diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2020-08-04 00:11:08 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-08-04 00:11:08 +0300 |
commit | 145ff1ec090dce9beb5a9590b5dc288e7bb2e65d (patch) | |
tree | 3e10a7c59553e56c1ea5f0aa71a2c3c9d6b7982b /tools | |
parent | 8c4e1c027ae63c67c523d695e4e8565ff78af1ba (diff) | |
parent | 0e4cd9f2654915be8d09a1bd1b405ce5426e64c4 (diff) | |
download | linux-145ff1ec090dce9beb5a9590b5dc288e7bb2e65d.tar.xz |
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 and cross-arch updates from Catalin Marinas:
"Here's a slightly wider-spread set of updates for 5.9.
Going outside the usual arch/arm64/ area is the removal of
read_barrier_depends() series from Will and the MSI/IOMMU ID
translation series from Lorenzo.
The notable arm64 updates include ARMv8.4 TLBI range operations and
translation level hint, time namespace support, and perf.
Summary:
- Removal of the tremendously unpopular read_barrier_depends()
barrier, which is a NOP on all architectures apart from Alpha, in
favour of allowing architectures to override READ_ONCE() and do
whatever dance they need to do to ensure address dependencies
provide LOAD -> LOAD/STORE ordering.
This work also offers a potential solution if compilers are shown
to convert LOAD -> LOAD address dependencies into control
dependencies (e.g. under LTO), as weakly ordered architectures will
effectively be able to upgrade READ_ONCE() to smp_load_acquire().
The latter case is not used yet, but will be discussed further at
LPC.
- Make the MSI/IOMMU input/output ID translation PCI agnostic,
augment the MSI/IOMMU ACPI/OF ID mapping APIs to accept an input ID
bus-specific parameter and apply the resulting changes to the
device ID space provided by the Freescale FSL bus.
- arm64 support for TLBI range operations and translation table level
hints (part of the ARMv8.4 architecture version).
- Time namespace support for arm64.
- Export the virtual and physical address sizes in vmcoreinfo for
makedumpfile and crash utilities.
- CPU feature handling cleanups and checks for programmer errors
(overlapping bit-fields).
- ACPI updates for arm64: disallow AML accesses to EFI code regions
and kernel memory.
- perf updates for arm64.
- Miscellaneous fixes and cleanups, most notably PLT counting
optimisation for module loading, recordmcount fix to ignore
relocations other than R_AARCH64_CALL26, CMA areas reserved for
gigantic pages on 16K and 64K configurations.
- Trivial typos, duplicate words"
Link: http://lkml.kernel.org/r/20200710165203.31284-1-will@kernel.org
Link: http://lkml.kernel.org/r/20200619082013.13661-1-lorenzo.pieralisi@arm.com
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (82 commits)
arm64: use IRQ_STACK_SIZE instead of THREAD_SIZE for irq stack
arm64/mm: save memory access in check_and_switch_context() fast switch path
arm64: sigcontext.h: delete duplicated word
arm64: ptrace.h: delete duplicated word
arm64: pgtable-hwdef.h: delete duplicated words
bus: fsl-mc: Add ACPI support for fsl-mc
bus/fsl-mc: Refactor the MSI domain creation in the DPRC driver
of/irq: Make of_msi_map_rid() PCI bus agnostic
of/irq: make of_msi_map_get_device_domain() bus agnostic
dt-bindings: arm: fsl: Add msi-map device-tree binding for fsl-mc bus
of/device: Add input id to of_dma_configure()
of/iommu: Make of_map_rid() PCI agnostic
ACPI/IORT: Add an input ID to acpi_dma_configure()
ACPI/IORT: Remove useless PCI bus walk
ACPI/IORT: Make iort_msi_map_rid() PCI agnostic
ACPI/IORT: Make iort_get_device_domain IRQ domain agnostic
ACPI/IORT: Make iort_match_node_callback walk the ACPI namespace for NC
arm64: enable time namespace support
arm64/vdso: Restrict splitting VVAR VMA
arm64/vdso: Handle faults on timens page
...
Diffstat (limited to 'tools')
-rw-r--r-- | tools/bpf/Makefile | 3 | ||||
-rw-r--r-- | tools/include/uapi/linux/filter.h | 90 | ||||
-rw-r--r-- | tools/include/uapi/linux/perf_event.h | 23 | ||||
-rw-r--r-- | tools/memory-model/Documentation/explanation.txt | 26 |
4 files changed, 124 insertions, 18 deletions
diff --git a/tools/bpf/Makefile b/tools/bpf/Makefile index 6df1850f8353..8a69258fd8aa 100644 --- a/tools/bpf/Makefile +++ b/tools/bpf/Makefile @@ -9,7 +9,8 @@ MAKE = make INSTALL ?= install CFLAGS += -Wall -O2 -CFLAGS += -D__EXPORTED_HEADERS__ -I$(srctree)/include/uapi -I$(srctree)/include +CFLAGS += -D__EXPORTED_HEADERS__ -I$(srctree)/tools/include/uapi \ + -I$(srctree)/tools/include # This will work when bpf is built in tools env. where srctree # isn't set and when invoked from selftests build, where srctree diff --git a/tools/include/uapi/linux/filter.h b/tools/include/uapi/linux/filter.h new file mode 100644 index 000000000000..eaef459e7bd4 --- /dev/null +++ b/tools/include/uapi/linux/filter.h @@ -0,0 +1,90 @@ +/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ +/* + * Linux Socket Filter Data Structures + */ + +#ifndef __LINUX_FILTER_H__ +#define __LINUX_FILTER_H__ + + +#include <linux/types.h> +#include <linux/bpf_common.h> + +/* + * Current version of the filter code architecture. + */ +#define BPF_MAJOR_VERSION 1 +#define BPF_MINOR_VERSION 1 + +/* + * Try and keep these values and structures similar to BSD, especially + * the BPF code definitions which need to match so you can share filters + */ + +struct sock_filter { /* Filter block */ + __u16 code; /* Actual filter code */ + __u8 jt; /* Jump true */ + __u8 jf; /* Jump false */ + __u32 k; /* Generic multiuse field */ +}; + +struct sock_fprog { /* Required for SO_ATTACH_FILTER. */ + unsigned short len; /* Number of filter blocks */ + struct sock_filter *filter; +}; + +/* ret - BPF_K and BPF_X also apply */ +#define BPF_RVAL(code) ((code) & 0x18) +#define BPF_A 0x10 + +/* misc */ +#define BPF_MISCOP(code) ((code) & 0xf8) +#define BPF_TAX 0x00 +#define BPF_TXA 0x80 + +/* + * Macros for filter block array initializers. + */ +#ifndef BPF_STMT +#define BPF_STMT(code, k) { (unsigned short)(code), 0, 0, k } +#endif +#ifndef BPF_JUMP +#define BPF_JUMP(code, k, jt, jf) { (unsigned short)(code), jt, jf, k } +#endif + +/* + * Number of scratch memory words for: BPF_ST and BPF_STX + */ +#define BPF_MEMWORDS 16 + +/* RATIONALE. Negative offsets are invalid in BPF. + We use them to reference ancillary data. + Unlike introduction new instructions, it does not break + existing compilers/optimizers. + */ +#define SKF_AD_OFF (-0x1000) +#define SKF_AD_PROTOCOL 0 +#define SKF_AD_PKTTYPE 4 +#define SKF_AD_IFINDEX 8 +#define SKF_AD_NLATTR 12 +#define SKF_AD_NLATTR_NEST 16 +#define SKF_AD_MARK 20 +#define SKF_AD_QUEUE 24 +#define SKF_AD_HATYPE 28 +#define SKF_AD_RXHASH 32 +#define SKF_AD_CPU 36 +#define SKF_AD_ALU_XOR_X 40 +#define SKF_AD_VLAN_TAG 44 +#define SKF_AD_VLAN_TAG_PRESENT 48 +#define SKF_AD_PAY_OFFSET 52 +#define SKF_AD_RANDOM 56 +#define SKF_AD_VLAN_TPID 60 +#define SKF_AD_MAX 64 + +#define SKF_NET_OFF (-0x100000) +#define SKF_LL_OFF (-0x200000) + +#define BPF_NET_OFF SKF_NET_OFF +#define BPF_LL_OFF SKF_LL_OFF + +#endif /* __LINUX_FILTER_H__ */ diff --git a/tools/include/uapi/linux/perf_event.h b/tools/include/uapi/linux/perf_event.h index 7b2d6fc9e6ed..21a1edd08cbe 100644 --- a/tools/include/uapi/linux/perf_event.h +++ b/tools/include/uapi/linux/perf_event.h @@ -532,9 +532,10 @@ struct perf_event_mmap_page { cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ - cap_user_time : 1, /* The time_* fields are used */ + cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */ cap_user_time_zero : 1, /* The time_zero field is used */ - cap_____res : 59; + cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */ + cap_____res : 58; }; }; @@ -593,13 +594,29 @@ struct perf_event_mmap_page { * ((rem * time_mult) >> time_shift); */ __u64 time_zero; + __u32 size; /* Header size up to __reserved[] fields. */ + __u32 __reserved_1; + + /* + * If cap_usr_time_short, the hardware clock is less than 64bit wide + * and we must compute the 'cyc' value, as used by cap_usr_time, as: + * + * cyc = time_cycles + ((cyc - time_cycles) & time_mask) + * + * NOTE: this form is explicitly chosen such that cap_usr_time_short + * is a correction on top of cap_usr_time, and code that doesn't + * know about cap_usr_time_short still works under the assumption + * the counter doesn't wrap. + */ + __u64 time_cycles; + __u64 time_mask; /* * Hole for extension of the self monitor capabilities */ - __u8 __reserved[118*8+4]; /* align to 1k. */ + __u8 __reserved[116*8]; /* align to 1k. */ /* * Control data for the mmap() data buffer. diff --git a/tools/memory-model/Documentation/explanation.txt b/tools/memory-model/Documentation/explanation.txt index e91a2eb19592..01adf9e0ebac 100644 --- a/tools/memory-model/Documentation/explanation.txt +++ b/tools/memory-model/Documentation/explanation.txt @@ -1122,12 +1122,10 @@ maintain at least the appearance of FIFO order. In practice, this difficulty is solved by inserting a special fence between P1's two loads when the kernel is compiled for the Alpha architecture. In fact, as of version 4.15, the kernel automatically -adds this fence (called smp_read_barrier_depends() and defined as -nothing at all on non-Alpha builds) after every READ_ONCE() and atomic -load. The effect of the fence is to cause the CPU not to execute any -po-later instructions until after the local cache has finished -processing all the stores it has already received. Thus, if the code -was changed to: +adds this fence after every READ_ONCE() and atomic load on Alpha. The +effect of the fence is to cause the CPU not to execute any po-later +instructions until after the local cache has finished processing all +the stores it has already received. Thus, if the code was changed to: P1() { @@ -1146,14 +1144,14 @@ READ_ONCE() or another synchronization primitive rather than accessed directly. The LKMM requires that smp_rmb(), acquire fences, and strong fences -share this property with smp_read_barrier_depends(): They do not allow -the CPU to execute any po-later instructions (or po-later loads in the -case of smp_rmb()) until all outstanding stores have been processed by -the local cache. In the case of a strong fence, the CPU first has to -wait for all of its po-earlier stores to propagate to every other CPU -in the system; then it has to wait for the local cache to process all -the stores received as of that time -- not just the stores received -when the strong fence began. +share this property: They do not allow the CPU to execute any po-later +instructions (or po-later loads in the case of smp_rmb()) until all +outstanding stores have been processed by the local cache. In the +case of a strong fence, the CPU first has to wait for all of its +po-earlier stores to propagate to every other CPU in the system; then +it has to wait for the local cache to process all the stores received +as of that time -- not just the stores received when the strong fence +began. And of course, none of this matters for any architecture other than Alpha. |