Watchdog time in seconds. (default=5)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+at91sam9_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 15)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+bcm47xx_wdt:
+ wdt_time:
+ Watchdog time in seconds. (default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+coh901327_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+
+-------------------------------------------------
+
+cpu5wdt:
+ port:
+ base address of watchdog card, default is 0x91
+ verbose:
+ be verbose, default is 0 (no)
+ ticks:
+ count down ticks, default is 10000
+
+-------------------------------------------------
+
+cpwd:
+ wd0_timeout:
+ Default watchdog0 timeout in 1/10secs
+ wd1_timeout:
+ Default watchdog1 timeout in 1/10secs
+ wd2_timeout:
+ Default watchdog2 timeout in 1/10secs
+
+-------------------------------------------------
+
+da9052wdt:
+ timeout:
+ Watchdog timeout in seconds. 2<= timeout <=131, default=2.048s
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+davinci_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 600, default 60
+
+-------------------------------------------------
+
+ebc-c384_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=15300, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+
+-------------------------------------------------
+
+ep93xx_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=TBD)
+
+-------------------------------------------------
+
+eurotechwdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ io:
+ Eurotech WDT io port (default=0x3f0)
+ irq:
+ Eurotech WDT irq (default=10)
+ ev:
+ Eurotech WDT event type (default is `int`)
+
+-------------------------------------------------
+
+gef_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+geodewdt:
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=131, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+i6300esb:
+ heartbeat:
+ Watchdog heartbeat in seconds. (1<heartbeat<2046, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iTCO_wdt:
+ heartbeat:
+ Watchdog heartbeat in seconds.
+ (2<heartbeat<39 (TCO v1) or 613 (TCO v2), default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iTCO_vendor_support:
+ vendorsupport:
+ iTCO vendor specific support mode, default=0 (none),
+ 1=SuperMicro Pent3, 2=SuperMicro Pent4+, 911=Broken SMI BIOS
+
+-------------------------------------------------
+
+ib700wdt:
+ timeout:
+ Watchdog timeout in seconds. 0<= timeout <=30, default=30.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ibmasr:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+imx2_wdt:
+ timeout:
+ Watchdog timeout in seconds (default 60 s)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+indydog:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iop_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+it8712f_wdt:
+ margin:
+ Watchdog margin in seconds (default 60)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+it87_wdt:
+ nogameport:
+ Forbid the activation of game port, default=0
+ nocir:
+ Forbid the use of CIR (workaround for some buggy setups); set to 1 if
+system resets despite watchdog daemon running, default=0
+ exclusive:
+ Watchdog exclusive device open, default=1
+ timeout:
+ Watchdog timeout in seconds, default=60
+ testmode:
+ Watchdog test mode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ixp4xx_wdt:
+ heartbeat:
+ Watchdog heartbeat in seconds (default 60s)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ks8695_wdt:
+ wdt_time:
+ Watchdog time in seconds. (default=5)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+machzwd:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ action:
+ after watchdog resets, generate:
+ 0 = RESET(*) 1 = SMI 2 = NMI 3 = SCI
+
+-------------------------------------------------
+
+max63xx_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 60, default 60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ nodelay:
+ Force selection of a timeout setting without initial delay
+ (max6373/74 only, default=0)
+
+-------------------------------------------------
+
+mixcomwd:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+mpc8xxx_wdt:
+ timeout:
+ Watchdog timeout in ticks. (0<timeout<65536, default=65535)
+ reset:
+ Watchdog Interrupt/Reset Mode. 0 = interrupt, 1 = reset
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+mv64x60_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ni903x_wdt:
+ timeout:
+ Initial watchdog timeout in seconds (0<timeout<516, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+nic7018_wdt:
+ timeout:
+ Initial watchdog timeout in seconds (0<timeout<464, default=80)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+nuc900_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds.
+ (default = 15)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+omap_wdt:
+ timer_margin:
+ initial watchdog timeout (in seconds)
+ early_enable:
+ Watchdog is started on module insertion (default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+orion_wdt:
+ heartbeat:
+ Initial watchdog heartbeat in seconds
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pc87413_wdt:
+ io:
+ pc87413 WDT I/O port (default: io).
+ timeout:
+ Watchdog timeout in minutes (default=timeout).
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pika_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 15)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pnx4008_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 60, default 19
+ nowayout:
+ Set to 1 to keep watchdog running after device release
+
+-------------------------------------------------
+
+pnx833x_wdt:
+ timeout:
+ Watchdog timeout in Mhz. (68Mhz clock), default=2040000000 (30 seconds)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ start_enabled:
+ Watchdog is started on module insertion (default=1)
+
+-------------------------------------------------
+
+rc32434_wdt:
+ timeout:
+ Watchdog timeout value, in seconds (default=20)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+riowd:
+ riowd_timeout:
+ Watchdog timeout in minutes (default=1)
+
+-------------------------------------------------
+
+s3c2410_wdt:
+ tmr_margin:
+ Watchdog tmr_margin in seconds. (default=15)
+ tmr_atboot:
+ Watchdog is started at boot time if set to 1, default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ soft_noboot:
+ Watchdog action, set to 1 to ignore reboots, 0 to reboot
+ debug:
+ Watchdog debug, set to >1 for debug, (default 0)
+
+-------------------------------------------------
+
+sa1100_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+
+-------------------------------------------------
+
+sb_wdog:
+ timeout:
+ Watchdog timeout in microseconds (max/default 8388607 or 8.3ish secs)
+
+-------------------------------------------------
+
+sbc60xxwdt:
+ wdt_stop:
+ SBC60xx WDT 'stop' io port (default 0x45)
+ wdt_start:
+ SBC60xx WDT 'start' io port (default 0x443)
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc7240_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=255, default=30)
+ nowayout:
+ Disable watchdog when closing device file
+
+-------------------------------------------------
+
+sbc8360:
+ timeout:
+ Index into timeout table (0-63) (default=27 (60s))
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc_epx_c3:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc_fitpc2_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+ nowayout:
+ Watchdog cannot be stopped once started
+
+-------------------------------------------------
+
+sbsa_gwdt:
+ timeout:
+ Watchdog timeout in seconds. (default 10s)
+ action:
+ Watchdog action at the first stage timeout,
+ set to 0 to ignore, 1 to panic. (default=0)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sc1200wdt:
+ isapnp:
+ When set to 0 driver ISA PnP support will be disabled (default=1)
+ io:
+ io port
+ timeout:
+ range is 0-255 minutes, default is 1
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sc520_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1 <= timeout <= 3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sch311x_wdt:
+ force_id:
+ Override the detected device ID
+ therm_trip:
+ Should a ThermTrip trigger the reset generator
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=15300, default=60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+scx200_wdt:
+ margin:
+ Watchdog margin in seconds
+ nowayout:
+ Disable watchdog shutdown on close
+
+-------------------------------------------------
+
+shwdt:
+ clock_division_ratio:
+ Clock division ratio. Valid ranges are from 0x5 (1.31ms)
+ to 0x7 (5.25ms). (default=7)
+ heartbeat:
+ Watchdog heartbeat in seconds. (1 <= heartbeat <= 3600, default=30
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+smsc37b787_wdt:
+ timeout:
+ range is 1-255 units, default is 60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+softdog:
+ soft_margin:
+ Watchdog soft_margin in seconds.
+ (0 < soft_margin < 65536, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ soft_noboot:
+ Softdog action, set to 1 to ignore reboots, 0 to reboot
+ (default=0)
+
+-------------------------------------------------
+
+stmp3xxx_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 4194304, default 19
+
+-------------------------------------------------
+
+tegra_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 120)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ts72xx_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1 <= timeout <= 8, default=8)
+ nowayout:
+ Disable watchdog shutdown on close
+
+-------------------------------------------------
+
+twl4030_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+txx9wdt:
+ timeout:
+ Watchdog timeout in seconds. (0<timeout<N, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+uniphier_wdt:
+ timeout:
+ Watchdog timeout in power of two seconds.
+ (1 <= timeout <= 128, default=64)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83627hf_wdt:
+ wdt_io:
+ w83627hf/thf WDT io port (default 0x2E)
+ timeout:
+ Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83877f_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83977f_wdt:
+ timeout:
+ Watchdog timeout in seconds (15..7635), default=45)
+ testmode:
+ Watchdog testmode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wafer5823wdt:
+ timeout:
+ Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wdt285:
+ soft_margin:
+ Watchdog timeout in seconds (default=60)
+
+-------------------------------------------------
+
+wdt977:
+ timeout:
+ Watchdog timeout in seconds (60..15300, default=60)
+ testmode:
+ Watchdog testmode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wm831x_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wm8350_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sun4v_wdt:
+ timeout_ms:
+ Watchdog timeout in milliseconds 1..180000, default=60000)
+ nowayout:
+ Watchdog cannot be stopped once started
diff --git a/Documentation/watchdog/watchdog-parameters.txt b/Documentation/watchdog/watchdog-parameters.txt
deleted file mode 100644
index 0b88e333f9e1..000000000000
--- a/Documentation/watchdog/watchdog-parameters.txt
+++ /dev/null
@@ -1,410 +0,0 @@
-This file provides information on the module parameters of many of
-the Linux watchdog drivers. Watchdog driver parameter specs should
-be listed here unless the driver has its own driver-specific information
-file.
-
-
-See Documentation/admin-guide/kernel-parameters.rst for information on
-providing kernel parameters for builtin drivers versus loadable
-modules.
-
-
--------------------------------------------------
-acquirewdt:
-wdt_stop: Acquire WDT 'stop' io port (default 0x43)
-wdt_start: Acquire WDT 'start' io port (default 0x443)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-advantechwdt:
-wdt_stop: Advantech WDT 'stop' io port (default 0x443)
-wdt_start: Advantech WDT 'start' io port (default 0x443)
-timeout: Watchdog timeout in seconds. 1<= timeout <=63, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-alim1535_wdt:
-timeout: Watchdog timeout in seconds. (0 < timeout < 18000, default=60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-alim7101_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30
-use_gpio: Use the gpio watchdog (required by old cobalt boards).
- default=0/off/no
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ar7_wdt:
-margin: Watchdog margin in seconds (default=60)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-armada_37xx_wdt:
-timeout: Watchdog timeout in seconds. (default=120)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-at91rm9200_wdt:
-wdt_time: Watchdog time in seconds. (default=5)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-at91sam9_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-bcm47xx_wdt:
-wdt_time: Watchdog time in seconds. (default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-coh901327_wdt:
-margin: Watchdog margin in seconds (default 60s)
--------------------------------------------------
-cpu5wdt:
-port: base address of watchdog card, default is 0x91
-verbose: be verbose, default is 0 (no)
-ticks: count down ticks, default is 10000
--------------------------------------------------
-cpwd:
-wd0_timeout: Default watchdog0 timeout in 1/10secs
-wd1_timeout: Default watchdog1 timeout in 1/10secs
-wd2_timeout: Default watchdog2 timeout in 1/10secs
--------------------------------------------------
-da9052wdt:
-timeout: Watchdog timeout in seconds. 2<= timeout <=131, default=2.048s
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-davinci_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 600, default 60
--------------------------------------------------
-ebc-c384_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=15300, default=60)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
-ep93xx_wdt:
-nowayout: Watchdog cannot be stopped once started
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=TBD)
--------------------------------------------------
-eurotechwdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-io: Eurotech WDT io port (default=0x3f0)
-irq: Eurotech WDT irq (default=10)
-ev: Eurotech WDT event type (default is `int')
--------------------------------------------------
-gef_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-geodewdt:
-timeout: Watchdog timeout in seconds. 1<= timeout <=131, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-i6300esb:
-heartbeat: Watchdog heartbeat in seconds. (1<heartbeat<2046, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iTCO_wdt:
-heartbeat: Watchdog heartbeat in seconds.
- (2<heartbeat<39 (TCO v1) or 613 (TCO v2), default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iTCO_vendor_support:
-vendorsupport: iTCO vendor specific support mode, default=0 (none),
- 1=SuperMicro Pent3, 2=SuperMicro Pent4+, 911=Broken SMI BIOS
--------------------------------------------------
-ib700wdt:
-timeout: Watchdog timeout in seconds. 0<= timeout <=30, default=30.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ibmasr:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-imx2_wdt:
-timeout: Watchdog timeout in seconds (default 60 s)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-indydog:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iop_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-it8712f_wdt:
-margin: Watchdog margin in seconds (default 60)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-it87_wdt:
-nogameport: Forbid the activation of game port, default=0
-nocir: Forbid the use of CIR (workaround for some buggy setups); set to 1 if
-system resets despite watchdog daemon running, default=0
-exclusive: Watchdog exclusive device open, default=1
-timeout: Watchdog timeout in seconds, default=60
-testmode: Watchdog test mode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ixp4xx_wdt:
-heartbeat: Watchdog heartbeat in seconds (default 60s)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ks8695_wdt:
-wdt_time: Watchdog time in seconds. (default=5)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-machzwd:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-action: after watchdog resets, generate:
- 0 = RESET(*) 1 = SMI 2 = NMI 3 = SCI
--------------------------------------------------
-max63xx_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 60, default 60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-nodelay: Force selection of a timeout setting without initial delay
- (max6373/74 only, default=0)
--------------------------------------------------
-mixcomwd:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-mpc8xxx_wdt:
-timeout: Watchdog timeout in ticks. (0<timeout<65536, default=65535)
-reset: Watchdog Interrupt/Reset Mode. 0 = interrupt, 1 = reset
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-mv64x60_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ni903x_wdt:
-timeout: Initial watchdog timeout in seconds (0<timeout<516, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-nic7018_wdt:
-timeout: Initial watchdog timeout in seconds (0<timeout<464, default=80)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-nuc900_wdt:
-heartbeat: Watchdog heartbeats in seconds.
- (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-omap_wdt:
-timer_margin: initial watchdog timeout (in seconds)
-early_enable: Watchdog is started on module insertion (default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-orion_wdt:
-heartbeat: Initial watchdog heartbeat in seconds
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pc87413_wdt:
-io: pc87413 WDT I/O port (default: io).
-timeout: Watchdog timeout in minutes (default=timeout).
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pika_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pnx4008_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 60, default 19
-nowayout: Set to 1 to keep watchdog running after device release
--------------------------------------------------
-pnx833x_wdt:
-timeout: Watchdog timeout in Mhz. (68Mhz clock), default=2040000000 (30 seconds)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-start_enabled: Watchdog is started on module insertion (default=1)
--------------------------------------------------
-rc32434_wdt:
-timeout: Watchdog timeout value, in seconds (default=20)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-riowd:
-riowd_timeout: Watchdog timeout in minutes (default=1)
--------------------------------------------------
-s3c2410_wdt:
-tmr_margin: Watchdog tmr_margin in seconds. (default=15)
-tmr_atboot: Watchdog is started at boot time if set to 1, default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-soft_noboot: Watchdog action, set to 1 to ignore reboots, 0 to reboot
-debug: Watchdog debug, set to >1 for debug, (default 0)
--------------------------------------------------
-sa1100_wdt:
-margin: Watchdog margin in seconds (default 60s)
--------------------------------------------------
-sb_wdog:
-timeout: Watchdog timeout in microseconds (max/default 8388607 or 8.3ish secs)
--------------------------------------------------
-sbc60xxwdt:
-wdt_stop: SBC60xx WDT 'stop' io port (default 0x45)
-wdt_start: SBC60xx WDT 'start' io port (default 0x443)
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc7240_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=255, default=30)
-nowayout: Disable watchdog when closing device file
--------------------------------------------------
-sbc8360:
-timeout: Index into timeout table (0-63) (default=27 (60s))
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc_epx_c3:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc_fitpc2_wdt:
-margin: Watchdog margin in seconds (default 60s)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
-sbsa_gwdt:
-timeout: Watchdog timeout in seconds. (default 10s)
-action: Watchdog action at the first stage timeout,
- set to 0 to ignore, 1 to panic. (default=0)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sc1200wdt:
-isapnp: When set to 0 driver ISA PnP support will be disabled (default=1)
-io: io port
-timeout: range is 0-255 minutes, default is 1
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sc520_wdt:
-timeout: Watchdog timeout in seconds. (1 <= timeout <= 3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sch311x_wdt:
-force_id: Override the detected device ID
-therm_trip: Should a ThermTrip trigger the reset generator
-timeout: Watchdog timeout in seconds. 1<= timeout <=15300, default=60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-scx200_wdt:
-margin: Watchdog margin in seconds
-nowayout: Disable watchdog shutdown on close
--------------------------------------------------
-shwdt:
-clock_division_ratio: Clock division ratio. Valid ranges are from 0x5 (1.31ms)
- to 0x7 (5.25ms). (default=7)
-heartbeat: Watchdog heartbeat in seconds. (1 <= heartbeat <= 3600, default=30
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-smsc37b787_wdt:
-timeout: range is 1-255 units, default is 60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-softdog:
-soft_margin: Watchdog soft_margin in seconds.
- (0 < soft_margin < 65536, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-soft_noboot: Softdog action, set to 1 to ignore reboots, 0 to reboot
- (default=0)
--------------------------------------------------
-stmp3xxx_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 4194304, default 19
--------------------------------------------------
-tegra_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 120)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ts72xx_wdt:
-timeout: Watchdog timeout in seconds. (1 <= timeout <= 8, default=8)
-nowayout: Disable watchdog shutdown on close
--------------------------------------------------
-twl4030_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-txx9wdt:
-timeout: Watchdog timeout in seconds. (0<timeout<N, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-uniphier_wdt:
-timeout: Watchdog timeout in power of two seconds.
- (1 <= timeout <= 128, default=64)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83627hf_wdt:
-wdt_io: w83627hf/thf WDT io port (default 0x2E)
-timeout: Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83877f_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83977f_wdt:
-timeout: Watchdog timeout in seconds (15..7635), default=45)
-testmode: Watchdog testmode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wafer5823wdt:
-timeout: Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wdt285:
-soft_margin: Watchdog timeout in seconds (default=60)
--------------------------------------------------
-wdt977:
-timeout: Watchdog timeout in seconds (60..15300, default=60)
-testmode: Watchdog testmode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wm831x_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wm8350_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sun4v_wdt:
-timeout_ms: Watchdog timeout in milliseconds 1..180000, default=60000)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
diff --git a/Documentation/watchdog/watchdog-pm.txt b/Documentation/watchdog/watchdog-pm.rst
index 7a4dd46e0d24..646e1f28f31f 100644
--- a/Documentation/watchdog/watchdog-pm.txt
+++ b/Documentation/watchdog/watchdog-pm.rst
@@ -1,5 +1,7 @@
+===============================================
The Linux WatchDog Timer Power Management Guide
===============================================
+
Last reviewed: 17-Dec-2018
Wolfram Sang <wsa+renesas@sang-engineering.com>
@@ -16,4 +18,5 @@ On resume, a watchdog timer shall be reset to its selected value to give
userspace enough time to resume. [1] [2]
[1] https://patchwork.kernel.org/patch/10252209/
+
[2] https://patchwork.kernel.org/patch/10711625/
diff --git a/Documentation/watchdog/wdt.txt b/Documentation/watchdog/wdt.rst
index ed2f0b860869..d97b0361535b 100644
--- a/Documentation/watchdog/wdt.txt
+++ b/Documentation/watchdog/wdt.rst
@@ -1,11 +1,14 @@
+============================================================
+WDT Watchdog Timer Interfaces For The Linux Operating System
+============================================================
+
Last Reviewed: 10/05/2007
- WDT Watchdog Timer Interfaces For The Linux Operating System
- Alan Cox <alan@lxorguk.ukuu.org.uk>
+Alan Cox <alan@lxorguk.ukuu.org.uk>
- ICS WDT501-P
- ICS WDT501-P (no fan tachometer)
- ICS WDT500-P
+ - ICS WDT501-P
+ - ICS WDT501-P (no fan tachometer)
+ - ICS WDT500-P
All the interfaces provide /dev/watchdog, which when open must be written
to within a timeout or the machine will reboot. Each write delays the reboot
@@ -21,19 +24,26 @@ degrees Fahrenheit. Each read returns a single byte giving the temperature.
The third interface logs kernel messages on additional alert events.
The ICS ISA-bus wdt card cannot be safely probed for. Instead you need to
-pass IO address and IRQ boot parameters. E.g.:
+pass IO address and IRQ boot parameters. E.g.::
+
wdt.io=0x240 wdt.irq=11
Other "wdt" driver parameters are:
+
+ =========== ======================================================
heartbeat Watchdog heartbeat in seconds (default 60)
nowayout Watchdog cannot be stopped once started (kernel
- build parameter)
+ build parameter)
tachometer WDT501-P Fan Tachometer support (0=disable, default=0)
type WDT501-P Card type (500 or 501, default=500)
+ =========== ======================================================
Features
--------
- WDT501P WDT500P
+
+================ ======= =======
+ WDT501P WDT500P
+================ ======= =======
Reboot Timer X X
External Reboot X X
I/O Port Monitor o o
@@ -42,9 +52,12 @@ Fan Speed X o
Power Under X o
Power Over X o
Overheat X o
+================ ======= =======
The external event interfaces on the WDT boards are not currently supported.
Minor numbers are however allocated for it.
-Example Watchdog Driver: see samples/watchdog/watchdog-simple.c
+Example Watchdog Driver:
+
+ see samples/watchdog/watchdog-simple.c
diff --git a/Documentation/x86/exception-tables.rst b/Documentation/x86/exception-tables.rst
index 24596c8210b5..ed6d4b0cf62c 100644
--- a/Documentation/x86/exception-tables.rst
+++ b/Documentation/x86/exception-tables.rst
@@ -35,7 +35,7 @@ page fault handler::
void do_page_fault(struct pt_regs *regs, unsigned long error_code)
in arch/x86/mm/fault.c. The parameters on the stack are set up by
-the low level assembly glue in arch/x86/kernel/entry_32.S. The parameter
+the low level assembly glue in arch/x86/entry/entry_32.S. The parameter
regs is a pointer to the saved registers on the stack, error_code
contains a reason code for the exception.
diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst
index ae36fc5fc649..f2de1b2d3ac7 100644
--- a/Documentation/x86/index.rst
+++ b/Documentation/x86/index.rst
@@ -19,7 +19,6 @@ x86-specific Documentation
tlb
mtrr
pat
- protection-keys
intel_mpx
amd-memory-encryption
pti
diff --git a/Documentation/x86/resctrl_ui.rst b/Documentation/x86/resctrl_ui.rst
index 225cfd4daaee..5368cedfb530 100644
--- a/Documentation/x86/resctrl_ui.rst
+++ b/Documentation/x86/resctrl_ui.rst
@@ -40,7 +40,7 @@ mount options are:
Enable the MBA Software Controller(mba_sc) to specify MBA
bandwidth in MBps
-L2 and L3 CDP are controlled seperately.
+L2 and L3 CDP are controlled separately.
RDT features are orthogonal. A particular system may support only
monitoring, only control, or both monitoring and control. Cache
@@ -118,7 +118,7 @@ related to allocation:
Corresponding region is pseudo-locked. No
sharing allowed.
-Memory bandwitdh(MB) subdirectory contains the following files
+Memory bandwidth(MB) subdirectory contains the following files
with respect to allocation:
"min_bandwidth":
@@ -209,7 +209,7 @@ All groups contain the following files:
CPUs to/from this group. As with the tasks file a hierarchy is
maintained where MON groups may only include CPUs owned by the
parent CTRL_MON group.
- When the resouce group is in pseudo-locked mode this file will
+ When the resource group is in pseudo-locked mode this file will
only be readable, reflecting the CPUs associated with the
pseudo-locked region.
@@ -342,7 +342,7 @@ For cache resources we describe the portion of the cache that is available
for allocation using a bitmask. The maximum value of the mask is defined
by each cpu model (and may be different for different cache levels). It
is found using CPUID, but is also provided in the "info" directory of
-the resctrl file system in "info/{resource}/cbm_mask". X86 hardware
+the resctrl file system in "info/{resource}/cbm_mask". Intel hardware
requires that these masks have all the '1' bits in a contiguous block. So
0x3, 0x6 and 0xC are legal 4-bit masks with two bits set, but 0x5, 0x9
and 0xA are not. On a system with a 20-bit mask each bit represents 5%
@@ -380,7 +380,7 @@ where L2 external is 10GBps (hence aggregate L2 external bandwidth is
240GBps) and L3 external bandwidth is 100GBps. Now a workload with '20
threads, having 50% bandwidth, each consuming 5GBps' consumes the max L3
bandwidth of 100GBps although the percentage value specified is only 50%
-<< 100%. Hence increasing the bandwidth percentage will not yeild any
+<< 100%. Hence increasing the bandwidth percentage will not yield any
more bandwidth. This is because although the L2 external bandwidth still
has capacity, the L3 external bandwidth is fully used. Also note that
this would be dependent on number of cores the benchmark is run on.
@@ -398,7 +398,7 @@ In order to mitigate this and make the interface more user friendly,
resctrl added support for specifying the bandwidth in MBps as well. The
kernel underneath would use a software feedback mechanism or a "Software
Controller(mba_sc)" which reads the actual bandwidth using MBM counters
-and adjust the memowy bandwidth percentages to ensure::
+and adjust the memory bandwidth percentages to ensure::
"actual bandwidth < user specified bandwidth".
@@ -418,16 +418,22 @@ L3 schemata file details (CDP enabled via mount option to resctrl)
When CDP is enabled L3 control is split into two separate resources
so you can specify independent masks for code and data like this::
- L3data:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
- L3code:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+ L3DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+ L3CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
L2 schemata file details
------------------------
-L2 cache does not support code and data prioritization, so the
-schemata format is always::
+CDP is supported at L2 using the 'cdpl2' mount option. The schemata
+format is either::
L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+or
+
+ L2DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+ L2CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+
+
Memory bandwidth Allocation (default mode)
------------------------------------------
@@ -671,8 +677,8 @@ allocations can overlap or not. The allocations specifies the maximum
b/w that the group may be able to use and the system admin can configure
the b/w accordingly.
-If the MBA is specified in MB(megabytes) then user can enter the max b/w in MB
-rather than the percentage values.
+If resctrl is using the software controller (mba_sc) then user can enter the
+max b/w in MB rather than the percentage values.
::
# echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata
diff --git a/Documentation/x86/topology.rst b/Documentation/x86/topology.rst
index 6e28dbe818ab..8e9704f61017 100644
--- a/Documentation/x86/topology.rst
+++ b/Documentation/x86/topology.rst
@@ -49,6 +49,10 @@ Package-related topology information in the kernel:
The number of cores in a package. This information is retrieved via CPUID.
+ - cpuinfo_x86.x86_max_dies:
+
+ The number of dies in a package. This information is retrieved via CPUID.
+
- cpuinfo_x86.phys_proc_id:
The physical ID of the package. This information is retrieved via CPUID
diff --git a/Documentation/x86/x86_64/5level-paging.rst b/Documentation/x86/x86_64/5level-paging.rst
index ab88a4514163..44856417e6a5 100644
--- a/Documentation/x86/x86_64/5level-paging.rst
+++ b/Documentation/x86/x86_64/5level-paging.rst
@@ -20,7 +20,7 @@ physical address space. This "ought to be enough for anybody" ©.
QEMU 2.9 and later support 5-level paging.
Virtual memory layout for 5-level paging is described in
-Documentation/x86/x86_64/mm.txt
+Documentation/x86/x86_64/mm.rst
Enabling 5-level paging
diff --git a/Documentation/x86/x86_64/boot-options.rst b/Documentation/x86/x86_64/boot-options.rst
index 2f69836b8445..6a4285a3c7a4 100644
--- a/Documentation/x86/x86_64/boot-options.rst
+++ b/Documentation/x86/x86_64/boot-options.rst
@@ -9,7 +9,7 @@ only the AMD64 specific ones are listed here.
Machine check
=============
-Please see Documentation/x86/x86_64/machinecheck for sysfs runtime tunables.
+Please see Documentation/x86/x86_64/machinecheck.rst for sysfs runtime tunables.
mce=off
Disable machine check
@@ -89,7 +89,7 @@ APICs
Don't use the local APIC (alias for i386 compatibility)
pirq=...
- See Documentation/x86/i386/IO-APIC.txt
+ See Documentation/x86/i386/IO-APIC.rst
noapictimer
Don't set up the APIC timer
diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets.rst b/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
index 74fbb78b3c67..30108684ae87 100644
--- a/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
+++ b/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
@@ -15,10 +15,10 @@ assign them to cpusets and their attached tasks. This is a way of limiting the
amount of system memory that are available to a certain class of tasks.
For more information on the features of cpusets, see
-Documentation/cgroup-v1/cpusets.txt.
+Documentation/cgroup-v1/cpusets.rst.
There are a number of different configurations you can use for your needs. For
more information on the numa=fake command line option and its various ways of
-configuring fake nodes, see Documentation/x86/x86_64/boot-options.txt.
+configuring fake nodes, see Documentation/x86/x86_64/boot-options.rst.
For the purposes of this introduction, we'll assume a very primitive NUMA
emulation setup of "numa=fake=4*512,". This will split our system memory into
@@ -40,7 +40,7 @@ A machine may be split as follows with "numa=fake=4*512," as reported by dmesg::
On node 3 totalpages: 131072
Now following the instructions for mounting the cpusets filesystem from
-Documentation/cgroup-v1/cpusets.txt, you can assign fake nodes (i.e. contiguous memory
+Documentation/cgroup-v1/cpusets.rst, you can assign fake nodes (i.e. contiguous memory
address spaces) to individual cpusets::
[root@xroads /]# mkdir exampleset
diff --git a/Documentation/xilinx/eemi.txt b/Documentation/xilinx/eemi.rst
index 5f39b4ffdcd4..9dcbc6f18d75 100644
--- a/Documentation/xilinx/eemi.txt
+++ b/Documentation/xilinx/eemi.rst
@@ -1,6 +1,6 @@
----------------------------------------------------------------------
+====================================
Xilinx Zynq MPSoC EEMI Documentation
----------------------------------------------------------------------
+====================================
Xilinx Zynq MPSoC Firmware Interface
-------------------------------------
@@ -21,7 +21,7 @@ The zynqmp-firmware driver maintain all EEMI APIs in zynqmp_eemi_ops
structure. Any driver who want to communicate with PMC using EEMI APIs
can call zynqmp_pm_get_eemi_ops().
-Example of EEMI ops:
+Example of EEMI ops::
/* zynqmp-firmware driver maintain all EEMI APIs */
struct zynqmp_eemi_ops {
@@ -34,7 +34,7 @@ Example of EEMI ops:
.query_data = zynqmp_pm_query_data,
};
-Example of EEMI ops usage:
+Example of EEMI ops usage::
static const struct zynqmp_eemi_ops *eemi_ops;
u32 ret_payload[PAYLOAD_ARG_CNT];
diff --git a/Documentation/xilinx/index.rst b/Documentation/xilinx/index.rst
new file mode 100644
index 000000000000..01cc1a0714df
--- /dev/null
+++ b/Documentation/xilinx/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+===========
+Xilinx FPGA
+===========
+
+.. toctree::
+ :maxdepth: 1
+
+ eemi
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`