summaryrefslogtreecommitdiff
path: root/tools/lib/bpf/libbpf.h
diff options
context:
space:
mode:
authorAndrii Nakryiko <andriin@fb.com>2020-05-29 10:54:21 +0300
committerAlexei Starovoitov <ast@kernel.org>2020-06-02 00:38:22 +0300
commitbf99c936f9478a05d51e9f101f90de70bee9a89c (patch)
treea86e2c74513f1cc4bfe77c315a21ef3f259b5de1 /tools/lib/bpf/libbpf.h
parent457f44363a8894135c85b7a9afd2bd8196db24ab (diff)
downloadlinux-bf99c936f9478a05d51e9f101f90de70bee9a89c.tar.xz
libbpf: Add BPF ring buffer support
Declaring and instantiating BPF ring buffer doesn't require any changes to libbpf, as it's just another type of maps. So using existing BTF-defined maps syntax with __uint(type, BPF_MAP_TYPE_RINGBUF) and __uint(max_elements, <size-of-ring-buf>) is all that's necessary to create and use BPF ring buffer. This patch adds BPF ring buffer consumer to libbpf. It is very similar to perf_buffer implementation in terms of API, but also attempts to fix some minor problems and inconveniences with existing perf_buffer API. ring_buffer support both single ring buffer use case (with just using ring_buffer__new()), as well as allows to add more ring buffers, each with its own callback and context. This allows to efficiently poll and consume multiple, potentially completely independent, ring buffers, using single epoll instance. The latter is actually a problem in practice for applications that are using multiple sets of perf buffers. They have to create multiple instances for struct perf_buffer and poll them independently or in a loop, each approach having its own problems (e.g., inability to use a common poll timeout). struct ring_buffer eliminates this problem by aggregating many independent ring buffer instances under the single "ring buffer manager". Second, perf_buffer's callback can't return error, so applications that need to stop polling due to error in data or data signalling the end, have to use extra mechanisms to signal that polling has to stop. ring_buffer's callback can return error, which will be passed through back to user code and can be acted upon appropariately. Two APIs allow to consume ring buffer data: - ring_buffer__poll(), which will wait for data availability notification and will consume data only from reported ring buffer(s); this API allows to efficiently use resources by reading data only when it becomes available; - ring_buffer__consume(), will attempt to read new records regardless of data availablity notification sub-system. This API is useful for cases when lowest latency is required, in expense of burning CPU resources. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200529075424.3139988-3-andriin@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'tools/lib/bpf/libbpf.h')
-rw-r--r--tools/lib/bpf/libbpf.h21
1 files changed, 21 insertions, 0 deletions
diff --git a/tools/lib/bpf/libbpf.h b/tools/lib/bpf/libbpf.h
index 1e2e399a5f2c..8528a02d5af8 100644
--- a/tools/lib/bpf/libbpf.h
+++ b/tools/lib/bpf/libbpf.h
@@ -478,6 +478,27 @@ LIBBPF_API int bpf_get_link_xdp_id(int ifindex, __u32 *prog_id, __u32 flags);
LIBBPF_API int bpf_get_link_xdp_info(int ifindex, struct xdp_link_info *info,
size_t info_size, __u32 flags);
+/* Ring buffer APIs */
+struct ring_buffer;
+
+typedef int (*ring_buffer_sample_fn)(void *ctx, void *data, size_t size);
+
+struct ring_buffer_opts {
+ size_t sz; /* size of this struct, for forward/backward compatiblity */
+};
+
+#define ring_buffer_opts__last_field sz
+
+LIBBPF_API struct ring_buffer *
+ring_buffer__new(int map_fd, ring_buffer_sample_fn sample_cb, void *ctx,
+ const struct ring_buffer_opts *opts);
+LIBBPF_API void ring_buffer__free(struct ring_buffer *rb);
+LIBBPF_API int ring_buffer__add(struct ring_buffer *rb, int map_fd,
+ ring_buffer_sample_fn sample_cb, void *ctx);
+LIBBPF_API int ring_buffer__poll(struct ring_buffer *rb, int timeout_ms);
+LIBBPF_API int ring_buffer__consume(struct ring_buffer *rb);
+
+/* Perf buffer APIs */
struct perf_buffer;
typedef void (*perf_buffer_sample_fn)(void *ctx, int cpu,