summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--rust/bindings/bindings_helper.h1
-rw-r--r--rust/helpers.c20
-rw-r--r--rust/kernel/alloc.rs7
-rw-r--r--rust/kernel/lib.rs1
-rw-r--r--rust/kernel/page.rs250
5 files changed, 279 insertions, 0 deletions
diff --git a/rust/bindings/bindings_helper.h b/rust/bindings/bindings_helper.h
index 52a1412338ef..f2bafb10f181 100644
--- a/rust/bindings/bindings_helper.h
+++ b/rust/bindings/bindings_helper.h
@@ -20,6 +20,7 @@
/* `bindgen` gets confused at certain things. */
const size_t RUST_CONST_HELPER_ARCH_SLAB_MINALIGN = ARCH_SLAB_MINALIGN;
+const size_t RUST_CONST_HELPER_PAGE_SIZE = PAGE_SIZE;
const gfp_t RUST_CONST_HELPER_GFP_ATOMIC = GFP_ATOMIC;
const gfp_t RUST_CONST_HELPER_GFP_KERNEL = GFP_KERNEL;
const gfp_t RUST_CONST_HELPER_GFP_KERNEL_ACCOUNT = GFP_KERNEL_ACCOUNT;
diff --git a/rust/helpers.c b/rust/helpers.c
index d6abe4bd45d9..305f0577fae9 100644
--- a/rust/helpers.c
+++ b/rust/helpers.c
@@ -25,6 +25,8 @@
#include <linux/build_bug.h>
#include <linux/err.h>
#include <linux/errname.h>
+#include <linux/gfp.h>
+#include <linux/highmem.h>
#include <linux/mutex.h>
#include <linux/refcount.h>
#include <linux/sched/signal.h>
@@ -94,6 +96,24 @@ int rust_helper_signal_pending(struct task_struct *t)
}
EXPORT_SYMBOL_GPL(rust_helper_signal_pending);
+struct page *rust_helper_alloc_pages(gfp_t gfp_mask, unsigned int order)
+{
+ return alloc_pages(gfp_mask, order);
+}
+EXPORT_SYMBOL_GPL(rust_helper_alloc_pages);
+
+void *rust_helper_kmap_local_page(struct page *page)
+{
+ return kmap_local_page(page);
+}
+EXPORT_SYMBOL_GPL(rust_helper_kmap_local_page);
+
+void rust_helper_kunmap_local(const void *addr)
+{
+ kunmap_local(addr);
+}
+EXPORT_SYMBOL_GPL(rust_helper_kunmap_local);
+
refcount_t rust_helper_REFCOUNT_INIT(int n)
{
return (refcount_t)REFCOUNT_INIT(n);
diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
index 396fe5a85a8f..1966bd407017 100644
--- a/rust/kernel/alloc.rs
+++ b/rust/kernel/alloc.rs
@@ -20,6 +20,13 @@ pub struct AllocError;
#[derive(Clone, Copy)]
pub struct Flags(u32);
+impl Flags {
+ /// Get the raw representation of this flag.
+ pub(crate) fn as_raw(self) -> u32 {
+ self.0
+ }
+}
+
impl core::ops::BitOr for Flags {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
index 767026db068e..5d310e79485f 100644
--- a/rust/kernel/lib.rs
+++ b/rust/kernel/lib.rs
@@ -35,6 +35,7 @@ pub mod ioctl;
pub mod kunit;
#[cfg(CONFIG_NET)]
pub mod net;
+pub mod page;
pub mod prelude;
pub mod print;
mod static_assert;
diff --git a/rust/kernel/page.rs b/rust/kernel/page.rs
new file mode 100644
index 000000000000..208a006d587c
--- /dev/null
+++ b/rust/kernel/page.rs
@@ -0,0 +1,250 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Kernel page allocation and management.
+
+use crate::{
+ alloc::{AllocError, Flags},
+ bindings,
+ error::code::*,
+ error::Result,
+ uaccess::UserSliceReader,
+};
+use core::ptr::{self, NonNull};
+
+/// A bitwise shift for the page size.
+pub const PAGE_SHIFT: usize = bindings::PAGE_SHIFT as usize;
+
+/// The number of bytes in a page.
+pub const PAGE_SIZE: usize = bindings::PAGE_SIZE;
+
+/// A bitmask that gives the page containing a given address.
+pub const PAGE_MASK: usize = !(PAGE_SIZE - 1);
+
+/// A pointer to a page that owns the page allocation.
+///
+/// # Invariants
+///
+/// The pointer is valid, and has ownership over the page.
+pub struct Page {
+ page: NonNull<bindings::page>,
+}
+
+// SAFETY: Pages have no logic that relies on them staying on a given thread, so moving them across
+// threads is safe.
+unsafe impl Send for Page {}
+
+// SAFETY: Pages have no logic that relies on them not being accessed concurrently, so accessing
+// them concurrently is safe.
+unsafe impl Sync for Page {}
+
+impl Page {
+ /// Allocates a new page.
+ ///
+ /// # Examples
+ ///
+ /// Allocate memory for a page.
+ ///
+ /// ```
+ /// use kernel::page::Page;
+ ///
+ /// # fn dox() -> Result<(), kernel::alloc::AllocError> {
+ /// let page = Page::alloc_page(GFP_KERNEL)?;
+ /// # Ok(()) }
+ /// ```
+ ///
+ /// Allocate memory for a page and zero its contents.
+ ///
+ /// ```
+ /// use kernel::page::Page;
+ ///
+ /// # fn dox() -> Result<(), kernel::alloc::AllocError> {
+ /// let page = Page::alloc_page(GFP_KERNEL | __GFP_ZERO)?;
+ /// # Ok(()) }
+ /// ```
+ pub fn alloc_page(flags: Flags) -> Result<Self, AllocError> {
+ // SAFETY: Depending on the value of `gfp_flags`, this call may sleep. Other than that, it
+ // is always safe to call this method.
+ let page = unsafe { bindings::alloc_pages(flags.as_raw(), 0) };
+ let page = NonNull::new(page).ok_or(AllocError)?;
+ // INVARIANT: We just successfully allocated a page, so we now have ownership of the newly
+ // allocated page. We transfer that ownership to the new `Page` object.
+ Ok(Self { page })
+ }
+
+ /// Returns a raw pointer to the page.
+ pub fn as_ptr(&self) -> *mut bindings::page {
+ self.page.as_ptr()
+ }
+
+ /// Runs a piece of code with this page mapped to an address.
+ ///
+ /// The page is unmapped when this call returns.
+ ///
+ /// # Using the raw pointer
+ ///
+ /// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
+ /// `PAGE_SIZE` bytes and for the duration in which the closure is called. The pointer might
+ /// only be mapped on the current thread, and when that is the case, dereferencing it on other
+ /// threads is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't
+ /// cause data races, the memory may be uninitialized, and so on.
+ ///
+ /// If multiple threads map the same page at the same time, then they may reference with
+ /// different addresses. However, even if the addresses are different, the underlying memory is
+ /// still the same for these purposes (e.g., it's still a data race if they both write to the
+ /// same underlying byte at the same time).
+ fn with_page_mapped<T>(&self, f: impl FnOnce(*mut u8) -> T) -> T {
+ // SAFETY: `page` is valid due to the type invariants on `Page`.
+ let mapped_addr = unsafe { bindings::kmap_local_page(self.as_ptr()) };
+
+ let res = f(mapped_addr.cast());
+
+ // This unmaps the page mapped above.
+ //
+ // SAFETY: Since this API takes the user code as a closure, it can only be used in a manner
+ // where the pages are unmapped in reverse order. This is as required by `kunmap_local`.
+ //
+ // In other words, if this call to `kunmap_local` happens when a different page should be
+ // unmapped first, then there must necessarily be a call to `kmap_local_page` other than the
+ // call just above in `with_page_mapped` that made that possible. In this case, it is the
+ // unsafe block that wraps that other call that is incorrect.
+ unsafe { bindings::kunmap_local(mapped_addr) };
+
+ res
+ }
+
+ /// Runs a piece of code with a raw pointer to a slice of this page, with bounds checking.
+ ///
+ /// If `f` is called, then it will be called with a pointer that points at `off` bytes into the
+ /// page, and the pointer will be valid for at least `len` bytes. The pointer is only valid on
+ /// this task, as this method uses a local mapping.
+ ///
+ /// If `off` and `len` refers to a region outside of this page, then this method returns
+ /// [`EINVAL`] and does not call `f`.
+ ///
+ /// # Using the raw pointer
+ ///
+ /// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
+ /// `len` bytes and for the duration in which the closure is called. The pointer might only be
+ /// mapped on the current thread, and when that is the case, dereferencing it on other threads
+ /// is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't cause
+ /// data races, the memory may be uninitialized, and so on.
+ ///
+ /// If multiple threads map the same page at the same time, then they may reference with
+ /// different addresses. However, even if the addresses are different, the underlying memory is
+ /// still the same for these purposes (e.g., it's still a data race if they both write to the
+ /// same underlying byte at the same time).
+ fn with_pointer_into_page<T>(
+ &self,
+ off: usize,
+ len: usize,
+ f: impl FnOnce(*mut u8) -> Result<T>,
+ ) -> Result<T> {
+ let bounds_ok = off <= PAGE_SIZE && len <= PAGE_SIZE && (off + len) <= PAGE_SIZE;
+
+ if bounds_ok {
+ self.with_page_mapped(move |page_addr| {
+ // SAFETY: The `off` integer is at most `PAGE_SIZE`, so this pointer offset will
+ // result in a pointer that is in bounds or one off the end of the page.
+ f(unsafe { page_addr.add(off) })
+ })
+ } else {
+ Err(EINVAL)
+ }
+ }
+
+ /// Maps the page and reads from it into the given buffer.
+ ///
+ /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
+ /// outside of the page, then this call returns [`EINVAL`].
+ ///
+ /// # Safety
+ ///
+ /// * Callers must ensure that `dst` is valid for writing `len` bytes.
+ /// * Callers must ensure that this call does not race with a write to the same page that
+ /// overlaps with this read.
+ pub unsafe fn read_raw(&self, dst: *mut u8, offset: usize, len: usize) -> Result {
+ self.with_pointer_into_page(offset, len, move |src| {
+ // SAFETY: If `with_pointer_into_page` calls into this closure, then
+ // it has performed a bounds check and guarantees that `src` is
+ // valid for `len` bytes.
+ //
+ // There caller guarantees that there is no data race.
+ unsafe { ptr::copy_nonoverlapping(src, dst, len) };
+ Ok(())
+ })
+ }
+
+ /// Maps the page and writes into it from the given buffer.
+ ///
+ /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
+ /// outside of the page, then this call returns [`EINVAL`].
+ ///
+ /// # Safety
+ ///
+ /// * Callers must ensure that `src` is valid for reading `len` bytes.
+ /// * Callers must ensure that this call does not race with a read or write to the same page
+ /// that overlaps with this write.
+ pub unsafe fn write_raw(&self, src: *const u8, offset: usize, len: usize) -> Result {
+ self.with_pointer_into_page(offset, len, move |dst| {
+ // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
+ // bounds check and guarantees that `dst` is valid for `len` bytes.
+ //
+ // There caller guarantees that there is no data race.
+ unsafe { ptr::copy_nonoverlapping(src, dst, len) };
+ Ok(())
+ })
+ }
+
+ /// Maps the page and zeroes the given slice.
+ ///
+ /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
+ /// outside of the page, then this call returns [`EINVAL`].
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this call does not race with a read or write to the same page that
+ /// overlaps with this write.
+ pub unsafe fn fill_zero_raw(&self, offset: usize, len: usize) -> Result {
+ self.with_pointer_into_page(offset, len, move |dst| {
+ // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
+ // bounds check and guarantees that `dst` is valid for `len` bytes.
+ //
+ // There caller guarantees that there is no data race.
+ unsafe { ptr::write_bytes(dst, 0u8, len) };
+ Ok(())
+ })
+ }
+
+ /// Copies data from userspace into this page.
+ ///
+ /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
+ /// outside of the page, then this call returns [`EINVAL`].
+ ///
+ /// Like the other `UserSliceReader` methods, data races are allowed on the userspace address.
+ /// However, they are not allowed on the page you are copying into.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that this call does not race with a read or write to the same page that
+ /// overlaps with this write.
+ pub unsafe fn copy_from_user_slice_raw(
+ &self,
+ reader: &mut UserSliceReader,
+ offset: usize,
+ len: usize,
+ ) -> Result {
+ self.with_pointer_into_page(offset, len, move |dst| {
+ // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
+ // bounds check and guarantees that `dst` is valid for `len` bytes. Furthermore, we have
+ // exclusive access to the slice since the caller guarantees that there are no races.
+ reader.read_raw(unsafe { core::slice::from_raw_parts_mut(dst.cast(), len) })
+ })
+ }
+}
+
+impl Drop for Page {
+ fn drop(&mut self) {
+ // SAFETY: By the type invariants, we have ownership of the page and can free it.
+ unsafe { bindings::__free_pages(self.page.as_ptr(), 0) };
+ }
+}