diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-01-09 22:18:47 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-01-09 22:18:47 +0300 |
commit | fb46e22a9e3863e08aef8815df9f17d0f4b9aede (patch) | |
tree | 83e052911fa8d8d90bcf9de2796e17e19040613f /mm/kasan/report.c | |
parent | d30e51aa7b1f6fa7dd78d4598d1e4c047fcc3fb9 (diff) | |
parent | 5e0a760b44417f7cadd79de2204d6247109558a0 (diff) | |
download | linux-fb46e22a9e3863e08aef8815df9f17d0f4b9aede.tar.xz |
Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the series
'maple_tree: add mt_free_one() and mt_attr() helpers'
'Some cleanups of maple tree'
- In the series 'mm: use memmap_on_memory semantics for dax/kmem'
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few fixes)
in the patch series
'Add folio_zero_tail() and folio_fill_tail()'
'Make folio_start_writeback return void'
'Fix fault handler's handling of poisoned tail pages'
'Convert aops->error_remove_page to ->error_remove_folio'
'Finish two folio conversions'
'More swap folio conversions'
- Kefeng Wang has also contributed folio-related work in the series
'mm: cleanup and use more folio in page fault'
- Jim Cromie has improved the kmemleak reporting output in the series
'tweak kmemleak report format'.
- In the series 'stackdepot: allow evicting stack traces' Andrey
Konovalov to permits clients (in this case KASAN) to cause eviction
of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series 'mm:
page_alloc: fixes for high atomic reserve caluculations'.
- Dmitry Rokosov has added to the samples/ dorectory some sample code
for a userspace memcg event listener application. See the series
'samples: introduce cgroup events listeners'.
- Some mapletree maintanance work from Liam Howlett in the series
'maple_tree: iterator state changes'.
- Nhat Pham has improved zswap's approach to writeback in the series
'workload-specific and memory pressure-driven zswap writeback'.
- DAMON/DAMOS feature and maintenance work from SeongJae Park in the
series
'mm/damon: let users feed and tame/auto-tune DAMOS'
'selftests/damon: add Python-written DAMON functionality tests'
'mm/damon: misc updates for 6.8'
- Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
memcg: subtree stats flushing and thresholds'.
- In the series 'Multi-size THP for anonymous memory' Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series 'More buffer_head
cleanups'.
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
Add ksm advisor'. This is a governor which tunes KSM's scanning
aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory use
in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.
- Matthew Wilcox has performed some maintenance work on the writeback
code, both code and within filesystems. The series is 'Clean up the
writeback paths'.
- Andrey Konovalov has optimized KASAN's handling of alloc and free
stack traces for secondary-level allocators, in the series 'kasan:
save mempool stack traces'.
- Andrey also performed some KASAN maintenance work in the series
'kasan: assorted clean-ups'.
- David Hildenbrand has gone to town on the rmap code. Cleanups, more
pte batching, folio conversions and more. See the series 'mm/rmap:
interface overhaul'.
- Kinsey Ho has contributed some maintenance work on the MGLRU code
in the series 'mm/mglru: Kconfig cleanup'.
- Matthew Wilcox has contributed lruvec page accounting code cleanups
in the series 'Remove some lruvec page accounting functions'"
* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
mm, treewide: introduce NR_PAGE_ORDERS
selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
selftests/mm: skip test if application doesn't has root privileges
selftests/mm: conform test to TAP format output
selftests: mm: hugepage-mmap: conform to TAP format output
selftests/mm: gup_test: conform test to TAP format output
mm/selftests: hugepage-mremap: conform test to TAP format output
mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
mm/memcontrol: remove __mod_lruvec_page_state()
mm/khugepaged: use a folio more in collapse_file()
slub: use a folio in __kmalloc_large_node
slub: use folio APIs in free_large_kmalloc()
slub: use alloc_pages_node() in alloc_slab_page()
mm: remove inc/dec lruvec page state functions
mm: ratelimit stat flush from workingset shrinker
kasan: stop leaking stack trace handles
mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
mm/mglru: add dummy pmd_dirty()
...
Diffstat (limited to 'mm/kasan/report.c')
-rw-r--r-- | mm/kasan/report.c | 46 |
1 files changed, 32 insertions, 14 deletions
diff --git a/mm/kasan/report.c b/mm/kasan/report.c index 011f727bfaff..7afa4feb03e1 100644 --- a/mm/kasan/report.c +++ b/mm/kasan/report.c @@ -263,7 +263,19 @@ static void print_error_description(struct kasan_report_info *info) static void print_track(struct kasan_track *track, const char *prefix) { +#ifdef CONFIG_KASAN_EXTRA_INFO + u64 ts_nsec = track->timestamp; + unsigned long rem_usec; + + ts_nsec <<= 3; + rem_usec = do_div(ts_nsec, NSEC_PER_SEC) / 1000; + + pr_err("%s by task %u on cpu %d at %lu.%06lus:\n", + prefix, track->pid, track->cpu, + (unsigned long)ts_nsec, rem_usec); +#else pr_err("%s by task %u:\n", prefix, track->pid); +#endif /* CONFIG_KASAN_EXTRA_INFO */ if (track->stack) stack_depot_print(track->stack); else @@ -624,37 +636,43 @@ void kasan_report_async(void) #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) /* - * With CONFIG_KASAN_INLINE, accesses to bogus pointers (outside the high - * canonical half of the address space) cause out-of-bounds shadow memory reads - * before the actual access. For addresses in the low canonical half of the - * address space, as well as most non-canonical addresses, that out-of-bounds - * shadow memory access lands in the non-canonical part of the address space. - * Help the user figure out what the original bogus pointer was. + * With compiler-based KASAN modes, accesses to bogus pointers (outside of the + * mapped kernel address space regions) cause faults when KASAN tries to check + * the shadow memory before the actual memory access. This results in cryptic + * GPF reports, which are hard for users to interpret. This hook helps users to + * figure out what the original bogus pointer was. */ void kasan_non_canonical_hook(unsigned long addr) { unsigned long orig_addr; const char *bug_type; + /* + * All addresses that came as a result of the memory-to-shadow mapping + * (even for bogus pointers) must be >= KASAN_SHADOW_OFFSET. + */ if (addr < KASAN_SHADOW_OFFSET) return; - orig_addr = (addr - KASAN_SHADOW_OFFSET) << KASAN_SHADOW_SCALE_SHIFT; + orig_addr = (unsigned long)kasan_shadow_to_mem((void *)addr); + /* * For faults near the shadow address for NULL, we can be fairly certain * that this is a KASAN shadow memory access. - * For faults that correspond to shadow for low canonical addresses, we - * can still be pretty sure - that shadow region is a fairly narrow - * chunk of the non-canonical address space. - * But faults that look like shadow for non-canonical addresses are a - * really large chunk of the address space. In that case, we still - * print the decoded address, but make it clear that this is not - * necessarily what's actually going on. + * For faults that correspond to the shadow for low or high canonical + * addresses, we can still be pretty sure: these shadow regions are a + * fairly narrow chunk of the address space. + * But the shadow for non-canonical addresses is a really large chunk + * of the address space. For this case, we still print the decoded + * address, but make it clear that this is not necessarily what's + * actually going on. */ if (orig_addr < PAGE_SIZE) bug_type = "null-ptr-deref"; else if (orig_addr < TASK_SIZE) bug_type = "probably user-memory-access"; + else if (addr_in_shadow((void *)addr)) + bug_type = "probably wild-memory-access"; else bug_type = "maybe wild-memory-access"; pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, |