summaryrefslogtreecommitdiff
path: root/kernel/rcu
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@kernel.org>2021-12-18 20:30:33 +0300
committerPaul E. McKenney <paulmck@kernel.org>2022-02-14 21:36:58 +0300
commit1fe09ebe7a9c9907f516779fbe4954165dd01529 (patch)
tree4f5f147ef4d1c41b5403bc4f33d391fe952af3b3 /kernel/rcu
parent218b957a6959a2fb5b3967fc824072bb89ac2611 (diff)
downloadlinux-1fe09ebe7a9c9907f516779fbe4954165dd01529.tar.xz
rcu: Inline __call_rcu() into call_rcu()
Because __call_rcu() is invoked only by call_rcu(), this commit inlines the former into the latter. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Diffstat (limited to 'kernel/rcu')
-rw-r--r--kernel/rcu/tree.c91
1 files changed, 42 insertions, 49 deletions
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index d1d1a8c51223..f1bb7ccc0084 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -2995,9 +2995,47 @@ static void check_cb_ovld(struct rcu_data *rdp)
raw_spin_unlock_rcu_node(rnp);
}
-/* Helper function for call_rcu() and friends. */
-static void
-__call_rcu(struct rcu_head *head, rcu_callback_t func)
+/**
+ * call_rcu() - Queue an RCU callback for invocation after a grace period.
+ * @head: structure to be used for queueing the RCU updates.
+ * @func: actual callback function to be invoked after the grace period
+ *
+ * The callback function will be invoked some time after a full grace
+ * period elapses, in other words after all pre-existing RCU read-side
+ * critical sections have completed. However, the callback function
+ * might well execute concurrently with RCU read-side critical sections
+ * that started after call_rcu() was invoked.
+ *
+ * RCU read-side critical sections are delimited by rcu_read_lock()
+ * and rcu_read_unlock(), and may be nested. In addition, but only in
+ * v5.0 and later, regions of code across which interrupts, preemption,
+ * or softirqs have been disabled also serve as RCU read-side critical
+ * sections. This includes hardware interrupt handlers, softirq handlers,
+ * and NMI handlers.
+ *
+ * Note that all CPUs must agree that the grace period extended beyond
+ * all pre-existing RCU read-side critical section. On systems with more
+ * than one CPU, this means that when "func()" is invoked, each CPU is
+ * guaranteed to have executed a full memory barrier since the end of its
+ * last RCU read-side critical section whose beginning preceded the call
+ * to call_rcu(). It also means that each CPU executing an RCU read-side
+ * critical section that continues beyond the start of "func()" must have
+ * executed a memory barrier after the call_rcu() but before the beginning
+ * of that RCU read-side critical section. Note that these guarantees
+ * include CPUs that are offline, idle, or executing in user mode, as
+ * well as CPUs that are executing in the kernel.
+ *
+ * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
+ * resulting RCU callback function "func()", then both CPU A and CPU B are
+ * guaranteed to execute a full memory barrier during the time interval
+ * between the call to call_rcu() and the invocation of "func()" -- even
+ * if CPU A and CPU B are the same CPU (but again only if the system has
+ * more than one CPU).
+ *
+ * Implementation of these memory-ordering guarantees is described here:
+ * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
+ */
+void call_rcu(struct rcu_head *head, rcu_callback_t func)
{
static atomic_t doublefrees;
unsigned long flags;
@@ -3011,7 +3049,7 @@ __call_rcu(struct rcu_head *head, rcu_callback_t func)
/*
* Probable double call_rcu(), so leak the callback.
* Use rcu:rcu_callback trace event to find the previous
- * time callback was passed to __call_rcu().
+ * time callback was passed to call_rcu().
*/
if (atomic_inc_return(&doublefrees) < 4) {
pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
@@ -3060,51 +3098,6 @@ __call_rcu(struct rcu_head *head, rcu_callback_t func)
local_irq_restore(flags);
}
}
-
-/**
- * call_rcu() - Queue an RCU callback for invocation after a grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all pre-existing RCU read-side
- * critical sections have completed. However, the callback function
- * might well execute concurrently with RCU read-side critical sections
- * that started after call_rcu() was invoked.
- *
- * RCU read-side critical sections are delimited by rcu_read_lock()
- * and rcu_read_unlock(), and may be nested. In addition, but only in
- * v5.0 and later, regions of code across which interrupts, preemption,
- * or softirqs have been disabled also serve as RCU read-side critical
- * sections. This includes hardware interrupt handlers, softirq handlers,
- * and NMI handlers.
- *
- * Note that all CPUs must agree that the grace period extended beyond
- * all pre-existing RCU read-side critical section. On systems with more
- * than one CPU, this means that when "func()" is invoked, each CPU is
- * guaranteed to have executed a full memory barrier since the end of its
- * last RCU read-side critical section whose beginning preceded the call
- * to call_rcu(). It also means that each CPU executing an RCU read-side
- * critical section that continues beyond the start of "func()" must have
- * executed a memory barrier after the call_rcu() but before the beginning
- * of that RCU read-side critical section. Note that these guarantees
- * include CPUs that are offline, idle, or executing in user mode, as
- * well as CPUs that are executing in the kernel.
- *
- * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
- * resulting RCU callback function "func()", then both CPU A and CPU B are
- * guaranteed to execute a full memory barrier during the time interval
- * between the call to call_rcu() and the invocation of "func()" -- even
- * if CPU A and CPU B are the same CPU (but again only if the system has
- * more than one CPU).
- *
- * Implementation of these memory-ordering guarantees is described here:
- * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
- */
-void call_rcu(struct rcu_head *head, rcu_callback_t func)
-{
- __call_rcu(head, func);
-}
EXPORT_SYMBOL_GPL(call_rcu);