summaryrefslogtreecommitdiff
path: root/kernel/kexec.c
diff options
context:
space:
mode:
authorXunlei Pang <xlpang@redhat.com>2017-07-13 00:33:21 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2017-07-13 02:26:00 +0300
commit1229384f5b856d83698c38f9dedfd836e26711cb (patch)
treefb797eeab18938f30aa26aab8fd5c270cf0719e7 /kernel/kexec.c
parent5203f4995d9a87952a83c2ce7866adbbe8f97bb5 (diff)
downloadlinux-1229384f5b856d83698c38f9dedfd836e26711cb.tar.xz
kdump: protect vmcoreinfo data under the crash memory
Currently vmcoreinfo data is updated at boot time subsys_initcall(), it has the risk of being modified by some wrong code during system is running. As a result, vmcore dumped may contain the wrong vmcoreinfo. Later on, when using "crash", "makedumpfile", etc utility to parse this vmcore, we probably will get "Segmentation fault" or other unexpected errors. E.g. 1) wrong code overwrites vmcoreinfo_data; 2) further crashes the system; 3) trigger kdump, then we obviously will fail to recognize the crash context correctly due to the corrupted vmcoreinfo. Now except for vmcoreinfo, all the crash data is well protected(including the cpu note which is fully updated in the crash path, thus its correctness is guaranteed). Given that vmcoreinfo data is a large chunk prepared for kdump, we better protect it as well. To solve this, we relocate and copy vmcoreinfo_data to the crash memory when kdump is loading via kexec syscalls. Because the whole crash memory will be protected by existing arch_kexec_protect_crashkres() mechanism, we naturally protect vmcoreinfo_data from write(even read) access under kernel direct mapping after kdump is loaded. Since kdump is usually loaded at the very early stage after boot, we can trust the correctness of the vmcoreinfo data copied. On the other hand, we still need to operate the vmcoreinfo safe copy when crash happens to generate vmcoreinfo_note again, we rely on vmap() to map out a new kernel virtual address and update to use this new one instead in the following crash_save_vmcoreinfo(). BTW, we do not touch vmcoreinfo_note, because it will be fully updated using the protected vmcoreinfo_data after crash which is surely correct just like the cpu crash note. Link: http://lkml.kernel.org/r/1493281021-20737-3-git-send-email-xlpang@redhat.com Signed-off-by: Xunlei Pang <xlpang@redhat.com> Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Young <dyoung@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'kernel/kexec.c')
-rw-r--r--kernel/kexec.c8
1 files changed, 8 insertions, 0 deletions
diff --git a/kernel/kexec.c b/kernel/kexec.c
index 980936a90ee6..e62ec4dc6620 100644
--- a/kernel/kexec.c
+++ b/kernel/kexec.c
@@ -144,6 +144,14 @@ static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
if (ret)
goto out;
+ /*
+ * Some architecture(like S390) may touch the crash memory before
+ * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
+ */
+ ret = kimage_crash_copy_vmcoreinfo(image);
+ if (ret)
+ goto out;
+
for (i = 0; i < nr_segments; i++) {
ret = kimage_load_segment(image, &image->segment[i]);
if (ret)