diff options
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r-- | Documentation/filesystems/nfs/nfs-rdma.txt | 16 | ||||
-rw-r--r-- | Documentation/filesystems/seq_file.txt | 33 |
2 files changed, 42 insertions, 7 deletions
diff --git a/Documentation/filesystems/nfs/nfs-rdma.txt b/Documentation/filesystems/nfs/nfs-rdma.txt index e386f7e4bcee..724043858b08 100644 --- a/Documentation/filesystems/nfs/nfs-rdma.txt +++ b/Documentation/filesystems/nfs/nfs-rdma.txt @@ -138,9 +138,9 @@ Installation - Build, install, reboot The NFS/RDMA code will be enabled automatically if NFS and RDMA - are turned on. The NFS/RDMA client and server are configured via the hidden - SUNRPC_XPRT_RDMA config option that depends on SUNRPC and INFINIBAND. The - value of SUNRPC_XPRT_RDMA will be: + are turned on. The NFS/RDMA client and server are configured via the + SUNRPC_XPRT_RDMA_CLIENT and SUNRPC_XPRT_RDMA_SERVER config options that both + depend on SUNRPC and INFINIBAND. The default value of both options will be: - N if either SUNRPC or INFINIBAND are N, in this case the NFS/RDMA client and server will not be built @@ -235,8 +235,9 @@ NFS/RDMA Setup - Start the NFS server - If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in - kernel config), load the RDMA transport module: + If the NFS/RDMA server was built as a module + (CONFIG_SUNRPC_XPRT_RDMA_SERVER=m in kernel config), load the RDMA + transport module: $ modprobe svcrdma @@ -255,8 +256,9 @@ NFS/RDMA Setup - On the client system - If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in - kernel config), load the RDMA client module: + If the NFS/RDMA client was built as a module + (CONFIG_SUNRPC_XPRT_RDMA_CLIENT=m in kernel config), load the RDMA client + module: $ modprobe xprtrdma.ko diff --git a/Documentation/filesystems/seq_file.txt b/Documentation/filesystems/seq_file.txt index 1fe0ccb1af55..8ea3e90ace07 100644 --- a/Documentation/filesystems/seq_file.txt +++ b/Documentation/filesystems/seq_file.txt @@ -235,6 +235,39 @@ be used for more than one file, you can store an arbitrary pointer in the private field of the seq_file structure; that value can then be retrieved by the iterator functions. +There is also a wrapper function to seq_open() called seq_open_private(). It +kmallocs a zero filled block of memory and stores a pointer to it in the +private field of the seq_file structure, returning 0 on success. The +block size is specified in a third parameter to the function, e.g.: + + static int ct_open(struct inode *inode, struct file *file) + { + return seq_open_private(file, &ct_seq_ops, + sizeof(struct mystruct)); + } + +There is also a variant function, __seq_open_private(), which is functionally +identical except that, if successful, it returns the pointer to the allocated +memory block, allowing further initialisation e.g.: + + static int ct_open(struct inode *inode, struct file *file) + { + struct mystruct *p = + __seq_open_private(file, &ct_seq_ops, sizeof(*p)); + + if (!p) + return -ENOMEM; + + p->foo = bar; /* initialize my stuff */ + ... + p->baz = true; + + return 0; + } + +A corresponding close function, seq_release_private() is available which +frees the memory allocated in the corresponding open. + The other operations of interest - read(), llseek(), and release() - are all implemented by the seq_file code itself. So a virtual file's file_operations structure will look like: |