diff options
author | Andrew Hunter <ahh@google.com> | 2014-09-05 01:17:16 +0400 |
---|---|---|
committer | John Stultz <john.stultz@linaro.org> | 2014-09-13 00:59:03 +0400 |
commit | d78c9300c51d6ceed9f6d078d4e9366f259de28c (patch) | |
tree | e35f28f9046d9688a9870d254b5bfba28eb70a3c /include/linux/jiffies.h | |
parent | 9bf2419fa7bffa16ce58a4d5c20399eff8c970c9 (diff) | |
download | linux-d78c9300c51d6ceed9f6d078d4e9366f259de28c.tar.xz |
jiffies: Fix timeval conversion to jiffies
timeval_to_jiffies tried to round a timeval up to an integral number
of jiffies, but the logic for doing so was incorrect: intervals
corresponding to exactly N jiffies would become N+1. This manifested
itself particularly repeatedly stopping/starting an itimer:
setitimer(ITIMER_PROF, &val, NULL);
setitimer(ITIMER_PROF, NULL, &val);
would add a full tick to val, _even if it was exactly representable in
terms of jiffies_ (say, the result of a previous rounding.) Doing
this repeatedly would cause unbounded growth in val. So fix the math.
Here's what was wrong with the conversion: we essentially computed
(eliding seconds)
jiffies = usec * (NSEC_PER_USEC/TICK_NSEC)
by using scaling arithmetic, which took the best approximation of
NSEC_PER_USEC/TICK_NSEC with denominator of 2^USEC_JIFFIE_SC =
x/(2^USEC_JIFFIE_SC), and computed:
jiffies = (usec * x) >> USEC_JIFFIE_SC
and rounded this calculation up in the intermediate form (since we
can't necessarily exactly represent TICK_NSEC in usec.) But the
scaling arithmetic is a (very slight) *over*approximation of the true
value; that is, instead of dividing by (1 usec/ 1 jiffie), we
effectively divided by (1 usec/1 jiffie)-epsilon (rounding
down). This would normally be fine, but we want to round timeouts up,
and we did so by adding 2^USEC_JIFFIE_SC - 1 before the shift; this
would be fine if our division was exact, but dividing this by the
slightly smaller factor was equivalent to adding just _over_ 1 to the
final result (instead of just _under_ 1, as desired.)
In particular, with HZ=1000, we consistently computed that 10000 usec
was 11 jiffies; the same was true for any exact multiple of
TICK_NSEC.
We could possibly still round in the intermediate form, adding
something less than 2^USEC_JIFFIE_SC - 1, but easier still is to
convert usec->nsec, round in nanoseconds, and then convert using
time*spec*_to_jiffies. This adds one constant multiplication, and is
not observably slower in microbenchmarks on recent x86 hardware.
Tested: the following program:
int main() {
struct itimerval zero = {{0, 0}, {0, 0}};
/* Initially set to 10 ms. */
struct itimerval initial = zero;
initial.it_interval.tv_usec = 10000;
setitimer(ITIMER_PROF, &initial, NULL);
/* Save and restore several times. */
for (size_t i = 0; i < 10; ++i) {
struct itimerval prev;
setitimer(ITIMER_PROF, &zero, &prev);
/* on old kernels, this goes up by TICK_USEC every iteration */
printf("previous value: %ld %ld %ld %ld\n",
prev.it_interval.tv_sec, prev.it_interval.tv_usec,
prev.it_value.tv_sec, prev.it_value.tv_usec);
setitimer(ITIMER_PROF, &prev, NULL);
}
return 0;
}
Cc: stable@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paul Turner <pjt@google.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Reviewed-by: Paul Turner <pjt@google.com>
Reported-by: Aaron Jacobs <jacobsa@google.com>
Signed-off-by: Andrew Hunter <ahh@google.com>
[jstultz: Tweaked to apply to 3.17-rc]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Diffstat (limited to 'include/linux/jiffies.h')
-rw-r--r-- | include/linux/jiffies.h | 12 |
1 files changed, 0 insertions, 12 deletions
diff --git a/include/linux/jiffies.h b/include/linux/jiffies.h index 1f44466c1e9d..c367cbdf73ab 100644 --- a/include/linux/jiffies.h +++ b/include/linux/jiffies.h @@ -258,23 +258,11 @@ extern unsigned long preset_lpj; #define SEC_JIFFIE_SC (32 - SHIFT_HZ) #endif #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) -#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19) #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) -#define USEC_CONVERSION \ - ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\ - TICK_NSEC -1) / (u64)TICK_NSEC)) -/* - * USEC_ROUND is used in the timeval to jiffie conversion. See there - * for more details. It is the scaled resolution rounding value. Note - * that it is a 64-bit value. Since, when it is applied, we are already - * in jiffies (albit scaled), it is nothing but the bits we will shift - * off. - */ -#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1) /* * The maximum jiffie value is (MAX_INT >> 1). Here we translate that * into seconds. The 64-bit case will overflow if we are not careful, |