summaryrefslogtreecommitdiff
path: root/net/dsa/port.c
diff options
context:
space:
mode:
authorVladimir Oltean <vladimir.oltean@nxp.com>2021-01-29 04:00:06 +0300
committerJakub Kicinski <kuba@kernel.org>2021-01-30 08:24:39 +0300
commit53da0ebaad102626f56495e0967a614f89a2acc8 (patch)
treec486f052c58bb9859d0d73fe113b75e789a256a2 /net/dsa/port.c
parent357f203bb3b529fa7471494c7ad6a7a54d070353 (diff)
downloadlinux-53da0ebaad102626f56495e0967a614f89a2acc8.tar.xz
net: dsa: allow changing the tag protocol via the "tagging" device attribute
Currently DSA exposes the following sysfs: $ cat /sys/class/net/eno2/dsa/tagging ocelot which is a read-only device attribute, introduced in the kernel as commit 98cdb4807123 ("net: dsa: Expose tagging protocol to user-space"), and used by libpcap since its commit 993db3800d7d ("Add support for DSA link-layer types"). It would be nice if we could extend this device attribute by making it writable: $ echo ocelot-8021q > /sys/class/net/eno2/dsa/tagging This is useful with DSA switches that can make use of more than one tagging protocol. It may be useful in dsa_loop in the future too, to perform offline testing of various taggers, or for changing between dsa and edsa on Marvell switches, if that is desirable. In terms of implementation, drivers can support this feature by implementing .change_tag_protocol, which should always leave the switch in a consistent state: either with the new protocol if things went well, or with the old one if something failed. Teardown of the old protocol, if necessary, must be handled by the driver. Some things remain as before: - The .get_tag_protocol is currently only called at probe time, to load the initial tagging protocol driver. Nonetheless, new drivers should report the tagging protocol in current use now. - The driver should manage by itself the initial setup of tagging protocol, no later than the .setup() method, as well as destroying resources used by the last tagger in use, no earlier than the .teardown() method. For multi-switch DSA trees, error handling is a bit more complicated, since e.g. the 5th out of 7 switches may fail to change the tag protocol. When that happens, a revert to the original tag protocol is attempted, but that may fail too, leaving the tree in an inconsistent state despite each individual switch implementing .change_tag_protocol transactionally. Since the intersection between drivers that implement .change_tag_protocol and drivers that support D in DSA is currently the empty set, the possibility for this error to happen is ignored for now. Testing: $ insmod mscc_felix.ko [ 79.549784] mscc_felix 0000:00:00.5: Adding to iommu group 14 [ 79.565712] mscc_felix 0000:00:00.5: Failed to register DSA switch: -517 $ insmod tag_ocelot.ko $ rmmod mscc_felix.ko $ insmod mscc_felix.ko [ 97.261724] libphy: VSC9959 internal MDIO bus: probed [ 97.267363] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 0 [ 97.274998] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 1 [ 97.282561] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 2 [ 97.289700] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 3 [ 97.599163] mscc_felix 0000:00:00.5 swp0 (uninitialized): PHY [0000:00:00.3:10] driver [Microsemi GE VSC8514 SyncE] (irq=POLL) [ 97.862034] mscc_felix 0000:00:00.5 swp1 (uninitialized): PHY [0000:00:00.3:11] driver [Microsemi GE VSC8514 SyncE] (irq=POLL) [ 97.950731] mscc_felix 0000:00:00.5 swp0: configuring for inband/qsgmii link mode [ 97.964278] 8021q: adding VLAN 0 to HW filter on device swp0 [ 98.146161] mscc_felix 0000:00:00.5 swp2 (uninitialized): PHY [0000:00:00.3:12] driver [Microsemi GE VSC8514 SyncE] (irq=POLL) [ 98.238649] mscc_felix 0000:00:00.5 swp1: configuring for inband/qsgmii link mode [ 98.251845] 8021q: adding VLAN 0 to HW filter on device swp1 [ 98.433916] mscc_felix 0000:00:00.5 swp3 (uninitialized): PHY [0000:00:00.3:13] driver [Microsemi GE VSC8514 SyncE] (irq=POLL) [ 98.485542] mscc_felix 0000:00:00.5: configuring for fixed/internal link mode [ 98.503584] mscc_felix 0000:00:00.5: Link is Up - 2.5Gbps/Full - flow control rx/tx [ 98.527948] device eno2 entered promiscuous mode [ 98.544755] DSA: tree 0 setup $ ping 10.0.0.1 PING 10.0.0.1 (10.0.0.1): 56 data bytes 64 bytes from 10.0.0.1: seq=0 ttl=64 time=2.337 ms 64 bytes from 10.0.0.1: seq=1 ttl=64 time=0.754 ms ^C - 10.0.0.1 ping statistics - 2 packets transmitted, 2 packets received, 0% packet loss round-trip min/avg/max = 0.754/1.545/2.337 ms $ cat /sys/class/net/eno2/dsa/tagging ocelot $ cat ./test_ocelot_8021q.sh #!/bin/bash ip link set swp0 down ip link set swp1 down ip link set swp2 down ip link set swp3 down ip link set swp5 down ip link set eno2 down echo ocelot-8021q > /sys/class/net/eno2/dsa/tagging ip link set eno2 up ip link set swp0 up ip link set swp1 up ip link set swp2 up ip link set swp3 up ip link set swp5 up $ ./test_ocelot_8021q.sh ./test_ocelot_8021q.sh: line 9: echo: write error: Protocol not available $ rmmod tag_ocelot.ko rmmod: can't unload module 'tag_ocelot': Resource temporarily unavailable $ insmod tag_ocelot_8021q.ko $ ./test_ocelot_8021q.sh $ cat /sys/class/net/eno2/dsa/tagging ocelot-8021q $ rmmod tag_ocelot.ko $ rmmod tag_ocelot_8021q.ko rmmod: can't unload module 'tag_ocelot_8021q': Resource temporarily unavailable $ ping 10.0.0.1 PING 10.0.0.1 (10.0.0.1): 56 data bytes 64 bytes from 10.0.0.1: seq=0 ttl=64 time=0.953 ms 64 bytes from 10.0.0.1: seq=1 ttl=64 time=0.787 ms 64 bytes from 10.0.0.1: seq=2 ttl=64 time=0.771 ms $ rmmod mscc_felix.ko [ 645.544426] mscc_felix 0000:00:00.5: Link is Down [ 645.838608] DSA: tree 0 torn down $ rmmod tag_ocelot_8021q.ko Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Diffstat (limited to 'net/dsa/port.c')
-rw-r--r--net/dsa/port.c8
1 files changed, 8 insertions, 0 deletions
diff --git a/net/dsa/port.c b/net/dsa/port.c
index a8886cf40160..5e079a61528e 100644
--- a/net/dsa/port.c
+++ b/net/dsa/port.c
@@ -526,6 +526,14 @@ int dsa_port_vlan_del(struct dsa_port *dp,
return dsa_port_notify(dp, DSA_NOTIFIER_VLAN_DEL, &info);
}
+void dsa_port_set_tag_protocol(struct dsa_port *cpu_dp,
+ const struct dsa_device_ops *tag_ops)
+{
+ cpu_dp->filter = tag_ops->filter;
+ cpu_dp->rcv = tag_ops->rcv;
+ cpu_dp->tag_ops = tag_ops;
+}
+
static struct phy_device *dsa_port_get_phy_device(struct dsa_port *dp)
{
struct device_node *phy_dn;