summaryrefslogtreecommitdiff
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/nfs/nfs-rdma.txt16
-rw-r--r--Documentation/filesystems/seq_file.txt33
2 files changed, 42 insertions, 7 deletions
diff --git a/Documentation/filesystems/nfs/nfs-rdma.txt b/Documentation/filesystems/nfs/nfs-rdma.txt
index e386f7e4bcee..724043858b08 100644
--- a/Documentation/filesystems/nfs/nfs-rdma.txt
+++ b/Documentation/filesystems/nfs/nfs-rdma.txt
@@ -138,9 +138,9 @@ Installation
- Build, install, reboot
The NFS/RDMA code will be enabled automatically if NFS and RDMA
- are turned on. The NFS/RDMA client and server are configured via the hidden
- SUNRPC_XPRT_RDMA config option that depends on SUNRPC and INFINIBAND. The
- value of SUNRPC_XPRT_RDMA will be:
+ are turned on. The NFS/RDMA client and server are configured via the
+ SUNRPC_XPRT_RDMA_CLIENT and SUNRPC_XPRT_RDMA_SERVER config options that both
+ depend on SUNRPC and INFINIBAND. The default value of both options will be:
- N if either SUNRPC or INFINIBAND are N, in this case the NFS/RDMA client
and server will not be built
@@ -235,8 +235,9 @@ NFS/RDMA Setup
- Start the NFS server
- If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in
- kernel config), load the RDMA transport module:
+ If the NFS/RDMA server was built as a module
+ (CONFIG_SUNRPC_XPRT_RDMA_SERVER=m in kernel config), load the RDMA
+ transport module:
$ modprobe svcrdma
@@ -255,8 +256,9 @@ NFS/RDMA Setup
- On the client system
- If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in
- kernel config), load the RDMA client module:
+ If the NFS/RDMA client was built as a module
+ (CONFIG_SUNRPC_XPRT_RDMA_CLIENT=m in kernel config), load the RDMA client
+ module:
$ modprobe xprtrdma.ko
diff --git a/Documentation/filesystems/seq_file.txt b/Documentation/filesystems/seq_file.txt
index 1fe0ccb1af55..8ea3e90ace07 100644
--- a/Documentation/filesystems/seq_file.txt
+++ b/Documentation/filesystems/seq_file.txt
@@ -235,6 +235,39 @@ be used for more than one file, you can store an arbitrary pointer in the
private field of the seq_file structure; that value can then be retrieved
by the iterator functions.
+There is also a wrapper function to seq_open() called seq_open_private(). It
+kmallocs a zero filled block of memory and stores a pointer to it in the
+private field of the seq_file structure, returning 0 on success. The
+block size is specified in a third parameter to the function, e.g.:
+
+ static int ct_open(struct inode *inode, struct file *file)
+ {
+ return seq_open_private(file, &ct_seq_ops,
+ sizeof(struct mystruct));
+ }
+
+There is also a variant function, __seq_open_private(), which is functionally
+identical except that, if successful, it returns the pointer to the allocated
+memory block, allowing further initialisation e.g.:
+
+ static int ct_open(struct inode *inode, struct file *file)
+ {
+ struct mystruct *p =
+ __seq_open_private(file, &ct_seq_ops, sizeof(*p));
+
+ if (!p)
+ return -ENOMEM;
+
+ p->foo = bar; /* initialize my stuff */
+ ...
+ p->baz = true;
+
+ return 0;
+ }
+
+A corresponding close function, seq_release_private() is available which
+frees the memory allocated in the corresponding open.
+
The other operations of interest - read(), llseek(), and release() - are
all implemented by the seq_file code itself. So a virtual file's
file_operations structure will look like: