diff options
author | Huang Ying <ying.huang@intel.com> | 2017-07-07 01:37:18 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-07-07 02:24:31 +0300 |
commit | 38d8b4e6bdc872f07a3149309ab01719c96f3894 (patch) | |
tree | a4bdf8e41a90f49465829b98a46645af64b0103d /mm/memcontrol.c | |
parent | 9d85e15f1d552653c989dbecf051d8eea5937be8 (diff) | |
download | linux-38d8b4e6bdc872f07a3149309ab01719c96f3894.tar.xz |
mm, THP, swap: delay splitting THP during swap out
Patch series "THP swap: Delay splitting THP during swapping out", v11.
This patchset is to optimize the performance of Transparent Huge Page
(THP) swap.
Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine. Because the
performance of the storage device improved faster than that of single
logical CPU. And it seems that the trend will not change in the near
future. On the other hand, the THP becomes more and more popular
because of increased memory size. So it becomes necessary to optimize
THP swap performance.
The advantages of the THP swap support include:
- Batch the swap operations for the THP to reduce lock
acquiring/releasing, including allocating/freeing the swap space,
adding/deleting to/from the swap cache, and writing/reading the swap
space, etc. This will help improve the performance of the THP swap.
- The THP swap space read/write will be 2M sequential IO. It is
particularly helpful for the swap read, which are usually 4k random
IO. This will improve the performance of the THP swap too.
- It will help the memory fragmentation, especially when the THP is
heavily used by the applications. The 2M continuous pages will be
free up after THP swapping out.
- It will improve the THP utilization on the system with the swap
turned on. Because the speed for khugepaged to collapse the normal
pages into the THP is quite slow. After the THP is split during the
swapping out, it will take quite long time for the normal pages to
collapse back into the THP after being swapped in. The high THP
utilization helps the efficiency of the page based memory management
too.
There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device. To deal with that, the THP swap in should be turned
on only when necessary. For example, it can be selected via
"always/never/madvise" logic, to be turned on globally, turned off
globally, or turned on only for VMA with MADV_HUGEPAGE, etc.
This patchset is the first step for the THP swap support. The plan is
to delay splitting THP step by step, finally avoid splitting THP during
the THP swapping out and swap out/in the THP as a whole.
As the first step, in this patchset, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache. This will
reduce lock acquiring/releasing for the locks used for the swap cache
management.
With the patchset, the swap out throughput improves 15.5% (from about
3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes. The test is done on a Xeon E5 v3 system. The swap
device used is a RAM simulated PMEM (persistent memory) device. To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.
This patch (of 5):
In this patch, splitting huge page is delayed from almost the first step
of swapping out to after allocating the swap space for the THP
(Transparent Huge Page) and adding the THP into the swap cache. This
will batch the corresponding operation, thus improve THP swap out
throughput.
This is the first step for the THP swap optimization. The plan is to
delay splitting the THP step by step and avoid splitting the THP
finally.
In this patch, one swap cluster is used to hold the contents of each THP
swapped out. So, the size of the swap cluster is changed to that of the
THP (Transparent Huge Page) on x86_64 architecture (512). For other
architectures which want such THP swap optimization,
ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for
the architecture. In effect, this will enlarge swap cluster size by 2
times on x86_64. Which may make it harder to find a free cluster when
the swap space becomes fragmented. So that, this may reduce the
continuous swap space allocation and sequential write in theory. The
performance test in 0day shows no regressions caused by this.
In the future of THP swap optimization, some information of the swapped
out THP (such as compound map count) will be recorded in the
swap_cluster_info data structure.
The mem cgroup swap accounting functions are enhanced to support charge
or uncharge a swap cluster backing a THP as a whole.
The swap cluster allocate/free functions are added to allocate/free a
swap cluster for a THP. A fair simple algorithm is used for swap
cluster allocation, that is, only the first swap device in priority list
will be tried to allocate the swap cluster. The function will fail if
the trying is not successful, and the caller will fallback to allocate a
single swap slot instead. This works good enough for normal cases. If
the difference of the number of the free swap clusters among multiple
swap devices is significant, it is possible that some THPs are split
earlier than necessary. For example, this could be caused by big size
difference among multiple swap devices.
The swap cache functions is enhanced to support add/delete THP to/from
the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be
enhanced in the future with multi-order radix tree. But because we will
split the THP soon during swapping out, that optimization doesn't make
much sense for this first step.
The THP splitting functions are enhanced to support to split THP in swap
cache during swapping out. The page lock will be held during allocating
the swap cluster, adding the THP into the swap cache and splitting the
THP. So in the code path other than swapping out, if the THP need to be
split, the PageSwapCache(THP) will be always false.
The swap cluster is only available for SSD, so the THP swap optimization
in this patchset has no effect for HDD.
[ying.huang@intel.com: fix two issues in THP optimize patch]
Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com
[hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size]
Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option]
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r-- | mm/memcontrol.c | 50 |
1 files changed, 26 insertions, 24 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index d75b38b66ef6..fc51a33ddcd1 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -2376,10 +2376,9 @@ void mem_cgroup_split_huge_fixup(struct page *head) #ifdef CONFIG_MEMCG_SWAP static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, - bool charge) + int nr_entries) { - int val = (charge) ? 1 : -1; - this_cpu_add(memcg->stat->count[MEMCG_SWAP], val); + this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries); } /** @@ -2405,8 +2404,8 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry, new_id = mem_cgroup_id(to); if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { - mem_cgroup_swap_statistics(from, false); - mem_cgroup_swap_statistics(to, true); + mem_cgroup_swap_statistics(from, -1); + mem_cgroup_swap_statistics(to, 1); return 0; } return -EINVAL; @@ -5445,7 +5444,7 @@ void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, * let's not wait for it. The page already received a * memory+swap charge, drop the swap entry duplicate. */ - mem_cgroup_uncharge_swap(entry); + mem_cgroup_uncharge_swap(entry, nr_pages); } } @@ -5873,9 +5872,9 @@ void mem_cgroup_swapout(struct page *page, swp_entry_t entry) * ancestor for the swap instead and transfer the memory+swap charge. */ swap_memcg = mem_cgroup_id_get_online(memcg); - oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg)); + oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 1); VM_BUG_ON_PAGE(oldid, page); - mem_cgroup_swap_statistics(swap_memcg, true); + mem_cgroup_swap_statistics(swap_memcg, 1); page->mem_cgroup = NULL; @@ -5902,19 +5901,20 @@ void mem_cgroup_swapout(struct page *page, swp_entry_t entry) css_put(&memcg->css); } -/* - * mem_cgroup_try_charge_swap - try charging a swap entry +/** + * mem_cgroup_try_charge_swap - try charging swap space for a page * @page: page being added to swap * @entry: swap entry to charge * - * Try to charge @entry to the memcg that @page belongs to. + * Try to charge @page's memcg for the swap space at @entry. * * Returns 0 on success, -ENOMEM on failure. */ int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) { - struct mem_cgroup *memcg; + unsigned int nr_pages = hpage_nr_pages(page); struct page_counter *counter; + struct mem_cgroup *memcg; unsigned short oldid; if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) @@ -5929,25 +5929,27 @@ int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) memcg = mem_cgroup_id_get_online(memcg); if (!mem_cgroup_is_root(memcg) && - !page_counter_try_charge(&memcg->swap, 1, &counter)) { + !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { mem_cgroup_id_put(memcg); return -ENOMEM; } - oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); + /* Get references for the tail pages, too */ + if (nr_pages > 1) + mem_cgroup_id_get_many(memcg, nr_pages - 1); + oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); VM_BUG_ON_PAGE(oldid, page); - mem_cgroup_swap_statistics(memcg, true); + mem_cgroup_swap_statistics(memcg, nr_pages); return 0; } /** - * mem_cgroup_uncharge_swap - uncharge a swap entry + * mem_cgroup_uncharge_swap - uncharge swap space * @entry: swap entry to uncharge - * - * Drop the swap charge associated with @entry. + * @nr_pages: the amount of swap space to uncharge */ -void mem_cgroup_uncharge_swap(swp_entry_t entry) +void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) { struct mem_cgroup *memcg; unsigned short id; @@ -5955,18 +5957,18 @@ void mem_cgroup_uncharge_swap(swp_entry_t entry) if (!do_swap_account) return; - id = swap_cgroup_record(entry, 0); + id = swap_cgroup_record(entry, 0, nr_pages); rcu_read_lock(); memcg = mem_cgroup_from_id(id); if (memcg) { if (!mem_cgroup_is_root(memcg)) { if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) - page_counter_uncharge(&memcg->swap, 1); + page_counter_uncharge(&memcg->swap, nr_pages); else - page_counter_uncharge(&memcg->memsw, 1); + page_counter_uncharge(&memcg->memsw, nr_pages); } - mem_cgroup_swap_statistics(memcg, false); - mem_cgroup_id_put(memcg); + mem_cgroup_swap_statistics(memcg, -nr_pages); + mem_cgroup_id_put_many(memcg, nr_pages); } rcu_read_unlock(); } |