summaryrefslogtreecommitdiff
path: root/fs/iomap/direct-io.c
diff options
context:
space:
mode:
authorJens Axboe <axboe@kernel.dk>2023-07-08 19:01:50 +0300
committerJens Axboe <axboe@kernel.dk>2023-08-02 02:32:49 +0300
commit8c052fb3002e6e7eccdc138d2e459cd03f019ade (patch)
tree34b8f53a5c1db89e6dd17f762c969040c9cc0228 /fs/iomap/direct-io.c
parent099ada2c87260e5c52fbdad4ca40c165fc194a2e (diff)
downloadlinux-8c052fb3002e6e7eccdc138d2e459cd03f019ade.tar.xz
iomap: support IOCB_DIO_CALLER_COMP
If IOCB_DIO_CALLER_COMP is set, utilize that to set kiocb->dio_complete handler and data for that callback. Rather than punt the completion to a workqueue, we pass back the handler and data to the issuer and will get a callback from a safe task context. Using the following fio job to randomly dio write 4k blocks at queue depths of 1..16: fio --name=dio-write --filename=/data1/file --time_based=1 \ --runtime=10 --bs=4096 --rw=randwrite --norandommap --buffered=0 \ --cpus_allowed=4 --ioengine=io_uring --iodepth=$depth shows the following results before and after this patch: Stock Patched Diff ======================================= QD1 155K 162K + 4.5% QD2 290K 313K + 7.9% QD4 533K 597K +12.0% QD8 604K 827K +36.9% QD16 615K 845K +37.4% which shows nice wins all around. If we factored in per-IOP efficiency, the wins look even nicer. This becomes apparent as queue depth rises, as the offloaded workqueue completions runs out of steam. Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'fs/iomap/direct-io.c')
-rw-r--r--fs/iomap/direct-io.c62
1 files changed, 60 insertions, 2 deletions
diff --git a/fs/iomap/direct-io.c b/fs/iomap/direct-io.c
index b943bc5c7b18..bcd3f8cf5ea4 100644
--- a/fs/iomap/direct-io.c
+++ b/fs/iomap/direct-io.c
@@ -20,6 +20,7 @@
* Private flags for iomap_dio, must not overlap with the public ones in
* iomap.h:
*/
+#define IOMAP_DIO_CALLER_COMP (1U << 26)
#define IOMAP_DIO_INLINE_COMP (1U << 27)
#define IOMAP_DIO_WRITE_THROUGH (1U << 28)
#define IOMAP_DIO_NEED_SYNC (1U << 29)
@@ -132,6 +133,11 @@ ssize_t iomap_dio_complete(struct iomap_dio *dio)
}
EXPORT_SYMBOL_GPL(iomap_dio_complete);
+static ssize_t iomap_dio_deferred_complete(void *data)
+{
+ return iomap_dio_complete(data);
+}
+
static void iomap_dio_complete_work(struct work_struct *work)
{
struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
@@ -183,6 +189,31 @@ void iomap_dio_bio_end_io(struct bio *bio)
}
/*
+ * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule
+ * our completion that way to avoid an async punt to a workqueue.
+ */
+ if (dio->flags & IOMAP_DIO_CALLER_COMP) {
+ /* only polled IO cares about private cleared */
+ iocb->private = dio;
+ iocb->dio_complete = iomap_dio_deferred_complete;
+
+ /*
+ * Invoke ->ki_complete() directly. We've assigned our
+ * dio_complete callback handler, and since the issuer set
+ * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will
+ * notice ->dio_complete being set and will defer calling that
+ * handler until it can be done from a safe task context.
+ *
+ * Note that the 'res' being passed in here is not important
+ * for this case. The actual completion value of the request
+ * will be gotten from dio_complete when that is run by the
+ * issuer.
+ */
+ iocb->ki_complete(iocb, 0);
+ goto release_bio;
+ }
+
+ /*
* Async DIO completion that requires filesystem level completion work
* gets punted to a work queue to complete as the operation may require
* more IO to be issued to finalise filesystem metadata changes or
@@ -278,12 +309,17 @@ static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
* after IO completion such as unwritten extent conversion) and
* the underlying device either supports FUA or doesn't have
* a volatile write cache. This allows us to avoid cache flushes
- * on IO completion.
+ * on IO completion. If we can't use writethrough and need to
+ * sync, disable in-task completions as dio completion will
+ * need to call generic_write_sync() which will do a blocking
+ * fsync / cache flush call.
*/
if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
(dio->flags & IOMAP_DIO_WRITE_THROUGH) &&
(bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev)))
use_fua = true;
+ else if (dio->flags & IOMAP_DIO_NEED_SYNC)
+ dio->flags &= ~IOMAP_DIO_CALLER_COMP;
}
/*
@@ -298,10 +334,23 @@ static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
goto out;
/*
- * We can only poll for single bio I/Os.
+ * We can only do deferred completion for pure overwrites that
+ * don't require additional IO at completion. This rules out
+ * writes that need zeroing or extent conversion, extend
+ * the file size, or issue journal IO or cache flushes
+ * during completion processing.
*/
if (need_zeroout ||
+ ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) ||
((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
+ dio->flags &= ~IOMAP_DIO_CALLER_COMP;
+
+ /*
+ * The rules for polled IO completions follow the guidelines as the
+ * ones we set for inline and deferred completions. If none of those
+ * are available for this IO, clear the polled flag.
+ */
+ if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP)))
dio->iocb->ki_flags &= ~IOCB_HIPRI;
if (need_zeroout) {
@@ -547,6 +596,15 @@ __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
iomi.flags |= IOMAP_WRITE;
dio->flags |= IOMAP_DIO_WRITE;
+ /*
+ * Flag as supporting deferred completions, if the issuer
+ * groks it. This can avoid a workqueue punt for writes.
+ * We may later clear this flag if we need to do other IO
+ * as part of this IO completion.
+ */
+ if (iocb->ki_flags & IOCB_DIO_CALLER_COMP)
+ dio->flags |= IOMAP_DIO_CALLER_COMP;
+
if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
ret = -EAGAIN;
if (iomi.pos >= dio->i_size ||