diff options
author | Kumar Kartikeya Dwivedi <memxor@gmail.com> | 2023-09-13 02:32:01 +0300 |
---|---|---|
committer | Alexei Starovoitov <ast@kernel.org> | 2023-09-16 19:34:21 +0300 |
commit | f18b03fabaa9b7c80e80b72a621f481f0d706ae0 (patch) | |
tree | 7410a260abf0aa01f1c21389e9c89c16089ded8e /include/linux/bpf.h | |
parent | 335d1c5b545284d75ef96ee42e461eacefe865bb (diff) | |
download | linux-f18b03fabaa9b7c80e80b72a621f481f0d706ae0.tar.xz |
bpf: Implement BPF exceptions
This patch implements BPF exceptions, and introduces a bpf_throw kfunc
to allow programs to throw exceptions during their execution at runtime.
A bpf_throw invocation is treated as an immediate termination of the
program, returning back to its caller within the kernel, unwinding all
stack frames.
This allows the program to simplify its implementation, by testing for
runtime conditions which the verifier has no visibility into, and assert
that they are true. In case they are not, the program can simply throw
an exception from the other branch.
BPF exceptions are explicitly *NOT* an unlikely slowpath error handling
primitive, and this objective has guided design choices of the
implementation of the them within the kernel (with the bulk of the cost
for unwinding the stack offloaded to the bpf_throw kfunc).
The implementation of this mechanism requires use of add_hidden_subprog
mechanism introduced in the previous patch, which generates a couple of
instructions to move R1 to R0 and exit. The JIT then rewrites the
prologue of this subprog to take the stack pointer and frame pointer as
inputs and reset the stack frame, popping all callee-saved registers
saved by the main subprog. The bpf_throw function then walks the stack
at runtime, and invokes this exception subprog with the stack and frame
pointers as parameters.
Reviewers must take note that currently the main program is made to save
all callee-saved registers on x86_64 during entry into the program. This
is because we must do an equivalent of a lightweight context switch when
unwinding the stack, therefore we need the callee-saved registers of the
caller of the BPF program to be able to return with a sane state.
Note that we have to additionally handle r12, even though it is not used
by the program, because when throwing the exception the program makes an
entry into the kernel which could clobber r12 after saving it on the
stack. To be able to preserve the value we received on program entry, we
push r12 and restore it from the generated subprogram when unwinding the
stack.
For now, bpf_throw invocation fails when lingering resources or locks
exist in that path of the program. In a future followup, bpf_throw will
be extended to perform frame-by-frame unwinding to release lingering
resources for each stack frame, removing this limitation.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'include/linux/bpf.h')
-rw-r--r-- | include/linux/bpf.h | 3 |
1 files changed, 3 insertions, 0 deletions
diff --git a/include/linux/bpf.h b/include/linux/bpf.h index c3667e95af59..16740ee82082 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -1410,6 +1410,8 @@ struct bpf_prog_aux { bool sleepable; bool tail_call_reachable; bool xdp_has_frags; + bool exception_cb; + bool exception_boundary; /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ const struct btf_type *attach_func_proto; /* function name for valid attach_btf_id */ @@ -1432,6 +1434,7 @@ struct bpf_prog_aux { int cgroup_atype; /* enum cgroup_bpf_attach_type */ struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; char name[BPF_OBJ_NAME_LEN]; + unsigned int (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp); #ifdef CONFIG_SECURITY void *security; #endif |