diff options
Diffstat (limited to 'Documentation/virtual/kvm/api.txt')
-rw-r--r-- | Documentation/virtual/kvm/api.txt | 36 |
1 files changed, 29 insertions, 7 deletions
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt index 1c7958b57fe9..495b7742ab58 100644 --- a/Documentation/virtual/kvm/api.txt +++ b/Documentation/virtual/kvm/api.txt @@ -1269,12 +1269,18 @@ struct kvm_cpuid_entry2 { __u32 padding[3]; }; -This ioctl returns x86 cpuid features which are supported by both the hardware -and kvm. Userspace can use the information returned by this ioctl to -construct cpuid information (for KVM_SET_CPUID2) that is consistent with -hardware, kernel, and userspace capabilities, and with user requirements (for -example, the user may wish to constrain cpuid to emulate older hardware, -or for feature consistency across a cluster). +This ioctl returns x86 cpuid features which are supported by both the +hardware and kvm in its default configuration. Userspace can use the +information returned by this ioctl to construct cpuid information (for +KVM_SET_CPUID2) that is consistent with hardware, kernel, and +userspace capabilities, and with user requirements (for example, the +user may wish to constrain cpuid to emulate older hardware, or for +feature consistency across a cluster). + +Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may +expose cpuid features (e.g. MONITOR) which are not supported by kvm in +its default configuration. If userspace enables such capabilities, it +is responsible for modifying the results of this ioctl appropriately. Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure with the 'nent' field indicating the number of entries in the variable-size @@ -1960,6 +1966,9 @@ ARM 32-bit VFP control registers have the following id bit patterns: ARM 64-bit FP registers have the following id bit patterns: 0x4030 0000 0012 0 <regno:12> +ARM firmware pseudo-registers have the following bit pattern: + 0x4030 0000 0014 <regno:16> + arm64 registers are mapped using the lower 32 bits. The upper 16 of that is the register group type, or coprocessor number: @@ -1976,6 +1985,9 @@ arm64 CCSIDR registers are demultiplexed by CSSELR value: arm64 system registers have the following id bit patterns: 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> +arm64 firmware pseudo-registers have the following bit pattern: + 0x6030 0000 0014 <regno:16> + MIPS registers are mapped using the lower 32 bits. The upper 16 of that is the register group type: @@ -2510,7 +2522,8 @@ Possible features: and execute guest code when KVM_RUN is called. - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). - - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU. + - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision + backward compatible with v0.2) for the CPU. Depends on KVM_CAP_ARM_PSCI_0_2. - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. Depends on KVM_CAP_ARM_PMU_V3. @@ -4596,3 +4609,12 @@ Architectures: s390 This capability indicates that kvm will implement the interfaces to handle reset, migration and nested KVM for branch prediction blocking. The stfle facility 82 should not be provided to the guest without this capability. + +8.14 KVM_CAP_HYPERV_TLBFLUSH + +Architectures: x86 + +This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush +hypercalls: +HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, +HvFlushVirtualAddressList, HvFlushVirtualAddressListEx. |