summaryrefslogtreecommitdiff
path: root/mm/swap.c
diff options
context:
space:
mode:
authorHugh Dickins <hughd@google.com>2020-04-07 06:07:57 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2020-04-07 20:43:41 +0300
commit71725ed10c40696dc6bdccf8e225815dcef24dba (patch)
treeeb4437011ce1a71e6743d4929a43bbaefe23268b /mm/swap.c
parent343c3d7f0927e000427fae5e361aa560f83dd5b5 (diff)
downloadlinux-71725ed10c40696dc6bdccf8e225815dcef24dba.tar.xz
mm: huge tmpfs: try to split_huge_page() when punching hole
Yang Shi writes: Currently, when truncating a shmem file, if the range is partly in a THP (start or end is in the middle of THP), the pages actually will just get cleared rather than being freed, unless the range covers the whole THP. Even though all the subpages are truncated (randomly or sequentially), the THP may still be kept in page cache. This might be fine for some usecases which prefer preserving THP, but balloon inflation is handled in base page size. So when using shmem THP as memory backend, QEMU inflation actually doesn't work as expected since it doesn't free memory. But the inflation usecase really needs to get the memory freed. (Anonymous THP will also not get freed right away, but will be freed eventually when all subpages are unmapped: whereas shmem THP still stays in page cache.) Split THP right away when doing partial hole punch, and if split fails just clear the page so that read of the punched area will return zeroes. Hugh Dickins adds: Our earlier "team of pages" huge tmpfs implementation worked in the way that Yang Shi proposes; and we have been using this patch to continue to split the huge page when hole-punched or truncated, since converting over to the compound page implementation. Although huge tmpfs gives out huge pages when available, if the user specifically asks to truncate or punch a hole (perhaps to free memory, perhaps to reduce the memcg charge), then the filesystem should do so as best it can, splitting the huge page. That is not always possible: any additional reference to the huge page prevents split_huge_page() from succeeding, so the result can be flaky. But in practice it works successfully enough that we've not seen any problem from that. Add shmem_punch_compound() to encapsulate the decision of when a split is needed, and doing the split if so. Using this simplifies the flow in shmem_undo_range(); and the first (trylock) pass does not need to do any page clearing on failure, because the second pass will either succeed or do that clearing. Following the example of zero_user_segment() when clearing a partial page, add flush_dcache_page() and set_page_dirty() when clearing a hole - though I'm not certain that either is needed. But: split_huge_page() would be sure to fail if shmem_undo_range()'s pagevec holds further references to the huge page. The easiest way to fix that is for find_get_entries() to return early, as soon as it has put one compound head or tail into the pagevec. At first this felt like a hack; but on examination, this convention better suits all its callers - or will do, if the slight one-page-per-pagevec slowdown in shmem_unlock_mapping() and shmem_seek_hole_data() is transformed into a 512-page-per-pagevec speedup by checking for compound pages there. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2002261959020.10801@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/swap.c')
-rw-r--r--mm/swap.c4
1 files changed, 4 insertions, 0 deletions
diff --git a/mm/swap.c b/mm/swap.c
index 18505990c3b1..bf9a79fed62d 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -1004,6 +1004,10 @@ void __pagevec_lru_add(struct pagevec *pvec)
* ascending indexes. There may be holes in the indices due to
* not-present entries.
*
+ * Only one subpage of a Transparent Huge Page is returned in one call:
+ * allowing truncate_inode_pages_range() to evict the whole THP without
+ * cycling through a pagevec of extra references.
+ *
* pagevec_lookup_entries() returns the number of entries which were
* found.
*/