summaryrefslogtreecommitdiff
path: root/include/uapi
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2015-04-15 00:37:47 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2015-04-15 00:37:47 +0300
commit6c8a53c9e6a151fffb07f8b4c34bd1e33dddd467 (patch)
tree791caf826ef136c521a97b7878f226b6ba1c1d75 /include/uapi
parente95e7f627062be5e6ce971ce873e6234c91ffc50 (diff)
parent066450be419fa48007a9f29e19828f2a86198754 (diff)
downloadlinux-6c8a53c9e6a151fffb07f8b4c34bd1e33dddd467.tar.xz
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf changes from Ingo Molnar: "Core kernel changes: - One of the more interesting features in this cycle is the ability to attach eBPF programs (user-defined, sandboxed bytecode executed by the kernel) to kprobes. This allows user-defined instrumentation on a live kernel image that can never crash, hang or interfere with the kernel negatively. (Right now it's limited to root-only, but in the future we might allow unprivileged use as well.) (Alexei Starovoitov) - Another non-trivial feature is per event clockid support: this allows, amongst other things, the selection of different clock sources for event timestamps traced via perf. This feature is sought by people who'd like to merge perf generated events with external events that were measured with different clocks: - cluster wide profiling - for system wide tracing with user-space events, - JIT profiling events etc. Matching perf tooling support is added as well, available via the -k, --clockid <clockid> parameter to perf record et al. (Peter Zijlstra) Hardware enablement kernel changes: - x86 Intel Processor Trace (PT) support: which is a hardware tracer on steroids, available on Broadwell CPUs. The hardware trace stream is directly output into the user-space ring-buffer, using the 'AUX' data format extension that was added to the perf core to support hardware constraints such as the necessity to have the tracing buffer physically contiguous. This patch-set was developed for two years and this is the result. A simple way to make use of this is to use BTS tracing, the PT driver emulates BTS output - available via the 'intel_bts' PMU. More explicit PT specific tooling support is in the works as well - will probably be ready by 4.2. (Alexander Shishkin, Peter Zijlstra) - x86 Intel Cache QoS Monitoring (CQM) support: this is a hardware feature of Intel Xeon CPUs that allows the measurement and allocation/partitioning of caches to individual workloads. These kernel changes expose the measurement side as a new PMU driver, which exposes various QoS related PMU events. (The partitioning change is work in progress and is planned to be merged as a cgroup extension.) (Matt Fleming, Peter Zijlstra; CPU feature detection by Peter P Waskiewicz Jr) - x86 Intel Haswell LBR call stack support: this is a new Haswell feature that allows the hardware recording of call chains, plus tooling support. To activate this feature you have to enable it via the new 'lbr' call-graph recording option: perf record --call-graph lbr perf report or: perf top --call-graph lbr This hardware feature is a lot faster than stack walk or dwarf based unwinding, but has some limitations: - It reuses the current LBR facility, so LBR call stack and branch record can not be enabled at the same time. - It is only available for user-space callchains. (Yan, Zheng) - x86 Intel Broadwell CPU support and various event constraints and event table fixes for earlier models. (Andi Kleen) - x86 Intel HT CPUs event scheduling workarounds. This is a complex CPU bug affecting the SNB,IVB,HSW families that results in counter value corruption. The mitigation code is automatically enabled and is transparent. (Maria Dimakopoulou, Stephane Eranian) The perf tooling side had a ton of changes in this cycle as well, so I'm only able to list the user visible changes here, in addition to the tooling changes outlined above: User visible changes affecting all tools: - Improve support of compressed kernel modules (Jiri Olsa) - Save DSO loading errno to better report errors (Arnaldo Carvalho de Melo) - Bash completion for subcommands (Yunlong Song) - Add 'I' event modifier for perf_event_attr.exclude_idle bit (Jiri Olsa) - Support missing -f to override perf.data file ownership. (Yunlong Song) - Show the first event with an invalid filter (David Ahern, Arnaldo Carvalho de Melo) User visible changes in individual tools: 'perf data': New tool for converting perf.data to other formats, initially for the CTF (Common Trace Format) from LTTng (Jiri Olsa, Sebastian Siewior) 'perf diff': Add --kallsyms option (David Ahern) 'perf list': Allow listing events with 'tracepoint' prefix (Yunlong Song) Sort the output of the command (Yunlong Song) 'perf kmem': Respect -i option (Jiri Olsa) Print big numbers using thousands' group (Namhyung Kim) Allow -v option (Namhyung Kim) Fix alignment of slab result table (Namhyung Kim) 'perf probe': Support multiple probes on different binaries on the same command line (Masami Hiramatsu) Support unnamed union/structure members data collection. (Masami Hiramatsu) Check kprobes blacklist when adding new events. (Masami Hiramatsu) 'perf record': Teach 'perf record' about perf_event_attr.clockid (Peter Zijlstra) Support recording running/enabled time (Andi Kleen) 'perf sched': Improve the performance of 'perf sched replay' on high CPU core count machines (Yunlong Song) 'perf report' and 'perf top': Allow annotating entries in callchains in the hists browser (Arnaldo Carvalho de Melo) Indicate which callchain entries are annotated in the TUI hists browser (Arnaldo Carvalho de Melo) Add pid/tid filtering to 'report' and 'script' commands (David Ahern) Consider PERF_RECORD_ events with cpumode == 0 in 'perf top', removing one cause of long term memory usage buildup, i.e. not processing PERF_RECORD_EXIT events (Arnaldo Carvalho de Melo) 'perf stat': Report unsupported events properly (Suzuki K. Poulose) Output running time and run/enabled ratio in CSV mode (Andi Kleen) 'perf trace': Handle legacy syscalls tracepoints (David Ahern, Arnaldo Carvalho de Melo) Only insert blank duration bracket when tracing syscalls (Arnaldo Carvalho de Melo) Filter out the trace pid when no threads are specified (Arnaldo Carvalho de Melo) Dump stack on segfaults (Arnaldo Carvalho de Melo) No need to explicitely enable evsels for workload started from perf, let it be enabled via perf_event_attr.enable_on_exec, removing some events that take place in the 'perf trace' before a workload is really started by it. (Arnaldo Carvalho de Melo) Allow mixing with tracepoints and suppressing plain syscalls. (Arnaldo Carvalho de Melo) There's also been a ton of infrastructure work done, such as the split-out of perf's build system into tools/build/ and other changes - see the shortlog and changelog for details" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (358 commits) perf/x86/intel/pt: Clean up the control flow in pt_pmu_hw_init() perf evlist: Fix type for references to data_head/tail perf probe: Check the orphaned -x option perf probe: Support multiple probes on different binaries perf buildid-list: Fix segfault when show DSOs with hits perf tools: Fix cross-endian analysis perf tools: Fix error path to do closedir() when synthesizing threads perf tools: Fix synthesizing fork_event.ppid for non-main thread perf tools: Add 'I' event modifier for exclude_idle bit perf report: Don't call map__kmap if map is NULL. perf tests: Fix attr tests perf probe: Fix ARM 32 building error perf tools: Merge all perf_event_attr print functions perf record: Add clockid parameter perf sched replay: Use replay_repeat to calculate the runavg of cpu usage instead of the default value 10 perf sched replay: Support using -f to override perf.data file ownership perf sched replay: Fix the EMFILE error caused by the limitation of the maximum open files perf sched replay: Handle the dead halt of sem_wait when create_tasks() fails for any task perf sched replay: Fix the segmentation fault problem caused by pr_err in threads perf sched replay: Realloc the memory of pid_to_task stepwise to adapt to the different pid_max configurations ...
Diffstat (limited to 'include/uapi')
-rw-r--r--include/uapi/linux/bpf.h5
-rw-r--r--include/uapi/linux/perf_event.h115
2 files changed, 103 insertions, 17 deletions
diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h
index 45da7ec7d274..cc47ef41076a 100644
--- a/include/uapi/linux/bpf.h
+++ b/include/uapi/linux/bpf.h
@@ -118,6 +118,7 @@ enum bpf_map_type {
enum bpf_prog_type {
BPF_PROG_TYPE_UNSPEC,
BPF_PROG_TYPE_SOCKET_FILTER,
+ BPF_PROG_TYPE_KPROBE,
};
/* flags for BPF_MAP_UPDATE_ELEM command */
@@ -151,6 +152,7 @@ union bpf_attr {
__u32 log_level; /* verbosity level of verifier */
__u32 log_size; /* size of user buffer */
__aligned_u64 log_buf; /* user supplied buffer */
+ __u32 kern_version; /* checked when prog_type=kprobe */
};
} __attribute__((aligned(8)));
@@ -162,6 +164,9 @@ enum bpf_func_id {
BPF_FUNC_map_lookup_elem, /* void *map_lookup_elem(&map, &key) */
BPF_FUNC_map_update_elem, /* int map_update_elem(&map, &key, &value, flags) */
BPF_FUNC_map_delete_elem, /* int map_delete_elem(&map, &key) */
+ BPF_FUNC_probe_read, /* int bpf_probe_read(void *dst, int size, void *src) */
+ BPF_FUNC_ktime_get_ns, /* u64 bpf_ktime_get_ns(void) */
+ BPF_FUNC_trace_printk, /* int bpf_trace_printk(const char *fmt, int fmt_size, ...) */
__BPF_FUNC_MAX_ID,
};
diff --git a/include/uapi/linux/perf_event.h b/include/uapi/linux/perf_event.h
index 9b79abbd1ab8..309211b3eb67 100644
--- a/include/uapi/linux/perf_event.h
+++ b/include/uapi/linux/perf_event.h
@@ -152,21 +152,42 @@ enum perf_event_sample_format {
* The branch types can be combined, however BRANCH_ANY covers all types
* of branches and therefore it supersedes all the other types.
*/
+enum perf_branch_sample_type_shift {
+ PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
+ PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
+ PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
+
+ PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
+ PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
+ PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
+ PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
+ PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
+ PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
+ PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
+ PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
+
+ PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
+
+ PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
+};
+
enum perf_branch_sample_type {
- PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */
- PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
- PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */
-
- PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */
- PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */
- PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
- PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */
- PERF_SAMPLE_BRANCH_ABORT_TX = 1U << 7, /* transaction aborts */
- PERF_SAMPLE_BRANCH_IN_TX = 1U << 8, /* in transaction */
- PERF_SAMPLE_BRANCH_NO_TX = 1U << 9, /* not in transaction */
- PERF_SAMPLE_BRANCH_COND = 1U << 10, /* conditional branches */
-
- PERF_SAMPLE_BRANCH_MAX = 1U << 11, /* non-ABI */
+ PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
+ PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
+ PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
+
+ PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
+ PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
+ PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
+ PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
+ PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
+ PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
+ PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
+ PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
+
+ PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
+
+ PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
};
#define PERF_SAMPLE_BRANCH_PLM_ALL \
@@ -240,6 +261,7 @@ enum perf_event_read_format {
#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
/* add: sample_stack_user */
#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
+#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
/*
* Hardware event_id to monitor via a performance monitoring event:
@@ -305,7 +327,8 @@ struct perf_event_attr {
exclude_callchain_user : 1, /* exclude user callchains */
mmap2 : 1, /* include mmap with inode data */
comm_exec : 1, /* flag comm events that are due to an exec */
- __reserved_1 : 39;
+ use_clockid : 1, /* use @clockid for time fields */
+ __reserved_1 : 38;
union {
__u32 wakeup_events; /* wakeup every n events */
@@ -334,8 +357,7 @@ struct perf_event_attr {
*/
__u32 sample_stack_user;
- /* Align to u64. */
- __u32 __reserved_2;
+ __s32 clockid;
/*
* Defines set of regs to dump for each sample
* state captured on:
@@ -345,6 +367,12 @@ struct perf_event_attr {
* See asm/perf_regs.h for details.
*/
__u64 sample_regs_intr;
+
+ /*
+ * Wakeup watermark for AUX area
+ */
+ __u32 aux_watermark;
+ __u32 __reserved_2; /* align to __u64 */
};
#define perf_flags(attr) (*(&(attr)->read_format + 1))
@@ -360,6 +388,7 @@ struct perf_event_attr {
#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
+#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
enum perf_event_ioc_flags {
PERF_IOC_FLAG_GROUP = 1U << 0,
@@ -500,9 +529,30 @@ struct perf_event_mmap_page {
* In this case the kernel will not over-write unread data.
*
* See perf_output_put_handle() for the data ordering.
+ *
+ * data_{offset,size} indicate the location and size of the perf record
+ * buffer within the mmapped area.
*/
__u64 data_head; /* head in the data section */
__u64 data_tail; /* user-space written tail */
+ __u64 data_offset; /* where the buffer starts */
+ __u64 data_size; /* data buffer size */
+
+ /*
+ * AUX area is defined by aux_{offset,size} fields that should be set
+ * by the userspace, so that
+ *
+ * aux_offset >= data_offset + data_size
+ *
+ * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
+ *
+ * Ring buffer pointers aux_{head,tail} have the same semantics as
+ * data_{head,tail} and same ordering rules apply.
+ */
+ __u64 aux_head;
+ __u64 aux_tail;
+ __u64 aux_offset;
+ __u64 aux_size;
};
#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
@@ -725,6 +775,31 @@ enum perf_event_type {
*/
PERF_RECORD_MMAP2 = 10,
+ /*
+ * Records that new data landed in the AUX buffer part.
+ *
+ * struct {
+ * struct perf_event_header header;
+ *
+ * u64 aux_offset;
+ * u64 aux_size;
+ * u64 flags;
+ * struct sample_id sample_id;
+ * };
+ */
+ PERF_RECORD_AUX = 11,
+
+ /*
+ * Indicates that instruction trace has started
+ *
+ * struct {
+ * struct perf_event_header header;
+ * u32 pid;
+ * u32 tid;
+ * };
+ */
+ PERF_RECORD_ITRACE_START = 12,
+
PERF_RECORD_MAX, /* non-ABI */
};
@@ -742,6 +817,12 @@ enum perf_callchain_context {
PERF_CONTEXT_MAX = (__u64)-4095,
};
+/**
+ * PERF_RECORD_AUX::flags bits
+ */
+#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
+#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
+
#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
#define PERF_FLAG_FD_OUTPUT (1UL << 1)
#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */