summaryrefslogtreecommitdiff
path: root/Documentation/media/v4l-drivers/ipu3.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/media/v4l-drivers/ipu3.rst')
-rw-r--r--Documentation/media/v4l-drivers/ipu3.rst369
1 files changed, 369 insertions, 0 deletions
diff --git a/Documentation/media/v4l-drivers/ipu3.rst b/Documentation/media/v4l-drivers/ipu3.rst
new file mode 100644
index 000000000000..f89b51dafadd
--- /dev/null
+++ b/Documentation/media/v4l-drivers/ipu3.rst
@@ -0,0 +1,369 @@
+.. include:: <isonum.txt>
+
+===============================================================
+Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver
+===============================================================
+
+Copyright |copy| 2018 Intel Corporation
+
+Introduction
+============
+
+This file documents the Intel IPU3 (3rd generation Image Processing Unit)
+Imaging Unit drivers located under drivers/media/pci/intel/ipu3 (CIO2) as well
+as under drivers/staging/media/ipu3 (ImgU).
+
+The Intel IPU3 found in certain Kaby Lake (as well as certain Sky Lake)
+platforms (U/Y processor lines) is made up of two parts namely the Imaging Unit
+(ImgU) and the CIO2 device (MIPI CSI2 receiver).
+
+The CIO2 device receives the raw Bayer data from the sensors and outputs the
+frames in a format that is specific to the IPU3 (for consumption by the IPU3
+ImgU). The CIO2 driver is available as drivers/media/pci/intel/ipu3/ipu3-cio2*
+and is enabled through the CONFIG_VIDEO_IPU3_CIO2 config option.
+
+The Imaging Unit (ImgU) is responsible for processing images captured
+by the IPU3 CIO2 device. The ImgU driver sources can be found under
+drivers/staging/media/ipu3 directory. The driver is enabled through the
+CONFIG_VIDEO_IPU3_IMGU config option.
+
+The two driver modules are named ipu3_csi2 and ipu3_imgu, respectively.
+
+The drivers has been tested on Kaby Lake platforms (U/Y processor lines).
+
+Both of the drivers implement V4L2, Media Controller and V4L2 sub-device
+interfaces. The IPU3 CIO2 driver supports camera sensors connected to the CIO2
+MIPI CSI-2 interfaces through V4L2 sub-device sensor drivers.
+
+CIO2
+====
+
+The CIO2 is represented as a single V4L2 subdev, which provides a V4L2 subdev
+interface to the user space. There is a video node for each CSI-2 receiver,
+with a single media controller interface for the entire device.
+
+The CIO2 contains four independent capture channel, each with its own MIPI CSI-2
+receiver and DMA engine. Each channel is modelled as a V4L2 sub-device exposed
+to userspace as a V4L2 sub-device node and has two pads:
+
+.. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm}|
+
+.. flat-table::
+
+ * - pad
+ - direction
+ - purpose
+
+ * - 0
+ - sink
+ - MIPI CSI-2 input, connected to the sensor subdev
+
+ * - 1
+ - source
+ - Raw video capture, connected to the V4L2 video interface
+
+The V4L2 video interfaces model the DMA engines. They are exposed to userspace
+as V4L2 video device nodes.
+
+Capturing frames in raw Bayer format
+------------------------------------
+
+CIO2 MIPI CSI2 receiver is used to capture frames (in packed raw Bayer format)
+from the raw sensors connected to the CSI2 ports. The captured frames are used
+as input to the ImgU driver.
+
+Image processing using IPU3 ImgU requires tools such as raw2pnm [#f1]_, and
+yavta [#f2]_ due to the following unique requirements and / or features specific
+to IPU3.
+
+-- The IPU3 CSI2 receiver outputs the captured frames from the sensor in packed
+raw Bayer format that is specific to IPU3.
+
+-- Multiple video nodes have to be operated simultaneously.
+
+Let us take the example of ov5670 sensor connected to CSI2 port 0, for a
+2592x1944 image capture.
+
+Using the media contorller APIs, the ov5670 sensor is configured to send
+frames in packed raw Bayer format to IPU3 CSI2 receiver.
+
+# This example assumes /dev/media0 as the CIO2 media device
+
+export MDEV=/dev/media0
+
+# and that ov5670 sensor is connected to i2c bus 10 with address 0x36
+
+export SDEV=$(media-ctl -d $MDEV -e "ov5670 10-0036")
+
+# Establish the link for the media devices using media-ctl [#f3]_
+media-ctl -d $MDEV -l "ov5670:0 -> ipu3-csi2 0:0[1]"
+
+# Set the format for the media devices
+media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG10/2592x1944]"
+
+media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:SGRBG10/2592x1944]"
+
+media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:SGRBG10/2592x1944]"
+
+Once the media pipeline is configured, desired sensor specific settings
+(such as exposure and gain settings) can be set, using the yavta tool.
+
+e.g
+
+yavta -w 0x009e0903 444 $SDEV
+
+yavta -w 0x009e0913 1024 $SDEV
+
+yavta -w 0x009e0911 2046 $SDEV
+
+Once the desired sensor settings are set, frame captures can be done as below.
+
+e.g
+
+yavta --data-prefix -u -c10 -n5 -I -s2592x1944 --file=/tmp/frame-#.bin \
+ -f IPU3_SGRBG10 $(media-ctl -d $MDEV -e "ipu3-cio2 0")
+
+With the above command, 10 frames are captured at 2592x1944 resolution, with
+sGRBG10 format and output as IPU3_SGRBG10 format.
+
+The captured frames are available as /tmp/frame-#.bin files.
+
+ImgU
+====
+
+The ImgU is represented as two V4L2 subdevs, each of which provides a V4L2
+subdev interface to the user space.
+
+Each V4L2 subdev represents a pipe, which can support a maximum of 2 streams.
+This helps to support advanced camera features like Continuous View Finder (CVF)
+and Snapshot During Video(SDV).
+
+The ImgU contains two independent pipes, each modelled as a V4L2 sub-device
+exposed to userspace as a V4L2 sub-device node.
+
+Each pipe has two sink pads and three source pads for the following purpose:
+
+.. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm}|
+
+.. flat-table::
+
+ * - pad
+ - direction
+ - purpose
+
+ * - 0
+ - sink
+ - Input raw video stream
+
+ * - 1
+ - sink
+ - Processing parameters
+
+ * - 2
+ - source
+ - Output processed video stream
+
+ * - 3
+ - source
+ - Output viewfinder video stream
+
+ * - 4
+ - source
+ - 3A statistics
+
+Each pad is connected to a corresponding V4L2 video interface, exposed to
+userspace as a V4L2 video device node.
+
+Device operation
+----------------
+
+With ImgU, once the input video node ("ipu3-imgu 0/1":0, in
+<entity>:<pad-number> format) is queued with buffer (in packed raw Bayer
+format), ImgU starts processing the buffer and produces the video output in YUV
+format and statistics output on respective output nodes. The driver is expected
+to have buffers ready for all of parameter, output and statistics nodes, when
+input video node is queued with buffer.
+
+At a minimum, all of input, main output, 3A statistics and viewfinder
+video nodes should be enabled for IPU3 to start image processing.
+
+Each ImgU V4L2 subdev has the following set of video nodes.
+
+input, output and viewfinder video nodes
+----------------------------------------
+
+The frames (in packed raw Bayer format specific to the IPU3) received by the
+input video node is processed by the IPU3 Imaging Unit and are output to 2 video
+nodes, with each targeting a different purpose (main output and viewfinder
+output).
+
+Details onand the Bayer format specific to the IPU3 can be found in
+:ref:`v4l2-pix-fmt-ipu3-sbggr10`.
+
+The driver supports V4L2 Video Capture Interface as defined at :ref:`devices`.
+
+Only the multi-planar API is supported. More details can be found at
+:ref:`planar-apis`.
+
+Parameters video node
+---------------------
+
+The parameters video node receives the ImgU algorithm parameters that are used
+to configure how the ImgU algorithms process the image.
+
+Details on processing parameters specific to the IPU3 can be found in
+:ref:`v4l2-meta-fmt-params`.
+
+3A statistics video node
+------------------------
+
+3A statistics video node is used by the ImgU driver to output the 3A (auto
+focus, auto exposure and auto white balance) statistics for the frames that are
+being processed by the ImgU to user space applications. User space applications
+can use this statistics data to compute the desired algorithm parameters for
+the ImgU.
+
+Configuring the Intel IPU3
+==========================
+
+The IPU3 ImgU pipelines can be configured using the Media Controller, defined at
+:ref:`media_controller`.
+
+Firmware binary selection
+-------------------------
+
+The firmware binary is selected using the V4L2_CID_INTEL_IPU3_MODE, currently
+defined in drivers/staging/media/ipu3/include/intel-ipu3.h . "VIDEO" and "STILL"
+modes are available.
+
+Processing the image in raw Bayer format
+----------------------------------------
+
+Configuring ImgU V4L2 subdev for image processing
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ImgU V4L2 subdevs have to be configured with media controller APIs to have
+all the video nodes setup correctly.
+
+Let us take "ipu3-imgu 0" subdev as an example.
+
+media-ctl -d $MDEV -r
+
+media-ctl -d $MDEV -l "ipu3-imgu 0 input":0 -> "ipu3-imgu 0":0[1]
+
+media-ctl -d $MDEV -l "ipu3-imgu 0":2 -> "ipu3-imgu 0 output":0[1]
+
+media-ctl -d $MDEV -l "ipu3-imgu 0":3 -> "ipu3-imgu 0 viewfinder":0[1]
+
+media-ctl -d $MDEV -l "ipu3-imgu 0":4 -> "ipu3-imgu 0 3a stat":0[1]
+
+Also the pipe mode of the corresponding V4L2 subdev should be set as desired
+(e.g 0 for video mode or 1 for still mode) through the control id 0x009819a1 as
+below.
+
+yavta -w "0x009819A1 1" /dev/v4l-subdev7
+
+RAW Bayer frames go through the following ImgU pipeline HW blocks to have the
+processed image output to the DDR memory.
+
+RAW Bayer frame -> Input Feeder -> Bayer Down Scaling (BDS) -> Geometric
+Distortion Correction (GDC) -> DDR
+
+The ImgU V4L2 subdev has to be configured with the supported resolutions in all
+the above HW blocks, for a given input resolution.
+
+For a given supported resolution for an input frame, the Input Feeder, Bayer
+Down Scaling and GDC blocks should be configured with the supported resolutions.
+This information can be obtained by looking at the following IPU3 ImgU
+configuration table.
+
+https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master
+
+Under baseboard-poppy/media-libs/cros-camera-hal-configs-poppy/files/gcss
+directory, graph_settings_ov5670.xml can be used as an example.
+
+The following steps prepare the ImgU pipeline for the image processing.
+
+1. The ImgU V4L2 subdev data format should be set by using the
+VIDIOC_SUBDEV_S_FMT on pad 0, using the GDC width and height obtained above.
+
+2. The ImgU V4L2 subdev cropping should be set by using the
+VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_CROP as the target,
+using the input feeder height and width.
+
+3. The ImgU V4L2 subdev composing should be set by using the
+VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_COMPOSE as the target,
+using the BDS height and width.
+
+For the ov5670 example, for an input frame with a resolution of 2592x1944
+(which is input to the ImgU subdev pad 0), the corresponding resolutions
+for input feeder, BDS and GDC are 2592x1944, 2592x1944 and 2560x1920
+respectively.
+
+Once this is done, the received raw Bayer frames can be input to the ImgU
+V4L2 subdev as below, using the open source application v4l2n [#f1]_.
+
+For an image captured with 2592x1944 [#f4]_ resolution, with desired output
+resolution as 2560x1920 and viewfinder resolution as 2560x1920, the following
+v4l2n command can be used. This helps process the raw Bayer frames and produces
+the desired results for the main output image and the viewfinder output, in NV12
+format.
+
+v4l2n --pipe=4 --load=/tmp/frame-#.bin --open=/dev/video4
+--fmt=type:VIDEO_OUTPUT_MPLANE,width=2592,height=1944,pixelformat=0X47337069
+--reqbufs=type:VIDEO_OUTPUT_MPLANE,count:1 --pipe=1 --output=/tmp/frames.out
+--open=/dev/video5
+--fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12
+--reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=2 --output=/tmp/frames.vf
+--open=/dev/video6
+--fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12
+--reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=3 --open=/dev/video7
+--output=/tmp/frames.3A --fmt=type:META_CAPTURE,?
+--reqbufs=count:1,type:META_CAPTURE --pipe=1,2,3,4 --stream=5
+
+where /dev/video4, /dev/video5, /dev/video6 and /dev/video7 devices point to
+input, output, viewfinder and 3A statistics video nodes respectively.
+
+Converting the raw Bayer image into YUV domain
+----------------------------------------------
+
+The processed images after the above step, can be converted to YUV domain
+as below.
+
+Main output frames
+~~~~~~~~~~~~~~~~~~
+
+raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.out /tmp/frames.out.ppm
+
+where 2560x1920 is output resolution, NV12 is the video format, followed
+by input frame and output PNM file.
+
+Viewfinder output frames
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.vf /tmp/frames.vf.ppm
+
+where 2560x1920 is output resolution, NV12 is the video format, followed
+by input frame and output PNM file.
+
+Example user space code for IPU3
+================================
+
+User space code that configures and uses IPU3 is available here.
+
+https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/
+
+The source can be located under hal/intel directory.
+
+References
+==========
+
+.. [#f5] include/uapi/linux/intel-ipu3.h
+
+.. [#f1] https://github.com/intel/nvt
+
+.. [#f2] http://git.ideasonboard.org/yavta.git
+
+.. [#f3] http://git.ideasonboard.org/?p=media-ctl.git;a=summary
+
+.. [#f4] ImgU limitation requires an additional 16x16 for all input resolutions