diff options
Diffstat (limited to 'Documentation/vm/userfaultfd.txt')
-rw-r--r-- | Documentation/vm/userfaultfd.txt | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/Documentation/vm/userfaultfd.txt b/Documentation/vm/userfaultfd.txt new file mode 100644 index 000000000000..70a3c94d1941 --- /dev/null +++ b/Documentation/vm/userfaultfd.txt @@ -0,0 +1,144 @@ += Userfaultfd = + +== Objective == + +Userfaults allow the implementation of on-demand paging from userland +and more generally they allow userland to take control of various +memory page faults, something otherwise only the kernel code could do. + +For example userfaults allows a proper and more optimal implementation +of the PROT_NONE+SIGSEGV trick. + +== Design == + +Userfaults are delivered and resolved through the userfaultfd syscall. + +The userfaultfd (aside from registering and unregistering virtual +memory ranges) provides two primary functionalities: + +1) read/POLLIN protocol to notify a userland thread of the faults + happening + +2) various UFFDIO_* ioctls that can manage the virtual memory regions + registered in the userfaultfd that allows userland to efficiently + resolve the userfaults it receives via 1) or to manage the virtual + memory in the background + +The real advantage of userfaults if compared to regular virtual memory +management of mremap/mprotect is that the userfaults in all their +operations never involve heavyweight structures like vmas (in fact the +userfaultfd runtime load never takes the mmap_sem for writing). + +Vmas are not suitable for page- (or hugepage) granular fault tracking +when dealing with virtual address spaces that could span +Terabytes. Too many vmas would be needed for that. + +The userfaultfd once opened by invoking the syscall, can also be +passed using unix domain sockets to a manager process, so the same +manager process could handle the userfaults of a multitude of +different processes without them being aware about what is going on +(well of course unless they later try to use the userfaultfd +themselves on the same region the manager is already tracking, which +is a corner case that would currently return -EBUSY). + +== API == + +When first opened the userfaultfd must be enabled invoking the +UFFDIO_API ioctl specifying a uffdio_api.api value set to UFFD_API (or +a later API version) which will specify the read/POLLIN protocol +userland intends to speak on the UFFD and the uffdio_api.features +userland requires. The UFFDIO_API ioctl if successful (i.e. if the +requested uffdio_api.api is spoken also by the running kernel and the +requested features are going to be enabled) will return into +uffdio_api.features and uffdio_api.ioctls two 64bit bitmasks of +respectively all the available features of the read(2) protocol and +the generic ioctl available. + +Once the userfaultfd has been enabled the UFFDIO_REGISTER ioctl should +be invoked (if present in the returned uffdio_api.ioctls bitmask) to +register a memory range in the userfaultfd by setting the +uffdio_register structure accordingly. The uffdio_register.mode +bitmask will specify to the kernel which kind of faults to track for +the range (UFFDIO_REGISTER_MODE_MISSING would track missing +pages). The UFFDIO_REGISTER ioctl will return the +uffdio_register.ioctls bitmask of ioctls that are suitable to resolve +userfaults on the range registered. Not all ioctls will necessarily be +supported for all memory types depending on the underlying virtual +memory backend (anonymous memory vs tmpfs vs real filebacked +mappings). + +Userland can use the uffdio_register.ioctls to manage the virtual +address space in the background (to add or potentially also remove +memory from the userfaultfd registered range). This means a userfault +could be triggering just before userland maps in the background the +user-faulted page. + +The primary ioctl to resolve userfaults is UFFDIO_COPY. That +atomically copies a page into the userfault registered range and wakes +up the blocked userfaults (unless uffdio_copy.mode & +UFFDIO_COPY_MODE_DONTWAKE is set). Other ioctl works similarly to +UFFDIO_COPY. They're atomic as in guaranteeing that nothing can see an +half copied page since it'll keep userfaulting until the copy has +finished. + +== QEMU/KVM == + +QEMU/KVM is using the userfaultfd syscall to implement postcopy live +migration. Postcopy live migration is one form of memory +externalization consisting of a virtual machine running with part or +all of its memory residing on a different node in the cloud. The +userfaultfd abstraction is generic enough that not a single line of +KVM kernel code had to be modified in order to add postcopy live +migration to QEMU. + +Guest async page faults, FOLL_NOWAIT and all other GUP features work +just fine in combination with userfaults. Userfaults trigger async +page faults in the guest scheduler so those guest processes that +aren't waiting for userfaults (i.e. network bound) can keep running in +the guest vcpus. + +It is generally beneficial to run one pass of precopy live migration +just before starting postcopy live migration, in order to avoid +generating userfaults for readonly guest regions. + +The implementation of postcopy live migration currently uses one +single bidirectional socket but in the future two different sockets +will be used (to reduce the latency of the userfaults to the minimum +possible without having to decrease /proc/sys/net/ipv4/tcp_wmem). + +The QEMU in the source node writes all pages that it knows are missing +in the destination node, into the socket, and the migration thread of +the QEMU running in the destination node runs UFFDIO_COPY|ZEROPAGE +ioctls on the userfaultfd in order to map the received pages into the +guest (UFFDIO_ZEROCOPY is used if the source page was a zero page). + +A different postcopy thread in the destination node listens with +poll() to the userfaultfd in parallel. When a POLLIN event is +generated after a userfault triggers, the postcopy thread read() from +the userfaultfd and receives the fault address (or -EAGAIN in case the +userfault was already resolved and waken by a UFFDIO_COPY|ZEROPAGE run +by the parallel QEMU migration thread). + +After the QEMU postcopy thread (running in the destination node) gets +the userfault address it writes the information about the missing page +into the socket. The QEMU source node receives the information and +roughly "seeks" to that page address and continues sending all +remaining missing pages from that new page offset. Soon after that +(just the time to flush the tcp_wmem queue through the network) the +migration thread in the QEMU running in the destination node will +receive the page that triggered the userfault and it'll map it as +usual with the UFFDIO_COPY|ZEROPAGE (without actually knowing if it +was spontaneously sent by the source or if it was an urgent page +requested through an userfault). + +By the time the userfaults start, the QEMU in the destination node +doesn't need to keep any per-page state bitmap relative to the live +migration around and a single per-page bitmap has to be maintained in +the QEMU running in the source node to know which pages are still +missing in the destination node. The bitmap in the source node is +checked to find which missing pages to send in round robin and we seek +over it when receiving incoming userfaults. After sending each page of +course the bitmap is updated accordingly. It's also useful to avoid +sending the same page twice (in case the userfault is read by the +postcopy thread just before UFFDIO_COPY|ZEROPAGE runs in the migration +thread). |