summaryrefslogtreecommitdiff
path: root/kernel/time
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2023-11-07 17:57:13 +0300
committerThomas Gleixner <tglx@linutronix.de>2023-11-11 20:06:42 +0300
commit5c0930ccaad5a74d74e8b18b648c5eb21ed2fe94 (patch)
tree005e4da3715f5fa8861ceffcd6216d9b37cfca37 /kernel/time
parentffc253263a1375a65fa6c9f62a893e9767fbebfa (diff)
downloadlinux-5c0930ccaad5a74d74e8b18b648c5eb21ed2fe94.tar.xz
hrtimers: Push pending hrtimers away from outgoing CPU earlier
2b8272ff4a70 ("cpu/hotplug: Prevent self deadlock on CPU hot-unplug") solved the straight forward CPU hotplug deadlock vs. the scheduler bandwidth timer. Yu discovered a more involved variant where a task which has a bandwidth timer started on the outgoing CPU holds a lock and then gets throttled. If the lock required by one of the CPU hotplug callbacks the hotplug operation deadlocks because the unthrottling timer event is not handled on the dying CPU and can only be recovered once the control CPU reaches the hotplug state which pulls the pending hrtimers from the dead CPU. Solve this by pushing the hrtimers away from the dying CPU in the dying callbacks. Nothing can queue a hrtimer on the dying CPU at that point because all other CPUs spin in stop_machine() with interrupts disabled and once the operation is finished the CPU is marked offline. Reported-by: Yu Liao <liaoyu15@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Liu Tie <liutie4@huawei.com> Link: https://lore.kernel.org/r/87a5rphara.ffs@tglx
Diffstat (limited to 'kernel/time')
-rw-r--r--kernel/time/hrtimer.c33
1 files changed, 12 insertions, 21 deletions
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index 238262e4aba7..760793998cdd 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -2219,29 +2219,22 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
}
}
-int hrtimers_dead_cpu(unsigned int scpu)
+int hrtimers_cpu_dying(unsigned int dying_cpu)
{
struct hrtimer_cpu_base *old_base, *new_base;
- int i;
+ int i, ncpu = cpumask_first(cpu_active_mask);
- BUG_ON(cpu_online(scpu));
- tick_cancel_sched_timer(scpu);
+ tick_cancel_sched_timer(dying_cpu);
+
+ old_base = this_cpu_ptr(&hrtimer_bases);
+ new_base = &per_cpu(hrtimer_bases, ncpu);
- /*
- * this BH disable ensures that raise_softirq_irqoff() does
- * not wakeup ksoftirqd (and acquire the pi-lock) while
- * holding the cpu_base lock
- */
- local_bh_disable();
- local_irq_disable();
- old_base = &per_cpu(hrtimer_bases, scpu);
- new_base = this_cpu_ptr(&hrtimer_bases);
/*
* The caller is globally serialized and nobody else
* takes two locks at once, deadlock is not possible.
*/
- raw_spin_lock(&new_base->lock);
- raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
+ raw_spin_lock(&old_base->lock);
+ raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
migrate_hrtimer_list(&old_base->clock_base[i],
@@ -2252,15 +2245,13 @@ int hrtimers_dead_cpu(unsigned int scpu)
* The migration might have changed the first expiring softirq
* timer on this CPU. Update it.
*/
- hrtimer_update_softirq_timer(new_base, false);
+ __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
+ /* Tell the other CPU to retrigger the next event */
+ smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
- raw_spin_unlock(&old_base->lock);
raw_spin_unlock(&new_base->lock);
+ raw_spin_unlock(&old_base->lock);
- /* Check, if we got expired work to do */
- __hrtimer_peek_ahead_timers();
- local_irq_enable();
- local_bh_enable();
return 0;
}