summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r--Documentation/admin-guide/acpi/cppc_sysfs.rst2
-rw-r--r--Documentation/admin-guide/cifs/usage.rst7
-rw-r--r--Documentation/admin-guide/devices.txt8
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt104
-rw-r--r--Documentation/admin-guide/kernel-per-CPU-kthreads.rst2
-rw-r--r--Documentation/admin-guide/media/platform-cardlist.rst1
-rw-r--r--Documentation/admin-guide/perf/hisi-pcie-pmu.rst106
-rw-r--r--Documentation/admin-guide/pm/amd-pstate.rst382
-rw-r--r--Documentation/admin-guide/pm/working-state.rst1
-rw-r--r--Documentation/admin-guide/sysctl/kernel.rst11
10 files changed, 588 insertions, 36 deletions
diff --git a/Documentation/admin-guide/acpi/cppc_sysfs.rst b/Documentation/admin-guide/acpi/cppc_sysfs.rst
index fccf22114e85..e53d76365aa7 100644
--- a/Documentation/admin-guide/acpi/cppc_sysfs.rst
+++ b/Documentation/admin-guide/acpi/cppc_sysfs.rst
@@ -4,6 +4,8 @@
Collaborative Processor Performance Control (CPPC)
==================================================
+.. _cppc_sysfs:
+
CPPC
====
diff --git a/Documentation/admin-guide/cifs/usage.rst b/Documentation/admin-guide/cifs/usage.rst
index f170d8820258..3766bf8a1c20 100644
--- a/Documentation/admin-guide/cifs/usage.rst
+++ b/Documentation/admin-guide/cifs/usage.rst
@@ -734,10 +734,9 @@ SecurityFlags Flags which control security negotiation and
using weaker password hashes is 0x37037 (lanman,
plaintext, ntlm, ntlmv2, signing allowed). Some
SecurityFlags require the corresponding menuconfig
- options to be enabled (lanman and plaintext require
- CONFIG_CIFS_WEAK_PW_HASH for example). Enabling
- plaintext authentication currently requires also
- enabling lanman authentication in the security flags
+ options to be enabled. Enabling plaintext
+ authentication currently requires also enabling
+ lanman authentication in the security flags
because the cifs module only supports sending
laintext passwords using the older lanman dialect
form of the session setup SMB. (e.g. for authentication
diff --git a/Documentation/admin-guide/devices.txt b/Documentation/admin-guide/devices.txt
index 922c23bb4372..c07dc0ee860e 100644
--- a/Documentation/admin-guide/devices.txt
+++ b/Documentation/admin-guide/devices.txt
@@ -2339,13 +2339,7 @@
disks (see major number 3) except that the limit on
partitions is 31.
- 162 char Raw block device interface
- 0 = /dev/rawctl Raw I/O control device
- 1 = /dev/raw/raw1 First raw I/O device
- 2 = /dev/raw/raw2 Second raw I/O device
- ...
- max minor number of raw device is set by kernel config
- MAX_RAW_DEVS or raw module parameter 'max_raw_devs'
+ 162 char Used for (now removed) raw block device interface
163 char
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 9725c546a0d4..685645e75706 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -225,14 +225,23 @@
For broken nForce2 BIOS resulting in XT-PIC timer.
acpi_sleep= [HW,ACPI] Sleep options
- Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig,
- old_ordering, nonvs, sci_force_enable, nobl }
+ Format: { s3_bios, s3_mode, s3_beep, s4_hwsig,
+ s4_nohwsig, old_ordering, nonvs,
+ sci_force_enable, nobl }
See Documentation/power/video.rst for information on
s3_bios and s3_mode.
s3_beep is for debugging; it makes the PC's speaker beep
as soon as the kernel's real-mode entry point is called.
+ s4_hwsig causes the kernel to check the ACPI hardware
+ signature during resume from hibernation, and gracefully
+ refuse to resume if it has changed. This complies with
+ the ACPI specification but not with reality, since
+ Windows does not do this and many laptops do change it
+ on docking. So the default behaviour is to allow resume
+ and simply warn when the signature changes, unless the
+ s4_hwsig option is enabled.
s4_nohwsig prevents ACPI hardware signature from being
- used during resume from hibernation.
+ used (or even warned about) during resume.
old_ordering causes the ACPI 1.0 ordering of the _PTS
control method, with respect to putting devices into
low power states, to be enforced (the ACPI 2.0 ordering
@@ -1689,6 +1698,8 @@
architectures force reset to be always executed
i8042.unlock [HW] Unlock (ignore) the keylock
i8042.kbdreset [HW] Reset device connected to KBD port
+ i8042.probe_defer
+ [HW] Allow deferred probing upon i8042 probe errors
i810= [HW,DRM]
@@ -2413,8 +2424,12 @@
Default is 1 (enabled)
kvm-intel.emulate_invalid_guest_state=
- [KVM,Intel] Enable emulation of invalid guest states
- Default is 0 (disabled)
+ [KVM,Intel] Disable emulation of invalid guest state.
+ Ignored if kvm-intel.enable_unrestricted_guest=1, as
+ guest state is never invalid for unrestricted guests.
+ This param doesn't apply to nested guests (L2), as KVM
+ never emulates invalid L2 guest state.
+ Default is 1 (enabled)
kvm-intel.flexpriority=
[KVM,Intel] Disable FlexPriority feature (TPR shadow).
@@ -2934,7 +2949,7 @@
both parameters are enabled, hugetlb_free_vmemmap takes
precedence over memory_hotplug.memmap_on_memory.
- memtest= [KNL,X86,ARM,PPC,RISCV] Enable memtest
+ memtest= [KNL,X86,ARM,M68K,PPC,RISCV] Enable memtest
Format: <integer>
default : 0 <disable>
Specifies the number of memtest passes to be
@@ -3545,6 +3560,13 @@
shutdown the other cpus. Instead use the REBOOT_VECTOR
irq.
+ nomodeset Disable kernel modesetting. DRM drivers will not perform
+ display-mode changes or accelerated rendering. Only the
+ system framebuffer will be available for use if this was
+ set-up by the firmware or boot loader.
+
+ Useful as fallback, or for testing and debugging.
+
nomodule Disable module load
nopat [X86] Disable PAT (page attribute table extension of
@@ -4343,19 +4365,30 @@
Disable the Correctable Errors Collector,
see CONFIG_RAS_CEC help text.
- rcu_nocbs= [KNL]
- The argument is a cpu list, as described above.
-
- In kernels built with CONFIG_RCU_NOCB_CPU=y, set
- the specified list of CPUs to be no-callback CPUs.
- Invocation of these CPUs' RCU callbacks will be
- offloaded to "rcuox/N" kthreads created for that
- purpose, where "x" is "p" for RCU-preempt, and
- "s" for RCU-sched, and "N" is the CPU number.
- This reduces OS jitter on the offloaded CPUs,
- which can be useful for HPC and real-time
- workloads. It can also improve energy efficiency
- for asymmetric multiprocessors.
+ rcu_nocbs[=cpu-list]
+ [KNL] The optional argument is a cpu list,
+ as described above.
+
+ In kernels built with CONFIG_RCU_NOCB_CPU=y,
+ enable the no-callback CPU mode, which prevents
+ such CPUs' callbacks from being invoked in
+ softirq context. Invocation of such CPUs' RCU
+ callbacks will instead be offloaded to "rcuox/N"
+ kthreads created for that purpose, where "x" is
+ "p" for RCU-preempt, "s" for RCU-sched, and "g"
+ for the kthreads that mediate grace periods; and
+ "N" is the CPU number. This reduces OS jitter on
+ the offloaded CPUs, which can be useful for HPC
+ and real-time workloads. It can also improve
+ energy efficiency for asymmetric multiprocessors.
+
+ If a cpulist is passed as an argument, the specified
+ list of CPUs is set to no-callback mode from boot.
+
+ Otherwise, if the '=' sign and the cpulist
+ arguments are omitted, no CPU will be set to
+ no-callback mode from boot but the mode may be
+ toggled at runtime via cpusets.
rcu_nocb_poll [KNL]
Rather than requiring that offloaded CPUs
@@ -4489,10 +4522,6 @@
on rcutree.qhimark at boot time and to zero to
disable more aggressive help enlistment.
- rcutree.rcu_idle_gp_delay= [KNL]
- Set wakeup interval for idle CPUs that have
- RCU callbacks (RCU_FAST_NO_HZ=y).
-
rcutree.rcu_kick_kthreads= [KNL]
Cause the grace-period kthread to get an extra
wake_up() if it sleeps three times longer than
@@ -4603,8 +4632,12 @@
in seconds.
rcutorture.fwd_progress= [KNL]
- Enable RCU grace-period forward-progress testing
+ Specifies the number of kthreads to be used
+ for RCU grace-period forward-progress testing
for the types of RCU supporting this notion.
+ Defaults to 1 kthread, values less than zero or
+ greater than the number of CPUs cause the number
+ of CPUs to be used.
rcutorture.fwd_progress_div= [KNL]
Specify the fraction of a CPU-stall-warning
@@ -4805,6 +4838,29 @@
period to instead use normal non-expedited
grace-period processing.
+ rcupdate.rcu_task_collapse_lim= [KNL]
+ Set the maximum number of callbacks present
+ at the beginning of a grace period that allows
+ the RCU Tasks flavors to collapse back to using
+ a single callback queue. This switching only
+ occurs when rcupdate.rcu_task_enqueue_lim is
+ set to the default value of -1.
+
+ rcupdate.rcu_task_contend_lim= [KNL]
+ Set the minimum number of callback-queuing-time
+ lock-contention events per jiffy required to
+ cause the RCU Tasks flavors to switch to per-CPU
+ callback queuing. This switching only occurs
+ when rcupdate.rcu_task_enqueue_lim is set to
+ the default value of -1.
+
+ rcupdate.rcu_task_enqueue_lim= [KNL]
+ Set the number of callback queues to use for the
+ RCU Tasks family of RCU flavors. The default
+ of -1 allows this to be automatically (and
+ dynamically) adjusted. This parameter is intended
+ for use in testing.
+
rcupdate.rcu_task_ipi_delay= [KNL]
Set time in jiffies during which RCU tasks will
avoid sending IPIs, starting with the beginning
diff --git a/Documentation/admin-guide/kernel-per-CPU-kthreads.rst b/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
index 5e51ee5b0358..e4a5fc26f1a9 100644
--- a/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
+++ b/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
@@ -208,7 +208,7 @@ Do at least one of the following:
2. Enable RCU to do its processing remotely via dyntick-idle by
doing all of the following:
- a. Build with CONFIG_NO_HZ=y and CONFIG_RCU_FAST_NO_HZ=y.
+ a. Build with CONFIG_NO_HZ=y.
b. Ensure that the CPU goes idle frequently, allowing other
CPUs to detect that it has passed through an RCU quiescent
state. If the kernel is built with CONFIG_NO_HZ_FULL=y,
diff --git a/Documentation/admin-guide/media/platform-cardlist.rst b/Documentation/admin-guide/media/platform-cardlist.rst
index 261e7772eb3e..ac73c4166d1e 100644
--- a/Documentation/admin-guide/media/platform-cardlist.rst
+++ b/Documentation/admin-guide/media/platform-cardlist.rst
@@ -60,6 +60,7 @@ s5p-mfc Samsung S5P MFC Video Codec
sh_veu SuperH VEU mem2mem video processing
sh_vou SuperH VOU video output
stm32-dcmi STM32 Digital Camera Memory Interface (DCMI)
+stm32-dma2d STM32 Chrom-Art Accelerator Unit
sun4i-csi Allwinner A10 CMOS Sensor Interface Support
sun6i-csi Allwinner V3s Camera Sensor Interface
sun8i-di Allwinner Deinterlace
diff --git a/Documentation/admin-guide/perf/hisi-pcie-pmu.rst b/Documentation/admin-guide/perf/hisi-pcie-pmu.rst
new file mode 100644
index 000000000000..294ebbdb22af
--- /dev/null
+++ b/Documentation/admin-guide/perf/hisi-pcie-pmu.rst
@@ -0,0 +1,106 @@
+================================================
+HiSilicon PCIe Performance Monitoring Unit (PMU)
+================================================
+
+On Hip09, HiSilicon PCIe Performance Monitoring Unit (PMU) could monitor
+bandwidth, latency, bus utilization and buffer occupancy data of PCIe.
+
+Each PCIe Core has a PMU to monitor multi Root Ports of this PCIe Core and
+all Endpoints downstream these Root Ports.
+
+
+HiSilicon PCIe PMU driver
+=========================
+
+The PCIe PMU driver registers a perf PMU with the name of its sicl-id and PCIe
+Core id.::
+
+ /sys/bus/event_source/hisi_pcie<sicl>_<core>
+
+PMU driver provides description of available events and filter options in sysfs,
+see /sys/bus/event_source/devices/hisi_pcie<sicl>_<core>.
+
+The "format" directory describes all formats of the config (events) and config1
+(filter options) fields of the perf_event_attr structure. The "events" directory
+describes all documented events shown in perf list.
+
+The "identifier" sysfs file allows users to identify the version of the
+PMU hardware device.
+
+The "bus" sysfs file allows users to get the bus number of Root Ports
+monitored by PMU.
+
+Example usage of perf::
+
+ $# perf list
+ hisi_pcie0_0/rx_mwr_latency/ [kernel PMU event]
+ hisi_pcie0_0/rx_mwr_cnt/ [kernel PMU event]
+ ------------------------------------------
+
+ $# perf stat -e hisi_pcie0_0/rx_mwr_latency/
+ $# perf stat -e hisi_pcie0_0/rx_mwr_cnt/
+ $# perf stat -g -e hisi_pcie0_0/rx_mwr_latency/ -e hisi_pcie0_0/rx_mwr_cnt/
+
+The current driver does not support sampling. So "perf record" is unsupported.
+Also attach to a task is unsupported for PCIe PMU.
+
+Filter options
+--------------
+
+1. Target filter
+PMU could only monitor the performance of traffic downstream target Root Ports
+or downstream target Endpoint. PCIe PMU driver support "port" and "bdf"
+interfaces for users, and these two interfaces aren't supported at the same
+time.
+
+-port
+"port" filter can be used in all PCIe PMU events, target Root Port can be
+selected by configuring the 16-bits-bitmap "port". Multi ports can be selected
+for AP-layer-events, and only one port can be selected for TL/DL-layer-events.
+
+For example, if target Root Port is 0000:00:00.0 (x8 lanes), bit0 of bitmap
+should be set, port=0x1; if target Root Port is 0000:00:04.0 (x4 lanes),
+bit8 is set, port=0x100; if these two Root Ports are both monitored, port=0x101.
+
+Example usage of perf::
+
+ $# perf stat -e hisi_pcie0_0/rx_mwr_latency,port=0x1/ sleep 5
+
+-bdf
+
+"bdf" filter can only be used in bandwidth events, target Endpoint is selected
+by configuring BDF to "bdf". Counter only counts the bandwidth of message
+requested by target Endpoint.
+
+For example, "bdf=0x3900" means BDF of target Endpoint is 0000:39:00.0.
+
+Example usage of perf::
+
+ $# perf stat -e hisi_pcie0_0/rx_mrd_flux,bdf=0x3900/ sleep 5
+
+2. Trigger filter
+Event statistics start when the first time TLP length is greater/smaller
+than trigger condition. You can set the trigger condition by writing "trig_len",
+and set the trigger mode by writing "trig_mode". This filter can only be used
+in bandwidth events.
+
+For example, "trig_len=4" means trigger condition is 2^4 DW, "trig_mode=0"
+means statistics start when TLP length > trigger condition, "trig_mode=1"
+means start when TLP length < condition.
+
+Example usage of perf::
+
+ $# perf stat -e hisi_pcie0_0/rx_mrd_flux,trig_len=0x4,trig_mode=1/ sleep 5
+
+3. Threshold filter
+Counter counts when TLP length within the specified range. You can set the
+threshold by writing "thr_len", and set the threshold mode by writing
+"thr_mode". This filter can only be used in bandwidth events.
+
+For example, "thr_len=4" means threshold is 2^4 DW, "thr_mode=0" means
+counter counts when TLP length >= threshold, and "thr_mode=1" means counts
+when TLP length < threshold.
+
+Example usage of perf::
+
+ $# perf stat -e hisi_pcie0_0/rx_mrd_flux,thr_len=0x4,thr_mode=1/ sleep 5
diff --git a/Documentation/admin-guide/pm/amd-pstate.rst b/Documentation/admin-guide/pm/amd-pstate.rst
new file mode 100644
index 000000000000..2f066df4ee9c
--- /dev/null
+++ b/Documentation/admin-guide/pm/amd-pstate.rst
@@ -0,0 +1,382 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+===============================================
+``amd-pstate`` CPU Performance Scaling Driver
+===============================================
+
+:Copyright: |copy| 2021 Advanced Micro Devices, Inc.
+
+:Author: Huang Rui <ray.huang@amd.com>
+
+
+Introduction
+===================
+
+``amd-pstate`` is the AMD CPU performance scaling driver that introduces a
+new CPU frequency control mechanism on modern AMD APU and CPU series in
+Linux kernel. The new mechanism is based on Collaborative Processor
+Performance Control (CPPC) which provides finer grain frequency management
+than legacy ACPI hardware P-States. Current AMD CPU/APU platforms are using
+the ACPI P-states driver to manage CPU frequency and clocks with switching
+only in 3 P-states. CPPC replaces the ACPI P-states controls, allows a
+flexible, low-latency interface for the Linux kernel to directly
+communicate the performance hints to hardware.
+
+``amd-pstate`` leverages the Linux kernel governors such as ``schedutil``,
+``ondemand``, etc. to manage the performance hints which are provided by
+CPPC hardware functionality that internally follows the hardware
+specification (for details refer to AMD64 Architecture Programmer's Manual
+Volume 2: System Programming [1]_). Currently ``amd-pstate`` supports basic
+frequency control function according to kernel governors on some of the
+Zen2 and Zen3 processors, and we will implement more AMD specific functions
+in future after we verify them on the hardware and SBIOS.
+
+
+AMD CPPC Overview
+=======================
+
+Collaborative Processor Performance Control (CPPC) interface enumerates a
+continuous, abstract, and unit-less performance value in a scale that is
+not tied to a specific performance state / frequency. This is an ACPI
+standard [2]_ which software can specify application performance goals and
+hints as a relative target to the infrastructure limits. AMD processors
+provides the low latency register model (MSR) instead of AML code
+interpreter for performance adjustments. ``amd-pstate`` will initialize a
+``struct cpufreq_driver`` instance ``amd_pstate_driver`` with the callbacks
+to manage each performance update behavior. ::
+
+ Highest Perf ------>+-----------------------+ +-----------------------+
+ | | | |
+ | | | |
+ | | Max Perf ---->| |
+ | | | |
+ | | | |
+ Nominal Perf ------>+-----------------------+ +-----------------------+
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ | | Desired Perf ---->| |
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ | | | |
+ Lowest non- | | | |
+ linear perf ------>+-----------------------+ +-----------------------+
+ | | | |
+ | | Lowest perf ---->| |
+ | | | |
+ Lowest perf ------>+-----------------------+ +-----------------------+
+ | | | |
+ | | | |
+ | | | |
+ 0 ------>+-----------------------+ +-----------------------+
+
+ AMD P-States Performance Scale
+
+
+.. _perf_cap:
+
+AMD CPPC Performance Capability
+--------------------------------
+
+Highest Performance (RO)
+.........................
+
+It is the absolute maximum performance an individual processor may reach,
+assuming ideal conditions. This performance level may not be sustainable
+for long durations and may only be achievable if other platform components
+are in a specific state; for example, it may require other processors be in
+an idle state. This would be equivalent to the highest frequencies
+supported by the processor.
+
+Nominal (Guaranteed) Performance (RO)
+......................................
+
+It is the maximum sustained performance level of the processor, assuming
+ideal operating conditions. In absence of an external constraint (power,
+thermal, etc.) this is the performance level the processor is expected to
+be able to maintain continuously. All cores/processors are expected to be
+able to sustain their nominal performance state simultaneously.
+
+Lowest non-linear Performance (RO)
+...................................
+
+It is the lowest performance level at which nonlinear power savings are
+achieved, for example, due to the combined effects of voltage and frequency
+scaling. Above this threshold, lower performance levels should be generally
+more energy efficient than higher performance levels. This register
+effectively conveys the most efficient performance level to ``amd-pstate``.
+
+Lowest Performance (RO)
+........................
+
+It is the absolute lowest performance level of the processor. Selecting a
+performance level lower than the lowest nonlinear performance level may
+cause an efficiency penalty but should reduce the instantaneous power
+consumption of the processor.
+
+AMD CPPC Performance Control
+------------------------------
+
+``amd-pstate`` passes performance goals through these registers. The
+register drives the behavior of the desired performance target.
+
+Minimum requested performance (RW)
+...................................
+
+``amd-pstate`` specifies the minimum allowed performance level.
+
+Maximum requested performance (RW)
+...................................
+
+``amd-pstate`` specifies a limit the maximum performance that is expected
+to be supplied by the hardware.
+
+Desired performance target (RW)
+...................................
+
+``amd-pstate`` specifies a desired target in the CPPC performance scale as
+a relative number. This can be expressed as percentage of nominal
+performance (infrastructure max). Below the nominal sustained performance
+level, desired performance expresses the average performance level of the
+processor subject to hardware. Above the nominal performance level,
+processor must provide at least nominal performance requested and go higher
+if current operating conditions allow.
+
+Energy Performance Preference (EPP) (RW)
+.........................................
+
+Provides a hint to the hardware if software wants to bias toward performance
+(0x0) or energy efficiency (0xff).
+
+
+Key Governors Support
+=======================
+
+``amd-pstate`` can be used with all the (generic) scaling governors listed
+by the ``scaling_available_governors`` policy attribute in ``sysfs``. Then,
+it is responsible for the configuration of policy objects corresponding to
+CPUs and provides the ``CPUFreq`` core (and the scaling governors attached
+to the policy objects) with accurate information on the maximum and minimum
+operating frequencies supported by the hardware. Users can check the
+``scaling_cur_freq`` information comes from the ``CPUFreq`` core.
+
+``amd-pstate`` mainly supports ``schedutil`` and ``ondemand`` for dynamic
+frequency control. It is to fine tune the processor configuration on
+``amd-pstate`` to the ``schedutil`` with CPU CFS scheduler. ``amd-pstate``
+registers adjust_perf callback to implement the CPPC similar performance
+update behavior. It is initialized by ``sugov_start`` and then populate the
+CPU's update_util_data pointer to assign ``sugov_update_single_perf`` as
+the utilization update callback function in CPU scheduler. CPU scheduler
+will call ``cpufreq_update_util`` and assign the target performance
+according to the ``struct sugov_cpu`` that utilization update belongs to.
+Then ``amd-pstate`` updates the desired performance according to the CPU
+scheduler assigned.
+
+
+Processor Support
+=======================
+
+The ``amd-pstate`` initialization will fail if the _CPC in ACPI SBIOS is
+not existed at the detected processor, and it uses ``acpi_cpc_valid`` to
+check the _CPC existence. All Zen based processors support legacy ACPI
+hardware P-States function, so while the ``amd-pstate`` fails to be
+initialized, the kernel will fall back to initialize ``acpi-cpufreq``
+driver.
+
+There are two types of hardware implementations for ``amd-pstate``: one is
+`Full MSR Support <perf_cap_>`_ and another is `Shared Memory Support
+<perf_cap_>`_. It can use :c:macro:`X86_FEATURE_CPPC` feature flag (for
+details refer to Processor Programming Reference (PPR) for AMD Family
+19h Model 51h, Revision A1 Processors [3]_) to indicate the different
+types. ``amd-pstate`` is to register different ``static_call`` instances
+for different hardware implementations.
+
+Currently, some of Zen2 and Zen3 processors support ``amd-pstate``. In the
+future, it will be supported on more and more AMD processors.
+
+Full MSR Support
+-----------------
+
+Some new Zen3 processors such as Cezanne provide the MSR registers directly
+while the :c:macro:`X86_FEATURE_CPPC` CPU feature flag is set.
+``amd-pstate`` can handle the MSR register to implement the fast switch
+function in ``CPUFreq`` that can shrink latency of frequency control on the
+interrupt context. The functions with ``pstate_xxx`` prefix represent the
+operations of MSR registers.
+
+Shared Memory Support
+----------------------
+
+If :c:macro:`X86_FEATURE_CPPC` CPU feature flag is not set, that means the
+processor supports shared memory solution. In this case, ``amd-pstate``
+uses the ``cppc_acpi`` helper methods to implement the callback functions
+that defined on ``static_call``. The functions with ``cppc_xxx`` prefix
+represent the operations of acpi cppc helpers for shared memory solution.
+
+
+AMD P-States and ACPI hardware P-States always can be supported in one
+processor. But AMD P-States has the higher priority and if it is enabled
+with :c:macro:`MSR_AMD_CPPC_ENABLE` or ``cppc_set_enable``, it will respond
+to the request from AMD P-States.
+
+
+User Space Interface in ``sysfs``
+==================================
+
+``amd-pstate`` exposes several global attributes (files) in ``sysfs`` to
+control its functionality at the system level. They located in the
+``/sys/devices/system/cpu/cpufreq/policyX/`` directory and affect all CPUs. ::
+
+ root@hr-test1:/home/ray# ls /sys/devices/system/cpu/cpufreq/policy0/*amd*
+ /sys/devices/system/cpu/cpufreq/policy0/amd_pstate_highest_perf
+ /sys/devices/system/cpu/cpufreq/policy0/amd_pstate_lowest_nonlinear_freq
+ /sys/devices/system/cpu/cpufreq/policy0/amd_pstate_max_freq
+
+
+``amd_pstate_highest_perf / amd_pstate_max_freq``
+
+Maximum CPPC performance and CPU frequency that the driver is allowed to
+set in percent of the maximum supported CPPC performance level (the highest
+performance supported in `AMD CPPC Performance Capability <perf_cap_>`_).
+In some of ASICs, the highest CPPC performance is not the one in the _CPC
+table, so we need to expose it to sysfs. If boost is not active but
+supported, this maximum frequency will be larger than the one in
+``cpuinfo``.
+This attribute is read-only.
+
+``amd_pstate_lowest_nonlinear_freq``
+
+The lowest non-linear CPPC CPU frequency that the driver is allowed to set
+in percent of the maximum supported CPPC performance level (Please see the
+lowest non-linear performance in `AMD CPPC Performance Capability
+<perf_cap_>`_).
+This attribute is read-only.
+
+For other performance and frequency values, we can read them back from
+``/sys/devices/system/cpu/cpuX/acpi_cppc/``, see :ref:`cppc_sysfs`.
+
+
+``amd-pstate`` vs ``acpi-cpufreq``
+======================================
+
+On majority of AMD platforms supported by ``acpi-cpufreq``, the ACPI tables
+provided by the platform firmware used for CPU performance scaling, but
+only provides 3 P-states on AMD processors.
+However, on modern AMD APU and CPU series, it provides the collaborative
+processor performance control according to ACPI protocol and customize this
+for AMD platforms. That is fine-grain and continuous frequency range
+instead of the legacy hardware P-states. ``amd-pstate`` is the kernel
+module which supports the new AMD P-States mechanism on most of future AMD
+platforms. The AMD P-States mechanism will be the more performance and energy
+efficiency frequency management method on AMD processors.
+
+Kernel Module Options for ``amd-pstate``
+=========================================
+
+``shared_mem``
+Use a module param (shared_mem) to enable related processors manually with
+**amd_pstate.shared_mem=1**.
+Due to the performance issue on the processors with `Shared Memory Support
+<perf_cap_>`_, so we disable it for the moment and will enable this by default
+once we address performance issue on this solution.
+
+The way to check whether current processor is `Full MSR Support <perf_cap_>`_
+or `Shared Memory Support <perf_cap_>`_ : ::
+
+ ray@hr-test1:~$ lscpu | grep cppc
+ Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
+
+If CPU Flags have cppc, then this processor supports `Full MSR Support
+<perf_cap_>`_. Otherwise it supports `Shared Memory Support <perf_cap_>`_.
+
+
+``cpupower`` tool support for ``amd-pstate``
+===============================================
+
+``amd-pstate`` is supported on ``cpupower`` tool that can be used to dump the frequency
+information. And it is in progress to support more and more operations for new
+``amd-pstate`` module with this tool. ::
+
+ root@hr-test1:/home/ray# cpupower frequency-info
+ analyzing CPU 0:
+ driver: amd-pstate
+ CPUs which run at the same hardware frequency: 0
+ CPUs which need to have their frequency coordinated by software: 0
+ maximum transition latency: 131 us
+ hardware limits: 400 MHz - 4.68 GHz
+ available cpufreq governors: ondemand conservative powersave userspace performance schedutil
+ current policy: frequency should be within 400 MHz and 4.68 GHz.
+ The governor "schedutil" may decide which speed to use
+ within this range.
+ current CPU frequency: Unable to call hardware
+ current CPU frequency: 4.02 GHz (asserted by call to kernel)
+ boost state support:
+ Supported: yes
+ Active: yes
+ AMD PSTATE Highest Performance: 166. Maximum Frequency: 4.68 GHz.
+ AMD PSTATE Nominal Performance: 117. Nominal Frequency: 3.30 GHz.
+ AMD PSTATE Lowest Non-linear Performance: 39. Lowest Non-linear Frequency: 1.10 GHz.
+ AMD PSTATE Lowest Performance: 15. Lowest Frequency: 400 MHz.
+
+
+Diagnostics and Tuning
+=======================
+
+Trace Events
+--------------
+
+There are two static trace events that can be used for ``amd-pstate``
+diagnostics. One of them is the cpu_frequency trace event generally used
+by ``CPUFreq``, and the other one is the ``amd_pstate_perf`` trace event
+specific to ``amd-pstate``. The following sequence of shell commands can
+be used to enable them and see their output (if the kernel is generally
+configured to support event tracing). ::
+
+ root@hr-test1:/home/ray# cd /sys/kernel/tracing/
+ root@hr-test1:/sys/kernel/tracing# echo 1 > events/amd_cpu/enable
+ root@hr-test1:/sys/kernel/tracing# cat trace
+ # tracer: nop
+ #
+ # entries-in-buffer/entries-written: 47827/42233061 #P:2
+ #
+ # _-----=> irqs-off
+ # / _----=> need-resched
+ # | / _---=> hardirq/softirq
+ # || / _--=> preempt-depth
+ # ||| / delay
+ # TASK-PID CPU# |||| TIMESTAMP FUNCTION
+ # | | | |||| | |
+ <idle>-0 [015] dN... 4995.979886: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=15 changed=false fast_switch=true
+ <idle>-0 [007] d.h.. 4995.979893: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=7 changed=false fast_switch=true
+ cat-2161 [000] d.... 4995.980841: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=0 changed=false fast_switch=true
+ sshd-2125 [004] d.s.. 4995.980968: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=4 changed=false fast_switch=true
+ <idle>-0 [007] d.s.. 4995.980968: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=7 changed=false fast_switch=true
+ <idle>-0 [003] d.s.. 4995.980971: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=3 changed=false fast_switch=true
+ <idle>-0 [011] d.s.. 4995.980996: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=11 changed=false fast_switch=true
+
+The cpu_frequency trace event will be triggered either by the ``schedutil`` scaling
+governor (for the policies it is attached to), or by the ``CPUFreq`` core (for the
+policies with other scaling governors).
+
+
+Reference
+===========
+
+.. [1] AMD64 Architecture Programmer's Manual Volume 2: System Programming,
+ https://www.amd.com/system/files/TechDocs/24593.pdf
+
+.. [2] Advanced Configuration and Power Interface Specification,
+ https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf
+
+.. [3] Processor Programming Reference (PPR) for AMD Family 19h Model 51h, Revision A1 Processors
+ https://www.amd.com/system/files/TechDocs/56569-A1-PUB.zip
diff --git a/Documentation/admin-guide/pm/working-state.rst b/Documentation/admin-guide/pm/working-state.rst
index f40994c422dc..5d2757e2de65 100644
--- a/Documentation/admin-guide/pm/working-state.rst
+++ b/Documentation/admin-guide/pm/working-state.rst
@@ -11,6 +11,7 @@ Working-State Power Management
intel_idle
cpufreq
intel_pstate
+ amd-pstate
cpufreq_drivers
intel_epb
intel-speed-select
diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
index 0e486f41185e..d359bcfadd39 100644
--- a/Documentation/admin-guide/sysctl/kernel.rst
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -905,6 +905,17 @@ enabled, otherwise writing to this file will return ``-EBUSY``.
The default value is 8.
+perf_user_access (arm64 only)
+=================================
+
+Controls user space access for reading perf event counters. When set to 1,
+user space can read performance monitor counter registers directly.
+
+The default value is 0 (access disabled).
+
+See Documentation/arm64/perf.rst for more information.
+
+
pid_max
=======