summaryrefslogtreecommitdiff
path: root/Documentation/RCU/Design/Requirements/Requirements.html
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/RCU/Design/Requirements/Requirements.html')
-rw-r--r--Documentation/RCU/Design/Requirements/Requirements.html941
1 files changed, 534 insertions, 407 deletions
diff --git a/Documentation/RCU/Design/Requirements/Requirements.html b/Documentation/RCU/Design/Requirements/Requirements.html
index a725f9900ec8..e7e24b3e86e2 100644
--- a/Documentation/RCU/Design/Requirements/Requirements.html
+++ b/Documentation/RCU/Design/Requirements/Requirements.html
@@ -1,5 +1,3 @@
-<!-- DO NOT HAND EDIT. -->
-<!-- Instead, edit Documentation/RCU/Design/Requirements/Requirements.htmlx and run 'sh htmlqqz.sh Documentation/RCU/Design/Requirements/Requirements' -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
@@ -65,8 +63,8 @@ All that aside, here are the categories of currently known RCU requirements:
<p>
This is followed by a <a href="#Summary">summary</a>,
-which is in turn followed by the inevitable
-<a href="#Answers to Quick Quizzes">answers to the quick quizzes</a>.
+however, the answers to each quick quiz immediately follows the quiz.
+Select the big white space with your mouse to see the answer.
<h2><a name="Fundamental Requirements">Fundamental Requirements</a></h2>
@@ -153,13 +151,27 @@ Therefore, the outcome:
</blockquote>
cannot happen.
-<p><a name="Quick Quiz 1"><b>Quick Quiz 1</b>:</a>
-Wait a minute!
-You said that updaters can make useful forward progress concurrently
-with readers, but pre-existing readers will block
-<tt>synchronize_rcu()</tt>!!!
-Just who are you trying to fool???
-<br><a href="#qq1answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ Wait a minute!
+ You said that updaters can make useful forward progress concurrently
+ with readers, but pre-existing readers will block
+ <tt>synchronize_rcu()</tt>!!!
+ Just who are you trying to fool???
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ First, if updaters do not wish to be blocked by readers, they can use
+ <tt>call_rcu()</tt> or <tt>kfree_rcu()</tt>, which will
+ be discussed later.
+ Second, even when using <tt>synchronize_rcu()</tt>, the other
+ update-side code does run concurrently with readers, whether
+ pre-existing or not.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
This scenario resembles one of the first uses of RCU in
@@ -210,9 +222,20 @@ to guarantee that <tt>do_something()</tt> never runs concurrently
with <tt>recovery()</tt>, but with little or no synchronization
overhead in <tt>do_something_dlm()</tt>.
-<p><a name="Quick Quiz 2"><b>Quick Quiz 2</b>:</a>
-Why is the <tt>synchronize_rcu()</tt> on line&nbsp;28 needed?
-<br><a href="#qq2answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ Why is the <tt>synchronize_rcu()</tt> on line&nbsp;28 needed?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ Without that extra grace period, memory reordering could result in
+ <tt>do_something_dlm()</tt> executing <tt>do_something()</tt>
+ concurrently with the last bits of <tt>recovery()</tt>.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
In order to avoid fatal problems such as deadlocks,
@@ -332,12 +355,27 @@ It also prevents any number of &ldquo;interesting&rdquo; compiler
optimizations, for example, the use of <tt>gp</tt> as a scratch
location immediately preceding the assignment.
-<p><a name="Quick Quiz 3"><b>Quick Quiz 3</b>:</a>
-But <tt>rcu_assign_pointer()</tt> does nothing to prevent the
-two assignments to <tt>p-&gt;a</tt> and <tt>p-&gt;b</tt>
-from being reordered.
-Can't that also cause problems?
-<br><a href="#qq3answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ But <tt>rcu_assign_pointer()</tt> does nothing to prevent the
+ two assignments to <tt>p-&gt;a</tt> and <tt>p-&gt;b</tt>
+ from being reordered.
+ Can't that also cause problems?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ No, it cannot.
+ The readers cannot see either of these two fields until
+ the assignment to <tt>gp</tt>, by which time both fields are
+ fully initialized.
+ So reordering the assignments
+ to <tt>p-&gt;a</tt> and <tt>p-&gt;b</tt> cannot possibly
+ cause any problems.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
It is tempting to assume that the reader need not do anything special
@@ -494,11 +532,42 @@ The <tt>rcu_access_pointer()</tt> on line&nbsp;6 is similar to
code protected by the corresponding update-side lock.
</ol>
-<p><a name="Quick Quiz 4"><b>Quick Quiz 4</b>:</a>
-Without the <tt>rcu_dereference()</tt> or the
-<tt>rcu_access_pointer()</tt>, what destructive optimizations
-might the compiler make use of?
-<br><a href="#qq4answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ Without the <tt>rcu_dereference()</tt> or the
+ <tt>rcu_access_pointer()</tt>, what destructive optimizations
+ might the compiler make use of?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ Let's start with what happens to <tt>do_something_gp()</tt>
+ if it fails to use <tt>rcu_dereference()</tt>.
+ It could reuse a value formerly fetched from this same pointer.
+ It could also fetch the pointer from <tt>gp</tt> in a byte-at-a-time
+ manner, resulting in <i>load tearing</i>, in turn resulting a bytewise
+ mash-up of two distince pointer values.
+ It might even use value-speculation optimizations, where it makes
+ a wrong guess, but by the time it gets around to checking the
+ value, an update has changed the pointer to match the wrong guess.
+ Too bad about any dereferences that returned pre-initialization garbage
+ in the meantime!
+ </font>
+
+ <p><font color="ffffff">
+ For <tt>remove_gp_synchronous()</tt>, as long as all modifications
+ to <tt>gp</tt> are carried out while holding <tt>gp_lock</tt>,
+ the above optimizations are harmless.
+ However,
+ with <tt>CONFIG_SPARSE_RCU_POINTER=y</tt>,
+ <tt>sparse</tt> will complain if you
+ define <tt>gp</tt> with <tt>__rcu</tt> and then
+ access it without using
+ either <tt>rcu_access_pointer()</tt> or <tt>rcu_dereference()</tt>.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
In short, RCU's publish-subscribe guarantee is provided by the combination
@@ -571,17 +640,156 @@ systems with more than one CPU:
<tt>synchronize_rcu()</tt> migrates in the meantime.
</ol>
-<p><a name="Quick Quiz 5"><b>Quick Quiz 5</b>:</a>
-Given that multiple CPUs can start RCU read-side critical sections
-at any time without any ordering whatsoever, how can RCU possibly tell whether
-or not a given RCU read-side critical section starts before a
-given instance of <tt>synchronize_rcu()</tt>?
-<br><a href="#qq5answer">Answer</a>
-
-<p><a name="Quick Quiz 6"><b>Quick Quiz 6</b>:</a>
-The first and second guarantees require unbelievably strict ordering!
-Are all these memory barriers <i> really</i> required?
-<br><a href="#qq6answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ Given that multiple CPUs can start RCU read-side critical sections
+ at any time without any ordering whatsoever, how can RCU possibly
+ tell whether or not a given RCU read-side critical section starts
+ before a given instance of <tt>synchronize_rcu()</tt>?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ If RCU cannot tell whether or not a given
+ RCU read-side critical section starts before a
+ given instance of <tt>synchronize_rcu()</tt>,
+ then it must assume that the RCU read-side critical section
+ started first.
+ In other words, a given instance of <tt>synchronize_rcu()</tt>
+ can avoid waiting on a given RCU read-side critical section only
+ if it can prove that <tt>synchronize_rcu()</tt> started first.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
+
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ The first and second guarantees require unbelievably strict ordering!
+ Are all these memory barriers <i> really</i> required?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ Yes, they really are required.
+ To see why the first guarantee is required, consider the following
+ sequence of events:
+ </font>
+
+ <ol>
+ <li> <font color="ffffff">
+ CPU 1: <tt>rcu_read_lock()</tt>
+ </font>
+ <li> <font color="ffffff">
+ CPU 1: <tt>q = rcu_dereference(gp);
+ /* Very likely to return p. */</tt>
+ </font>
+ <li> <font color="ffffff">
+ CPU 0: <tt>list_del_rcu(p);</tt>
+ </font>
+ <li> <font color="ffffff">
+ CPU 0: <tt>synchronize_rcu()</tt> starts.
+ </font>
+ <li> <font color="ffffff">
+ CPU 1: <tt>do_something_with(q-&gt;a);
+ /* No smp_mb(), so might happen after kfree(). */</tt>
+ </font>
+ <li> <font color="ffffff">
+ CPU 1: <tt>rcu_read_unlock()</tt>
+ </font>
+ <li> <font color="ffffff">
+ CPU 0: <tt>synchronize_rcu()</tt> returns.
+ </font>
+ <li> <font color="ffffff">
+ CPU 0: <tt>kfree(p);</tt>
+ </font>
+ </ol>
+
+ <p><font color="ffffff">
+ Therefore, there absolutely must be a full memory barrier between the
+ end of the RCU read-side critical section and the end of the
+ grace period.
+ </font>
+
+ <p><font color="ffffff">
+ The sequence of events demonstrating the necessity of the second rule
+ is roughly similar:
+ </font>
+
+ <ol>
+ <li> <font color="ffffff">CPU 0: <tt>list_del_rcu(p);</tt>
+ </font>
+ <li> <font color="ffffff">CPU 0: <tt>synchronize_rcu()</tt> starts.
+ </font>
+ <li> <font color="ffffff">CPU 1: <tt>rcu_read_lock()</tt>
+ </font>
+ <li> <font color="ffffff">CPU 1: <tt>q = rcu_dereference(gp);
+ /* Might return p if no memory barrier. */</tt>
+ </font>
+ <li> <font color="ffffff">CPU 0: <tt>synchronize_rcu()</tt> returns.
+ </font>
+ <li> <font color="ffffff">CPU 0: <tt>kfree(p);</tt>
+ </font>
+ <li> <font color="ffffff">
+ CPU 1: <tt>do_something_with(q-&gt;a); /* Boom!!! */</tt>
+ </font>
+ <li> <font color="ffffff">CPU 1: <tt>rcu_read_unlock()</tt>
+ </font>
+ </ol>
+
+ <p><font color="ffffff">
+ And similarly, without a memory barrier between the beginning of the
+ grace period and the beginning of the RCU read-side critical section,
+ CPU&nbsp;1 might end up accessing the freelist.
+ </font>
+
+ <p><font color="ffffff">
+ The &ldquo;as if&rdquo; rule of course applies, so that any
+ implementation that acts as if the appropriate memory barriers
+ were in place is a correct implementation.
+ That said, it is much easier to fool yourself into believing
+ that you have adhered to the as-if rule than it is to actually
+ adhere to it!
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
+
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ You claim that <tt>rcu_read_lock()</tt> and <tt>rcu_read_unlock()</tt>
+ generate absolutely no code in some kernel builds.
+ This means that the compiler might arbitrarily rearrange consecutive
+ RCU read-side critical sections.
+ Given such rearrangement, if a given RCU read-side critical section
+ is done, how can you be sure that all prior RCU read-side critical
+ sections are done?
+ Won't the compiler rearrangements make that impossible to determine?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ In cases where <tt>rcu_read_lock()</tt> and <tt>rcu_read_unlock()</tt>
+ generate absolutely no code, RCU infers quiescent states only at
+ special locations, for example, within the scheduler.
+ Because calls to <tt>schedule()</tt> had better prevent calling-code
+ accesses to shared variables from being rearranged across the call to
+ <tt>schedule()</tt>, if RCU detects the end of a given RCU read-side
+ critical section, it will necessarily detect the end of all prior
+ RCU read-side critical sections, no matter how aggressively the
+ compiler scrambles the code.
+ </font>
+
+ <p><font color="ffffff">
+ Again, this all assumes that the compiler cannot scramble code across
+ calls to the scheduler, out of interrupt handlers, into the idle loop,
+ into user-mode code, and so on.
+ But if your kernel build allows that sort of scrambling, you have broken
+ far more than just RCU!
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
Note that these memory-barrier requirements do not replace the fundamental
@@ -626,9 +834,19 @@ inconvenience can be avoided through use of the
<tt>call_rcu()</tt> and <tt>kfree_rcu()</tt> API members
described later in this document.
-<p><a name="Quick Quiz 7"><b>Quick Quiz 7</b>:</a>
-But how does the upgrade-to-write operation exclude other readers?
-<br><a href="#qq7answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ But how does the upgrade-to-write operation exclude other readers?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ It doesn't, just like normal RCU updates, which also do not exclude
+ RCU readers.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
This guarantee allows lookup code to be shared between read-side
@@ -714,9 +932,20 @@ to do significant reordering.
This is by design: Any significant ordering constraints would slow down
these fast-path APIs.
-<p><a name="Quick Quiz 8"><b>Quick Quiz 8</b>:</a>
-Can't the compiler also reorder this code?
-<br><a href="#qq8answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ Can't the compiler also reorder this code?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ No, the volatile casts in <tt>READ_ONCE()</tt> and
+ <tt>WRITE_ONCE()</tt> prevent the compiler from reordering in
+ this particular case.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<h3><a name="Readers Do Not Exclude Updaters">Readers Do Not Exclude Updaters</a></h3>
@@ -769,10 +998,28 @@ new readers can start immediately after <tt>synchronize_rcu()</tt>
starts, and <tt>synchronize_rcu()</tt> is under no
obligation to wait for these new readers.
-<p><a name="Quick Quiz 9"><b>Quick Quiz 9</b>:</a>
-Suppose that synchronize_rcu() did wait until all readers had completed.
-Would the updater be able to rely on this?
-<br><a href="#qq9answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ Suppose that synchronize_rcu() did wait until <i>all</i>
+ readers had completed instead of waiting only on
+ pre-existing readers.
+ For how long would the updater be able to rely on there
+ being no readers?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ For no time at all.
+ Even if <tt>synchronize_rcu()</tt> were to wait until
+ all readers had completed, a new reader might start immediately after
+ <tt>synchronize_rcu()</tt> completed.
+ Therefore, the code following
+ <tt>synchronize_rcu()</tt> can <i>never</i> rely on there being
+ no readers.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<h3><a name="Grace Periods Don't Partition Read-Side Critical Sections">
Grace Periods Don't Partition Read-Side Critical Sections</a></h3>
@@ -969,11 +1216,24 @@ grace period.
As a result, an RCU read-side critical section cannot partition a pair
of RCU grace periods.
-<p><a name="Quick Quiz 10"><b>Quick Quiz 10</b>:</a>
-How long a sequence of grace periods, each separated by an RCU read-side
-critical section, would be required to partition the RCU read-side
-critical sections at the beginning and end of the chain?
-<br><a href="#qq10answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ How long a sequence of grace periods, each separated by an RCU
+ read-side critical section, would be required to partition the RCU
+ read-side critical sections at the beginning and end of the chain?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ In theory, an infinite number.
+ In practice, an unknown number that is sensitive to both implementation
+ details and timing considerations.
+ Therefore, even in practice, RCU users must abide by the
+ theoretical rather than the practical answer.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<h3><a name="Disabling Preemption Does Not Block Grace Periods">
Disabling Preemption Does Not Block Grace Periods</a></h3>
@@ -1109,12 +1369,27 @@ These classes is covered in the following sections.
<h3><a name="Specialization">Specialization</a></h3>
<p>
-RCU is and always has been intended primarily for read-mostly situations, as
-illustrated by the following figure.
-This means that RCU's read-side primitives are optimized, often at the
+RCU is and always has been intended primarily for read-mostly situations,
+which means that RCU's read-side primitives are optimized, often at the
expense of its update-side primitives.
+Experience thus far is captured by the following list of situations:
-<p><img src="RCUApplicability.svg" alt="RCUApplicability.svg" width="70%"></p>
+<ol>
+<li> Read-mostly data, where stale and inconsistent data is not
+ a problem: RCU works great!
+<li> Read-mostly data, where data must be consistent:
+ RCU works well.
+<li> Read-write data, where data must be consistent:
+ RCU <i>might</i> work OK.
+ Or not.
+<li> Write-mostly data, where data must be consistent:
+ RCU is very unlikely to be the right tool for the job,
+ with the following exceptions, where RCU can provide:
+ <ol type=a>
+ <li> Existence guarantees for update-friendly mechanisms.
+ <li> Wait-free read-side primitives for real-time use.
+ </ol>
+</ol>
<p>
This focus on read-mostly situations means that RCU must interoperate
@@ -1127,9 +1402,43 @@ synchronization primitives be legal within RCU read-side critical sections,
including spinlocks, sequence locks, atomic operations, reference
counters, and memory barriers.
-<p><a name="Quick Quiz 11"><b>Quick Quiz 11</b>:</a>
-What about sleeping locks?
-<br><a href="#qq11answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ What about sleeping locks?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ These are forbidden within Linux-kernel RCU read-side critical
+ sections because it is not legal to place a quiescent state
+ (in this case, voluntary context switch) within an RCU read-side
+ critical section.
+ However, sleeping locks may be used within userspace RCU read-side
+ critical sections, and also within Linux-kernel sleepable RCU
+ <a href="#Sleepable RCU"><font color="ffffff">(SRCU)</font></a>
+ read-side critical sections.
+ In addition, the -rt patchset turns spinlocks into a
+ sleeping locks so that the corresponding critical sections
+ can be preempted, which also means that these sleeplockified
+ spinlocks (but not other sleeping locks!) may be acquire within
+ -rt-Linux-kernel RCU read-side critical sections.
+ </font>
+
+ <p><font color="ffffff">
+ Note that it <i>is</i> legal for a normal RCU read-side
+ critical section to conditionally acquire a sleeping locks
+ (as in <tt>mutex_trylock()</tt>), but only as long as it does
+ not loop indefinitely attempting to conditionally acquire that
+ sleeping locks.
+ The key point is that things like <tt>mutex_trylock()</tt>
+ either return with the mutex held, or return an error indication if
+ the mutex was not immediately available.
+ Either way, <tt>mutex_trylock()</tt> returns immediately without
+ sleeping.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
It often comes as a surprise that many algorithms do not require a
@@ -1160,10 +1469,7 @@ some period of time, so the exact wait period is a judgment call.
One of our pair of veternarians might wait 30 seconds before pronouncing
the cat dead, while the other might insist on waiting a full minute.
The two veternarians would then disagree on the state of the cat during
-the final 30 seconds of the minute following the last heartbeat, as
-fancifully illustrated below:
-
-<p><img src="2013-08-is-it-dead.png" alt="2013-08-is-it-dead.png" width="431"></p>
+the final 30 seconds of the minute following the last heartbeat.
<p>
Interestingly enough, this same situation applies to hardware.
@@ -1343,7 +1649,8 @@ situations where neither <tt>synchronize_rcu()</tt> nor
<tt>synchronize_rcu_expedited()</tt> would be legal,
including within preempt-disable code, <tt>local_bh_disable()</tt> code,
interrupt-disable code, and interrupt handlers.
-However, even <tt>call_rcu()</tt> is illegal within NMI handlers.
+However, even <tt>call_rcu()</tt> is illegal within NMI handlers
+and from idle and offline CPUs.
The callback function (<tt>remove_gp_cb()</tt> in this case) will be
executed within softirq (software interrupt) environment within the
Linux kernel,
@@ -1354,12 +1661,27 @@ write an RCU callback function that takes too long.
Long-running operations should be relegated to separate threads or
(in the Linux kernel) workqueues.
-<p><a name="Quick Quiz 12"><b>Quick Quiz 12</b>:</a>
-Why does line&nbsp;19 use <tt>rcu_access_pointer()</tt>?
-After all, <tt>call_rcu()</tt> on line&nbsp;25 stores into the
-structure, which would interact badly with concurrent insertions.
-Doesn't this mean that <tt>rcu_dereference()</tt> is required?
-<br><a href="#qq12answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ Why does line&nbsp;19 use <tt>rcu_access_pointer()</tt>?
+ After all, <tt>call_rcu()</tt> on line&nbsp;25 stores into the
+ structure, which would interact badly with concurrent insertions.
+ Doesn't this mean that <tt>rcu_dereference()</tt> is required?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ Presumably the <tt>-&gt;gp_lock</tt> acquired on line&nbsp;18 excludes
+ any changes, including any insertions that <tt>rcu_dereference()</tt>
+ would protect against.
+ Therefore, any insertions will be delayed until after
+ <tt>-&gt;gp_lock</tt>
+ is released on line&nbsp;25, which in turn means that
+ <tt>rcu_access_pointer()</tt> suffices.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
However, all that <tt>remove_gp_cb()</tt> is doing is
@@ -1406,14 +1728,31 @@ This was due to the fact that RCU was not heavily used within DYNIX/ptx,
so the very few places that needed something like
<tt>synchronize_rcu()</tt> simply open-coded it.
-<p><a name="Quick Quiz 13"><b>Quick Quiz 13</b>:</a>
-Earlier it was claimed that <tt>call_rcu()</tt> and
-<tt>kfree_rcu()</tt> allowed updaters to avoid being blocked
-by readers.
-But how can that be correct, given that the invocation of the callback
-and the freeing of the memory (respectively) must still wait for
-a grace period to elapse?
-<br><a href="#qq13answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ Earlier it was claimed that <tt>call_rcu()</tt> and
+ <tt>kfree_rcu()</tt> allowed updaters to avoid being blocked
+ by readers.
+ But how can that be correct, given that the invocation of the callback
+ and the freeing of the memory (respectively) must still wait for
+ a grace period to elapse?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ We could define things this way, but keep in mind that this sort of
+ definition would say that updates in garbage-collected languages
+ cannot complete until the next time the garbage collector runs,
+ which does not seem at all reasonable.
+ The key point is that in most cases, an updater using either
+ <tt>call_rcu()</tt> or <tt>kfree_rcu()</tt> can proceed to the
+ next update as soon as it has invoked <tt>call_rcu()</tt> or
+ <tt>kfree_rcu()</tt>, without having to wait for a subsequent
+ grace period.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
But what if the updater must wait for the completion of code to be
@@ -1838,11 +2177,26 @@ kthreads to be spawned.
Therefore, invoking <tt>synchronize_rcu()</tt> during scheduler
initialization can result in deadlock.
-<p><a name="Quick Quiz 14"><b>Quick Quiz 14</b>:</a>
-So what happens with <tt>synchronize_rcu()</tt> during
-scheduler initialization for <tt>CONFIG_PREEMPT=n</tt>
-kernels?
-<br><a href="#qq14answer">Answer</a>
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ So what happens with <tt>synchronize_rcu()</tt> during
+ scheduler initialization for <tt>CONFIG_PREEMPT=n</tt>
+ kernels?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ In <tt>CONFIG_PREEMPT=n</tt> kernel, <tt>synchronize_rcu()</tt>
+ maps directly to <tt>synchronize_sched()</tt>.
+ Therefore, <tt>synchronize_rcu()</tt> works normally throughout
+ boot in <tt>CONFIG_PREEMPT=n</tt> kernels.
+ However, your code must also work in <tt>CONFIG_PREEMPT=y</tt> kernels,
+ so it is still necessary to avoid invoking <tt>synchronize_rcu()</tt>
+ during scheduler initialization.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
<p>
I learned of these boot-time requirements as a result of a series of
@@ -2171,6 +2525,14 @@ This real-time requirement motivated the grace-period kthread, which
also simplified handling of a number of race conditions.
<p>
+RCU must avoid degrading real-time response for CPU-bound threads, whether
+executing in usermode (which is one use case for
+<tt>CONFIG_NO_HZ_FULL=y</tt>) or in the kernel.
+That said, CPU-bound loops in the kernel must execute
+<tt>cond_resched_rcu_qs()</tt> at least once per few tens of milliseconds
+in order to avoid receiving an IPI from RCU.
+
+<p>
Finally, RCU's status as a synchronization primitive means that
any RCU failure can result in arbitrary memory corruption that can be
extremely difficult to debug.
@@ -2223,6 +2585,8 @@ described in a separate section.
<li> <a href="#Sched Flavor">Sched Flavor</a>
<li> <a href="#Sleepable RCU">Sleepable RCU</a>
<li> <a href="#Tasks RCU">Tasks RCU</a>
+<li> <a href="#Waiting for Multiple Grace Periods">
+ Waiting for Multiple Grace Periods</a>
</ol>
<h3><a name="Bottom-Half Flavor">Bottom-Half Flavor</a></h3>
@@ -2472,6 +2836,94 @@ The tasks-RCU API is quite compact, consisting only of
<tt>synchronize_rcu_tasks()</tt>, and
<tt>rcu_barrier_tasks()</tt>.
+<h3><a name="Waiting for Multiple Grace Periods">
+Waiting for Multiple Grace Periods</a></h3>
+
+<p>
+Perhaps you have an RCU protected data structure that is accessed from
+RCU read-side critical sections, from softirq handlers, and from
+hardware interrupt handlers.
+That is three flavors of RCU, the normal flavor, the bottom-half flavor,
+and the sched flavor.
+How to wait for a compound grace period?
+
+<p>
+The best approach is usually to &ldquo;just say no!&rdquo; and
+insert <tt>rcu_read_lock()</tt> and <tt>rcu_read_unlock()</tt>
+around each RCU read-side critical section, regardless of what
+environment it happens to be in.
+But suppose that some of the RCU read-side critical sections are
+on extremely hot code paths, and that use of <tt>CONFIG_PREEMPT=n</tt>
+is not a viable option, so that <tt>rcu_read_lock()</tt> and
+<tt>rcu_read_unlock()</tt> are not free.
+What then?
+
+<p>
+You <i>could</i> wait on all three grace periods in succession, as follows:
+
+<blockquote>
+<pre>
+ 1 synchronize_rcu();
+ 2 synchronize_rcu_bh();
+ 3 synchronize_sched();
+</pre>
+</blockquote>
+
+<p>
+This works, but triples the update-side latency penalty.
+In cases where this is not acceptable, <tt>synchronize_rcu_mult()</tt>
+may be used to wait on all three flavors of grace period concurrently:
+
+<blockquote>
+<pre>
+ 1 synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched);
+</pre>
+</blockquote>
+
+<p>
+But what if it is necessary to also wait on SRCU?
+This can be done as follows:
+
+<blockquote>
+<pre>
+ 1 static void call_my_srcu(struct rcu_head *head,
+ 2 void (*func)(struct rcu_head *head))
+ 3 {
+ 4 call_srcu(&amp;my_srcu, head, func);
+ 5 }
+ 6
+ 7 synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched, call_my_srcu);
+</pre>
+</blockquote>
+
+<p>
+If you needed to wait on multiple different flavors of SRCU
+(but why???), you would need to create a wrapper function resembling
+<tt>call_my_srcu()</tt> for each SRCU flavor.
+
+<table>
+<tr><th>&nbsp;</th></tr>
+<tr><th align="left">Quick Quiz:</th></tr>
+<tr><td>
+ But what if I need to wait for multiple RCU flavors, but I also need
+ the grace periods to be expedited?
+</td></tr>
+<tr><th align="left">Answer:</th></tr>
+<tr><td bgcolor="#ffffff"><font color="ffffff">
+ If you are using expedited grace periods, there should be less penalty
+ for waiting on them in succession.
+ But if that is nevertheless a problem, you can use workqueues
+ or multiple kthreads to wait on the various expedited grace
+ periods concurrently.
+</font></td></tr>
+<tr><td>&nbsp;</td></tr>
+</table>
+
+<p>
+Again, it is usually better to adjust the RCU read-side critical sections
+to use a single flavor of RCU, but when this is not feasible, you can use
+<tt>synchronize_rcu_mult()</tt>.
+
<h2><a name="Possible Future Changes">Possible Future Changes</a></h2>
<p>
@@ -2569,329 +3021,4 @@ and is provided
under the terms of the Creative Commons Attribution-Share Alike 3.0
United States license.
-<h3><a name="Answers to Quick Quizzes">
-Answers to Quick Quizzes</a></h3>
-
-<a name="qq1answer"></a>
-<p><b>Quick Quiz 1</b>:
-Wait a minute!
-You said that updaters can make useful forward progress concurrently
-with readers, but pre-existing readers will block
-<tt>synchronize_rcu()</tt>!!!
-Just who are you trying to fool???
-
-
-</p><p><b>Answer</b>:
-First, if updaters do not wish to be blocked by readers, they can use
-<tt>call_rcu()</tt> or <tt>kfree_rcu()</tt>, which will
-be discussed later.
-Second, even when using <tt>synchronize_rcu()</tt>, the other
-update-side code does run concurrently with readers, whether pre-existing
-or not.
-
-
-</p><p><a href="#Quick%20Quiz%201"><b>Back to Quick Quiz 1</b>.</a>
-
-<a name="qq2answer"></a>
-<p><b>Quick Quiz 2</b>:
-Why is the <tt>synchronize_rcu()</tt> on line&nbsp;28 needed?
-
-
-</p><p><b>Answer</b>:
-Without that extra grace period, memory reordering could result in
-<tt>do_something_dlm()</tt> executing <tt>do_something()</tt>
-concurrently with the last bits of <tt>recovery()</tt>.
-
-
-</p><p><a href="#Quick%20Quiz%202"><b>Back to Quick Quiz 2</b>.</a>
-
-<a name="qq3answer"></a>
-<p><b>Quick Quiz 3</b>:
-But <tt>rcu_assign_pointer()</tt> does nothing to prevent the
-two assignments to <tt>p-&gt;a</tt> and <tt>p-&gt;b</tt>
-from being reordered.
-Can't that also cause problems?
-
-
-</p><p><b>Answer</b>:
-No, it cannot.
-The readers cannot see either of these two fields until
-the assignment to <tt>gp</tt>, by which time both fields are
-fully initialized.
-So reordering the assignments
-to <tt>p-&gt;a</tt> and <tt>p-&gt;b</tt> cannot possibly
-cause any problems.
-
-
-</p><p><a href="#Quick%20Quiz%203"><b>Back to Quick Quiz 3</b>.</a>
-
-<a name="qq4answer"></a>
-<p><b>Quick Quiz 4</b>:
-Without the <tt>rcu_dereference()</tt> or the
-<tt>rcu_access_pointer()</tt>, what destructive optimizations
-might the compiler make use of?
-
-
-</p><p><b>Answer</b>:
-Let's start with what happens to <tt>do_something_gp()</tt>
-if it fails to use <tt>rcu_dereference()</tt>.
-It could reuse a value formerly fetched from this same pointer.
-It could also fetch the pointer from <tt>gp</tt> in a byte-at-a-time
-manner, resulting in <i>load tearing</i>, in turn resulting a bytewise
-mash-up of two distince pointer values.
-It might even use value-speculation optimizations, where it makes a wrong
-guess, but by the time it gets around to checking the value, an update
-has changed the pointer to match the wrong guess.
-Too bad about any dereferences that returned pre-initialization garbage
-in the meantime!
-
-<p>
-For <tt>remove_gp_synchronous()</tt>, as long as all modifications
-to <tt>gp</tt> are carried out while holding <tt>gp_lock</tt>,
-the above optimizations are harmless.
-However,
-with <tt>CONFIG_SPARSE_RCU_POINTER=y</tt>,
-<tt>sparse</tt> will complain if you
-define <tt>gp</tt> with <tt>__rcu</tt> and then
-access it without using
-either <tt>rcu_access_pointer()</tt> or <tt>rcu_dereference()</tt>.
-
-
-</p><p><a href="#Quick%20Quiz%204"><b>Back to Quick Quiz 4</b>.</a>
-
-<a name="qq5answer"></a>
-<p><b>Quick Quiz 5</b>:
-Given that multiple CPUs can start RCU read-side critical sections
-at any time without any ordering whatsoever, how can RCU possibly tell whether
-or not a given RCU read-side critical section starts before a
-given instance of <tt>synchronize_rcu()</tt>?
-
-
-</p><p><b>Answer</b>:
-If RCU cannot tell whether or not a given
-RCU read-side critical section starts before a
-given instance of <tt>synchronize_rcu()</tt>,
-then it must assume that the RCU read-side critical section
-started first.
-In other words, a given instance of <tt>synchronize_rcu()</tt>
-can avoid waiting on a given RCU read-side critical section only
-if it can prove that <tt>synchronize_rcu()</tt> started first.
-
-
-</p><p><a href="#Quick%20Quiz%205"><b>Back to Quick Quiz 5</b>.</a>
-
-<a name="qq6answer"></a>
-<p><b>Quick Quiz 6</b>:
-The first and second guarantees require unbelievably strict ordering!
-Are all these memory barriers <i> really</i> required?
-
-
-</p><p><b>Answer</b>:
-Yes, they really are required.
-To see why the first guarantee is required, consider the following
-sequence of events:
-
-<ol>
-<li> CPU 1: <tt>rcu_read_lock()</tt>
-<li> CPU 1: <tt>q = rcu_dereference(gp);
- /* Very likely to return p. */</tt>
-<li> CPU 0: <tt>list_del_rcu(p);</tt>
-<li> CPU 0: <tt>synchronize_rcu()</tt> starts.
-<li> CPU 1: <tt>do_something_with(q-&gt;a);
- /* No smp_mb(), so might happen after kfree(). */</tt>
-<li> CPU 1: <tt>rcu_read_unlock()</tt>
-<li> CPU 0: <tt>synchronize_rcu()</tt> returns.
-<li> CPU 0: <tt>kfree(p);</tt>
-</ol>
-
-<p>
-Therefore, there absolutely must be a full memory barrier between the
-end of the RCU read-side critical section and the end of the
-grace period.
-
-<p>
-The sequence of events demonstrating the necessity of the second rule
-is roughly similar:
-
-<ol>
-<li> CPU 0: <tt>list_del_rcu(p);</tt>
-<li> CPU 0: <tt>synchronize_rcu()</tt> starts.
-<li> CPU 1: <tt>rcu_read_lock()</tt>
-<li> CPU 1: <tt>q = rcu_dereference(gp);
- /* Might return p if no memory barrier. */</tt>
-<li> CPU 0: <tt>synchronize_rcu()</tt> returns.
-<li> CPU 0: <tt>kfree(p);</tt>
-<li> CPU 1: <tt>do_something_with(q-&gt;a); /* Boom!!! */</tt>
-<li> CPU 1: <tt>rcu_read_unlock()</tt>
-</ol>
-
-<p>
-And similarly, without a memory barrier between the beginning of the
-grace period and the beginning of the RCU read-side critical section,
-CPU&nbsp;1 might end up accessing the freelist.
-
-<p>
-The &ldquo;as if&rdquo; rule of course applies, so that any implementation
-that acts as if the appropriate memory barriers were in place is a
-correct implementation.
-That said, it is much easier to fool yourself into believing that you have
-adhered to the as-if rule than it is to actually adhere to it!
-
-
-</p><p><a href="#Quick%20Quiz%206"><b>Back to Quick Quiz 6</b>.</a>
-
-<a name="qq7answer"></a>
-<p><b>Quick Quiz 7</b>:
-But how does the upgrade-to-write operation exclude other readers?
-
-
-</p><p><b>Answer</b>:
-It doesn't, just like normal RCU updates, which also do not exclude
-RCU readers.
-
-
-</p><p><a href="#Quick%20Quiz%207"><b>Back to Quick Quiz 7</b>.</a>
-
-<a name="qq8answer"></a>
-<p><b>Quick Quiz 8</b>:
-Can't the compiler also reorder this code?
-
-
-</p><p><b>Answer</b>:
-No, the volatile casts in <tt>READ_ONCE()</tt> and
-<tt>WRITE_ONCE()</tt> prevent the compiler from reordering in
-this particular case.
-
-
-</p><p><a href="#Quick%20Quiz%208"><b>Back to Quick Quiz 8</b>.</a>
-
-<a name="qq9answer"></a>
-<p><b>Quick Quiz 9</b>:
-Suppose that synchronize_rcu() did wait until all readers had completed.
-Would the updater be able to rely on this?
-
-
-</p><p><b>Answer</b>:
-No.
-Even if <tt>synchronize_rcu()</tt> were to wait until
-all readers had completed, a new reader might start immediately after
-<tt>synchronize_rcu()</tt> completed.
-Therefore, the code following
-<tt>synchronize_rcu()</tt> cannot rely on there being no readers
-in any case.
-
-
-</p><p><a href="#Quick%20Quiz%209"><b>Back to Quick Quiz 9</b>.</a>
-
-<a name="qq10answer"></a>
-<p><b>Quick Quiz 10</b>:
-How long a sequence of grace periods, each separated by an RCU read-side
-critical section, would be required to partition the RCU read-side
-critical sections at the beginning and end of the chain?
-
-
-</p><p><b>Answer</b>:
-In theory, an infinite number.
-In practice, an unknown number that is sensitive to both implementation
-details and timing considerations.
-Therefore, even in practice, RCU users must abide by the theoretical rather
-than the practical answer.
-
-
-</p><p><a href="#Quick%20Quiz%2010"><b>Back to Quick Quiz 10</b>.</a>
-
-<a name="qq11answer"></a>
-<p><b>Quick Quiz 11</b>:
-What about sleeping locks?
-
-
-</p><p><b>Answer</b>:
-These are forbidden within Linux-kernel RCU read-side critical sections
-because it is not legal to place a quiescent state (in this case,
-voluntary context switch) within an RCU read-side critical section.
-However, sleeping locks may be used within userspace RCU read-side critical
-sections, and also within Linux-kernel sleepable RCU
-<a href="#Sleepable RCU">(SRCU)</a>
-read-side critical sections.
-In addition, the -rt patchset turns spinlocks into a sleeping locks so
-that the corresponding critical sections can be preempted, which
-also means that these sleeplockified spinlocks (but not other sleeping locks!)
-may be acquire within -rt-Linux-kernel RCU read-side critical sections.
-
-<p>
-Note that it <i>is</i> legal for a normal RCU read-side critical section
-to conditionally acquire a sleeping locks (as in <tt>mutex_trylock()</tt>),
-but only as long as it does not loop indefinitely attempting to
-conditionally acquire that sleeping locks.
-The key point is that things like <tt>mutex_trylock()</tt>
-either return with the mutex held, or return an error indication if
-the mutex was not immediately available.
-Either way, <tt>mutex_trylock()</tt> returns immediately without sleeping.
-
-
-</p><p><a href="#Quick%20Quiz%2011"><b>Back to Quick Quiz 11</b>.</a>
-
-<a name="qq12answer"></a>
-<p><b>Quick Quiz 12</b>:
-Why does line&nbsp;19 use <tt>rcu_access_pointer()</tt>?
-After all, <tt>call_rcu()</tt> on line&nbsp;25 stores into the
-structure, which would interact badly with concurrent insertions.
-Doesn't this mean that <tt>rcu_dereference()</tt> is required?
-
-
-</p><p><b>Answer</b>:
-Presumably the <tt>-&gt;gp_lock</tt> acquired on line&nbsp;18 excludes
-any changes, including any insertions that <tt>rcu_dereference()</tt>
-would protect against.
-Therefore, any insertions will be delayed until after <tt>-&gt;gp_lock</tt>
-is released on line&nbsp;25, which in turn means that
-<tt>rcu_access_pointer()</tt> suffices.
-
-
-</p><p><a href="#Quick%20Quiz%2012"><b>Back to Quick Quiz 12</b>.</a>
-
-<a name="qq13answer"></a>
-<p><b>Quick Quiz 13</b>:
-Earlier it was claimed that <tt>call_rcu()</tt> and
-<tt>kfree_rcu()</tt> allowed updaters to avoid being blocked
-by readers.
-But how can that be correct, given that the invocation of the callback
-and the freeing of the memory (respectively) must still wait for
-a grace period to elapse?
-
-
-</p><p><b>Answer</b>:
-We could define things this way, but keep in mind that this sort of
-definition would say that updates in garbage-collected languages
-cannot complete until the next time the garbage collector runs,
-which does not seem at all reasonable.
-The key point is that in most cases, an updater using either
-<tt>call_rcu()</tt> or <tt>kfree_rcu()</tt> can proceed to the
-next update as soon as it has invoked <tt>call_rcu()</tt> or
-<tt>kfree_rcu()</tt>, without having to wait for a subsequent
-grace period.
-
-
-</p><p><a href="#Quick%20Quiz%2013"><b>Back to Quick Quiz 13</b>.</a>
-
-<a name="qq14answer"></a>
-<p><b>Quick Quiz 14</b>:
-So what happens with <tt>synchronize_rcu()</tt> during
-scheduler initialization for <tt>CONFIG_PREEMPT=n</tt>
-kernels?
-
-
-</p><p><b>Answer</b>:
-In <tt>CONFIG_PREEMPT=n</tt> kernel, <tt>synchronize_rcu()</tt>
-maps directly to <tt>synchronize_sched()</tt>.
-Therefore, <tt>synchronize_rcu()</tt> works normally throughout
-boot in <tt>CONFIG_PREEMPT=n</tt> kernels.
-However, your code must also work in <tt>CONFIG_PREEMPT=y</tt> kernels,
-so it is still necessary to avoid invoking <tt>synchronize_rcu()</tt>
-during scheduler initialization.
-
-
-</p><p><a href="#Quick%20Quiz%2014"><b>Back to Quick Quiz 14</b>.</a>
-
-
</body></html>