diff options
Diffstat (limited to 'Documentation/arch/x86/x86_64/5level-paging.rst')
-rw-r--r-- | Documentation/arch/x86/x86_64/5level-paging.rst | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/Documentation/arch/x86/x86_64/5level-paging.rst b/Documentation/arch/x86/x86_64/5level-paging.rst new file mode 100644 index 000000000000..71f882f4a173 --- /dev/null +++ b/Documentation/arch/x86/x86_64/5level-paging.rst @@ -0,0 +1,67 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============== +5-level paging +============== + +Overview +======== +Original x86-64 was limited by 4-level paging to 256 TiB of virtual address +space and 64 TiB of physical address space. We are already bumping into +this limit: some vendors offer servers with 64 TiB of memory today. + +To overcome the limitation upcoming hardware will introduce support for +5-level paging. It is a straight-forward extension of the current page +table structure adding one more layer of translation. + +It bumps the limits to 128 PiB of virtual address space and 4 PiB of +physical address space. This "ought to be enough for anybody" ©. + +QEMU 2.9 and later support 5-level paging. + +Virtual memory layout for 5-level paging is described in +Documentation/arch/x86/x86_64/mm.rst + + +Enabling 5-level paging +======================= +CONFIG_X86_5LEVEL=y enables the feature. + +Kernel with CONFIG_X86_5LEVEL=y still able to boot on 4-level hardware. +In this case additional page table level -- p4d -- will be folded at +runtime. + +User-space and large virtual address space +========================================== +On x86, 5-level paging enables 56-bit userspace virtual address space. +Not all user space is ready to handle wide addresses. It's known that +at least some JIT compilers use higher bits in pointers to encode their +information. It collides with valid pointers with 5-level paging and +leads to crashes. + +To mitigate this, we are not going to allocate virtual address space +above 47-bit by default. + +But userspace can ask for allocation from full address space by +specifying hint address (with or without MAP_FIXED) above 47-bits. + +If hint address set above 47-bit, but MAP_FIXED is not specified, we try +to look for unmapped area by specified address. If it's already +occupied, we look for unmapped area in *full* address space, rather than +from 47-bit window. + +A high hint address would only affect the allocation in question, but not +any future mmap()s. + +Specifying high hint address on older kernel or on machine without 5-level +paging support is safe. The hint will be ignored and kernel will fall back +to allocation from 47-bit address space. + +This approach helps to easily make application's memory allocator aware +about large address space without manually tracking allocated virtual +address space. + +One important case we need to handle here is interaction with MPX. +MPX (without MAWA extension) cannot handle addresses above 47-bit, so we +need to make sure that MPX cannot be enabled we already have VMA above +the boundary and forbid creating such VMAs once MPX is enabled. |